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Abstract

A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map.
Dating to ,6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located
,130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has
remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of
Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı,
which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.9760.64 ka (or
69606640 BCE; uncertainties 2s) overlaps closely with 14C ages for cultural strata at Çatalhöyük, including level VII
containing the ‘‘map’’ mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older
explosive eruption at 28.961.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular
equilibrium (.380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive
venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by
humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of
Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by
quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions
implicates Hasan Dağı as a potential volcanic hazard.
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Introduction

Starting from the discovery of the Neolithic settlement of

Çatalhöyük in the early 1960s by British archaeologist James

Mellaart, the excavations at this location have provided unique

insights into the living conditions of humans at the transition from

hunter-gatherer to settled agriculture societies. One outstanding

find is a mural from level VII of Çatalhöyük (Fig. 1) famously

described by its discoverer as depicting a volcanic eruption [1–3].

Similar interpretations, differing in detail, have been put forward

since then, implicating this painting not only as the oldest

depiction of a volcanic eruption, but as a contender for being the

first graphical representation of a landscape or a map [4–6].

Detailed volcanological interpretations of the painting include

reconstructions of the eruptive style with the summit region

showing ‘‘falling volcanic ‘bombs’ or large semiliquid lava’’ [6].

According to these interpreters, the most likely candidate for the

erupting volcano depicted in the upper register of the painting

(Fig. 1) is the twin-peak volcano of Hasan Dağı, located ,130 km

NE of Çatalhöyük. This view, however, has been contested, largely

because of the extraordinary age of the mural, and the absence of

any other landscape art or map until much later in history [7] cf.

[8]. The depiction of a leopard skin underlain by geometric

patterns has been proposed instead [7].

A testable prediction of the volcanic eruption hypothesis for the

Çatalhöyük mural is a geologic record of an eruption which would

fall into, or briefly predate, the time when the Çatalhöyük mural

was painted. Protracted periods of oral tradition over ,250

generations have been proposed for prehistoric native North

American myths following the ,5700 BCE Mount Mazama

eruption [5]. For the Çatalhöyük map (and volcano) hypothesis to

be plausible, however, we surmise that a brief line of oral tradition,

or even an eye witness portrayal, is perhaps more likely than

tradition of a myth that detached itself from its inspiration in the

physical world. This is not to say that realism must prevail in

Neolithic art, but many of the apparent details can be reasonably

expected to become lost or obscured during a long period of oral

tradition. A tradition that predated the settlement of Çatalhöyük

thus appears very unlikely, and hence we would predict a time

period for the eruption between ,7400 and 6600 BCE based on

the 14C chronology of the Çatalhöyük cultural strata [9]. Neither

proponents nor opponents of the ‘‘volcano’’ hypothesis for the

Çatalhöyük painting have thus far scrutinized if and when such a

volcanic eruption might have occurred.
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The Discovery and Semiotic History of the
Çatalhöyük Mural

The Çatalhöyük ‘‘map’’ mural was first described by [2] as an

approximately 3 m wide painting on the N and E wall of ‘‘shrine’’

14 of excavation level VII (6430–6790 BCE; [9]). Originally

identified as cultic spaces, ‘‘shrines’’ are now viewed to represent

domestic areas with more-or-less cultic or ritual significance [10].

Upon excavation, the wall-painting was photographed in-situ [2],

and subsequently publicized as a graphical reconstruction [3]. The

original has since then been removed from the excavation site and

it is presently curated in the Museum of Anatolian Civilizations in

Ankara (Turkey). A reproduction is on display in lieu of the

original at the excavation location.

The lower register of the mural (Fig. 1) contains ,80 square-

shaped patterns tightly arranged like cells in a honeycomb, and its

upper register depicts an object that its discoverers initially

identified either as a rendering of a mountain with two peaks with

the cell-like patterns representing a plan view of a village with a

general layout of the houses similar to that of Çatalhöyük and

other nearby Neolithic settlements, or a leopard skin with its

extremities cut off [1–3]. In the ‘‘map’’ interpretation, the volcano

and its violent eruption are posited to have been significant for the

inhabitants of Çatalhöyük because they procured obsidian in the

vicinity of (albeit not directly from) Hasan Dağı [2]; cf. [11].

Alternatively, the natural spectacle of a cataclysmic eruption may

have imprinted itself in the collective memory of the Çatalhöyük

residents, charging the mountain with special cultic or religious

significance [8]. In the ‘‘map’’ school of interpretation, different

‘‘villages’’ and ‘‘mountains’’ have been proposed by various

authors, based on preferred topographic configurations that would

provide the best match in shape and height of the twin-peak

summits (with potential matches often assessed using landscape

photography) with the corresponding fiduciary features in the

painting. These scenarios include Hasan Dağı (a youthful volcanic

edifice; [2,12]), Melendiz Dag (a highly eroded volcanic complex;

[13]), or Karapinar (a field of scoria cones; [5]) as the ‘‘mountain’’,

and Çatalhöyük [2] or Aşıklı Höyük [4] as the ‘‘village’’. Whereas
14C ages for Asikli Höyük predate Çatalhöyük, the Aşıklı Höyük

satellite site of Musular was coeval with the early to middle phase

of Çatalhöyük [14]. Other archaeologists have dismissed the

interpretation of a paired village-mountain altogether, and have

reverted to Mellaart’s original ‘‘leopard skin’’ interpretation with a

geometric pattern in the lower register [7]. This view is founded on

the common and often central artistic representations of leopards

in wall-paintings and sculptures recovered from Çatalhöyük, and

the lack of any other archaeological records for maps in illiterate,

non-urban societies [7]; cf. [4,8].

The Hasan Dağı Study Location

The Hasan Dağı (or Mount Hasan) stratovolcano has two

characteristic peaks of similar elevation (3253 and 3069 m),

forming Big and Small Mount Hasan. The composite edifice

looms over the surrounding basins with their base elevation of

nearly 1000 m. Its edifice was constructed over multiple stages

identified as Paleo-, Meso-, and Neo-Hasan Dağı by extrusive

dome emplacement and intermittent collapse events associated

Figure 1. Location of the Çatalhöyük Neolithic site, Hasan Dağı, and other Holocene volcanoes in Anatolia. Overview map with inset
showing map of sampling locations (A). Hasan Dağı volcano and sampling location of pumice dated in this study (B). Black-and-white rendering of
Çatalhöyük wall painting (‘‘shrine’’ 14; level VII) interpreted to show the twin-peaks of erupting Hasan Dağı and closely spaced buildings in the lower
level [1–3] (C). An alternative interpretation is that of a leopard skin underlain by a geometric pattern [7]. Image reproduced from Fig. 2 in [7]. 3D
rendering of Hasan Dağı twin peaks volcano as seen from N (D).
doi:10.1371/journal.pone.0084711.g001
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Figure 2. Location and field pictures for andesitic pumice deposit (sample HD) collected near the summit of Hasan Dağı. Astronaut
photography of Hasan Dağı summit showing the location of sample HD (red dot) outside the crater rim (A). Image ISS022-E-5307 courtesy of the
Image Science & Analysis Laboratory, NASA Johnson Space Center (http://eol.jsc.nasa.gov). Field scene of HD sampling location looking N (B). Light
colored fall-out deposit abutting altered lava with geologist for scale (C). Close-up of pumice veneer at HD sampling location with camera pouch
(center left) for scale (D).
doi:10.1371/journal.pone.0084711.g002
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Table 1. Summary of U-Th zircon ages.

Crystal name Depth (mm)
(238U)/
(232Th) ±1s

(230Th)/
(232Th) ±1s U (ppm) Age (ka) +1s (ka) 21s (ka)

HD-10 0–5 4.403 0.071 1.752 0.146 274 30.7 6.2 25.9

HD-11 0–5 4.762 0.083 3.244 0.314 169 102 26 221

HD-12 0–5 4.439 0.030 1.760 0.157 260 30.6 6.6 26.2

HD-13 0–5 5.054 0.057 1.638 0.293 304 21.6 9.8 29.0

HD-1 0–5 3.865 0.064 1.755 0.096 535 37.4 5.2 24.9

HD-2 0–5 4.363 0.064 1.557 0.091 369 23.2 3.6 23.5

HD-3 0–5 6.622 0.114 2.114 0.197 226 26.2 4.9 24.7

HD-4 0–5 6.130 0.062 2.071 0.238 161 27.8 6.6 26.2

HD-5 0–5 4.527 0.150 3.241 0.165 250 113 18 215

HD-6 0–5 5.176 0.068 3.056 0.207 319 76.8 11.4 210.3

HD-7 0–5 4.069 0.093 4.007 0.151 435 431 ‘ 2148

HD-8 0–5 3.935 0.042 3.039 0.140 274 133 19 216

HD-9 0–5 4.312 0.055 1.716 0.148 191 30.1 6.4 26.1

HD-n1 0–5 4.393 0.042 1.388 0.140 253 16.7 5.2 25.0

HD-n2 0–5 6.459 0.080 2.298 0.268 171 31.8 7.3 26.8

HD-n3 0–5 7.030 0.112 2.541 0.275 173 34.2 6.9 26.5

HD-n4 0–5 4.101 0.046 3.138 0.180 184 131 23 219

HD-n5 0–5 5.905 0.045 1.835 0.234 136 22.7 6.5 26.1

HD-n6 0–5 4.216 0.053 3.346 0.142 342 146 20 217

HD-n7 0–5 6.254 0.086 5.473 0.343 139 210 65 241

HD-n8 0–5 6.448 0.082 1.705 0.258 194 17.3 6.1 25.8

HD-n9 0–5 4.005 0.056 1.800 0.212 176 37.6 11.1 210.0

HD-n10 0–5 5.240 0.054 1.964 0.203 140 30.9 7.0 26.6

HD-n11 0–5 3.878 0.039 3.565 0.193 208 246 108 253

HD-n12 0–5 4.019 0.034 1.764 0.129 192 35.7 6.5 26.1

HD-n13 0–5 3.935 0.022 2.304 0.184 187 68.1 13.1 211.7

HD-n14 0–5 4.742 0.232 2.380 0.218 281 53.3 11.5 210.4

HD-n15 0–5 4.773 0.053 2.945 0.139 328 82.2 8.8 28.1

HD-n16 0–5 4.025 0.056 1.456 0.128 212 21.6 5.6 25.3

HD-n17 0–5 3.434 0.096 1.634 0.153 187 37.7 9.9 29.1

HD-n18 0–5 7.047 0.116 2.328 0.255 156 29.0 6.1 25.8

HD-n19 0–5 6.636 0.067 3.497 0.379 276 66.0 14.1 212.5

HD-n20 0–5 6.223 0.062 5.374 0.390 151 201 68 242

HD-n1 20–25 4.146 0.021 2.742 0.254 85 91.8 21.8 218.2

HD-n2 20–25 5.274 0.026 2.250 0.213 118 40.5 8.0 27.4

HD-n4 20–25 2.253 0.010 2.493 0.169 78 ‘ ‘ ‘

HD-n6 20–25 7.064 0.031 7.694 0.512 77 ‘ ‘ ‘

HD-n8 20–25 4.987 0.024 1.657 0.255 84 22.6 8.7 28.1

HD-n9 20–25 3.777 0.019 1.950 0.221 127 49.8 14.1 212.5

HD-n12 20–25 4.284 0.030 2.046 0.193 70 45.4 9.9 29.1

HD-n13 20–25 4.689 0.024 3.534 0.398 34 130 46 232

HD-n14 20–25 4.258 0.022 4.230 0.220 176 521 ‘ 2237

HD-n15 20–25 4.813 0.060 4.751 0.456 116 453 ‘ 2233

HD-n16 20–25 6.068 0.027 3.354 0.410 63 70.5 17.9 215.4

HD-n19 20–25 4.714 0.029 3.075 0.396 36 92.5 30.2 223.6

HD-n20 20–25 5.843 0.029 6.364 0.502 102 ‘ ‘ ‘

HDA-1 0–5 3.587 0.032 3.045 0.173 181 176 42 230

HDA-10 0–5 3.584 0.044 2.102 0.152 300 66.0 11.9 210.7

HDA-11 0–5 4.771 0.114 4.222 0.193 390 214 55 236

Neolithic Volcanic Eruption
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Table 1. Cont.

Crystal name Depth (mm)
(238U)/
(232Th) ±1s

(230Th)/
(232Th) ±1s U (ppm) Age (ka) +1s (ka) 21s (ka)

HDA-12 0–5 6.045 0.030 2.520 0.180 362 41.9 5.7 25.4

HDA-13 0–5 5.496 0.062 2.712 0.342 114 55.4 14.4 212.7

HDA-14 0–5 3.734 0.021 3.477 0.110 475 263 62 239

HDA-15 0–5 3.950 0.035 3.053 0.187 152 135 26 221

HDA-16 0–5 3.814 0.044 1.898 0.141 183 46.8 8.4 27.8

HDA-17 0–5 5.663 0.087 2.260 0.385 89 37.4 13.1 211.7

HDA-18 0–5 4.343 0.085 3.611 0.228 195 170 43 231

HDA-2 0–5 4.329 0.028 2.228 0.195 147 54.4 10.7 29.7

HDA-3 0–5 4.720 0.154 2.040 0.158 161 39.5 6.9 26.5

HDA-4 0–5 3.616 0.027 1.861 0.136 291 48.8 8.8 28.2

HDA-5 0–5 4.505 0.063 2.790 0.132 306 82.0 9.0 28.3

HDA-6 0–5 3.423 0.026 2.659 0.173 176 132 28 222

HDA-7 0–5 5.790 0.029 3.132 0.254 159 67.2 11.0 210.0

HDA-8 0–5 4.046 0.040 1.986 0.154 186 47.2 8.5 27.9

HDA-9 0–5 4.165 0.056 2.092 0.182 172 50.6 10.1 29.3

HDA-n1 0–5 6.349 0.049 3.119 0.261 176 57.7 9.2 28.5

HDA-n2 0–5 8.424 0.101 4.913 0.510 90 83.7 17.2 214.9

HDA-n3 0–5 4.610 0.076 2.510 0.250 158 63.0 14.0 212.4

HDA-n4 0–5 3.887 0.047 3.611 0.265 248 261 396 274

HDA-n5 0–5 8.122 0.039 2.811 0.486 83 34.0 10.5 29.6

HDA-n6 0–5 4.686 0.089 1.905 0.209 107 34.5 8.6 28.0

HDA-n7 0–5 3.349 0.219 3.432 0.266 284 ‘ ‘ ‘

HDA-n8 0–5 3.873 0.023 2.028 0.150 176 53.1 9.3 28.5

HDA-n9 0–5 3.822 0.028 2.398 0.148 264 79.5 12.1 210.9

HDA-n10 0–5 5.173 0.167 3.275 0.458 104 89.4 30.9 224.0

HDA-n11 0–5 3.861 0.042 3.302 0.183 221 183 44 231

HDA-n12 0–5 7.455 0.063 5.569 0.476 98 136 32 225

HDA-n13 0–5 4.188 0.060 2.558 0.202 210 77.6 14.6 212.9

HDA-n1 20–25 4.711 0.026 3.219 0.417 140 103 36 227

HDA-n2 20–25 4.264 0.024 4.044 0.273 157 299 ‘ 288

HDA-n3 20–25 4.067 0.118 3.694 0.413 167 235 ‘ 283

HDA-n5 20–25 4.391 0.049 4.081 0.358 183 265 ‘ 284

HDA-n6 20–25 3.833 0.021 3.761 0.315 135 406 ‘ 2184

HDA-n8 20–25 4.770 0.032 4.239 0.263 244 218 75 244

HDA-n9 20–25 3.175 0.017 2.781 0.136 439 193 46 233

HDA-n10 20–25 4.630 0.024 4.640 0.292 238 ‘ ‘ ‘

HDA-n11 20–25 4.126 0.024 4.471 0.322 209 ‘ ‘ ‘

HDA-n12 20–25 6.265 0.133 6.324 0.450 137 ‘ ‘ ‘

HDA-n13 20–25 5.418 0.026 4.769 0.309 202 213 71 243

HDA-n14 20–25 3.065 0.050 1.881 0.098 486 67.3 9.7 28.9

HDA-n15 20–25 3.130 0.033 2.919 0.124 445 259 102 252

HDA-n16 20–25 5.238 0.024 4.044 0.458 109 142 53 235

all uncertainties 1s; decay constants used: l230:9.157761026 a21; l232:4.9475?10211 a21; l238:1.55125?10210 a21; age = zircon-melt two point isochron age for
melt = (238U)/(232Th) = (230Th)/(232Th) = 0.88260.015; ‘ secular equilibrium; sampling locations: HD = 36S 602261E/4220954N; HDA = 36S 599557E/4215676N (UTM/
WGS84).
doi:10.1371/journal.pone.0084711.t001
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with ignimbrite volcanism [15–17]. Limited geochronological data

[17] indicate emplacement of the oldest lavas at 7.2160.01 Ma

(K-Ar), and ignimbrites emplacement during an early caldera

collapse at 6.3160.20 Ma (40Ar/39Ar) which are contemporane-

ous with wide-spread Neogene ignimbrite volcanism in Cappado-

cia [18]. Only one K-Ar age for Meso-Hasan Dağı is published

(,0.58 Ma; [19]), and it is consistent with subsequent (,270 ka;

[17,19–20]) ignimbrite activity, dome extrusion with associated

block and ash flow deposition, and peripheral scoria cones and

maar eruptions that are collectively attributed to the Neo-Hasan

Dağı stage. The Neo-Hasan Dağı edifice with its two summits is

composed of collapsed andesitic to rhyodacitic lava domes creating

a wide-spread apron of hot-emplacement pyroclastic deposits. The

resulting nuée ardente deposits and interlayered lapilli-tephra beds

are stacked in ,10–20 m thick sequences which are exposed by

channel erosion of the volcano’s flanks. Compositionally distinct

rhyolitic lavas (including obsidian) and unwelded ignimbrites are

restricted to the lower reaches of the Neo-volcanic edifice in the N,

S, and W.

Available radiometric ages for Neo-Hasan Dağı dome lavas are

from whole-rock or groundmass dating using K-Ar techniques

[17,19–23]. These ages indicate late Pleistocene activity, with an

andesitic lava dome from the N flank of the volcano yielding a

maximum age of 6 ka [16], and another andesitic lava flow

erupted at the W base of the volcano (near Aşağı Dikmen village)

with zero-age 40Ar [22]. Two summit domes yielded K-Ar ages of

29 and 33 ka [22]. These ages, while suggestive of very recent

activity, lack independent confirmation, and in case of late

Pleistocene K-Ar ages excess radiogenic 40Ar remains an untested

possibility. No radiometric age determinations for pyroclastic

deposits from Neo-Hasan Dağı were available prior to this study.

Sampling

Sampling complied with all relevant regulations, did not impact

endangered or protected species, and did not require permits for

the described study. Sample HD was collected from the summit

region of Big Hasan Dağı peak (location 36S 602261E/4220954N;

coordinates in UTM/WGS84 format). The outcrop is at 3160 m

elevation, ,22 m below the northern crater rim (Fig. 2 a). The

deposit is located on a ridge with strewn pumice on the surface

(Fig. 2 b-d). It is an unconsolidated single fall-out unit, lacking any

major internal stratification except for potential reworking of the

top 10–30 cm. Pumice clasts (9 cm maximum pumice diameter as

average of the five largest clasts observed in outcrop) are angular,

grey-white in color, with occasional pinkish discoloration. Lithic

clasts comprise vitric lava and have an average maximum clast size

of 7 cm. The second sample HDA is from the SW flank of the

volcano (location 36S 599557E/4215676N) where pumice veneer

was found as unconsolidated slope debris. A single pumice block

,50 cm in diameter was collected. HD and HDA pumice as well

as lithic clasts contain plagioclase and hornblende phenocrysts.

Figure 3. Relative probability and ranked order plots of U-Th zircon rim and interior crystallization ages for Hasan Dağı. Peak zircon
crystallization ages for sample HD range between ,29 ka and secular equilibrium (A, B). Peak zircon crystallization ages for HDA are between ,49 ka
and 240 ka, with some secular equilibrium ages present, mostly for crystal interiors (C, D). Error bars are plotted at 1s for clarity.
doi:10.1371/journal.pone.0084711.g003
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Inductively coupled plasma (ICP) optical emission analysis

revealed an andesitic composition of the sampled pumice clasts.

Samples were retrieved from the subsurface by removing the top

,20 cm of cover to exclude material possibly affected by

reheating (e.g., lighting or wild fires).

Analytical Methods

Zircon crystals were extracted from crushed and sieved rock

powder. Matrix glass was dissolved through reaction with cold HF.

The acid-insoluble mineral fraction was density-separated using

heavy liquids (.3.3 g/cm3) to extract zircon. Large (.100 mm in

width) euhedral crystals were then hand-picked and pressed into

indium metal so that crystals’ prism faces were level with the

mount surface. U-Th Secondary Ionization Mass Spectrometry

(SIMS) analysis of crystal faces was conducted using established

protocols for a CAMECA ims1270 in dynamic multi-collection

mode [24]. Crater depths were ,5 mm. A subset of crystals

(preferentially those with old U-Th rim ages) was extracted for (U-

Th)/He analysis using noble gas mass spectrometry (for 4He

analysis) and ICP mass spectrometry (MS) for U and Th

abundances following protocols in [25]. The remainder of crystals

was subsequently grinded and polished to a depth of ,20 mm to

expose the interiors. The crystal interiors were then analyzed by

SIMS in the same fashion as the rim analyses, permitting a direct

comparison of rim and interior ages (between ,20 and 25 mm

depth) for the same crystals (Table 1). U-Th two-point isochron

ages were calculated using SIMS zircon compositions and whole-

rock U and Th abundances determined by ICP-MS (ACME Labs-

Canada) as representative for the melt composition. Secular

equilibrium was reasonably assumed for the melt given the overall

longevity of the Hasan Dağı magma system, and an average value

of (238U)/(232Th) = (230Th)/(232Th) = 0.88260.015 was used as the

model melt composition. The accuracy of U-Th and (U-Th)/He

zircon ages was verified by analysis of secular equilibrium zircon

standard AS3 (Duluth Gabbro) and FCT (Fish Canyon Tuff),

respectively, interspersed with the unknowns. The resulting

average values are: AS3 (230Th)/(238U) = 1.01460.011 (2s; mean

square of weighted deviates MSWD = 0.63; n = 23) and FCT (U-

Th)/He age = 28.060.87 Ma (MSWD = 0.06; n = 12).

For young (,380 ka) accessory minerals, U-series disequilibrium

corrections are significant for accurate (U-Th)/He dating [26]. This

is because a deficit in 230Th at the time of zircon crystallization

translates into a deficit of 4He produced by radioactive decay

relative to secular equilibrium. Other disequilibria in U-decay series

(e.g., 231Pa, 226Ra) are of secondary importance. To enable a

correction for 230Th deficits, U-Th ages were determined for all

zircons used for (U-Th)/He dating. In order to preserve enough

crystal volume for subsequent He analysis, only U-Th zircon rim

ages (of unsectioned crystals) could be determined. The interior ages

of the zircons thus remain unknown, but they must fall between the

rim crystallization age and secular equilibrium. This uncertainty

was propagated into our (U-Th)/He age correction using the

MCHeCalc software developed at UCLA. Because crystals which

have old (near secular equilibrium) rim ages also have the least

uncertainty regarding the disequilibrium correction, these crystal

were preferentially selected for (U-Th)/He analysis, and their ages

bear more strongly for the error-weighted average age.

Results and Discussion

U-Th Zircon Crystallization Ages
A total of 91 secondary ionization mass spectrometry (SIMS)

spot analyses on rims and interiors of zircons from HD and HDA

were conducted (Table 1). Nearly 50% of the 27 analyzed HD and

HDA zircon interiors are in secular equilibrium with (230Th)/

(238U) overlapping unity within 1s uncertainty, and are thus older

than ,380 ka. Only a small number of rim ages (2 out of 64) are

in secular equilibrium, whereas most rims show significant 230Th

deficits attesting to their young age.

The rim ages for HD and HDA overlap, but they show a

significant difference in that HD zircon rim crystallization ages

peak at ,29 ka, whereas the youngest ages in HDA rims peak at

,49 ka (Fig. 3). An ,49 ka peak is also present in the interiors of

the HD zircons which indicates that HD zircon nucleated on pre-

Figure 4. Ranked order plots for disequilibrium-corrected (U-
Th)/He zircon ages for Hasan Dağı. Individual eruption ages (red
dashed lines) for samples HD (A) and HDA (B) were calculated as error-
weighted averages from (U-Th)/He zircon analyses. Errors comprise
analytical uncertainties plus the uncertainty for the disequilibrium
correction, and are bracketed by secular equilibrium (minimum age),
and the disequilibrium-corrected age that corresponds to the measured
U-Th rim crystallization age, assuming that it represents the crystalli-
zation age for the entire crystal (maximum age). Zircon crystals where
rim ages are in (near-) secular equilibrium thus have the lowest
uncertainties. Three crystals in sample HD yield (U-Th)/He ages that are
too old to be reconciled with the average of the population. We
interpret them as xenocrysts from pumice of older eruptions, and thus
excluded them from the average. Weighted average age errors account
for systematic and analytical uncertainties, and are quoted at 2s; error
bars plotted at 1s.
doi:10.1371/journal.pone.0084711.g004
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existing zircon of HDA age, and continued to crystallize for several

109s of ka. With few exceptions, interior ages are older than the

corresponding rim ages on the same crystal. Only grain 8 of

sample HD has indistinguishable rim and interior ages. This

suggests that protracted zircon crystallization is typically recorded

in individual crystals and the overall crystal population. No

attempts were made to determine the age of secular equilibrium

crystals or crystal domains through U-Pb analysis, but we

speculate that the secular equilibrium crystals represent recycled

crystal cargo from intrusive rocks dating back to the activity of

Paleo- and Meso-Hasan Dağı.

This evidence for protracted zircon crystallization recorded in

individual crystals and crystal populations adds to an increasing

data body indicating that zircon longevity and recycling is

common in long-lived volcanic systems in magmatic arcs such as

the Cascades [27] or the Lesser Antilles [28]. In these cases, the

origin of zircon has been ascribed to plutonic rocks which

represent the unerupted residue of earlier magmatic pulses.

Crystals from these plutonic rocks then became remobilized

during subsequent stages of renewed magmatic activity. Such a

scenario appears also plausible for Hasan Dağı: the presence of

zircon (typical for evolved silicic melts) in comparatively primitive

andesitic pumice suggests mixing of different magma types [16].

(U-Th)/He Zircon Eruption Ages
Following the U-Th rim analyses, a subset of 15 and 18 crystals

from HD and HDA, respectively, was selected for (U-Th)/He

analysis (Fig. 4; Table 2). The selection was based on crystal size

and integrity, with a preference for older rim ages because of the

lesser impact of the disequilibrium correction (see below). In

contrast to heterogeneous U-Th zircon crystallization ages in a

long-lived magma system resulting from diffusive immobility of the
238U and 230Th parent-daughter pair, (U-Th)/He zircon ages for

volcanic rocks are normally expected to uniformly record cooling

upon eruption. We consequently calculated error-weighted

averages for both samples which are 8.9760.64 ka (n = 12) for

HD and 28.961.5 ka for HDA (n = 18). Because the crystal

interiors are inaccessible to direct isotopic analysis by SIMS unless

a large portion of the crystal is removed to expose the interiors at

the surface, we lack direct constraints for the interior ages. An

equal probability for the crystallization age between the limits set

by the rim age and secular equilibrium is assigned. The prevalence

of secular equilibrium interiors is an indication that the younger

ages (i.e., the left side of the thick error bar in Fig. 4) might be

more likely, but we presently see no reliable way of how to assess

this probability for individual crystals. The best strategy to

minimize this uncertainty is therefore to target crystals with rim

ages are at or close to secular equilibrium. These crystals,

unfortunately rare in overall population, were preferentially

analyzed for (U-Th)/He dating.

Resetting of the (U-Th)/He ages by wildfires, lighting, or

heating through lava can be excluded because the samples were

collected from the subsurface, and away from any contacts with

younger lava flows or domes. We therefore interpret these ages as

dating the eruptive cooling of the HD and HDA pumice. Three

HD crystals are, however, distinctly older than the remaining

younger population. Because HD zircon was extracted from

composite pumice, we suspect that an older pumice population

was mixed into the deposit, either during the eruption or by post-

eruptive reworking. The accuracy of the (U-Th)/He ages is

underscored by their consistency with the U-Th crystallization

ages, which always predate the eruption. The apparent gap in the

youngest U-Th crystallization ages and the eruption is in

agreement with the proposed magma mixing scenario whereby a

crystalline mush or intrusion becomes remobilized by andesitic

recharge. Rounding of the zircon tips is indicative of partial

resorption of these crystals when they became entrained into the

andesitic magma.

Eruptive Ages Compared with Çatalhöyük Archaeological
Ages

Published K-Ar ages for lava samples from Hasan Dağı (Fig. 5)

often have high uncertainties, or are maximum ages because of

near-background 40Ar levels, and thus have little bearing on

precisely dating Holocene eruptive activity at Hasan Dağı. There

is, however, a late Pleistocene K-Ar age for a lava flow

corresponding to the ,29 ka (U-Th)/He age of sample HDA,

suggesting contemporaneous effusive and explosive activity. New

(U-Th)/He eruption ages for Holocene sample HD overlap closely

with published 14C ages for the cultural strata excavated at

Çatalhöyük (including level VII which contains the ‘‘volcano’’

wall-painting; Fig. 5). The eruption age for HD (69606640 BCE

in calendar years) is indistinguishable from the cultural occupation

of Çatalhöyük within uncertainty, whereas published K-Ar ages

(Fig. 5C) lack any overlap between the 14C ages for level VII.

Analytical uncertainties of 14C and (U-Th)/He ages preclude any

temporal correlation at less than millennial time scales, and

therefore a residual uncertainty remains regarding the contempo-

raneity of the painting with the eruption. Nevertheless, our data

are the first evidence for a volcanic eruption of Hasan Dağı coeval

with human presence at Çatalhöyük.

Figure 5. Comparison between Hasan Dağı (U-Th)/He zircon
ages and published geologic and archaeological chronology.
Ages for explosively erupted deposits based on (U-Th)/He zircon
geochronology (A; this study). Published Hasan Dağı K-Ar ages of lava
(B). 14C ages of cultural strata at Çatalhöyük including level VII
containing the ‘‘map’’ mural (C). The HDA (U-Th)/He zircon age closely
overlaps with a K-Ar age for a Hasan Dağı summit crater lava [23], and
thus may represent the same eruptive episode. The HD (U-Th)/He zircon
age of 8.9760.64 ka (red bar projected over all panels) is the youngest
(barring two K-Ar ages ,0 ka and ,6 ka age reported in [23] and [16],
respectively), and best constrained Holocene eruption age for Hasan
Dağı. It closely overlaps with Çatalhöyük 14C ages (level VII ,8.4–8.6 ka;
[9]). Pre-50 ka activity for Hasan Dağı is documented by K-Ar ages as old
as 270620 ka [20] which agree with the abundance of (near-)secular
equilibrium U-Th zircon ages (Fig. 3).
doi:10.1371/journal.pone.0084711.g005
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The radiometric age, and the following geologic evidence

corroborates the ‘‘volcano’’ hypothesis: (1) the HD deposit is the

product of a low-elevation volcanic plume, presumably from a

small-volume eruption, because it lacks wide-spread distal tephra;

this is in accordance with the volcanological interpretation of the

painting showing ‘‘mild Strombolian activity’’ [5]; (2) the deposit is

present in the summit region of the taller peak (Big Hasan Dağı),

as predicted from the painting; and (3) the hot emplacement of

juvenile pumice (in contrast to a ‘‘cold’’ phreatic eruption)

indicated by young (U-Th)/He ages implies magma ascent to

shallow levels, and possibly an associated dome extrusion; this

would represent a wide-visible eruption. Beyond the archaeolog-

ical context, our results reveal recurrent explosive eruptive activity

from a magma system that has been active for .380 ka.

Additional mapping and dating is required to establish a more

complete picture of how explosive eruptions of Hasan Dağı for the

Holocene impacted the geologic, climatic, and anthropological

evolution of the region.

Conclusions

Combined U-Th and (U-Th)/He zircon geochronology pro-

vides the first radiometric age evidence for an explosive volcanic

eruption of Hasan Dağı during the Holocene. The eruption age

for pumice veneer from the summit of Hasan Dağı closely overlaps

with the occupation of Çatalhöyük, and it therefore plausible that

humans in the region witnessed this eruption. The geometric

characteristics of the ‘‘volcano’’ in the upper register of the

Çatalhöyük mural appear consistent with the location and fall-out

deposition of the pumice. An older explosive eruption at ,29 ka is

evident from (U-Th)/He zircon dating of a pumice deposits at the

base of Hasan Dağı. This age agrees with a K-Ar age for a lava

flow from Hasan Dağı. The youngest zircon crystallization ages

are within uncertainty of the eruption age, but some rim and

interior ages predate the eruption by at least 380 ka. The volcanic

edifice of Neo-Hasan Dağı is underlain by a long-lived magmatic

system in which zircon quasi-continuously crystallized over several

100,000 years in an evolved silicic magma. Zircon-bearing magma

from this reservoir was episodically remobilized and tapped in

eruptions that involved thermal and compositional rejuvenation of

the shallow silicic magma by more mafic injections from depth. In

the light of the overall longevity of the Hasan Dağı magma system

and radiometric evidence for Holocene eruptions, there is no

indication that its activity is waning.
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Contributed reagents/materials/analysis tools: AKS MD. Wrote the
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and the Development of Cartographic Representation in Prehistory. Anatolian

Studies: 1–16.
8. Barber EJW (2010) Yet More Evidence from Çatalhöyük. American Journal of
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(upper basin of the river Melendiz, Central Anatolia, Turkey)]. Quaternaire 9:

169–183.

24. Schmitt AK (2011) Uranium series accessory crystal dating of magmatic

processes. Annual Review of Earth and Planetary Sciences 39: 321–349.
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