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MULTI-VALUED WEIGHTED COMPOSITION OPERATORS ON FOCK

SPACE

PHAM VIET HAI AND MIHAI PUTINAR

Abstract. Multivalued linear operators, also known as linear relations, are studied on
a specific class of weighted, composition transforms on Fock space. Basic properties of
this class of linear relations, such as closed graph, boundedness, complex symmetry, real
symmetry, or isometry are characterized in simple algebraic terms, involving their symbols.

1. Introduction

The definition of the adjoint of a closed graph linear operator, not necessarily having
dense domain of definition, encounters the uninviting observation that it is multi-valued.
A natural way to circumvent this obstacle is to accept multi-valued operators whose graph
is simply a linear subspace. It was von Neumann himself who laid the foundations of this
necessary generalization [30, 31]. The clear benefits of the new concept soon bear fruit, first
in the study of non-standard boundary value problems for differential equations [7], and
second in abstract duality theory [1]. Without entering through the front gate in modern
linear analysis, the theory of multi-valued linear operators has reached maturity [10, 25, 2]
offering solid support for a variety of applications. The article [23] stands aside by clarity
and depth.

A second source of our investigation is the emerging theory of complex symmetric linear
operators. The second author has contributed at isolating a theoretical framework for this
class of Hilbert space transforms motivated by particular phenomena arising in function
theory, matrix analysis and mathematical physics [13, 14, 12].

We recall the concept of complex symmetry for single-valued linear operators.

Definition 1.1. Let C be a conjugation (i.e. anti-linear isometric involution) on a sepa-
rable, complex Hilbert space H. A closed, densely defined, single-valued linear operator
T : dom(T ) ⊆ H → H is called

(1) C-symmetric if its graph is contained in the graph of CT ∗C;
(2) C-selfadjoint if T = CT ∗C.

Examples abound: hermitian operators, normal operators, Hardy space model operators,
Toeplitz and Hankel finite matrices, Jordan forms. In addition, a class of linear operators
relevant in non-hermitian quantum mechanics obeying a parity and time symmetry, so called
PT -symmetry, fits into the same category. The last two decades witnessed a tremendous
activity aimed at unveiling the spectral analysis of PT -symmetric operators [3, 35, 36, 4].
To be more precise, PT -symmetric operators are those operators on Lebesgue space L2(R)

which are complex symmetric with respect to the canonical conjugation PT f(x) = f(−x).
The favorite models for linear transforms come from to multipliers or composition opera-

tors acting on Hilbert spaces of holomorphic functions. In this respect, a natural investiga-
tion of complex symmetric transforms was undertaken in a series of recent works [11, 22].
More precisely bounded weighted composition operators

(1.1) Wψ,ϕf = ψ · f ◦ ϕ
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which are complex symmetric on Hardy spaces with respect to the standard conjugation
J f(z) = f(z) were elucidated in the cited articles.

Fock space, also known as Segal-Bargmann space of entire functions in the complex plane
which are square summable with respect to the Gaussian weight is distinguished by the fact
that the adjoint of multiplication by the variable is the derivative operation. For this simple
reason, Fock space is the preferred ground for quantum mechanics, signal processing and
micro-local analysis. Linear transforms on Fock space were throughly studied, with much
benefit for all applied ramifications [34].

Exploiting the structure of the conjugation J , the first author classified weighted compo-
sition conjugations acting on Fock space [18]. These are the conjugations entering into the
present article. They are defined as follows: for complex constants a, b, c satisfying

(1.2) |a| = 1, āb+ b̄ = 0, |c|2e|b|
2

= 1,

the weighted composition conjugation is defined by

(1.3) Ca,b,cf(z) := cebzf
(
az + b

)
, f ∈ F2.

The operators Ca,b,c, given by (1.3), with parameters subject to (1.2) are really conjugations
in the sense explained in Definition 1.1. In [19] the authors realized the canonical conjugation
PT as C−1,0,0, thus establishing a direct link between PT -symmetry and Ca,b,c-symmetry
on Fock space. See also [16] where the first author characterized Ca,b,c-selfadjointness of
unbounded weighted composition operators. In addition, hermitian, unitary or normal
weighted composition operators are all Ca,b,c-selfadjoint, with respect to an adapted choice
of constants a, b, c.

It is the goal of this paper to describe complex symmetric multi-valued weighted compo-
sition operators on Fock space. While this might look a very narrow and technical endeavor,
the complete picture offered by our study is a sign of well-posedness, with possible applica-
tions beyond the mere computational challenge. The linear relations occupying the present
article can be cast in the equation

(1.4) ψ · f ◦ ϕ = φ · g(m),

where ψ,ϕ, φ are fixed entire functions and m ≥ 0 is an integer. Associated to equation (1.4)
is the maximal multi-valued weighted composition operator in the following precise terms:

dom(Smax) = {f ∈ F2 : there exists g ∈ F2 such that

(f, g) satisfies equation (1.4)},

Smax(f) = {g ∈ F2 : the pair (f, g) satisfies equation (1.4)}.

This operator is “maximal" in the sense that it cannot be extended as an operator in F2

generated by equation (1.4). Usually, the maximal domain is too big and we choose as a
domain a subset of dom(Smax). In this view, an operator is called a non-maximal multi-
valued weighted composition operator if its graph is contained in the graph of Smax.

The article is organized as follows. Section 2 is devoted to recalling basic properties of
multi-valued operators and Fock spaces. In Section 3 some properties of a multi-valued
weighted composition operator in Fock space F2 are discussed: dense domain, boundedness
in the sense of multi-valued operators, closed graph, computation of the adjoint. We char-
acterize in Section 5 multi-valued weighted composition operators which are C-selfadjoint
with respect to a weighted composition conjugation (or simply Ca,b,c-selfadjoint). In Section
6, a similar computation is done for selfadjoint operators in the classical sense (or simply
hermitian). Our main results indicate that the Ca,b,c-selfadjointness or hermitian property
cannot be separated from the maximality of the domain. It should be noted that the class
of complex symmetric operators obtained in this paper is both multi-valued and unbounded,
and more interestingly it contains properly single-valued operators studied in [16]. Although
larger than the single-valued setting of [16], multi-valued operators appearing in Sections
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5 and 6 inherit similar properties. Such as: their domains are never equal to the whole
Fock space when m ≥ 1 (see Proposition 3.5 for a detailed explanation). In addition, the
case m = 0 treated in [17] shows that for ψ(z) = CeDz and ϕ(z) = Az + B, relation
dom(Wψ,ϕ) = F2 is valid if and only if:

{
either |A| < 1,

or |A| = 1, AB +D = 0.

In the last section we prove that a unitary weighted composition operator must necessarily
be single-valued; in other words, m = 0.

We dedicate this work to Franek Szafraniec, master of unbounded subnormality. His
works touched both multi-valued linear operators [20], as well as spectral analysis on Fock
space [28, 29].

2. Preliminaries

The present section introduces some notation and recalls basic concepts related to multi-
valued operators and Fock space.

Let Z be the set of integers and Z≥q = {m ∈ Z : m ≥ q}. The symbol Cp[z] indicates the
set of all polynomials of degree at most p. Let 2H be the collection of nonempty subsets
of H. The symbol Clo(S) indicates the closure of a set S. For an entire function φ(·), we
denote by Zero (φ) its zero set. For α ∈ Zero (φ), ord(α, φ) stands for the order of the zero

α (i.e. φ is of form φ(x) = (x − α)ord(α,φ)φ∗(x), where φ∗(α) 6= 0). Regardless to mention
that the set Zero (φ) is closed and discrete for a non-trivial φ.

2.1. Multi-valued operators. We begin by reviewing the concept of multi-valued operator
and provide by a few examples.

Definition 2.1. A multi-valued linear operator A is a mapping from a subspace dom(A) ⊂
H, called the domain of A, into 2H such that

A(α1x1 + α2x2) = α1A(x1) + α2A(x2), ∀α1, α2 ∈ C, x1, x2 ∈ dom(A).

If A(0) = {0}, A is called the single-valued linear operator. The range of A is denoted:

Im (A) = {y ∈ H : there exists x ∈ dom(A) such that y ∈ A(x)}.

Example 2.2. The simplest naturally occurring examples of a multi-valued operators are
the inverse, closure, completion and adjoint of single-valued operators.

Remark 2.3. Similar to a single-valued linear transform, a multi-valued linear operator A is
determined by its graph:

G(A) := {(x, y) ∈ H ×H : x ∈ dom(A), y ∈ A(x)}.

Further on, denote by A
−1 the flip operation:

G(A−1) := {(x, y) : (y, x) ∈ G(A)}.

For any multi-valued linear operator A on H, A(0) is a linear subspace of H and for any
x ∈ dom(A), A(x) is an affine space, that is a parallel translation of A(0): A(x) = y0+A(0)
for any y0 ∈ A(x).

Definition 2.4. Let A be a multi-valued linear operator and S be a (either linear or anti-
linear) bounded, single-valued linear operator. Its S-adjoint, denoted as A

∗
S, is defined

by
G(A∗

S) = {(u, v) ∈ H ×H : 〈g, Su〉 = 〈f, Sv〉, ∀(f, g) ∈ G(A)}.

To simplify notation we write A
∗ in the case when S is the identity operator on H.

Remark 2.5. Let C be a conjugation and A : dom(A) ⊂ H → 2H. It was already indicated
in [27, Lemma 2.2] that G(A∗

C) = {(Cx, Cy) : (x, y) ∈ G(A∗)}.
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For a closed subspace E of H, the quotient space

(2.1) H/E = {[x] : x ∈ H}, [x] = {x}+ E

is a Hilbert space with the inner product

〈[x], [y]〉 = 〈x1, y1〉 ,

where x = x0 + x1, y = y0 + y1 with x0, y0 ∈ E and x1, y1 ∈ E
⊥. The norm induced by this

inner product is precisely

(2.2) ‖[x]‖ = inf{‖x− y‖ : y ∈ E}.

Define the following natural quotient map

(2.3) QE : H → H/E, QE(x) = [x].

For a multi-valued operator A, we write QA instead of QClo(A(0)) and define the following
operator

(2.4) A : dom(A) → H/E, A = QAA;

namely, for x ∈ dom(A), A(x) = [y], where y ∈ A(x).

Definition 2.6. Let x ∈ dom(A) and define

(2.5) ‖A(x)‖ = ‖A(x)‖

The norm of A is defined as expected:

(2.6) ‖A‖ = ‖A‖.

Remark 2.7. Remark that formula (2.6) is not separating points, since, in general ‖A‖ = 0
does not imply A = 0 (see [9]).

Definition 2.8. A multi-valued linear operator A : dom(A) ⊂ H → 2H is called

(1) bounded if ‖A‖ <∞.
(2) continuous at x ∈ dom(A) if the inverse image of any neighbourhood of A(x) is a

neighbourhood of x.
(3) continuous if it is continuous at every point in its domain.
(4) injective if x 6= y implies A(x) ∩ A(y) = ∅.
(5) surjective if for every x ∈ H there exists y ∈ dom(A) such that x ∈ A(y).
(6) closed if its graph G(A) is closed.
(7) C-selfadjoint if G(A∗

C) = G(A).
(8) hermitian if G(A∗) = G(A).
(9) unitary if G(A∗) = G(A−1).

Proposition 2.9 ([9, Proposition 3.1]). The operator A : dom(A) ⊂ H → 2H is continuous
if and only if it is bounded.

For u ∈ H, we introduce the mapping

(2.7) ϑu(f) = 〈g, u〉 , g ∈ A(f).

Proposition 2.10 ([32, Proposition 2.6.3]). Given a multi-valued operator A, its adjoint
A
∗ is always closed and

dom(A∗) = {u ∈ H : ϑu is continuous and single-valued}.

According to Riesz Lemma, we outline the following remark which will be later on referred
to.

Remark 2.11. u ∈ dom(A∗) if and only if there is a constant Mu > 0 such that |〈g, u〉| ≤
Mu ‖f‖ for all (f, g) ∈ G(A).

Lemma 2.12. Let A : dom(A) ⊂ H → 2H and B : dom(B) ⊂ H → 2H be multi-valued linear
operators. Suppose that B is injective and A is surjective. If G(A) ⊆ G(B), then A = B.
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Proof. It is sufficient to show that G(B) ⊆ G(A). Indeed, let (x, y) ∈ G(B) and then
y ∈ B(x). Since A is surjective, there exists z ∈ dom(A) such that y ∈ A(z), which implies, as
G(A) ⊆ G(B), that (z, y) ∈ G(B) and furthermore y ∈ B(z). Hence, we get y ∈ B(z)∩B(x),
which implies, as B is injective, that z = x. Thus, we conclude (x, y) = (z, y) ∈ G(A). �

2.2. Fock space. By definition, Fock space, also called Segal-Bargmann space, F2 is a class
of entire functions with a specific growth at infinity. More precisely, F2 is a reproducing
kernel Hilbert space endowed with inner product

(2.8) 〈f, g〉 =
1

π

∫

C

f(z)g(z)e−|z|2 dV (z),

and associated kernel functions

K
[k]
z,a,b(x) = (ax+ b)kexz, k ∈ Z, z, x, a, b ∈ C.

Henceforth 〈f, g〉 denotes the scalar product of functions f, g ∈ F2, whereas (f, g) stands

for an ordered pair. To simplify notation we write Kz, K
[k]
z , bk instead of K

[0]
z,1,0, K

[k]
z,1,0,

K
[k]
0,1,0, respectively. Note that

f (k)(z) = 〈f,K [k]
z 〉, ∀f ∈ F2, z ∈ C.

For y ∈ C and m ∈ Z≥1,

F2(m, y) = {f ∈ F2 : f(y) = f ′(y) = · · · = f (m−1)(y) = 0}.

More information about Fock space can be found in the monograph [34]. We collect below
some relevant inequalities for our work.

Lemma 2.13 ([21]). The norm ‖f‖ induced by inner product (2.8) is comparable to

n−1∑

j=0

|f (j)(0)| +



∫

C

|f (n)(z)|2(1 + |z|)−2ne−|z|2 dV (z)




1/2

;

namely, for every n ∈ Z≥1 there are constants ∆1 = ∆1(n) > 0 and ∆2 = ∆2(n) > 0
satisfying

∆1‖f‖

≤
n−1∑

j=0

|f (j)(0)|+



∫

C

|f (n)(z)|2(1 + |z|)−2ne−|z|2 dV (z)




1/2

≤ ∆2‖f‖, ∀f ∈ F2.(2.9)

Lemma 2.14 ([15, Claim, page 814]). Let α ≥ 0 and h be an entire function satisfying
∫

C

|h(z)|2(1 + |z|)−αe−|z|2 dV (z) <∞.

Then for every R > 0, there is ∆3 = ∆3(R,α) > 0 with the property
∫

C

|h(z)|2(1 + |z|)−αe−|z|2 dV (z) ≤ ∆3

∫

|z|≥R

|h(z)|2(1 + |z|)−αe−|z|2 dV (z).

Lemma 2.15. Let 0 < p < ∞, 0 < b < ∞, 0 < t < ∞, and 0 < q < ∞. Then there is a
constant ∆7 = ∆7(b, t) > 0 such that

|f(z)|p(1 + |z|)−2qe−b|z|
2

≤ ∆7

∫

|z−x|<t

|f(x)|p(1 + |x|)−2qe−b|x|
2

dV (x)

for all entire functions f and all z ∈ C.
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Proof. By [6, Lemma 3], there exists a constant D = D(b, t) > 0 such that

|f(z)|pe−b|z|
2

≤ D

∫

|z−x|<t

|f(x)|pe−b|x|
2

dV (x)

= D

∫

|z−x|<t

|f(x)|p(1 + |x|)−2q(1 + |x|)2qe−b|x|
2

dV (x).

By taking into account the bounds

(1 + |x|)2q ≤ (1 + |x− z|+ |z|)2q ≤ (1 + t+ |z|)2q ≤ (1 + t)2q(1 + |z|)2q,

we infer

|f(z)|pe−b|z|
2

≤ D

∫

|z−x|<t

|f(x)|p(1 + |x|)−2q(1 + t)2q(1 + |z|)2qe−b|x|
2

dV (x),

as desired. �

Given κ ∈ Z≥1, the Sobolev type Fock space FB2
κ of order κ consists of all functions

f ∈ F2 satisfying
κ∑

j=0

∥∥∥f (j)
∥∥∥
2
<∞.

Proposition 2.16 ([5, Proposition 2.4]). Given κ ∈ Z≥1, f ∈ FB2
κ if and only if bκ ·f ∈ F2,

where bκ(z) = zκ. Moreover, there are constants ∆5 = ∆5(κ) > 0 and ∆6 = ∆6(κ) > 0
such that

∆5 ‖bκ · f‖
2 ≤

κ∑

j=0

∥∥∥f (j)
∥∥∥
2
≤ ∆6 ‖bκ · f‖

2 .

Corollary 2.17. Let f ∈ F2 be of form f(z) = (Ez + F )mg(z), where E,F are complex
constants with E 6= 0, m ∈ Z≥1 and g is an entire function. Then g(j) ∈ F2 for all
j ∈ {0, · · · ,m} and moreover, there exists a constant ∆4 = ∆4(m,E,F ) > 0 such that

(2.10)
∥∥∥g(j)

∥∥∥ ≤ ∆4 ‖f‖ , ∀j ∈ {0, · · · ,m}.

3. Auxiliary results

3.1. Multi-valued maximal operators. The following observation asserts that a maxi-
mal weighted composition operator is always multi-valued provided its order satisfies m ≥ 1.

Proposition 3.1. Let S be a multi-valued weighted composition operator induced by equation
(1.4). If m ∈ Z≥1, then

(1) S(0) ⊂ Cm−1[z].
(2) Smax(0) = Cm−1[z].

Proof. Let g ∈ S(0). Then the pair (0, g) satisfies equation (1.4) and so

φ(z)g(m)(z) = 0

for every z ∈ C. The conclusion follows. �
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3.2. Closed graph. The following result might be known. We include its proof for com-
pleteness of exposition.

Proposition 3.2. Let m ∈ Z≥0. The operator Smax is closed on Fock space F2.

Proof. Let {(fn, gn)} ⊆ G(Smax) be a convergent sequence. Suppose that

fn → f and gn → g in F2,

and so

fn(z) → f(z) and gn(z) → g(z), ∀z ∈ C.

In view of [19, Lemma 2.5],

g(j)n (z) → g(j)(z), ∀z ∈ C, j ∈ Z≥0.

On the other hand,

ψ(z)fn(ϕ(z)) = φ(z)g(m)
n (z), ∀z ∈ C.

Therefore,

ψ(z)f(ϕ(z)) = φ(z)g(m)(z), ∀z ∈ C, which means (f, g) ∈ G(Smax).

�

3.3. Some distinguished elements in the domains of our multi-valued operators.

In this subsection we investigate qualitative properties of some special elements belonging
to the domains of S or S

∗. This is an initial and rather important step towards the study
of deeper characteristics of multi-valued weighted composition operators.

Proposition 3.3. Let m ∈ Z≥0 and S be a multi-valued weighted composition operator
induced by equation (1.4). For every z ∈ C,

(φ(z)K [m]
z , ψ(z)Kϕ(z)) ∈ G(S∗).

Proof. For any (f, g) ∈ S,

〈g, φ(z)K [m]
z 〉 = φ(z)g(m)(z) = ψ(z)f(ϕ(z)) = 〈f, ψ(z)Kϕ(z)〉,

which gives the desired conclusion. �

Next we prove a quite surprising remark: the range Im (S∗) is dense.

Proposition 3.4. Let m ∈ Z≥0 and S be a multi-valued weighted composition operator
defined by (1.4), where ψ 6≡ 0, φ 6≡ 0, and ϕ 6≡ const. Then

(1) If f ∈ dom(S), then ϕ(Zero (φ)) ⊂ Zero (f).
(2) The operator S is injective.
(3) Clo(Im (S∗)) = F2.

Proof. (1) Let f ∈ dom(S), so there exits g ∈ F2 with (f, g) satisfying (1.4); that is

ψ(z)f(ϕ(z)) = φ(z)g(m)(z), ∀z ∈ C.

(2) Assume by contradiction that there are f, g ∈ dom(S) with f 6≡ g and S(f)∩S(g) 6= ∅.
Let h ∈ S(f) ∩ S(g) subject to

ψ(z)f(ϕ(z)) = φ(z)h(m)(z) = ψ(z)g(ϕ(z)), ∀z ∈ C.

Since ψ 6≡ 0, we get

f(ϕ(z)) = g(ϕ(z)), ∀z ∈ C,

and so by the Identity Theorem, f ≡ g. Contradiction!
(3) Assume there exists f ∈ F2 with f /∈ Clo(Im (S∗)) and

〈f, g〉 = 0, ∀g ∈ Im (S∗).
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By Proposition 3.3, we can choose g = ψ(z)Kϕ(z), whence

0 =
〈
f, ψ(z)Kϕ(z)

〉
= ψ(z)f(ϕ(z)), ∀z ∈ C.

Since ϕ 6≡ const and ψ 6≡ 0, we must have f ≡ 0. �

The following observation shows that the domain of a multi-valued weighted composition
operator is not the full Fock space. This is in sharp contrast to the single-valued operator
situation. In addition, the result below is an important step toward the computation of
adjoints and symmetries (see Theorems 4.1, 5.3 and 6.3).

Proposition 3.5. Let m ∈ Z≥1 and a, b,A,B,C,D be complex constants with A,C 6= 0.
Furthermore, let Smax be a maximal multi-valued weighted composition operator induced by
equation (1.4), where

(3.1) ϕ(z) = Az +B, ψ(z) = CeDz, φ(z) = (aAz + aB + b)m, z ∈ C.

For every z ∈ C the following assertions hold.

(1) If f ∈ dom(Smax), then it has a zero at −b/a of order at least m.

(2) K
[k]
z,a,b /∈ dom(Smax) if k ∈ Z with 0 ≤ k < m.

(3) K
[k]
z,a,b ∈ dom(Smax) if k ∈ Z≥m and moreover

Smax(K
[k]
z,a,b) = {ϑz,a,b,k(·) : satisfying (3.2)},

where

(3.2) ϑ
(m)
z,a,b,k(x) = CeBz(aAx+ aB + b)k−mKAz+D(x), x ∈ C.

In other words, Smax(K
[k]
z,a,b) is an m-dimensional affine set of entire functions with

the same m-th derivative, given in (3.2). In particular,

(3.3) ϑz,a,b,m(x) =





1

m!
CeBzxm + λ(x), Az +D = 0,

CeBz(Az +D)−mKAz+D(x) + λ(x), Az +D 6= 0,

where λ ∈ Cm−1[z].
(4) Clo(dom(Smax)) = F2(m,−b/a).

Proof. The first and second items follow directly from equation (1.4). The remaining items
are proved as follows.

(3) A direct computation gives
∫

C

|ϑ
(m)
z,a,b,k(x)|

2(1 + |x|)−2me−|x|2 dV (x) <∞,

which implies, by (2.9), that ϑz,a,b,k ∈ F2. We infer

(ψ ·K
[k]
z,a,b ◦ ϕ)(u) = ψ(u)K

[k]
z,a,b(ϕ(u)) = CeDu(aAu+ aB + b)ke(Au+B)z

= CeBze(D+Az)u(aAu+ aB + b)k

= (aAu+ aB + b)mϑ
(m)
z,a,b,k(u)

= φ(u)ϑ
(m)
z,a,b,k(u).

(4) It follows from the first item that dom(Smax) ⊂ F2(m,−b/a) and so

Clo(dom(Smax)) ⊂ F2(m,−b/a).

Assume that there is f ∈ F2(m,−b/a) with

〈f, g〉 = 0, ∀g ∈ dom(Smax).
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By the second item we can take in the above equality g = K
[k]
z,a,b for k ∈ Z≥m−1 to obtain

0 =
〈
f,K

[k]
z,a,b

〉
=

k∑

j=0

(
k

j

)
ajb

k−j
f (j)(z), ∀z ∈ C.

Using the above equation and f ∈ F2(m,−b/a), one finds f (j)(−b/a) = 0 for every j ∈ Z≥0

and so f ≡ 0. �

3.4. Boundedness. Although formula (2.6) does not define a true seminorm, we state a
observation which closes the gap between this notion and a standard norm. For entire
functions f and g, the following quantities play an important role in our boundedness
investigation:

Mz(f, g) = |f(z)|2e|g(z)|
2−|z|2 , z ∈ C,

and

M(f, g) = sup{Mz(f, g), z ∈ C}.

Theorem 3.6. Let m ∈ Z≥0 and Smax be a maximal multi-valued weighted composition
operator induced by equation (1.4), where ψ,ϕ, φ are entire functions with ψ, φ 6≡ 0. Then
Smax is bounded, if the following conditions hold.

(1) The function

ψ̂ : C → C, ψ̂(z) = ψ(z)[ϕ(z)]m [φ(z)]−1

is entire.
(2) M(ψ̂, ϕ) <∞.

In this case, the symbol ϕ takes of the form ϕ(z) = Az +B with |A| ≤ 1.

Proof. It follows from item (2) and [24, Proposition 2.1], that ϕ(z) = Az + B, where A,B
are complex constants with |A| ≤ 1. For (f, g) ∈ G(Smax) one finds

ψ(z)f(ϕ(z)) = φ(z)g(m)(z), ∀z ∈ C.

Let p ∈ Cm−1[z] with

p(j)(0) = g(j)(0), ∀j ∈ {0, · · · ,m− 1}.

Consequently

‖[g]‖2

≤ ‖g − p‖2 ≤ ∆−1
1



∫

C

|g(m)(z)|2(1 + |z|)−2me−|z|2 dV (z)


 (by (2.9))

≤ ∆−1
1 ∆3




∫

|z|≥R

|g(m)(z)|2(1 + |z|)−2me−|z|2 dV (z)


 (by Lemma 2.14)

= ∆−1
1 ∆3




∫

|z|≥R

|ψ̂(z)f(ϕ(z))|2 |ϕ(z)|−2m(1 + |z|)−2me−|z|2 dV (z)




≤ ∆−1
1 ∆3




∫

|z|≥R

|ψ̂(z)f(ϕ(z))|2e−|z|2 dV (z)


 ,
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which implies, as M(ψ̂, ϕ) <∞, that

‖[g]‖2 ≤ ∆−1
1 ∆3M(ψ̂, ϕ)




∫

|z|≥R

|f(ϕ(z))|2e−|ϕ(z)|2 dV (z)


 .

We reach the conclusion via the change of variables x = ϕ(z) and Lemma 2.14. �

3.5. Zeros of the symbols.

Proposition 3.7. Let m ∈ Z≥0, C be any conjugation on F2 and S be a multi-valued
weighted composition operator induced by equation (1.4), where ψ 6≡ 0, φ 6≡ 0 and ϕ 6≡ const.

(1) For every z ∈ C, we have φ(z)C(K
[m]
z ) ∈ dom(S∗C), and furthermore,

ψ(z)C(Kϕ(z)) ∈ S
∗
C

(
φ(z)C(K [m]

z )
)
.

(2) If the inclusion {
either G(S∗C) ⊂ G(S),

or G(S∗) ⊂ G(S),

holds, then
(a) Zero (ψ) ⊂ Zero (φ).
(b) for every α ∈ Zero (ψ) we have ord(α,ψ) ≤ ord(α, φ).

Proof. The first assertion follows from Proposition 3.3 and Remark 2.5.
(2a) We provide the proof for the case G(S∗C) ⊂ G(S) and omit the case G(S∗) ⊂ G(S) as

their arguments are quite similar. Assume by contradiction that α ∈ Zero (ψ)∩[C\Zero (φ)].
Then there is a neighborhood V of α such that ψ(x) 6= 0 for every x ∈ V \ {α}. It follows
from the first assertion that

0 = ψ(α)C(Kϕ(α)) ∈ S
∗
C

(
φ(α)C(K [m]

α )
)
.

But S is C-selfadjoint, and hence

(φ(α)C(K [m]
α ), 0) ∈ G(S).

Consequently, taking into account the form of S, we get

ψ(z)φ(α)C(K [m]
α )(ϕ(z)) = 0, ∀z ∈ C,

which implies, as φ(α) 6= 0, that C(K
[m]
α ) = 0. But this is impossible.

(2b) Assume by contradiction that there is α ∈ Zero (ψ) with the property

ord(α,ψ) > ord(α, φ).

To simplify notation, we set p = ord(α,ψ) and q = ord(α, φ). Then there are entire functions
ψ∗ and φ∗ such that ψ∗(α) 6= 0, φ∗(α) 6= 0 and

ψ(x) = (x− α)pψ∗(x), φ(x) = (x− α)qφ∗(x), x ∈ C.

Equation (1.4) is equivalent to the following identity

(3.4) (z − α)p−qψ∗(z)f(ϕ(z)) = φ∗(z)g
(m)(z), ∀z ∈ C.

Hence, (f, g) ∈ G(S) if and only if it verifies equation (3.4). In view of (2b), we reach a
contradiction. �

Remark 3.8. It should be noted that two triples of symbols (ψ,ϕ, φ) and (ψ1, ϕ, φ1) give
rise to the same operator Smax whenever φ/ψ = φ1/ψ1. In this case, such triples are called
equivalent.
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Assumption:

(3.5) Throughout this article we assume that the symbol ψ has no zeros.

Note that in the case of single-valued weighted composition operators, Assumption (3.5)
is automatically satisfied (see [16]). If Assumption (3.5) holds, then a triple (ψ,ϕ, φ) is
equivalent to (1, ϕ, φ/ψ).

Proposition 3.9. Let m ∈ Z≥0 and S be a multi-valued weighted composition operator
induced by equation (1.4), where ψ 6≡ 0, φ 6≡ 0, and ϕ 6≡ const. If the inclusion G(S∗) ⊂
G(S−1) holds, then there is an equivalent set of symbols, which has the following form

φ ≡ 1, ϕ(z) = Az +B, z ∈ C,

where A,B are complex constants with A 6= 0.

Proof. Let z ∈ C. Proposition 3.3 reveals that (φ(z)K
[m]
z , ψ(z)Kϕ(z)) ∈ G(S∗) ⊂ G(S−1)

and so
(ψ(z)Kϕ(z), φ(z)K

[m]
z ) ∈ G(S).

Consequently, taking into account the explicit form of S, we have

ψ(x)ψ(z)Kϕ(z)(ϕ(x)) = φ(x)φ(z)(K [m]
z )(m)(x), ∀x ∈ C,

which implies, as

(3.6) (K [m]
z )(m)(x) =

m∑

j=0

(
m

j

)
m(m− 1) · · · (m− j + 1)xm−jzm−jKz(x),

that

ψ(x)ψ(z)Kϕ(z)(ϕ(x))

= φ(x)φ(z)
m∑

j=0

(
m

j

)
m(m− 1) · · · (m− j + 1)xm−jzm−jKz(x)(3.7)

for every x, z ∈ C. In particular with x = z, we get

|ψ(z)|2e|ϕ(z)|
2

= |φ(z)|2
m∑

j=0

(
m

j

)
m(m− 1) · · · (m− j + 1)|z|2(m−j)e|z|

2

, ∀z ∈ C.

The above inequality shows that Zero (ψ) = Zero (φ). Since ψ 6≡ 0, there is z0 ∈ C with
ψ(z0) 6= 0. It follows from (3.7), that

ψ(x) = φ(x)ψ(z0)−1φ(z0)

m∑

j=0

(
m

j

)
m(m− 1) · · · (m− j + 1)

×xm−jz0
m−jexz0−ϕ(x)ϕ(z0),

and so we can suppose φ ≡ 1.
To prove ϕ(z) = Az + B, where A 6= 0, it suffices to show that ϕ is injective, see

[26, Exercise 14, Chapter 3]. Indeed, suppose that ϕ(z1) = ϕ(z2) for some z1, z2 ∈ C.
Proposition 3.3 implies

ψ(z1)ψ(z2)Kϕ(z1) ∈ S
∗(ψ(z2)K

[m]
z1 )

and
ψ(z1)ψ(z2)Kϕ(z2) ∈ S

∗(ψ(z1)K
[m]
z2 ).

Hence, by linearity we find

0 ∈ S
∗(ψ(z2)K

[m]
z1 − ψ(z1)K

[m]
z2 ),

which implies, as G(S∗) ⊂ G(S−1), that

ψ(z2)K
[m]
z1 − ψ(z1)K

[m]
z2 ∈ S(0);
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namely, the pair (0, ψ(z2)K
[m]
z1 −ψ(z1)K

[m]
z2 ) verifies equation (1.4). This equation, together

with (3.6), implies

(3.8) 0 =

m∑

j=0

αjx
m−j [z1

m−jψ(z2)e
xz1 − z2

m−jψ(z1)e
xz2 ], ∀x ∈ C,

where

αj =

(
m

j

)
m(m− 1) · · · (m− j + 1).

In particular taking x = 0 one finds ψ(z2) = ψ(z1) 6= 0 (as ψ is nowhere vanishing);
substituting back into equation (3.8):

0 =

m∑

j=0

αjx
m−j[z1

m−jexz1 − z2
m−jexz2 ], ∀x ∈ C.

Hence, again by (3.6), we see (K
[m]
z1 )(m) = (K

[m]
z2 )(m), that is

K [m]
z1 (x) = K [m]

z2 (x) + p(x)

for some p ∈ Cm−1[z]. Subsequently, taking into account the explicit forms of K
[m]
z1 and

K
[m]
z2 , we must have p(x) = αxm for some α = α(z1, z2) ∈ C. Substituting this form of p

back into the equality above, we find α = 0 and z1 = z2. �

3.6. Dense domain. Not unexpected, it turns out that if the domain of a multi-valued
weighted composition operator is dense, then its adjoint is single-valued.

Proposition 3.10. If the domain dom(S) is dense, then S
∗ is a single-valued operator.

Proof. It is enough to show that S
∗(0) = {0}. Indeed, let v ∈ S

∗(0) and then by the
definition of an adjoint operator, for every (f, g) ∈ G(S) we have

〈f, v〉 = 〈g, 0〉 = 0.

Since the domain dom(S) is dense, the last equality yields v = 0. �

4. The adjoint S
∗

As we will soon verify, the symbols of a Ca,b,c-selfadjoint weighted composition operator
are very special. To this aim, we concentrate first on the computation of the adjoint. The
main result of this section is stated below.

Theorem 4.1. Let m ∈ Z≥0 and a, b, c be complex constants satisfying (1.2). Let Smax be
a maximal multi-valued weighted composition operator induced by equation (1.4), where

ψ(z) = CeDz, ϕ(z) = Az +B, φ(z) = (aAz + aB + b)m, z ∈ C.

For

(4.1) ψ̂(z) = CeBz, ϕ̂(z) = Az +D, φ̂(z) = (Az +D)m, z ∈ C,

where A,B,C, and D are complex constants, with C 6= 0, we consider the following equation

(4.2) ψ̂(z)f(ϕ̂(z)) = φ̂(z)

m∑

j=0

(
m

j

)
ajb

m−j
g(j)(z).

Let

dom(Ŝmax) = {f ∈ F2 : there exists g ∈ F2 such that

(f, g) verifies equation (4.2)},

Ŝmax(f) = {g ∈ F2 : (f, g) verifies equation (4.2)}.

Then S
∗
max = Ŝmax.
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Before entering into the details of the proof, we isolate two technical observations. The
first asserts the closedness of a specific domain of definition.

Proposition 4.2. Let m ∈ Z≥0 and A,B,C,D,E, F be complex constants, with C 6= 0.
Let ϑ be an entire function. For

ψ(z) = CeDz, ϕ(z) = Az +B, φ(z) = (Ez + F )m, z ∈ C,

we consider the equation

(4.3) ψ(z)f(ϕ(z)) = φ(z)(ϑ(z)g(z))(m)

and define the associated multi-valued operator

Ω : dom(Ω) ∈ F2 → 2F
2

,

where (f, g) ∈ G(Ω) if and only if it verifies equation (4.3). If condition

(4.4)

{
either |A| < 1,

or |A| = 1, AB +D = 0

holds, then:

(1) for every (f, g) ∈ G(Ω), the function ϑ · g ∈ F2. Moreover, there is a constant ∆∗

such that

(4.5) ‖[ϑ · g]‖ ≤ ∆∗‖f‖, ∀(f, g) ∈ G(Ω).

(2) If we assume additionally that ϑ ≡ 1, then
(a) the domain dom(Ω) is closed;
(b) dom(Ω∗) = F2(m, 0).

Proof. Let (f, g) ∈ G(S) and set h = ϑ · g. For |z| ≥ R large enough, |φ(z)| ≥ 1 and so

∫

|z|≥R

|h(m)(z)|2(1 + |z|)−2me−|z|2 dV (z)

=

∫

|z|≥R

∣∣∣∣ψ(z)
f(ϕ(z))

φ(z)

∣∣∣∣
2

(1 + |z|)−2me−|z|2 dV (z)

≤

∫

|z|≥R

|ψ(z)f(ϕ(z))|2 e−|z|2 dV (z).

Denote Q = {x ∈ C : |x − B| ≥ R|A|} and do the change of variables x = ϕ(z) = Az + B
in order to obtain

∫

|z|≥R

|h(m)(z)|2(1 + |z|)−2me−|z|2 dV (z)

≤ |A|−2

∫

Q

|C|2
∣∣∣eD(x−B)/Af(x)

∣∣∣
2
e−|x−B|2/|A|2 dV (x)

≤ |A−1C|2e
|DB|
|A|

−
|B|2

|A|2

∫

Q

|f(x)|2e
2

|A|2
Re [(B+DA)x]−

|x|2

|A|2 dV (x).
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Note that

2

|A|2
Re [(B +DA)x]−

|x|2

|A|2

= −|x|2 +
1

|A|2
[−(1− |A|2)|x|2 + 2Re [(B +DA)x]]

≤




−|x|2 +

(|AD|+ |B|)2

1− |A|2
if |A| < 1,

−|x|2 if |A| = 1 and AB +D = 0.

Thus, there exists a constant K > 0 such that∫

|z|≥R

|h(m)(z)|2(1 + |z|)−2me−|z|2 dV (z) ≤ K

∫

Q

|f(x)|2e−|x|2 dV (x).

Since Q ⊂ Q∗ = {z ∈ C
n : |z| ≥ R|A| − |B|}, we have

∫

|z|≥R

|h(m)(z)|2(1 + |z|)−2me−|z|2 dV (z) ≤ K

∫

Q

|f(x)|2e−|x|2 dV (x)

≤ K

∫

Q∗

|f(x)|2e−|x|2 dV (x),

which implies, by Lemma 2.14, that∫

C

|h(m)(z)|2(1 + |z|)−2me−|z|2 dV (z) ≤ ∆3K

∫

C

|f(x)|2e−|x|2 dV (x).

Let q ∈ Cm−1[z] with the property that

h(j)(0) = q(j)(0), ∀j ∈ {0, 1, · · · ,m− 1}.

According to (2.9),

‖h− q‖ ≤ ∆−1
1



∫

C

|h(m)(z)|2(1 + |z|)−2me−|z|2 dV (z)




1/2

≤ ∆−1
1

√
∆3K



∫

C

|f(x)|2e−|x|2 dV (x)




1/2

.

(2a) Suppose that ϑ ≡ 1. The closedness of dom(Ω) is proved as follows. Let {fn} ∈
dom(Ω) with fn → f ∈ F2 and gn ∈ Ω(fn). It follows from the first item that {gn} is
convergent, too. We can suppose gn → g ∈ F2 and so, by [19, Lemma 2.5] we infer

g(j)(z) → g(j)(z), ∀z ∈ C, j ∈ Z≥0.

Since (fn, gn) ∈ G(Ω), we have

ψ(z)fn(ϕ(z)) = φ(z)g(m)
n (z), ∀z ∈ C,

which implies, by letting n→ ∞, that

ψ(z)f(ϕ(z)) = φ(z)g(m)(z), ∀z ∈ C.

Thus, (f, g) ∈ G(Ω).

(2b) We can make use of [9, Theorem 3.6] in order to get dom(Ŝ∗max) = Smax(0)
⊥ =

F2(m, 0), where the last equality uses Proposition 3.1. �

The second observation isolates a sufficient condition for a multi-valued weighted compo-
sition operator to have a closed range.
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Proposition 4.3. Let ψ(z) = CeDz, ϕ(z) = Az + B, φ(z) = (Ez + F )m, where A,B,C,
and D are complex constants, with C 6= 0. If |A| > 1, then

(1) there exists a constant ∆4 > 0 such that

‖g‖ ≥ ∆4 ‖f‖ , ∀(f, g) ∈ G(Smax).

(2) the range Im (Smax) is closed.
(3) the range Im (S∗max) = F2.

Proof. (1) Since |A| > 1, we can choose R large enough with the property

(4.6)

∣∣∣∣ψ(
x−B

A
)

∣∣∣∣ e
|x|2(1−|A|−2)+2|A|−2Re (Bx) ≥

(
1 +

∣∣∣∣
x−B

A

∣∣∣∣
)2m ∣∣∣∣

E

A
(x−B) + F

∣∣∣∣
2m

for all |x| ≥ R. Let (f, g) ∈ G(Smax) so that equation (1.4) is satisfied. By (2.9),

‖g‖2 ≥ ∆−2
2

∫

C

|g(m)(z)|2(1 + |z|)−2me−|z|2 dV (z)

= ∆−2
2

∫

C

|ψ(z)f(ϕ(z))|2 |Ez + F |−2m(1 + |z|)−2me−|z|2 dV (z).

In the last inequality we perform the change of variables z = (x−B)A−1 in order to get

‖g‖2 ≥ ∆−2
2 |A|−2

∫

C

∣∣∣∣ψ
(
x−B

A

)
f(x)

∣∣∣∣
2 ∣∣∣∣E

x−B

A
+ F

∣∣∣∣
−2m

×

(
1 +

∣∣∣∣
x−B

A

∣∣∣∣
)−2m

e−|x−B
A

|2 dV (x),

which implies, by (4.6), that

‖g‖2 ≥ ∆−2
2 |A|−2e

− |B|2

|A|2

∫

C

|f(x)|2 e−|x|2 dV (x).

(2) Let {gn} ⊂ Im (Smax) be a convergent sequence and then there exists {fn} ⊂
dom(Smax) such that gn ∈ Smax(fn) for each n. It follows from the first item that the
sequence {fn} is also convergent. Denote

f = lim
n→∞

fn, g = lim
n→∞

gn.

Since (fn, gn) ∈ G(Smax), so is (f, g). Thus, Im (Smax) is closed.
(3) By Proposition 3.2 and [9, Theorem 3.3], the range Im (Smax) is closed if and only if

so is Im (S∗max). Hence by Proposition 3.4, we get the desired conclusion. �

At this point we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. First, we show that

(4.7) G(S∗max) ⊆ G(Ŝmax).

Indeed, let (u, v) ∈ G(S∗max). Then for any (f, g) ∈ G(Smax) we have

〈g, u〉 = 〈f, v〉 .

Let z ∈ C with Az + B 6= 0 and ϑz,a,b,m be of form (3.3). In particular with (f, g) =

(K
[m]
z,a,b, ϑz,a,b,m) we can write

〈ϑz,a,b,m, u〉 =
〈
K

[m]
z,a,b, v

〉
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and so
m∑

j=0

(
m

j

)
ajb

m−j
v(j)(z) = 〈u, ϑz,a,b,m〉 = CeBz(Az +D)−m

〈
u,KAz+D

〉

= CeBz(Az +D)−mu(Az +D).

Thus, we get

φ̂(z)

m∑

j=0

(
m

j

)
ajb

m−j
v(j)(z) = CeBzu(Az +D), ∀z ∈ C.

Next, we prove the equality of equation (4.7) occurs. To that aim, we consider the following
possibilities of the constant A.

Case 1: |A| < 1.
Note equation (4.2) can be rewritten as

ψ̂(z)f(ϕ̂(z)) = φ̂(z)am
m∑

j=0

(
m

j

)
aj−mb

m−j
g(j)(z)

= φ̂(z)am
m∑

j=0

(
m

j

)
(−b)m−jg(j)(z) (by (1.2))

= φ̂(z)ebzam(e−bzg(z))(m), (by the product rule for derivatives).

For denoting ψ̃(z) = ψ(z)e−bza−m, the last equality becomes

ψ̃(z)f(ϕ̂(z)) = φ̂(z)(e−bzg(z))(m) .

This leads us to consider the following multi-valued operator

S̃max : dom(S̃max) ⊂ F2 → 2F
2

where (f, g) ∈ G(S̃max) if and only if it verifies

ψ̃(z)f(ϕ̂(z)) = φ̂(z)g(m)(z), z ∈ C.

It is clear that dom(Ŝmax) ⊂ dom(S̃max). On the other hand, by Proposition 4.2(2a), the

domain dom(S̃max) is closed, and so by Proposition 3.5(4) we must have dom(S̃max) =
F2(m, 0). Note that Proposition 4.2(2b) reveals that

F2(m, 0) = dom(Ŝ∗max) ⊂ dom(Ŝmax) ⊂ dom(S̃max) = F2(m, 0),

where the first inclusion uses (4.7). Thus, this case gives S
∗
max = Ŝmax.

Case 2: |A| > 1.
In this case, by Proposition 4.3, S∗max is surjective, while a similar argument as in Propo-

sition 3.4 proves that Ŝmax is injective. These observations, together with inclusion (4.7),

allow us to make use of Lemma 2.12 in order to derive S
∗
max = Ŝmax.

Case 3: |A| = 1 and AB +D 6= 0.

By inclusion (4.7), it suffices to show that dom(Ŝmax) ⊆ dom(S∗max). Indeed, let u ∈

dom(Ŝmax). It was mentioned in Remark 2.11 that u ∈ dom(S∗max) if and only if there exists
a constant M =M(u) > 0 such that

|〈g, u〉| ≤M ‖f‖ , ∀(f, g) ∈ G(Smax).



17

To that aim, we take arbitrarily f ∈ dom(Smax) and so by Proposition 3.5(1) we can define
the function

f∗(x) =

x+AB+D∫

0

dxm−1

xm−1∫

0

dxm−2 · · ·

· · ·

x1∫

0

ψ(x0 −AB −D)
f(ϕ(x0 −AB −D))

φ(x0 −AB −D)
dx0, x ∈ C.

By the definition of dom(Smax), there exists g ∈ F2 such that the pair (f, g) verifies equation
(1.4), and hence we have

g(m)(z −AB −D) = ψ(z −AB −D)
f(ϕ(z −AB −D))

φ(z −AB −D)
, ∀z ∈ C.

Since

g(z −AB −D) =

z∫

0

dxm−1

xm−1∫

0

dxm−2 · · ·

x1∫

0

g(m)(x0 −AB −D) dx0 + λ(z),

for some λ ∈ Cm−1[z], we find f∗ ∈ F2 and moreover

g(x) = f∗(x) + λ(x+AB +D), ∀x ∈ C.

Since (f, g) ∈ G(Smax), the pair (f, g) verifies equation (1.4), i.e.

CeDBA
−1

f(z) = (az + b)me−DA
−1zg(m)(A−1(z −B))

= (az + b)me−DA
−1zf

(m)
∗ (A−1(z −B)),

and hence by Corollary 2.17, the function h(z) = e−DA
−1zf

(m)
∗ (A−1(z −B)) satisfies

h(j) ∈ F2, ‖h(j)‖ ≤ ∆4 ‖f‖ , ∀j ∈ {0, · · · ,m}.

By the product rule for derivatives, for each k ∈ {0, · · · ,m} there are complex constants αℓ
for ℓ ∈ {0, · · · , k} with

h(k)(z) =
k∑

ℓ=0

αℓe
−DA−1zf

(m+ℓ)
∗ (A−1(z −B))

Using inductive arguments on k, one finds

pk(z) = e−DA
−1zf

(m+k)
∗ (A−1(z −B)) ∈ F2, k ∈ {0, · · · ,m}

and moreover, there exists a constant E = E(m) > 0 such that

‖pk‖ ≤ E‖f‖, ∀k ∈ {0, · · · ,m}.

Define the functions

qk(x) = f
(k)
∗ (x−AB −D), k ∈ {0, · · · , 2m}, x ∈ C.

Note that

π‖pk‖
2

=

∫

C

|pk(z)|
2e−|z|2 dV (z) =

∫

C

|f
(m+k)
∗ (A(z −B))|2e−|z|2−2Re (DAz) dV (z)

=

∫

C

|f
(m+k)
∗ (x−AB −D)|2e−|x|2 dV (x) (change variables x = Az +D),
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which means

(4.8) qk ∈ F2, ‖qk‖ = ‖pk−m‖ ≤ E‖f‖, k ∈ {m,m+ 1, · · · , 2m}.

Next, we show that assertion (4.8) also holds for k ∈ {0, 1, · · · ,m − 1}. Recall that the
operator

(Tϑ)(z) =

z∫

0

ϑ(x) dx, ϑ ∈ F2

with domain F2 is always bounded (see [8, Theorem 1(i)]). Since

qm−1(z) = qm−1(0) + (Tqm)(z) = (Tqm)(z), ∀z ∈ C,

we have qm−1 ∈ F2 and moreover

‖qm−1‖ ≤ ‖T‖ · ‖qm‖ ≤ ‖T‖E‖f‖.

A backward induction implies

(4.9) qk ∈ F2, ‖qk‖ ≤ ‖T‖m−kE‖f‖, k ∈ {0, 1, · · · ,m− 1}.

It follows from assertions (4.8) and (4.9) that the function q0 belongs to the Fock-Sobolev
space of order 2m. Hence, by Proposition 2.16, the function b2m · q0 ∈ F2 and its norm is
is comparable to

∑2m
k=0 ‖qk‖; namely, there exists a constant ∆5 = ∆5(m) > 0 such that

‖b2m · q0‖ ≤ ∆
−1/2
5 (

2m∑

k=0

‖qk‖) = ∆
−1/2
5

[
(

m−1∑

k=0

+

2m∑

k=m

)‖qk‖

]

≤ ∆
−1/2
5

[
m−1∑

k=0

‖T‖m−kE + (m+ 1)E

]
‖f‖.(4.10)

Note that λ(x + AB +D) is a polynomial of variable x with degree at most m − 1. This
allows us to use Proposition 3.5(4) in order to get

〈g, u〉 = 〈f∗, u〉 =
1

π

∫

C

f∗(z)u(z)e
−|z|2 dV (z).

Doing the change of variables z = Ay +D and noting the fact that

|z|2 = |y|2 + 2Re (ADy) + |D|2,

the inner product can be estimated as

| 〈g, u〉 | ≤
1

π

∫

C

|f∗(Ay +D)| · |u(Ay +D)|e−|y|2−2Re (ADy)−|D|2 dV (y)

=

∫

C

|f∗(Ay +D)|(1 + |y|)m|Ay +D|me−|y|2/2−2Re (ADy)−Re (By)

×|u(ϕ̂(y))|(1 + |y|)−m|φ̂(y)|−1e−|y|2/2+Re (By) dV (y),

which implies, by Hölder’s inequality

| 〈g, u〉 |2

≤

∫

C

|f∗(Ay +D)|2(1 + |y|)2m|Ay +D|2me−|y|2−4Re (ADy)−2Re (By) dV (y)

×

∫

C

|u(ϕ̂(y))|2(1 + |y|)−2m|φ̂(y)|−2e−|y|2+2Re (By) dV (y).(4.11)
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Since u ∈ dom(Ŝmax), there is v ∈ F2 with the property that (u, v) ∈ G(Ŝmax), that is

ψ̂ · u ◦ ϕ̂ = φ̂ · v(m). Substitute this identity into the second integral above:
∫

C

∣∣∣ψ̂(y)u(ϕ̂(y))
∣∣∣
2
|φ̂(y)|−2(1 + |y|)−2me−|y|2 dV (y)

=

∫

C

∣∣∣∣∣∣

m∑

j=0

(
m

j

)
ajb

m−j
v(j)(z)

∣∣∣∣∣∣

2

(1 + |y|)−2me−|y|2 dV (y)

≤ (m+ 1)

m∑

j=0

[(
m

j

)
|a|j |b|m−j

]2 ∫

C

∣∣∣v(j)(z)
∣∣∣
2
(1 + |y|)−2me−|y|2 dV (y)

≤ (m+ 1)

m∑

j=0

[(
m

j

)
|a|j |b|m−j

]2 ∫

C

∣∣∣v(j)(z)
∣∣∣
2
(1 + |y|)−2je−|y|2 dV (y)

≤ (m+ 1)

m∑

j=0

[(
m

j

)
|a|j |b|m−j

]2
∆2(j)

2 ‖v‖2 , (by (2.9)).(4.12)

For the first integral in (4.11), we do the change of variables x = Ay+AB+2D in order to
get

∫

C

|f∗(Ay +D)|2(1 + |y|)2m|Ay +D|2me−|y|2−4Re (ADy)−2Re (By) dV (y)

=

∫

C

|f∗(x−AB −D)|2(1 + |x−BA− 2D|)2m|x−BA−D|2me−|x|2 dV (x).

For R enough large, we denote Ω = {z ∈ C : |z| > R}. By Lemma 2.14, we have
∫

C

|f∗(Ay +D)|2(1 + |y|)2m|Ay +D|2me−|y|2−4Re (ADy)−2Re (By) dV (y)

≤ 62m∆3

∫

Ω

|f∗(x−AB −D)x2m|2e−|x|2 dV (x)

≤ 62m∆3

∫

C

|f∗(x−AB −D)x2m|2e−|x|2 dV (x).(4.13)

Thus, from (4.11), (4.12), (4.13) and (4.10), we obtain

| 〈g, u〉 |2 ≤ 62m∆3∆
−1
5

[
m−1∑

k=0

‖T‖m−kE + (m+ 1)E

]2

‖f‖2

×(m+ 1)
m∑

j=0

[(
m

j

)
|a|j |b|m−j

]2
∆2(j)

2‖v‖2,

which completes the proof. �

5. Ca,b,c-symmetry

In the present section we investigate the Ca,b,c-selfadjointness of multi-valued weighted
composition operators. It is remarkable that in this case one can compute in closed form
all possible symbols ψ,ϕ, φ.

We start by a technical lemma.
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Lemma 5.1. Let m ∈ Z≥0. Let φ 6≡ 0, ϕ 6≡ const and ψ be entire functions. Suppose that
ψ nowhere vanishes. If equation

(5.1) ebzφ(z)ψ(x)(aϕ(x) + b)me(az+b)ϕ(x) = ebϕ(z)φ(x)ψ(z)(aϕ(z) + b)mex(aϕ(z)+b)

holds for every x, z ∈ C, then

(5.2) ϕ(y) = Ay +B, CeDyφ(y) = ψ(y)[a(Ay +B) + b]m, y ∈ C,

where

(5.3) D = b+ aB − bA.

In this case, equation (1.4) is equivalent to

CeDzf(Az +B) = [a(Az +B) + b]mg(m)(z), ∀z ∈ C.(5.4)

Proof. Since the function ψ is pointwise non-zero, we infer from equation (5.1) that the
function

g(y) = φ(y)[ψ(y)]−1[aϕ(y) + b]−m, y ∈ C

is entire and moreover it is zero free. This allows us to rewrite equation (5.1) as follows

g(z)e(az+b)ϕ(x)+bz = g(x)e(aϕ(z)+b)x+bϕ(z) , x, z ∈ C.

By [26, Exercise 14, Chapter 3], it suffices to indicate that ϕ is injective. Indeed, suppose
that ϕ(z1) = ϕ(z2) for some z1, z2 ∈ C. The last equality implies

(5.5) g(z1)e
(az1+b)ϕ(x)+bz1 = g(z2)e

(az2+b)ϕ(x)+bz2 6= 0, ∀x ∈ C,

which yields, by taking the derivative with respect to x, that

az1ϕ
′(x)g(z1)e

(az1+b)ϕ(x)+bz1 = az2ϕ
′(x)g(z2)e

(az2+b)ϕ(x)+bz2 , ∀x ∈ C.

Since ϕ is not a constant function, there is x0 ∈ C with the property that ϕ′(x0) 6= 0. Hence,
the above equation is simplified as follows:

(5.6) az1g(z1)e
(az1+b)ϕ(x0)+bz1 = az2g(z2)e

(az2+b)ϕ(x0)+bz2 .

From (5.5) and (5.6), we find z1 = z2 and so ϕ is of the form in (5.2). Setting x = 0 in
(5.1), we get the form of ψ in (5.2). �

Recall that S∗max,Ca,b,c
is the Ca,b,c-adjoint of Smax (see Definition 2.4). The following result

isolates a necessary condition for a maximal multi-valued weighted composition operator to
be Ca,b,c-selfadjoint.

Proposition 5.2. Let m ∈ Z≥0 and Smax be a maximal multi-valued weighted composition
operator induced by equation (1.4), where ψ,ϕ, φ are entire functions with φ 6≡ 0. Suppose
that ψ nowhere vanishes. If inclusion G(S∗max,Ca,b,c

) ⊂ G(Smax) holds, then there is an

equivalent set of symbols, which has the form, given by (5.2) with condition (5.3).

Proof. Let z ∈ C. A direct computation gives

Ca,b,c(φ(z)K
[m]
z )(x) = φ(z)cebz(ax+ b)me(az+b)x

and
Ca,b,c(ψ(z)Kϕ(z))(x) = ψ(z)cebϕ(z)e(aϕ(z)+b)x.

Proposition 3.7 implies

(Ca,b,c(φ(z)K
[m]
z ), Ca,b,c(ψ(z)Kϕ(z))) ∈ G(S∗max,Ca,b,c

) ⊂ G(Smax),

and so the pair (Ca,b,c(φ(z)K
[m]
z ), Ca,b,c(ψ(z)Kϕ(z))) verifies equation (1.4). Consequently,

we obtain equation (5.1), and hence by Lemma 5.1, φ,ψ are of the form prescribed by
(5.2). �

It turns out that the conclusion in Proposition 5.2 is also a sufficient condition.
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Theorem 5.3. Let m ∈ Z≥0 and Smax be a maximal multi-valued weighted composition
operator induced by equation (1.4), where ψ,ϕ, φ are entire functions with φ 6≡ 0. Suppose
that ψ nowhere vanishes. Then the following assertions are equivalent.

(1) The operator Smax is Ca,b,c-selfadjoint.
(2) The inclusion G(S∗max,Ca,b,c

) ⊂ G(Smax) holds.

(3) There is an equivalent set of symbols, which has the form, given by (5.2) with con-
dition (5.3).

Proof. It is obvious that (1) =⇒ (2), meanwhile implication (2) =⇒ (3) holds by Proposition
5.2. It remains to prove (3) =⇒ (1). Suppose that the symbols are as in (5.2) with condition
(5.3). In view of equation (5.4), we can suppose

ψ(z) = CeDz, φ(z) = [a(Az +B) + b]m.

We aim at showing that G(S∗max,Ca,b,c
) = G(Smax). By Theorem 4.1, the adjoint S

∗ is the

maximal multi-valued weighted composition operator induced by equation (4.2). It was
indicated in Remark 2.5 that (f, g) ∈ G(S∗max,Ca,b,c

) if and only if (Ca,b,cf, Ca,b,cg) ∈ G(S
∗
max)

or equivalently the pair (Ca,b,cf, Ca,b,cg) verifies equation (4.2). Denoting f∗ = Ca,b,cf and
g∗ = Ca,b,cg, equation (4.2) becomes

e−bzψ̂(z)f∗(ϕ̂(z)) = φ̂(z)am(e−bzg∗(z))
(m), ∀z ∈ C,

where ψ̂, ϕ̂, φ̂ are of forms in (4.1). We obtain

e−bzψ̂(z)f∗(ϕ̂(z)) = CcebD+(Ab+B−b)zf(Aaz + aD + b),

which implies, by (5.3) and (1.2), that

e−bzψ̂(z)f∗(ϕ̂(z)) = CceD(az+b)f(Aaz + b+B).

Meanwhile,

φ̂(z)am(e−bzg∗(z))
(m) = c(Az +D)mam

[
g(az + b)

](m)

= c(Az +D)mg(m)(az + b).

Thus, equation (4.2) is equivalent to (f, g) ∈ G(Smax). �

The previous statement focused on the Ca,b,c-selfadjointness of multi-valued weighted com-
position operators with maximal domains. The following result shows that the maximality
of the domain is a consequence of Ca,b,c-selfadjointness.

Theorem 5.4. Let m ∈ Z≥0 and S be a multi-valued weighted composition operator induced
by equation (1.4), where ψ,ϕ, φ are entire functions with φ 6≡ 0. Suppose that ψ is zero free.
Then S is Ca,b,c-selfadjoint if and only if the following conditions hold.

(1) S = Smax.
(2) There is an equivalent set of symbols, which has the form, given by (5.2) with con-

dition (5.3).

Proof. The sufficiency implication follows directly from Theorem 6.3. To prove the ne-
cessity, we suppose that S is Ca,b,c-selfadjoint, which means G(S) = G(S∗Ca,b,c). Since

G(S) ⊂ G(Smax), we have

G(S∗max,Ca,b,c
) ⊂ G(S∗Ca,b,c) = G(S) ⊂ G(Smax).

According to Proposition 5.2 assertion (2) is valid, therefore by Theorem 5.3 the operator
Smax is Ca,b,c-selfadjoint. Thus, item (1) follows from the following inclusions

G(S) ⊂ G(Smax) = G(S∗max,Ca,b,c
) ⊂ G(S∗Ca,b,c) = G(S).

�
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Remark 5.5. Although larger and more general than single-valued operators described in
[16], multi-valued operators appearing in Theorem 5.4 inherit similar properties, such as
their domains cannot be the whole Fock space when m ≥ 1 (see Proposition 3.5 for a
detailed explanation).

6. Hermitian multi-valued weighted composition operators

We identify in the present section all hermitian multi-valued weighted composition oper-
ators acting on Fock space F2. Our main results indicate two very restrictive constraints:

(i) the maximality of the domain is a consequence of the hermitian property,

(ii) m = 0 is the only case giving rise to hermitian, single-valued weighted composition
operators.

In addition, we prove that hermitian, multi-valued weighted composition operators are
properly contained in the class of Ca,b,c-selfadjoint operators.

We start by a lemma which focuses on symbol computation.

Lemma 6.1. Let φ 6≡ 0, ϕ 6≡ const, ψ 6≡ 0 be entire functions. Suppose that ψ nowhere
vanishes. If equation

(6.1) ψ(u)ϕ(u)mφ(z)eϕ(u)z = φ(u)ψ(z)ϕ(z)meuϕ(z), ∀z, u ∈ C

holds, then these functions are of the following form:

(6.2) ϕ(u) = Au+B, CeuBφ(u) = ψ(u)(Au +B)m, u ∈ C,

where A ∈ R, C ∈ R \ {0}, and B ∈ C. In this case, equation (1.4) is equivalent to

CeuBf(Au+B) = (Au+B)mg(m)(u), ∀u ∈ C.(6.3)

Proof. Since ψ is not vanishing, equation (5.1) implies the function

g(y) = φ(y)[ψ(y)]−1[ϕ(y)]−m, y ∈ C

is entire and moreover it has no zeros. This allows us to rewrite equation (6.1) as follows

g(z)eϕ(u)z = g(u)euϕ(z), u, z ∈ C.

By [26, Exercise 14, Chapter 3], it suffices to check that ϕ is injective. Indeed, suppose that
ϕ(z1) = ϕ(z2) for some z1, z2 ∈ C. The last equality yields

g(z1)e
ϕ(u)z1 = g(z2)e

ϕ(u)z2 6= 0,

which implies, by taking the derivative with respect to u:

g(z1)e
ϕ(u)z1z1ϕ

′(u) = g(z2)e
ϕ(u)z2z2ϕ

′(u).

Since ϕ is not a constant function, there is x0 ∈ C with the property that ϕ′(x0) 6= 0. Hence,
the above equation gives z1 = z2 and so ϕ(z) = Az + B. In (6.1), we let z = 0 in order to
get

g(u)euB = g(0), u ∈ C,

and so g(0) ∈ R \ {0}. Substituting the forms of g and ϕ back into (6.1), we get A ∈ R and
the proof is complete. �

A necessary condition for maximal multi-valued weighted composition operators to be
hermitian is provided by the following proposition
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Proposition 6.2. Let m ∈ Z≥0 and Smax be a maximal multi-valued weighted composition
operator induced by equation (1.4), where ψ,ϕ, φ are entire functions with φ 6≡ 0. Suppose
that ψ nowhere vanishes. If inclusion G(S∗max) ⊂ G(Smax) holds, then there is an equivalent
set of symbols, which has the form, given by (6.2), where A ∈ R, C ∈ R \ {0}, B ∈ C.

Proof. By Proposition 3.3, for every z ∈ C, we have φ(z)K
[m]
z ∈ dom(S∗max), and further-

more,

ψ(z)Kϕ(z) ∈ S
∗
max

(
φ(z)K [m]

z

)
.

Due to the hermicity, φ(z)K
[m]
z ∈ dom(Smax), and furthermore,

ψ(z)Kϕ(z) ∈ Smax

(
φ(z)K [m]

z

)
.

Consequently, taking into account form (1.4) of Smax, equation (6.1) follows. Thus, we
invoke Lemma 6.1 to reach the desired conclusion. �

It turns out that the assertion in Proposition 6.2 is also sufficient for a maximal weighted
composition operator to be hermitian.

Theorem 6.3. Let m ∈ Z≥0 and Smax be a maximal multi-valued weighted composition
operator induced by equation (1.4), where ψ,ϕ, φ are entire functions with φ 6≡ 0. Suppose
that ψ nowhere vanishes. Then the following assertions are equivalent.

(1) The operator Smax is hermitian.
(2) The inclusion G(S∗max) ⊆ G(Smax) holds.
(3) There is an equivalent set of symbols, which has the form, given by (6.2), where

A ∈ R, C ∈ R \ {0}, B ∈ C.

Proof. It is obvious that (1) =⇒ (2), meanwhile implication (2) =⇒ (3) holds by Proposition
6.2. The proof for implication (3) =⇒ (1) makes use of Theorem 4.1. �

In the previous result, we studied the hermitian property of multi-valued weighted compo-
sition operators with maximal domains. The following result relaxes the domain assumption
to only reveal that the hermitian property cannot be separated from the maximality of the
domain.

Theorem 6.4. Let m ∈ Z≥0 and S be a multi-valued weighted composition operator induced
by equation (1.4), where ψ,ϕ, φ are entire functions with φ 6≡ 0. Suppose that ψ nowhere
vanishes. Then S is hermitian if and only if the following conditions hold.

(1) S = Smax.
(2) There is an equivalent set of symbols, which has the form, given by (6.2), where

A ∈ R, C ∈ R \ {0}, B ∈ C.

Proof. The sufficient condition follows directly from Theorem 6.3. To prove the necessary
condition, we suppose that S is hermitian, which means G(S) = G(S∗). Since G(S) ⊂
G(Smax), we have

G(S∗max) ⊂ G(S∗) = G(S) ⊂ G(Smax).

By Proposition 6.2, we reach item (2) and so by Theorem 6.3 the operator Smax is hermitian.
Thus, item (1) follows from the following inclusions

G(S) ⊂ G(Smax) = G(S∗max) ⊂ G(S∗) = G(S).

�

Corollary 6.5. Let m ∈ Z≥0 and S be a multi-valued weighted composition operator induced
by equation (1.4), where ψ,ϕ, φ are entire functions with φ 6≡ 0. Suppose that ψ nowhere
vanishes. If the operator S is hermitian, then it is Ca,b,c-selfadjoint.
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Proof. By Theorem 6.4, the symbols are of forms in (6.2), where A ∈ R, C ∈ R\{0}, B ∈ C.
Hence, we can make use of Theorem 5.4 by choosing

a = B/B, b = 0, c = 1, if B 6= 0.

or
a = 1, b = 0, c = 1.

�

7. Unitary multi-valued weighted composition operators

In this section we describe all weighted composition operators that are unitary on Fock
space F2. It turns out that this particular class consists only of single-valued operators.

Theorem 7.1. Let m ∈ Z≥0 and Smax be a maximal multi-valued weighted composition
operator induced by equation (1.4), where ψ,ϕ, φ are entire functions with φ 6≡ 0. Suppose
that ψ is zero free. The operator Smax is unitary if and only if m = 0 and the symbols are
of the following form:

ϕ(z) = Az +B, ψ(z) = De−ABz−|B|2/2, z ∈ C,

where A,B,D are complex constants with |A| = 1 and |D| = 1.

Proof. The sufficiency follows from [33]. The necessity is proved as follows. Suppose that
the operator S is unitary. By Proposition 3.9, the symbols φ and ϕ are of the following
forms

φ ≡ 1, ϕ(z) = Az +B, z ∈ C.

We consider two cases of B.

Case 1: B = 0. In this situation ϕ(z) = Az.
Let z ∈ C. It follows from (3.7), that

(7.1) ψ(x)ψ(z)Kϕ(z)(ϕ(x)) =

m∑

j=0

(
m

j

)
m(m− 1) · · · (m− j + 1)xm−jzm−jKz(x)

for all x, z ∈ C. In particular with z = 0, we get ψ(x)ψ(0) = m! and so ψ is a constant

function with modulus (m!)1/2. Substituting back into equation (7.1), we obtain

(m!)e(|A|
2−1)xz =

m∑

j=0

(
m

j

)
m(m− 1) · · · (m− j + 1)xm−jzm−j .

Since the left-hand side is an exponential function and the right is a polynomial, this equality
occurs if and only if |A| = 1 and m = 0.

Case 2: B 6= 0.

Let Ŝmax be the maximal multi-valued weighted composition operator induced by equation

ψ̂(z)f(ϕ̂(z)) = g(m)(z), z ∈ C,

where

ϕ̂(z) = Az, ψ̂(z) = ψ(z)eABz+|B|2/2, z ∈ C.

A direct computation shows that (u, v) ∈ G(Ŝmax) if and only if (Qu, v) ∈ G(Smax), where

Q : F2 → F2, (Qf)(z) = eBz−|B|2/2f(z −B), f ∈ F2.

It was indicated in [33, Proposition 2.3] the operator Q is unitary. First, we state the
following.

Claim: (f, g) ∈ G(Ŝ∗max) if and only if (f,Qg) ∈ G(S∗max).
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We give the proof for the implication =⇒ and omit the inverse implication as their

arguments are similar. Let (f, g) ∈ G(Ŝ∗max) and (x, y) ∈ G(Smax). Then we have (Q∗x, y) ∈

G(Ŝmax) and hence by the definition of adjoint Ŝ
∗
max we get

〈f, y〉 = 〈g,Q∗x〉 = 〈Qg, x〉

as wanted.
Next, we show that Ŝmax is unitary. Indeed, by the claim,

(f, g) ∈ G(Ŝ∗max) ⇔ (f,Qg) ∈ G(S∗max) = G(S−1
max)

⇔ (Qg, f) ∈ G(Smax) ⇔ (f, g) ∈ G(Ŝ−1
max).

Now we can apply Case 1 to the operator Ŝmax in order to get the desired conclusion. �

Acknowledgements

The authors are indebted to the referee for insightful comments and criticism, which
considerably improved a first version of this work.

References

[1] Richard Arens. Operational calculus of linear relations. Pacific J. Math., 11:9–23, 1961.
[2] Tomas Ya. Azizov, Jussi Behrndt, Peter Jonas, and Carsten Trunk. Compact and finite rank pertur-

bations of closed linear operators and relations in Hilbert spaces. Integral Equations Operator Theory,
63(2):151–163, 2009.

[3] Carl M. Bender, Stefan Boettcher, and Peter N. Meisinger. PT-symmetric quantum mechanics. J. Math.
Phys., 40(5):2201–2229, 1999.

[4] Carl M. Bender, Nima Hassanpour, S. P. Klevansky, and Sarben Sarkar. PT -symmetric quantum field
theory in D dimensions. Phys. Rev. D, 98(12):125003, 9, 2018.

[5] H. R. Cho, B. R. Choe, and H. Koo. Linear combinations of composition operators on the Fock-Sobolev
spaces. Potential Analysis, 41(4):1223–1246, 2014.

[6] H. R. Cho and K. Zhu. Fock–Sobolev spaces and their Carleson measures. Journal of Functional Anal-
ysis, 263(8):2483–2506, 2012.

[7] Earl A. Coddington. Extension theory of formally normal and symmetric subspaces. American Mathe-
matical Society, Providence, R.I., 1973. Memoirs of the American Mathematical Society, No. 134.

[8] O. Constantin. A Volterra-type integration operator on Fock spaces. Proc. Amer. Math. Soc,
140(12):4247–4257, 2012.

[9] R. W. Cross and D. L. Wilcox. Multivalued linear projections. Quaestiones Mathematicae, 25(4):503–
512, 2002.

[10] Ronald Cross. Multivalued linear operators, volume 213 of Monographs and Textbooks in Pure and
Applied Mathematics. Marcel Dekker, Inc., New York, 1998.

[11] S. R. Garcia and C. Hammond. Which weighted composition operators are complex symmetric? Oper.
Theory Adv. Appl., 236: 171–179, 2014.

[12] S. R. Garcia, E. Prodan, and M. Putinar. Mathematical and physical aspects of complex symmetric
operators. J. Phys. A: Math. Theor., 47(35):353001, 2014.

[13] S. R. Garcia and M. Putinar. Complex symmetric operators and applications. Trans. Amer. Math. Soc.,
358: 1285–1315, 2006.

[14] S. R. Garcia and M. Putinar. Complex symmetric operators and applications II. Trans. Amer. Math.
Soc., 359: 3913–3931, 2007.

[15] K. Guo and K. Izuchi. Composition operators on Fock type spaces. Acta Sci. Math.(Szeged), 74(3-
4):807–828, 2008.

[16] P. V. Hai. Unbounded weighted composition operators on Fock space. Potential Analysis, pages 1–21,
2019.

[17] P. V. Hai and L. H. Khoi. Boundedness and compactness of weighted composition operators on Fock
spaces F

p(C). Acta Mathematica Vietnamica, 41(3):531–537, 2016.
[18] P. V. Hai and L. H. Khoi. Complex symmetry of weighted composition operators on the Fock space.

J. Math. Anal. Appl., 433: 1757–1771, 2016.
[19] P. V. Hai and M. Putinar. Complex symmetric differential operators on Fock space. Journal of Differ-

ential Equations, 265(9):4213–4250, 2018.
[20] S. Hassi, H. S. V. de Snoo, and F. H. Szafraniec. Componentwise and Cartesian decompositions of

linear relations. Dissertationes Math., 465:59, 2009.



26 PHAM VIET HAI AND MIHAI PUTINAR

[21] Z. Hu. Equivalent norms on Fock spaces with some application to extended Cesaro operators. Proceed-
ings of the American Mathematical Society, 141(8):2829–2840, 2013.

[22] S. Jung, Y. Kim, E. Ko, and J. E. Lee. Complex symmetric weighted composition operators on H2(D).
J. Funct. Anal., 267: 323–351, 2014.

[23] H. Langer and B. Textorius. On generalized resolvents and Q-functions of symmetric linear relations
(subspaces) in Hilbert space. Pacific J. Math., 72(1):135–165, 1977.

[24] T. Le. Normal and isometric weighted composition operators on the Fock space. Bulletin of the London
Mathematical Society, 46(4):847–856, 2014.

[25] Sung J. Lee and M. Zuhair Nashed. Algebraic and topological selections of multi-valued linear relations.
Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 17(1):111–126, 1990.

[26] E. M. Stein and R. Shakarchi. Complex Analysis. Princeton Lectures in Analysis, 2. Princeton University
Press, Princeton, NJ, 2003.

[27] H. Sun and G. Ren. J-self-adjoint extensions for second-order linear difference equations with complex
coefficients. Advances in Difference Equations, 2013(1):3, 2013.

[28] Franciszek Hugon Szafraniec. Subnormality in the quantum harmonic oscillator. Comm. Math. Phys.,
210(2):323–334, 2000.

[29] Franciszek Hugon Szafraniec. Multipliers in the reproducing kernel Hilbert space, subnormality and
noncommutative complex analysis. In Reproducing kernel spaces and applications, volume 143 of Oper.
Theory Adv. Appl., pages 313–331. Birkhäuser, Basel, 2003.

[30] J. von Neumann. Über adjungierte Funktionaloperatoren. Ann. of Math. (2), 33(2):294–310, 1932.
[31] John von Neumann. Functional Operators. II. The Geometry of Orthogonal Spaces. Annals of Mathe-

matics Studies, no. 22. Princeton University Press, Princeton, N. J., 1950.
[32] D. Wilcox. Multivalued Semi-Fredholm Operators in Normed Linear Spaces. PhD thesis, University of

Cape Town, 2002.
[33] L. Zhao. Unitary weighted composition operators on the Fock space of C

n. Complex Analysis and
Operator Theory, 8(2):581–590, 2014.

[34] K. Zhu. Analysis on Fock spaces. Springer, New York, 2012.
[35] Miloslav Znojil. Non-Hermitian matrix description of the PT-symmetric anharmonic oscillators. J. Phys.

A, 32(42):7419–7428, 1999.
[36] Miloslav Znojil, Iveta Semorádová, František Ružička, Hafida Moulla, and Ilhem Leghrib. Problem of

the coexistence of several non-Hermitian observables in PT -symmetric quantum mechanics. Physical
Review A, 95(4):042122, 2017.

(P. V. Hai) Faculty of Mathematics, Mechanics and Informatics, University of Science,

Vietnam National University, Hanoi.

E-mail address: phamviethai86@gmail.com

(M. Putinar) University of California at Santa Barbara, and Newcastle University, UK.

E-mail address: mputinar@math.ucsb.edu, mihai.putinat@ncl.ac.uk


	1. Introduction
	2. Preliminaries
	2.1. Multi-valued operators
	2.2. Fock space

	3. Auxiliary results
	3.1. Multi-valued maximal operators
	3.2. Closed graph
	3.3. Some distinguished elements in the domains of our multi-valued operators
	3.4. Boundedness
	3.5. Zeros of the symbols
	3.6. Dense domain

	4. The adjoint S*
	5. Ca,b,c-symmetry
	6. Hermitian multi-valued weighted composition operators
	7. Unitary multi-valued weighted composition operators
	Acknowledgements
	References



