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Abstract:

This paper deals with a factor analysis model. Usually one assumes that the model has nor-
mally distributed variables. If these variables are not normally distributed, the well-known
estimators using only variances and covariances of the observed variables may lead to biased
estimates of the factor loadings. This paper uses characteristic functions to derive an ap-
proximately consistent BGLS-estimator of the factor loadings in a model with both normal
and non-normal variables.

An example with generated data and an empirical example will evaluate the estimator. Fur-
thermore, the estimator will be compared to well-known estimators using only second order
moments, consistent estimators using third order moments and estimators using transforma-
tions to get normal variables.

It turns out that our method gives good estimates of the unknown model parameters for sam-
ple sizes larger than 50. Our estimation method also avoids the disadvantage of the above
mentioned estimation methods.
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Introduction

We consider the factor analysis model

y=Af+g (1)
in which y (the observed variables), f (the factors) and ¢ (the residuals) are vectors of centered
random variables and A is a matrix of constants (the factor loadings) which have to be esti-
mated. y=(y1, ..., ¥n) ande= (g, ... , &)  are (n x 1)-column vectors,

=, ..., fp)T is a (p x 1)-column vector and A is a (n x p)-matrix. The residuals gy, ..., &,
are independent of each other, and independent of the factors f; , ..., f;.

Usually in factor analysis models one assumes that y, f and g are multivariate normally dis-
tributed and have expectation zero. In that case we have for the first and the second order

moments of the model variables
Ey=0, Ef=0, Eg=0 (2a)
C=AWA'™+U (2b)

in which C, W and U are the covariance matrices of y, f and &. If the factors are independent
of each other, then the matrix W is equal to the unity matrix I,. The matrix U is diagonal and
uniquely determined by (2b) (see Anderson and Rubin (1956)). Unless restrictions are im-
posed on the parameters in A and W, if there is one set of parameters that satisfies equation
(2b), there will be an infinite number of such sets (see Lewis-Beck (1994), and Krijnen,
Dijkstra and Gill (1998)). So, the matrices A and W are not identifiable.

Usually the matrix A will be estimated by fitting the second order moments of expression
(2b). Doing this, one implicitly assumes that y is normally distributed. If y is not normally
distributed the solution space for A is smaller and the estimates may be biased. For non-
normal data, Mooijaart (1985) even shows that under some additional conditions the solution
space for the matrix A shrinks to a single point.

For estimating A in the correct solution space, among others, we can use Asymptotic Distri-
bution Free (ADF) methods, which fit higher order moments or use higher order moments in

the weight matrix (see Bentler (1983), Browne (1984), Mooijaart (1985), and Yuan, Marshall



and Bentler (2002)). The disadvantage of this approach is the need of a very large sample
size. Furthermore, the necessary conditions are not always fulfilled.

We also can transform non-normally distributed variables to normally distributed variables
(see Muthen (1984)). This approach gives factor loadings for the transformed normally dis-
tributed variables instead of factor loadings for the observed non-normally distributed vari-
ables, which may render the interpretation of the factor loadings a very difficult task. Moreo-
ver, it is not always possible to transform an arbitrary distribution function to a normal distri-
bution function.

Ichikawa and Konishi (1995) investigated the performance of the bootstrap method in normal
maximum likelihood factor analysis when the normal distribution assumption is not satisfied.
Statistical inference based on resampling can still be valid for nonnormal data. However, as
concluded by the authors, because of ill conditions and improper solutions, bootstrap infer-

ence should be used with caution.

In fact, the approaches of the above two paragraphs do not decrease the solution space for the
factor loading matrix A and still allow biased estimators. Another possibility to deal with the
estimation of nonnormal factor analysis is the fitting of the distribution functions or the char-
acteristic functions. Characteristic functions are more appropriate than distribution functions
because they can be estimated by smaller sample sizes (see for instance, De Leeuw and Van
Rijckevorsel (1981). Furthermore every random variable has a corresponding characteristic
function, even if the higher order moments do not exist. For instance, the Cauchy distribution
has no first, second and higher order moments, while the characteristic function exists.

The characteristic function of a variable is a transformation of the corresponding density
function. A characteristic function uniquely determines the distribution of a random variable.
If we use only means and covariances of variables we only deal with a limited amount of in-
formation about the characteristic functions around the point t = 0. The mean of a random
variable is the first order derivative of the corresponding characteristic function in the point t
= 0, multiplied by i. The second order moment of a random variable is the second order de-

rivative of the characteristic function in the point t = 0, multiplied by -1.

In this paper we will deal with the estimation of a factor analysis model for observed variables
which can be either normal or non-normal distributed. Therefore we use characteristic func-
tions. In section one we discuss the derivation of an approximately Best Generalized Least

Squares (BGLS) estimator. Furthermore in section 2 we deal with the approximation of char-



acteristic functions by B-splines, which we need for our estimation method. In section 3 we
discuss some asymptotic properties of our estimator. Finally in sections 4 and 5 we discuss an
example with generated data and an empirical example. Our estimator will be compared to

other well-known estimation methods.

1. Estimation algorithm

In this section we derive estimators of the factor loading matrix with the help of the relations
for the first and second order moments and additional characteristic function relations. Rela-
tion (2) is valid for every distribution of the observed variables. The following additional re-
lation between the logarithms of the characteristic functions of the random model variables

also holds:

n n

ety t)=Ing(d) Aitioooy D, Apti) + > Inhi(t), (3)
i=l1

i=1 i=1

where c(t; ,..., ty) is the characteristic function of vector y in the point (t; ,..., t,), g(ti,....,tp)
the characteristic function of vector f in the point (ti,...,t,), and hi(t) the characteristic func-
tions of g; in the point t. If the factor loading matrix A is identified by the factor model (1),

than this matrix is also identified by relation (3).

In orthogonal factor analysis, where the factors are independent of each other, the expression
for the logarithm of the characteristic function of vector f reduces to the sum of the logarithms
of the characteristic functions of the separate factors f; up to f;:

n p n

lng(z Ant,...... ,z Aipti) = z lngj(z Aijti)

i=l1 i=1 j=1 i=l1
To obtain simpler expressions we will work with the above decomposition of the logarithm
of the characteristic function of f. Nevertheless, the results can be generalised to the more

general case in which the factors are not necessarily independent.

With the help of relation (3) we can define the following Best General Least Squares (BGLS)

function W, which fits the characteristic function of the vector y:

yv=2"'v'z (4)



, with Z a column vector
, Z; equal to the logarithm of the empirical characteristic function corresponding to the
left hand side of (3) minus the right hand side of (3), for an arbitrary fixed value of t; =
V..., t.7)
and V the asymptotic dispersion matrix of the vector Z.
The above function (4) contains the unknown factor loadings and the logarithms of the un-
known characteristic functions of the common factors and residuals. The form of these char-

acteristic functions is restricted by the first and second order moment equations in (2).

We will approximate the logarithms of the characteristic functions of the common factors and
the residuals in expression (4) by B-splines. Spline functions have found great use as ap-
proximating functions. Ordinary polynomials are inadequate in many situations. Wold (1974)
mentioned that in many situations the behaviour of a function in one region might be totally
uncorrelated to the behaviour in another region. Polynomials along with most other mathe-
matical functions have the property, that their behaviour in a small region determines their
behaviour everywhere. Splines do not suffer from this handicap since they are defined piece-
wise. Furthermore De Leeuw and Van Rijckevorsel (1981) note that the use of B-splines takes
away the disadvantage of the crudeness or discontinuity of the step functions at the break-

points, while maintaining the advantage of not approximating strictly linear functions only.

The logarithms of the characteristic functions of the factors and the residuals are multiple-
valued functions. The single-valued interpretation of them is true for the real part but for the
imaginary part we have equality modulo 27. Thus for instance we have

Im In gi(t) = Im In gij(t) + 2nK with K an arbitrary integer. This is a bit inconvenient to work
with numerically. Therefore we only work with the real parts of the logarithms of the charac-

teristic functions of the factors and the residuals. For instance,

Re[Ingt)] = In { (Reg(t))* +(Img(®))* }'* (i=1,..p).

Furthermore we mention that for all well-known distribution functions the real part of the

logarithm of the corresponding characteristic functions is symmetric around the point zero,



strictly increasing for t < 0 and strictly decreasing for t > 0. This paper only deals with the

partt>0of Re [ Ing(.)] (i=1,...p), which has a simple monotone decreasing form.

In this paper we will obtain BGLS-estimates of the elements of the factor loading matrix A by
minimizing the BGLS-function (4) under the restrictions of relation (2). We will minimize
function (4) by minimizing it over the unknown spline parameters and the unknown factor
loadings alternatingly. At one time we fix the set of the spline coefficients and minimize over
the model parameters, the other time we fix the model parameters and minimize over the
spline coefficients with the restrictions of relation (2). We continue to do so until no further
improvement is made. This principle has worked very well in many related data analysis
contexts (see for instance, Young (1981), Wold (1974, 1982) and Winsberg and Ramsay
(1980)).

2. B-spline approximation

We use B-splines of the order 3, subdivide the arbitrary interval [0,1] into (k+1) subintervals
and choose knot; =j * 0.1 (j =-3,...,k). Approximating the logarithms of the characteristic

functions of the factors and the residuals by B-splines we get the following expressions:

k

Re[Ing(t) ]~ > aujBj(t), (0<t<1;i=1,....p) (5a)

=3

k
Re[Inhi(®]~ > apijBi),  (0<t<l;i=1,...,n) (5b)

j=3

with o the spline coefficients and B_3(.) ,..., Bi(.) a basis for the interval [0,1] (For instance

j+4 jt+4
Bj(t) = (knotjg -knot;) >° { J]  (knot,—knot,)"}(t-knot, )*s ; see Powell (1981, page
u=j v=j,v#u

229).

If the factors are correlated, we can use multivariate B-splines instead of univariate B-splines.

Let B (0) be the first order derivative and B (0) the second derivative of the function B(.) in
the point t = 0. From the properties g;(0) =1 and h;(0) = 1, and the assumptions E f; = 0 and

E & =0 it follows that for every i =1,...,n+p



k
Z Qi j Bj(O) =0 and z Qi,j BJ(O) =0.

=3 =3

Furthermore from the assumption E _fi2 =1 and E §12 = U; it follows that

k
z 0;jB;(0)=-1foreveryi=1,....p

=3

k
and z Olp+i,j Bj(O) =-Ujforeveryi=1,...,n.
=3

Since B;(0) =0, Bj(O) =0and Bj(O) =0 for everyj > -1 we get the results

a3 B3(0) + a2 B(0) + 0i.f B4(0) =0 (with i=1,...,p+n) (6)
i3 B;(0)+ 02 B(0)+ai B.(0) =0 (with i=1,...,p+n) (7)
i3 B3(0) + ai2 B 2(0)+ oy B(0) = -1 (with i=1,...,p) (8a)
i3 B3(0) + a2 B2(0)+ oi B(0) = -U; (with i=p+1,...,p+n) (8b)

Relations (6), (7) and (8), which follow from relation (2), determine the spline coefficients o -

3(0), 0i-2(0)and a;-1(0) fori=1,...,p+n uniquely.

Furthermore we assume that for every i=1,...,n + p: aio> i1 > ...> iy (condition (9)).
From the results of De Boor (1978; page 109,110,154 and 155) it follows that this is a suffi-
cient condition for the corresponding functions Re [ In gj(.) ] and Re [ In h;(.) ]

G=1,...,p; 1= 1,...,n) to become monotone strictly decreasing on the interval [0,1]. For order

j
k<4 of the splines it even is a necessary condition. If we define oy = ZSLZ , then we can
z=-3
reformulate expression (5a) and (5b) in the following way:
k j
Re[Ing®)]~2 [>8,1Bi® (i=1,...p) (10a)
j=-3 z=-3



k j

Re[Inh(t)]~> [D>.5,..,1B() (i=1,...n) (10b)

with 8ip,..., 0ig <0and &3, 8i2 , 0i-; fixed from relation (6), (7) and (8).

Substituting expression (10) into equation (3) we get:

Re[Inc(ty,...,t)) ] = z { Z [ZSLZ I Bj(tiA;i+...F thAn;) }

3

p i
=1 —

%)

1 z=

—.

£ 0> 136, 1B) ) (11)

i=1 j= z=-3

=

o8}

with t;,..., t, € [0,1].

The left- and right-hand sides of (11) are functions of (t; ,..., t,). For every different value of
combination (t; ,..., t,) relation (11) generates a different equation. The unknown spline co-
efficients are determinated uniquely with only a finite number of these approximate equations
from expression (11) (see Winsberg and Ransay (1980)). We only use a finite number of val-
ues for the combination (t ,..., t,) to determine the unknowns factor loadings and spline co-
efficients in (11). Naturally the number of equations has to be greater than the number of

knots and the number of unknown model parameters.

Now we can summarize the estimation procedure as follows.

Step 1: Initial step.

Using the sample covariance matrix of y we can estimate the covariance matrix U of the
unique residuals g and the first three spline coefficients for the logarithms of the characteristic
functions of the separate factors and residuals. This estimation can be done by a classical
factor analysis estimation procedure, which uses first and second order moments only.

Step2: Minimizing over unknown spline coefficients.

Minimizing the GLS-function (4), into which expression (11) is substituted, over the un-
known spline coefficients for fixed modelparameters is a quadratic optimization problem with

the linear inequality constraints. Because of the monotonicity constraints finding the optimal



unknown spline coefficients is a convex programming problem, which can be solved by using
the rapid manifold suboptimization method by Zangwill (1969; section 8.3).

Step 3: Minimizing over unknown model parameters.

On the other hand minimizing GLS-function (4) over the model parameters is a nonlinear
optimization problem. We use the Newton-Raphson method (see also Zangwill (1969)).

Step 4: Steps 2 and 3 can be repeated until converge is guaranteed.

3. Asymptotic properties

Until now we dealt with a fixed arbitrary number of knots on the interval [0,1]. In this section
the number of knots of our approximation splines is not fixed. We derive the number of knots

kq as a strictly increasing function of the sample-size sl.

Let the functions In g;(.),..., In gy(.) , In h;(.),..., In hy(.) be 2 times continuous differentiable
on the interval [0,1] and be approximated by spline functions of order three. Under these con-
ditions, we can use the results of Powell (1981, chapter 20) to determine the approximation
error for the B-spline-approximations of the logarithms of the characteristic functions of the
factors and the residuals. It is not useful to make the approximation errors smaller than the
variances of the logarithms of the empirical characteristic function of y in different points t =
(t1 ,...,t) (ti,..., ty €[0,1]). Now for a fixed sample-size sl we define the number of knots kg
in the following way:

kg is the largest integer for which the following constraints are satisfied

1/8 [max ¢ c (0,17 (6" In gi(t) /0 £°)] &* >

[max tl,..., tn €[0,1] (Var In ¢ (tl IR tn))] (_] = lvvp) (1221)

and

1/8 [max ¢ c (0,17 (6" In hy(t) /0 £ )] &* >

[max | mefo,1(varln ¢(t,....t))]  (G=1,...n) (12b)

with d the maximal distance between two knots.

The lef- hand sides of (12a) and (12b) represent the spline approximation-upper-bounds for



In gi(),..., In gy(.) , In hy(.),..., In hy(.). The right-hand sides of the above constraints represent
the maximum of the variances of the logarithms of the empirical characteristic function of y in

several points T = (t; ,..., ty).

Using (12a,12b) and an uniform knot placement we can easily see that kq is an increasing
function of sl. If sl — oo then kg — . For sl — oo the logarithms of the characteristic func-
tions of the factors and the residuals will be approximated exactly. In that case Feuerverger
and McDunnough (1981) prove the BGLS-estimates from (4) converge almost surely to the
true values of the unknown parameters. Furthermore the estimators are asymptotically nor-
mally distributed with asymptotic variance Z V'Z (Zis the derivative from Z with respect
to the unknown parameters). Feuerverger and McDunnough (1981) also show that by using a
sufficiently extensive grid { i = (t,” ,..., t,.7), i=1,..., dimension Z} the asymptotic vari-
ances of our BGLS- estimators can be made arbitrarily close to the Cramer-Rao bound. So,

our procedure can attain arbitrarily high asymptotic efficiency.

If the model is correct the optimization function W is asymptotically chi-square distributed
with degrees of freedom equal to the number of components of the vector Z minus the num-
ber of independent parameters. The number of components of Z corresponds to the number of
different values for the combination (ti, ..., t,). The number of independent parameters is

equal to the sum of the unknown factor loadings and the unknown spline coefficients.

Finally we remark that the dimension of Z in expression (4), which is equal to the number of
different values for the combinations (t; ,..., t,), depends on the number of spline-knots. The
dimension of Z has to be larger than the number of knots kg on the interval [0,1]. If sl - o«

and kg — oo, then dimension Z — oo.

4. Monte Carlo simulation

In this example we discuss, by means of some generated data, our estimation method. Besides
our method we also apply some well-known rotation methods for factor loadings estimates
like Quartimax and Varimax, which only use first and second order moments. These estima-

tion methods will be run with the help of standard SPSS-software (version 10.0). We shall

10



generate some models in which the factor loadings are identified and we will check whether
the correct factor loadings will be estimated. Because sample size may play an important role

with respect to the accuracy of the estimators, both sizes of 50 and 200 are used.

Scores on fi, f;, ej, €, €3, €4 and es are drawn independently from a chi-squared distribution
with one and two degrees of freedom for the common factors f; and f, and from a standard
normal distribution for the unique residuals e, e, €3, €4 and es. Next the common factors are
normalised (expectation 0 and standard deviation 1) and the residuals are multiplied by arbi-
trary random numbers between 0 and 1. The factor loadings are also chosen randomly in the
interval [0,1]. Using the scores for the common factors, the scores for the unique residuals and
the values for the factor loadings we calculate the scores for the observed variables y, y», y3,
y4 and ys. This simulation will be repeated 50 and 200 times with the same factor loading
matrix, and will lead to 50 and 200 observations for y; up to ys. From these yi, y2, y3, y4 and
ys scores the estimates of the initial factor loadings are obtained. Mooijaart (1985) proves that
this model is identified with higher order moments. Now we apply the Quartimax and Vari-
max method, and our characteristic function method to obtain estimates for the factor load-
ings. Therefore, the empirical characteristic function of y is computed in arbitrary values for
the combination (t;,t,,t3,t4,t5), with each value for t between 0 and 1/5. The number of replica-

tions in this study is equal to 1000.

Our estimation procedure is programmed with the programming language MATLAB. The
number of internal knots on the interval [0,1] for the B-splines approximation will be two
(uniform knot placement). The starting values of the factor loadings for our iterative estima-
tion procedure are obtained by the Varimax estimates. In this example we choose the ap-
proximation interval [0,1]. If the arguments of the logarithms of the characteristic functions
are going beyond the approximation interval [0,1], our method has some complications. In
that situation we drop out the t’s of which the corresponding arguments are outside the ap-
proximation interval. However, using this correction method we are changing the optimisation

function.

For sample size 50 and 200 the estimation results of our method are acceptable (see Table 1).
The estimates of the factor loadings are in the neighbourhood of the true factor loading val-
ues. The average differences between the true parameter values and the estimates are within

the ranges [0.137;0.149] and [0.091;0.114]. All the standard deviations of the estimates are

11



smaller than 0.094. We repeated the Monte Carlo study with the number of knots on the inter-
val [0;1] set equal to four instead of two. This did not change the estimation results apprecia-
bly.

Without knowing the population factor loading matrix we are not able to construct a rotation
method, which leads to estimates close to the characteristic functions estimates. The estim a-
tion results of the Quartimax and Varimax method do not differ that much from each other
(see Table 1). Their bias is about 0.20 larger than the bias of our estimation method. On an
average the factor loadings can differ 0.30 from the true values. For sample size 50 and 200
the differences are nearly the same. These results indicate that the classical estimation meth-
ods give estimates that are not allowed. This is, because they do not use more information

than only first and second order moments.

5. Empirical example

Using the factor analysis method introduced in this paper we estimate the factor loadings in an
empirical example. The starting values for the factor loading estimates are equal to the Vari-
max estimates. Once again, we use the approximation interval [0,1] and two internal knots on

this interval for the approximation splines.

The data analysed here were collected by The Economic Social Institute (ESI) of the Free
University in Amsterdam measuring five characteristics of 167 entrepreneurs in the field of
small and medium-sized enterprises sector (see Table 2). The scores on the characteristics are
from 1 (= not important) to 10 (=very important). A Kolmogorov test shows that all the five
variables cannot be assumed to come from a normal distribution (significance level 0.05). All

the variables were negatively skewed.

We deal with a factor model, which contains two orthogonal common factors. The factor
model is fitted only, to show that this can be done. The factor loadings, estimated by the
method of this paper, are presented in Table 3. The corresponding standard deviations of the

factor loading estimators, computed with the bootstrap method, are drawn between brackets.

12



If the model is correct, the minimizing function in (4) is asymptotically chi-squared distrib-
uted with degrees of freedom equal to the number of elements in the vector Z minus the num-
ber of independent unknown parameters. The number of elements of Z corresponds with the
number of different values for the combination (t;,t5,t3,t4,ts). The number of independent un-
known parameters is equal to the sum of the unknown factor loadings (=10), the unknown
spline coefficients corresponding with the common factors and the residuals (=21). So, in this
case the optimization function is chi-squared distributed with 40 — 10 — 21 = 9 degrees of
freedom. The value for the chi-squared minimizing function is 8.0. The probability level is

about 0.40 and we cannot reject the model on the basis of the data.

The estimated factor loading matrix is also used to obtain factor scores for each of the 167
respondents. From these factor scores it follows that both common factors are negative
skewed. The Kolmogorov test indicates that the common factors do not come from a normal

distribution (significance level 0.05).

Table 3 shows, that the first common factor corresponds with the observed variables repre-
senting some internal oriented characteristics of the entrepreneurs. The second common factor
is only strongly correlated with the externally oriented variable, i.e., the attitude towards cli-

ents.

13



Table 1, Monte Carlo results for characteristic function method, Quartimax method and

Varimax method.

Estimates char- | Estimates Quar- | Estimates
acteristic  func- | timax Method Varimax

tion method Method

N=50 | N=200 | N=50 | N=200 | N=50 | N=200

Average diff. Aq 0.148 [0.106 |0.235 |[0.198 |0.253 |0.219

Standdov. diff. A, | (0-094) | (0.063) | (0.179) | (0.150) | (0.188) | (0.174)

Average diff. Ay 0.140 |0.114 ]0.229 |0.202 |0.244 |0.224

Stand.dev. diff. Ay | (0:068) | (0:070) | (0.176) | (0.157) | (0.185) | (0.172)

Average diff. A3 0.137 |0.102 |0.229 |0.196 |0.246 |0.216

Stand.dev. dift. Ay, | (0-086) | (0:062) | (0.182) | (0.153) | (0.193) | (0.169)

Average diff. Agq 0.142 |0.108 |0.283 |[0.205 |0.254 |0.221

Stand.dov. diff. Ay, | (0-090) | (0.066) | (0.182) | (0.155) | (0.193) | (0.170)

Average diff. As 0.137 |0.111 ]0.231 |0.204 |0.246 |0.223

Stand.dev. diff. As| (0.084) | (0.069) | (0.181) | (0.156) | (0.194) | (0.176)

Average diff. A | 0.139 | 0.092 ] 0.4293 | 0.436 |0.338 | 0.301

Stand.dev. diff. A, | (0:087) | (0:057) | (0.289) | (0.284) | (0.242) | (0.213)

Average diff. Ayy | 0.149 | 0.100 | 0.434 |0.454 |0.337 |0.304

Stand.dev. diff. Ay | (0-094) | (0.063) | (0.291) | (0.230) | (0.233) | (0.226)

Average diff. A3y | 0.136 | 0.099 0443 |0.445 |0.341 |0.296

Stand.dev. diff. A3, | (0:086) | (0.064) | (0.290) | (0.281) | (0.245) | (0.209)

Average diff. Agp | 0.139 | 0.091 10433 |0.459 |0.348 |0.306

Stand.dev. diff. A4 (0.081) | (0.057) | (0.292) | (0.294) | (0.240) | (0.222)

Average diff. Asp | 0.142 1 0.099 0444 |0.443 |0.348 |0.308

Stand.dev. diff. As, | (0-087) | (0.063) | (0.280) | (0.289) | (0.237) | (0.224)




Table 2, Five characteristics of entrepreneurs in the small and medium-sized

enterprises sector

VARIABLE 1: Commitment and determination
VARIABLE 2: Persistence in problem solving
VARIABLE 3: Creativity

VARIABLE 4: Team spirit and motivational capacities
VARIABLE 5: Client orientation

Table 3, The estimates of the factor loadings for the ESI data
(corresponding standard deviation between brackets)

Factor Estimates Factor Estimates

loadings loadings

A 0.819 A -0.189
(0.053) (0.022)

Aoy 0.846 Ar -0.180
(0.046) (0.012)

Az 0.731 Az -0.120
(0.031) (0.010)

As 0.650 Ay 0.303
(0.060) (0.027)

As 0.215 Asy 0.924
(0.033) (0.054)

Explained | 46.1 % Explained | 20.6%

variance variance

Df=9

v* =8.0
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