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ABSTRACT

A numerical method of analyvsis has been developed to study the
nonlinear response of reinforced concréte structures with special
emphasis on shells with edge members. Nonlinear material, nonlinear
geometry and the time dependent effects of creep and shrinkage are
included in the analysis. The structural response is traced through
its elastic, inelastic and ultimate load ranges.

A finite element displacement formulation coupled with a time
step integration solution is used. An incremental and iterative
scheme based upon constant imposed displacement is used so that
structures with local instabilities or strain softenings can also be
analyzed.

An improved layeréd composite 9-node Lagrangian shell element
with equivalent smeared steel layers is developed to represent the
reinforced concrete shell in which the material properties can vary
within an element.

A composite filamented 3D rectangular beam element with discrete
reinforcement is used to model the edge beam. The material properties
are assumed to be constant for each filament.

Material nonlinearities as a result of tension cracking, tension

stiffening between cracks, the nonlinear response of concrete in



compression and the yielding of the reinforcement are considered.

The concrete model used is based upon nonlinear elasticity by assuming
concrete to be an orthotropic material. A biaxial and a uniaxial
concrete model are assumed for the shell and the beam element, res-
pectively. 'The steel reinforcement is assumed to be in a uniaxial
stress state and is modelled as a bilinear material with strain harden-
ing. The nonlinear torsional response in the edge beam is modelled

by an effective torsional stiffness approach where the Saint-Venant
torsion is assumed.

An updated Lagrangian formulation has been used to take into
account the nonlinear geometry of the structure. The formulation
is based upon small strains and small incremental rigid body rotations.

An efficient procedure for the evaluation of creep strain based
upon an integral formulation, in which the creep strain increment at
the current time step requires the knowledge of the hidden state vari-
ables of only the last time step, is incorporated. The stress is
assumed to be constant within a time step, and creep under biaxial
stfess states is represented via the introduction of the creep
Poisson's ratio.

Finally, a series of numerical examples consisting of beams,
columns, slabs and shells with or without edge members are analyzed
and compared with the available theoretical and experimental results
to demonstrate the applicability and the validity of the proposed

method of analysis.
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1. INTRODUCTION

1.1 General

A reinforced concrete shell has the qualities of an ideal structure.
From an economical viewpoint, it requires the minimum material to cover
a given area. From an architectural viewpoint, it is aesthetically
appealing. From an engineering viewpoint, the structure is very strong
and has a tremendous load-carrying capacity. It is for these reasons
thatAreinforced concrete shells have found wide application for the roofs
of sports arenas, exhibition halls, and other long-span roof structures.

Their design is usually based upon membrane theory and, to some
extent, classical shell theory, assuming a linear, homogeneous, uncracked
material. Even then, only simple geometries and loading conditions can
be analyzed. Model testing can give an insight into the structural
behavior, but it is a very costly and time-consuming procedure. The
advent of the modern digital computer has made it possible to analyze
shell structures of arbitrary geometry and boundary conditions under
general loading. ‘

To assess the factor of safety against collapse and satisfy the
continuous demand for longer spans and thinner shells, the ultimate load
capacity and the serviceability of the structure throughout its useful
1ife have to be ensured. In this case, a linear analysis may nct be
sufficient.

While model testing of a scaled prototype remains costly and time-
consuming, analytical procedures that can predict the nonlinear response
and the ultimate load capacity of the prototype must be developed to

replace most of the experiments once verification of the analytical



method has been established from selective, well-controlled experimental
results.

The correct simulation of the structural response requires that the
geometry of the shell and the supporting members be modelled correctly.
Then, realistic material laws have to be defined for the concrete and
the steel. The inclusion of the nonlinear geometry in the analysis is
essential because it increases the load-carrying capacity in a stiffening
structural system and decreases the ultimate load in a softening system.
Finally, the time dependent effects of creep and shrinkage and of stress
history have to be considered in order to ensure the serviceability and
the ultimate load capacity,even with possible stress redistribution.

The nonlinear geometry and the time dependent effects are often particu-

larly important in the analysis of thin concrete shell structures.

1.2 Review of Literature

The first published paper on the finite element analysis of rein-
forced concrete structures was by Ngo and Scordelis [1]. They modelled
the concrete and the steel by constant strain triangular elements and
with special linkage elements to simulate the bond between the concrete
and the steel. Linear analysis of simply supported beams with predefined
crack patterns were carried out. Since then, a tremendous amount of
effort has been devoted to the development of the analytical procedures
for the analysis of plane stress, axisymmetric solid and plate and shell
systems. No attempt is made here to review each of these in the litera-
ture. Comprehensive reviews of the application of finite element analysis
of reinforced concrete structures were made by Scordelis [2,3,4],
Schnobrich [5], and Wegner [6]. Here, only pertinent references dealing

with the subject of general thin shells will be discussed.



Bell and Elms [7] used a reduced flexural and membrane stiffness
approach, where the stiffness is a function of the stress level.

Lin [8,9] used a layered, triangular finite element to represent
the concrete and the steel. A biaxial state of stresses was assumed
for both the concrete and the steel. Nonlinearities of the concrete
and steel were included.

Hand et al [10] used a layered, shallow shell, rectangular element
and adopted an approach similar to Lin [8,9] for the analysis of plates
and shells.

Kabir [11,12] extended the work of Lin [8,9] to include the time
dependent effects of creep and shrinkage and load history.

Mueller [13,14] used the procedure developed by Kabir [11] to analyze
and study several types of reinforced concrete hyperbolic paraboloid
shells. |

Arnesen [15] employed a triangular shell element with numerical
integration through the thickness. He used endochronic theory for the
concrete and a trilinear stress-strain law for the steel. Nonlinear
geometry was included using an updated Lagrangian approach. Cyclic
loading was also considered.

Floegl [16,17,18] used curved triangular shell finite elements to
analyze reinforced concrete shells in short time loading. Both nonlinear
material and nonlinear geometry were incIuded. Their tension stiffening
model is based upon bond slip between the reinforcement and the surround-
ing concrete.

Most of the previous researchers on the subject were concerned with
the shell itself. Modelling of other important components of the struc-

ture, such as the edge and the supporting members, was not considered.



In the past, the edge members have been modelled with shell elements.
This approach is satisfactory when the beam is concentric with the shell
[8,11,13,15]. However, when the beam is placed eccentrically with the
shell, the important bending contribution due to the axial forces cannot
be accounted for. Furthermore, the use of the layered shell element
cannot adequately represent the torsional and the biaxial bending behavior
of the edge beam.

The use of curved shell finite elements generally gives a better
geometrical representation, and the solution converges much faster than
that using simple flat shell elements [19,20]. The use of a curved shell
element, therefore, allows a relatively coarse mesh to be used to achieve
a desired degree of accuracy. At the same time this reduces the storage

requirement for the solution.

1.3 Objective and Scope of the Present Work

A numerical procedure is developed to trace the structural response
of a thin concrete shell, having arbitrary geometry, through its elastic,
inelastic and the ultimate load ranges.

A curved shell finite element is developed using numerical integra-
tion through the thickness to represent a special case of a 3D continuum.
The steel reinforcement is treated as a smeared layer, and it can be
oriented in any direction. A filamented reinforced concrete beam element
is used to model either concentric or eccentric edge beams. Perfect bond
between the concrete and steel is assumed.

The nonlinearities included are the cracking of the concrete in
tension and the nonlinear response of concrete in compression, yielding
of the reinforcement, time dependent effects of creep and shrinkage of

the concrete under biaxial stress states, and the nonlinear geometry due



to finite displacements and rotations.

A tangent stiffness formulation coupled with a time integration
solution is used. The iterative procedure utilizes constant imposed
displacements and allows the complete load-displacement response to be
traced, including the unstable branch in the snap-through of the structure.

Several examples have been solved. They can be classified into
three categories. The first category is limited to structures with
linear materials and large displacements so that the procedure for the
treatment of the nonlinear geometry can be checked out. The second
category is limited to reinforced concrete beams and plates with nonlinear
materials and geometry. The third category includes complete systems
made up of reinforced concrete shells and beams. The examples are compared
with avajlable analytical and experimental results to verify the proposed

method of analysis.



2. LARGE DISPLACEMENT ANALYSIS

2.1 General

The problem involving large strains and large displacements has
been thoroughly treated in the literature. Depending on the way the
motion of a material point is described, the kinematics of a deformable
body can be generally described in three distinctive modes. They are
the Total Lagrangian (T.L.), the Updated Lagrangian (U.L.), and the
Convective Description (C.D.).

Both the T.L. and the U.L. use a referential &escription in which
the state variables are referred to a known configuration. Both formu-
lations include all the geometric nonlinear effects through the coordinate
transformation and the complete strain displacement relationships
including the nonlinear terms. The two formulations are mathematically
equivalent [21].

The Convective Description is also a referential description in
the sense that the kinematic variables are referred to a set of convected
axes while the displacements are referred to sets of material points.
This formulation has often been used in solving small strain, large
displacement problems [22,23,24,25,26], where the convected axes can
be assumed to be orthogonal before and after deformation. In this case,
the major geometric nonlinearities are embodied in the establishment of
the convected axes, while retaining only linear terms in the strain
expressions. For lower order elements, this formulation is very effi-
cient because the displacements relative to some points can be easily
established and also large rotations do not exist within an element.

However, this is not true for higher order elements. In addition, the



transformation into and out of the convected coordinates is very time
consuming [22] and thus cannot be justified from a computational stand-
point. Therefore, the convected descriptive formulation will not be
pursued further.

Before the equations of equilibrium are formulated, it would be
worthwhile to present some of the necessary preliminaries in continuum
mechanics. For this reason, the definition of stresses and strains will
be reviewed briefly. More detailed description can be found in Malvern

[27] and Fung [28].

2.2 Fundamentals of Continuum Mehcanics

2.2.1 Definition of Strains

Considering a body undergoing a deformation path (Fig. 2.1), the

undeformed body is identified as B0 with coordinates ox., Oz- and base

i i
vector 0gi. The current deformed body is B1 with coordinates lxi, lzi
and base vector lgi. The next configuration close to B1 is 82 with

coordinates in, Zzi and base vector 2gi.

The deformation of a body can now be described. A generic point P
undergoes translations and rotations and is finally deformed into con-
figuration BZ’

In order to characterize the deformation, the Green strain tensor,

ds - ds

E.., is introduced which is defined as "EE'"'Q , where ds is the infini-
20

iJ
tesimal line element after deformation and dsg is the same line element
before deformation. For small strains, the tensor Eij is equivalent to
the engineering strains [29].

The strain at configuration 1 is:



FIG. 2.1 DESCRIPTION OF THE KINEMATICS OF A DEFORMABLE BODY



where Ogi is chosen to be orthogonal. Therefore,

Ess = 950 - S (2.1)

1

where lgij is the metric tensor defined as lgi- gﬂ and 51j is the

Kronecker delta.

The base vector lgi can be related to Ogi through the deformation

gradient 1F.., where 1F maps Ogi into 1gi. Mathematically, this is

iJ iJ
a linear transformation such that:

1 1

g; = F.. (2.2)

Similarly, the strain at state 2 can be written down immediately

following the definition of Eij’ Eq. 2.1.

2 = 2 .2 o .0
Eij = 9 gj -9 gj
_ 2
2 _ 2 0
g; = Fij 93 (2.4)

Now a functional dependence of the coordinates of the material

points Ozi, lzi and 221 has to be established.
1 _ 0 1
Together with the definition of the covariant base vector lgi:
1
3 u,
1 _ 5 0. O i0
9; ~ a0z Z; 9 * a0z Im
m m
which can be simplified to:
1 - 1 0
95 (51m * u1,m) m
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Therefore, the deformation gradient can now be defined as:

1 _ 1
Fij = éij + Ui (2.5)

and

ij ° Gij + uj 5 (2.6)

where ,j is understood to be the derivative with respect to the undeformed
coordinates.
The strain increment Eij can be obtained by subtracting the total

strain at state 1 from the total strain at state 2,

- 1
Eij Eij Eij

ZEij = Fmi im . Fnj i - Fmi i Fnj i (2.7)
However,
2 _ 1
up Tt Yy
Therefore,
-2 1
.. =6.. ¢+ ..t UL . 2.8
Fig %35 % Y, Y (2.8)

Introducing Eq. 2.8 into Eq. 2.7 and simplifying, one obtains the Lagrange

strain increment referred to B, and expressed in terms of the displacement

0
increments ui.

1 1
.. = . . + . . + . .+ . .+ U . u . .9
2843 Ui 3t U5, % Unyi Uni T Ungd Yn,g T Uni Yng (209

A similar expression for the increments of Lagrange strain eij but

referred to B1 can be derived in a similar manner.



11

where 2c.. = i - 6.. (2.10)

ij Fmi 1m

Fmi = Smi + U g (2.11)

and ,i denotes differentiation with respect to 1zi. Upon substituting

Eq. 2.11 into Eq. 2.10, one obtains:
2€.. = U, s +u, . +u .U . (2.12)

It should be noticed that the Lagrange strain referred to Bl’
Eq. 2.12, is not equal to the Lagrange strain referred to B0 in Eq. 2.9.

However, they are related through a geometrical transformation [30].

Es: = = m n ¢ (2.13)

The strains Eij and €3 are used to derive the virtual work equation in

the subsequent sections.

i

Equivalently, when the curvilinear coordinate x is used, the defor-

mation gradient and the two Lagrange strains are related as follows:

1Ffj = afj + lui}j = 5yt lui’j (2.14)
where Oxi is rectangular and Gij = 6ij’ 1uilj = 1ui,j‘

?Tj - 5Tj + uilj (2.15)
where ui is the displacement with reference to 1xi.

25 uilj sud] L") (2.16)

Eiy = lxmli lxn]j €mn (2.17)

where lj denotes covariant derivatives.
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2.2.2 Definition of Stresses

The stresses at a point P can be described in several ways depending
on the basis of their reference. Generally, three different kinds of
stresses can be distinguished. They are the 1st and the 2nd Piola-
Kirchhoff stress and the Cauchy stress tensor.

Considering a typical deformation path, an undeformed body BO’ with
base vector 0gi, and a deformed body Bl’ with base vector lgi (Fig. 2.2),
the equilibrium condition ignoring the body forces in the deformed con-
figuration is:

Tij’j = 0

where ,j is the derivative with respect to lzi and t.. is the Cauchy

iJ
stress defined as force per unit deformed area.

Defining a pseudo-force vector T in the undeformed body BO such
that:

i dA = i da (2.18)

i ji J
aozi ! Py dv
where J = [det N = = = W
972, P
i
aoz.
fo. = —t
1J 3'z
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Therefore,

T.. = Jf = J—1 . (2.19)

1] im ij

The tensor Tij is associated with the name 1lst Piola-Kirchhoff stress
tensor. It can be interpreted as force per unit undeformed area acting
in the direction of the deformed axes. Geometrically, it is illustrated
in Fig. 2.3 together with the physical meaning of the Cauchy stresses.
The tensor Tij is therefore a tensor in two different spaces, namely
the deformed axes and undeformed area and is, therefore, unsymmetric.
Because of the lack of symmetry of the 1lst Piola-Kirchhoff stresses,
a transformation of Tij is performed to restore the symmetry condition.
The resulting tensor denoted as Sij is called the 2nd Piola-Kirchhoff

stress tensor. Mathematically,

513 = Tim fmj
or, in component form,
0 0
9°2. 9 z.
S.. = J —F —d ¢ (2.20)

1 1 mn

-t
(&)
Q
N
[+34
N

Unlike Tij’ the tensor Sij generally does not have a direct physical
meaning and thus it is purely a mathematical definition, such that sij
is conjugate to Eij in the energy sense. That is, their products repre-

sent work [28].

2.3 Derivation of the Incremental Virtual Work Equation

With the preceding preliminaries, the virtual work equation can now
be stated. The virtual work equation is based upon the minimum potential

energy principle and represents a statement of equilibrium of a deformable



=

FIG. 2.3 GEOMETRICAL INTERPRETATION OF STRESSES

15

e atd



16

body. This equilibrium condition is valid in the current deformed
configuration. Depending on which configuration the state variables
are referred to, different forms of the equation can be obtained.
However, they can be shown to be equivalent to each other [21,31].
In this section, the virtual work equation is written with reference

to the undeformed configuration B_ and the deformed configuration Bl’

0
resulting in what is known as T.L. and U.L. formulations, respectively.

o
B

X at state a refers to state RB.

The notation _X used in the following derivation means the variable

2.3.1 Virtual Work Equation in T.L. Formulation

The internal work done in 82 close to B1 due to the deformation

is:

(2. 2
Wp = .4;051j ofi; 4V
0

where the integral is performed over the undeformed body BO'

The external work done by the surface traction gg is:

- 2, 2
W of ¥ %A
aBO
The potential energy II of the system is:
_ 2 2 2, 2
n = fosij OEij dv - foti 045 dA (2.21)
B0 aBO

The equilibrium condition requires that the total potential energy

of the system be stationary, i.e., &I = 0.

_ 2 2 2 2 =
I = Osij GOEij dav - Oti 60“1 dA = 0 (2.22)
B0 aBO

where the traction gti is assumed to be a conservative load, for which

its direction and magnitude remain constant throughout the deformation.
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Alternatively, Eq. 2.22 can be derived by considering the equilibrium
equation written in the deformed configuration with reference to the
undeformed state and thus obtain the weak form of the equation [32].
However, this derivation will not be elaborated upon here.

Equation 2.22 is a total rather than an incremental formulation.

In general, materials do exhibit path dependency to a certain extent.
Therefore, an incremental form of the Eq. 2.22 will be more useful.
2

The decomposition of the stresses Osij and strains gEij are

trivial and can be written as:

1

Osij = Osij + Aosij (2.23)
2 _ 1
where ésij and éEij are the values at state 1 with reference to the

undeformed state and AOSi and AOEij are increments from state 1 to

J
state 2.

Equation 2.22 can now be written as:

1 1 _ 2 2
f(osij + AOS'ij) S (OE'ij + AOEij) v = f oti S oY dA (2.25)
8 .

0 %8
Expanding and collecting terms and noting that éEij is not subjected
to variation, Eq. 2.25 now becomes:
o oA E..+AS.. onE..dv = [ 2t 82, da (2.26)
0°ij ~7074] 0%ij —071] 01 =~ 07§
Bg aBO

Equation 2.26 is nonlinear in the displacement increments. A linearized

form can be obtained by assuming a constitutive relationship of the form:
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bS53 = oCijk1 Dok (2.27)

where AOek1 is the linear part of the Lagrange strain increment.

AOEij = AOeij + Aonij
and, in component form,
2hA€.. = Au. ., + Au, . + 1u . Au L+ 1u . Au_ . (2.28)
071] 1,J Jsi n,j — n,i n,i ~n,j )
ZAOnij = Aun,i Aun’j (2.29)

By substituting Eq. 2.27, Eq. 2.28, and Eq. 2.29 into Eq. 2.26 and
neglecting higher order terms, the linearized form of the equilibrium
equation becomes:

1 _
{(05135“0”1'3‘ * 00 5k1 208 Mo%) v =

0
2
fot s . dA - ./'Os1J gy s Y (2.30)

380

Equation 2.26 can now be satisfied by an iterative procedure where

the piecewise linear solution of Eq. 2.30 is solved successively.

2.3.2 Virtual Work Equation in U.L. Formulation

The equilibrium equation governing the deformed state B2 with
reference to B1 can be obtained from Eq. 2.22 by suitable transformations.
The equilibrium equation written with reference to the undeformed

state B0 is:

2. 2 )
f 551 01—:1J dv —foti s2u, dA = 0 (2.31)

The transformations are as follows:
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0 0
Osij TP, A1 1 lsmn (2.32)
1 3 zo 0 z,
1 1
gEi. - aozm aoz” fE (2.33)
J 37z, 3 z. + MmN
1 J
P1
dV = — dv (2.34)
o
2 _ 2
2 YA
60”1 = 61“1 (2.36)

Substituting Eq. 2.32 through Eq. 2.36 into Ea. 2.31, the equilibrium

equation then becomes:

0 0 1 1
On 0 2. 9 2. 972 972 p
‘/“B% 8121 812 %Smn' aozk 3021 Sigk] . Bi. o
9B, m n i J
2 2
f lti <Slu1 da
aB
1
) 2%, el .
Noting that alz . aoz = Bmk and Gmk Gn] Ek.I = Emn' The equation
m i
can now be simplified to:
2 2 - 2. 2
B1 aBl

The incremental form of Eq. 2.37 can be obtained by a decomposition

of the form:

S.. = JT..+A Si. (2.38)
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1Eij = lEij + AlEij (2.39)
1 1 .
where 1Tij and lEij are the stresses and strains at state 1 and Alsij
and AIEij are the increments referred to state 1.
The equilibrium equation in the incremental form is:
1 1 - ./. 2, 2
f(lTij+Alsij> 8 (1Eij+A1Eij) dv lti 61u1. da (2.40)
381 381
and upon introducing the constitutive relationship:
8555 = 1%500 Y8 (2.41)
where
BB T Be g (2.42)
ou ou
k 1
2A. e = + ——
17k1 1 1
3 Z] 9 Zk
ou ou
28.1 - n . n
1'k1 31 . 1
Zx

and upon expanding, the equation of equilibrium in the U.L. formulation

after neglecting higher order terms is:

1
15388055 * 1045K181861 88845 AV
By
2. .2 1
lti 61“i da - 1Tijéﬂleij dv  (2.43)
8, B,

Equations 2.43 and 2.30 are mathematically equivalent since they

both represent the equilibrium of a body in the deformed state. The
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choice between the U.L. and T.L. descriptions depends upon their relative
numerical efficiency. This point will be discussed in more detail later

in the chapter.

2.4 large Displacements and Small Strains Problem

The definition of the stresses and strains in the case of large
strains and large displacements problems have been stated in Section 2.2.
Here some simplification will be made in the case where displacements
are large while the strains remain small. This is a typical problem
found in the stability of plates and shells and is particularly true
for reinforced concrete structures whose crushing strain is of the order
of 3.7x1073,

For the purpose of presentation, it would be useful to introduce
the polar decomposition theorem [33] which asserts that a nonsingular
matrix 5 can be decomposed into an orthogonal matrix B and a matrix

8, such that:

1>
n

1=

D

and

-~

The deformation gradient Fij defined in Eq. 2.5 can be similarly

decomposed into:

Fij = Rik ekj (2.44)
where
o,. = (F,_F.) = (¢, .)? (2.45)
kj kn " jn kJ
and ij is the deformation tensor such that:

2Eij = cij - 6ij
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If the strains are small, the tensor ekj can be expanded in the

Taylor's series:

- 3 2
8 (655 + 2E,)% = (o5 + Ej5+ 0ES ) (2.46)

It follows that if the rotations are large and the deformation is small,

the latter can be ignored and:

Fij z Rij (2.47)

In this case, no distinction has to be made between the derjvative

with respect to the deformed and the undeformed coordinates:

i bz R.. (2.48)

or, in terms of curvilinear coordinates:

1 0.J .
IX o 93X . gl

- - .. R.. (2.49)
aoxJ alx’ J ij

n

The direct consequence of Eq. 2.48 and Eq. 2.49 is that under the

1.4

assumption of small strains, the local coordinate axes "x remain essen-

0

tially orthogonal and can be considered as X! being rigidly rotated as

described by the rotation tensor Rij‘ That is,

In this case, the covariant derivative is identical to the ordinary
derivative and no distinction needs to be made between the covariant base
vector g; or the contravariant base vector gI. A1l the relationships as

stated in the previous sections are valid in z; as well as in X5 except
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that X; NOwW replaces z, and the displacements are measured with respect

X.o
to j

Therefore, the relationship between Eij and Eij as defined in

Eq. 2.13 and Eq. 2.17 in Section 2.2.1 now reads:

E.. = R.R (2.50)

ij mi nj €mn

and the relationship between the 2nd Piola-Kirchhoff stress and the Cauchy

stress tensor now becomes:

S;s = JR

ij mi an Tmn (2.51)

31x
where J = l'TT'I =1 for small strains.
9 X

Equations 2.50 and 2.51 simply imply that the Eij and Sij’ when

measured in the coordinate Oxi,are identical numerically to the Eij and

Tij with reference to 1x’..

Under this assumption, the incremental values of eij and Tij can
be added from increment to increment without any geometrical transforma-
tion, provided that the local 1x,i is computed consistently.

The virtual work equation in the T.L. and the U.L. formulations are
mathematically equivalent. Any difference in the results can be attri-
buted to the inconsistency in the use of the material tensor Cijk1 [21].
However, in the case of small strains the tensors Ocijk1 and lcijk1’ as
defined in Eq. 2.27 and Eq. 2.41, are equal [31,34].

Under this assumption, Eq. 2.30 and Eq. 2.43 yield identical stiff-
ness matrices and unbalanced nodal forces. A detailed discussion of

these matters can be found in [31] and will not be elaborated upon here.
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2.5 Choice of the Formulation

As has been stated in Section 2.3.2, the T.L. and U.L. are funda-
mentally equivalent. However, it is usually concluded that the U.L. is
more efficient computationally [21,31]. This is due to the fact that
in the U.L. formulation all the essential transformations are done at
the element level and through the updating of the nodal point coordinates
and the local axes. Thus the computation of the stiffness due to
initial displacements can be avoided.

Also, by using the U.L. formulation, the problem of artificial
straining which occurs with large rigid body rotations will be avoided.
This problem has been'thorough1y investigated by S@riede [35]. Essen-
tially, the problem can be circumvented by splitting the large rigid
body rotation into a series of smaller increments and the final solution
is obtained by summation.

In the case of reinforced concrete structures where cracking is the
predominant nonlinearity, the 