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Abstract

Learning and Signal Processing over High-Dimensional Graphs

Learning and signal processing methods over graphs have recently attracted significant

attentions in dealing with structured data. Normal (traditional) graphs, however, only cap-

ture pairwise relationships among nodes and are not effective in representing and capturing

some high-order relationships of data samples. Such high order data interactions are often

important in many applications such as Internet of Things (IoT), multimedia processing

and network analysis, thereby motivating the exploration of learning and signal processing

through high-dimensional graphs. In this dissertation, we investigate theoretical foundations

and practical applications of two different high-dimensional graphs: 1) multilayer networks,

and 2) hypergraphs. Inspired by the properties of high-dimensional graphs, we also revisit

certain aspects of signal processing and learning under normal graphs.

First, we study the behavior analysis of propagation over multilayer networks. Specifi-

cally, we focus on the cascading failure over multilayer complex systems. We first propose

a scalable tensor-based framework to represent interdependent multilayer networks, before

applying this framework to analyze the failure propagation based on a susceptible-infectious-

susceptible (SIS) epidemic model. We derive the transition equations and failure threshold to

characterize the failure propagation. To make the failure indicator analytically tractable and

computationally efficient, we derive its upper and lower bounds, as well as its approximated

expressions in special cases.

Second, we investigate signal processing over hypergraphs. Representing hypergraphs as

tensors, we proposed a novel framework of hypergraph signal processing (HGSP). Defining a

specific form of hypergraph signals and hypergraph signal shifting, we provide an alternative

definition of hypergraph Fourier space based on the tensor decomposition, together with the

corresponding hypergraph Fourier transform. To better interpret the hypergraph Fourier
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space, we analyze the resulting hypergraph frequency properties, including the concepts of

frequency and bandlimited signals. We also establish theoretical foundation for the HGSP

sampling theory and filter designs. Furthermore, we examine its applications in multimedia

processing, including three-dimensional (3D) point clouds, images and videos.

Lastly, revisiting the traditional graphs, we investigate the development of graph con-

volutional networks from the perspective of graph signal processing (GSP). We reexamine

the graph spectral convolution in GSP and define conditions for approximating spectrum

wavelet via propagation in the vertex domain. We then propose alternative propagation

models for the GCN layers and develop a Taylor-series based graph convolutional networks

(TGCN) based on the aforementioned approximation conditions. Our experimental results

in citation networks and point clouds validate the effectiveness of the proposed TGCN.
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Chapter 1

Introduction

1.1 Overview of Applying Graphs in Engineering

Studies of graphs have received significant attentions over the past decades in many areas,

including engineering, biology, and social science. The ability of describing the relationship

between different points or entities make graphs important tools in real applications [1]. For

example, data, like social networks, biological data, mobility and traffic patterns, resides on

complex structures that do not lend themselves to standard tools [2]. Graphs provide ability

to model such data and the complex relationship between them. Fig. 1.1 shows several

examples of modeling realistic datasets by graphs. Modeling each data point as a node

and the correlations as edges, graph-based learning and signal processing methods achieved

significant successes in data analysis.

Generally, the research of graphs in engineering can be summarized as the follows:

• Network sciences: This area addresses issues such as uncovering community relations,

perceived alliances, quantifying connectedness, or determining the relevance of specific

agents [3–5]. Researches in this category mainly focus on the structure rather than

components in the system. It covers, for example, giant components, clustering coeffi-

cients, centralities and path length [6,7]. It can used in analyzing the structure of the
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(a) Image [12] (b) Sensor network [13] (c) Citation network [14]

Figure 1.1: Graph Models of Different Datasets.

system and providing instructions for designing a robust system.

• Network process: The aim is to model and analyze the propagation over networks,

including diffusion of information, epidemic and disease infections, social influence and

propagation of failures [8]. Graphs are intuitive models in such problems. Classic

models are similar to those in network science. Each entity is modeled as one node

and the connections are modeled as edges. Then, a function is attached to each edge

to describe the propagation between two nodes. This area is important in real world.

A typical example is cascading failure, where a robust structure can be designed to

reduce the loss of failure in a system by analyzing the failure propagation [2].

• Graphical models: This area focuses on the inference and learning from large datasets

[9–11]. The data is modeled as a set of random variables described by a family of Gibbs

probability distributions, and the underlying graph captures statistical dependence and

conditional independence among the data. Research in this area exploit the distribution

defined on the the graph to model and learn the properties of the data.

• Graph signal processing: Signal processing defined over graphs aims to develop a similar

framework as digital signal processing to analyze the signal in the graph Fourier space

[13]. Given a graph, data points are represented by graph signals corresponding to

vertices and their internal relationships are represented by the edges. Then, a graph
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Fourier space is defined based on the eigen-space of the representing matrix (Laplacian

or adjacency) to complete signal processing and data analysis tasks, like denoising [15],

filter banks [16] and compression [17].

1.2 Motivations of Extending Graphs to High-Dimensional

Domains

With the coming of big data era, the system and data structure become more and more

complex. Although graphs have achieved great successes in dealing with multiple engineer-

ing problems, they still exhibit some limitations. Since each edge in normal graphs only

connects two nodes, it can only represent pairwise relationships. In general, multi-way cor-

respondences are more informative and precise in signal processing and data analysis [18].

For example, in biology, a disease is usually triggered by multiple genes [19]. The relations

between these genes and disease cannot be easily modeled in pairwise as a normal graph. In

addition, normal graph is hard to process multiple different relationships. Data, like social

network, usually has more than one type of relationship between two nodes. For example,

a single person may serve different roles in different relationships, such as a father in family

and a teacher in school [20]. There may be several different types of links among all the

nodes. How to distinguish such different natures in different levels leverages a problem. All

these limitations motivate us to extend the traditional data analysis and signal processing

based on normal graphs to high-dimensional domains.

In this dissertation, we investigate applications of two high-dimensional graphs in engi-

neering: 1) multilayer networks, and 2) hypergraphs.

• Multilayer network consists of several layers with different natures. An example of

three-layer network is shown in Fig. 1.2(a). Multilayer network can be used in rep-

resenting complex systems with several components and describing relationship with

different natures. A typical example is smart grid, which has two major components:
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(a) Example of three-layer net-
work

(b) Example of a hypergraph

Figure 1.2: Example of High Dimensional Graphs

the power grid and the communication network. The power stations in the power grid

provide energy for the communication network, and the base stations in the commu-

nication network jointly control the power stations [22]. Such system can be modeled

as a two-layer network, where one layer represents the communication network and

the other one represents power grid. Applications, like cascading failure and system

stability, can be further analyzed based on the constructed multilayer network.

• Hypergraph is composed of nodes and hyperedges connecting more than one nodes

[23]. An example is shown in Fig. 1.2(b). The normal graph can be viewed as a

special case of hypergraphs in which each hyperedge degrades to connecting exactly two

nodes. Hypergraphs have shown great successes in replacing normal graphs in many

applications, such as clustering [24], classification [25] and prediction [26]. Hypergraph

is a natural alternative of normal graph in the signal processing and data analysis of

high dimensional interactions.

More specifically, we focus on the signal processing and behavior analysis over the these

two high-dimensional graphs. First, we propose a tensor-based spectral analysis of cascading

failure in the multilayer networks. Second, we investigate the developments of hypergraph

signal processing (HGSP), as well as its applications in multimedia. Finally, back to normal

graphs, we propose a graph convolutional networks based on Taylor expansions.
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Figure 1.3: Diagram of Behavior Analysis of Cascading Failure in Multilayer Networks.

1.3 Overview of Research Topics

The main body of the dissertation includes three parts:

• In the first part, we represent multilayer networks by tensors and investigate the failure

propagation under the susceptible-infectious-susceptible (SIS) model shown as Fig. 1.3.

We first propose a scalable tensor-based framework to model the physical multilayer

complex systems. Then, we analyze the SIS epidemic behavior and derive the transition

equation to describe the failure propagation. We show that the spectral radius of

transition tensor is a failure indicator with an explicit failure threshold to measure the

system reliability. To explore how this indicator depends on the network structure and

epidemic parameters, we derive its upper and lower bounds. In addition, we derive

the approximations of the failure indicator for the cases where either intra-layer or

inter-layer propagation dominates. The analytical results are shown to exceed the

performance of some benchmark approximation methods

• In the second part, we propose a new framework of hypergraph signal processing

(HGSP) based on tensor representation to generalize the traditional graph signal pro-

cessing (GSP) to tackle high-order interactions. We introduce the core concepts of

HGSP and define the hypergraph Fourier space. We then study the spectrum proper-

ties of hypergraph Fourier transform and explain its connection to mainstream digital
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Figure 1.4: Examples of HGSP-based Applications in Multimedia Datasets.

signal processing. We derive the novel hypergraph sampling theory and present the

fundamentals of hypergraph filter design based on the tensor framework. We present

HGSP-based methods for several signal processing and data analysis applications. In

addition, we investigate the applications of HGSP in multimedia, including images,

videos and point clouds. Our experimental results demonstrate significant performance

improvement using our HGSP framework over traditional signal processing solutions.

• Finally, we revisit the fundamentals of graph wavelet and explores the utility of signal

propagation in the vertex domain to approximate the spectral wavelet-kernels. We first

derive the conditions for representing the graph wavelet-kernels via vertex propagation.

We next propose alternative propagation models for GCN layers based on Taylor ex-

pansions. We further analyze the choices of detailed graph representations for TGCNs.

Experiments on citation networks, multimedia datasets and synthetic graphs demon-

strate the advantage of Taylor-based GCN (TGCN) in the node classification problems

over the traditional GCN methods.

6



Chapter 2

Introduction of Tensor and Tensor

Operations

Due to the limitations of matrix in representing high-order data structures, high dimensional

algebra tools, especially tensor, has been introduced in dealing with high dimensional issues.

In this chapter, we briefly introduce some tensor basics used in this dissertation.

2.1 Introduction of Tensor

Generally speaking, tensors can be interpreted as multi-dimensional arrays. The order of a

tensor is the number of indices needed to label a component of that array [27]. For example,

a third-order tensor has three indices. In fact, scalars, vectors and matrices are all special

cases of tensors: a scalar is a zeroth-order tensor; a vector is a first-order tensor; a matrix is a

second-order tensor; and an M -dimensional array is an Mth-order tensor [28]. Generalizing

a 2-D matrix, we represent the entry at the position (i1, i2, · · · , iM) of an Mth-order tensor

T ∈ RI1×I2×···×IM by ti1i2···iM in the rest of the dissertation.

Below are some useful definitions and operations of tensor related to this dissertation.
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2.1.1 Symmetric and Diagonal Tensors

• A tensor is super-symmetric if its entries are invariant under any permutation of their

indices [29]. For example, a third-order T ∈ RI×I×I is super-symmetric if its entries

tijk’s satisfy

tijk = tjik = tkij = tkji = tjik = tjki i, j, k = 1, · · · , I. (2.1)

Analysis of super-symmetric tensors, which is shown to be bijectively related to homo-

geneous polynomials, could be found in [30,31].

• A tensor T ∈ RI1×I2···×IN is super-diagonal if its entries ti1i2···iN 6= 0 only if i1 = i2 =

· · · = iN . For example, a third-order T ∈ RI×I×I is super-diagonal if its entries tijk 6= 0

only exists for i = j = k,while all other entries are zero.

2.2 Tensor Operations

Tensor analysis is developed based on tensor operations [32–34].

• The tensor outer product between an P th-order tensor U ∈ RI1×I2×...×IP with entries

ui1...iP and an Qth-order tensor V ∈ RJ1×J2×...×JQ with entries vj1...jQ is denoted by

W = U ◦V. The result W ∈ RI1×I2×...×IP×J1×J2×...×JQ is an (P + Q)-th order tensor,

whose entries are calculated by

wi1...iP j1...jQ = ui1...iP · vj1...jQ . (2.2)

The major use of the tensor outer product is to construct a higher order tensor with

several lower order tensors. For example, the tensor outer product between vectors
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a ∈ RM and b ∈ RN is denoted by

T = a ◦ b, (2.3)

where the result T is a matrix in RM×N with entries tij = ai · bj for i = 1, 2, · · · ,M

and j = 1, 2, · · · , N . Now, we introduce one more vector c ∈ RQ, where

S = a ◦ b ◦ c = T ◦ c. (2.4)

Here, the result S is a third-order tensor with entries sijk = ai · bj · ck = tij · ck for

i = 1, 2, · · · ,M , j = 1, 2, · · · , N and k = 1, 2, · · · , Q.

• The n-mode product between a tensor U ∈ RI1×I2×···×IP and a matrix V ∈ RJ×In is

denoted by W = U×n V ∈ RI1×I2×···×In−1×J×In+1×···×IP . Each element in W is defined

as

wi1i2···in−1jin+1···iP =
In∑
in=1

ui1···iP vjin , (2.5)

where the main function is to adjust the dimension of a specific order. For example,

in Eq. (2.5), the dimension of the nth order of U is changed from In to J .

• The Kronecker product of matrices U ∈ RI×J and V ∈ RP×Q is defined as

U⊗V =



u11V u12V · · · u1JV

u21V u22V · · · u2JV

...
...

. . .
...

uI1V uI2V · · · uIJV


(2.6a)

to generate an IP × JQ matrix.
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Figure 2.1: CP Decomposition of a Third-order Tensor.

• The Khatri-Rao product between U ∈ RI×K and V ∈ RJ×K is defined as

U�V = [u1 ⊗ v1 u2 ⊗ v2 · · · uK ⊗ vK ]. (2.7)

• The Hadamard product between U ∈ RP×Q and V ∈ RP×Q is defined as

U ∗V =



u11v11 u12v12 · · · u1Qv1Q

u21v21 u22v22 · · · u2Qv2Q

...
...

. . .
...

uP1vP1 uP2vP2 · · · uPQvPQ


. (2.8)

2.3 Tensor Decomposition

Similar to the eigen-decomposition for matrix, tensor decomposition analyzes tensors via

factorization. The CANDECOMP/PARAFAC (CP) decomposition is a widely used method,

which factorizes a tensor into a sum of component rank-one tensors [27,35]. For example, a

third order tensor T ∈ RI×J×K is decomposed into

T ≈
R∑
r=1

ar ◦ br ◦ cr, (2.9)

where ar ∈ RI , br ∈ RJ , cr ∈ RK and R is a positive integer known as rank, which

leads to the smallest number of rank-one tensors in the decomposition. The process of CP

decomposition for a third-order tensor is illustrated in Fig. 2.1.
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There are several extensions and alternatives of the CP decomposition. For example, the

orthogonal-CP decomposition [36] decomposes the tensor using an orthogonal basis. For an

M -th order N -dimension tensor T ∈ R
N×N×...×N︸ ︷︷ ︸

M times , it can be decomposed by the orthogonal-

CP decomposition as

T ≈
R∑
r=1

λr · a(1)
r ◦ ... ◦ a(M)

r , (2.10)

where λr ≥ 0 and the orthogonal basis is a
(i)
r ∈ RN for 1 ≤ i ≤ M . More specifically, the

orthogonal-CP decomposition has a similar form to the eigen-decomposition when M = 2

and T is super-symmetric.

2.4 Tensor Spectrum

The eigenvalues and spectral space of tensors are significant topics in tensor algebra. The

research of tensor spectrum has achieved great progress in recent years. In particular, Lim

and the others developed theories of eigenvalues, eigenvectors, singular values, and singular

vectors for tensors based on a constrained variational approach such as the Rayleigh quotient

[39]. Qi and the others in [37,38] presented a more complete discussion of tensor eigenvalues

by defining two forms of tensor eigenvalues, i.e., the E-eigenvalue and the H-eigenvalue.

Chang and the others [29] further extended the work of [37, 38]. Other works including

[40,41] further developed the theory of tensor spectrum.
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Chapter 3

Spectral Analysis of Propagation

Behavior over Multilayer Networks

3.1 Introduction

Studies of multilayer complex systems have received significant attentions over the past

decades in many areas, including engineering, biology, and social science. A multilayer com-

plex system is usually defined as a system consisting of several interdependent components

with different natures [1]. A typical example is smart grid, which has two major components:

the power grid and the communication network. The power stations in the power grid provide

energy for the communication network, and the communication nodes in the communication

network jointly control the power stations[22]. Other examples include human brains, social

organizations and so on [1]. In the literature, multilayer complex systems are often modeled

as multilayer networks where each layer corresponds to one type of components [43].

One of the most important threats in the multilayer complex systems is the cascading

failure: the failure of a small fraction of the system triggers failures of other parts [8].

1Part of this chapter is reprinted, with permission, from [S. Zhang, H. Zhang, H. Li, and S. Cui, “Tensor-
based Spectral Analysis of Cascading Failures over Multilayer Complex Systems,” in 2018 56th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), Oct. 2018].
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In complex systems, the failure of one component may cause new failures not only in the

same layer but also across layers, leading to severe damages to the whole system. For

example, on September 28th of 2003, the damage of some power lines by the storms caused

several power stations down in Italy. The failure of these power stations led to a failure of

the communication network, which in turn caused a further breakdown of power stations,

affecting a total of 56 million people in Europe [44]. As such, cascading failures in multilayer

complex systems deserve great attentions. A deep understanding over this issue would benefit

the future design of a robust and resilient multilayer system.

To analyze the cascading failures over complex systems, one key problem is how to

model the failure propagation. Typical methods are based on giant components [8], logical

connections [45] and statistical propagation probability. Among them, the epidemic model,

which originally describes the spread of virus, is widely used. For example, Wang et al. [46]

studied the failure propagation based on a susceptible-infected-susceptible (SIS) model in the

two-layer networks. Granell et al. [47] studied the behavior of susceptible-infected-exposed

(SIE) epidemics in multiplex networks where each layer has the same number of nodes. Other

works focusing on epidemic and cascading failure like [48] mainly investigated the epidemic

spread over random graphs. The behavior of failure propagation can be characterized and

analyzed by the probability transition in the epidemic model. However, most of existing

literatures only focused on the networks with up to two layers.

Another key problem of analyzing cascading failures in multilayer systems is how to

represent multilayer networks mathematically. Almost all traditional methods are matrix-

based. For example, Wang et al. [46] used two different matrices to represent the intra-layer

connections and inter-layer connections, and Domenico et al. [49] proposed to represent each

layer with an individual adjacency matrix. However, these matrix-based representations have

some significant limitations. For example, Wang’s method limits the number of layers up to

two, and the method in [49] cannot handle the inter-layer propagation. To this end, tensor-

based methods have been introduced [50], whose power in representing high dimensional
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graphs makes it especially attractive in complex network analysis.

In this chapter, we represent multilayer networks by tensors and investigate the failure

propagation under the SIS model. We first propose a scalable tensor-based framework to

model the physical multilayer complex systems. Then, we analyze the SIS epidemic behavior

and derive the transition equation to describe the failure propagation. We show that the

spectral radius of transition tensor is a failure indicator with an explicit failure threshold to

measure the system reliability. To explore how this indicator depends on the network struc-

ture and epidemic parameters, we derive its upper and lower bounds. In addition, we derive

the approximations of the failure indicator for the cases where either intra-layer or inter-layer

propagation dominates. The analytical results are shown to exceed the performance of some

benchmark approximation methods.

The rest of this chapter is organized as follows. In Section 3.2, the tensor representa-

tion of multilayer networks is introduced. Then the proposed tensor-based framework for

physical multilayer systems is given in Section 3.3. The failure model and mathematical

formulations of failure propagation are addressed in Section 3.4. We derive the bounds and

approximations for failure indicator under certain conditions in Section 3.5. The numerical

results are provided in Section 3.6. Finally, the chapter is concluded in Section 3.7.

3.2 Multilayer Networks in Tensor Representation

In this section, we introduce how we use tensor to describe multilayer networks with the

same number of nodes in each layer.

Suppose that a multilayer network A has M layers with N nodes in each layer. As each

layer has the same number of nodes, we may consider these nodes as the projections of the

same “objects”. That is, by projecting N objects onto M layers, we obtain the multilayer

network A that has M layers with N nodes in each layer. Mathematically, the process of

projecting objects can be viewed as a tensor product, and the network connections can be
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represented by the tensor.

Next, we show how to represent multilayer networks by tensor. We use Greek letters

α̂, β̂, ... to indicate each layer and latin letters i, j, ... to indicate each object. Given N objects

X = {x1, ..., xN}, we can construct a contravariant basis ei and a corresponding covariant

basis ei in RN to characterize each object xi. Similarly, given M layers L = {l1, ..., lM}, we

can construct basis eα̂ and eα̂ in RM to characterize each layer lα̂. Then, the connectivity

of objects can be represented by a second-order tensor E =
∑N

i,j=1 a
j
iei ◦ ej ∈ RN×N and the

connectivity of layers can be represented by F =
∑M

α̂,β̂=1 b
β̂
α̂eα̂ ◦eβ̂ ∈ RM×M , where aji and bβ̂α̂

are the weights. Following the same way, the connectivity between the projected nodes of the

objects in the layers can be represented by a forth-order tensor A =
∑N

i,j=1

∑M
α̂,β̂=1w

j,β̂
i,α̂eα̂ ◦

eβ̂ ◦ei◦ej ∈ RM×M×N×N . More specifically, the weights wj,β̂i,α̂ are set as one or zero to indicate

the existence of connectivity. That is, the element Aj,β̂i,α̂ = 1 if a directed link exists from the

projected node of xj in layer lβ̂ to that of xi in layer lα̂; otherwise, Aj,β̂i,α̂ = 0.

With the tensor representation above, we are able to describe any multilayer network

with the same number of nodes in each layer. However, in practice, some physical complex

systems cannot be modeled as such regular multilayer networks directly. In the next section,

we will introduce a tensor-based framework to model irregular multilayer cyber-physical

systems.

3.3 Tensor-based Framework for Complex System

In this section, we propose a framework to model a cyber-physical system as a multilayer

network that can be represented in tensor, and discuss its mathematical properties.

3.3.1 Cyber-Physical System

Consider a cyber-physical system consisting of three subsystems and four types of objects:

1) an auto-driving vehicular network composed of N1 vehicles (Type-1); 2) a smart grid
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Table 3.1: Functions of Objects

Index Function Type-1 Type-2 Type-3 Type-4
1 Power Generation X
2 Power Transmission X X X X
3 Power Storage X X X X
4 Communication X X X X
5 Computation X X X X
6 Human Operator X X X X
7 Driving X

consisting of N2 sub-stations (Type-2) and N3 main stations (Type-3); and 3) a cellular

network consisting of N4 base stations (Type-4). The functions of each type of objects

are shown in Table 3.1. These four types of objects work together to guarantee the whole

system in proper operation. Next, we will show how we construct the multilayer network

to model such a cyber-physical system based on the interplay among different functions of

these objects.

3.3.2 Construction of the Multilayer Network

We first define seven layers based on the functions of all objects shown in Table 3.1. The

indices of layers are the sames as those of the functions. To obtain the nodes in the multilayer

network, we project all four types of original objects onto seven layers. Then, we define

directed links between nodes as the influence indicators. More specifically, we add a directed

edge from node a to node b if node a can influence the status of b. The existence and the

direction of links depend on the physical property of the original objects. In this way, we

obtain a multilayer network with M = 7 layers and N =
∑4

i=1Ni nodes in each layer. Note

that not all objects have functions in all layers. For example, vehicles do not have the “power

generation” function. This issue is handled by isolating the corresponding nodes.

Next, we discuss the network structure in detail. In such a cyber-physical system, objects

coordinate their own functions and influence other objects via multiple levels of functions.
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Figure 3.1: Model of Inter-layer Connections

That is, different functions of the same object or the same functions of different objects may

influence each other. Thus, the inter-layer connections exist within the projections of a same

object while the intra-layer connections take care of all possible interactions between objects.

For the inter-layer structure, the links represent the direction of failure propagation

among the functions of a given object, which deterministically depend on the physical prop-

erties of the objects. For different types of objects, the inter-layer links are shown in Fig.

3.1.

• Type-1: A vehicle has six functions except for the power generation function. The

power transmitted to the vehicle is stored in the power storage, such that there is a

link from layer 2 to layer 3. The communication, computation and driving functions

all need energy provided from the power storage. Thus, there are links between layer 3

and layers 4, 5, 7 in both directions. Besides, layers 4 and 5 connect since the computa-

tion function needs to exchange information with other vehicles via its communication

function. There are also links from layer 6 to layers 5 and 7, since the human drivers

can give instructions to the computation function or drive the vehicle manually.

• Type-2: The sub-stations have five functions, and the projected nodes in layers 1 and

7 are isolated. The connections are similar to Type-1 objects among layers 2 − 6.

The difference is that there are additional links from layers 5, 3 to layer 2, since the
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computation function in the power stations also controls its load of power transmission

and the power transmission can transmit the power stored in the storage. In the

sub-stations, human workers can control other functions by giving instructions to the

computation functions. Thus, the layer 6 only has connections to layer 5.

• Type-3: The inter-layer structure for a main station is almost the same as that of

sub-stations. Note that the main stations have the function of power generation which

generates power stored locally or transmitted to other places. Thus, there are addi-

tional links from layer 1 to layers 2, 3 and from layer 5 to layer 1.

• Type-4: The base station has the functions of layers 2 − 6. The links are similar to

those of Type-2 objects.

Now, we discuss the intra-layer structure. In layers 1, 3, 5, 6, 7, the projected nodes do not

have intra-layer connections since functions in these layers work only within a same object.

In layer 2, the nodes may transmit energy to each other. Since the energy transmission may

influence the load balance of nodes, intra-layer links exist and the directions of links are

the same as the energy flow. Similar to layer 2, communication nodes in layer 4 exchange

information with each other and thus there exist intra-layer connections, whose directions

are the same as the flows of information.

3.3.3 Tensor Representation

With the process described above, we obtain a typical multilayer network consisting of M

layers with N nodes in each layer. As introduced in Section 3.2, the connections of such a

multilayer network can be represented mathematically by the adjacency tensor, denoted by

A = {Aj,β̂i,α̂} ∈ RM×M×N×N .

To avoid confusion, the intra-layer connections of layer α̂ are specified as Aα̂
α̂ ∈ RN×N

with element Aj,α̂i,α̂ for all i, j. The inter-layer connections from layer β̂ to α̂ are specified

as Aβ̂
α̂ ∈ RN×N with element Aj,β̂i,α̂ for all i, j. Shown in Fig. 3.1, the same type of objects
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have the same inter-layer structure. Suppose that object o(i) represents the Type-i object,

the inter-layer connections for Type-i objects are specified as Aint(i) ∈ RM×M with element

A
o(i),β̂
o(i),α̂ for all α̂, β̂.

3.3.4 Properties of the Tensor-based Framework

Identification of Projections

One important property is that the tensor framework preserves the information about

whether certain objects has certain types of functions. In particular, an isolated node in

one layer implies that an object does not have the corresponding function. This property

helps us identify the functions of objects. To identify whether object i has the function in

layer α̂, we just need to check if the degree D(i, α̂) =
∑

(j,β̂) A
j,β̂
i,α̂ +

∑
(j,β̂) A

i,α̂

j,β̂
equals zero.

Tensor Flattening

The forth-order tensor A in RM×M×N×N can be flattened into second-order tensors in two

ways: 1) F1 ∈ RMN×MN with each element F
N(β̂−1)+j
N(α̂−1)+i = Aj,β̂i,α̂; or 2) F2 ∈ RNM×NM with

each element F
M(j−1)+β̂
M(i−1)+α̂ = Aj,β̂i,α̂. These two flattening methods provide two ways to interpret

the network structure. In the first method, the flattened multilayer network has M clusters

with N nodes in each cluster. The nodes in the same cluster have the same function (belong

to the same layer). In the second method, the flattened network has N clusters with M

nodes in each cluster. Here, the nodes in the same cluster are from the same original object.

The above methods flatten the fourth-order tensor A into different matrices, which will be

helpful in analyzing the behavior of cascading failures in Section 3.5

Diagonal Inter-layer Adjacency Tensor

As we discussed in Section 3.3, the inter-layer connections only exist between the nodes that

are from the same object, which means that, for any α̂ 6= β̂, there is Aj,β̂i,α̂ = 0 when i 6= j;
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and Aj,β̂i,α̂ ∈ {0, 1}, otherwise. Thus, the adjacency tensor Aβ̂
α̂ for any pair of layers α̂ 6= β̂ is

diagonal. This property helps us simplify the analysis of failure propagation in Section 3.5.

3.4 Spectral Analysis of Cascading Failure

In this section, we analyze the cascading failure for the multilayer complex system in our

tensor-based framework. The transition equations and failure indicator are derived to de-

scribe the propagation and measure the system stability.

3.4.1 Failure Model

We consider the SIS model in discrete time [51] to model the failure propagation. According

to the SIS model, each node has two possible states: susceptible (not fail) or infectious (fail).

At each time stamp, the infectious node may transmit disease (cause failure) to other nodes

through directed links at certain infection rates, or it may cure itself spontaneously at a

self-cure rate. The initial attack make several nodes infectious. This model forms a Markov

chain where the probability of a node being infected only depends on the state of the network

in the previous time slot.

In our tensor-based framework, the nodes in the same layer correspond to the same

function; hence the nodes in the same layer have the same self-cure rate and infection rate.

The notations of the epidemic model are given as follows:

• µα̂: the self-cure rate for nodes in layer α̂;

• θβ̂α̂: the infection rate describing the failure propagation probability from nodes in layer

β̂ to those in layer α̂;

• Pi,α̂(t): the failure probability of the projected node of object i in layer α̂ at time t;

• εi,α̂(t): the transition probability that the projected node of object i in layer α̂ transits

from infectious state to susceptible state at time t;
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• σi,α̂(t): the transition probability that the projected node of object i in layer α̂ remains

susceptible at time t.

To derive the failure probability, we first consider the probability of a node being in the

susceptible state. An infectious node becomes susceptible in a given time slot if two events

happen simultaneously [52]: 1) it cures itself; and 2) it is not infected by its neighbors. Then,

εi,α̂(t) = µα̂
∏
j,β̂

[1− θβ̂α̂A
j,β̂
i,α̂Pj,β̂(t)] (3.1)

Similarly, a susceptible node remains susceptible when none of its neighbors infect it.

Then,

σi,α̂(t) =
∏
j,β̂

[1− θβ̂α̂A
j,β̂
i,α̂Pj,β̂(t)] (3.2)

Based on the state transition described above, the failure probability of the projected

node of object i in layer α̂ at time t can be calculated recursively by the transition equation

as

Pi,α̂(t) =1− {εi,α̂(t− 1)Pi,α̂(t− 1) + σi,α̂(t− 1)[1− Pi,α̂(t− 1)]} (3.3)

=1−
∏
j,β̂

[1− T j,β̂i,α̂ Pj,β̂(t− 1)], (3.4)

where the coefficients {T j,β̂i,α̂ } are written as

T j,β̂i,α̂ = (1− µα̂)δj,β̂i,α̂ + θβ̂α̂A
j,β̂
i,α̂, (3.5)

with 1 ≤ i, j ≤ N , 1 ≤ α̂, β̂ ≤M , and δj,β̂i,α̂ = 1 if (j, β̂) = (i, α̂); otherwise, δj,β̂i,α̂ = 0.

We define the transition tensor T ∈ RM×M×N×N with elements T j,β̂i,α̂ . As shown in Eq.

(3.4), given the system connections, the failure probability of a certain node only depends

on the failure probabilities of all the nodes in the previous time slot and the coefficients
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{T j,β̂i,α̂ }. If we consider all the nodes together, the transition equations are characterized by

the transition tensor T.

3.4.2 Failure Threshold

Now, we analyze the cascading failure based on the transition equations. Considering the

steady state of the projected node of object i in layer α̂ where we have Pi,α̂(τ) = Pi,α̂(τ − 1),

the transition equation is equivalent to

P̃i,α̂ = 1−
∏
j,β̂

[1− T j,β̂i,α̂ P̃j,β̂], (3.6)

where P̃i,α̂ is the failure probability of the projected node of object i in layer α̂ at the steady

state. Following [52, 53] and linearize Eq. (3.6), we arrive at a similar conclusion as [54]:

when the spectral radius of the MN ×MN flattened transition tensor ρ(T) < 1, P̃i,α̂ = 0

exists for the projected node of any object i in any layer α̂, where the spectral radius refers to

the largest absolute value of the eigenvalues. This conclusion implies that there are no failed

nodes at the steady state if ρ(T) < 1. Thus, the spectral radius of the transition tensor ρ(T)

is a failure indicator to measure the stability of the system with an explicit failure threshold

ρ(T) = 1.

In practice, we can justify the system stability via the spectral radius of the transition

tensor in a given multilayer network with known epidemic parameters. However, the com-

plexity of calculating ρ(T) directly could be very high which is polynomial w.r.t the size of

matrix [55]. Since the size of the transition tensor is usually very large in real applications,

such direct calculation is not cost-efficient. In addition, there is no closed-form expression

of the spectral radius for the cases with arbitrary layer structures and epidemic parameters.

To tackle these difficulties, we manage to derive the bounds and approximations under cer-

tain assumptions to make the failure indicator analytically tractable and computationally

efficient.
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3.5 Approximation of Spectral Radius of Transition

Tensor

In this section, we derive the upper and lower bounds for the spectral radius of the transition

tensor. Simplified results for some special cases are also given.

3.5.1 Preliminary Results

We start with some properties of spectral radius.

Lemma 3.1. If the adjacency tensor A ∈ RM×M×N×N of a network can be divided into K

adjacency tensors Ai ∈ RM×M×N×N , where A = A1 + ...+ AK, we have

ρ(A) = ρ(A1 + ...+ AK) ≥ max
1≤i≤K

{ρ(Ai)}. (3.7)

The proof of Lemma 3.1 is in [46]. It shows that the spectral radius of a network is larger

than the largest spectral radius of its sub-networks.

Lemma 3.2. For a Hermitian diagonal block matrix A represented by A = diag([B1 ... BK]),

its spectral radius can be calculated by

ρ(A) = max
1≤i≤K

{ρ(Bi)}. (3.8)

The proof of Lemma 3.2 is in Appendix A.1. It shows that, for a Hermitian diagonal

block matrix, its spectral radius is the same as the largest spectral radius of the blocks in

its diagonal.

Besides, for the multilayer networks in which there are only inter-layer connections within

the projections of the same object, we have the following lemma.
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Lemma 3.3. Given the weight matrix W ∈ RM×M of inter-layer connections, denoted by

W =



0 w1̂
2̂
· · · w1̂

M̂

w2̂
1̂

0 · · · w2̂
M̂

...
...

. . .
...

wM̂
1̂

wM̂
2̂
· · · 0


, (3.9)

and the identity matrix IN ∈ RN×N , the inter-layer adjacency matrix S ∈ RMN×MN is given

as

S =



0 w1̂
2̂
IN · · · w1̂

M̂
IN

w2̂
1̂
IN 0 · · · w2̂

M̂
IN

...
...

. . .
...

wM̂
1̂

IN wM̂
2̂

IN · · · 0


. (3.10)

In this way, all the eigenvalues of S are the eigenvalues of W, and vice versa.

The proof of Lemma 3.3 is given in Appendix A.2. This lemma allows us to obtain the

eigenvalues of S by analyzing W, which reduces the computational complexity.

3.5.2 Bounds for the Spectral Radius

Now, we give an upper bound for the spectral radius ρ(T) in the next theorem, whose proof

is given in Appendix A.3.

Theorem 3.1. The spectral radius of the transition tensor T is upper-bounded by

ρ(T) ≤ 1−min
α̂
{µα̂}+ max

α̂
{ρ(θα̂α̂Aα̂

α̂)}+ ρ(θ̂), (3.11)
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where

θ̂ =



0 θ1̂
2̂
· · · θ1̂

M̂

θ2̂
1̂

0 · · · θ2̂
M̂

...
...

. . .
...

θM̂
1̂

θM̂
2̂
· · · 0


. (3.12)

For a multilayer network, we define the dominating layer of infection as α̂I = argmaxα̂{ρ(θα̂α̂Aα̂
α̂)}

and the dominating layer of self-cure as α̂C = argminα̂{µα̂}. Then, we can see that the upper

bound in Eq. (3.11) depends on the dominating layers α̂I and α̂C . This conclusion indi-

cates that the dominating layers α̂I and α̂C play crucial roles in cascading failures. Other

key parameters are the inter-layer infection rates. The complexity of direct calculation is

polynomial w.r.t the matrix size, i.e., at O((MN)k); this bound simplifies the calculation to

O(max{MNk,Mk}), where k is a positive integer.

Next, we give a lower bound in the following theorem, whose proof is given in Appendix

A.4.

Theorem 3.2. The spectral radius of the transition tensor T is lower-bounded by

ρ(T) ≥ max
i,α̂
{1− µα̂, ρ(θα̂α̂Aα̂

α̂), ρ(θ̂i)}, (3.13)

where θ̂i equals the Hadamard product of θ̂ and the inter-layer adjacency tensor of Type-i

object Aint(i), i.e., θ̂i = θ̂ ∗Aint(i).

Similar to the dominating layer, we define the dominating type of objects as id =

argmaxi{ρ(θ̂i)}. We can see that the lower bound is determined by the spectral radius

of dominating layers α̂I , α̂C and the dominating type id. This lower bound reduces the

complexity from O((MN)k) to O(max{MNk, NMk}) compared to the direct calculation.
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3.5.3 Approximations in Special Cases

In this subsection, we investigate the approximations of spectral radius in two special cases:

1) intra-layer propagation dominates (θα̂α̂ � θα̂
β̂
), which means that the cascading failure is

easier to happen inside the same layer; and 2) inter-layer propagation dominates (θα̂α̂ � θα̂
β̂
),

which means that the cascading failure is easier to happen across layers.

Theorem 3.3. When θα̂α̂ � θα̂
β̂

for β̂ 6= α̂, the spectral radius of the transition tensor T can

be approximated by

ρ(T) ≈ max
α̂
{1− µα̂ + θα̂α̂ρ(Aα̂

α̂)}. (3.14)

The proof is in Appendix A.5. This theorem implies that the dominating layer of the

system will determine the system stability if the intra-layer propagation dominates.

Theorem 3.4. When θα̂α̂ � θα̂
β̂

for β̂ 6= α̂, the spectral radius of the transition tensor T can

be approximated by

ρ(T) ≈ max
i
{ρ(θ̂i + φIM)}, (3.15)

where φ = [1− µ1̂, · · · , 1− µM̂ ] and θ̂i = θ̂ ∗Aint(i).

The proof is in Appendix A.6. This theorem implies that the dominating type of objects

will determine the system stability if the inter-layer propagation dominates.

3.6 Numerical Analysis

In our simulation, the intra-layer connections are generated by following different Erdös −

Rėnyi random graphs [56], and the epidemic parameters are generated by following the

uniform distribution. The initial failed nodes are randomly picked from the whole network.
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(a) Fraction of failed nodes with different spec-
tral radius over time

(b) Fraction of failed nodes at stable state

Figure 3.2: Influences of Spectral Radius

3.6.1 Influence of Spectral Radius

We first verify the failure threshold derived in Section 3.4 and explore more about how the

spectral radius influences the system stability. We consider a network with 15 vehicles, 5

substations, 3 main stations, and 10 base stations. The inter-layer connections in layers 2, 4

follow the ER graph model ER(n, p), where n is the number of nodes and p is the probability

that two nodes are connected. From the definition of our multilayer network, n = 33 for all

layers. Then, layers 2,4 follow ER(33, p2) and ER(33, p4), respectively.

We simulate how the fraction of failed nodes changes over time in systems with different

spectral radii. We set p2 = 0.5 and p4 = 0.4. Initially there are 10 projected nodes failed.

We repeat the simulation for 1000 times, and the averaged result is shown as Fig. 3.2(a). It

is observed that the fraction of failed nodes will decrease to zero from the initial state when

the spectral radius is smaller than 1. If the spectral radius is larger than 1, the fraction of

failed nodes will change monotonically and then coverage to a positive value.

We also test how the fraction of failed nodes at stable state changes as the spectral radius

increases. We test the results in three systems with different ER graph models in Fig. 3.2(b).

We change the value of spectral radius by changing the infection rates and self-cure rates.

We observe that the faction of failed nodes at stable state increases as spectral radius of

transition tensor grows. That is, the system is less stable if the spectral radius of transition
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(a) Performance of upper bound (b) Performance of lower bound

Figure 3.3: Performances of Bounds

tensor gets larger. Note that the fraction of failed nodes is 0 when the spectral radius is less

than 1, which agrees with Fig. 3.2(a). This conclusion shows that the spectral radius is a

practical failure indicator to measure the system stability when designing robust systems.

3.6.2 Performances of Bounds and Approximations

To measure the performance of our bounds and approximations, we compare the approxi-

mated results with direct calculation results. Here, we consider 150 vehicles, 50 substations,

30 main stations, and 100 base stations. The results of the upper bound are shown in Fig.

3.3(a) and the results of the lower bound are given in Fig. 3.3(b). The special cases are

shown in Fig. 3.4(a) and Fig. 3.4(b). The continuous curves are the approximated values

and the discrete dots are the exact simulation results. We test the results in 20 sets of differ-

ent multilayer networks with different ER graph setups of (p2, p4) from (0, 0.05) to (0.95, 1).

The results are averaged for 10000 rounds. From the figures, we see that our bounds are

tight. The approximation results in the special cases are also very close to the exact values.
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(a) Performances of approximations when inter-
layer influence dominates

(b) Performances of approximations when intra-
layer influence dominates

Figure 3.4: Performances of Approximations in Special Cases

(a) Seven-layer case (b) Two-layer case

Figure 3.5: Comparison with Other Approximation Methods

3.6.3 Comparison with Other Approximations

To measure the performance of our approximation, we compare the results with other ap-

proximations from [46], [57] and [58] which are either tensors or matrices. Specifically, [46]

gave the bounds for the two-layer cases based on matrix representation. In [57], the author

gave the lower bound approximation of the spectral radius based on Hermitian and skew-

Hermitian matrices. In [58], the result were derived using a tensor based method also known

as Graph Product Multilayer Networks (GPMN). We first compare the error |ρapprox−ρexact|
ρexact

for the Hermitian method, GPMN and our methods in our seven-layer network model with

different expected node degrees shown in Fig. 3.5(a). To compare with other matrix-based
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methods, we set parameters of layers {1, 2, 3, 6, 7} in our seven-layer cases as zero to construct

a two layer network. The results are given in Fig. 3.5(b).

Observed from Fig. 3.5(a) and Fig. 3.5(b), the Hermitian method always has the largest

error. In addition, the GPMN is better than the Hermitian method but worse than our

methods, due to its limitation in representing general network structures. From Fig. 3.5(b),

we see that the lower bound of Wang’s method is close to our lower bound, while our upper

bound is better than its upper bound. Moreover, Wang’s method limits the number of layers

up to two, while we can handle arbitrary number of layers. From the simulation results, we

see that our method has better performance in the seven-layer case. In the two-layer case,

our approximation is slightly better than the matrix method; but we can deal with a general

system with more than two layers.

3.7 Conclusions

In this chapter, we proposed a scalable tensor-based framework for analyzing a multilayer

complex systems. Specifically, we analyzed the epidemic spread based on the SIS model

within our framework. We derived the failure transition equations, and showed that the

spectral radius of the transition tensor is a failure indicator with an explicit failure threshold

to measure the system stability. To analyze the failure propagation and reduce the com-

putational complexity, we derived the upper and lower bounds for the failure indicator, as

well as approximations in the special cases, where either inter-layer propagation dominates

or intra-layer dominates. Validated by the numerical analysis, our bounds are tight and the

approximations are close to the exact values.
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Chapter 4

Hypergraph Signal Processing:

Theoretical Foundation and Practical

Applications

4.1 Introduction

Taking advantage of graph models in characterizing complex data structures, graph signal

processing (GSP) has emerged as an exciting and promising new tool for processing large

datasets with complex structures. A typical application of GSP is in image processing, where

image pixels are modeled as graph signals embedding in nodes while pairwise similarities

between pixels are captured by edges [60]. By modeling images using graphs, tasks such as

image segmentation can take advantage of graph partition and GSP filters. Another example

of GSP applications is in processing data from sensor networks [61]. Based on graph models

directly built over network structures, a graph Fourier space could be defined according to

the eigenspace of a representing graph matrix such as the Laplacian or adjacency matrix to

2Part of this chapter is reprinted, with permission, from [S. Zhang, Z. Ding, and S. Cui, “Introducing
Hypergraph Signal Processing: Theoretical Foundation and Practical Applications”, IEEE Internet of Things
Journal, vol. 7, pp. 639 – 660, Jan. 2020.].

31



(a) Example of a trait
and genes: the trait t1 is
triggered by three genes
v1, v2, v3 and the genes
may also influence each
other.

(b) Example of pairwise
relationships: arrow links
represent the influences
from genes, whereas the
potential interactions
among genes cannot be
captured.

(c) Example of multi-
lateral relationships:
the solid circular line
represents a quadri-
lateral relationship
among four nodes,
while the purple
dash lines represent
the potential inter-
node interactions in
this quadrilateral
relationship.

Figure 4.1: Example of Multi-lateral Relationships.

facilitate data processing operations such as denoising [15], filter banks [16] and compression

[17].

Despite many demonstrated successes, the GSP defined over normal graphs also exhibits

certain limitations. For example, normal graphs cannot capture high-dimensional interac-

tions describing multi-lateral relationships among multiple nodes, which are critical for many

practical applications. Since each edge in a normal graph only models the pairwise interac-

tions between two nodes, the traditional GSP can only deal with the pairwise relationships

defined by such edges. In reality, however, complex relationships may exist among a cluster

of nodes, for which the use of pairwise links between every two nodes cannot capture their

multi-lateral interactions [18]. In biology, for example, a trait may be attributed to multiple

interactive genes [19] shown in Fig. 4.1(a), such that a quadrilateral interaction is more

informative and powerful here. Another example is the social network with online social

communities called folksonomies, where trilateral interactions occur among users, resources,

and annotations [62, 63]. Thus, the traditional GSP based on matrix analysis has far been

unable to efficiently handle such complex relationships. Clearly, there is a need for a more

general graph model and graph signal processing concept to remedy the aforementioned

shortcomings faced with the traditional GSP.
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(a) Example of hypergraphs: the
hyperedges are the overlaps cover-
ing nodes with different colors.

(b) A game dataset modeled by hyper-
graphs: each node is a specific game
and each hyperedge is a catagory of
games.

Figure 4.2: Hypergraphs and Applications.

To find a more general model for complex data structures, we venture into the area of high-

dimensional graphs known as hypergraphs. The hypergraph theory is playing an increasingly

important role in graph theory and data analysis, especially for analyzing high-dimensional

data structures and interactions [64]. A hypergraph consists of nodes and hyperedges con-

necting more than two nodes [23]. As an example, Fig. 4.2(a) shows a hypergraph example

with three hyperedges and seven nodes, whereas Fig. 4.2(b) provides a corresponding dataset

modeled by this hypergraph. Indeed, a normal graph is a special case of a hypergraph, where

each hyperedge degrades to a simple edge that only involves exactly two nodes.

Hypergraphs have found successes by generalizing normal graphs in many applications,

such as clustering [24], classification [25], and prediction [26]. Moreover, a hypergraph is an

alternative representation for a multi-layer network, and is useful when dealing with multi-

tier relationships [65, 66]. Thus, a hypergraph is a natural extension of a normal graph

in modeling signals of high-degree interactions. Presently, however, the literature provides

little coverage on hypergraph signal processing (HGSP). The only known work [67] proposed

a HGSP framework based on a special hypergraph called complexes. In this work [67],

hypergraph signals are associated with each hyperedge, but its framework is limited to cell

complexes, which cannot suitably model many real-world datasets and applications. Another
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shortcoming of the framework in [67] is the lack of detailed analysis and application examples

to demonstrate its practicability. In addition, the attempt in [67] to extend some key concepts

from the traditional GSP simply fails due to the difference in the basic setups between

graph signals and hypergraph signals. In this chapter, we seek to establish a more general

and practical HGSP framework, capable of handling arbitrary hypergraphs and naturally

extending the traditional GSP concepts to handle the high-dimensional interactions. We

will also provide real application examples to validate the effectiveness of the proposed

framework.

Compared with the traditional GSP, a generalized HGSP faces several technical chal-

lenges. The first problem lies in the mathematical representation of hypergraphs. Developing

an algebraic representation of a hypergraph is the foundation of HGSP. Currently there are

two major approaches: matrix-based [68] and tensor-based [69]. The matrix-based method

makes it hard to implement the hypergraph signal shifting while the tensor-based method is

difficult to be understood conceptually. Another challenge is in defining signal shifting over

the hyperedge. Signal shifting is easy to be defined as propagation along the link direction

of a simple edge connecting two nodes in a regular graph. However, each hyperedge in hy-

pergraphs involves more than two nodes. How to model signal interactions over a hyperedge

requires careful considerations. Other challenges include the definition and interpretation of

hypergraph frequency.

To address the aforementioned challenges and generalize the traditional GSP into a more

general hypergraph tool to capture high dimension interactions, we propose a novel tensor-

based HGSP framework in this chapter. The main contributions can be summarized as

follows. Representing hypergraphs as tensors, we define a specific form of hypergraph sig-

nals and hypergraph signal shifting. We then provide an alternative definition of hypergraph

Fourier space based on the orthogonal CANDECOMP/PARAFAC (CP) tensor decomposi-

tion, together with the corresponding hypergraph Fourier transform. To better interpret

the hypergraph Fourier space, we analyze the resulting hypergraph frequency properties,
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including the concepts of frequency and bandlimited signals. Analogous to the traditional

sampling theory, we derive the conditions and properties for perfect signal recovery from

samples in HGSP. We also provide the theoretical foundation for the HGSP filter designs.

Beyond these, we provide several application examples of the proposed HGSP framework:

1) We introduce a signal compression method based on the new sampling theory to show

the effectiveness of HGSP in describing structured signals;

2) We apply HGSP in spectral clustering to show how the HGSP spectrum space acts as

a suitable spectrum for hypergraphs;

3) We introduce a HGSP method for binary classification problems to demonstrate the

practical application of HGSP in data analysis;

4) We introduce a filtering approach for the denoising problem to further showcase the

power of HGSP;

5) Finally, we suggest several potential applicable background for HGSP, including Inter-

net of Things (IoT), social network and nature language processing.

We compare the performance of HGSP-based methods with the traditional GSP-based meth-

ods and learning algorithms in all the above applications. All the features of HGSP make it

an essential tool for IoT applications in the future.

We organize the rest of the chapter as follows. Section 4.2 first summarizes the prelim-

inaries of the traditional GSP and hypergraphs. In Section 4.3, we then introduce the core

definitions of HGSP, including the hypergraph signal, the signal shifting and the hypergraph

Fourier space, followed by the frequency interpretation and decription of existing works in

Section 4.4. We present some useful HGSP-based results such as the sampling theory and

filter design in Section 4.5. With the proposed HGSP framework, we provide several poten-

tial applications of HGSP and demonstrate its effectiveness in Section 4.6, before presenting

the final conclusions in Section 4.7.
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Figure 4.3: The Signal Shifting over Cyclic Graph.

4.2 Preliminaries

4.2.1 Overview of Graph Signal Processing

GSP is a recent tool used to analyze signals according to the graph models. Here, we briefly

review the key relevant concepts of the traditional GSP [2,13].

A dataset with N data points can be modeled as a normal graph G(V , E) consisting of a

set of N nodes V = {v1, · · · ,vN} and a set of edges E . Each node of the graph G is a data

point, whereas the edges describe the pairwise interactions between nodes. A graph signal

represents the data associated with a node. For a graph with N nodes, there are N graph

signals, which are defined as a signal vector s = [s1 s2 ... sN ]T ∈ RN .

Usually, such a graph could be either described by an adjacency matrix AM ∈ RN×N

where each entry indicates a pairwise link (or an edge), or by a Laplacian matrix LM = DM −AM

where DM ∈ RN×N is the diagonal matrix of degrees. Both the Laplacian matrix and the

adjacency matrix can fully represent the graph structure. For convenience, we use a general

matrix FM ∈ RN×N to represent either of them. Note that, since the adjacency matrix is

eligible in both directed and undirected graph, it is more common in the GSP literatures.

Thus, the generalized GSP is based on the adjacency matrix [13] and the representing matrix

refers to the adjacency matrix in this chapter unless specified otherwise.

With the graph representation FM and the signal vector s, the graph shifting is defined

as

s′ = FMs. (4.1)

Here, the matrix FM could be interpreted as a graph filter whose functionality is to shift the
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signals along link directions. Taking the cyclic graph shown in Fig. 4.3 as an example, its

adjacency matrix is a shifting matrix

FM =



0 0 · · · 0 1

1 0 · · · 0 0

...
. . . . . . . . .

...

0 0
. . . 0 0

0 0 · · · 1 0


. (4.2)

Typically, the shifted signal over the cyclic graph is calculated as s′ = FMs = [sN s1 · · · sN−1]T,

which shifts the signal at each node to its next node.

The graph spectrum space, also called the graph Fourier space, is defined based on the

eigenspace of FM. Assume that the eigen-decomposition of FM is

FM = V−1M ΛVM. (4.3)

The frequency components are defined by the eigenvectors of FM and the frequencies are

defined with respect to eigenvalues. The corresponding graph Fourier transform is defined

as

ŝ = VMs. (4.4)

With the definition of the graph Fourier space, the traditional signal processing and

learning tasks, such as denoising [70] and classification [71], could be solved within the GSP

framework. More details about the specific topics of GSP, such as the frequency analysis,

filter design, and spectrum representation have been discussed in [61,72,73].

4.2.2 Introduction of Hypergraph

We begin with the definition of hypergraph and its possible representations.
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Definition 1 (Hypergraph). A general hypergraph H is a pair H = (V , E), where V =

{v1, ...,vN} is a set of elements called vertices and E = {e1, ..., eK} is a set of non-empty

multi-element subsets of V called hyperedges. Let M = max{|ei| : ei ∈ E} be the maximum

cardinality of hyperedges, shorted as m.c.e(H) of H.

Figure 4.4: A hypergraph H with 7 nodes, 3 hyperedges and m.c.e(H) = 3, where V =
{v1, · · · ,v7} and E = {e1, e2, e3}. Three hyperedges are e1 = {v1,v4,v6}, e2 = {v2,v3}
and e3 = {v5,v6,v7}.

In a general hypergraph H, different hyperedges may contain different numbers of nodes.

The m.c.e(H) denotes the number of vertices in the largest hyperedge. An example of a

hypergraph with 7 nodes, 3 hyperedges and m.c.e = 3 is shown in Fig. 4.4.

From the definition, we see that a normal graph is a special case of a hypergraph if

M = 2. The hypergraph is a natural extension of the normal graph to represent high-

dimensional interactions. To represent a hypergraph mathematically, there are two major

methods based on matrix and tensor respectively. In the matrix-based method, a hypergraph

is represented by a matrix G ∈ RN×E where E equals the number of hyperedges. The rows

of the matrix represent the nodes, and the columns represent the hyperedges [23]. Thus, each

element in the matrix indicates whether the corresponding node is involved in the particular

hyperedge. Although such a matrix-based representation is simple in formation, it is hard to

define and implement signal processing directly as in GSP by using the matrix G. Unlike the

matrix-based method, tensor has better flexibility in describing the structures of the high-

dimensional graphs [74]. More specifically, tensor can be viewed as an extension of matrix
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into high-dimensional domains. The adjacency tensor, which indicates whether nodes are

connected, is a natural hypergraph counterpart to the adjacency matrix in the normal graph

theory [75]. Thus, we prefer to represent the hypergraphs using tensors. In Section 4.3.1, we

will provide more details on how to represent the hypergraphs and signals in tensor forms.

4.3 Definitions for Hypergraph Signal Processing

In this section, we introduce the core definitions used in our HGSP framework.

4.3.1 Algebraic Representation of Hypergraphs

The traditional GSP mainly relies on the representing matrix of a graph. Thus, an effective

algebraic representation is also helpful in developing a novel HGSP framework. As we men-

tioned in Section 4.2, tensor is an intuitive representation for high-dimensional graphs. In

this section, we introduce the algebraic representation of hypergraphs based on tensors.

Similar to the adjacency matrix whose 2-D entries indicate whether and how two nodes

are pairwise connected by a simple edge, we adopt an adjacency tensor whose entries indicate

whether and how corresponding subsets of M nodes are connected by hyperedges to describe

hypergraphs [69].

Definition 2 (Adjacency tensor). A hypergraph H = (V , E) with N nodes and m.c.e(H) =

M can be represented by an M th-order N-dimension adjacency tensor A ∈ R
N×N×···×N︸ ︷︷ ︸

M times

defined as

A = (ai1i2···iM ), 1 ≤ i1, i2, · · · , iM ≤ N. (4.5)

Suppose that el = {vl1,vl2, · · · ,vlc} ∈ E is a hyperedge in H with the number of vertices

c ≤M . Then, el is represented by all the elements ap1···pM ’s in A, where a subset of c indices

from {p1, p2, · · · , pM} are exactly the same as {l1, l2, · · · , lc} and the other M − c indices are

picked from {l1, l2, · · · , lc} randomly. More specifically, these elements ap1···pM ’s describing
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el are calculated as

ap1···pM = c

 ∑
k1,k2,··· ,kc≥1,

∑c
i=1 ki=M

M !

k1!k2!...kc!

−1

. (4.6)

Meanwhile, the entries, which do not correspond to any hyperedge e ∈ E, are zeros.

Note that Eq. (4.6) enumerates all the possible combinations of c positive integers

{k1, · · · , kc}, whose summation satisfies
∑c

i=1 ki = M . Obviously, when the hypergraph

degrades to the normal graph with c = M = 2, the weights of edges are calculated as one,

i.e., aij = aji = 1 for an edge e = (i, j) ∈ E . Then, the adjacency tensor is the same as

the adjacency matrix. To understand the physical meaning of the adjacency tensor and its

weight, we start with the M -uniform hypergraph with N nodes, where each hyperedge has

exactly M nodes [76]. Since each hyperedge has an equal number of nodes, all hyperedges

follow a consistent form to describe an M -lateral relationship with m.c.e = M . Obviously,

such M -lateral relationships can be represented by an Mth-order tensor A, where the entry

ai1i2···iM indicates whether the nodes vi1 ,vi2 , · · · ,viM are in the same hyperedge, i.e., whether

a hyperedge e = {vi1 ,vi2 , · · · ,viM} exists. If the weight is nonzero, the hyperedge exists;

otherwise, the hyperedge does not exist. Taking the 3-uniform hypergraph in Fig. 4.5(a) as

an example, the hyperedge e1 is characterized by a146 = a164 = a461 = a416 = a614 = a641 6= 0,

the hyperedge e2 is characterized by a237 = a327 = a732 = a723 = a273 = a372 6= 0, and e3 is

represented by a567 = a576 = a657 = a675 = a756 = a765 6= 0. All other entries in A are zero.

Note that, all the hyperedges in an M -uniform hypergraph has the same weight. Different

hyperedges are distinguished by the indices of the entries. More specifically, similarly as aij

in the adjancency matrix implies the connection direction from node vj to node vi in GSP,

an entry ai1i2···iM characterizes one direction of the hyperedge e = {vi1 ,vi2 , · · · ,viM} with

node viM as the source and node vi1 as the destination.

However, for a general hypergraph, different hyperedges may contain different numbers

of nodes. For example, in the hypergraph of Fig. 4.5(b), the hyperedge e2 only contains two
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(a) A 3-uniform hypergraph H with 7
nodes, 3 hyperedges and m.c.e(H) =
3, where V = {v1, · · · ,v7} and E =
{e1, e2, e3}. Three hyperedges are e1 =
{v1,v4,v6}, e2 = {v2,v3,v7} and e3 =
{v5,v6,v7}.

(b) A general hypergraph H with 7
nodes, 3 hyperedges and m.c.e(H) =
3, where V = {v1, · · · ,v7} and E =
{e1, e2, e3}. Three hyperedges are e1 =
{v1,v4,v6}, e2 = {v2,v3} and e3 =
{v5,v6,v7}.

Figure 4.5: Examples of Hypergraphs

nodes. How to represent the hyperedges with the number of nodes below m.c.e = M may

become an issue. To represent such a hyperedge el = {vl1 ,vl2 , ...,vlc} ∈ E with the number

of vertices c < M in an Mth-order tensor, we can use entries ai1i2···iM , where a subset of c

indices are the same as {l1, · · · , lc} (possibly a different order) and the other M − c indices

are picked from {l1, · · · , lc} randomly. This process can be interpreted as generlaizing the

hyperedge with c nodes to a hyperedge with M nodes by duplicating M−c nodes from the set

{vl1 , · · · ,vlc} randomly with possible repetitions. For example, the hyperedge e2 = {v2,v3}

in Fig. 4.5(b) can be represented by the entries a233 = a323 = a332 = a322 = a223 = a232 in

the third-order tensor A, which could be interpreted as generalizing the original hyperedge

with c = 2 to hyperedges with M = 3 nodes as Fig. 4.6. We can use Eq. (4.6) as a

generalization coefficient of each hyperedge with respect to permutation and combination

[69]. More specifically, for the adjacency tensor of the hypergraph in Fig. 4.5(b), the entries

are calculated as a146 = a164 = a461 = a416 = a614 = a641 = a567 = a576 = a657 = a675 =

a756 = a765 = 1
2
, a233 = a323 = a332 = a322 = a223 = a232 = 1

3
, where the remaining entries

are set to zeros. Note that, the weight is smaller if the original hyperedge has fewer nodes

in Fig. 4.5(b). More generally, based on the definition of adjacency tensor and Eq. (4.6),

we can easily obtain the following property regarding the hyperedge weight.

Property 1. Given two hyperedges ei = {v1, · · · ,vI} and ej = {v1, · · · ,vJ}, the edgeweight
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Figure 4.6: Interpretation of Generalizing e2 to Hyperedges with M = 3.

w(ei) of ei is different from the edgeweight w(ej) of ej in the adjacency tensor A, i.e.,

w(ei) 6= w(ej), if I 6= J . Moreover, w(ei) = w(ej) iff I = J .

This property can help identify the length of each hyperedge based on the weights in the

adjacency tensor. Moreover, the edgeweights of two hyperedges with the same number of

nodes are the same. Different hyperedges with the same number of nodes are distinguished

by their indices of entries in an adjacency tensor.

The degree d(vi), of a vertex vi ∈ V , is the number of hyperedges containing vi, i.e.,

d(vi) =
N∑

j1,j2··· ,jM−1=1

aij1j2···jM−1
. (4.7)

Then, the Laplacian tensor of the hypergraph H is defined as follows [69].

Definition 3 (Laplacian tensor). Given a hypergraphH = (V , E) with N nodes and m.c.e(H) =

M , the Laplacian tensor is defined as

L = D−A ∈ R
N×N×...×N︸ ︷︷ ︸

M times (4.8)

which is an M th-order N-dimension tensor. Here, D = (di1i2···iM ) is also an M th-order

N-dimension super-diagonal tensor with nonzero elements of d ii···i︸︷︷︸
M times

= d(vi).

We see that both the adjacency and Laplacian tensors of a hypergraph H are super-

symmetric. Moreover, when m.c.e(H) = 2, they have similar forms to the adjacency and

Laplacian matrices of undirected graphs respectively. Similar to GSP, we use an Mth-order

N -dimension tensor F as a general representation of a given hypergraph H for convenience.
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Figure 4.7: Signals in a Polynomial Filter.

As the adjacency tensor is more general, the representing tensor F refers to the adjacency

tensor in this chapter unless specified otherwise.

4.3.2 Hypergraph Signal and Signal Shifting

Based on the tensor representation of hypergraphs, we now provide definitions for the hy-

pergraph signal. In the traditional GSP, each signal element is related to one node in the

graph. Thus, the graph signal in GSP is defined as an N -length vector if there are N nodes

in the graph. Recall that the representing matrix of a normal graph can be treated as a

graph filter, for which the basic form of the filtered signal is defined in Eq. (4.1). Thus, we

could extend the definitions of the graph signal and signal shifting from the traditional GSP

to HGSP based on the tensor-based filter implementation.

In HGSP, we also relate signal element to one node in the hypergraph. Naturally, we can

define the original signal as an N -length vector if there are N nodes. Similarly as in GSP,

we define the hypergraph shifting based on the representing tensor F. However, since tensor

F is of M -th order, we need an (M − 1)-th order signal tensor to work with the hypergraph

filter F, such that the filtered signal is also an N -length vector as the original signal. For

example, for a two-step polynomial filter shown as Fig. 4.7, the signals s, s′, s′′ should all be

in the same dimension and order. For the input and output signals in a HGSP system to

have a consistent form, we define an alternative form of the hypergraph signal as below.

Definition 4 (Hypergraph signal). For a hypergraph H with N nodes and m.c.e(H) = M ,

an alternative form of hypergraph signal is an (M − 1)-th order N-dimension tensor s[M−1]
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Figure 4.8: Diagram of Hypergraph Shifting.

obtained from (M −1) times outer product of the original signal s = [s1 s2 ... sN ]T, i.e.,

s[M−1] = s ◦ ... ◦ s︸ ︷︷ ︸
M-1 times

, (4.9)

where each entry in position (i1, i2, · · · , iM−1) equals the product si1si2 · · · siM−1
.

Note that the above hypergraph signal comes from the original signal. They are different

forms of the same signal, which reflect the signal properties in different dimensions. For

example, a second-order hypergraph signal highlights the properties of the two-dimensional

signal components sisj while the original signal directly emphasizes more about the one-

dimension properties. We will discuss in greater details on the relationship between the

hypergraph signal and the original signal in Section 4.3.4.

With the definition of hypergraph signals, let us define the original domain of signals for

convenience before we step into the signal shifting. Similarly as that the signals lie in the

time domain for DSP, we have the following definition of hypergraph vertex domain.

Definition 5 (Hypergraph vertex domain). A signal lies in the hypergraph vertex domain if

it resides on the structure of a hypergraph in the HGSP framework.

The hypergraph vertex domain is a counterpart of time domain in HGSP. The signals

are analyzed based on the structure among vertices in a hypergraph.

Next, we discuss how the signals shift on the given hypergraph. Recall that, in GSP,
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the signal shifting is defined by the product of the representing matrix FM ∈ RN×N and

the signal vector s ∈ RN , i.e., s′ = FMs. Similarly, we define the hypergraph signal shifting

based on its tensor F and the hypergraph signal s[M−1].

Definition 6 (Hypergraph shifting). The basic shifting filter of hypergraph signals is defined

as the direct contraction between the representing tensor F and the hypergraph signals s[M−1],

i.e.,

s(1) =Fs[M−1], (4.10)

where each element of the filter output is given by

(s(1))i =
N∑

j1,...,jM−1=1

fij1...jM−1
sj1sj2 ...sjM−1

. (4.11)

Since the hypergraph signal contracts with the representing tensor in M − 1 order, the

one-time filtered signal s(1) is an N -length vector, which has the same dimension as the

original signal. Thus, the block diagram of a hypergraph filter with F can be shown as Fig.

4.8.

Let us now consider the functionality of the hypergraph filter, as well as the physical

insight of the hypergraph shifting. In GSP, the functionality of the filter FM is simply to

shift the signals along the link directions. However, interactions inside the hyperedge are

more complex as it involves more than two nodes. In Eq. (4.11), we see that the filtered signal

in vi equals the summation of the shifted signal components in all hyperedges containing

node vi, where fij1···jM−1
is the weight for each involved hyperedge and {sj1 , · · · , sjM−1

} are

the signals in the generalized hyperedges excluding si. Clearly, the hypergraph shifting

multiplies signals in the same hyperedge of node vi together before delivering the shift to a

certain node vi. Taking the hypergraph in Fig. 4.5(a) as an example, node v7 is included

in two hyperedges, e2 = {v2,v3,v7} and e3 = {v5,v6,v7}. According to Eq. (4.11), the
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(a) Example of signal shifting to
node v7. Different colors of ar-
rows show the different directions
of shifting; ‘×’ refers to multipli-
cation and ‘+’ refers to summa-
tion.

(b) Diagram of signal shifting to
node v1 in an M -way hyperedge.
Different colors refer to different
shifting directions.

Figure 4.9: Diagram of Signal Shifting.

shifted signal in node v7 is calculated as

s7 = f732 × s2s3 + f723 × s2s3 + f756 × s5s6 + f765 × s5s6, (4.12)

where f732 = f723 is the weight of the hyperedge e2 and f756 = f765 is the weight for the

hyperedge e3 in the adjacency tensor F.

As the entry aji in the adjacency matrix of a normal graph indicates the link direction

from the node vi to the node vj, the entry fi1···iM in the adjacency tensor similarly indicates

the order of nodes in a hyperedge as {viM ,viM−1
, · · ·vi1}, where vi1 is the destination and

viM is the source. Thus, the shifting by Eq. (4.12) could be interpreted as shown in Fig.

4.9(a). Since there are two possible directions from nodes {v2,v3} to node v7 in e2, there

are two components shifted to v7, i.e., the first two terms in Eq. (4.12). Similarly, there

are also two components shifted by the hyperedge e3, i.e., the last two terms in Eq. (4.12).

To illustrate the hypergraph shifting more explicitly, Fig. 4.9(b) shows a diagram of signal

shifting to a certain node in an M -way hyperedge. From Fig. 4.9(b), we see that the graph

shifting in GSP is a special case of the hypergraph shifting, where M = 2. Moreover, there
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are K = (M − 1)! possible directions for the shifting to one specific node in an M -way

hyperedge.

4.3.3 Hypergraph Spectrum Space

We now provide the definitions of the hypergraph Fourier space, i.e., the hypergraph spec-

trum space. In GSP, the graph Fourier space is defined as the eigenspace of its representing

matrix [61]. Similarly, we define the Fourier space of HGSP based on the representing tensor

F of a hypergraph, which characterizes the hypergraph structure and signal shifting. For an

M -th order N -dimension tensor F, we can apply the orthogonal-CP decomposition [36] to

write

F ≈
R∑
r=1

λr · f (1)
r ◦ ... ◦ f (M)

r , (4.13)

with basis f
(i)
r ∈ RN for 1 ≤ i ≤ M and λr ≥ 0. Since F is super-symmetric [37], i.e.,

fr = f
(1)
r = f

(2)
r = · · · = f

(M)
r , we have

F ≈
R∑
r=1

λr · fr ◦ ... ◦ fr︸ ︷︷ ︸
M times

. (4.14)

Generally, we have the rank R ≤ N in a hypergraph. We will discuss how to construct the

remaining fi, R < i ≤ N , for the case of R < N later in Section 4.3.6.

Now, by plugging Eq. (4.14) into Eq. (4.10), the hypergraph shifting can be written with
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the N basis fi’s as

s(1) = Fs[M−1] (4.15a)

= (
N∑
r=1

λr · fr ◦ ... ◦ fr︸ ︷︷ ︸
M times

)(s ◦ ... ◦ s︸ ︷︷ ︸
M-1 times

) (4.15b)

=
N∑
r=1

λrfr< fr, s > · · · < fr, s >︸ ︷︷ ︸
M-1 times

(4.15c)

=

[
f1 · · · fN

]
λ1

. . .

λN


︸ ︷︷ ︸

iHGFT and filter in Fourier space


(fT

1 s)M−1

...

(fT
Ns)M−1


︸ ︷︷ ︸

HGFT of the hypergraph signal

, (4.15d)

where < fr, s >= (fT
i s) is the inner product between fr and s, and (·)M−1 is (M−1)th power.

From Eq. (4.15d), we see that the shifted signal in HGSP is in a similar decomposed to

Eqs. (4.3) and (4.4) for GSP. The first two parts in Eq. (4.15d) work like V−1M Λ of the GSP

eignen-decomposition, which could be interpreted as inverse Fourier transform and filter in

the Fourier space. The third part can be understood as the hypergraph Fourier transform of

the original signal. Hence, similarly as in GSP, we can define the hypergraph Fourier space

and Fourier transform based on the orthogonal-CP decomposition of F.

Definition 7 (Hypergraph Fourier space and Fourier transform). The hypergraph Fourier

space of a given hypergraph H is defined as the space consisting of all orthogonal-CP de-

composition basis {f1, f2, ..., fN}. The frequencies are defined with respect to the eigenvalue

coefficients λi, 1 ≤ i ≤ N . The hypergraph Fourier transform (HGFT) of hypergraph signals
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is defined as

ŝ = FC(s[M−1]) (4.16a)

=


(fT

1 s)M−1

...

(fT
Ns)M−1

 . (4.16b)

Compared to GSP, if M = 2, the HGFT has the same form as the traditional GFT.

In addition, since fr is the orthogonal basis, we have

Ff [M−1]
r =

∑
λifi(f

T
i fr)

M−1 = λrfr. (4.17)

According to [37], a vector x is an E-eigenvector of an Mth-order tensor A if Ax[M−1] = λx

exists for a constant λ. Then, we obtain the following property of the hypergraph spectrum.

Property 2. The hypergraph spectrum pair (λr, fr) is an E-eigenpair of the representing

tensor F.

Recall that the spectrum space of GSP is the eigenspace of the representing matrix FM.

Property 2 shows that HGSP has a consistent definition in the spectrum space as that for

GSP.

4.3.4 Relationship between Hypergraph Signal and Original Sig-

nal

With HGFT defined, let us discuss more about the relationship between the hypergraph

signal and the original signal in the Fourier space to understand the HGFT better. From
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Eq. (4.16b), the hypergraph signal in the Fourier space is written as

ŝ =


(fT

1 s)M−1

...

(fT
Ns)M−1

 , (4.18)

which can be further decomposed as

ŝ = (


fT
1

...

fT
N

 s) ∗ (


fT
1

...

fT
N

 s) ∗ · · · ∗ (


fT
1

...

fT
N

 s)

︸ ︷︷ ︸
M−1 times

, (4.19)

where ∗ denotes Hadamard product.

From Eq. (4.19), we see that the hypergraph signal in the hypergraph Fourier space is

M − 1 times Hadamard product of a component consisting of the hypergraph Fourier basis

and the original signal. More specifically, this component works as the original signal in the

hypergraph Fourier space, which is defined as

s̃ = Vs, (4.20)

where V = [f1 f2 · · · fN ]T and VTV = I.

Recall the definitions of the hypergraph signal and vertex domain in Section 4.3.2, we

have the following property.

Property 3. The hypergraph signal is the M − 1 times tensor outer product of the original

signal in the hypergraph vertex domain, and the M−1 times Hadamard product of the original

signal in the hypergraph frequency domain.

Then, we could establish a connection between the original signal and the hypergraph

signal in the hypergraph Fourier domain by the HGFT and inverse HGFT (iHGFT) as shown
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(a) Process of HGFT

(b) Process of iHGFT

Figure 4.10: Diagram of HGFT and iHGFT.

in Fig. 4.10. Such a relationship leads to some interesting properties and makes the HGFT

implementation more straightforward, which will be further discussed in Section 4.3.6 and

Section 4.3.7, respectively.

4.3.5 Hypergraph Frequency

As we now have a better understanding of the hypergraph Fourier space and Fourier trans-

form, we can discuss more about the hypergraph frequency and its order. In GSP, the graph

frequency is defined with respect to the eigenvalues of the representing matrix FM and or-

dered by the total variation [61]. Similarly, in HGSP, we define the frequency relative to the

coefficients λi from the orthogonal-CP decomposition. We order them by the total variation

of frequency components fi over the hypergraph. The total variation of a general signal
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component over a hypergraph is defined as follows.

Definition 8 (Total variation over hypergraph). Given a hypergraph H with N nodes and

the normalized representing tensor Fnorm = 1
λmax

F, together with the original signal s, the

total variation over the hypergraph is defined as the total differences between the nodes and

their corresponding neighbors in the perspective of shifting, i.e.,

TV(s) =
N∑
i=1

|si −
N∑

j1,··· ,jM−1=1

F norm
ij1···jM−1

sj1 ...sjM−1
| (4.21a)

= ||s− Fnorms[M−1]||1. (4.21b)

We adopt the l1-norm here only as an example of defining the total variation. Other

norms may be more suitable depending on specific applications. Now, with the definition of

total variation over hypergraphs, the frequency in HGSP is ordered by the total variation of

the corresponding frequency component fr, i.e.,

TV(f r) = ||fr − fnormr(1) ||1, (4.22)

where fnormr(1) is the output of one-time shifting for fr over the normalized representing tensor.

From Eq. (4.21a), we see that the total variation describes how much the signal compo-

nent changes from a node to its neighbors over the hypergraph shifting. Thus, we have the

following definition of hypergraph frequency.

Definition 9 (Hypergraph frequency). Hypergraph frequency describes how oscillatory the

signal component is with respect to the given hypergraph. A frequency component fr is asso-

ciated with a higher frequency if the total variation of this frequency component is larger.

Note that, the physical meaning of graph frequency was stated in GSP [13]. Generally,

the graph frequency is highly related to the total variation of the corresponding frequency

component. Similarly, the hypergraph frequency also relates to the corresponding total
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variation. We will discuss more about the interpretation of the hypergraph frequency and

its relationships with DSP and GSP later in Section 4.4.1, to further solidate our hypergraph

frequency definition.

Based on the definition of total variation, we describe one important property of TV(f r)

in the following theorem.

Theorem 4.1. Define a supporting matrix

Ps =
1

λmax

[
f1 · · · fN

]
λ1

. . .

λN




fT
1

...

fT
N

 . (4.23)

With the normalized representing tensor Fnorm = 1
λmax

F, the total variation of hypergraph

spectrum fr is calculated as

TV(fr) = ||fr − fnormr(1) ||1, (4.24a)

= ||fr −Psfr||1, (4.24b)

= |1− λr
λmax

|. (4.24c)

Moreover, TV(fi) > TV(fj) iff λi < λj.

Theorem 4.1 shows that the supporting matrix Ps can help us apply the total variation

more efficiently in some real applications. Moreover, it provides the order of frequency

according to the coefficients λi’s with the following property.

Property 4. A smaller λ is related to a higher frequency in the hypergraph Fourier space,

where its corresponding spectrum basis is called a high frequency component.

4.3.6 Signals with Limited Spectrum Support

With the order of frequency, we define the bandlimited signals as follows.
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Definition 10 (Bandlimited signal). Order the coefficients as λ = [λ1 · · · λN ] where

λ1 ≥ · · · ≥ λN ≥ 0, together with their corresponding fr’s. A hypergraph signal s[M−1] is

defined as K-bandlimited if the HGFT transformed signal ŝ = [ŝ1, · · · , ŝN ]T has ŝi = 0 for

all i ≥ K where K ∈ {1, 2, · · · , N}. The smallest K is defined as the bandwidth and the

corresponding boundary is defined as W = λK.

Note that, a larger λi corresponds to a lower frequency as we mentioned in Property 4.

Then, the frequency are ordered from low to high in the definition above. Moreover, we

use the index K instead of the coefficient value λ to define the bandwidth for the following

reasons:

• Identical λ’s in two diferent hypergraphs do not refer to the same frequency. Since

each hypergraph has its own adjacency tensor and spectrum space, the comparison

of multiple spectrum pairs (λi, fi)’s is only meaningful within the same hypergraph.

Moreover, there exists a normalization issue in the decomposition of different adjacency

tensors. Thus, it is not meaningful to compare λk’s across two different hypergraphs.

• Since λk values are not continuous over k, different frequency cutoffs of λ may lead

to the same bandlimited space. For example, suppose that λk = 0.5 and λk+1 = 0.8.

Then, λ = 0.6 and λ′ = 0.7 would lead to the same cutoff in the frequency space, which

makes bandwidth definition non-unique.

As we discussed in Section 4.3.4, the hypergraph signal is the Hadamard product of the

original signal in the frequency domain. Then, we have the following property of bandwidth.

Property 5. The bandwidth K is the same based on the HGFT of the hypergraph signals ŝ

and that of the original signals s̃.

This property allows us to analyze the spectrum support of the hypergraph signal by

looking into the original signal with lower complexity. Recall that we can add fi by using

zero coefficients λi when R < N as mentioned in Section 4.3.3. The added basis should not
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affect the HGFT signals in Fourier space. According to the structure of bandlimited signal,

we need the added fi could meet the following conditions: (1) fi ⊥ fp for p 6= i; (2) fT
i ·s→ 0;

and (3) |fi| = 1.

4.3.7 Implementation and Complexity

We now consider the implementation and complexity issues of HGFT. Similar to GFT, the

process of HGFT consists of two steps: decomposition and execution. The decomposition is

to calculate the hypergraph spectrum basis, and the execution transforms signals from the

hypergraph vertex domain into the spectrum domain.

• The calculation of spectrum basis by the orthogonal-CP decomposition is an impor-

tant preparation step for HGFT. A straightforward algorithm would decompose the

representing tensor F with the spectrum basis fi’s and coefficients λi’s as in Eq. (4.14).

Efficient tensor decomposition is an active topic in both fields of mathematics and

engineering. There are a number of methods for CP decomposition in the literature.

In [77], motivated by the spectral theorem for real symmetric matrices, orthogonal-

CP decomposition algorithms for symmetric tensors are developed based polynomial

equations. In [36], Afshar et al. proposed a more general decomposition algorithm for

spatio-temporal data. Other works, including [78–80], tried to develop faster decompo-

sition methods for signal processing and big data applications. The rapid development

of tensor decomposition and the advancement of computation ability will benefit the

efficient derivation of hypergraph spectrum.

• The execution of HGFT with a known spectrum basis is defined in Eq. (4.16b). Ac-

cording to Eq. (4.19), the HGFT of hypergraph signal is an M − 1 times Hadamard

product of the original signal in the hypergraph spectrum space. This relationship

can help execute HGFT and iHGFT of hypergraph signals more efficiently by apply-

ing matrix operations on the original signals. Clearly, the complexity of calculating

55



the original signals in the frequency domain s̃ = Vs is O(N2). In addition, since the

computation complexity of the power function x(M−1) could be O(log(M − 1)) and

each vector has N entries, the complexity of calculating the M − 1 times Hadamard

product is O(N log(M − 1)). Thus, the complexity of general HGFT implementation

is O(N2 +N log(M − 1)).

4.4 Discussions and Interpretations

In this section, we focus on the insights and physical meaning of frequency to help interpret

the hypergraph spectrum space. We also consider the relationships between HGSP and other

existing works to better understand the HGSP framework.

4.4.1 Interpretation of Hypergraph Spectrum Space

We are interested in an intuitive interpretation of the hypergraph frequency and its relations

with the DSP and GSP frequencies. We start with the frequency and the total variation

in DSP. In DSP, the discrete Fourier transform (DFT) of a sequence sn is given by ŝk =∑N−1
n=0 sne

−j 2πkn
N and the frequency is defined as νn = n

N
, n = 0, 1, · · · , N − 1. From [81], we

can easily summarize the following conclusions:

• νn : 1 < n < N
2
− 1 corresponds to a continuous time signal frequency n

N
fs;

• νn : N
2

+1 < n < N−1 corresponds to a continuous time signal frequency −(1− n
N

)fs;

• νN
2

corresponds to fs/2;

• n = 0 corresponds to frequency 0.

Here, fs is the critical sampling frequency. In traditional DFT, we generate the Fourier

transform f̂(ω) =
∫∞
−∞ f(x)e−2πjxωdx at each discrete frequency n

N
fs, n = −N

2
+ 1,−N

2
+

2, · · · , N
2
− 1, N

2
. The highest and lowest frequencies correspond to n = N/2 and n = 0,
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respectively. Note that n varies from −N
2

+ 1 to N
2

here. Since e−j2πk
n
N = e−j2πk

n+N
N , we

can let n vary from 0 to N − 1 and cover the complete period. Now, n varies in exact

correspondence to νn, and the aforementioned conclusions are drawn. The highest frequency

occurs at n = N
2

.

The total variation in DSP is defined as the differences among the signals over time [82],

i.e.,

TV(s) =
N−1∑
n=0

|sn − s(n−1 mod N)| (4.25a)

= ||s−CNs||1, (4.25b)

where

CN =



0 0 · · · 0 1

1 0 · · · 0 0

...
. . . . . . . . .

...

0 0
. . . 0 0

0 0 · · · 1 0


. (4.26)

When we perform the eigen-decomposition of CN, we see that the eigenvalues are λn = e−j
2πn
N

with eigenvector fn, 0 ≤ n ≤ N − 1. More specifically, the total variation of the frequency

component fn is calculated as

TV(fn) = |1− ej
2πn
N |, (4.27)

which increases with n for n ≤ N
2

before decreasing with n for N
2
< n ≤ N − 1.

Obviously, the total variations of frequency components have a one-to-one correspondence

to frequencies in the order of their values. If the total variation of a frequency component

is larger, the corresponding frequency with the same index n is higher. It also has clear

physical meaning, i.e., a higher frequency component changes faster over time, which implies
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Figure 4.11: Example of Frequency Order in GSP for Complex Eigenvalues.

a larger total variation. Thus, we could also use the total variation of a frequency component

to characterize its frequency in DSP.

Let us now consider the total variation and frequency in GSP, where the signals are

analyzed in the graph vertex domain instead of the time domain. Similar to the fact that

the frequency in DSP describes the rate of signal changes over time, the frequency in GSP

illustrates the rate of signal changes over vertex [61]. Likewise, the total variation of the graph

Fourier basis defined according to the adjacency matrix FM could be used to characterize

each frequency. Since GSP handles signals in the graph vertex domain, the total variation

of GSP is defined as the differences between all the nodes and their neighbors, i.e.,

TV(s) =
N∑
n=1

|sn −
∑
m

FM
norm
nm sm| (4.28a)

= ||s− FM
norms||1, (4.28b)

where FM
norm = 1

|λmax|FM. If the total variation of the frequency component fMi is larger,

it means the change over the graph between neighborhood vertices is faster, which indicates

a higher graph frequency. Note that, once the graph is undirected, i.e., the eigenvalues are

real numbers, the frequency decreases with the increase of the eigenvalue similar as HGSP

in Section 4.3.5; otherwise, if the graph is undirected, i.e., the eigenvalues are complex, the

frequency changes as shown in Fig. 4.11, which is consistency with the changing pattern of
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Figure 4.12: Frequency components in a hypergraph with 9 nodes and 5 hyperedges. The
left panel shows the frequency components before shifting, and the right panel shows the
frequency components after shifting. The values of signals are illustrated by colors. Higher
frequency components imply larger changes across two panels.

DSP frequency [61].

We now turn to our HGSP framework. Like GSP, HGSP analyzes signals in the hyper-

graph vertex domain. Different from normal graphs, each hyperege in HGSP connects more

than two nodes. The neighbors of a vertex vi include all the nodes in the hyperedges con-

taining vi. For example, if there exists a hyperedge e1 = {v1,v2,v3}, nodes v2 and v3 are

both neighbors of node v1. As we mentioned in Section 4.3.5, the total variation of HGSP is

defined as the difference between continuous signals over the hypergraph, i.e., the difference

between the signal components and their respective shifted versions:

TV(s) =
N∑
i=1

|si −
∑

j1,...,jM−1

F norm
ij1···jM−1

sj1 · · · sjM−1
| (4.29a)

= ||s− Fnorms[M−1]||1, (4.29b)

where Fnorm = 1
λmax

F. Similar to DSP and GSP, pairs of (λi, fi) in Eq. (4.14) characterize the

hypergraph spectrum space. A spectrum component with a larger total variation represents
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a higher frequency component, which indicates faster changes over the hypergraph. Note

that, as we mentioned in Section 4.3.5, the total variation is larger and the frequency is higher

if the corresponding λ is smaller because we usually talk about undirected hypergraph and

the λ’s are real in the tensor decomposition. To illustrate it more clearly, we consider a

hypergraph with 9 nodes, 5 hyperedges, and m.c.e = 3 as an example, shown in Fig. 4.12.

As we mentioned before, a smaller λ indicates a higher frequency in HGSP. Hence, we see

that the signals have more changes on each vertex if the frequency is higher.

4.4.2 Connections to other Existing Works

We now discuss the relationships between the HGSP and other existing works.

Graph Signal Processing

One of the motivations for developing HGSP is to develop a more general framework for

signal processing in high-dimensional graphs. Thus, GSP should be a special case of HGSP.

We illustrate the GSP-HGSP relationship as follows.

• Graphical models: GSP is based on normal graphs [13], where each simple edge con-

nects exactly two nodes; HGSP is based on hypergraphs, where each hyperedge could

connect more than two nodes. Clearly, the normal graph is a special case of hyper-

graph, for which the m.c.e equals two. More specifically, a normal graph is a 2-uniform

hypergraph [83]. Hypergraph provides a more general model for multi-lateral relation-

ships while normal graphs are only able to model bilateral relationship. For example, a

3-uniform hypergraph is able to model the trilateral interaction among users in a social

network [84]. As hypergraph is a more general model for high-dimensional interactions,

HGSP is also more powerful for high-dimensional signals.

• Algebraic models: HGSP relies on tensors while GSP relies on matrices, which are

second-order tensors. Benefiting from the generality of tensor, HGSP is broadly appli-
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cable in high-dimensional data analysis.

• Signals and signal shifting: In HGSP, we define the hypergraph signal as M − 1 times

tensor outer product of the original signal. More specifically, the hypergraph signal is

the original signal if M = 2. Basically, the hypergraph signal is the same as the graph

signal if each hyperedge has exactly two nodes. Also shown in Fig. 4.9(b) of Section

4.3.3, graph shifting is a special case of hypergraph shifting when M = 2.

• Spectrum properties: In HGSP, the spectrum space is defined over the orthogonal-CP

decomposition in terms of the basis and coefficients, which are also the E-eigenpairs

of the representing tensor [85], shown in Eq. (4.17). In GSP, the spectrum space is

defined as the matrix eigenspace. Since the tensor algebra is an extension of matrix, the

HGSP spectrum is also an extension of the GSP spectrum. For example, as discussed

in Section 4.3, GFT is the same as HGFT when M = 2.

Overall, HGSP is an extension of GSP, which is both more general and novel. The purpose

of developing the HGSP framework is to facilitate more interesting signal processing tasks

that involve high-dimensional signal interactions.

Higher-Order Statistics

Higher-order statistics (HOS) has been effectively applied in signal processing[86,87], which

can analyze the multi-lateral interactions of signal samples and have found successes in many

applications, such as blind feature detection [88], decision [89], and signal classifications [90].

In HOS, the kth-order cumulant of random variables x = [x1, · · · , xk]T is defined [91] based

on the coefficients of v = [v1, · · · , vk]T in the Talyor series expansion of cumulant-gernerating

function, i.e.,

K(v) = ln E{exp(jvTx)}. (4.30)

It is easy to see that HGSP and HOS are related in high-dimensional signal processing.

They can be both represented by tensor. For example, in the multi-channel problems of [92],
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the 3rd-order cumulant C = {Cyi,yj ,yz(t, t1, t2)} of zero-mean signals can be represented as a

multilinear array, e.g.,

Cyi,yj ,yz(t, t1, t2) = E{yi(t)yj(t+ t1)yz(t+ t2)}, (4.31)

which is essentially a third-order tensor. More specifically, if there are k samples, the cu-

mulant C can be represented as an pk-element vector, which is the flattened signal tensor

similar to the n-mode flattening of HGSP signals.

Although both HOS and HGSP are high-dimensional signal processing tools, they focus

on complementary aspects of the signals. Specifically, HGSP aims to analyze signals over the

high-dimensional vertex domain, while HOS focuses on the statistical domain. In addition,

the forms of signal combination are also different, where HGSP signals are based on the

hypergraph shifting defined as in Eq. (4.11), whereas HOS cumulants are based on the

statistical average of shifted signal products.

Learning over Hypergraphs

Hypergraph learning is another tool to handle structured data and sometimes uses similar

techniques to HGSP. For example, the authors of [93] proposed an alternative definition

of hypergraph total variation and design algorithms in accordance for classification and

clustering problems. In addition, hypergraph learning also has its own definition of the

hypergraph spectrum space. For example, [24, 63] represented the hypergraphs using a

graph-like similarity matrix and defined a spectrum space as the eigenspace of this similarity

matrix. Other works considered different aspects of hypergraph, including the hypergraph

Laplacian [94] and hypergraph lifting [20].

The HGSP framework exhibits features different from hypergraph learning: 1) HGSP

defines a framework that generalizes the classical digital signal processing and traditional

graph signal processing; 2) HGSP applies different definitions of hypergraph characteristics
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such as the total variation, spectrum space, and Laplacian; 3) HGSP cares more about the

spectrum space while learning focuses more on data; 4) As HGSP is an extension of DSP

and GSP, it is more suitable to handle detailed tasks such as compression, denoising, and

detection. All these features make HGSP a different technical concept from hypergraph

learning.

4.5 Tools for Hypergrph Signal Processing

In this section, we introduce several useful tools built within the framework of HGSP.

4.5.1 Sampling Theory

Sampling is an important tool in data analysis, which selects a subset of individual data

points to estimate the characteristics of the whole population [42]. Sampling plays an im-

portant role in applications such as compression [95] and storage [96]. Similar to sampling

signals in time, the HGSP sampling theory can be developed to sample signals over the

vertex domain. We now introduce the basics of HGSP sampling theory for lossless signal

dimension reduction.

To reduce the size of a hypergraph signal s[M−1], there are two main approaches: 1)

to reduce the dimension of each order; and 2) to reduce the number of orders. Since the

reduction of order breaks the structure of hypergraph and cannot always guarantee perfect

recovery, we adopt the dimension reduction of each order. To change the dimension of a

certain order, we can use the n-Mode product. Since each order of the hypergraph signal is

equivalent, the n-Mode product operators of each order are the same. Then, the sampling

operation of the hypergraph signal is defined as follows:

Definition 11 (Sampling and Interpolation). Suppose that Q is the dimension of each sam-
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pled order. The sampling operation is defined as

s
[M−1]
Q = s[M−1] ×1 U×2 U · · · ×M−1 U, (4.32)

where the sampling operator is U ∈ RQ×N to be defined later, and the sampled signal is

s
[M−1]
Q ∈ R

Q×Q×...×Q︸ ︷︷ ︸
M−1 times .

The interpolation operation is defined by

s[M−1] = s
[M−1]
Q ×1 T×2 T · · · ×M−1 T, (4.33)

where the interpolation operator is T ∈ RN×Q to be defined later.

As presented in Section 4.3, the hypergraph signal and original signal are different forms

of the same data. They may have similar properties in structures. To derive the sampling

theory for perfect signal recovery efficiently, we first consider the sampling operations of the

original signal.

Definition 12 (Sampling original signal). Suppose an original K-bandlimited signal s ∈ RN

is to be sampled into sQ ∈ RQ, where q = {q1, · · · , qQ} denotes the sequence of sampled

indices and qi ∈ {1, 2, · · · , N}. The sampling operator U ∈ RQ×N is a linearing mappling

from RN to RQ, defined by

Uij =


1, j = qi;

0, otherwise,

(4.34)

and the interpolation operator T ∈ RN×Q is a linear mapping from RQ to RN . Then, the

sampling operation is defined by

sQ = U · s, (4.35)

and the interpolation operation is defined by

s′ = T · sQ. (4.36)
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Analyzing the structure of the sampling operations, we have the following properties.

Theorem 4.2. The hypergraph signal s[M−1] shares the same sampling operator U ∈ RQ×N

and interpolation operator T ∈ RN×Q with the original signal s.

The proof is given in Appendix B.2. Given Theorem 4.2, we only need to analyze the

operations of the original signal in the sampling theory. Next, we discuss the conditions for

perfect recovery. For the original signal, we have the following property.

Lemma 4.1. Suppose that s ∈ RN is a K-bandlimited signal. Then, we have

s = FT
[K]s̃[K], (4.37)

where FT
[K] = [f1, · · · , fK ] and s̃[K] ∈ RK consists of the first K elements of the original signal

in the frequency domain, i.e., s̃.

This lemma implies that the first K frequency components carry all the information

of the original signal. Since the hypergraph signal and the original signal share the same

sampling operators, we can reach a similar conclusion for perfect recovery as [95, 97], given

in the following theorem.

Theorem 4.3. Define the sampling operator U ∈ RQ×N according to Uji = δ[i − qj] where

1 ≤ qi ≤ N, i = 1, . . . , Q. By choosing Q ≥ K and the interpolation operator T = FT
[K]Z ∈

RN×Q with ZUFT
[K] = IK and FT

[K] = [f1, · · · , fK ], we can achieve a perfect recovery, i.e.,

s = TUs for all K-bandlimited original signal s and the corresponding hypergraph signal

s[M−1].

The proof is provided in Appendix B.4. Theorem 4.3 shows that a perfect recovery is

possible for a bandlimited hypergraph signal. We now examine some interesting properties

of the sampled signal.

From the previous discussion, we have s̃[K] = ZsQ, which has a similar form to HGFT,
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where Z can be treated as the Fourier transform operator. Suppose that Q = K and

Z = [z1 · · · zK ]T. We have the following first-order difference property.

Theorem 4.4. Define a new hypergraph by FK =
∑K

i=1 λi · zi ◦ · · · ◦ zi. Then, for all

K-bandlimited signal s[M−1] ∈ R
N×N×...×N︸ ︷︷ ︸

M times , it holds that

s[K] − FKs
[M−1]
[K] = U(s− Fs[M−1]). (4.38)

Theorem 4.4 shows that the sampled signals form a new hypergraph that preserves the

information of the one-time shifting filter over the original hypergraph. For example, the left-

hand side of Eq. (4.38) represent the difference between the sampled signal and the one-time

shifted version in the new hypergraph. The right-hand side of Eq. (4.38) is the difference

between a signal and its one-time shifted version in the original hypergraph, together with

the sampling operator. That is, the sampled result of the one-time shifting differences in

the original hypergraph is equal to the one-time shifting differences in the new sampled

hypergraph.

4.5.2 Filter Desgin

Filter is an important tool in signal processing applications such as denoising, feature en-

hancement, smoothing, and classification. In GSP, the basic filtering is defined as s′ = FMs

where FM is the representing matrix [13]. In HGSP, the basic hypergraph filtering is defined

in Section 4.3.3 as s(1) = Fs[M−1], which is designed according to the tensor contraction.

The HGSP filter is a multilinear mapping [98]. The high-dimensionality of tensors provides

more flexibility in designing the HGSP filter.

Polynomial Filter based on Representing Tensor

Polynomial filter is one basic form of HGSP filters, with which signals are shifted several

times over the hypergraph. An example of polynomial filter is given as Fig. 4.7 in Section
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4.3.2. A k-time shifting filter is defined as

s(k) = Fs
[M−1]
(k−1) (4.39a)

= F(F(...(Fs[M−1])[M−1])[M−1])[M−1]︸ ︷︷ ︸
k times

. (4.39b)

More generally, a polynomial filter is designed as

s′ =
a∑
k=1

αks(k), (4.40)

where {αk} are the filter coefficients. Such HGSP filters are based on multilinear tensor

contraction, which could be used for different signal processing tasks by selecting specific

parameters a and {αi}.

In addition to the general polynomial filter based on hypergraph signals, we provide

another specific form of polynomial filter based on the original signals. As mentioned in

Section 4.3.5, the supporting matrix Ps in Eq. (4.23) captures all the information of the

frequency space. For example, the unnormalized supporting matrix P = λmaxPs is calculated

as

P =

[
f1 · · · fN

]
λ1

. . .

λN




fT
1

...

fT
N

 . (4.41)

Obviously, the hypergraph spectrum pair (λr, fr) is an eigenpair of the supporting matrix P.

Moreover, Theorem 4.1 shows that the total variation of frequency component equals to a

function of P, i.e.,

TV(f r) = ||fr −
1

λmax
Pf r||1. (4.42)

From Eq. (4.42), P can be interpreted as a shifting matrix for the original signal. Accord-

ingly, we can design a polynomial filter for the original signal based on the supporting matrix
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P whose kth-order term is defined as

s<k> = Pks. (4.43)

The a-th order polynomial filter is simply given as

s′ =
a∑
k=1

αkP
ks. (4.44)

A polynomial filter over the original signal can be determined with specific choices of a and

α.

Let us consider some interesting properties of the polynomial filter for the original signal.

First, given the kth-order term, we have the following property as Lemma 4.2.

Lemma 4.2.

s<k> =
N∑
r=1

λkr(f
T
r s)fr. (4.45)

From Lemma 4.2, we obtain the following property of the polynomial filter for the original

signal.

Theorem 4.5. Let h(·) be a polynomial function. For the polynomial filter H = h(P) for

the original signal, the filtered signal satisfies

Hs =
N∑
r=1

h(s<i>) =
N∑
r=1

h(λr)fr(f
T
r s). (4.46)

This theorem works as the invariance property of exponential in HGSP, similar to those

in GSP and DSP [23]. Eq. (4.40) and Eq. (4.43) provide more choices for HGSP polynomial

filters in hypergraph signal processing and data analysis. We will give specific examples of

practical applications in Section 4.6.
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General Filter Design based on Optimization

In GSP, some filters are designed via optimization formulations [13,71,99]. Similarly, general

HGSP filters can also be designed via optimization approaches. Assume y is the oberserved

signal before shifting and s = h(F,y) is the shifted signal by HGSP filter h(·) designed for

specific applications. Then, the filter design can be formulated as

min
h
||s− y||22 + γf(F, s), (4.47)

where F is the representing tensor of the hypergraph and f(·) is a penalty function designed

for specific problems. For example, the total variation could be used as a penalty function

for the purpose of smoothness. Other alternative penalty functions include the label rank,

Laplacian regularization and spectrum. In Section 4.6, we shall provide some filter design

examples.

4.6 Application Examples

In this section, we consider several application examples for our newly proposed HGSP

framework. These examples illustrate the practical use of HGSP in some traditional tasks,

such as filter design and efficient data representation. We also consider problems in data

analysis, such as classification and clustering.

4.6.1 Data Compression

Efficient representation of signals is important in data analysis and signal processing. Among

many applications, data compression attracts significant interests for efficient storage and

transmission [100–102]. Projecting signals into a suitable orthonormal basis is a widely-

used compression method [61]. Within the proposed HGSP framework, we propose a data

compression method based on the hypergraph Fourier transform. We can represent N signals
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Table 4.1: Compression Ration of Different Methods
size 16× 16 256× 256
image Radiation People load inyang stop error smile lenna mri ct AVG
IANH-HGSP 1.52 1.45 1.42 1.47 1.52 1.39 1.40 1.57 1.53 1.41 1.47
(α, β)-GSP 1.37 1.23 1.10 1.26 1.14 1.16 1.28 1.07 1.11 1.07 1.18
4 connected-GSP 1.01 1.02 1.01 1.01 1.04 1.02 1.07 1.04 1.05 1.07 1.03

Figure 4.13: Test Set of Images.

in the original domain with C frequency coefficients in the hypergraph spectrum domain.

More specifically, with the help of the sampling theory in Section 4.5, we can compress an

K-bandlimited signal of N signal points losslessly with K spectrum coefficients.

To test the performance of our HGSP compression and demonstrate that hypergraphs

may be a better representation of structured signals than normal graphs, we compare the

results of image compression with those from GSP-based compression method [61]. We test

over seven small size-16 × 16 icon images and three size-256 × 256 photo images, shown in

Fig. 4.13.

The HGSP-based image compression method is described as follows. Given an image, we

first model it as a hypergraph with the Image Adaptive Neighborhood Hypergraph (IANH)

model [103]. To reduce complexity, we pick three closest neighbors in each hyperedge to

construct a third-order adjacency tensor. Next, we can calculate the Fourier basis of the

adjacency tensor as well as the bandwidth K of the hypergraph signals. Finally, we can

represent the original images using C spectrum coefficients with C = K. For a large image,

we may first cut it into smaller image blocks before applying HGSP compression to improve

speed.

For the GSP-based method in [61], we represent the images as graphs with 1) the 4-

70



connected neighbor model [104], and 2) the distance-based model in which an edge exists

only if the spatial distance is below α and the pixel distance is below β. The graph Fourier

space and corresponding coefficients in the frequency domain are then calculated to represent

the original image.

We use the compression ratio CR= N/C to measure the efficiency of different compression

methods. A large CR implies higher compression efficiency. The result is summarized in

Table 4.1, from which we can see that our HGSP-based compression method achieves higher

efficiency than the GSP-based compression methods. Overall, hypergraph and HGSP lead

to more efficient descriptions of structured data in most applications. With a more suitable

hypergraph model and more developed methods, the HGSP framework could be a very new

important tool in data compression.

4.6.2 Spectral Clustering

Clustering problem is widely used in a variety of applications, such as social network analysis,

computer vision, and communication problems. Among many methods, spectral clustering

is an efficient clustering method [60, 106]. Modeling the dataset by a normal graph before

clustering the data spectrally, significant improvement is possible in structured data[107].

However, such standard spectral clustering methods only exploit pairwise interactions. For

applications where the interactions involve more than two nodes, hypergraph spectral clus-

tering should be a more natural choice.

In hypergraph spectral clustering, one of the most important issues is how to define a

suitable spectral space. In [24, 63], the authors introduced the hypergraph similarity spec-

trum for spectral clustering. Before spectral clustering, they first modeled the hypergraph

structure into a graph-like similarity matrix. They then defined the hypergraph spectrum

based on the eigenspace of the similarity matrix. However, since the modeling of hypergraph

with a similarity matrix may result in certain loss of the inherent information, a more ef-

ficient spectral space defined directly over hypergraph is more desired as introduced in our
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Algorithm 1 HGSP Fourier Spectral Clustering

1: Input: Dataset modeled in hypergraph H, the number of clusters k.
2: Construct adjacency tensor A in Eq. (4.5) from the hypergraph H.
3: Apply orthogonal decomposition to A and compute Fourier basis fi together with Fourier

frequency coefficient λi using Eq. (4.14).
4: Find the first E leading Fourier basis fi with λi 6= 0 and construct a Fourier spectrum

matrix S ∈ RN×E with columns as the leading Fourier basis.
5: Cluster the rows of S into k clusters using k-means clustering.
6: Put node i in partition j if the i-th row is assigned to the j-th cluster.
7: Output: k partitions of the hypergraph dataset.

(a) Variance in the same cluster (b) Average Silhouette in the hypergraph

Figure 4.14: Performance of Hypergraph Spectral Clustering.

HGSP framework. With HGSP, as the hypergraph Fourier space from the adjacency tensor

has a similar form to the spectral space from adjacency matrix in GSP, we could develop

the spectral clustering method based on the hypergraph Fourier space as in Algorithm 1.

To test the performance of the HGSP spectral clustering, we compare the achieved results

with those from the hypergraph similarity method (HSC) in [63], using the zoo dataset

[108]. To measure the performance, we compute the intra-cluster variance and the average

Silhouette of nodes [109]. Since we expect the data points in the same cluster to be closer to

each other, the performance is considered better if the intra-cluster variance is smaller. On

the other hand, the Silhouette value is a measure of how similar an object is to its own cluster

versus other clusters. A higher Silhouette value means that the clustering configuration is

more appropriate.

The comparative results are shown in Fig. 4.14. Form the test result, we can see that our
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Figure 4.15: Cluster of Animals.

HGSP method generates a lower variance and a higher Silhouette value. More intuitively,

we plot the clusters of animals in Fig. 4.15. Cluster 2 covers small animals like bugs

and snakes. Cluster 3 covers carnivores whereas cluster 7 groups herbivores. Cluster 4

covers birds and Cluster 6 covers fish. Cluster 5 contains the rodents such as mice. One

interesting category is cluster 1: although dolphins, sea-lions, and seals live in the sea, they

are mammals and are clustered separately from cluster 6. From these results, we see that

the HGSP spectral clustering method could achieve better performance and our definition

of hypergraph spectrum may be more appropriate for spectral clustering in practice.

4.6.3 Classification

Classification problems are important in data analysis. Traditionally, these problems are

studied by learning methods [110]. Here, we propose a HGSP-based method to solve the

{±1} classification problem, where a hypergraph filter serves as a classifier.

The basic idea adopted for the classification filter design is label propagation (LP), where

the main steps are to first construct a transmission matrix and then propagate the label
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Algorithm 2 LP-HGSP Classification

1: Input: Dataset s consisting of labeled training data and unlabeled test data.
2: Establish a hypergraph by similarities and set unlabeled data as {0} in the signal s.
3: Train the coefficients α of the LP-HGSP filter in Eq. (4.48) by minimizing the errors of

signs of training data in s′ = Hs.
4: Implement LP-HGSP filter. If s′i > 0, the ith data is labeled as 1; otherwise, it is labeled

as −1.
5: Output: Labels of test signals.

based on the transmission matrix [111]. The label will converge after a sufficient number

of shifting steps. Let W be the propagation matrix. Then the label could be determined

by the distribution s′ = Wks. We see that s′ is in the form of filtered graph signal. Recall

that in Section 4.5.2, the supporting matrix P has been shown to capture the properties of

hypergraph shifting and total variation. Here, we propose a HGSP classifier based on the

supporting matrix P defined in Eq. (4.41) to generate matrix

H = (I + α1P)(I + α2P) · · · (I + αkP). (4.48)

Our HGSP classifier is to simply rely on sign[Hs]. The main steps of the propagated LP-

HGSP classification method is described in Algorithm 2.

To test the performance of the hypergraph-based classifier, we implement them over the

zoo datasets. We determine whether the animals have hair based on other features, formu-

lated as a {±1} classification problem. We randomly pick different percentages of training

data and leave the remaining data as the test set among the total 101 data points. We

smooth the curve with 1000 combinations of randomly picked training sets. We compare the

HGSP-based method against the SVM method with the RBF kernel and the label propaga-

tion GSP (LP-GSP) method [13]. In the experiment, we model the dataset as hypergraph

or graph based on the distance of data. The threshold of determining the existence of edges

is designed to ensure the absence of isolated nodes in the graph. For the label propagation

method, we set k = 15. The result is shown in Fig. 4.16(a). From the result, we see that

the label propagation HGSP method (LP-HGSP) is moderately better than LP-GSP. The
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(a) Over datasets with a fixed datasize and dif-
ferent ratios of training data.

(b) Over datasets with different datasizes and
a fixed ratio of training data.

Figure 4.16: Performance of Classifiers.

graph-based methods, i.e., LP-GSP and LP-HGSP, both perform better than SVM. The

performance of SVM appears less satisfactory, likely because the dataset is rather small.

Model-based graph and hypergraph methods are rather robust when applied to such small

datasets. To illustrate this effect more clearly, we tested the SVM and hypergraph perfor-

mance with new configurations by the increasing dataset size and the fixing ratio of training

data in Fig. 4.16(b). In the experiment, we first pick different sizes of data subsets from the

original zoo dataset randomly as the new datasets. Then, with each size of the new dataset,

40% data points are randomly picked as the training data, and the remaining data points

are used as the test data. We average the results of 10000 times of experiments to smooth

the curve. We can see from Fig. 4.16(b) that the performance of SVM shows significant

improvement as the dataset size grows larger. This comparison indicates that SVM may

require more data to achieve better performance, as shown in the comparative results of Fig.

4.16(a). Generally, the HGSP-based method exhibits better overall performance and shows

significant advantages with small datasets. Although GSP and HGSP classifiers are both

model-based, hypergraph-based ones usually perform better than graph-based ones, since

hypergraphs provide a better description of the structured data in most applications.
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4.6.4 Denoising

Signals collected in the real world often contain noises. Signal denoising is thus an important

application in signal processing. Here, we design a hypergraph filter to implement signal

denoising.

As mentioned in Section 4.3, the smoothness of a graph signal, which describes the

variance of hypergraph signals, could be measured by the total variation. Assume that

the original signal is smooth. We formulate signal denoising as an optimization problem.

Suppose that y = s + n is a noisy signal with noise n, and s′ = h(F,y) is the denoised data

by the HGSP filter h(·). The denoising problem could be formulated as an optimization

problem:

min
h
||s′ − y||22 + γ · ||s′ − s′

norm
<1> ||22, (4.49)

where the second term is the weighted quadratic total variation of the filtered signal s′ based

on the supporting matrix.

The denoising problem of Eq. (4.49) aims to smooth the signal based on the original noisy

data y. The first term keeps the denoised signal close to the original noisy signal, whereas

the second term tries to smooth the recovered signal. Clearly, the optimized solution of filter

design is

s′ = h(F,y) = [I + γ(I−Ps)
T(I−Ps)]

−1y, (4.50)

where Ps =
∑N

i=1
λi
λmax

fif
T
i describes a hypergraph Fourier decomposition. From Eq. (4.50),

we see that the solution is in the form of s′ = Hy for denoising, which adopts a hypergraph

filter h(·) as

H = [I + γ(I−Ps)
T(I−Ps)]

−1. (4.51)

The HGSP-based filter follows a similar idea to GSP-based denoising filter [70]. However,

different definitions of the total variation and signal shifting result in different designs of

HGSP vs. GSP filters. To test the performance, we compare our method with the basic
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Table 4.2: MSE of Filtered Signal
γ 10e-5 10e-4 10e-3 10e-2 10e-1 1 10
Uniform Distribution: U(0, 0.1)
GSP 0.0031 0.0031 0.0031 0.0026 0.0017 0.0895 0.4523
HGSP 0.0031 0.0031 0.0028 0.0012 0.0631 0.1876 0.4083
Wiener 0.0201
Median 0.0142
Normal Distribution: N(0, 0.09)
GSP 0.790 0.790 0.0786 0.0556 0.0604 0.1286 0.4681
HGSP 0.0790 0.0585 0.0305 0.0778 0.1235 0.2374 0.4176
Wiener 0.0368
Median 0.0359
Normal Distribution: N(-0.02, 0.0001)
GSP 5.34e-04 5.36e-04 5.54e-04 7.76e-04 0.0055 0.1113 0.4650
HGSP 4.17e-04 4.72e-04 4.86e-04 6.48e-04 0.0044 0.0868 0.3483
Wiener 0.0230
Median 0.0096

Wiener filter, Median filter, and GSP-based filter [70] using the image datasets of Fig. 4.13.

We apply different types of noises. To quantify the filter performance, we use the mean

square error (MSE) between each true signal and the corresponding signal after filtering.

The results are given in Table 4.2. From these results, we can see that, for each type of

noise and picking optimized γ for all the methods, our HGSP-based filter out-performs other

filters.

4.6.5 Other Potential Applications

In addition to the application algorithms discussed above, there could be many other po-

tential applications for HGSP. In this subsection, we suggest several potential applicable

datasets and systems for HGSP.

• IoT: With the development of IoT techniques, the system structures become increas-

ingly complex, which makes traditional graph-based tools inefficient to handle the

high-dimensional interactions. On the other hand, the hypergraph-based HGSP is

powerful in dealing with high-dimensional analysis in the IoT system: for example,
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data intelligence over sensor networks, where hypergraph-based analysis has already

attracted significant attentions [112], and HGSP could be used to handle tasks like

clustering, classification, and sampling.

• Social Network: Another promising application is the analysis of social network datasets.

As discussed earlier, a hyperedge is an efficient representation for the multi-lateral re-

lationship in social networks [62,113]; HGSP can then be effective in analyzing multi-

lateral node interactions.

• Nature Language Processing: Furthermore, natural language processing is an area that

can benefit from HGSP. Modeling the sentence and language by hypergraphs [114,115],

HGSP can be a tool for language classification and clustering tasks.

Overall, due to its systematic and structural approach, HGSP is expected to become an

important tool in handling high-dimensional signal processing tasks that are traditionally

addressed by DSP or GSP based methods.

4.7 Conclusions

In this chapter, we proposed a novel tensor-based framework of Hypergraph Signal Process-

ing (HGSP) that generalizes the traditional GSP to high-dimensional hypergraphs. Our

framework provided important definitions in HGSP, including hyerpgraph signals, hyper-

graph shifting, HGSP filters, frequency, and bandlimited signals. We presented basic HGSP

concepts such as the sampling theory and filtering design. We show that hypergraph can

serve as an efficient model for many complex datasets. We also illustrate multiple practical

applications for HGSP in signal processing and data analysis, where we provided numerical

results to validate the advantages and the practicality of the proposed HGSP framework.

All the features of HGSP make it a powerful tool for IoT applications in the future.
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Chapter 5

Hypergraph-based Multimedia

Processing

5.1 Introduction

In this chapter, we investigate the use of hypergraph spectral analysis and introduce HGSP

as tools in multimedia processing. Our contributions can be summarized as follows:

• We provide alternative definitions of hypergraph spectral operations within HGSP [123]

for data analysis.

• We present guidelines for applying HGSP in image processing and introduce several

applications, such as edge detection, compression, and video segmentation.

• We propose a spectrum-based hypergraph estimation for three-dimensional (3D) point

clouds, together with some application examples in point cloud segmentation, resam-

pling and denoising.

When presenting test results, we compare our proposed methods against benchmarks from

traditional graph and learning methods. Our experiments demonstrate the effectiveness

of HGSP and hypergraph spectral analysis in multimedia processing. Furthermore, we
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expect the proposed spectral operations to play important roles in the development of

graph/hypergraph convolutional networks.

We organize this chapter as follows. We first provide some useful hypergraph operations

for multimedia datasets in Section 5.2. Then, we investigate the applications of HGSP in

image processing and point cloud processing in Section 5.3 and 5.4, respectively. Finally, we

conclude our contributions in Section 5.5.

5.2 Hypergraph Operations for Multimedia Processing

In this section, we introduce important operations for the hypergraph frequency analysis

useful in multimedia processing within the framework of HGSP aforementioned in Chapter

4.

5.2.1 Convolution

Convolution is an essential operation in traditional image processing. In DSP and GSP [126,

127], Fourier transform of convolution between two signals is equal to the product between

their respective Fourier transforms. Similarly, we generalize the hypergraph convolution

denoted by � as

x � y = F−1
C (FC(x) ∗ FC(y)), (5.1)

where FC is the HGFT, F−1
C is the iHGFT, and ∗ denotes Hadamard product [123]. This

definition generalizes the property that the convolution in the vertex domain is equivalent

to the product in the hypergraph spectral domain.

3Part of this chapter is reprinted, with permission, from [S. Zhang, S. Cui, and Z. Ding, “Hypergraph-
based Image Processing”, 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi,
UAE, 2020, pp. 216-220.].
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5.2.2 Translation

The classic translation in DSP can be written as the convolution between the signal and an

impulse function centered at a certain point. With the definition of hypergraph convolution,

we define the hypergraph translation of an original signal x ∈ RN similar to that in GSP

[127] as

Tnx =
√
Nx �∆n, (5.2)

where the nth element of the Kronecker ∆n ∈ RN is 1 and other elements are 0. Similar

to translation in GSP, hypergraph translation is not like the time shift of signal in DSP.

Instead, it represents a hypergraph convolution kernel localizing the information near the

centered node vn [117], which helps capture topological information among pixels in images.

5.2.3 Sampling and Interpolation

Sampling is an important operation in image processing, which selects a subset of individual

data points to estimate the characteristics of the whole population. Similar to sampling

signals in time and GSP [97], the HGSP sampling theory can be developed to sample signals

over the vertex domain. Since the reduction of tensor order may break the structure of

hypergraph and cannot always guarantee perfect recovery, we adopt the dimension reduction

of each order. The sampling of a hypergraph signal is defined as follows:

Suppose that Q is the dimension of each sampled order. The sampling operation of a

hypergraph signal s[M−1] ∈ R
N×N×...×N︸ ︷︷ ︸
M−1 times is defined as

s
[M−1]
Q = s[M−1] ×1 U×2 U · · · ×M−1 U, (5.3)

where ×n denotes the n-mode product [123], the sampling operator is U ∈ RQ×N , and the
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sampled signal is s
[M−1]
Q ∈ R

Q×Q×...×Q︸ ︷︷ ︸
M−1 times . The interpolation operation is defined by

s[M−1] = s
[M−1]
Q ×1 T×2 T · · · ×M−1 T, (5.4)

where the interpolation operator is T ∈ RN×Q.

Interested readers are referred to Section 4.5.1 for more properties of hypergraph-based

sampling theory.

5.2.4 Hypergraph Stationary Process

Before providing details of the estimation, let us first introduce some new definitions and

properties necessary for spectrum estimation.

Stationarity is a cornerstone property that facilities the analysis of random signals and

observations in traditional signal processing [128]. It has equal importance in graph and

hypergraph signal processing. Based on graph shifting introduced in [2], a definition of graph

stationary process proposed in [128] can analyze the properties of the different observations

of nodes, or the random signals over the graphs. Furthermore, [129] introduces a method to

estimate the graph spectrum space and graph diffusion for multiple observations based on

the graph stationary process. Similarly, the hypergraph stationary process can be defined

to estimate hypergraph spectrum.

Now, let us introduce the definition of the hypergraph stationary process. In [123], a

polynomial hypergraph filter based on supporting matrix is defined as

s′ =
a∑
k=1

αkP
ks, (5.5)
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where P = λmaxPs and the supporting matrix Ps is denoted by

Ps =
1

λmax

[
f1 · · · fN

]
λ1

. . .

λN




fT
1

...

fT
N

 (5.6)

to capture the overall spectral information of the hypergraph.

Similarly, based on the supporting matrix, a τ -step shifting operation is defined as Pτ =

Pτ . Then, similar to the definition of the stationary process in traditional digital signal

processing and graph signal processing, a strict-sense stationary process in HGSP can be

defined as follows.

Definition 13. (Strict-Sense Stationary Process) A stochastic signal x ∈ RN is strict-sense

stationary over the hypergraph with Pτ if and only if

x
d
= Pτx (5.7)

holds for any τ .

Since the strict-sense stationary is hard to achieve and analyze in the real datasets, we

introduce the weak-sense stationary process similar to traditional digital signal processing.

Definition 14. (Weak-Sense Stationary Process) A stochastic signal x ∈ RN is weak-sense

stationary over the hypergraph with Pτ if and only if

E[x] = E[Pτx] (5.8)

and

E[(Pτ1x)((PH)τ2x)H ] = E[(Pτ1+τx)((PH)τ2−τx)H ] (5.9)

hold for any τ , where E(·) refers to the mean of observations and (·)H is the Hermitian

transpose.
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From the definition of the weak-sense stationary process (WSS), Eq. (5.8) implies that the

mean function of the signal must be constant, which is the same condition as in traditional

digital signal processing (DSP) [130]. From the definition of supporting matrix, the (i, j)-th

entry of P is the same as the (j, i)-th entry of PH , which indicates that PH is the shifting in

the opposite direction of P. Then, the condition in Eq. (5.9) indicates that the hypergraph

covariance function Kxx(τ1,−τ2) = Kxx(τ1 + τ, τ − τ2) = Kxx(τ1 + τ2, 0), which is also

consistent with the definition in traditional DSP.

With the definition of the hypergraph stationary process, we have the following properties

regarding the relationship between signals and hypergraph spectrum.

Theorem 5.1. A stochastic signal x is WSS if and only if it has zero-mean and its covariance

matrix has the same eigenvectors as the hypergraph spectrum basis, i.e.,

E[x] = 0 (5.10)

and

E[xxH ] = VΣxV
H , (5.11)

where V = [f1, f2, · · · , fN ] ∈ RN×N are the hypergraph spectrum.

The proof is provided in Appendix C.1. This theorem can be used to estimate the

hypergraph spectrum, given multiple observations of several signal points.

5.3 Hypergraph-based Image Processing

5.3.1 Image Compression

Efficient compression of signals is important in data analysis and signal processing. Pro-

jecting signals onto a suitable orthonormal basis is very common in compression. Within

the proposed HGSP framework, we can represent N signals in the original domain with C
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frequency coefficients in the hypergraph spectrum domain. More specifically, according to

the hypergraph sampling theory, we can losslessly compress a K-bandlimited signal of N

signal points with K spectrum coefficients. The process is similar to the data compression

we discussed in Section 4.6.1. Interested readers are referred to that part for more discussions

and results.

5.3.2 Edge Detection

Convolution-based method is widely used in the edge detection of images in DSP. Similarly,

hypergraph convolution-based operations can also play a role in image edge detection. Here,

we introduce a hypergraph translation-based method for edge detection. To implement

HGSP-based method, we first design a 9× 9 mask and use it as a hypergraph with 81 nodes

by the IANH model. Next, we implement hypergraph-based translation at the center of

the mask. The summation of the translated result becomes the new value of the center

node. Hovering the mask over the whole image, this process can be understood as blurring

the hypergraph signals with the information of center node. We can design a threshold for

the difference between the translated values and the original pixels to detect edges. We

compared the proposed method with the Sobel and Prewitt methods [131] on three SIPI

image datasets (http://sipi.usc.edu/database/) as shown in Fig. 5.1. From the result, we

can see that HGSP-based method detects the details and the edges more explicitly. With

deeper understanding of hypergraph convolution-based kernels, HGSP shows clear promise

in edge detection.

5.3.3 Hypergraph Convolution Filter for Segmentation

Deep-learning methods, like graph and hypergraph convolutional networks [25,119,122] have

achieved significant success in data analysis. However, these learning methods do not provide

analysis and interpolation in the hypergraph spectrum domain. To explore hypergraph

convolution operations, we propose a convolution-based filter for semi-supervised learning in
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(a) Original (b) Sobel (c) Prewitt (d) HGSP

Figure 5.1: Results of Edge Detection.

video segmentation. Define V = [f1 · · · fN ]. Given the definition of Eq. (5.1), a single-step

convolution filter with parameter y on signal x is defined as

Fy(x) = x � y = Vdiag(fTi y)VTx. (5.12)

We now explain the use of convolution filter to segment. We consider a dataset in a

biomedical application. In such datasets, a series of time-varying images are provided to

record the activities of neuron shown as Fig. 5.2(a). The task here is to segment neurons

from the background if we know part of labels in the ground truth shown as Fig. 5.2(c).

Such a video with K = 3024 frames and N = 5122 pixels in each frame can be modeled as

a hypergraph with N nodes and each node has K observations.

Assume that xi ∈ RN , i = 1, · · ·K are the pixels in the ith frame. With the property

of hypergraph stationary process in Theorem 5.1, we can easily estimate the hypergraph

spectrum V for the time-varying images by applying decomposition on the normalized co-

variance matrix from K observations xi’s. Suppose that ` nodes have labels and N − ` do
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(a) Detection of neurons (b) Comparison with SVM.

(c) Ground Truth of
Segmentation

(d) HGSP-based
Segmentation with
MF.

(e) SVM-based
Segmentation with
LPF.

Figure 5.2: Results of Video Segmentation.

not. We can estimate the filter parameters y by minimizing the error between the given

labels L ∈ R` and the ` corresponding filtered signals Fy(x)` ∈ R`, i.e.,

min
y
||L− Fy(x̃)l||22, (5.13)

where x̃ = 1
K

∑
xi is the pixel average. More specifically, this optimization problem has a

solution at

y = W−1L, (5.14)

where each row of W ∈ Rl×N is the corresponding row of Vdiag(fTi x̃)VT with the same

index as the labeled data. From the estimated parameters y, we obtain the filtered signals

for all the nodes in Fy(x̃) and apply a threshold to determine its label (i.e., {±1}) in the

binary classification. To tackle possible noise amplification, we further apply a 4× 4 median

filter (MF) after the convolution filter.

In the experiment, we cut the original 512×512 images into 64×64 non-overlapping blocks
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Table 5.1: Comparison of Computation Time (in Seconds)
HGSP(64× 64) SVM (64× 64) SVM (512× 512)
2413 403 82813

to lower complexity. One result with ` = 40% ·N labeled data achieves 95.06% accuracy, as

shown in Fig. 5.2(d) and shows much clearer segmentation compared to the SVM result after

a 4×4 averaging-kernel lowpass filter (LPF) [132] in Fig. 5.2(e). Fig. 5.2(b) further compares

our method to SVM with and without LPF in terms of estimated label accuracy. From the

comparison, we can see that the performances of SVM improves with larger processing blocks

at the cost of computation complexity. LPF can improve the performance of SVM results.

Still, the HGSP-based method achieves the best performance. We measured the computation

time for these methods in Table 5.1. It is clear that HGSP-based methods achieves superior

accuracy with moderate computation cost.

5.4 Hypergraph-based Point Cloud Processing

5.4.1 Motivation

Recent developments in depth sensors and softwares make it easier to capture the features

and create a three-dimensional (3D) model for an object and its surroundings [133]. In

particular, with low-cost scanners such as light detection and ranging (LIDAR) and Kinect, a

new data structure known as the point cloud has achieved significant successes in many areas,

including virtual reality, geographic information system, reconstruction of art document and

high-precision 3D maps for self-driving cars [134]. A point cloud consists of 3D coordinates

with attributes such as color, temperature, texture, and depth [135]. Owing to the easy

access to scanning sensors and the huge need in describing the 3D features, the use of point

clouds has attracted significant attentions in areas of computer vision, virtual reality, and

4Part of this chapter is reprinted, with permission, from [S. Zhang, S. Cui, and Z. Ding, “Hypergraph
Spectrum Analysis and Processing in 3D Point Clouds,” in IEEE Transactions on Image Processing, vol.
30, pp. 1193-1206, Dec. 2021.].
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medical science. How to process the point clouds efficiently becomes an important topic of

research in many 3D imaging and vision systems.

To analyze the features of point cloud, the first step is to construct an analytical model

to represent the 3D structures. The literature provides several different models. In [136],

the 3D space is partitioned into several boxes or voxels, and the point clouds are then

discretized therein. One disadvantage of voxels is that a dense grid is required to achieve

fine resolution, leading to spatial inefficiency [135]. A spatially efficient approach [137, 138]

is the octree representation of point clouds. An octree is a tree data structure in which each

node has exactly eight children. It can partition a 3D space recursively, and represent the

point clouds with partitioned boxes. Although efficient, octree suffers from discretization

errors [135]. The bd-tree is another spatial decomposition technique and is robust in highly

cluttered point cloud dataset. However, compared to octree structures, bd-trees are more

difficult to update.

Recently, graphs and graph signal processing (GSP) have found applications in modeling

point clouds. For example, the authors of [135] construct a graph based on pairwise point

distances. Some other works, such as [139, 140], construct graphs based on the k-nearest

neighbors, where each vertex (point) has an edge connection to its k nearest neighbors.

There are several clear connections between graph features and point cloud characteristics.

For example, the smoothness over a graph can describe the flatness of surfaces in point clouds.

GSP-based tools such as filters and graph learning methods can process the point clouds

and have shown great success because of the graph model’s ability to capture the underlying

geometric structures. However, graph-based methods still face some challenges, such as

limited orders and measurement inefficiency. In a traditional graph, each edge can only

connect two nodes, constraining graph-based models to describe only pairwise relationships.

However, a multilateral relationship among multiple nodes is far more informative in a point

cloud model. For example, points (i.e., nodes) on the same surface of a point cloud exhibit a

strong multilateral relationship, which cannot be easily captured by an edge of a traditional
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(a) A 3D Shape
with Eight Nodes:
Green in the Top,
Red in the Side,
Blue in the Bot-
tom.

(b) Distance-
based Graph
Model with Eight
Edges.

(c) Hypergraph
Model with Three
Hyperedges.

Figure 5.3: Examples of Geometric Models of Point Clouds.

graph. In fact, construction of an efficient graph for a given dataset is always an open

question. Thus, studies on point clouds can benefit from more general and efficient models.

To develop an efficient model for point clouds, we explore a high-dimensional graph

model, known as hypergraph [123]. Hypergraph can be a useful model in processing 3D

point clouds. A hypergraph H = {V , E} consists of a set of nodes V = {v1, . . . ,vK} and

a set of hyperedges E = {e1, . . . , eK}. Each hyperedge in a hypergraph can connect more

than two nodes. Obviously, a normal graph is a special case of a hypergraph, where each

hyperedge degrades to connect two nodes exactly. The hyperedge in a hypergraph can

characterize the multilateral relationship among several related nodes (e.g., on a surface),

thereby making hypergraph a natural and intuitive model for point clouds. For example, a

3D shape together with its geometric models are shown as Fig. 5.3. Since each edge only

connects two nodes as nodes are treated equivalently in a traditional graph as Fig. 5.3(b),

it is hard to distinguish from the graph structure which surface a node belongs to. However,

from the hypergraph model in Fig. 5.3(c), we can easily identify surfaces of nodes according

to high-dimensional hyperedges. Furthermore, advances in hypergraph signal processing

(HGSP) [123] are providing more hypergraph tools to process high-dimensional cross-features

and multilateral interactions among nodes, such as HGSP-based filters and spectral analysis,

for effective point cloud processing.
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However, processing the point clouds based on hypergraphs still poses several challenges.

Similar to GSP, the first problem lies in the construction of hypergraph for point clouds. The

traditional hypergraph construction method for a general dataset relies on data structure.

For example, in [114], a hypergraph model is constructed according to the sentence structure

in natural language processing. The k-nearest neighbor model is another method to con-

struct the hypergraph. In [123], a hypergraph can be formed from the feature distances for an

animal dataset to achieve clustering. However, such distance-based or structure-based model

may be rather lossy in information preservation. For example, the structure-based method

may not preserve the correlation of some irregular structures, whereas the k-nearest neigh-

bor method may narrowly emphasize the distance information. In addition to hypergraph

construction, another issue in analyzing point cloud with hypergraph tools is the computa-

tion complexity of the spectrum space. In the HGSP framework, spectrum-based analysis

plays an important role but needs to compute the spectral space. Usually, the computation

of hypergraph spectrum is based on orthogonal-CP decomposition [36], which incurs high-

complexity when there are many nodes. Another challenge in point cloud processing is the

effect of noise and outliers. Since a hypergraph model is constructed from observed data,

noise can distort the hypergraph and degrade the performances of HGSP. Thus, mitigating

noise effect and robustly estimating the hypergraph model for point clouds pose a significant

challenge.

This section addresses the aforementioned problems. We propose novel spectrum-based

hypergraph construction methods for both clean and noisy point clouds. For clean point

clouds, we first estimate their spectrum components based on the hypergraph stationary

process and optimally determine their frequency coefficients based on smoothness to recover

the original hypergraph structure. For noisy point clouds, we introduce a method for joint

hypergraph structure estimation and data denoising. We shall illustrate the effectiveness

of the proposed hypergraph construction and spectrum estimation in two point cloud ap-

plications: sampling and denoising. Our experimental results clearly establish a connection
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between hypergraph frequencies and point cloud features. The performance improvement

in both applications demonstrates the strength and power of hypergraph in point cloud

processing and the practical value of our estimation methods.

5.4.2 Hypergraph Spectrum Estimation for Clean Point Clouds

A point cloud is a set of 3D points obtained from sensors or generated synthetically, where

each point is attributed with coordinates and other features, such as color [141]. Since the

3D coordinates are basic features of a point cloud, in this chapter, we primarily focus on

point clouds characterized by their coordinates. We consider a matrix representation of the

point clouds, where a point cloud with N nodes is denoted by a location matrix

s = [X1 X2 X3] =



sT1

sT2
. . .

sTN


∈ RN×3, (5.15)

where Xi denotes a vector of the ith coordinates of all the points, and si is the three

coordinates of ith point. With the information of coordinates, different models, such as

graphs [135] and octrees [137], can be constructed to analyze the point clouds.

To process the 3D point clouds within the HGSP framework in Section 4.3, the first

step is to construct an optimal hypergraph to model the point clouds. As we mentioned

in the Section 5.4.1, it is time-comsuming and inefficient to first construct a hypergraph

structure before tensor decomposition to obtain the hypergraph spectrum. Instead, we

propose to directly estimate the hypergraph spectral pairs based on the observed data, and

then recover the original representing tensor with Eq. (4.14). In this section, we first estimate

the hypergraph spectrum components fr’s based on the hypergraph stationary process, and

optimize the frequency coefficients λr’s based on the smoothness for original point clouds.
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Algorithm 3 Estimation of Hypergraph Spectrum

1: Input: Point cloud dataset s = [X1 X2 X3] ∈ RN×3.
2: Calculate the mean of each row in s, i.e.,

s = (X1 + X2 + X3)/3;
3: Normalize the original point cloud data as zero-mean in each row, i.e., s′ =

[X1 − s,X2 − s,X3 − s];
4: Calculate the eigenvectors {f1, · · · , fN} for Rs′ = s′(s′T ) via SVD;
5: Output: Hypergraph spectrum V = [f1, · · · , fN ].

Estimation of Hypergraph Spectrum Components

In this part, we propose a method to estimate the hypergraph spectral components based

on the hypergraph stationary process.

The three coordinates of a point can be interpreted as three observations of the point

from different angles, which describe the underlying multilateral relationship. Thus, we can

assume that the point cloud signals follow the stationary process over the estimated under-

lying hypergraph structure. If the point cloud signals s follow the hypergraph stationarity,

it should satisfy Eq. (5.10) and Eq. (5.11). Thus, a spectrum estimation method can be

based on hypergraph stationarity. The details of the algorithm is described as follows in

Algorithm 3.

With Theorem 5.1, we can directly obtain an estimation of the hypergraph spectrum

based on the hypergraph stationarity. Note that, here, we assume all the observations are

from a clean point cloud without noise. The case of noisy point clouds will be discussed

later.

Different from the traditional column-wise mean of the coordinates in Eq. (5.15), we use

a row-wise mean of the coordinates to calculate the spectrum. Traditional column-wise mean

methods [142] is based on principal component analysis (PCA) in a local region for dimension

reduction and visualization of the data structure with a covariance matrix in R3×3. Typical

applications of such PCA-based methods include points classification and region growing in

segmentation [143, 144]. However, our objective is different. Since our goal is to estimate a

hypergraph spectrum matrix in RN×N based on hypergraph stationary process rather than
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to reduce the data structure dimensions, the three coordinates represent three observations

(or hypergraph signals) of the N nodes. Consequently, we apply the row-wise mean instead,

unlike column-wise means used in the PCA-based methods.

Estimation of Frequency Coefficients

Next, we discuss how we estimate the hypergraph frequency coefficients with the spectrum

components based on the hypergraph smoothness.

In real applications, the large-scale networks are usually sparse, which makes it mean-

ingful to infer that most entries of the hypergraph representing tensor for real datasets are

zero [145]. In addition, the smoothness of signals is a widely-used assumption when estimat-

ing the underlying structure of graphs and hypergraphs [146]. Thus, the estimation of the

hypergraph representing tensor with known spectrum components for a given dataset s can

be generally formulated as

min
λ

αSmooth(s,λ, fr) + β||A||2T (5.16)

s.t. A =
N∑
r=1

λr · fr ◦ ... ◦ fr︸ ︷︷ ︸
M times

. (5.17)

A ∈ A. (5.18)

||A||T =

√√√√ N∑
i1,i2,··· ,iM=1

a2
i1i2···iM . (5.19)

The constraint set A in (5.18) includes the prior information of the representing tensor.

For example, if the representing tensor is the adjacency tensor, its entries should be non-

negative. In the constraint of (5.19), ||A||T is the tensor norm which controls the sparsity

of the hypergraph structure. Here, we consider the Frobenius-like norm [27] since we aim

to build a connection between spectra and hypergraph structures. The use of other tensor

norms hypergraph applications can be exploited in future works. The smoothness function

Smooth(s,λ, fr) can be designed for specific problems. Typical functions can be hypergraph
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Laplacian regularization, label ranking, and total variation [123].

Here, the HGSP-based total variation is used to measure the smoothness of signals over

estimated hypergraph. In Eq. (4.24a), we have

Af [M−1]
r =

N∑
i=1

λifi(f
T
i fr)

M−1 = λrfr. (5.20)

With the supporting matrix defined in Eq. (5.6), we also have

Psf r =
1

λmax

N∑
i=1

λifi(f
T
i fr) =

λr
λmax

fr. (5.21)

Consequently, the total variation can be written with the supporting matrix as follows:

TV(s) = ||s−Pss||k, (5.22)

where k ls application dependent. More details can be found in Section 4.3.5.

For convenience, we use the quadratic-form total variation based on the supporting matrix

to describe the hypergraph smoothness, i.e.,

TV(s) = ||s− (1/λmax)Ps||22. (5.23)

This form of smoothness function suggested in [123] can capture the differences between one

node and its neighbors over hypergraph. Since the signals are smooth over the estimated

hypergraph, observations are also smooth. Thus, the final smoothness function for point
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cloud s = [X1 X2 X3] is

Smooth(s,λ, fr) =
3∑
i=1

||Xi −PsXi||22

=
3∑
i=1

||Xi −
∑
r

σr(f
T
r Xi)fr||22

=
3∑
i=1

||Xi −Wiσ||22, (5.24)

where Wi = [(fT1 Xi)f1 (fT2 Xi)f2 · · · (fTNXi)fN ], σr = λr/λmax and σ = [σ1 · · ·σN ]T .

Moreover, the tensor norm of a given hypergraph has the following property with the

frequency coefficients.

Theorem 5.2. Given a representing tensor A =
∑N

r=1 λr · fr ◦ ... ◦ fr︸ ︷︷ ︸
M times

, the tensor norm

||A||2T =
∑N

i1,i2,··· ,iM=1 a
2
i1i2···iM can be written in the form of frequency coefficients as

||A||2T =
N∑
r=1

λ2
r = λTλ, (5.25)

where λ = [λ1 λ2 · · · λN ]T .

The proof is in the Appendix C.2. This property can help us build a connection from

the tensor norm to the frequency coefficients directly.

Now, if we consider the representing tensor as the adjacency tensor and each hyperedge

consists of three nodes since at least three nodes are required to construct a surface, we

optimize the normalized frequency coefficients σ = 1
λmax

λ = [σ1 σ2 · · · σN ]T via

min
σ

α

3∑
i=1

||Xi −Wiσ||22 + βσTσ (5.26)

s. t. 0 ≤ σr ≤ max
i
σi = 1, (5.27)

N∑
r=1

σrfr,i1fr,i2fr,i3 ≥ 0, i1, i2, i3 = 1, 2, · · · , N. (5.28)
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Algorithm 4 Estimation of Frequency Coefficient

1: Input: Point cloud dataset s = [X1,X2,X3] ∈ RN×3, hypergraph spectrum V =
[f1, · · · , fN ].

2: for i=1,2,...,iter do:
3: Set σi = 1 as the maximal normalized eigenvalue.
4: Solve the optimization problem in Eq. (5.26).
5: end for
6: Find the optimal i to minimize the target function.
7: The optimal coefficients σ is the solution of Eq. (5.26) correlated to the optimal i.
8: Output: Frequency coefficients σ.

Figure 5.4: Estimation of Hypergraph Spectral Pairs for Original Point Clouds

The constraint (5.28) limits the estimated representing tensor as the adjacency tensor.

The constraint (5.27) is the nonnegative constraint on weight and the factor [36]. Clearly,

the optimization is non-convex with the constraint maxi σi = 1. However, if the position

of the maximal frequency is known, the optimization problem can be solved by tools such

as cvx [147, 148]. Thus, we can develop the following algorithm to estimate the frequency

coefficients in Algorithm 4.

Note that, since we consider clean point cloud without noise, we usually set parameter

α ≤ β. Then, from the estimated spectrum pair (fr, σr) under normalization, we can recover
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the original adjacency tensor as Eq. (5.17). Hence, the hypergraph construction process for

a clean point cloud can be summarized as Fig. 5.4. The recovery of original adjacency tensor

is not always necessary in practical applications since storing the representing tensor is less

efficient than storing the spectrum pairs.

5.4.3 Joint Spectrum Estimation and Denoising

In practical 3D imaging, perturbations such as noises and outliers often exist when generating

a point cloud of an unknown object. These noises may significantly affect the performance

of point cloud processing since many existing algorithms require quality datasets. Thus,

denoising remains a vital issue in practical point cloud applications.

Usually, to denoise point sets with sharp features is difficult, especially when the noise is

large, as such features are hard to distinguish from noise effect. Generally, smoothness-based

methods are common. In [150], a method based on L0 norm of differences between k-nearest

neighbors is introduced. In [149], Laplacian regularization is used to describe smoothness and

to denoise noisy point sets. Other works, such as [139,151], minimize the total variation over

graphs to denoise the point sets. Although smoothness-based methods have achieved notable

successes, how to interpret and define an effective smoothness function for a general point set

remains open. Furthermore, for graph-based smoothness methods, the construction of graph

model remains a critical problem, since traditional methods based on distance suffers from

the imprecise location measurement. To this end, a more general definition of smoothness

and a more efficient denoising method for arbitrary point clouds are highly desirable.

In this subsection, we introduce a joint method to simultaneously estimate the hypergraph

structure and denoise noisy point clouds. In Section 5.4.2, we already introduce an estimation

method of spectral pair (fr, σr) for clean point clouds. A similar construction process can

be developed for the noisy point clouds. As the estimation of spectrum components only

depends on the observed data, we need to denoise the noisy observations while optimizing

the frequency coefficients. As already discussed, the problem of denoising a signal on a
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hypergraph can be written as a convex minimization problem with the constraints that

denoised signals should be smooth over the hypergraph. Accordingly, the general process of

hypergraph denoising and estimation can be summarized as the following steps:

• Step 1: Estimate the approximated hypergraph spectrum components from the ob-

served noisy point clouds;

• Step 2: Jointly estimate frequency coefficients and denoise the noisy observations;

• Step 3: Update the noisy observations as denoised data and repeat Step 1 until enough

iterations.

To estimate hypergraph spectral components of noisy data, the process is the same as

Algorithm 3 based on hypergraph stationary process. To jointly estimate the frequency

coefficients to recover the original underlying structure and to denoise the noisy point clouds,

we propose the following objective. Given N noisy points s = [X1 X2 X3], the joint

estimation task can be formulated as

min
σ,Y

3∑
i=1

[||Xi −Yi||22 + α||Xi −Wiσ||22] + β||A||2T (5.29)

s.t. A =
N∑
r=1

λr · fr ◦ ... ◦ fr︸ ︷︷ ︸
M times

∈ A,

0 ≤ σr ≤ max
i
σi = 1,

Wi = [(fT1 Xi)f1 (fT2 Xi)f2 · · · (fTNXi)fN ].

The resulting Y = [Y1 Y2 Y3] is the denoised point clouds, and (α, β) are two positive

regularization parameters. The first part in Eq. (5.29) lets the denoised point cloud maintain

the observed structural features. The second part is the smoothness function derived from

Eq. (5.24) which adjusts positions of noisy points. The third part is the tensor norm

regularization to control hypergraph sparsity.
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Figure 5.5: Joint Hypergraph Estimation and Denoising for Noisy Point Cloud.

The optimization problem of Eq. (5.29) is not convex in Y and σ. Therefore, similar to

[146], we split the problem into two subproblems. For each subproblem, we fix one variable

set to solve the other one. Upon convergence, the solution corresponds to a local minimum

and not necessarily a global minimum.

We first initialize Y as the observed signals X and solve the following problem similar to

that in Section 5.4.2.

min
σ
α

3∑
i=1

||Xi −Wiσ||22 + βσTσ (5.30)

s.t. 0 ≤ σr ≤ max
i
σi = 1,

N∑
r=1

σrfr,i1fr,i2fr,i3 ≥ 0, i1, i2, i3 = 1, 2, · · · , N.

This problem can be solved similarly to the solution of clean point cloud with Algorithm 4.

Once the estimated frequency coefficients are found, we solve the subproblem of point
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Algorithm 5 Joint Hypergraph Estimation and Point Cloud Denoising

1: Input: Noisy observations of point clouds s = [X1,X2,X3] ∈ RN×3.
2: Initialization: Calculate the spectrum components fr’s from the observed point cloud

s as Algorithm 3.
3: for i=1,2,...,iter do:
4: Find the optimal σ for the first subproblem in Eq. (5.30) with Algorithm 4.
5: Solve the optimization problem in Eq. (5.31) with Y in Eq. (5.32).
6: Update the observed signals as Y and recalculate the spectrum components fr’s.
7: end for
8: Output: Spectral pairs (fr, σr)’s, denoised point clouds Y.

cloud denoising

min
Y

3∑
i=1

[||Xi −Yi||22 + α||Xi −Wiσ||22], (5.31)

whose close-form solution for each coordinate is

Yi = [I + α(I−Ps)
T (I−Ps)]

−1Xi. (5.32)

Note that Ps is the supporting matrix. We then update the frequency components based

on the denoised point clouds, and repeatedly carry out Step 1 to Step 3 until getting the

final solution. In practice, we generally observe the convergence within only a few iterations.

The complete algorithm is summarized in Algorithm 5 as shown in Fig. 5.5. Unlike for clear

point clouds, we emphasize more on the smoothness of signals over the hypergraph. The

parameter α can be set larger than used when dealing with clean point clouds.

5.4.4 Application Examples

In this section, we examine three application examples to test the efficacy of the proposed

method in estimating hypergraph structure for both clear and noisy point clouds.
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Sampling

Sampling is an important operation to facilitate analysis of very large point clouds. In this

part, we consider different sampling strategies depending on different kinds of applications.

Some interesting connections are found from the hypergraph frequency and point cloud

features.

1) Resampling using Harr-like Highpass Filtering : Filtering helps extract select features

of a given dataset. In some applications such as boundary detection, accurate extraction of

shape features of point clouds is important. Thus, an efficient sampling should retain the

features of the original point cloud. In our estimation of hypergraph structure, smoothness

is a significant feature to model point clouds. Ideally, smoothness over the original surface

of a point cloud should correspond to smoothness over its hypergraph model. Therefore, we

can also design a Harr-like high-pass filter to extract sharp features over the surfaces.

Let I be an identity matrix of appropriate size. Similar to that in GSP [135], a Haar-like

high-pass filter is designed as

H = I−Ps (5.33)

= V



1− σ1 0 · · · 0

0 1− σ2 · · · 0

...
...

. . .
...

0 0 · · · 1− σN


VT . (5.34)

The filtered signal is

(Hs)i = si −
∑
j

Ps(ij)sj, (5.35)

which reflects the differences between nodes and their neighbors over the hypergraph. Note

that, the frequency coefficients together with their corresponding spectral components are

ordered decreasingly here, i.e., σi ≥ σi+1. From the definition of total variation, more

smoothness corresponds to larger total variation. Thus, we can extract the sharp features
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(a) Original Surfaces with
6000 Points.

(b) Original Cylinder with
6000 Points.

(c) Original Cube with
5000 Points.

(d) Sampled Surfaces with 800
Points.

(e) Sampled Cylinder with 600
Points.

(f) Sampled Cube with
500 Points.

(g) Sampled Surfaces with
800 Points.

(h) Sampled Cylinder with
600 Points.

(i) Sampled Cube
with 500 Points.

Figure 5.6: View from the Top of Sampled Point Clouds.

over the point clouds by sampling the nodes with large value of ||si −
∑

j Ps(ij)sj||22.

To test this application, we estimate the spectral pairs for clean point clouds and filter

the signals over several synthetic datasets. We randomly generate multiple points over the

surfaces of basic graphics shown as Fig. 5.6(a) - 5.6(c), and sample the point clouds using

the high-pass filter (HPF) given in Fig. 5.6(d) - 5.6(f). From the test results, we can see

that the sampled points of the surfaces in Fig. 5.6(d) mainly congregate near the corners

and edges, which are the sharp parts of the point clouds. In addition, the sampled nodes

for a cube shape are also crowded near edges and corners. On the other hand, the sampled

nodes of a cylinder are mostly at the boundaries of the cylinder. Our test results show that
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the Harr-like HPF can extract sharp features from point cloud surfaces, which correspond

to the least smooth parts of the estimated hypergraph. Moreover, since the total variation

measures the order of frequency, sharp features over the point cloud correspond to high

frequency components. Thus, the hypergraph model and the estimated spectral pairs are

efficient when extracting features of 3D point clouds.

2) Down-Sampling with Hypergraph Fourier Transform: Projecting signals into a suitable

orthonormal basis is a widely-used sampling method [61]. The work of [123] develops a

sampling theory based on hypergraph signal processing as follows:

• Step 1: Order the spectrum components from low frequency to high frequency based

on their total variations.

• Step 2: Implement hypergraph Fourier tranform as

F(s) = [(fT1 s)M−1 (fT2 s)M−1 · · · (fTNs)M−1]T . (5.36)

• Step 3: Use C transformed signal components in the hypergraph frequency domain to

represent N signals in the original vertex domain.

More specifically, for a K-bandlimitted hypergraph signal, a perfect recovery is available

with K samples in hypergraph frequency domain. Similarly, we can sample the point clouds

based on the hypergraph Fourier transform. To test the performance of the sampled signals,

we implement hypergraph Fourier transform (HGFT) on each coordinates of the point clouds,

i.e., F(Xi) for all i. Then, we take the first C transformed signals in all coordinates. Finally,

we implement the inverse hypergraph Fourier transform (iHGFT) to obtain the sampled

shapes of the original point clouds. Note that, perfect recovery happens with C samples, if

(F(Xi))j+C = 0 for i, j ∈ Z+.

We test the recovered point clouds for animal point datasets [152–155] and the ShapeNet

datasets of objects [156,157] with the GSP-based methods. For the GSP-based method, we
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(a) Cat. (b) Wolf. (c) Horse.

(d) Plane. (e) Rocket. (f) Chair.

Figure 5.7: Test Datasets of Sampling.

construct a graph adjacency matrix W with Gaussian model, i.e.,

Wij =


exp

(
−||si − sj||22

δ2

)
, ||si − sj||22 ≤ t;

0, otherwise,

(5.37)

where si is the coordinates of the ith node. Then, we sample the point clouds using the

signals after the graph Fourier transform (GFT).

The test point cloud is shown as Fig. 5.7. We first compare the error defined as

Error1 =

∑
i |Xi −Xrec

i |∑
i |Xi|

(5.38)

between the recovered point clouds and original point clouds with sampling ratio 0.1 ∼ 1

shown as Fig. 5.8.

From the experimental results, we can see that the HGSP-based method has smaller

error than the GSP downsampling method, clearly indicating hypergraph to be a better

model. However, sometimes, the recovery error alone cannot tell the true story in terms of

the performance for the recovered point clouds. To explore more, we compare the recovered
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(a) Error for cat dataset. (b) Error for wolf dataset. (c) Error for horse dataset.

(d) Error for plane dataset. (e) Error for rocket dataset. (f) Error for chair dataset.

Figure 5.8: Error between Recovered Data and Original Data.

point clouds directly in Fig. 5.9. From the experimental results, we can see that HGSP-based

method captures the overall structure of the point clouds with very few samples, whereas the

GSP-based method requires more samples to get sufficient details. The error of GSP mainly

stems from some outliers when taking more than 90 percent of the samples. The experiments

show that HGSP-based method is a better tool for applications which need to recover an

overall shape of point clouds from limited data storage. Our test shows hypergraph to be

a suitable model for point clouds, and the estimated hypergraph spectral pairs capture the

point cloud characteristics very well.

Denoising

From estimated hypergraph spectral pairs from noisy point clouds, the performance of de-

noising is an intuitive metric of how good the estimates are. There are multiple methods

developed to denoise noisy point clouds. The authors of [139] proposed a graph-based method

to denoise based on total variation (GSP-TV). This method constructs a graph based on
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(a) Recovery from GSP-based Sampling with 30%, 50%, 70%, 90%, 98% Ratio of Samples for Cat Datasets.

(b) Recovery from HGSP-based Sampling with 30%, 50%, 70%, 90%, 98% Ratio of Samples for Cat Datasets.

(c) Recovery from GSP-based Sampling with 30%, 50%, 70%, 90%, 98% Ratio of Samples for Plane Datasets.

(d) Recovery from HGSP-based Sampling with 30%, 50%, 70%, 90%, 98% Ratio of Samples for Plane Datasets.

(e) Recovery from GSP-based Sampling with 30%, 50%, 70%, 90%, 98% Ratio of Samples for Wolf Datasets.

(f) Recovery from HGSP-based Sampling with 30%, 50%, 70%, 90%, 98% Ratio of Samples for Wolf Datasets.

Figure 5.9: Recovered Point Clouds from Sampled Transformed Signals.
107



(a) Bunny with 397
Samples.

(b) Bunny with 3595
Samples.

(c) Noisy Bunny
Dataset.

(d) Denoised Bunny
Dataset.

Figure 5.10: Visualization of the Original and Denoised Bunny Point Clouds.

observed coordinates first before solving the denoising optimization

min
Y
||X−Y||22 + αTV(Y,W), (5.39)

where X is the observed coordinates, and W is the adjacency matrix. Here, the graph total

variation TV(Y,W) is applied in describing the smoothness over the graphs. In addition

to total variation, Laplacian regularization (LR) [158] has also been used in denoising with

a basic formulation

min
Y
||X−Y||22 + α||YTLY||22, (5.40)

where L is the Laplacian matrix. Developed from traditional Laplacian regularization meth-

ods, a mesh Laplacian smooth (MLS) method is given in [159]. Other graph learning based

methods include graph Laplacian regularization (GLR) [150] in a low-dimension manifold

and feature graph learning (GL) [160].

1) Overall Performance of Denoising : To validate the performance of our denoising

method, we first compare with the aforementioned traditional methods using the Standford

bunny dataset with 397 points and sampled bunny with 3595 points, shown as Fig. 5.10(a)

and Fig. 5.10(b), respectively. For GSP-based methods, a graph is constructed according to

the Gaussian distance model to encode the local geometry information through an adjacency

matrix in Eq. (5.37) [135]. For the Laplacian-based method, we establish the Laplacian

matrix L = D− S, where S is the unweighted adjacency matrix and D is the diagonal
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(a) Comparison in Gaussian Distribu-
tion.

(b) Comparison in Uniform Distribu-
tion.

Figure 5.11: Comparison between Different Methods.

matrix of node degree. We compare different methods in the sampled bunny dataset adding

zero-mean Gaussian noise with variance σ2, and zero-mean Uniform noise with the interval

B − A, respectively. We use the error denoted by

Error2 =
N∑
i=1

3∑
j=1

|Xji − Yji|, (5.41)

where Xij and Yji are the jth coordinates of observed and denoised point i, respectively, to

measure the performance. We repeat the test on 1000 randomly generated noisy data. The

error between the original dataset and the denoised dataset is shown in Fig. 5.11. The error

of the noisy point clouds before denoising is also given as a reference in Fig. 5.11. From the

test results, we can see that the HGSP-based method can achieve the lowest error, which

demonstrates the effectiveness of the proposed denoising methods and estimated spectral

pairs. In addition, the denoised bunny with 3595 samples is shown in Fig. 5.10(d), using our

proposed method to denoise the noisy bunny in Fig. 5.10(c). The successful recovery of the

bunny point cloud presents strong evidence that our estimated spectral pairs and denoising

method are powerful tools in processing noisy point clouds.

To test the performance in a more general experiment setup, we compare the proposed

method with traditional methods together with graph learning based methods with other

types of noise in both complex animal datasets and the ShapeNet object datasets in Fig. 5.7.
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Table 5.2: Comparison in Different Datasets of Different Noise.
Noisy GSP-TV [8] LR [39] MLS [40] GLR [41] GL [42] HGSP

Uniform∼U(-3, 3)
Cat 2.9819 2.3744 2.4649 2.5312 2.2576 2.2412 2.2209
Horse 3.0377 2.7638 2.8280 2.8615 2.6777 2.6415 2.6216
Wolf 2.9857 2.6009 2.5650 2.6312 2.4391 2.4281 2.4164
Rocket 3.0587 2.6179 2.5391 2.6346 2.4512 2.3645 2.3052
Plane 2.9638 2.5369 2.4118 2.5110 2.4374 2.3827 2.3690
Chair 3.0233 2.5532 2.3718 2.5988 2.2855 2.1809 2.2048
Gaussian∼N(0, 2)
Cat 4.0218 3.4952 3.2597 3.6202 2.9778 3.0112 3.0026
Horse 4.1020 3.6088 3.8241 3.7268 3.4370 3.3805 3.2996
Wolf 4.0402 3.4154 3.2637 3.4756 3.1616 3.0800 3.0463
Rocket 4.1527 3.2323 3.4771 3.5967 3.1415 3.1063 3.2471
Plane 3.9544 3.3188 2.9365 3.4101 2.9677 2.9246 2.8868
Chair 4.0119 3.4372 3.0770 3.5044 3.1987 3.0212 3.0208
Impulse (p=0.08)
Cat 8.4066 7.3728 7.6285 7.8024 7.4001 7.3802 7.3844
Horse 35.7202 30.0853 29.8711 33.2011 28.9012 28.1285 27.9143
Wolf 9.4107 8.5086 8.5757 8.6105 8.2024 8.1684 8.1395
Rocket 1.8312 1.6718 1.6312 1.7354 1.6010 1.5896 1.6619
Plane 0.7759 0.6413 0.6559 0.6678 0.6752 0.6588 0.6386
Chair 1.1175 0.9374 0.9081 0.9661 0.8815 0.8622 0.8598
Average

5.5335 4.7318 4.6827 5.0047 4.5058 4.4195 4.3657

We normalize the coordinates of each point cloud to maintain a similar noise level. Using

mean squared error (MSE) to measure the performances of different methods, the results are

shown in Table. 5.2. We can see that the HGSP-based denoising achieves the best overall

performances in most datasets with different noise types. Generally, GLR is better than

traditional Laplacian regularization owing to its utilization of self-similarity among surface

patches, and GL exhibits a slight improvement over GLR. The GSP-based total variation

is worse than the HGSP-based total variation since the graph is constructed from noisy

coordinates. Moreover, these methods perform better under Gaussian and uniform noises,

since impulsive noise has a rescaling effect on the coordinates according to the coefficient p.

2) Discussion: Generally speaking, the total variation and the Laplacian regularization
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(a) Impact of Sparsity. (b) Impact of Smoothness.

Figure 5.12: Impact of Sparsity and Smoothness.

are both effective descriptions for signal smoothness. Hypergraphs and graphs can be efficient

tools in processing point clouds for specific datasets. For example, hypergraphs are more

efficient in processing complex shape features and tend to capture the overall shapes well

with fewer samples. It would be interesting to explore a joint framework including both

hypergraphs and graphs in processing different kinds of features in point clouds. Additionally,

future works should also evaluate the effects of different tensor norms.

3) Impact of Sparsity and Smoothness : In addition to the overall performance, it is inter-

esting to consider the ablation effect on smoothness and sparsity. To set up such additional

experiments, we compare the impact of optimization of frequency coefficients with the simple

approach of recovering eigenvalues from SVD of the covariance matrix.

We apply the same strategy to denoise the bunny datasets with uniform noise U(-0.1,

0.1) for the SVD-based method and the HGSP optimization based method in Eq. (5.29).

For the SVD-based method, eigenvalues are directly from step 4 in Algorithm 3 and only α

is used in denoising (smoothness) as Eq. (5.32). For the HGSP-based method, we first fix

the parameter α = 0.1 (smoothness) and measure the impact of β (sparsity) in Fig. 5.12(a).

Next, we freeze the parameter β = 0.1 and test on different α’s to measure the impact of

smoothness in Fig. 5.12(b).
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From Fig. 5.12, we observe that the optimal HGSP-based results achieve lower MSE

than the SVD-based method in general, except for very large α. With properly chosen

parameters for optimization, these results show that the HGSP-based method is better than

the SVD-based method, and demonstrate the effectiveness of the proposed optimization-

based method.

In Fig. 5.12(a), we can see that the appropriate β lies in [0.01, 0.03], which is smaller

than α = 0.1. In Fig. 5.12(b), the optimum α lies near 0.3, larger than β = 0.1. Generally,

α larger than β generates reasonably desirable results. Moreover, we can see from the curves

of MSE that denoising is more sensitive to smoothness than sparsity.

Segmentation

One common processing task on 3D point clouds is unsupervised segmentation. The goal

of point cloud segmentation is to identify points in a cloud with similar features for clus-

tering into their respective regions [161]. These partitioned regions should be physically

meaningful. Practical examples include the work of [162] which segments human posture

point clouds for behavior analysis by partitioning human bodies into different semantic body

parts. Segmentation facilitates point cloud analysis in various applications, such as object

tracking, object classification, feature extraction, and feature detection.

Our proposed segmentation method targets gray-scale point clouds consisting ofN points.

There are three stages in the proposed segmentation: 1) estimate the hypergraph spectral

space, 2) order and select the principal hypergraph spectrum, and 3) segment via clustering

in the reduced hypergraph spectral space. In the first stage, instead of decomposing the

constructed hypergraph, we estimate the hypergraph spectrum directly from the observed

point clouds based on the hypergraph stationary process as Algorithm 3. This approach by-

passes explicit hypergraph construction since the representing tensor is memory-inefficient

5Part of this chapter is reprinted, with permission, from [S. Zhang, S. Cui, and Z. Ding, “Point Cloud
Segmentation based on Hypergraph Signal Processing,” IEEE Signal Processing Letters, vol. 27, pp.1655-
1659, Sep. 2020].
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Algorithm 6 Hypergraph Spectral Clustering

1: Input: Point cloud dataset s = [X1,X2,X3] ∈ RN×3 and the number of clusters k.
2: Calculate the mean of each row in s, i.e., s = (X1 + X2 + X3)/3;
3: Normalize the original point cloud data to zero-mean in each row, i.e., s′ =

[X1 − s,X2 − s,X3 − s];
4: Calculate eigenvectors {f1, · · · , fN} for R(s′) = s′(s′H);
5: Estimate frequency coefficients σr’s by solving Eq. (5.26) approximately;
6: Rank frequency components fr’s based on their corresponding frequency coefficients σr

in the decreasing order.
7: Find the first E leading spectral components fr with larger σr and construct a spectrum

matrix M ∈ RN×E with columns as the leading spectral components.
8: Cluster the rows of M using k-means clustering.
9: Cluster node i into partition j if the ith row of M is assigned to jth cluster.

10: Output: k partitions of the point clouds.

and its orthogonal-CP decomposition is time-consuming. We then estimate the distribution

of hypergraph frequency coefficients according to a measure of smoothness, and order the

spectrum based on the hypergraph frequency. Finally, we identify the low frequency spectral

contents and cluster in the optimized spectral space. The details of the algorithm is provided

in Algorithm 6.

We test the performance of the proposed method along with traditional graph-based

methods and k-means clustering. To implement k-means, we cluster over each row of the

point cloud coordinates. For the hypergraph spectral clustering, we select the first E key

spectral components according to frequency coefficients until a steep drop to the next (i.e.,

the (E + 1)-th) coefficient. Typically, the first two or three elements sufficiently satisfy this

criterion. When optimizing the frequency coefficients, an efficient β lies in 0.1-10 depending

on the specific datasets. For the graph-based clustering, a Gaussian-graph model [135] is

applied to encode the local geometry information through an adjacency matrix W ∈ RN×N .

Let si ∈ R1×3 be the ith point coordinate. The edge weight between points i and j is

calculated as Wij = exp
(
− ||si−sj ||

2
2

δ2

)
if ||si − sj||22 ≤ t; otherwise, Wij = 0. Here, the

variance δ and the threshold t are parameters to control the edge weights. GSP spectrum is

derived from the matrix W. We also test the Laplacian matrix L = D− S, where S is the

unweighted adjacency matrix and D is the diagonal matrix of node degree.
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(a) HGSP (b) GSP (c) Laplacian (d) Kmeans

Figure 5.13: Results of Segmentation.

Table 5.3: Comparison in ShapeNet Datasets
HGSP GSP Laplacian K-means

Silhouette 0.56748 0.25756 0.137381 0.55894
Accuracy 0.58928 0.55321 0.502275 0.57699

1) Overall Performance: We first compare different methods in the animal datasets same

as sampling. The overall results are shown in Fig. 5.13. The test results show that HGSP-

based method, GSP-based method, and k-means clustering exhibit similar performance by

clustering limbs and torsos. Interestingly, our HGSP method can further distinguish tails and

different legs. Especially for the gorilla dataset in the second row of Fig. 5.13, HGSP spectral

clustering segments different limbs with four different colors, whereas other methods fail to

do so. We can see that the hypergraph model captures the overall structural information of

3D point clouds better than traditional graphs. The Laplacian-based method accentuates

the details of some complex structures. For example, in the gorilla dataset, Laplacian-based

method further distinguishes feet from legs and hands from arms, respectively. Generally,

HGSP-based spectral clustering presents clearer segmentation of the main features for the

point cloud datasets.

2) Numerical Comparison: To provide a comprehensive numerical comparison between
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(a) Ground Truth. (b) HGSP Results.

Figure 5.14: Segmentation and Ground Truth.

different methods, we also compare the Silhouette index and mean accuracy of different

methods in the ShapeNet Datasets. In the ShapeNet datasets, there are 16 categories of

objects with labels in 2-6 classes. We test the average Silhouette and mean accuracy by

randomly picking 50 point clouds from each category. The result is shown in Table 5.3.

From the result, we can see that the HGSP-based method provides the largest Silhouette

indices (indicating the best inner-cluster fitting) and the highest mean accuracy. Although

these numerical results are valuable, a larger mean accuracy does not necessarily imply

better performance in unsupervised clustering. For example, in Fig. 5.14, although the

segmentation result differ from the ground truth, these results still make sense by grouping

two wings to different classes. Often, visualization can be a more suitable performance

assessment.

3) Distribution of Eigenvalues : We are interested in the reasons behind the performance

differences of different graphical methods. To explore the reasons behind such differences,

we examine the distributions of eigenvalues or the frequency coefficients of different methods

in the specific horse point cloud shown in Fig. 5.15. In different rounds of the experiment,

we randomly sample 400, 1400, 2400 and 3400 points from the original horse point cloud and

calculate the eigenvalues from different methods. The results are shown in Fig. 5.16, Fig.

5.17 and Fig. 5.18. The Y-axis is the normalized eigenvalues or frequency coefficients. The

X-axis is the eigenvalue order, i.e., Posi = i/N for the ith eigenvalue of N nodes. From the

results, we can see that the HGSP-based method and GSP-based method have quite similar
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Figure 5.15: Horse
Point Cloud.

m

Figure 5.16: HGSP
Coefficients.

Figure 5.17: GSP
Eigenvalues.

m

Figure 5.18: Lapla-
cian Eigenvalues.

distributions, which indicate that their feature information is more concentrated in the first

few key spectral components. Moreover, the HGSP-based method delivers a sharper curve

than the GSP-based method. As mentioned in [107], a larger eigengap would lead to better

clustering results, which should be responsible for the performance difference between the

HGSP-based and GSP-based methods. Unlike adjacency-based methods, the distribution

of eigenvalues of the Laplacian is rather different as shown in Fig. 5.18. In contrast to

the Laplacian-based method, the HGSP-based method makes it easier to identify the vital

information. This difference in eigenvalue distribution can account for the performance

difference between the Laplacian-based segmentation and those based on adjacency.

4) Complexity and Robustness : We also test on datasets for different numbers of samples

and noise effect. The results are shown in Fig. 5.19. The HGSP spectral clustering remains

robust for either noisy data or down-sampled data. We compare the computation runtime of
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(a) 400 Samples. (b) 1400 Samples. (c) SNR=32 dB. (d) SNR=25 dB.

Figure 5.19: Robustness of HGSP-based Segmentation.

Table 5.4: Running Time of Different Methods (in Seconds)
Gorilla(2048 nodes) Wolf(3400 nodes) Cat(3400 nodes)

GSP 7.05 24.982 24.812
HGSP 2.771 11.451 11.335

Laplacian 4.662 15.579 15.773
k-Means 0.016 0.014 0.013

different methods over the animal datasets. From results summarized in Table 5.4, it is not

surprising that the k-means method is the fastest, since graph-based methods require the

additional step of spectrum estimation before clustering. The GSP-based and Laplacian-

based methods require more computation, primarily because the computations needed to

form the graph structure, whereas our proposed method directly estimates the HGSP spectral

components. In particular, we only require an approximate distribution of the frequency

coefficients to complete the segmentation task. Since the power of estimated coefficients is

mainly concentrated in the first few spectral components shown as the optimized distribution

in Fig. 5.16, a faster implementation can be done with the knowledge of the key estimated

hypergraph spectra.

5.5 Conclusions

In this chapter, we introduce several fundamental definitions and properties of hypergraph

frequency operations for image processing. We further present several application examples

based on HGSP operations to illustrate the practical utility of HGSP in multimedia signal

processing. Our goal is to develop new signal processing methods and analytical hypergraph
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tools for effective image processing and point cloud processing. Moreover, HGSP is also

expected to be a useful tool in the development and analysis of HGCN.
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Chapter 6

Graph Convolutional Networks based

on Taylor Expansions

6.1 Introduction

Learning and signal processing over graph models have gained significant traction owing to

their demonstrated abilities to capture underlying data interactions. Modeling each data

point as a node and their interactions as edges in a graph, graph-based methods have been

adopted in various signal processing and analysis tasks, such as semi-supervised classification

[119, 163], spectral clustering [164, 165], link prediction [166] and graph classification [167].

For example, in [135], an undirected graph is constructed based on a Gaussian-distance

model to capture geometric correlations among points in a point cloud, with which several

graph-based filters have been developed to extract contour features of objects.

Among various graph-based tools, graph signal processing (GSP) has emerged as an

efficient analytical tool for processing graph-modeled signals [2],[117]. Based on a graph

Fourier space defined by the eigenspace of the representing adjacency or Laplacian matrix,

GSP filters have found applications in practice, including bridge health monitoring [99], point

cloud denoising [139], and image classification [73]. Leveraging graph Fourier transform [72],

119



graph wavelet [116] and graph spectral convolution [127] can extract additional features from

graph signals. For example, graph convolutional filters have been successful in edge detection

and video segmentation [168].

Although GSP-based spectral filtering has demonstrated successes in a variety of appli-

cations, it still suffers from the high-complexity of spectrum computation and the need to

select suitable propagation models. To efficiently extract signal features and integrate tra-

ditional GSP within the machine learning framework, graph convolutional networks (GCN)

[119] have been developed for semi-supervised classification problems. Approximating graph

spectral convolution with first-order Chebyshev expansions, GCN has been effective in such

learning tasks. Furthermore, different GCN-related graph learning architectures, including

personalized propagation of neural predictions (PPNP) [169] and N-GCN [170], have also

been developed to process graph-represented datasets. However, some limitations remain

with the traditional GCN based on Chebyshev expansions. For example, traditional GCN

requires strong assumptions on maximum eigenvalues and Chebyshev coefficients for ap-

proximating spectral convolution, at the cost of possible information loss when compared

against basic convolutional filters. Furthermore, systematic selection and design of graph

representations for GCN remain elusive.

Our goal is to improve GCN by exploring its relationship with GSP. Specifically in this

chapter, we explore the process from spectrum wavelet to vertex propagation, and investigate

alternative designs for graph convolutional networks. Our contributions can be summarized

as follows:

• We revisit graph spectral convolution in GSP and define conditions for approximating

spectrum wavelet via propagation in the vertex domain. These conditions could provide

insights to design GCN layers.

• We propose alternative propagation models for the GCN layers and develop a Taylor-

based graph convolutional networks (TGCN) based on the aforementioned approxima-

tion conditions.
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• We illustrate the effectiveness of the proposed frameworks over several well-known

datasets in comparison with other GCN-type and graph-based methods in node signal

classification.

• We also provide an interpretability discussion on the use of Taylor expansion, together

with guidelines on selecting suitable graph representations for GCN layers.

In terms of the chapter organization, we first provide an overview on graph-based tools

and review the fundamentals of GCN in Section 6.2 and Section 6.3, respectively. Next,

we present the theoretical motivation and basic design of the Taylor-based graph convolu-

tional networks (TGCN) in Section 6.4. Section 6.5 discusses the interpretability of Taylor

expansion in approximation, and highlights the difference between TGCN and traditional

GCN-based methods. We report the experimental results of the proposed TGCN framework

on different datasets in Section 6.6, before concluding in Section 6.7.

6.2 Literature Review

In this section, we provide an overview on state-of-the-art graph signal processing (GSP)

and graph convolutional networks (GCN).

6.2.1 Graph Signal Processing

Graph signal processing (GSP) has emerged as an exciting and promising new tool for

processing large datasets with complex structures [2, 117]. Owing to its power to extract

underlying relationships among signals, GSP has achieved significant success in generalizing

traditional digital signal processing (DSP) and processing datasets with complex underlying

features. Modeling data points and their interactions as graph nodes and graph edges,

respectively, graph Fourier space could be defined according to the eigenspace of a graph

representing matrix, such as the Laplacian or adjacency matrix, to facilitate data processing

operations such as denoising [15], filter banks [16], and compression [17]. The framework
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of GSP can be further generalized over the graph Fourier space to include sampling theory

[97], graph Fourier transform [72], frequency analysis [61], graph filters [73], graph wavelet

[116] and graph stationary process [128]. In addition, GSP has also been considered for

high-dimensional geometric signal processing, such as hypergraph signal processing [123]

and topological signal processing [171].

6.2.2 Graph Convolutional Networks

Graph-based learning machines have become useful tools in data analysis. Leveraging graph

wavelet processing [116], graph convolutional networks (GCN) approximate the spectral

wavelet convolution via first-order Chebyshev expansions [119] and have demonstrated no-

table successes in semi-supervised learning tasks. Recent works, e.g., [169], have devel-

oped customized propagation of neural predictions (PPNP) to integrate PageRank [172]

with GCNs. Other typical graph-based learning machines include GatedGCN [173], Graph-

SAGE [174], Gaussian Mixture Model Network (MoNet) [175], Graph Attention Networks

(GAT) [176], Differential Pooling (DiffPool) [177], Geom-GCN [178], Mixhop [179], Diffusion-

Convolutional Neural Networks (DCNN) [180], and Graph Isomorphism Network (GIN)

[181]. For additional information, interested readers are referred to an extensive literature

review [182] and a survey paper [12].

6.3 Graph Wavelet and Graph Convolutional Networks

In this section, we first review the fundamentals of graph spectral convolution and wavelets,

necessary for the development of propagation models of the GCN layers. We will then briefly

introduce the structures of traditional GCN [119]. For convenience, some of the important

notations and definitions are illustrated in Table 6.1.
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Table 6.1: Notations and Definitions
Notation Definition
G = (V , E) The undirected graph
V The set of nodes in the graph G
E The set of edges in the graph G
A The adjacency matrix
L The Lapalcian matrix
P The general propagation matrix of the graph G
D The diagonal matrix of node degree
λ The eigenvalue of the propagation matrix
λmax The maximal eigenvalue
V The spectral matrix with eigenvectors of P as each column
x The graph signal vector
X(l) The feature data at l layer
I The identity matrix

6.3.1 Graph Spectral Convolution and Wavelet-Kernels

An undirected graph G = (V , E) with N = |V| nodes can be represented by a representing

matrix (adjacency/Laplacian) decomposed as P = VΣVT ∈ RN×N , where the eigenvectors

V = {f1, f2, · · · , fN} form the graph Fourier basis and the eigenvalues λi’s represent graph

frequency [72].

In GSP [126,127], graph Fourier transform of convolution between two signals is a product

between their respective Fourier transforms denoted by �, i.e.,

x � y = F−1
C (FC(x) ◦ FC(y)), (6.1)

where FC(x) = VTx refers to the graph Fourier transform (GFT) of signals x, F−1
C (x̂) = Vx̂

is the inverse GFT and ◦ is the Hadamard product. This definition generalizes the property

that convolution in the vertex domain is equivalent to product in the corresponding graph

spectral domain.

In [116], the graph wavelet transform is defined according to graph spectral convolution.

Given a spectral graph wavelet-kernel ĝ = [g(λ1), g(λ2), · · · , g(λN)]T with kernel function
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g(·), the graph wavelet operator is defined as

Tg(x) = V(ĝ ◦ (VTx)) (6.2)

= V


g(λ1) · · · 0

0
. . . 0

0 · · · g(λN)

VTx. (6.3)

Note that graph wavelet can be interpreted as a graph convolutional filter with a spectrum

wavelet-kernel ĝ. Depending on the datasets and applications, different kernel functions may

be utilized in Eq. (6.3).

6.3.2 Graph Convolutional Networks and Their Limitations

To overcome the complexity for computing the spectrum matrix V and the difficulty of

seeking suitable wavelet-kernel functions, one framework of GCN developed in [119] considers

a first-order Chebyshev expansion. Considering Chebyshev polynomials TK(x) up to Kth

orders and the Laplacian matrix as the propagation matrix, the graph convolutional filter

with wavelet-kernel ĝ is approximated by

Tg(x) ≈
∑
k

θkTk(L̃)x, (6.4)

where L̃ = 2L/λmax − IN . With careful choice of λmax and parameters θk, the graph convo-

lutional filter can be further approximated by the 1st-order Chebyshev expansion

Tg(x) ≈ θ(IN + D−
1
2 AD−

1
2 )x, (6.5)

where D is the diagnal matrix of node degree. From here, by generalizing the approximated

graph convolutional filter to a signal X ∈ RN×C with C features for each node, the filtered
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signals can be written as

Z = D̃−
1
2 ÃD̃−

1
2 XΘ, (6.6)

where Ã = A + IN , D̃ii =
∑

j Ãij, and Θ ∈ RC×F is the parameter matrix. Furthermore, by

integrating the nonlinear functions within the approximated convolutional filters, a two-layer

GCN can be designed with message propagation as

ZGCN = softmax
(
D̃−

1
2 ÃD̃−

1
2 RELU(D̃−

1
2 ÃD̃−

1
2 XW(0)))W(1)

)
,

where W(0) ∈ RN×H and W(1) ∈ RH×C are the parameters for the H hidden units. Here we

use standard terminologies of “softmax” and “RELU” from deep learning neural networks.

Although GCN has achieved success in some applications, some drawbacks remain. First,

it relies on several strong assumptions to approximate the original convolutional filters. For

example, λmax = 2 are used to approximate in implementation due to the range of variables

in Chebyshev expansions, and the Chebyshev coefficients are set to θ1 = −θ0 = −θ to obtain

Eq. (6.6). These assumptions may compromise the efficacy of spectral convolution. Second,

the graph representation D̃
1
2 ÃD̃

1
2 may not always be the optimal choice while the Chebyshev

approximation limits the type of representing matrix. We provide a more detailed discussion

in Section 6.5. In addition, it remains unclear as to how best to derive a suitable kernel-

function ĝ and its approximation. Moreover, insights in terms of interpretability is highly

desirable from spectral wavelet convolution to vertex propagation.

To explore alternatives in designing propagation model for GCNs, we focus on the process

between graph spectral wavelet-kernels and propagation in the vertex domain. We will

further propose alternative propagation models for GCNs.
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6.4 Taylor-based Graph Convolutional Networks

In this section, we investigate conditions needed for approximating the spectral convolution

via vertex propagation. Next, we propose alternative propagation models for graph convolu-

tion layers based on Taylor expansion, where the general convolutional filter can be written

as

Z = Gα(P)XΘ, (6.7)

where Gα(P) is a polynomial function with parameter α, P is the representing matrix of the

graph, and Θ are parameters of feature projection.

6.4.1 Approximation of Spectral Convolution

We first present the theoretical motivation for designing a polynomial-based propagation

model, and its relationship to the graph spectral wavelets. For a polynomial filter in GSP, let

P be the representing (adjacency/Laplacian) matrix. We can obtain the following property.

Lemma 6.1. Given a GSP polynomial filter H = h(P) =
∑

k αkP
k, the filtered signals are

calculated by

Hx = h(P)x =
N∑
r=1

h(λr)fr(f
T
r x), (6.8)

where fr’s are the graph spectrum and λr’s are the eigenvalues of P related to graph frequency.

This lemma shows that the response of the filter to an exponential is the same exponential

amplified by a gain that is the frequency response of the filter at the frequency of the

exponential [2]. The exponentials are the eigenfunctions/eigenvectors, similar to complex

exponential signals in linear systems.

Looking into the graph wavelet convolutional filter in Eq. (6.3), the wavelet-kernel func-

tion g(·) operates to modify frequency coefficients λr’s. Thus, we have the following property

of transferring spectrum wavelet to vertex propagation.
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Theorem 6.1. Given a polynomial wavelet kernel function g(·), the GSP convolutional filter

on signal x is calculated as

Tg(x) = g(P)x. (6.9)

This theorem indicates that we can bypass computing the spectrum by implementing

the convolution directly in vertex domain, since the wavelet kernel g(·) is polynomial or can

be approximated by a polynomial expansion. We can see that the Chebyshev expansion

is a special case of Theorem 6.1. In addition to Chebyshev expansion, Legendre [183] and

Taylor [184] expansions can also approximate the spectral convolution. In addition, other

polynomial design on the wavelet-function g(·) are also possible.

6.4.2 Taylor-based Propagation Model

We now provide alternative propagation models for the GCN layers based on Taylor expan-

sions, with which the wavelet-kernel function g(x) can be approximated via

g(x) ≈
K∑
k=0

θk(x− a)k. (6.10)

Here, θk = g(k)(a)/n! is the expansion coefficients.

Since the Taylor approximation of g(x) in Eq. (6.10) is a polynomial function of the

variable x which meets the condition in Theorem 6.1, the graph spectral convolutional filter

can be approximated as

Tg(x) ≈
K∑
k=0

θk(P− diag(Φ))kx, (6.11)

where Φ is a generalization of the parameter a. We will discuss further the intuition of

applying Taylor expansion and its difference with Chebyshev approximation in Section 6.5.

We can develop different models based on Eq. (6.11) to develop the Taylor-based GCN

(TGCN). The P matrix here can be any practical graph representing matrix used to cap-
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ture overall information of the graph. For example, typical representing matrices include

the adjacency matrix A, the Laplacian matrix L, or the normalized propagation matrix

D̃−
1
2 ÃD̃−

1
2 . Section 6.6 provides further discussions on the selection of representing matrix.

We now provide several types of TGCN design.

Type-1 First-Order TGCN: Similar to the traditional GCN, we first consider TGCN

based on the first-order Taylor expansions with a simpler diagonal matrix diag(Φ) = φIN .

Letting K = 1, Eq. (6.11) can be written as

Tg(x) ≈ [(θ0 − θ1φ)IN + θ1P]x (6.12)

= θ′(P + αIN)x, (6.13)

where θ′ = θ1 and α = θ0−θ1φ
θ1

are the new parameters for the convolutional filter. As a result,

the GCN layer with generalized signal X ∈ RN×C can be designed as

X(l+1) = σ{(P + αlIN)X(l)Θl} (6.14)

where αl and Θl are the trainable variables for the lth layer, and σ{·} is the activation

function.

Type-2 First-Order TGCN: We also consider more general diagonal matrix in place

of αIN , i.e.,

X(l+1) = σ{(P + diag(βl))X
(l)Θl}, (6.15)

where βl and Θl are the parameters of the lth layer. Here, the self-influence for each node

varies from node to node, whereas each node affects itself equivalently in the type-1 first-order

TGCN model.

Type-3 kth-Order TGCN: We also consider the higher-order polynomial propagation

models for each layer. To avoid overfitting and reduce the complexity, we require θk = θ for
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all k and the diagonal matrix as αIN in Eq. (6.11). Then the resulting TGCN layer becomes

X(l+1) = σ{[
∑
k

(P + αlIN)k]X(l)Θl}. (6.16)

Compared to the 1st-order approximation, the higher-order approximation contains more

trainable parameters and computations, resulting in higher implementation complexity.

Type-4 kth-Order TGCN: More general TGCN layers can be designed without requir-

ing θk = θ for all k as follows:

X(l+1) = σ{
∑
k

[(P + αlIN)kX(l)Θl,k]}. (6.17)

Here, we only consider simple diagonal with one parameter α in the higher-order polynomials

to avoid overfitting and high complexity. We will provide some insights into the choice of

different approximation models in Section 6.6.

6.5 Discussion

In this section, we discuss the interpretability of the Taylor approximation of wavelet-kernels,

and illustrate its differences with the existing GCNs.

6.5.1 Interpretation of the Graph Convolution Approximation

To understand the connection between the graph convolution filters and the approximated

GCNs, we start from the basic graph wavelet operator in Eq. (6.3). Given the definition

of graph convolution in Eq. (6.1) and the graph spectrum matrix V = [f1, f2, · · · , fN ], the

graph wavelet operator is a convolution-based filter on the signal x with a parameter vector

δ, and is denoted by

Tg(x) = δ � x, (6.18)
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where the graph Fourier transform of δ requires VTδ = ĝ. Suppose that fi is the cor-

responding eigenvector of λi. Each term in the wavelet-kernel (i.e., g(λi) = fTi δ) embeds

the information of graph spectrum with the parameters δ by the function g(·). Thus, the

optimization on the wavelet-kernel g(·) is equivalent to finding suitable parameters for the

convolution filter to achieve the goals, such as minimizing the error between the filtered

signal and its labels.

Computing the exact graph spectra can be time-consuming. Nevertheless, GCNs and

TGCNs approximate the graph-kernel by polynomial expansions, i.e.,

Tg(x) ≈
∑
k

θkTk(P)x, (6.19)

where θk is the expansion coefficients and Tk(·) is the k-th term of polynomials. Here, the

θk is a function of g(·), i. e.,

θk = g(k)(a)/n! (6.20)

for Taylor polynomials, and

θk =
2

π

∫ −1

−1

cos(kθ)g(cos(θ))dθ (6.21)

for Chebyshev polynomials [116].

Since Tk(P) is already determined for each type of expansions, the optimization on the

wavelet-kernel function g(·) is transformed into estimating the polynomial coefficients θk,

i.e., Θ, in the GCN propagation layers. More specifically, although we may need prior

knowledge on the derivatives of g(·) for Taylor coefficients, g(k)(a) can be reparametrized

as the parameters θk of the convolution filter, given our goal to optimize the function g(·)

by using deep learning networks. The information of the Taylor expansions remains in the

polynomials terms, i.e.,

Tk(P) = (P− diag(Φ))k, (6.22)
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which differs from the Chebyshev expansions.

6.5.2 Comparison with Chebyshev-based GCNs

Now, we compare the differences between Chebyshev-based GCNs and Taylor-based GCNs

to illustrate the benefits of Taylor expansions.

For the Chebyshev expansion, variable x is bounded within [−1, 1]. In the graph wavelet-

kernel, each λ is within [0, λmax] for the Laplacian matrix. A simple transformation λ =

a(y + 1), with a = λmax/2 [116] can change variables from λ to y:

y =
2λ

λmax
− 1, (6.23)

which accounts for the use of graph representation, i. e.,

L̃ = 2L/λmax − IN , (6.24)

in Eq. (6.4) for Chebyshev-based GCNs. Unlike Chebyshev expansion, Taylor polynomials

do not limit variable x to an interval (without using λmax). For this reason, TGCN admits a

more flexible design of graph representation P without limiting the intervals of eigenvalues.

There is no need to set the value of the largest eigenvalue or normalize the graph represen-

tation when implementing TGCNs. We shall test different graph representations when we

present the experiment results next.

In addition, the Taylor polynomial gives a more unified simple design for polynomial

terms Tk(P). In Chebyshev polynomials, each polynomial term is recursive from its previous

terms, thereby making it less expedient to implement higher-order GCN. However, Taylor

polynomials take the same form regardless of a and are regular. The additional parameters

Φ also provide benefits for TGCN. In signal propagation, parameters Φ can be interpreted

as the self-influence from the looping effects. In practical applications, such self-influence

does occur and may be less obvious within the data. For example, in the citation networks,
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the work from highly-cited authors may have greater impact and trigger the appearance of a

series of related new works on its own, which indicates larger self-influence as well as higher

impact on other works. We will illustrate this impact further in Section 6.6.

6.5.3 Single-layer High-order vs. Multi-layer First-order

From the design of the first-order TGCN, multiple layers of the first-order propagation also

forms a higher-order polynomial design. However, such design with multiple layers of the

first-order polynomials is different from the single-layer high-order propagation. Suppose

that a single-layer kth-order polynomial convolutional filter is written as

Zk =
∑
k

αk(P + diag(β))kXΘ (6.25)

and the first-order polynomial is

Z1 = α(P + diag(β))XΘ. (6.26)

For a k-layer first-order polynomial convolutional filter, the filtered result can be written

as

Z(k) = α1 · · ·αk(P + diag(β))kXΘ1 · · ·Θk (6.27)

= α′(P + diag(β))kXΘ′, (6.28)

which is one term in the single-layer kth-order polynomial convolutional filter. Thus, the

multi-layer first-order TGCN is a special case of single-layer higher-order polynomials. Since

the high-order polynomial designs have already embedded the high-dimensional propagation

of signals over the graphs, we usually apply the single-layer design instead of multi-layer for

higher-order TGCNs in implementation to reduce complexity.
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Table 6.2: Data Statistics
Datasets Number of Nodes Number of Edges Number of Features Number of Classes Label Ratio

Cora 2708 5728 1433 7 0.052
Citeseer 3327 4614 3703 6 0.036
Pumbed 19717 44325 500 3 0.0031

6.6 Experiments

We now test the TGCN models in different classification experiments. We first measure the

influence of depth and polynomial orders in different types of TGCNs in citation networks.

Next, we experiment with different representing matrices and propagation models to explore

the choice of suitable layer design and graph representations. We also report comparative

results with other GCN-like methods in node classification and demonstrate the practical

competitiveness of our newly proposed framework.

6.6.1 Evaluation of Different TGCN Designs

In this subsection, we evaluate different designs of TGCN to show its overall performance in

node classification of citation networks. Additional comparisons with other existing methods

are provided in Section 6.6.2.

Experiment Setup

We first provide the TGCN experiment setup.

Datasets: We use three citation network datasets for validation, i.e., Cora-ML [185,186],

Citeseer [187], and Pubmed [188]. In these citation networks, published articles are denoted

as nodes and their citation relationships are represented by edges. The data statistics of

these citation networks are summarized in Table 6.2. We randomly select the a subset from

the original datasets with 10% training data, 60% test data and 30% validation data.

Convolution Layer: For the first-order TGCN, we consider a two-layer structure de-
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Table 6.3: Overall Accuracy for Different First-Order Methods (Percent)

Methods Representing Matrix Cora Citeseer Pubmed

GCN D̃−
1
2 ÃD̃−

1
2 78.7±2.7 68.7±2.7 78.8±3.1

Type-1 First-Order TGCN1 D̃−
1
2 ÃD̃−

1
2 79.9±1.7 70.1±1.5 79.3±2.0

Type-1 First-Order TGCN2 D̃−
1
2 ÃD̃−

1
2 78.8±3.4 68.9±1.4 78.9±2.5

Type-2 First-Order TGCN D̃−
1
2 ÃD̃−

1
2 81.3 ± 2.7 70.3 ± 2.6 79.8 ± 2.6

* For type-1 first-order TGCN with propagation model D̃−
1
2 ÃD̃−

1
2 , we adjust parameters

both manually and automatically. The results are reported in 1 for manual and 2 for
automatic adjustments, respectively.

signed as follows.

Z = softmax(GΦ1(P)RELU(GΦ0(P)XW(0))W(1)), (6.29)

where GΦ1(P) is the specific type of TGCN propgation model, and W(0) ∈ RN×H together

with W(1) ∈ RH×C are the parameters of the H hidden units. For the higher-order TGCN,

we consider a single-layer structure, i.e.,

Z = softmax(GΦ(P)XW). (6.30)

When training the parameters, we let the neural networks learn the diagonal parameters β

for type-2 first-order TGCN, and α for higher-order TGCN. We applied Adam optimizer

[189] for network training. For type-1 first-order TGCN, we apply both manual and auto-

matic adjustments on the diagonal parameters α. We train the projection parameter W

for a variety of TGCNs. For graph representing matrices, we first apply the normalized

D̃−
1
2 ÃD̃−

1
2 to measure the effects of layer depth, polynomial orders, and propagation mod-

els, respectively. We then test the results of different representing matrices P to gain insights

and guidelines on how to select suitable graph representations.

Implementation: Let Vl be the set of labeled examples and Yi denote the labels. We
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Figure 6.1: Optimal α for Type-1 First-Order TGCN.

evaluate the cross-entropy error over all labeled examples to train parameters, i.e.,

L = −
∑
i∈Vl

L∑
j=1

Yij lnZij. (6.31)

Hyperparameter: For fair comparison of different designs of TGCN, we use the similar

hyperparameters, with dropout rate d = 0.5, learning rate r = 0.01 and weight decay

w = 5× 10−4. For two-layer TGCNs, we let the number of hidden units be H = 40. For the

higher-order TGCNs, we use fewer hidden units to reduce the complexity.

Performances of Different TGCN Propagation Models

We first measure the performances of first-order TGCNs by comparing different propagation

models against the traditional GCNs. Note that, the type-1 first-order TGCN degenerates

into traditional GCN if the diagonal parameter α = 0. To explore the difference between

GCN and type-1 first-order TGCN, we adjust the parameter α both manually and automat-

ically. The overall accuracy is reported in Table 6.3.

For type-1 first-order TGCN, our manual adjustment results in higher accuracy than au-

tomatic adjustment. This indicates that the deep learning network may be more susceptible

to local convergence when learning α by itself. Usually, the optimal α for type-1 TGCN

would be in [0.15, 0.35] as shown in Fig. 6.1, while the TGCN degenerates to the traditional

GCN for α = 0. Generally, type-2 first-order TGCN has a clear advantage in accuracy for

all datasets, whereas type-1 frist-order TGCN exhibits only marginal improvement given
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Table 6.4: Accuracy for Higher-Order Propagation Model (Percent)

Num of Layers Polynomial Order k TGCN Type Cora Citeseer
2-Layer 1st-order Type-1 81.4 70.1
2-Layer 1st-order Type-2 81.5 70.5
2-Layer 2nd-order Type-3 79.5 65.7
2-Layer 2nd-order Type-4 79.3 66.9
1-Layer 1st-order Type-1 75.6 67.3
1-Layer 2nd-order Type-3 78.4 69.0
1-Layer 3rd-order Type-3 79.1 68.4
1-Layer 2nd-order Type-4 76.3 67.9
1-Layer 3rd-order Type-4 78.6 70.2

* For each method, we test with the representing matrix D̃−
1
2 ÃD̃−

1
2 .

suitable choice of diagonal parameters.

We then compare different propagation models with different orders of polynomials under

the same experiment setup. We start with 100 Monte Carlo random initializations and

report the average accuracy of each model in Table 6.4. The first-order TGCNs generally

achieve superior overall accuracy than higher-order TGCNs. Higher-order methods may

be occasionally better for some datasets. Recall that the multi-layer first-order TGCN is

a special case of single-layer higher-order polynomials as illustrated in Section 6.4.2. The

large number of parameters in the higher-order methods may leads to highly likelihood of

overfitting and local convergence, thereby contributing to their less impressive outcomes.

Depth and Polynomial Orders

We also test the effects of different polynomial orders and layer numbers. The accuracy and

training time (200 epochs) for different polynomial orders (Type-3 as an example) are shown

in the first group of plots in Fig. 6.2. We note that performance improvement appears to

saturate beyond certain polynomial order. Since the results also indicate growing training

time for higher order polynomials, it would be more efficient to limit the polynomial order

to 2 or 3. We also test the performance of first-order TGCNs (Type-2 as an example) with

different layers in the last two plots in Fig. 6.2, which also show that a 2-layer or 3-layer

TGCN would typically suffice.
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Figure 6.2: Results of Different Polynomial Orders and Network Depth.

(a) 2-Layer Type-1 TGCN.(b) 2-Layer Type-2
TGCN.

(c) 1-Layer 2-order Type-3
TGCN.

(d) 1-Layer 2-order Type-4
TGCN.

Figure 6.3: Convergence of different TGCN models.

Convergence

We evaluate the convergence of different TGCN models in Fig. 6.3. Here, we report the

accuracy of training data and validation data for the Cora dataset. Form the results, we can

see that TGCN models can converge well in the citation network datasets.

Training Efficiency

We compare the training efficiency for different methods based on the average training time

for each epoch over 200 epochs in total. We use the same number of hidden units for

multi-layer graph convolutional networks to be fair. From the results of Table 6.5, 2-layer

TGCN takes nearly 10% longer than traditional 2-layer GCN because of the larger number

of parameters and matrix computations. Moreover, larger layer depth and higher polynomial

order also increase TGCN training time.
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Table 6.5: Training Time per Epoch

Dataset GCN 2L1KT1 2L1KT2 2L2KT3 2L2KT4
Cora 21.2ms 24.3ms 34.0ms 506.1ms 479.5ms

Citesser 30.5ms 33.4ms 42.9ms 681.1ms 726.5ms
Dataset 1L2KT3 1L3KT3 1L2KT4 1L3KT4 1L1KT1

Cora 253.8ms 463.2ms 244.5ms 641.0ms 11.3ms
Citesser 339.3ms 609.7ms 314.7ms 1085.6ms 33.2ms
* Different methods are measured in a CPU-only implementa-

tion.
* aLbKTc is short for a Type-c TGCN with a layers and poly-

nomial order k = b.

Different Choices of Graph Representations

Thanks to the flexibility of P in the TGCN, it is interesting to explore different graph rep-

resentations in different types of TGCN propagation models. Note that the Laplacian-based

model can be written in the form of the adjacency matrix and a corresponding diagonal ma-

trix, which can be included within the category of adjacency-based convolutional propagation

models in TGCNs. Thus, we mainly investigate adjacency-based representation for TGCNs.

Since there is no constraint on the range of eigenvalues, we test the effect of normalization.

More specifically, we use the original adjacency matrix A, the normalized adjacency matrix

D−1A, the traditional GCN propagation D̃−
1
2 ÃD̃−

1
2 , and the pagerank 0.1 × (I − 0.9Ã)−1

[169]. For the higher-order TGCNs, we mainly focus on Cora and Citeseer datasets due to

complexity.

The experiment results are shown in Table 6.6. The results show that normalized repre-

sentations exhibit better performance than the unnormalized graph representation for TGCN

propagation. More specifically, the normalized adjacency matrix achieves better performance

in most TGCN designs. Although the pagerank propagation also shows good performance

in some of the TGCN categories, the high-complexity of calculating the inverse matrix is

detrimental to its applications in higher-order TGCNs. Note that we only test some of

the common graph representations of P in our TGCN designs. The Taylor expansions al-

low a more flexible combination with other existing GCN propagations, such as pagerank
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Table 6.6: Performance of Different Graph Representations
Dataset Cora Citeseer Pubmed

Type-1 TGCN (2-Layer/Auto-training on α)
A 76.0 67.8 77.9
D−1A 79.3 70.2 80.5

D̃−
1
2 ÃD̃−

1
2 78.6 69.2 78.9

0.1× (I− 0.9Ã)−1 80.1 70.1 79.3

Type-2 TGCN (2-Layer)

A 76.8 67.6 77.8
D−1A 81.9 70.0 80.3

D̃−
1
2 ÃD̃−

1
2 81.6 70.1 79.4

0.1× (I− 0.9Ã)−1 81.8 70.1 80.1

Type-3 TGCN (1-Layer 2nd-Order)

A 77.9 68.5 /
D−1A 79.0 68.9 /

D̃−
1
2 ÃD̃−

1
2 78.5 69.1 /

0.1× (I− 0.9Ã)−1 78.8 68.7 /

Type-4 TGCN (1-Layer 2nd-Order)

A 75.2 67.0 /
D−1A 79.7 68.2 /

D̃−
1
2 ÃD̃−

1
2 76.3 67.9 /

0.1× (I− 0.9Ã)−1 78.3 68.0 /

and GCN propagations. We plan to further investigate alternative graph representations in

future works.

Discussion

In terms of formulation, type-1 TGCN is an extension of GCN, which allows flexible self-

influence for each node. Type-2 TGCN is an extension of type-1 TGCN, where different

self-influence parameters are assigned for different nodes. In practical applications, such self-

influence does exist and may be less obvious. Type-2 TGCN allows different self-influence

parameters to be learned while training, which may lead to better performance in the citation

networks. Higher-order TGCNs, as discussed in Section 6.4.2, are different from multi-layer

TGCN as various orders may lead to different performances. However, to mitigate complexity
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Table 6.7: Comparison with Other Methods in the Citation Networks
Cora Citeseer Pubmed

GCN 85.77 73.68 88.13
GAT 86.37 74.32 87.62
GIN 86.20 76.80 87.39
Geom-GCN-I 85.19 77.99 90.05
Geom-GCN-P 84.93 75.14 88.09
Geom-GCN-S 85.27 74.71 84.75
APPNP 86.88 77.74 88.41
Type-1 TGCN 86.79 77.82 87.99
Type-2 TGCN 87.23 78.31 86.89

concerns, lower-order TGCNs are more efficient in applications. With the steady advances

of computation hardware, higher-order TGCNs is expected to play increasingly important

roles in future data analysis. In addition, the TGCN designs show a scalable combination

with existing GCN propagations and graph representations.

6.6.2 Comparison with Several Existing Methods

In this section, we compare our proposed TGCNs with several state-of-the-art methods

in two different tasks: 1) node classification in the citation network; and 2) point cloud

segmentation.

Classification in the Citation Networks

We first compare the proposed TGCN frameworks with other GCN-style methods in the

citation networks summarized in Table 6.2, but with a different splits on the datasets. Instead

of randomly splitting a subset of the citation networks, we apply similar data splits as [178]

with 60%/20%/20% for training/testing/validation datasets. We compare our methods with

graph convolutional networks (GCN) [119], geometric graph convolutional networks (Geom-

GCN) [178], graph attention networks (GAT) [176], approximated personalized propagation

of neural predictions (APPNP) [169], and graph isomorphism networks (GIN) [181]. In

TGCN propagation, we use the normalized adjacency matrix, i.e., P = D−1A, and set the
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Table 6.8: Mean Accuracy in ShapeNet Dataset.
Type-2 TGCN1 Type-1 TGCN1 Type-2 TGCN2 Type-1 TGCN2 GSP HGSP GCN PointNet

Airplane 0.7551 0.7883 0.7785 0.7824 0.5272 0.5566 0.7660 0.834
Bag 0.9165 0.9202 0.9399 0.9409 0.5942 0.5620 0.9176 0.787
Cap 0.7670 0.7599 0.7479 0.7577 0.6698 0.7212 0.7629 0.825
Car 0.7114 0.7052 0.7018 0.6976 0.3785 0.3702 0.6790 0.749

Chair 0.6603 0.6197 0.7412 0.6885 0.4701 0.5782 0.6430 0.896
Earphone 0.7037 0.7135 0.7606 0.7712 0.4706 0.5637 0.7054 0.730

Guitar 0.8449 0.8401 0.8176 0.8265 0.5731 0.5889 0.8304 0.915
Knife 0.7675 0.7474 0.7610 0.7614 0.6395 0.7045 0.7502 0.859
Lamp 0.7787 0.7836 0.7853 0.7712 0.2510 0.3112 0.7821 0.808

Laptop 0.8142 0.8365 0.8185 0.8275 0.6704 0.9077 0.8272 0.953
Motorbike 0.7167 0.7183 0.7239 0.7623 0.7663 0.7588 0.7297 0.652

Mug 0.9324 0.9436 0.9348 0.9376 0.7465 0.6290 0.9302 0.930
Pistol 0.7362 0.7387 0.7145 0.7107 0.5336 0.6277 0.7205 0.812
Rocket 0.7895 0.7712 0.7824 0.7742 0.4792 0.5481 0.7807 0.579

Skateboard 0.8323 0.8364 0.8230 0.8493 0.6088 0.5440 0.8176 0.728
Table 0.7984 0.8154 0.7972 0.8194 0.4726 0.4568 0.8164 0.806

Mean 0.7828 0.7836 0.7892 0.7966 0.5532 0.5893 0.7788 0.803
1 TGCN1 applies the graph representation P = D̃−

1
2 ÃD̃−

1
2 .

2 TGCN2 applies the graph representation P = D−1A.
* The best graph-based method is marked in bold font.
* The best method is marked in italic script.

number of layer to be two. The test results are reported in Table 6.7. The results show that

the proposed TGCN achieves competitive performance against various GCN-type methods.

Together with the results presented in Section 6.6.1, our experiments demonstrate that

TGCN is very effective in node classification over the citation graphs despite data splits.

Point Cloud Segmentation

We next test the performance of TGCN in the point cloud segmentation. The goal of point

cloud segmentation is to identify and cluster points in a point cloud that share similar

features into their respective regions [161]. The segmentation problem can be posed as a

semi-supervised classification problem if the labels of several samples are known [190].

Datasets and Baselines: In this work, we use the ShapeNet datasets [156, 157] as

examples. In this dataset, there are 16 object categories, each of which may contain 2-6

classes. We compare both type-1 and type-2 TGCNs with traditional GCN in all categories.

To explore the features extracted from the graph convolution, we also compare the proposed

methods with geometric clustering-based methods, including the graph spectral clustering

(GSP) and hypergraph spectral clustering (HGSP) [191]. A comparison with a specifically-
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(a) Ground Truth. (b) TGCN. (c) GCN. (d) GSP. (e) HGSP.

Figure 6.4: Examples of Point Cloud Segmentation.

designed neural networks for point cloud segmentation, i. e., PointNet [192], is also reported.

Experiment Setup:

• To implement TGCN efficiently, we randomly pick 20 point cloud objects from each

category, and randomly set 70% points as training data with labels while using the

remaining points as the test data for each point cloud. We use k-nearest neighbor

method to construct an adjacency matrix A with elements aij = 1, 0 to indicate

the presence or the absence of connection between two nodes i, j, respectively. More

specifically, we set k = 20 in graph construction for all point clouds. For the GCN-like

methods, we fix the number of layer as two and the number hidden units as 40 to

ensure a fair comparison.

• For the spectral-clustering based methods, we use the hypergraph stationary process

[168] to estimate the hypergraph spectrum for the HGSP-based method, and apply the

Gaussian distance model [135] to construct the graph for the GSP-based method. The

k-means clustering is applied for segmentation after obtaining the key spectra.

Experiment Results: The overall accuracies of different methods are reported in Table

6.8. The resulting mean accuracy of segmentation illustrates that each method under com-
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parison may exhibit some unique strength in different categories. The PointNet exhibits an

overall largest mean accuracy, since it is specifically designed for point cloud segmentation

while the GCN-like methods are directly applied in classifying the points without adjust-

ment. Even though, the TGCN still shows better performances in some of the categories

than PointNet, such as table, skateboard, mug, motorbike, earphone and bag. Compared

to the traditional GCN, TGCN generally achieves higher accuracy and provides the better

performance in most of the categories. For the graph representation, the normalized adja-

cency matrix performs better than the traditional GCN propagation matrix in the TGCN

designs for point cloud segmentation. The clustering-based methods perform worse than the

classification-based methods, since they use no prior knowledge of the ground truth. How-

ever, they still achieve satisfying performances in the point clouds with fewer classes and

more regular shapes.

To further illustrate different methods, several visualized segmentation results are pre-

sented in Fig. 6.4. Since different TGCN exhibits similar visualized results, we report type-2

TGCN with P = D−1A as an example. From the results, we see that the classification-

based methods, i. e., TGCN and GCN, exhibit similar results, where errors are distributed

scatteredly over the point clouds. Generally, the TGCN results show fewer errors than those

of the traditional GCN, such as in the wings of rockets and planes. Different from GCN-like

methods trained according to the ground truth, the clustering-based methods show different

results. For example, in the first row of Fig. 6.4(e), although the segmentation result dif-

fer from the ground truth, these results still make sense by grouping two wings to different

classes. In addition, the errors of clustering-based methods are grouped together in the inter-

sections of two classes. It will be interesting to explore the integration of classification-based

methods and clustering-based methods to extract more features of point clouds in the future

works.
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6.7 Conclusions

In this chapter, we explore the inherent connection between GSP convolutional spectrum

wavelet and the GCN vertex propagation. Our analysis shows that spectral wavelet-kernel

can be approximated in vertex domain if it admits a polynomial approximation. In addition,

we develop an efficient and simple alternative design of GCN layers based on the simple

Taylor expansion (TGCN), which exhibits computation efficiency and outperforms a number

of state-of-the-art GCN-type methods. We also derive practical guidelines on the selection

of representing matrix and the propagation model for TGCN designs. Our interpretability

discussion presents good insights into Taylor approximation of graph convolution.
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Chapter 7

Conclusions and Future Direction

In this chapter, we summarize our contributions in this dissertation and suggest several

future directions.

7.1 Summary and Conclusions

In this dissertation, we investigate the propagation analysis in the high dimensional networks,

and explore the design of novel signal processing and learning tools based on graphs. These

approaches aim to capture the underlying correlations between data samples or object nodes

to benefit the analysis and processing in real scenarios.

To tackle the order limitations of matrix representation, we venture into the high-

dimensional tensor algebra in Chapter 2. More specifically, we propose tensor-based methods

to model the multilayer networks and hypergraphs, and develop spectral analysis over the

tensor models. With deeper understanding of the properties in high-dimensional graphs, we

come back to normal graphs to improve the design of graph learning machines. The detailed

research topics addressed in this dissertation are summarized as follows:

• In chapter 3, we propose a scalable tensor analysis for the failure propagation over mul-

tilayer networks. Specifically, we provide a spectral analysis of epidemic spread based
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on the SIS model over the multilayer complex systems. To capture the propagation

property to measure the system stability, the failure transition equation and failure

threshold are derived. For the purpose of computation efficiency, we derive the upper

and lower bounds for the failure indicator, as well as its approximations in special

cases. Our bounds are shown to be tight, and the approximation are close to the exact

values in the numerical analysis.

• In chapter 4, we propose a novel framework of Hypergraph Signal Processing (HGSP)

to generalize the traditional GSP to high-dimensional hypergraphs. We provide the

theoretical fundamentals of HGSP, including hypergraph signal, hypergraph shifting,

hypergraph frequency and bandlimited signals. We then introduce the basic HGSP

tools, such as sampling theory and filtering design. Our experiment results in several

application examples validate the advantage of the proposed HGSP framework and the

power of hypergraph in capturing high-dimensional correlations.

• In chapter 5, we investigate the applications of HGSP tools in multimedia process-

ing. We first introduce some novel HGSP operations, which are useful for multimedia

analysis, including convolution, translation, sampling and stationary process. Then,

we present different methods to construct hypergraph models for images, videos and

point clouds, respectively. Within the proposed framework, HGSP is successfully ap-

plied in the area of image compression, video segmentation, edge detection, point cloud

resampling and denoising, according to the experimental results in both synthetic and

real datasets.

• In chapter 6, we explore the inherent connections between GSP and Graph Convo-

lutional Networks. We show that the spectral wavelet-kernel can be approximated

by vertex propagation if it admits a polynomial approximations. Then, we introduce

the alternative design fo GCN layers based on the Taylor expansions. The proposed

framework exhibits computation efficiency and outperforms a number of state-of-art
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GCN-type methods, which validate the advantage of the processed TGCN.

7.2 Future Directions

Signal processing and learning over graph are now drawing increasing attentions. This new

and highpotential subject still has many research problems that are worth of investigating.

We briefly present several future directions as follows.

• Efficient Implementation of HGSP Operations: Although the HGSP framework

has shown significant benefits in a number of applications, it still suffer from the

implementation inefficacy. On the one hand, with the increase of hyperedge dimension

and number of data samples, the size of representing tensor can be large and lack of

storage efficacy. On the other hand, the calculation of hypergraph spectrum based on

tensor decomposition is time-consuming for the large datasets. To accommodate HGSP

to the requirement big data, there are several potential future directions to further

improve it. The first is the sparse representation of hypergraph representing tensor.

As aforementioned in Section 5.4.2, a realistic network and graph models are sparse.

Thus, it will benefit the application of HGSP if sparse analysis can be integrated with

HGSP. Second, similar to what we do in Section 5.4 and 6.4, approximated methods to

estimate the hypergraph spectrum and spectral operations based on properties in the

vertex domain are worth further investigations to reduce complexity. Other aspects,

such as fast hypergraph Fourier transform and fast HGSP filter implementation, can

be also promising future directions.

• Development of Hypergraph Convolutional Networks: Inspire by the design of

GCNs [119], matrix-based hypergraph convolutional networks are developed to extract

high-dimensional features of the datasets [25,122]. However, the matrix-based method

can be interpreted as a special case of GCNs, where the hypergraph similarity matrix

is another construction of graph models. In addition, the matrix-based hypergraph
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approximation lacks the definition of convolution in the signal processing viewpoints.

To this end, it will be interesting to explore the development of tensor-based hypergraph

convolutional networks. The tensor-based HGSP provides an alternation definition of

hypergraph convolution, and is an intuitive extension of traditional graph convolution.

Moreover, the tensor-based representation highlights the cross-feature between data

samples, which is different from traditional GCNs.

• Signal Processing over Dynamic Graphs: Traditional graph signal processing

and hypergraph signal processing mainly focus the propagation of the signals over a

static graph/hypergraph. Once the graph structure changes, the graph spectrum needs

to be recalculated, which is less efficient in real applications. Development of signal

processing over dynamic graph could be an urgent research direction in the future.

One method is to model the dynamic graph as a spatial-temporal graph [193], which

can be represented by multilayer networks or product graphs, for further analysis.

• Design of Graph/Hypergraph Auto-Encoder: With increasing attentions in

graph learning, the development of graph/hypergraph auto-encoder (GAE) is another

interesting future direction. There are mainly two directions to design a GAE. The

first is the variational GAE, which integrate GCN in the traditional variational auto-

encoder to embed the graph structure [194]. The other one is based on the subgraph

encoding [195], which encodes the original graph into low-dimensional subgraphs. In

addition, the integration of GAE with traditional subspace learning, such as rate re-

duction [196], can be also promising.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Lemma 3.2

Proof. Suppose that λ is an eigenvalue of A, then we have

det(A− λI) = 0. (A.1)

Since

det(A− λI) =
K∏
i=1

det(Bi − λIi), (A.2)

the eigenvalues of A is the list of the eigenvalues of all the Bi. Then, we can easily show

that the largest eigenvalue of A is the largest eigenvalue of Bi.

A.2 Proof of Lemma 3.3

Proof. Suppose that the adjacency tensor S has an eigenvalue λ, i.e.,

Sx = λx, (A.3)

where x = [x>
1̂,N
,x>

2̂,N
, · · · ,x>

M̂,N
]> is a the corresponding eigenvector associated with λ.
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Then, we obtain ∑
î 6=β̂

wβ̂
î
INxî,N =

∑
î 6=β̂

wβ̂
î
xî,N = λxβ̂,N . (A.4)

We can pick the first entry in each vector xî,N , denoted by aî. Then, we have

∑
î 6=β̂

wβ̂
î
aî = λaβ̂. (A.5)

Now, we construct a vector y = [a1, · · · , aN ]>. According to Eq. (A.5), we have

Wy = λy. (A.6)

Thus, λ is also an eigenvalue of W. Since λ can be any eigenvalue of S, all the eigenvalues

of S are the eigenvalues of W. Now, let’s prove that all the eigenvalues of W are the

eigenvalues of S. Suppose that W has an eigenvalue λ and the corresponding eigenvector

y. Then, it should satisfy Eq. (A.6). Constructing xî,N in Eq. (A.4) by duplicating ith

element in y, we can easily obtain a vector x = [x>
1̂,N
,x>

2̂,N
, · · · ,x>

M̂,N
]>, which makes Eq.

(A.3) exist, i.e., λ is also the eigenvalue of S. Then, we can show that all the eigenvalues of

W are the eigenvalues of S.

A.3 Proof of Theorem 3.1

Proof. Let U ∈ RM×M×N×N be a forth-order tensor with elements U j,β̂
i,α̂ = (1 − µα̂)δj,β̂i,α̂ and

θ ∈ RM×M×N×N be a 4-order tensor with elements θj,β̂i,α̂ . Then, we can write the MN ×MN

flattened transition tensor as

T = U + θ ∗A = U + θ ∗Aintra + θ ∗Ainter, (A.7)
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where Aintra = diag([A1̂
1̂

... AM̂
M̂

]) and Ainter = A−Aintra. With the property of spectral

radius, we have

ρ(T) ≤ ρ(U) + ρ(θ ∗Ainter) + ρ(θ ∗Aintra). (A.8)

Let us analyze each term in Eq. (A.8):

• ρ(U): U = diag([(1− µ1̂)I ... (1− µM̂)I]).

According to Lemma 3.2, we have

ρ(U) = max
α̂

ρ[(1− µα̂)I] = 1−min
α̂
{µα̂}. (A.9)

• ρ(θ ∗Aintra): According to Lemma 3.2, we have the following result.

ρ(θ ∗Aintra) = ρ(diag([θ1̂
1̂
A1̂

1̂
... θM̂

M̂
AM̂

M̂
])) (A.10)

= max
α̂
{ρ(θα̂α̂Aα̂

α̂)}. (A.11)

• ρ(θ ∗Ainter):

ρ(θ ∗Ainter) = ρ




0 · · · θ1̂
M̂

A1̂
M̂

...
. . .

...

θM̂
1̂

AM̂
1̂
· · · 0


 . (A.12)

As we mentioned in the third property of the tensor framework in Section 3.3, Aβ̂
α̂ is

diagonal, i.e., Aβ̂
α̂ = diag{vβ̂,α̂}, where vβ̂,α̂ is a N -length vector composed of 1 and 0.

Then, we can construct another diagonal matrix Qβ̂
α̂, which satisfies θβ̂α̂A

β̂
α̂+Qβ̂

α̂ = θβ̂α̂IN.
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Define

Z =



0 Q1̂
2̂
· · · Q1̂

M̂

Q2̂
1̂

0 · · · Q2̂
M̂

...
...

. . .
...

QM̂
1̂

QM̂
2̂
· · · 0


. (A.13)

The result of Z + θ ∗Ainter is the same as the inter-layer adjacency tensor S defined

in Lemma 3.3. The infection rates θ here can be seen as the weights W. Then,

S = Z + θ ∗Ainter. (A.14)

According to Lemma 3.1, we obtain

ρ(S) ≥ max{ρ(Z), ρ(θ ∗Ainter)} ≥ ρ(θ ∗Ainter). (A.15)

As we proved in Lemma 3.3, ρ(S) = ρ(θ̂). Then,

ρ(θ ∗Ainter) ≤ ρ(θ̂). (A.16)

According to Eqs. (A.9), (A.11) and (A.16), we obtain that ρ(T) in Eq. (A.8) is

upper-bounded as

ρ(T) ≤ 1−min
α̂
{µα̂}+ max

α̂
{ρ(θα̂α̂Aα̂

α̂)}+ ρ(θ̂). (A.17)
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A.4 Proof of Theorem 3.2

Proof. As we have shown T = U + θ ∗Aintra + θ ∗Ainter in Appendix A.5, we could easily

use Lemma 3.1 to prove that

ρ(T) ≥ max{ρ(U), ρ(θ ∗Aintra), ρ(θ ∗Ainter)}. (A.18)

For θ ∗Ainter, it can be seen as the adjacency tensor of a multilayer network, which only

has inter-layer connections. With the NM × NM flattening method, we can reshape the

tensor as θ ∗Ainter = diag{[D1 ... DN]}, where Di = θ̂j for
∑k=j−1

k=1 Nk < i ≤
∑k=j

k=1 Nk.

Then, with Lemma 3.2, we have

ρ(θ ∗Ainter) = max
i
{ρ(Di)} = max

j
{ρ(θ̂j)}. (A.19)

According to Eqs. (A.9), (A.11) and (A.19), we obtain that ρ(T) in Eq. (A.18) as

lower-bounded as

ρ(T) ≥ max
i,α̂
{1− µα, ρ(θα̂α̂Aα̂

α̂), ρ(θ̂i)}. (A.20)

A.5 Proof of Theorem 3.3

Proof. Let θm = maxα̂{θα̂α̂}. As θα̂α̂ � θα̂
β̂
, we have

θα̂
β̂

θm
≈ 0 for any α̂ and β̂. With Lemma

3.2, we have
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ρ(T)

≈ θmρ




(1−µ1̂)

θm
IN +

θ1̂
1̂

θm
A1̂

1̂
· · · 0

...
. . .

...

0 · · · (1−µM̂ )

θm
IN +

θM̂
M̂

θm
AM̂

M̂




= max
α̂
{1− µα̂ + θα̂α̂ρ(Aα

α)}. (A.21)

A.6 Proof of Theorem 3.4

Proof. Similar to Appendix A.5, we have
θα̂α̂
θm
≈ 0 for θα̂α̂ � θα̂

β̂
where θm = maxα̂,β̂{θα̂β̂}.

Reshaping the MN ×MN flattened tensor to the NM ×NM flattened tensor,

ρ(T) ≈ θmρ[diag(
1

θm
θ̂i +

1

θm
φIM )], (A.22)

where φ = [1− µ1̂, · · · , 1− µM̂ ] and θ̂i = θ̂ ∗Aint(i).

We could easily prove the conclusion with Lemma 3.2.
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Appendix B

Proofs for Chapter 4

B.1 Proof of Theorem 4.1

Proof. For hypergraph signals, the output of one-time shifting of fr is calculated as

fr(1) =
N∑
i=1

λifi(f
T
i fr)

M−1 = λrfr. (B.1)

Based on the normalized Fnorm, we have fnormr(1) = λr
λmax

fr. It is therefore easy to obtain Eq.

(4.24c) from Eq. (4.24a). To obtain Eq. (4.24b), we have

Psf r =
N∑
i=1

λifi(f
T
i fr) =

λr
λmax

fr. (B.2)

It is clear that Eq. (4.24b) is the same as Eq. (4.24c).

Since λ is real and nonnegative, we have

TV(f i)−TV(f j) =
λj − λi
λmax

. (B.3)

Obviously, TV(fi) > TV(fj) iff λi < λj.

155



B.2 Proof of Theorem 4.2

Proof. We first examine one of the orders in n-Mode product of hypergraph signal, i.e.,

nth-order of s[M−1], 1 ≤ n ≤ N , as

(s[M−1] ×n U)i1...in−1jin+1...iM−1
=

N∑
in=1

si1si2 ...siM−1
Ujin . (B.4)

Since all elements in s
[M−1]
Q should also be the elements of s[M−1] after sampling, only one

Ujin = 1 exists for each j according to Eq. (B.4), i.e., only one term in the summation exists

for each j in the right part of Eq. (B.4). Moreover, since U samples over all the order,

Upin = 1 and Ujin = 1 cannot exist at the same time so that all the entries in s
[M−1]
Q are also

in s[M−1]. Suppose q = {q1, q2, · · · , qQ} is the places of non-zero Ujqj ’s, we have

s
[M−1]
Q (i1, i2, · · · , iQ) = siq1siq2 · · · siqQ . (B.5)

As a result, we have Uji = δ[i − qj], which is the same as the sampling operator for the

original signal. For the interpolation operator, the proof is similar and hence omitted.

B.3 Proof of Lemma 4.1

Proof. Since s is K-bandlimited, s̃i = fT
i s = 0 when i > K. Then, according to Eq.(4.20),

we have

s = VTVs =
K∑
i=1

fif
T
i s +

N∑
i=K+1

fif
T
i s =

K∑
i=1

fif
T
i s + 0 = FT

[K]s̃[K], (B.6)

where V = [f1, · · · , fN ]T.
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B.4 Proof of Theorem 4.3

Proof. To prove the theorem, we show that TU is a projection operator and T spans the

space of the first K eigenvectors. From Lemma 4.1 and s = TsQ, we have

s = FT
[K]s̃[K] = FT

[K]ZsQ. (B.7)

As a result, rank(ZsQ) = rank(̃s[K]) = K. Hence, we conclude that K ≤ Q.

Next, we show that TU is a projection by proving that TU ·TU = TU. Since we have

Q ≥ K and

ZUFT
[K] = IK, (B.8)

We have

TU ·TU = FT
[K]ZUFT

[K]ZU (B.9a)

= FT
[K]ZU = TU. (B.9b)

Hence, TU is a projection operator. For the spanning part, the proof is the same as that in

[95].
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B.5 Proof of Theorem 4.4

Proof. Let the diagonal matrix Σ[K] consist of the first K coefficients {λ1, . . . , λK}. Since

ZUFT
[K] = IK, we have

FKs
[M−1]
[K] = Z−1Σ[K]ŝ[K] (B.10a)

= UFT
[K]Σ[K]ŝ[K] (B.10b)

= U[(
K∑
i=1

λi · fi ◦ ... ◦ fi︸ ︷︷ ︸
M times

)(s ◦ ... ◦ s︸ ︷︷ ︸
M-1 times

) + 0] (B.10c)

= UFs[M−1]. (B.10d)

Since s[K] = Us, it therefore holds that s[K] − FKs
[M−1]
[K] = U(s− Fs[M−1]).

B.6 Proof of Lemma 4.2

Proof. Let VT = [f1, · · · , fN ] and Σ = diag([λ1, · · · , λN ]). Since VTV = I, we have

Pk = VTΣVVTΣV · · ·VTΣV︸ ︷︷ ︸
k times

(B.11a)

= VTΣkV. (B.11b)

Therefore, the kth-order term is given as

s<k> = VTΣkVs (B.12a)

=
N∑
r=1

λkr(f
T
r s)fr. (B.12b)
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Appendix C

Proofs for Chapter 5

C.1 Proof of Theorem 5.1

Proof. Since the hypergraph spectrum basis are orthonormal, we have VVT = I. Then, the

τ -step shifting based on supporting matrix can be calculated as

Pτ = VΛPVTVΛPVT · · ·VΛPVT︸ ︷︷ ︸
τ times

(C.1)

= VΛτ
PVT . (C.2)

Now, the Eq. (5.8) can be written as

E[x] = VΛτ
PVTE[x]. (C.3)

Since VΛτ
PVT does not always equal to I, Eq. (5.8) holds for arbitrary supporting matrix

and τ if and only if E[x] = 0.

Next we show the sufficiency and necessity of the condition in Eq. (5.11). The condition

in Eq. (5.9) can be written as

Pτ1E[xxH ]((P)Hτ2)
H = Pτ1+τE[xxH ]((P)Hτ2−τ )

H . (C.4)
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Considering Eq. (C.2) and the fact that hypergraph spectrum is real [123], Eq. (5.9) is

equivalent to

VΛτ1
PVHE[xxH ]VΛτ2

PVH = VΛτ1+τ
P VHE[xxH ]VΛτ2−τ

P VH , (C.5)

which can be written as

(VHE[xxH ]V)Λτ
P = Λτ

P(VHE[xxH ]V). (C.6)

If Eq. (C.6) holds for arbitrary P, (VHE[xxH ]V) should be diagonal, which indicates

E[xxH ] = VΣxV
H . Thus, the sufficiency of the condition is proved.

Similarly, we can apply Eq. (5.11) on both sides of Eq. (5.9), we can establish the

necessity of the condition in Eq. (5.11).

C.2 Proof of Theorem 5.2

Proof. Since A =
∑N

r=1 λr · fr ◦ ... ◦ fr︸ ︷︷ ︸
M times

, we have

ai1i2···iM =
N∑
r=1

λrfr,i1fr,i2 · · · fr,iM , (C.7)
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where fr,i is the ith element of fr. Then, the tensor norm is

||A||2T =
∑

i1,i2,··· ,iM

(
N∑
r=1

λrfr,i1fr,i2 · · · fr,iM )2

=
∑

i1,i2,··· ,iM

(
N∑
r=1

λrfr,i1 · · · fr,iM )(
N∑
t=1

λtft,i1 · · · ft,iM )

=
∑

i1,i2,··· ,iM

∑
r,t

λrλtfr,i1 · · · fr,iMft,i1 · · · ft,iM

=
∑
r,t

λrλt

N∑
i1,i2,··· ,iM=1

(fr,i1ft,i1) · · · (fr,iMft,iM )

=
∑
r,t

λrλt(f
T
r ft)

M . (C.8)

Since fr is orthonormal, fTr ft = 1 holds if r = t; otherwise, fTr ft = 0. Thus, we obtain

||A||2T =
∑N

r=1 λ
2
r.
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Appendix D

Proofs for Chapter 6

D.1 Proof of Lemma 6.1

Proof. Let V = [f1, · · · , fN ] and Σ = diag([λ1, · · · , λN ]). Since VTV = I, we have

Pkx = VΣVTVΣVT · · ·VΣVT︸ ︷︷ ︸
k times

x

= VΣkVTx (D.1)

=
N∑
r=1

λkr(f
T
r x)fr. (D.2)

Since H = h(P) =
∑

k αkP
k is a polynomial graph filter, we can directly obtain

Hx =
∑
k

N∑
r=1

αkλ
k
r(f

T
r x)fr (D.3)

=
N∑
r=1

h(λr)(f
T
r x)fr. (D.4)
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D.2 Proof of Theorem 6.1

Proof. Since the convolution filter Tg(x) can be written in

Tg(x) =
N∑
r=1

g(λr)fr(f
T
r x), (D.5)

the proof is straightforward by invoking with Lemma 6.1.
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S. Gómez, and A. Arenas, “Mathematical formulation of multilayer networks,” Physical
Review X, vol. 3, no. 4, p. 041022, Dec. 2013.

[51] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Ani-
mals. Princeton, NJ, USA: Princeton University Press, 2011.

[52] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, and Y. Moreno, “Discrete-time
markov chain approach to contact-based disease spreading in complex networks,” EPL
(Europhysics Letters), vol. 89, no. 3, p. 38009, Feb. 2010.

[53] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos, “Epidemic spreading in real
networks: An eigenvalue viewpoint,” in Proc. of International Symposium on Reliable
Distributed Systems, Florence, Italy, Oct. 2003, pp. 25-34.

[54] E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, “Analytical computation of the
epidemic threshold on temporal networks,” Physical Review X, vol. 5, no. 2, p. 021005,
Apr. 2015.

167



[55] V. D. Blondel and Y. Nesterov, “Polynomial-time computation of the joint spectral
radius for some sets of nonnegative matrices,” SIAM Journal on Matrix Analysis and
Applications, vol. 31, no. 3, pp. 865-876, Aug. 2009.

[56] Durrett, Richard, Random Graph Dynamics. Cambridge, MA, USA: Cambridge Uni-
versity Press, 2007.

[57] B. G. Horne, “Lower bounds for the spectral radius of a matrix,” Linear Algebra and
its Applications, vol. 263, pp. 261-273, Sept. 1997.

[58] H. Sayama, “Graph product multilayer networks: spectral properties and applications,”
Journal of Complex Networks, 2017. [Online]. Available: www.oxfordjournals.org. [Ac-
cessed Sept. 02, 2017].

[59] M. Newman, D. J. Watts, and S. H. Strogatz, “Random graph models of social net-
works,” Proceedings of the National Academy of Sciences, vol. 99, no. 1, pp. 2566-2572,
Feb. 2002.

[60] J. Shi, and J. Malik, “Normalized cuts and image segmentation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 888–905, Aug. 2000.

[61] A. Sandryhaila, and J. M. F. Moura, “Discrete signal processing on graphs: frequency
analysis,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3042-3054, Apr.
2014.
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graphs: sampling theory,” IEEE Transactions on Signal Processing, vol. 63, no. 24, pp.
6510-6523, Dec. 2015.

[98] V. I. Paulsen, and R. R. Smith, “Multilinear maps and tensor norms on operator sys-
tems,” Journal of Functional Analysis, vol. 73, no. 2, pp. 258-276, Aug. 1987.

[99] S. Chen, F. Cerda, P. Rizzo, J. Bielak, J. H. Garrett, and J. Kovačević, “Semi-supervised
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