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A comparison of three TIN surface modeling methods and associated algorithms

Abstract. This paper describethe implementation ofthree methods fofitting
surfaces: linear, quintic arstochastic. It uses qualitatigisual) and quantitative
(statistical) criteria to compare the three approaches. dijital terrain model is
based on a triangular irregulaetwork (TIN) structureand the comparison is
performed using anathematically defined function and reldta obtainedrom a
raster digital elevation mode(DEM) from a United States Geological Survey

(USGS) elevation file.

1. Introduction

Digital surface representation from a set of three-dimensional samplesigatant issue of
computer graphics that happlications in different areas of study such as engineering, geology,
geography, meteorologynedicine, etc.The digital model allows important information to be
storedand analyzedvithout thenecessity ofworking directly withthe real surface. In addition,
we can integratproductsfrom Digital Terrain Model DPTM) manipulation withother data in a
Geographical Information Systen&GIS) environment. MacCullagli1988) presents detailed
study of DTMs, considering their merge with image processing and database systems.

The main objective of thiswork is the comparison of different methodologies to model
surfaces from a&et of scattered thramensional sample3he basicstructure used to represent
the surface is thériangular irregular netvork, whose triangle verticeare thesample points.
Another goal of thework is the evaluation ofthe relative precision of digital models for

representing spatial variation as exactly as possible.



This work presents three methods for triangular surface fitimgar, quinticandstochastic
It also gives a qualitative (visual) and a quantitative (statistarad)ysis ofthe three methods
using both amathematically defined function and digital elevation matkth, hereaftecalled
DEM-USGS, as supplied by the United States Geological Survey.

Section 2 introduces theasicconcepts related to surfafiing for TIN model structures.
Section 3 describeke methodology used to compare the surfditieg interpolators. Section 4
shows andinalyzeghe results achieveasingthe proposeanethodology. Section 5 presents the

conclusions and some suggestions for future research related to this work.

2. Triangular Irregular Networks

This work compares the accuracy different algorithms to fit surfacdsr TIN models. De
Floriani (1992), Falcidieno(1993) andTsai (1993) are recent contribuitions to the vast literature
on the study andnplementation oDTMs based orTIN structures. Irthis section we present
only the principal characteristics of TIN models.

A TIN represents a surface as a set of non-overlapping contiguous triangular facets, of
irregular size and shap@Chenl1987). TINuses the data on tlreegularly spacedamples as the
basis of a system of triangulation (Burrough 1986). It is created directly from the set of samples, i.
e. the vertices of thérianglesare thesamples. Commonly dIN is constructedusing the
bidimensional projection dhe sample points ithe xyplane. Whernthe sampleset istoo dense, it
is necessary to apply an algorithm ticaboses a subset, threry important pointgVIP), that
better represents ttwgiginal surface. Thigpproach reduces tmeimber of points used ttreate

the TIN model. Lee (1991) performs a comparison of 3 algorithms to reduce the number of points



to construct TINmodels from rectangular gribEMs. In some cases, agenthe samples are
contour lines, it is imperative to use algorithms for cartographic generalization.

The most popular TINmodel, used incommercialsoftware, is theDelaunay TIN. The
Delaunay triangulation ishe straight-line dual othe Voronoidiagram and isonstructed by
connecting the points whose associated Voronoi polygons sltamaraon edge. ThBelaunay
TIN has the following properties:

e Itis unique and;

* It maximizesthe minimuminternal angles of each triangle, i.tke minimumangle of its
triangles is maximum over all triangulations. This characteristic atiogdsreation othin
triangles, i. e. each triangle is as equilateral as possible.

The circumference that passisough the three vertices of[2elaunay triangledoes not

containany othersamplepoint. This property is known as thempty circle criterionTsai 1993).
This property is used to construct the Tihbdel directly fronthe sampleset.Figure 1 illustrates
the use of the empty circle criterion condition to determine whether a triangle is Delaunay or not.

Another interesting triangular model tise greedy TIN This network is constructeavith
triangles that havéhe shortespossible edgs. Greedy triangulation has been used to hasten the
task to find the nearest neighborhood of a sample point. Preparata (1988) describes some methods

to create greedy triangulations.

2.1.Fitting surfaces for TIN models
In thiswork we arenterested in DTMs whodeasicstructures are triangular networks. Each
basic element othe TIN, a triangle, can be described byoeal polynomialsurface whose

parameters depend on its own vertices asdally, on its triangulaneighborhood. This section



will discuss threelifferent approaches to interpolal&N models: linear, quintic and stochastic

triangular surface fitting.

Figure 1. Empty circle criterion to create a Delaunay TIN
(a)T1 and T2 are not Delaunay triangles and (b) T1 and T2 are Delaunay triangles

2.1.1.Linear fitting
Each triangle othe TIN model defines a plane thatused to determinthe zvalue of every
point (X, y) inside the triangle. The equation of a plane surface can be expressed as:
Ax+By+Cz+D=0; (1)
To calculate theoefficientsA, B, C andD of the equation 1 it is enough to use the z value
of the 3 vertices of the triangle. Suppose that the three vertices dfighgle have the
coordinates(xi, Y1, z1), (X2, Y2, Z2) and(Xs, y3, z). These three points filge the following linear
eguation system:

(A/D)x;+ (B/D)y; + (C/ID)z =-1; wherei=1,2,3 (2)



The solution of this system, using Cramer's rule for example, gives:

A=Y1(Zo- 2s) + Yo(Z3 - 72) + Y3(21 - Z2); (3)
B =2 (X2 - X3) + Z(X3 - X1) + Z3(X1 - X2); (4)
C = X1 (Y2 - Y3) + X(Ys - Y1) + Xa(y1 - ¥2) and; (5)
D = -X1 (Y273 - Y322) - Xo(Y3zZ1 - Y1Z3) - X3 (Y122 - Yo2Z1); (6)

This linear approach guarantees that the planar surfaces matcth&oagmon side of two
adjacent triangles, i. e. the surfaws nocliffs. This means thathe resulting surface has zero-
ordercontinuity only. The surface has undefintadgents along triangle edges and sharp changes
of slope. Toget ahigherordercontinuity alongthe edges of the adjacent triangular surfaces, it is

necessary to use polynomials of order greater than 1.

2.1.2.Smooth fitting
Akima (1975 and 1978) presents a methodbivariate interpolation andmooth suiace
fitting that is applicable to z values given at irregularly distributed samptbs ixyplane. Akima
proposed a method based on |Iqmadcedures. Theesulting surface pass#woughall the given
samples and has continuity @fder 2, i. eslopes and curvatures change smoothly, even across
triangle edges. In sum, it is an algorithm to smoofitlgurfacesover every basic element of a
triangular mesh. A more detailed study of smoothness and derivatives can be found in Lancaster
(1986).
Akima proposed to fit a quintic polynomial functiéor each triangle. He used thalowing
fifth-degree polynomial in x and y to evaluate the function at any paigd inside the triangle:
5

z(x,y)= % i;q i x yj (7)

i=0j=



To determinethe 21coefficientsqgj, in order tosolve the equation 7, onkas to use the
information fromthe 3 vertex point§ p1= (X, Y1, z), P2=0%, Y2, Z) andp3=(Xs, Y3, Z) ) of the
triangle and their neighbors. For these vertices one must obtain:

e The z values of the vertex points:

7,  and z;

e The first order partial derivatives:
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e The second order partial derivatives:
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e The patrtial derivative dfhe function differentiated irthe normal direction to eackide
nls, of the triangle.This is a polynomial ofdegree three, at most, in the wabie
measured in the direction of tlsede ofthe triangle (Akimal1978). Theseassumptions
yield 3 additional conditions related to the three sides of the triangle
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To calculate the partialerivatives in everglata pointPy (k=1,2,3,...n;wheren is the total
number of data points) one has to use the point itself and d®sest neighborgkima suggests
a number among 3 and 5 for nc.

The evaluation of the partial derivative on a given data gibegins withthe determination

of the vector normal to the surface this point. This vector iscalculated by performing the

summation othe vectors obtaineflom the vector product aévery pair ofvectors formed by,



and two different neighbors points. Theector product ofP, = (%, Yk, %) andtwo of its

neighborhood P, = (X, Vi, z) and Pj = (%, Vi, Z) t # ¢, can be evaluated by tHellowing

equations:
dzig = (% - %) (Y5 - Y - (Vi - Y (X - %) (8)
dxig = (¥ - Yz - 2) - (2 - 2)(Y; - W) 9)
dyii = (2 - 29(X; - %) - (% - %(z - Z) (10)

wheredz; , dxi anddy;; are the three components of the vector praduct
If dzy; < Oit is necessary tmultiply the elementdz, dx and dyi; by -1 to assure that the
direction of the vectonormal tothe surface is positive. To calculate the gradietor, in thex

andy directions it is necessary to solve the following equations:

0z nc=2 nc-1 nc=2 nc-1

v =2 2 dXixj 2 2 dzi; (11)
0X p=pk 170 jF+1 i=0 j=i+1

0z nc=2 nc-1 nc-=2 nc-1

v =2 2 dyy/ 2 X dzy (12)
Yy p=pk i=0 j=i+1 i=0 j=i+1

wheredz;, dxi; anddy;; are evaluated by equations 8, 9 and 10 respéc
A similar approach can be used to calculate the second derivativehisircase the

oz

. . §) : .
coordinates;, y; and z are substituted by£ " dy andlin equations 8, 9 and 10.

p=pi

p=pi

2.1.3.Stochastic fitting
The most popular stochasticodels torepresent curves and surfaces are basefiastal

concepts A fractal is a geometrical or physical structure having an irregular or fragmented



shape at all scales of measuremdémtaddition, a fractal iself-similarmeaning that eaghart of
its structure is similar to the whole

Smoothed curves and surfaces are subjectSucfidean geometry, andre adequate to
represenartificial shapes likgparts ofmechanicabnd aeronautical project&irniture, toys, etc..
Natural objects like clouds, coastlines and mountains have irregular or fragmented features.
These are better represented by the Fractal geometry thdtrstdermalized byMandelbrot
(1982).

Natural phenomenare notexactly self-similar, bustatistically self-similari. e. eachpart of
the structure istatistically (averages arsfandard deviationsimilar to the whole. Indeedeal
objects often loolsimilar to pieces of themselves when examined at diffecanttographic scales
and have forms that manifesgnificantrandomness. Polido(iL991),Finlay (1993) and Fournier
(1982) deal with the description of terrain as a fractal surface.

Fractal dimension (D) is an index that measurtdse complexityor irregularity of a graphic
object (curve, surfacetc.) that representsplnenomenon. The fractalnaension of a line can be
determined by the relation:

D =log (n/n;) / log (s /s) (13)
where:s ands are two different step sizes used to measure the length of a line and;
nandn; are the number of ands steps to span the line respectively.

Lam (1993) presents some measurement methods to evaluate theliimeaeaionfor curves
and surfaces.

Brownian motion is the most populamodel used to perform fractal interpolations from a

set ofsamples. Brownian motion, first observedRybert Brown in 1827, is the motion sihall



particles caused by continual bombardmenbther neighboring particleBrown found that the
distribution of the particle position is ads Gaussianwith a variance dependenhly on the
length of the time of the movement observatigimlay 1993).

The Fractional Brownian motion (fBm), derived from Brownian motion, can be used to
simulate topographic surfaceslBm provides a method of generating irregulaglf-similar
surfaces that resemblepography and thdtave a known fractionalimension (Goodchild 987).
The fBm fundions can be characterized by variograms (graphic that plotgphéeomenon
variation against the spatial distance between two points) of the form:

El(zi - 7)]°= K*(d;) ™ (14)
where E denotes the statistical expectati@gnand z representhe heights ofthe surface at the
points i and j and d; is the spatial distance between these poiris is a constant of
proportionalityand is related to a verticatale factoiSthat controls the roughness of the surface
H is a parameter in the range 0 toHLdescribes theelative smoothness at different scadesl
has the following relation with the fractal dimenson

D=3-H (15)

WhenH is .5 we get the purBrownian motion. ThesmallerH, the largeiD and the more
irregular is the surface. On the contrary, the lakyjethe smallerD and the smoother trsairface
(Goodchild 1980).

Fournier (1982) presents recursive procedures to render curves and sbesedson
stochastic models. He describegso methods to constructwo-dimensional fractal surface
primitives. The first one is based osabdivision of polygont create fractgbolygonswhile the

second approach is based ondeénition of stochastic parametric surfaces.



The subdivision of polygons based on th&actal polyline subdivisiormethod. A fractal
polyline subdivision is a recursiygrocedure that interpolatestermediatepoints of a polyline.
The algorithm recursivelgubdivideghe closest extremiatervals and generates a scalar value at
the midpoint which is poportional to the current standadgviation o, times the scale or
roughness factds. So, thez, value ofthe middle point betweenwo consecutive poinfd andj,
of a polyline is determined by the following equation:

Zn = (z + z)/2 + S*0.*N(0,1) (16)
where g, varies according to equation 14 aNd@0,1) is a Gaussian random variable wiéro
mean and unit variancBress (1988) presents soalgorithms to calculate random numbers with
different distributions including the Gaussian.

The subdivision of polygonsnethod is suitable toreate stochastic surfaces based on TIN
digital models. Each triangle ¢ifie TIN model can be subdivided infour smaller triangles by
connecting thenidpoints ofthe triangles. The walue ofthe midpoints is calculated ke fractal
polyline subdivisiormethod presented above. Tdubdivision can beontinued untithe area or a
side of the current triangle reaches a predefined limit. Soridieal triangle is transformed into a
fractal triangle whose irregular surface consistsahy smaltriangular facets. Some care must
be taken to ensurmternal and external consistency amdhg adjacentriangles during the
construction of the stochastic TIN model.

As pointedout by Fournier, the presented methods for rendering curves and surfaces are
satisfactory approximations of fractional Brownian motion. They allow usréate realistic
surfaces in faster time than wigixact calculations. Another advantage of these approaches is the

possibility of computing surfaces to arbitrary levels of detail without increasing the database.



Figure 2 illustrates thbehavior of fractal curvesreatedusing fractional Brownian motion,
different values ofH, and a constantertical scalefactor. The curves were renderesing the

fractal polyline subdivision method

='1 WWWW
Figure 2. Stochastic curves rendered for different values of the parameter H.

3. Methodology

This section describethe methodology used tanalyze and tocompare thedifferent
approaches for surface fitting on TIN models.

We can divide the methodology into five steps:

1. Definition of the input sample set;

2. Construction of a TIN model;



3. Surface fitting for a mathematically defined function;
4. Surface fitting for a DEM-USGS data file and;

5. Statistical analysis for rectangular regular grid models.

3.1.Definition of the input sample set

The firststep for nodeling surfaces ithe definition of the inputsampleset that wi be used
to construct the surfac&his sampleset must be representative of thbenomenon to be
modeled.

To compare théwo initial approaches for surface fittingnéar and quintic, wehose two
different patterns. Thefirst pattern of comparison was théllowing mathematically defined
function that will be called theinc functiorhereafter:

z(x, y) = sinc(d) = sin(d)/d; a7)

The parameted; in equation 17meanghe bi-dimensional euclidean distance from a generic
pointP; (X, yi) to the point originPy(0., 0.), that is, thed; parameter is defined by the equation:

d? = x>+ y? (18)

This is an interestintgstfunction because it has continuity of deggeeater than 0, i. e. is a
smooth function, and has intrinsic positive and negative derivatives.

A DEM-USGS datdfile was used as the second pattern to evaluate the resthitseal
elevationdata. Inthis casethe stochastic approach waeluded inthe analysisbecause of the
characteristics of the data and the interpolator.

The sampleset wasdefined by choosinghe very important points\(IP) from rectangular

regular grids obtained fromme sinc function and fronthe DEM-USGS datéile. To get thevery



importantsample points from a reangular regular grid, a variation of the aitfum propmpsed by
Chen (1987) was used. His method is based on a numerical evaluation of the importance of each
element ofthe rectangular grid. The algorithassumes thahe greater thelevation difference
between the sample point and its 8 neighbors, the more important it is.

The Chen algorithm was improved Ilgyving a high value greater than themaximum
possible, to the local maximum or minimum grid poifisis assumptioguarantees thatl peaks

and pits, including the small ones, will be included among the veryriant points.

3.2.TIN model construction
The next stefinvolvesthe use of theampleset to construct theasicstructure of the DTM
model. Here the input samples were transformed on the vertices of the triangles of a TIN model.
Some important characteristics of the TIN algorithm implemented are:
* Itis an incremental algorithm, i. ¢he sample pointare introduced, one attane, into
the previous triangulation which is then refined,;
» It creates a Delaunay triangulation;
» It uses théddelaunay empty circle criteridncally during theincrementalprocess in order
to avoid local thin triangles and;
* It uses a recursive function to create the final Delaunay triangulation.
Figure 3 depictsix Delaunaytriangulationsconstructedrom 93, 253, 505, 757, 997, and
2017 inputsamples. These input pointgere defined bythe algorithm that choséhe very
important points from a rectangular regular grid. The z véduesach point of the grid was

obtained from the sinc function.



3.3.Surface fitting for mathematical function data

The linear and quintic interpolatioapproaches wergnplemented followingthe concepts
presented in sections 2.1ahd 2.1.2 respectively. The linear approactependsonly on the
vertices of thdriangle and is straightforward. Timplementthe quintic approachtwo important
details of implementation can be noted here:

* The derivatives athe vertices of thdriangles were evaluated arstiored during the
quintic interpolation fitting. This avoidetthe unnecessary calculation of derivatives at the
vertices of triangles that were not used during the process of rectangular grid creation.

e To evaluate théerivative inthe vertices of a chosénangle it was necessary find the
neiglborhood ofeach vertex point that formed the trianglbis was accomplisheasing
the vertices of the triangles that were neighbors of the chosen triangle

The linear and quintic interpolation functiongere comparedising the sinc function. To

perform thistask rectangulagrids (50 x 50 points) were constructeding z values calculated
from the sinc function, from the linear interpolation and from the quintic interpolation. In addition,
two more grids were created represegtthe difference betweerhe linear andthe original
surface, and the quintic and the original surface.

Figures 4 and 5 show the perspectiiewv of rectangular grids fitted by linear and Akima

methodologies. They also show the difference between those models and the model defined by the

sinc function.



R

SN\[227

.
A \
| 1
{1 IH II'. \
il
(¢} 505 very important points d) 757 very important pain
' 7
x NDAS
B
e B, ™y i Tl
e
\ T M

Figure 3. TINs constructed using very important points of the sine

function



Lmear Surface Qumtlc Surface

% :
‘. " J‘,r; I'.l"z 'ffu '- :

o A o 1\\.{‘,! i

g i \ W\ -

) f,-,f;m t‘\l‘n& 3

oo {
& i
y sy :'
AT e i
o - ,ﬁ-r,w;pwt
‘ '9‘ ff.‘ }:‘E" ’“:‘
'

Figure 4. Surface modeling from 93 very important samples ol the sine function.



Linear Surface Quintic, Surface

.,., !
i

\\ ! ‘i "a,‘ﬁ,-’m

“ ' ,. ’J «'J b

J ", -"F

£

ey n\\ Uiy

'H (R :
Hp 'ff’,p
"r iy ' e
!n !“‘.# _'_- - y -A‘k‘\ r,-
i . l‘i ("

m\iﬁrl

\\'- Moo i i
AR

‘1

Figure 5. Surface modeling from 757 very important samples of the sine function.




3.4.Surface fitting for DEM-USGS data

The sequence presented in secBd® was repeatedsing DEM-USGS datanstead of the
datafrom the sinc function. Figure 8hows aDelaunay triangulatioconstructedvith 2917 very
important points from a DEM data file.

The DEM-USGS data usedfimm the Virginia, Minnesota(USA), region whose geographic
coordinate referencs: N 4330’ and W 9230'. The UTM zonenumberl5, hasthe following
bounding box planimetriccoordinates (in meters): NW(528175, 5274471); NE(537568,
5274524); SW(528242, 5260579) aisE (537658, 5260632). Thubjective was to compare the
linear and quintiénterpolatorsusing real elevatiodata. Inaddition, a stochastic interpolator was
included to create surfaces with more natural looks.

The stochastic method, used to estimate thalwes ofthe rectangular grid, was based on
the polygonsubdivisionapproach presented in Fournier (1982). The methoohddgding the
currenttriangle T., of theoriginal TIN model, that contains the grid poiRt (X, yi, z). Then the
triangle T, is subdivided recursively ifour smaller triangles by connectinibe midpoints of its
sides. The z values of these midpoiate defined by a fractal polyline subdivisicapproach
described in sectioB.1.3. Anew triangleT,, that contains the poirR, is chosen among the four
smaller trianglesThe subdivisions continue untithe point P, is within a defined proximity
criterion of one of the vertices of thi@angle T.. Whenthe proximity is reachedne cardefinez
equal to thez of this vertex.

Figure 7 shows perspective projections of grid modeisstructedvith samples fronDEM-
USGS datausing linear, quintic and stochasiiterpolators. Figure 8 presents stochastadels

of the DEM-USGS data constructed with different values of pararheter



Figure 6. Tmangulation constructed from 2917 very important points of the DEM data file.
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Figure 7. Surface modeling using 2917 very important points of the DEM data file.
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Figure 8. Stochastic surfaces with different values of I1.



3.5. Statistical analysis of the grid models

In order toperform a quantitativanalysis ofthe surfaces rendered by the three interpolator
approaches, we compared them witle real, ororiginal, surfaces. This was achieved by
comparing the regular rectangular grids created by the interpolators with the real grids.

For each point of a regular rectangular grid we can calculatrtiefunctionEr defined as
the difference betweethe real elevationz and theestimated elevatior. in that point. Thekr
function is defined as:

Er =z -2 (19)

Suppose that whave npt points representing the surface. To evaluateatrerage(Av),

variance(Var) andstandard deviatior{Std) of the errorfunction Er) we can use th#llowing

equations:
[hpt-1 l
Av=[3 ErkB/npt (20)
k=0
_ Meet-2 0 < Ay 20
Var —%kzo ErkH— npt* Av B/ (npt 1) (21)
Std=+/Var (22)

We used thesinc function andhe DEM-USGS datdile as source of reatlataz on each
point of the grid. Thevalue ofz, in each point of the grid, was estimatesingthe linear, quintic

and stochastic interpolators.



4. Results and analysis

Table 1 containghe results of the statisticahalysis, irmeters, of the errdunction defined
by the Inear and quintiinterpolators. Thesampleset was obtaineftom the sinc function. The
range in elevation is about 120 m.

Table 2 presentthe statistical results, in feet, obtain@tlen using very importargamples

from DEM-USGS data files. In the studied area the elevation varies 105 feet approximately.

A quantitative analysis ofthe figures andthe tables presented on sections 3 and 4,

respectivelly, leads to the following notes:

* An already predicted result is the linearinterpolator is computationally moedficient
than the quintic interpolator. This is easyetplainbecause of theumber of calculations
required for each approadRor thequintic approach, th@ecessity to calculatie first
and second derivatives in the samples creates a significant time overhead.

* Table 1 shows that an increasethie number of input samples leads rwre accurate
models. However, satisfactory results, dependinghenrequirements, can be obtained
after reducing the sample set by a \@l§orithm. Thisreduction savesiemoryspace and
can increase substantially the speed of the programs desigoezhte thaligital models.
The triangulation shown on Figure 6 wamstructedvith approximately 2% othe total
number of samples contained in the original DEM-USGS data file.

From Table 1 we can conclude thée quintic interpolator performs better thdhe linear
interpolator forsamples chosen frorthe sinc function. Thiswas expected because th|c

surface has continuity greater than 0.



Interpolator Nurber of | Average | Variance Std
Samples Deviation
linear 93 0.72 19.60 4.43
quintic 93 0.36 10.94 3.31
linear 253 0.42 12.22 3.50
quintic 253 0.49 6.93 2.63
linear 505 -0.39 3.97 1.99
quintic 505 -0.23 2.49 1.58
linear 757 -0.22 1.81 1.35
quintic 757 -0.21 0.96 0.98
linear 997 -0.35 1.09 1.04
quintic 997 -0.37 0.62 0.79
linear 2017 0.03 0.06 0.24
quintic 2017 0.00 0.01 0.11

Table 1. Statistical analysis of the error function for

very important samples from the sinc function

Interpolator | Average | Variance Std
Deviation

Linear .79 7.97 2.82

Quintic .78 9.27 3.04

Stochastic .78 8.21 2.86
H=.9

Stochastic .82 9.54 3.09
H=.5

Stochastic .9 23.27 4.87
H=.2

Table 2. Statistical analysis of the error function for
very important samples from the DEM data




* Asshown in Table 2, no significant statistical difference was found betweendhednd
quintic approaches to modeEM-USGS data. The important question hieréoes the
real elevation surface hagenoothbehavior? Ifthe elevationdatahas continuity obrder
0, that meanscontinuous butnot differentiable, it is satisfactory tase alinear
interpolator instead of high degree polynomial interpolators

» Table 2 also shows th#te erroranalysis ofthe stochastic approaciwhenH=.9, gets
similar results to the iear andhe quintic methodsSo, the stochastic methods can be
successfullyused wherthe real surface represents a natptenomenon like elevation.
The major problem seems to tie definition of the appropriate parameters H and S to
best represent the variations of the real surface.

A qualitative analysis ofthe figures presented on section 3 leads the following

considerations:

* From Figures 4 and 5 we see that gineater thenumber of very important points the
better is the appearance of i@l modeled surface. In addition, these figures show the
differences betweethe fitted models andhe model defined bythe sinc function. The
latter gives us an idea of the spatial distribution of the error function along the surface.

» Figures 4 and 5 also show ubat, for thesame samplset of thesinc function, the
model fitted by a quintic interpolator smoother than thenodel fitted by alinear
interpolator.

» Figure 7 reveals that wget a morenatural looking surface by using stochastic
interpolator, compared withniear and quinticinterpolators, although thetatistical

analysisdoes notconfirm this improvement. In additiothe fractalbehavior is more



apparent just on the areas wiittle density of samples. In these regions it is common for
artifacts, like flat ortoo smoothed surfaces, to appear whemedr and quintic
interpolators are used.

* As expected, the Figure 8 shows thi#ferent values of parameter H, and therefore
different fractal dimensions, lead to different surfemgresentations. Themallerthe H,

the more irregular is the surface, and vice-versa.

5. Concluding remarks

To compare the surfaces fitted bgear, quintic and stochastic methods we studied and
implemented an algorithm tchose thevery important points from a rectangular grid model, an
algorithm tocreate theDelaunay triangulation, anithree interpolators thdit linear, quintic and
stochastic surfaces fofIN models. The algorithm#ere implemented inthe C programming
language in a UNIX operationalystem environment. In addition, perspective projections and
statistical tables were createdaccomplistthe qualitative and quantitativenalysis othe models
rendered.

The most important conclusiadhe presented results is that tipgality of a digital terrain
model depends othe type of object, or surface, thatbieen modeled. A representation that is
useful for engineering objectadeling maynot besuitable torepresent natural forrmanipulated
by geographers, foexample. Specifically, lineainterpolation is recommended fanodeling
natural terrain surfaces BIS where thdandscape is dominated by sharp ridges mcted
valleys,and when interedlies in creating an accurate representatioQuintic interpolation is
recommended for accurateodeling of naturalterrain surfaces dominated by smoothing

processes, such as glaciation, and also futatng surfaces abthervariables, particularly such



environmental variables as atmosphéeimperature or groundwater depth, whphysical laws
tend to requirehigher order continuity. Finally, fractal interpolation is recommended for
modeling naturaterrain surfaces when interdis in visualizationand whenthe parameters of
the fractal interpolation can be adjusted to createadistic-looking representation. Since all
three methods achieved similar levels of accuracy against the adniittetgigl testing carried out
in this paper, itseems thathe choice of interpolation method is mdikely to be driven by
conceptual understanding of thehavior ofthe real-world phenomenon, the need dozdible
visualization, andhe practicallimitations of software and computing resources, than by strict
concern for accuracy.

Future research topics, tmprove thiswork, should address thellowing questions: What
are the errorsnvolved in consideringhe DEM-USGS data as goaepresentations ofeal
elevation surfaces? andpw can we calculate the fractdimension from a sampleet to get a

more natural look for the modeled surface?
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AN INCREMENTAL CONSTRAINED DELAUNAY TRIANGULATION

CARLOS A. FELGUEIRAS
MICHAEL F. GOODCHILD

Abstract This work addresses thproblem of constructing Triangular Irregular
Network (TIN) models from irregularly distributed samples with constralimess.
The implementation of an incremental constrairigelaunay triangulation is
described and comparedjualitatively with the unconstrainedDelaunay

triangulation.

1. Introduction

The Triangular IrregulaNetwork (TIN) modelsare very popular among th&eographical
Information SystemgGISs) that areurrentlyavailable inthe marketRelevant information, such
as slope, aspect, contoand visibility maps, can be extractddom this modelsfor further
integration withother information stored in the GIS database. The Tihbdelsare used to
represent the behavior of a phenomenon defined in a limited region of the earth surface. Elevation,
temperature, population density, geological characteristic and others are among thenmuost
phenomena represented by a TIN model. The spatial positiie phenomenon is represented in
the xy coordinatesystem whilethe value of the phenomenon itself isepresented in the z
coordinateaxis. Unless previously mentioned, thw®rk will consider that the z coordinate is

representing elevation.



Various commercial software packages provide thiacility to construct Delaunay
triangulations from a defined input samglet. \henthe sampleset contains just sample points
that do not have connections among them then the Delaunay TIN seems to be perfect to represent
the surface behavior. Problems arise when the Delaunay TIN is createdsavgpleset thatalso
contains openetines and closedines (polygons). Sometimes thebees are defined as barriers,
ridge and river lines for example, thannot be crossed by triangle edges. In another situation, as
in contourlines, the triangles whose 3 verticese in thesamecontourline, defining flatareas,
must be avoided.

Thiswork describes a method tmnstruct anncremental Delaunay triangulation taking into
account the constraindihes included inthe sampleset. Thefinal triangulation isnot strictly a
Delaunay triangulation because it contains Delaunay triangtds in the areas farfrom
constrainedines. Some authorsatl this network aConstrained Delaunay Triangulatiof€CDT)
(Falcidieno 1990 and Floriani 1992).

The idea consists in constructing mitial Delaunaytriangulation with the restrictiothat
constrained segments, that gt of constrainedines, camot be crossed bgny triangleedge.

In a second step theitial triangulation is changed to avoid flat areasated bytriangles whose
three vertex points belong to the same contour line.

Section 2 presents some relevant concepts relatedlNo models creation,ncluding
Delaunay triangulation and constrained Delaunay triangulat8ettion 3 addresses some
problems thatoccur when the TIN model isconstructedusing onlythe Delaunay conditions
without considering constrained segments. Section 4 describes detditsimplementation of a

constrained Delaunay triangulation. Some qualitative results are shown and discussed in section 5.



Section 6 presents relevant conclusions and some suggestions for further research related to the

subject of this work.

2. Triangular Irregular Network Models

A TIN represents aurface as aet of non-overlapping contiguous triangular facets, of
irregular size and shape (Ch&887). A TINuses the data on theegularly spacedamples as
the basis of a system of triangulatigBurrough 1986). It is createdirectly from the set of
samples, i. ethe vertices of thérianglesare thesamples. Commonly @lIN is constructedising
the bidimensional projection adhe sample points ithe xyplane. Another populadigital terrain
model isthe regular rectangular grid that represents the surfaceeggilarly distributedset of
points.

The main advantage of usin§IN models, instead of rectangular grid models, is that the TIN
can include ggreatnumber of points wherthe surface is rugged amttanging rapidly and can
contain aminimum of points inareas where the surfacergatively uniform (Kumlerl992). In
addition, the points used to create the triangndwork are thesame input sample pointshile
the network of a rectangular gridfrmed by interpolated pointsinlessthe sample points are
located exactly in the vertices of the rectangular grid. Another reason for the interest in
triangulation models has been that they are ideally suited to constrained informatidiifsiikad
break lines, insertion. If the locations of these special lines are entered as a logically connected set
of data points, the triangulation process will include them and will automatically relate them to the

rest of the data set (McCullagh 1988).



One of the disadvantage of TINs is thecessity tcstore thespatial position, xy, with each
point of the network.This can be memory consuminghie number of points ithe sampleset is
big. On the othehand, thespatial position of each point of a regular rectangular grid can be
calculated sincéhe geographic reference and the resolutions x and y of the gricpresreusly

stored.

- (n;

Figure 1. Empty circle criterion to create a Delaunay TIN
(a)T1 and T2 are not Delaunay triangles and (b) T1 and T2 are Delaunay triangles

The most popular TINnodel, used irtommercialsoftware, is thédelaunay triangulation
The Delaunay TIN is the straight-line dual ofthe Voronoidiagram and isconstructed by
connecting the points whose associated Voronoi polygons sltamaraon edge. ThBelaunay

TIN has the following properties:



e Itis unique and;

* It maximizesthe minimuminternal angles of each triangle, i.tbe minimumangle of its
triangles ismaximumover all triangulations (Preparate®88). This characteristic avoids
the creation of thin triangles, i. e. each triangle is as equilateral as possible.

The circumference that passisough the three vertices of[2elaunay triangledoes not

containany othersamplepoint. This property is known as thempty circle criterionTsai 1993),

or Delaunay testand is used to construct tlé& model directly fromthe sampleset.Figure 1
illustrates the use of thempty circle criterion condition to determine whether a triangle is
Delaunay or not.

A constrained triangulationis a TIN constructed taken into account the topographic
features, or the characteristioes, ofthe surface. Agood representation of the terrashould
contain all the specific features of the surface sivagheding pointgpeaks and pits)ines(rivers,
ridges anctliffs) and; surfaces (slopes, lakes). The segments thattf@rfimes and thesurfaces
must me considered as barriers that maibe crosseduring the process of triangulation. Some
authors prefer to use the concept of visibility among the samples to construct the TiNe&hss
that a sample cannot be connected t@ttobuild anedge of a triangle, if there is a constrained
segment between them.

A constrained Delaunay triangulatiois a triangulatiometwork that contains constrained
edges and Delaunay edges. Constrained edges are forced to maintain the original characteristics of
the terrain. The min objective of thiswork is to describethe implementation of a constrained

Delaunay triangulation.



(a) (bl

Figure 2. Triangles from characteristic lines (a) Delaunay triangulation and (b) constrained
Delaunay triangulation

(a) (b}

Figure 3. Triangles from contour lines (a) Delaunay triangulation and (b) constrained Delaunay
triangulation



3. Problems created by non constrained Delaunay triangulation

This section describes some undesirable problems dt@ir when one creates a pure
Delaunay triangulation, i. e. a DelaunB\N without consideringthe topographic features of the
surface.
3.1.Crossing constrained segments

Constrained segments adefined as segmentgeated by consecutive points of tbame
constrainedline. The figure 2(a) shows arexample of Delaunay triangulation thateates
undesirable artifacts in the surface to be represented. Suppose that the pointsbeland B a
river line andthe points C and D dnot belong tothe same river line and in addition thégave
elevations higher thamthose of the points A and B. Theelaunay triangulationwithout
constraints, creates a shape thatosacceptable in this surface becatiseriver cannotclimb a
hill to follow its normalcourse. Irthis case it is better toreate thdriangles showed ithe figure
2(b) even they fail to satisfy the empty circle criterion.
3.2. Triangles created with all vertices from the same constrained line

This problem isnoreharmful whenthe constrainetinesare contoutines. The same z value
is assigned tall the sample points that definecantourline. The figure3(a) showgwo triangles
T1 and T2 of a Delaunay triangulatiamreated withoutconsideringthe contourlines as
constrainedines. The triangle T1 is formed by three points tbe samecontourline. If one
considers that each triangle defines a plane in the space, then the surface insidéal $udace
(parallel tothe xy plane). An alternative triangulation is shown infidnere 3(b). In thesdigures

the triangles T1 and T2 are not Delaunay triangles but the flat triangular surface is avoided.



4. The incremental constrained Delaunay TIN algorithm

This section describes detailstbe data structurand thealgorithm used tamplement the
incremental constrained Delaunay triangulation.

The constraine®elaunay triangulatiowasbuilt using atwo stepalgorithm. In thefirst step
an incremental algorithngonstructs arinitial constrained Delaunay triangulationThe only
restriction applied in this initial Delaunay triangulation is that the segments of the condirgimed
cannot be crossed by triangular edgeghisistep the points of the constrainigtes are inserted
first followed by the othersamples. The seconstep isresponsiblefor creating thefinal
constrained Delaunay triangulatidoy eliminating flat triangles from the initial triangulation.

This implementation was performed in language C. Sthecture used to create a computer
representation of the samples is shown below.

struct{

int npt;
float c[3];
int line;

int linetype;
float dz1[2];
float dz2[3];

} SAMPLE;

In the structure SAMPLE, thgariable npt is the number ofthe point; the vectoc|[3]
contains its coordinates X, y andline refers to theaumber ofthe line that contains the point
(line = -1 means thathe sampledoes notbelong to any line)linetype such asontour,ridge,
river, fault, etc., is useful to define whether a sample line must be considered as constrained line or
not; dz1[2] stores thdirst partial derivativesdz/dx and dz/dy) and;dz2[3] the secongartial

derivatives §°z/0x%, 5z/dy* andd’z/5xdy). The partial derivative information wast used inthis

implementatiorbut will be helpful tofit smooth surfaces to the triangulatipkkima 1978 and



Lancaster 1986). Theamplestructuredefined above ignough to allowone to discover if two
points belong tahe same constrained line and whether they consecutive or not. These are the
two basic conditions used to create the constrained TIN model presented in this work.
The structure that represents each triangle of the triangulation is presented below.
struct{
int v[3];
int n[3];

float bb[4];
} TRIANGLE;

Each triangle is representbyg: apoint vectorv[3] that stores thaumbers othe points of
its vertices; a neighbor vectnf3] that contains theaumbers of its 3 neighbor triangle4 means
no neighbor) and; a bounding box vedibf4] that storedts spatial bounding box, minimum, y
minimum, X maximumand y naximum. The neighbowector isuseful to perform local triangle
tests (as thempty circle criterion tareate aDelaunayTIN) and to use recursive processes to
propagate these tests to other neighborhdddeng theincrementalprocess the bouing box
of each triangle is used to accelerate the search for the triangle that contains one new sample.
Some important characteristics of the TIN algorithm implemented are:
* Itis an incremental algorithm, i. &he sample point@re introduced, one attane, into
the previous triangulation which is then refined,;
* The sample points of the constrained lines are inserted before the other samples;
» It creates a constrained Delaunay triangulation;
* It uses a constrained Delaunay empty circle criterion, or constrained Deltastay
locally during the incremental process in order to avoid local thin triangles and;

» It uses a recursive function to create the final constrained Delaunay triangulation.



The general sequence tife incremental algorithmused to create thimitial constrained

Delaunay triangulation is presented below:

CONSTRAINED TIN FUNCTION
Begin
Calculate the bounding box rectangle of the samples

Create two initial triangles using the bounding box and one of its diagonals

For each new sample point Pn
Begin
Find the triangle Tp that contains Pn

Create three new triangles using Pn and the vertices of Tp

Apply the constrained Delaunay tedietween each new triangle and
the respective neighbor of Tp

Discard the triangle Tp
End

Apply the constrained Delaunay test recursively in the current triangulation
End

The constrainedelaunaytest, mentioned irthe algorithm abovemeans thathe Delaunay
test betweetwo neighbor triangles will be applied only if their common edgeot formed by
two consecutive points of the same constrained line.
The next step of thalgorithm is to changthe initial triangulation toeliminate flat triangles.
This is performed recursively between triangles that are neighbors. The test applied here is:
A common edge of two neighbor triangles must be changed if:
(a) the common edge is formedtiayp non consecutive points of a same constrained line
and,;
(b) the new edge is not formed by two non consecutive points of a same constrained line.
Once the result of theestabove istrue thecommon edge must be changaden if the new

triangles are not Delaunay As already mentioned e section 3his test isuseful when the



sampleset containscontourlines. Thissecond stegan be defined as optional bye user. For
example, wheithe sampleset does nancludecontourlines,the user would prefer to create the

constrained triangulation without this last restriction.

5. Results
The pureDelaunay triangulatiorand the constraineBelaunay triangulationpresented in
section 4, werapplied to 3 different sample sets aheé results are illustrated, compared and

discussed in this section.

:
:
z

(a) (b)

Figure 4. Triangulations of a simple set of 4 constrained lines
(a) Delaunay triangulation and (b) constrained Delaunay triangulation.
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(a) )

Figure 5. Triangulations of a simple set of 3 constrained lines
(a) Delaunay triangulation and (b) constrained Delaunay mangulaton.
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Figure 6. Triangulations of a complex constrained sample set
(2) Delaunay triangulation and (b) constrained Delaunay triangulation



Figure 4 shows thBelaunay andhe constraine®elaunay triangulations of a gife set of 4
constrainedines. Inthe figure 4(a) thetriangles marked with letters Are examples where the
Delaunay triangulatiomrosses constrained segments. The triangles marked with letter B, in the
same figureare examples of undesirable flat triangles whbe constrainedines are contour
lines. The triangulation pictured in figuré(b) is the constraineBelaunay triangulation of the
same sample set used on the figure 4(a).

Figure 5 shows thB®elaunay andhe constraine®elaunay triangulations afnothersimple
set of 3 contoutfines. In this example we cawbserve, in figures(a), too manyflat triangles
created by the purBelaunay triangulation. These flat trianglae avoidedvhen we use the
constrained Delaunay triangulation as showed in figure 5(b).

Figure 6 depicts the Delaunay and the constrained Delaunay triangulations of @omplex
set of constrained lines.

An analysis of the results presented on figures 4, 5 and 6 can led ugditottieg question:
Are the constrainedelaunay triangulationsmore representative than the pubDelaunay
triangulation? Inorder toanswer this question we can consitieo different applications, the
extraction of acontour mapand the derivation of slope mapthat can be performed using the
triangulations pictured in this section.

Contour map Suppose that we want to recover tamecontour lines that weuse as
samples in the figures 4, 5 and 6, usinty the triangulations pictured in thoBgures. Although
an algorithm toextract contoutinesfrom a TIN was not implemented, it seems to be obvious
that one carget more accuratknes from the triangulations ofigures 4(b), 5(b) and 6(b) than

from those triangulations pictured fiyures4(a), 5(a)and6(a). Analgorithm that recovers the



contour lines should decide whapath, immediately above orimmediately below, must be
followed when a flatarea is searched. In addition, on areas where the consti@eswere
crossed, the resulting contour lines can be quite different from the original sample.

Slope map Suppose that theespresented in thigure 4are contoutineswith different z
values associated to them. If we consider neaf surface fittingfor each triangle of the
triangulation, the regions inside ttreangles marked with letter A itme figure 4(a) areexamples
of areas with slope equal to zero. A visual analysis of that figure shows us that those regions have

slopes different from zero and this is better represented in figure 4(b).

6. Conclusions

Although the comparativeanalysis was only qualitative, the constrainedDelaunay
triangulation presented in this work seems to be an interesting alternatake tadvantage of the
properties of théelaunay triangulatiomvhile keepingthe final triangulation consistent with the
constrained information stored in the input sample set.

Whencompared to the pur@elaunay triangulatiorthe constrainedelaunay triangulation
requires more computenemory, because dfie morecomplexdata structuresand is mordime
consuming, since it is a two step algorithm. This result was expectedtaedoisce to bgaid to
have a better result e final triangulation model. Thenemory increment is easy to evaluate.

The time overhead will be evaluated in future research.



Although the triangulationmplemented is awo step algorithm, it avoids complex global
analysiseach time we have to decide if a sample cacobmected to another to create an edge of
a new triangle in the triangulation.

Future research in the subject thfis work involves a quantitative evaluation of the
improvement provided bthe constrainedelaunay triangulation described in thirk. This
must be accomplished by using constrainieés and samples from real surfaces or from

mathematically defined functions.
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