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ABSTRACT OF THE DISSERTATION

Learning from Human Feedback:

Ranking, Bandit, and Preference Optimization

by
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Professor Quanquan Gu, Chair

This dissertation investigates several challenges in artificial intelligence (AI) alignment and

reinforcement learning (RL), particularly focusing on applications when only preference feed-

back is available. Learning from preference feedback has been one central problem across

different fields such as ranking, recommendation systems, and social choice theory. Recently,

reinforcement learning from human feedback (RLHF) has also shown its strong potential in

utilizing weakly supervised human data (preference feedback) and its ability to encode hu-

man values into machine learning models accurately. This dissertation aims to comprehen-

sively characterize preference-based statistical learning, focusing on the sample complexity

of ranking and preference model estimation and fine-tuning large language models.

The first part of the dissertation explores novel methods for the learning-to-rank prob-

lem. I studied learning to rank under the strong stochastic transitivity (SST) condition, a

prevalent model without assuming a score for each option. SST assumes that the accuracy

of the comparison between two items increases as the disparity in their quality widens. I

proposed one of the first adaptive approaches that can effectively aggregate the feedback
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from different human labelers and illustrated how the relationship between the number of

human queries and resulting performance depends on the properties of the human labelers.

I further follow up in this direction with my collaborators and provide active ranking algo-

rithms that can work without strong stochastic transitivity. We developed novel algorithms

under this practical yet harder setting. Our efficient algorithm requires fewer human queries

compared with algorithms designed with stronger assumptions. The algorithm is provably

optimal.

The second part focuses on preference learning without transitivity assumption. In real-

ity, humans rarely make consistent comparisons and often demonstrate contradicting pref-

erences such as a loop within the preference relations. I considered the most general setting

where there is no transitivity at all. I proposed algorithms that identify the Borda winner,

an optimal choice even when a true underlying rank does not exist. I showed the algorithm

enjoys minimum regret, a notion that trades between exploration and exploitation. This

result sheds light on the fundamental difficulty and cost of recovering human preferences

under the fewest assumptions.

The third part also focuses on preference learning without transitivity assumption, but

instead considers an alternative definition of learning objective, the von Neumann winner. I

first formulate the general preference as a game environment where two players aim to win

over each other and then present an algorithmic framework that can solve this game in a

self-play manner asymptotically. The algorithm is then extended to the task of fine-tuning

large language models and shows remarkable empirical performance.

The methods and techniques discussed in this dissertation cover a full spectrum of differ-

ent assumptions and settings of preference learning. In each setting, the new algorithms are

presented along with theoretical analysis ensuring a tight performance guarantee. Addition-

ally, during the exploration of different settings, new research directions and open questions

are identified, which could help promote the research of preference learning in terms of sample

efficiency in the future.
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CHAPTER 1

Introduction

Reinforcement learning (RL) is a subfield of artificial intelligence and machine learning that

focuses on teaching agents to make decisions in an environment by performing actions and

receiving rewards. The goal of RL is to learn a policy that maps states to actions, maximizing

the cumulative reward over time. The learning process in RL involves trial and error, as the

agent receives feedback in the form of rewards and uses it to adjust its strategy accordingly.

Due to its solid theoretical foundations, RL has been applied to various tasks, ranging from

game playing to robotics. It has recently proven to be a powerful tool for solving diverse

problems in the industrial and medical domains.

However, a significant limitation of the standard RL is that its success crucially depends

on the reward function, the definition of which encodes the prior knowledge of the problem.

The learned policy may be sensitive to small changes in the reward, possibly yielding very

different behaviors, depending on the relative values of the rewards. Also, in many real-world

applications such as drug discovery or even the training of chatbots (e.g. ChatGPT), reward

functions might not be readily available or easy to design.

Preference-based Reinforcement Learning (PbRL), also known as Reinforcement Learning

with Human Feedback (RLHF), is a paradigm for learning from non-numerical feedback in

sequential domains. PbRL utilizes binary preference feedback instead of absolute utility

values, making it a more natural and straightforward approach for many RL applications,

especially those involving human evaluations.

Although several algorithms have been developed for PbRL, their performance guar-
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antees are not well understood, and the existing theoretical guarantees are limited. This

dissertation focuses on developing efficient and scalable RL algorithms that use preference

feedback from humans and understanding both the capability and the fundamental limits of

these preference-based learning algorithms. Specifically, I will study the statistical limits of

PbRL algorithms, which describe the necessary number of samples for an agent to learn a

near-optimal policy.

The first aspect of preference learning we would like to address is efficient learning-to-rank

from preference feedback. When the preference is deterministic, the ranking problem is well-

studied and can be solved by famous algorithms such as Selection Sort, Merge Sort, or Quick

Sort. The solution is less straightforward when the feedback is assumed noisy, meaning that

comparing two items can receive different outcomes with randomness. It is imaginable that

in such cases, the algorithm needs to query multiple times and try to estimate the ground-

truth ranking from the feedback it has received. With a decent estimation, the algorithm can

adjust its further queries to recover the ranking more efficiently. This is the learning-to-rank

problem.

In Chapter 2, we study such a learning-to-rank problem, but with multiple preference

oracles. This setting can be instantiated as a recommendation system: there are N items

and M customers, each customer can provide preference feedback, and the goal of the system

is to provide a ranking based on the (noisy) preference feedback. In this chapter, we seek

to provide rigorous analysis and algorithmic design to solve this problem in a restricted

setting, where all users agree on an underlying true ranking, but each user can be accurate,

noisy, or even adversary, indicated by an unknown accuracy level. We design asymptotically

optimal algorithms that can identify the accurate users gradually throughout the process

and invest the query budget to the accurate users later. In Chapter 3, we further relax

the strong stochastic transitivity to the weak stochastic transitivity and study the learning-

to-rank problem with a single oracle under this setting. We propose a δ-correct algorithm,

Probe-Rank, that actively learns the ranking from noisy pairwise comparisons. We prove
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a sample complexity upper bound for Probe-Rank, which only depends on the preference

probabilities between items that are adjacent in the true ranking. This improves upon

existing sample complexity results that depend on the preference probabilities for all pairs

of items. Probe-Rank thus outperforms existing methods over many instances that do not

satisfy Strong Stochastic Transitivity. Thorough numerical experiments in various settings

are conducted, demonstrating that Probe-Rank is significantly more sample-efficient than

the state-of-the-art active ranking method.

The learning-to-rank problem discussed above has an implicit assumption that the pref-

erence is transitive: if A is preferred over B and B is preferred over C, then A is preferred

over C (“preferred” is in the probabilistic sense). In fact, this is usually not the case when hu-

man behavior is involved. One experiment on human behavior of gambling (Tversky, 1969)

shows that “people chose between adjacent gambles according to the payoff and between

the more extreme gambles according to probability or expected value”. This shows humans

often demonstrate contradicting preferences such as a loop within the preference relations.

In Chapter 4 and Chapter 5, we will explore rich and general preference models, In Chap-

ter 4, we consider the most general setting where the preference is determined by some rich

context, and proposed algorithms that identify the Borda winner, an optimal choice even

when a true underlying rank list does not exist. I showed the algorithm enjoys minimum

regret, a notion that trades between exploration and exploitation. This result sheds light

on the fundamental difficulty and cost of recovering human preferences under the fewest as-

sumptions. In Chapter 5, we consider an alternative setting that allows general preference,

the von Neumann winner. I first formulate the general preference as a game environment

where two players aim to win over each other and then present an algorithmic framework that

can solve this game in a self-play manner asymptotically. The algorithm is then extended to

the task of fine-tuning large language models and shows remarkable empirical performance.
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1.1 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we introduce the learning-

to-rank problem and the setting of the rank aggregation problem. We then propose algo-

rithms that can adaptively allocate query budget and recover the true ranking efficiently. In

Chapter 3, we study the learning-to-rank problem under the Weak Stochastic Transitivity

assumption and propose algorithms that actively learn the ranking from noisy pairwise com-

parisons and outperform existing methods over a large collection of instances that do not

satisfy Strong Stochastic Transitivity. In Chapter 4, we move on to the topic of learning

under general preference. We first introduce a new problem setting for identifying the Borda

winner and propose new algorithms that can efficiently identify the Borda winner. We are

also able to deliver matching upper bound and lower bound of the Borda regret for the pro-

posed algorithm. In Chapter 5, we formulate another learning objective for learning under

general preference. The learning objective is to identify the Nash equilibrium policy of a pre-

defined two-player constant-sum gam. We adopt the classic online adaptive algorithm with

multiplicative weights (Freund and Schapire, 1999) as a high-level framework that solves the

two-player game and propose efficient self-play algorithms that show remarkable empirical

performance when applied to fine-tuning large language models.

1.2 Notation System in this Dissertation

In this dissertation, scalars are denoted by lowercase letters. Vectors are denoted by lowercase

boldface letters x, and matrices by uppercase boldface letters A. We denote by rks the set

t1, 2, ¨ ¨ ¨ , ku for positive integers k. We use log x to denote the logarithm of x to the base

2. For two nonnegative sequences tanu, tbnu, an ď Opbnq means that there exists a positive

constant C such that an ď Cbn. Notation an ď Õpbnq means that there exists a positive

constant k such that an ď Opbn log
k bnq. Notation an ě Ωpbnq means that there exists a

positive constant C such that an ě Cbn. Notation an ě Ω̃pbnq means there exists a positive

4



constant k such that an ě Ωpbn log
´k bnq. Notation an ě ωpbnq means that limnÑ8 bn{an “ 0.

The notations like Õ and Ω̃ are used to hide logarithmic factors. For a vector x P Rd and a

positive semidefinite matrix A P Rdˆd, we define }x}2A “ xJAx. For any set C, we use |C|

to denote its cardinality. We denote the identity matrix by I and the empty set by H. The

remaining notations are defined before they are used in each chapter.
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CHAPTER 2

Active Ranking from Heterogeneous Pairwise

Comparisons

2.1 Introduction

To rank a set of items from noisy pairwise comparisons or preferences is a widely studied topic

in machine learning (Braverman and Mossel, 2008; Weng and Lin, 2011; Ren et al., 2019;

Jin et al., 2020). This is also referred to as rank aggregation, which has many applications

in practice such as ranking online game players (Herbrich et al., 2006a), evaluating agents

in games (Rowland et al., 2019), recommendation systems (Valcarce et al., 2017), etc.

In the above cases, all data used in inference shares the assumption that each comparison

has the same credibility. However, in a heterogeneous setting, the providers of subsets of

data may have varying unknown accuracy levels. Thus, it is natural to take advantage of the

more accurate ones to obtain a more accurate ranking using a smaller number of queries.

Nowadays, it is common to collect large-scale datasets to facilitate the process of knowl-

edge discovery. Due to its scale, such data collection is usually carried out by crowdsourcing

(Kumar and Lease, 2011; Chen et al., 2013), where different entities with diverse backgrounds

generate subsets of the data. While crowdsourcing makes it possible to scale up the size,

it also brings new challenges when it comes to the cost of operation and cleanness of the

data. For example, the optimal ranking algorithm in the single-user setting (Ren et al.,

2019) may not be straightforwardly extended to the heterogeneous setting while maintaining

optimality. In particular, if we know the most accurate user among the set of users providing
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comparisons, the best we can do is to apply optimal single-user ranking algorithms such as

Iterative-Insertion-Ranking (IIR) (Ren et al., 2019) by querying only the most accurate user.

Unfortunately, in practice, the accuracies of the users are often unknown. A naive solution

may be to randomly select a user to query and use the comparisons provided by this user

to insert an item into the ranked list per IIR. However, as we show later, this naive method

usually bears a high sample complexity. Therefore, it is of great interest to design methods

that can adaptively select a subset of users at each time to query pairwise comparisons to

insert an item correctly into the ranked list.

In this chapter, we study the rank aggregation problem, where a heterogeneous set of

users provides noisy pairwise comparisons for the items. We propose a novel algorithm

that queries comparisons for pairs of items from a changing active user set. Specifically,

we maintain a short history of user responses for a set of comparisons. When the inferred

rank of these comparisons is estimated to be true with high confidence, it is then used

to calculate a reward based on the recorded responses. Then an upper confidence bound

(UCB)-style elimination process is performed to remove inaccurate users from the active

user set. We theoretically analyze the sample complexity of the proposed algorithm, which

reduces to the state-of-the-art ranking algorithm (Ren et al., 2019) for a single user. We

conducted experiments on both synthetic and real-world datasets, which demonstrate that

our adaptive sampling algorithm based on user elimination is much more sample efficient

than baseline algorithms and can sometimes reach the performance of an oracle algorithm.

2.1.1 Organization of this Chapter

In this chapter, we propose a novel algorithm called Ada-IIR for heterogeneous rank aggre-

gation, which uses a successive elimination subroutine to adaptively maintain a set of active

users during the ranking process. The remainder of this chapter is organized as follows: we

review the most relevant work in the literature to ours in Section 2.2. We present the prelim-

inaries of ranking from noisy pairwise comparisons in Section 2.3 and discuss the challenge
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of extending single-user optimal ranking algorithms to the heterogeneous setting. In Sec-

tion 2.4, we present our main algorithm and provide a detailed description of the method.

Then in Section 2.5, we provide a theoretical analysis of the upper bound on the sample

complexity of the proposed algorithm and compare the results with baseline algorithms. We

conduct numerical experiments in Section 2.7 to demonstrate the empirical superiority of

our method. Finally, we conclude the paper with Section 2.8. We defer the detailed proof

of the theorems to Section 2.11.

2.2 Related Work

In this section, we discuss two closely related topics to our work, which cover the two facets of

heterogeneous rank aggregation: active ranking to infer the rank and best arm identification

to select a subset of accurate information sources (e.g., users). In addition to this, we also

introduce similar work bearing the idea that ranking information can be heterogeneous.

Active ranking For passive ranking problems, a static dataset is given beforehand. In-

ference of the ranking often relies on models of ranked data, such as the Bradley-Terry-Luce

(BTL) model (Bradley and Terry, 1952) and the Thurstone model (Thurstone, 1927b). In

contrast to passive algorithms, active algorithms leverage assumptions embedded in the mod-

els to identify the most informative pairs to query, thus reducing the sample complexity of

queries. For instance, in Maystre and Grossglauser (2017), under the assumption that the

true scores for n items are generated by a Poisson process, with Opnpolyplogpnqq comparisons,

an approximate ranking of n items can be found. Let the probability of making a correct

comparison between item i and the most similar item to item i be 1
2

` ∆i and let ∆min “

miniPrns ∆i. An instance-dependent sample complexity bound of Opn logpnq∆´2
min logpn{pδ∆minqq

is provided along with a QuickSort based algorithm by Szörényi et al. (2015). In Ren et al.

(2019), an analysis for a distribution-agnostic active ranking scheme is provided. To achieve
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a δ-correct exact ranking, Op
ř

iPrns
∆´2

i plog logp∆´1
i q ` logpn{δqqq comparisons are required.

The exact inference requirement results in repeated queries of the same pair, which costs a

constant overhead compared to approximate inference.

Best Arm Identification (BAI) BAI is a pure exploration method in multi-armed ban-

dits (Audibert et al., 2010; Chen et al., 2017). In the crowdsourcing setting, every user

can be queried with the same question. Noting that some users can provide more accurate

answers than others, the goal is to identify the best user. We can regard the choice of which

user to ask as an action and the correctness of the user’s response as the reward (cost) of the

taken action. A long line of research has explored the identification of the best action with

stochastic feedback. Recently, Resler and Mansour (2019) studied cases when the observed

binary action costs can be inverted with a probability that is less than half. With careful

construction of the estimated cost despite the noise, the regret of the online algorithm suf-

fers a constant order compared to the noiseless setting even without the knowledge of the

inversion probability.

Heterogeneous Rank Aggregation An early work from Chen et al. (2013) explored

the idea of user-specific accuracy through a model that is equivalent to adding noise to the

comparisons produced by the BTL model. More recently, Jin et al. (2020) proposed a natural

extension of BTL and Thurstone generative models to a heterogeneous population of users

for pairwise comparisons and partial rankings. In addition to this line of work that assumes

a global true ranking, mixture models (Zhao and Xia, 2019) were proposed for personal

preference inference. These works output high-accuracy approximate rankings.
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2.3 Preliminaries

2.3.1 Ranking from Noisy Pairwise Comparisons

Suppose there are N items that we want to rank and M users to be queried. An item is

indexed by an integer i P rN s. We assume there is a unique true ranking of the N items. A

user is also indexed by an integer u P rM s. For a subset of users, we use U Ď rM s to denote

the index subset. In each time step, we can pick a pair of items i and j and ask a user u

whether item i is better than item j. The comparison returned by the user may be noisy.

We assume that for any pair of items pi, jq with true ranking i ą j, the probability that

user u answers the query correctly is pupi, jq “ ∆u ` 1{2, where ∆u P p0, 1
2
s is referred to as

the accuracy level of user u. When some of the ∆u’s are different from the others, we call

the set of users heterogeneous. We assume comparison results for item pairs, regardless of

the queried user, are mutually independent. While this independence assumption may not

always hold for real datasets, it is commonly adopted in the literature as it facilitates the

analysis (Falahatgar et al., 2017b, 2018; Jin et al., 2020).

In this paper, we aim to achieve the exact ranking for a ranking problem defined as

follows.

Definition 2.3.1 (Exact Ranking with Multiple Users). Given N items, M users, and

δ P p0, 1q, our goal is to identify the true ranking among the N items with a probability of

at least 1´ δ. An algorithm A is δ-correct if, for any instance of the input, it will return the

correct result in finite time with probability at least 1 ´ δ.

To actively eliminate the users in the user pool, we define an α-optimal user as follows.

Definition 2.3.2. Let U Ď rM s be an arbitrary subset of users. If a user x P U satisfies

∆x ` α ě maxuPU ∆u, then x is called an α-optimal user in U . If a user is α-optimal among

all M users, then it is called a (global) α-optimal user.
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2.3.2 Iterative Insertion Ranking with a Single User

When there is only one user u to be queried (M “ 1), the problem defined in Section

2.3.1 reduces to the exact ranking problem with a single user, for which Ren et al. (2019)

proposed the Iterative-Insertion-Ranking (IIR) algorithm. The sample complexity (i.e., the

total number of queries) to achieve exact ranking with probability 1 ´ δ is characterized by

the following proposition:

Proposition 2.3.3 (Adapted from Theorems 2 and 12 in Ren et al. (2019)). Given δ P

p0, 1{12q and an instance of N items, the number of comparisons used by any δ-correct

algorithm A on this instance is at least

Θ
`

N∆´2
u

`

log log∆´1
u ` logpN{δq

˘˘

. (2.3.1)

Moreover, the IIR algorithm proposed by Ren et al. (2019) can output the exact ranking

using this number of comparisons, with probability 1 ´ δ.

The complexity above can be decomposed into the complexity of inserting each item into

a constructed sorting tree.

In this paper, we consider a more challenging ranking problem, where multiple users with

heterogeneous levels of accuracy can be queried each time. In the multi-user setting, the

optimal sample complexity in (2.3.1) can be achieved only if we know which user is the best,

i.e., u˚ “ argmaxuPrMs ∆u. The optimal sample complexity can then be written as

Cu˚pNq “ Θ
`

N∆´2
u˚

`

log log∆´1
u˚ ` logpN{δq

˘˘

. (2.3.2)

However, with no prior information on the users’ comparison accuracies, it is unclear

whether we can achieve a sample complexity close to (2.3.2). In this scenario, the most

primitive route is to perform no inference on the users’ accuracy and randomly choose users

to query.
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This leads to an equivalent accuracy of ∆̄0 “ 1
M

ř

uPrMs
∆u and a sample complexity

given as

CavepNq “ Θ
`

N∆̄´2
0

`

log log ∆̄´1
0 ` logpN{δq

˘˘

. (2.3.3)

Compared with the best possible complexity (2.3.2), the sample complexity (2.3.3) is larger

by a factor (ignoring logarithmic factors) up to M2, because the ratio between ∆u˚ and

∆̄0 could vary a lot for different set of users and can be as large as M . This is certainly

undesirable, especially when there are a large number of items to be ranked. Therefore, an

immediate question is: Can we design an algorithm that has a smaller multiplicative factor in

its sample complexity compared with the optimal sample complexity? What we will propose

in the following section is an algorithm that can achieve a sublinear regret, where the regret

is defined as the difference between the sample complexity of the proposed algorithm and

the optimal sample complexity.

2.4 Adaptive Sampling and User Elimination

The main framework of our procedure is derived based on the Iterative-Insertion-

Ranking algorithm proposed in Ren et al. (2019), which, to the best of our knowledge,

is the first algorithm that has matching instance-dependent upper and lower sample com-

plexity bounds for active ranking problems in the single-user setting. We assume that the

strong stochastic transitivity (SST) assumption defined in Falahatgar et al. (2017b, 2018)

holds in our setting. The ranking algorithm comprises the following four hierarchical parts

and operates on a Preference Interval Tree (PIT) (Feige et al., 1994a; Ren et al., 2019),

which stores the currently inserted and sorted items (the detailed definition is presented in

Section 2.9):

1. Adaptive Iterative-Insertion-Ranking (Ada-IIR): the main procedure that calls

IAI to insert an item into a PIT with a high probability of correctness. It is displayed

in Algorithm 1.
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2. Iterative-Attempting-Insertion (IAI): the subroutine which calls ATI to insert

the current item z P rN s into the ranked list with an error ϵ, and iteratively calls

ATI by decreasing the error until the probability that item z is inserted to the correct

position is high enough. It is displayed in Algorithm 5.

3. Attempting-Insertion (ATI): the subroutine that traverses the Preference Interval

Tree using binary search (Feige et al., 1994b) to find the node where the item should

be inserted with error ϵ. To compare the current item and any node in the tree, it calls

ATC to obtain the comparison result. It is displayed in Algorithm 6.

4. Attempting-Comparison (ATC): the subroutine that adaptively samples queries

from a subset of users for a pair of items pz, jq, where z is the item currently being

inserted and j is any other item. ATC records the number of queries each user provides

and the results of the comparisons. It is displayed in Algorithm 2.

In the heterogeneous rank aggregation problem, each user may have a different accuracy

level from the others. Therefore, we adaptively sample the comparison data from a subset

of users. In particular, we maintain an active set U Ď rM s of users, which contains the

potentially most accurate users from the entire group. We add a user elimination phase

to the main procedure (Algorithm 1) based on the elimination idea in multi-armed bandits

(Slivkins et al., 2019; Lattimore and Szepesvári, 2020) to update this active set. In particular,

we view each user as an arm in a multi-armed bandit, where the reward is 1 if the answer

from a certain user is correct and 0 if wrong. After an item is successfully inserted by IAI,

we call Algorithm 3 (EliminateUser) to eliminate users with low accuracy levels before

we proceed to the next item.

To estimate the accuracy levels of users, a vector sz P RM , recording the counts of

responses from each user for item z is maintained during the whole period of inserting item

z. We further keep track of two matrices Az, Bz P RNˆM . When a pair pz, jq (where z refers

to the item currently being inserted and j to an arbitrary item) is compared by user u P RM
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in Algorithm 2, we increase Arj, us by 1 if user u thinks z is better than j and increase

Brj, us by 1 otherwise. We use w to record the total number of times that item z is deemed

better by any users and use the average p̂ “ w{t to provide an estimation of the average

accuracy |U |´1
ř

uPU puij. The variables Az, Bz, and sz are global variables, shared by different

subroutines throughout the process. After an item z is successfully inserted, Az, Bz will be

discarded and the space allocated can be used for Az`1, Bz`1 (See Line 3 of Algorithm 1).

We use the 0{1 reward for each user to indicate whether the provided pairwise comparison

is correct. Nevertheless, this reward is not known immediately after each arm-pull since the

correctness depends on the ranking of items which is also unknown. But when IAI returns

inserted, the item recently inserted has a high probability of being in the right place. Our

method takes advantage of this fact by constructing a fairly accurate prediction of pairwise

comparison for the item with all other already inserted items in the PIT. Then an estimate

of the reward nz can be obtained with the help of recorded responses Az and Bz, which

are updated in ATC as described in the preceding paragraph. At last, in Algorithm 3 a

UCB-style condition is imposed on estimated accuracy levels µ “ nz{sz.

Due to the space limit, we omit here the IAI and ATI routines that are proposed in Ren

et al. (2019). We include them for completeness and ease of reference in Section 2.9.

2.5 Theoretical Analysis

In this section, we analyze the sample complexity of the proposed algorithm and compare it

with other baselines mentioned in Section 2.3.
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Algorithm 1 Main Procedure: Adaptive Iterative-Insertion-Ranking (Ada-IIR)
Global Variables:

z P N: the index of the item being inserted into the ranked list.

Az P RNˆM : Azrj, us is the number of times that user u thinks item z is better than item j.

Bz P RNˆM : Bzrj, us is the number of times that user u thinks item z is worse than item j.

sz P RM : total number of responses by each user so far.

Input parameters: Items to rank S “ rN s and confidence δ

Initialize: n1 “ s1 “ 0

1: Ans Ð the list containing only Sr1s

2: for z Ð 2 to |S| do

3: nz “ nz´1, sz “ sz´1, Az “ 0, Bz “ 0

4: IAIpSrzs, Ans, δ{pn ´ 1qq ŹAlgorithm 5 (global variables Az, Bz, sz are updated here)

5: for j P rz ´ 1s do

6: if Srzs ą Srjs in PIT then

7: nz “ nz ` Azrj, ˚s

8: else

9: nz “ nz ` Bzrj, ˚s

10: end if

11: end for

12: Uz Ð EliminateUserpUz´1,nz, sz, δ{pn ´ 1qq ŹAlgorithm 3

13: end for

14: return Ans;
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Algorithm 2 Subroutine: Attempt-To-Compare (ATC) pz, j,U , ϵ, δq

Input: items pz, jq to be compared, set of users U , confidence parameter ϵ, δ. M is the

number of users originally.

1: m “ |U |, p̂ “ 0, w “ 0, ŷ “ 1. Number of rounds r “ 1. rmax “ r1
2
ϵ´2 log 2

δ
s.

2: while r ď rmax do

3: Choose u uniformly at random from U

4: Obtain comparison result from user u as yuij

5: Increment the counter of responses collected from this user szrus Ð szrus ` 1

6: if yuij ą 0 then

7: Azrj, us Ð Azrj, us ` 1, w Ð w ` 1

8: else

9: Bzrj, us Ð Bzrj, us ` 1

10: end if

11: p̂ Ð w{r, r Ð r ` 1, cr Ð

b

1
2t
logpπ2r2

3δ
q

12: if |p̂ ´ 1
2
| ě cr then

13: break

14: end if

15: end while

16: if p̂ ď 1
2

then

17: ŷ “ 0

18: end if

19: return: ŷ

2.5.1 Sample Complexity of Algorithm 1

We first present an upper bound on the sample complexity of the proposed algorithm. Define

∆̄z “ 1
Uz

ř

uPUz
∆u to be the average accuracy of all users in the current active set. Denote

F pxq “ x´2
plog log x´1

` logpN{δqq. (2.5.1)
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Algorithm 3 Subroutine: EliminateUser
Input parameters: (U , n, s, δ).

1: Set S “
ř

uPrMs
su, smin “ minuPU su, µu “ nu{su, r “

a

logp2|U |{δq{p2sminq

2: Set LCB “ µ´ r1 and UCB “ µ` r1.

3: if S ě 2M2 logpNM{δq then

4: for u P U do

5: Remove user u from U if Du1 P U ,UCBu ă LCBu1 .

6: end for

7: end if

8: return U

Although F pxq depends on N and δ´1, the dependence is only logarithmic, and it does not

affect the validity of reasoning via big-O notations.

Theorem 2.5.1. For any δ ą 0, with probability at least 1 ´ δ, Algorithm 1 returns the

exact ranking of the N items, and it makes at most CAlgpNq queries, where CAlgpNq “

Op
řN

z“2 ∆̄
´2
z plog log ∆̄´1

z ` logpN{δqqq “ Op
řN

z“2 F p∆̄zqq.

Proof. The analysis of the sample complexity follows a similar route as Ren et al. (2019) due

to the similarity in algorithm design. Since we randomly choose a user from Ut and query it

for feedback, it is equivalent to querying a single user with the averaged accuracy 1
2

` ∆̄z,

where ∆̄z :“
1

|Uz |

ř

uPUz
∆u. This means most of the theoretical results from Ren et al. (2019)

can also apply to our algorithm. In Section 2.11.1, we present more detailed reasoning.

2.5.2 Sample Complexity Comparison of Different Algorithms

While Theorem 2.5.1 characterizes the sample complexity of Algorithm 1 explicitly, the re-

sult therein is not directly comparable with the sample complexity of the oracle algorithm

that only queries the best user Cu˚pNq or the complexity of the naive random-query algo-

rithm CavepNq. Based on Theorem 2.5.1, we can derive the following more elaborate sample
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complexity for Algorithm 1.

Theorem 2.5.2. Suppose there are N items and M users initially. Denote Sz “
ř

uPrMs
pszqu

to be the number of all queries made before inserting item z (Line 4 in Algorithm 1). The

proposed algorithm has the following sample complexity upper bound:

CAlgpN,Mq “ ΘpNF p∆u˚qq ` O

˜

N
ÿ

z“2

1
␣

Sz ă 2M2 logpNM{δq
(`

F p∆̄0q ´ F p∆u˚q
˘

¸

` O

˜

LpU0q
a

logp2MN{δq

N
ÿ

z“2

1tSz ě 2M2 logpNM{δqu

c

M

Sz

¸

, (2.5.2)

where LpU0q “
F pc∆3

u˚ q´F p∆u˚ q

∆u˚ ´c∆3
u˚

is an instance-dependent factor, with only logarithmic depen-

dence on N and δ´1(through F ), and where c “ 1{25 is a global constant.

Proof. The detailed proof can be found in Section 2.11.2.

A few discussions are necessary to show the meaning of the result. First, if the number

of users M " N , then no user is eliminated because each user will be queried so few times

that no meaningful inference can be made. Since the goal is to achieve the accuracy of the

best user, more inaccurate users only make the task more difficult. Therefore, it is necessary

to impose assumptions on M with respect to N .

This intuition can be made more precise. Suppose we loosely bound St as St ě t logpt{δq,

which is reasonable since for a very accurate user the algorithm will spend roughly no more

than Oplogpt{δqq comparisons to insert one item. This means the complexity can be bounded

(ignoring log factors)

CAlgpN,Mq “ O
`

NF p∆u˚q
˘

` Õ
`

M2
`

F p∆̄0q ´ F p∆u˚q
˘˘

` Õ
`

LpU0q
`

?
Mp

?
N ´ Mq

˘˘

.

(2.5.3)

If M “ Ωp
?
Nq, then this is not ideal because our algorithm won’t eliminate any user until

ΩpNq items are inserted with accuracy ∆̄0, which already leads to a gap linear in N compared
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with the best complexity Cu˚ . In this case, our algorithm roughly makes the same amount

of queries as Cave.

To avoid the bad case, it is necessary to assume M “ op
?
Nq so that the last two terms

become negligible (notice that LpU0q is an instance-dependent constant). Now we restate

Theorem 2.5.2 with the additional assumption and compare it with the baselines.

Proposition 2.5.3. Suppose we have M users and N items to rank exactly, with M “

op
?
Nq. We have the following complexity along with (2.3.2) and (2.3.3):

Cu˚pN,Mq “ ΘpNF p∆u˚qq,

CavepN,Mq “ ΘpNF p∆̄0qq,

CAlgpN,Mq “ ΘpNF p∆u˚qq ` opN
`

F p∆̄0q ´ F p∆u˚q
˘

q ` o
`

N
˘

.

The last two terms of CAlgpN,Mq are negligible when compared with the first term. There-

fore, our algorithm can perform comparably efficiently as if the best user were known while

enjoying an advantage over the naive algorithm with sample complexity CavepN,Mq.

Remark 2.5.4. Note that if we set U0 “ tu˚u for our algorithm, it will achieve the same

complexity as (2.3.2) indicates. Similarly, if we construct a new user ū where ∆ū “ ∆̄0 and

set U0 “ tūu, our algorithm will recover exactly (2.3.3). By this argument and the fact that

Big-O notations hide no M , the first term in each equation has the same absolute constant

factor. Therefore, our algorithm is indeed comparable with the best user.

Remark 2.5.5. Notice that F pxq Ñ `8 when x Ñ 0. This means Cave is very sensitive to

the initial average accuracy margin ∆̄0. In the case where there is only one best user u˚ and

all other users have a near-zero margin ∆u Ñ 0, Cave can be very large compared with Cu˚ .

Remark 2.5.6. In the experiments, we notice that even with N “ 10 and M “ 9, after

inserting the first item, each user has already been queried enough times so that S2 ě

2M2 logpNM{δq, which makes the second term in (2.5.2) vanish.
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2.6 A Two-Stage Algorithm

In this section, we present an alternative simple scheme, called two-stage ranking with a

heterogeneous set of users. This provides another baseline with which we can compare

Ada-IIR. Additionally, it can be useful in situations with a large number of users, i.e.,

M “ Ωp
?
Nq, where Ada-IIR is less effective.

Two-stage ranking first performs user selection and then item ranking. In the user-

selection stage, we search for an α-optimal user for some small α. Specifically, we first take

an arbitrary pair of items pi, jq and then run the Iterative-Insertion-Ranking (IIR) algorithm

(see Proposition 2.3.3) on them to determine the order, e.g., i ą j, with high probability.

Note that at this point, users have not been distinguished yet. So we take each query from a

randomly chosen user. As discussed in Section 2.3.2, this is equivalent to querying the user

ū whose accuracy is ∆̄0. Given i ą j, the problem of finding an α-optimal user is reduced to

pure exploration of an α-optimal arm in the context of multi-armed bandit: making queries

about the pre-determined item pair from user u is the same as generating outcomes from an

arm with Bernoulli(1
2

`∆u) reward, e.g., if user u returns the answer i ą j then we get reward

1, otherwise we get reward 0. Hence, an α-optimal user is equivalent to an α-optimal arm.

For determining an α-optimal arm, we can adopt the Median-Elimination (ME) algorithm

from Even-Dar et al. (2002a). After ME returns an α-optimal user uα, we discard all other

users and rank items by only querying uα. Ranking with a single user can again be done by

the IIR algorithm.

Two-stage ranking is composed of three procedures: IIR for determining the order of i

and j, ME for obtaining an α-optimal user, and IIR again for producing the final ranking.

The complexity of two-stage ranking is therefore the sum of the complexities of the three

procedures.

Theorem 2.6.1. thmtsr For any α P p0,∆u˚q, two-stage ranking outputs the exact ranking
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with probability at least 1 ´ δ using at most CtsrpN,Mq comparisons, where

CtsrpN,Mq “ Θ

ˆ

1

∆̄2
0

ˆ

log log
1

∆̄0

` log
1

δ

˙

`
M

α2
log

1

δ

`
N

p∆u˚ ´ αq
2

ˆ

log log
1

∆u˚ ´ α
` log

N

δ

˙˙

.

A more formal statement of two-stage ranking as well as the proof of Theorem 2.6.1 are

presented in Section 2.10.1.

Recall F pxq “ x´2plog log x´1`logpN{δqq defined in (2.5.1). From the preceding theorem,

it is clear that for any constant α, when M “ opN logNq, Ctsr pN,Mq is dominated by

Θ pNF p∆u˚ ´ αqq. From Proposition 2.5.3, when M “ op
?
Nq, Cave pN,Mq “ Θ

`

NF
`

∆̄0

˘˘

and CAlgpN,Mq “ ΘpNF p∆u˚qq. Therefore, as long as α is properly chosen, the two-stage

ranking has lower complexity than the non-adaptive ranking. However, since α ą 0, there is

a linear gap between the two-stage ranking of the proposed algorithm Ada-IIR. On the other

hand, two-stage ranking is less constrained than Ada-IIR as it has an advantage over the

non-adaptive scheme when the number of users M is in the regime Ωp
?
Nq while Ada-IIR

does not. A more detailed analysis of the two-stage ranking is presented in Section 2.10.2

and Section 2.10.3.
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Figure 2.1: Sample complexities v.s. number of items for all algorithms. (a) (b) and (c) are

different heterogeneous user settings where the accuracy of two groups of users differs.
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(c) M “ 72

Figure 2.2: Sample complexities v.s. number of items for all algorithms. (a) (b) and (c) are

different settings where the number of users differs. The accuracy of two groups of users are

γA “ 0.5, γB “ 2.5.

2.7 Experiments

In this section, we study the empirical performance of the following algorithms on both

synthetic and real-world datasets:

‚ IIR (Ren et al., 2019): The original single-user algorithm adapted to the multi-user

case by querying a user selected uniformly at random.

‚ Ada-IIR: The proposed method.

‚ Two-stage ranking: A simple method described in Section 2.6.

‚ Oracle: Query only the best user as if it is known.

Confidence parameter δ “ 0.25, α “ 0.05 is set if required by the algorithm.

2.7.1 Synthetic Experiment

In our experiment, we use a similar setup as that of Jin et al. (2020), except that every pair

has the same distance. In particular, we consider a set of users rM s, whose accuracies are
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set by pupi, jq “ p1 ` exppγupsj ´ siqqq´1, for u P rM s and items i, j P rN s, where parameter

γu determines the user accuracy and si, sj are the utility scores of the corresponding items

in the BTL model. Larger values of γu lead to more accurate users. We set si ´ sj “ 3

if i ă j and si ´ sj “ ´3 otherwise. Note that here we assume that the accuracy of user

u is the same for all pairs of items pi, jq as long as i ă j. We assume that there are two

distinct groups of users: the high-accuracy group in which the users have the same accuracy

γu “ γB P t0.5, 1.0, 2.5u in three different settings; and the low-accuracy group in which the

users have the same accuracy γu “ γA “ 0.5 in all settings. This set of γu, si, sj is chosen

so that pupi, jq for accurate users ranges from 0.55 to 0.99 and inaccurate users have a value

close to 0.55.

The number of items to be ranked ranges from 10 to 100. Each setting is repeated 100

times with randomly generated data. To showcase the effectiveness of active user selection,

we tested a relatively adverse situation where only 12 out of M “ 36 users are highly

accurate.

The average sample complexity and standard deviation over 100 runs are plotted in

Figure 2.1. Note that the standard deviation is hard to see, given that it is small compared to

the average. In most cases, the proposed method achieves nearly identical performance to the

oracle algorithm, with only a small overhead. For two-stage ranking, we observe a constant

overhead regardless of the accuracy of the users. It may outperform the non-adaptive one

(IIR) if there exist enough highly accurate users such as in Figure 2.1(a). However, the

situation is less favorable for the two-stage algorithm when the cost of finding the best user

overwhelms the savings of queries due to increased accuracy as shown in Figure 2.1(b). It

may even have an adverse effect when accuracies are similar, as shown in Figure 2.1(c).

When we increase the total number of users and keep their accuracy the same, as shown

in Figure 2.2, the Ada-IIR algorithm is able to tackle the increasing difficulty in finding more

accurate users within a larger pool. Although, the overhead increases, our proposed method

can adapt to each case and deliver near-optimal performance.
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In our experiments, every algorithm can recover the exact rank to the ground truth,

which is reasonable since the IIR algorithm is designed to output an exact ranking. And due

to the union bounds used to guarantee a high probability of correct output, the algorithms

tend to request more than enough queries so we did not see a case in which a non-exact

ranking was produced.

2.7.2 Real-world Experiment

The above synthetic experiments serve as a proof of concept. We add one more experiment

based on the real data, the setting is from the “Country Population” dataset from Jin et al.

(2020). In this dataset, the population of 15 countries was ranked by workers. Since the

ground-truth ∆u is not available, we first used the method described in the same work to infer

the user accuracy and item parameters. During the simulation, the responses are generated

according to their model with these parameters. As we have discussed in 2.5.2, the number

of users should fall in a reasonable range. Thus, we randomly sub-sample a set of 25 users

since the set of users provided by the dataset is excessive. The results, shown in Table 2.1,

suggest that the Ada-IIR provides a moderate improvement over the non-adaptive algorithm.

METHOD SAMPLE COMPLEXITY

IIR 59223 ˘ 3183

Two-stage 85027 ˘ 2619

Ada-IIR 52693 ˘ 2739

Oracle 43855 ˘ 2365

Table 2.1: Experiments on Country Population with 15 items and 25 users.

24



2.8 Conclusions

In this paper, we study the heterogeneous rank aggregation problem, where noisy pairwise

comparisons are provided by a group of users with different accuracy levels. We propose a

new ranking algorithm based on the idea of arm elimination from multi-armed bandits. The

algorithm can identify the best user and utilize this information to efficiently perform the

ranking. Under the Bernoulli setting, we provide theoretical guarantees that our algorithm

is comparable with the oracle algorithm that knows the best user, and the gap between the

sample complexities of these two methods is only sublinear in the number of items. We

conduct thorough experiments and show that the proposed algorithm can perform as well as

the oracle algorithm and is significantly more sample-efficient than all baseline algorithms.

One immediate and interesting future direction may be to extend our adaptive sampling

algorithm to more complicated models such as the heterogeneous Bradley-Terry-Luce model

and the heterogeneous Thurstone Case V model (Jin et al., 2020).

2.9 More Details About the Proposed Algorithm

We borrow the definition of Preference Interval Tree (PIT) (Feige et al., 1994a; Ren et al.,

2019) based on which we can insert items to a ranked list. Specifically, given a list of ranked

items S the PIT can be constructed using the following Algorithm 4.

For the completeness of our paper, we also present the subroutines Iterative-Attempting-

Insertion (IAI) and Attempting-Insertion (ATI) in this section, which are omitted in

Section 2.4 due to space limit. In particular, IAI is displayed in Algorithm 5, and ATI is

displayed in Algorithm 6. Both algorithms are proposed by Ren et al. (2019) for adaptive

sampling in the single-user setting.
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Algorithm 4 Build PIT
Input parameters: S

Data structure: Node = tleft,mind, right, lchild, rchild, parentu, left,mid, right holds index values, lchild, rchild, parent

points to any other Node.

Initialize: N “ |S|

1: X “ CreateEmptyNode

2: X.left “ ´1

3: X.right “ |S|

4: X.mid “ tpX.left ` X.rightq{2u

5: queue = [X]

6: while queue.NotEmpty do

7: X = queue.PopFront

8: X.mid “ tpX.left ` X.rightq{2u

9: if X.right - X.left ą 1 then

10: lnode = CreateEmptyNode

11: lnode.left = X.left

12: lnode.right = mid

13: X.lchild = lnode

14: rnode = CreateEmptyNode

15: queue.append(lnode)

16: rnode.left = X.mid

17: rnode.right = X.right

18: X.rchild = rnode

19: queue.append(rnode)

20: end if

21: end while

22: replace ´1 with ´8, |S| with 8 in each Node.left and Node.right.
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Algorithm 5 Subroutine: Iterative Attempt To Insert(IAI)
Input parameters: pi, S, δq

Initialize: For all τ P Z`, set ϵτ “ 2´pτ`1q and δτ “ 6δ
π2τ2

; t Ð 0; Flag Ð un-

sure;

1: repeat

2: t Ð t ` 1;

3: Flag ÐATIpi, S, ϵτ , δτ q;

4: until Flag “ inserted

2.10 Two-Stage Ranking

In this section, we formally state and analyze the two-stage ranking presented in Section 2.6.

2.10.1 Algorithm Outline

We present two-stage ranking in Algorithm 7. As described in Section 2.6, an arbitrary

pair of items is first fed to the IIR algorithm for determining the order with the ‘average’

user. Next, the Median-Elimination (ME) algorithm from Even-Dar et al. (2002a) is used to

find an α-optimal user. After that, the total ranking can be obtained by applying the IIR

algorithm to the selected user only. IIR takes a set of items, the confidence level, and a user

as inputs and outputs a ranked version of the items. ME takes a set U of users, real numbers

α, δ, and two ranked items as inputs and outputs an α-optimal user in U with probability

at least 1 ´ δ.

Proof of Theorem 2.6.1. It is clear that two-stage ranking is composed of three procedures:

IIR for determining the order of i, j, ME for obtaining an α-optimal user, and IIR again for

producing the final true ranking. Therefore, the probability guarantee of two-stage ranking

follows from applying the union bound on the three procedures.
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Algorithm 6 Subroutine: Attempt To Insert(ATI).
Input parameters: pi, S, ϵ, δq

Initialize: Let z be a PIT constructed from S, h Ð r1 ` log2p1 ` |S|qs, the depth of z

For all leaf nodes u of z, initialize cu Ð 0; Set tmax Ð rmaxt4h, 512
25

log 2
δ

us and q Ð 15
16

1: X Ð the root node of z;

2: for t Ð 1 to tmax do

3: if X is the root node then

4: if ATCpi,X.mid, ϵ, 1 ´ qq = i then

5: X Ð X.rchild

6: else

7: X Ð X.lchild

8: end if

9: else if X is a leaf node then

10: if ATCpi,X.left, ϵ, 1 ´
?
qq “ i ^ ATCpi,X.right, ϵ, 1 ´

?
qq “ X.right then

11: cX Ð cX ` 1

12: if cX ą bt :“ 1
2
t `

b

t
2
log π2t2

3δ
` 1 then

13: Insert i into the corresponding interval of X and

14: return inserted

15: end if

16: else if cX ą 0 then

17: cX Ð cX ´ 1

18: else

19: X Ð X.parent

20: end if

21: else

22: if ATCpi,X.left, ϵ, 1 ´ 3
?
qq “ X.left _ ATCpi,X.right, ϵ, 1 ´ 3

?
qq “ i then

23: X Ð X.parent

24: else if ATCpi,X.mid, ϵ, 1 ´ 3
?
qq “ i then

25: X Ð X.rchild

26: else

27: X Ð X.lchild

28: end if

29: end if

30: end for

31: if there is a leaf node u with cu ě 1 ` 5
16

tmax then

32: Insert i into the corresponding interval of u and

33: return inserted

34: else

35: return unsure

36: end if
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Algorithm 7 Two-stage RankingpN ,U , α, δq

input: set of items N , set of users U , desired near-optimal level α, confidence level δ.

Let i, j be two arbitrary items. Let ū be the ‘average’ user.

ri1, j1s Ð Iterative-Insertion-Rankingpti, ju, δ
3
, ūq.

uα Ð Median-EliminationpU , α, δ
3
, ri1, j1sq

output: Iterative-Insertion-RankingpN , δ
3
, uαq

From Proposition 2.3.3, Iterative-Insertion-Ranking
`

ti, ju, δ
3
, ū
˘

takes number of queries

Θ

ˆ

2

∆̄2
0

ˆ

log log
1

∆̄0

` log

ˆ

6

δ

˙˙˙

, (2.10.1)

Iterative-Insertion-Ranking
`

N , δ
3
, uα

˘

takes number of queries at most

Θ

ˆ

N

p∆u˚ ´ αq
2

ˆ

log log
1

∆u˚ ´ α
` log

ˆ

3N

δ

˙˙˙

(2.10.2)

by noting that the accuracy of uα is at least ∆u˚ ´ α. Moreover, it is shown in Even-Dar

et al. (2002a) that ME outputs an α-optimal user using at most

Θ

ˆ

M

α2
log

1

δ

˙

(2.10.3)

comparisons.

The desired complexity bound thus follows from summing up (2.10.1), (2.10.2) and

(2.10.3).

2.10.2 Complexity Analysis

In this subsection, we provide a more detailed discussion on the complexity of the two-stage

algorithm described in Algorithm 7. Recall that we define

F pxq “ x´2
`

log log x´1
` log pN{δq

˘

.

When the average accuracy of users ∆̄0 is a constant that reflects population accuracy (e.g.,

all user accuracies follow some probability distribution), the following propositions can be

made.
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Proposition 2.10.1. When M “ ωpN logNq or α “ o
´b

M
N logN

¯

,

Ctsrpαq “ ωpN logNq ` Θ pNF p∆u˚ ´ αqq .

When M “ ωpN logNq or α “ o
´b

M
N logN

¯

, the number of comparisons it takes in the

user-selection stage can be more costly than ranking items. In particular, when the number

of users M is too large, even asking each user one question becomes affordable. When α

is chosen too small, the improvement in the accuracy of the selected user leads to limited

savings on the ranking. Both cases are undesirable.

Proposition 2.10.2. If M “ OpNq and α “ ω
´b

M
N logN

¯

X op1q, then

Ctsrpαq “ Θ pNF p∆u˚qq ` opN logNq ` Op1q.

In the preceding proposition, the dominating term in Ctsr is Θ pNF p∆u˚qq, which is of

the same order as Cu˚ . Therefore, when the number of users M is not much larger than

the number of items N , two-stage ranking can achieve order optimal by choosing α small

enough.

Proposition 2.10.3. If α is a constant,

Ctsrpαq “ Θ pNF p∆u˚ ´ αqq ` OpMq.

In particular, when M “ opN logNq, Ctsr pN,Mq is dominated by the term Θ pNF p∆u˚ ´ αqq.

This is equivalent to performing ranking using a single user with accuracy ∆u˚ ´ α.

2.10.3 User Selection in a Subset

As shown in Proposition 2.10.1, when M is much larger than N logN , even querying each user

once costs time linear in M which could be higher than the ranking complexity. Therefore,

instead of selecting a global α-optimal user, we devise a subroutine Subset-User-Selection
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(SUS) that randomly picks without replacement L (L ď M) users and only searches for an

α-optimal user among them (see Algorithm 8). We use L to denote this L-subset of users.

Algorithm 8 Subroutine: Subset-User-SelectionpU , L, α, δi, δm, i, jq

input: set of users U , user subset size L, desired near-optimal level α, confidence level δi

of initial ranking, confidence level δm of user selection, two items i, j P N .

ri1, j1s Ð Iterative-Insertion-Rankingpti, ju, δi, ūq.

Randomly choose a subset L of L users from U .

output: Median-EliminationpL, α, δm, ri1, j1sq

The main procedure of the two-stage algorithm is also modified, shown in Algorithm 9.

Algorithm 9 Modified-Two-Stage-RankingpN ,U , L, α, δi, δm, δrq
input: set of items N , set of users U , user subset size L, desired near-optimal level α,

confidence level δi of initial ranking, confidence level δm of user selection, confidence level

δr of final ranking.

Let i, j be two arbitrary items.

uα Ð Subset-User-SelectionpU , L, α, δi, δm, i, jq.

output: Iterative-Insertion-RankingpN , δr, u
αq

Generally, no guarantee can be made on how close is a subset α-optimal user to the global

optimal user. So analysis on the two-stage algorithm will be done under the assumption that

the M user accuracies are iid samples drawn from a probability distribution F pxq over the

interval p0, 1
2
s (F pxq is independent of any other quantities). Let b “ infxtx : F pxq “ 1u. In

the following, we use the cdf F pxq to represent this distribution.

Since ∆1,∆2, . . . ,∆M are iid samples from F pxq and L is drawn randomly, we assume

WOLOG that L contains the first L users, i.e., L “ t1, 2, . . . , Lu. Let ∆˝ “ maxuPL∆u.

Recall that ∆u˚ “ maxuPU ∆u. We first show in the following lemma that ∆u˚ ´ ∆˝ is

independent of M .
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Lemma 2.10.4. For any δ1 P p0, 1
2
q, α P p0, bq, if L ě logpδ1q{ log pF pb ´ αqq, then with

probability at least 1 ´ δ1,

∆˝
ě ∆u˚ ´ α.

Proof. Note that the claim becomes trivial when M ď
log δ1

logpF pb´αqq
. We consider the case when

log δ1

logpF pb´αqq
ď L ď M .

Since ∆1,∆2, . . . ,∆L are iid samples from F pxq, with probability pF pb ´ αqq
L,

∆i ď b ´ α for all 1 ď i ď L.

Hence, pF pb ´ αqq
L

ď δ1 gives

∆˝
“ max

1ďiďL
∆i ě b ´ α ě ∆u˚ ´ α

with probability at least 1´δ1, where the last inequality follows from ∆u˚ ď b with probability

1.

The preceding lemma states that when user accuracies follow a fixed distribution, at least

one of the L users we select randomly will be close to the global best user as long as L is

large enough (but still independent of M). Thus, even when the number of users M is huge,

we do not need to collect information from every one of them. A randomly chosen subset is

able to accurately reflect the characteristics of the larger group.

Next, we compute the number of comparisons needed for user selection. Our goal is to

show that the complexity of user selection becomes negligible compared with item ranking.

In the following analysis, for simplification, we assign the confidence levels δi, δm, δr in Two-

Stage-Ranking as well as the confidence level δ1 for the existence of an α-optimal user equal

values. Specifically, we let δ1 “ δi “ δm “ δr “ δ
4

for some δ P p0, 1q.

Theorem 2.10.5. For any δ P p0, 1
2
q, α P p0, bq, L “ min

´

r
logpδ{4q

logpF pb´α{2qq
s,M

¯

, with prob-

ability at least 1 ´ 3δ
4
, subroutine Subset-User-SelectionpU , L, α

2
, δ
4
, δ
4
, i, jq outputs a global
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α-optimal user after

Θ

ˆ

∆̄´2

ˆ

log log ∆̄´1
` log

4

δ

˙

`
4L

α2
log

4

δ

˙

comparisons.

Proof. By Lemma 2.10.4, letting L “ min
´

r
logpδ{4q

logpF pb´α{2qq
s,M

¯

gives ∆˝ ě ∆u˚ ´ α
2

with

probability at least 1´ δ
4
. Moreover, IIR finds the correct order of items i, j with probability

at least 1´ δ
4

and given that Median-Elimination outputs an α
2
-optimal user in the L-subset

with probability at least 1 ´ δ
4
. Therefore, by the union bound, with probability 1 ´ 3δ

4
, the

α
2
-optimal user found is a global α-optimal user.

The complexity is a sum of two terms: the complexity of IIR ranking two items and the

complexity of Median-Elimination outputting an α{2-optimal user among L users.

Theorem 2.10.6. For any δ P p0, 1
2
q, α P p0, bq, L “ min

´

r
logpδ{4q

logpF pb´α{2qq
s,M

¯

, with probabil-

ity at least 1´ δ, Modified-Two-Stage-RankingpN ,U , L, α, δ
4
, δ
4
, δ
4
q outputs the exact ranking

of N , and consumes

Cmtsrpαq “ Θ

ˆ

∆̄´2

ˆ

log log ∆̄´1
`log

4

δ

˙

`
4L

α2
log

4

δ
`NF p∆u˚ ´αq

˙

comparisons.

Proof. Modified-Two-Stage-Ranking being able to output the exact ranking of N is guaran-

teed by the algorithm IIR.

It remains to compute the complexity. By Theorem 2.10.5, with probability at least

1 ´ 3
4
δ, Subset-User-Selection outputs a global α-optimal user. With a global α-optimal

user, IIR outputs the exact ranking of N after

Θ pNF p∆u˚ ´ αqq ,

comparisons with probability at least 1 ´ δ
4
. Therefore, the desired complexity follows from

applying the union bound and summing up the complexities of SUS and IIR.
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By noting that for M sufficiently large, ∆̄ equals the mean of F pxq with probability 1

and thus ∆̄´2
`

log log ∆̄´1 ` log 4
δ

˘

“ Op1q, we have the following proposition.

Proposition 2.10.7. If α “ ΩpN´ 1
2 q X op1q, then

Cmtsrpαq “ Θ pNF p∆u˚qq ` OpNq.

Comparing the preceding proposition with Proposition 2.10.2, we can see that by Subset-

User-Selection, the two-stage algorithm can perform efficiently even with a large number of

users.

2.11 Omitted Proofs

2.11.1 Query Complexity of the Proposed Algorithm

The following lemmas characterize the performance of each subroutine:

Lemma 2.11.1 (Lemma 9 in Ren et al. (2019)). For any input pair pi, jq and a set of users

U , Algorithm 2 terminates in rrmaxs “ rϵ´2 logp2{δqs queries. If ϵ ď ∆̄, then the returned ŷ

indicates the preferable item with probability at least 1 ´ δ.

Lemma 2.11.2 (Lemma 10 in Ren et al. (2019)). Algorithm 6 returns after Opϵ2 logp|S|{δq

queries and, with probability 1´ δ, correctly insert or return unsure. Additionally, if ϵ ď ∆̄,

Algorithm 6 will insert correctly with probability 1 ´ δ.

Lemma 2.11.3 (Lemma 11 in Ren et al. (2019)). With probability 1 ´ δ, Algorithm 5

correctly insert the item and makes Op∆̄´2plog log ∆̄´1 ` logpN{δqqq queries at most.

Proof of Theorem 2.5.1. When inserting the z-th item, we makes at most ∆̄´2
z plog log ∆̄´1

z `

logpN{δqq queries, for z “ 2, 3, . . . , N .

The number of total queries can be obtained by summing up the term above, which is

CAlgpNq “ O

ˆ N
ÿ

z“2

∆̄´2
z plog log ∆̄´1

z ` logpN{δqq

˙

.
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2.11.2 Complexity Gap Analysis

The first lemma we will introduce is about the confidence interval:

Lemma 2.11.4. With probability 1 ´ δ, it holds for any z P rN szt1u and u P Uz,

1

2
` ∆u P

”

pLCBzqu, pUCBzqu

ı

.

This also indicates that when inserting the z-th item, for any u P Uz,

∆u˚ ´ ∆u ď 4rz.

Proof of Lemma 2.11.4. Recall that pµzqu is the empirical mean of the Bernoulli variable

with parameter 1
2

` ∆u. For a given z and u, by Hoeffding’s inequality we have

P
ˆ

ˇ

ˇ

ˇ
pµzqu ´

´1

2
` ∆u

¯ˇ

ˇ

ˇ
ą rz

˙

ď 2e´2pszqur2u ď 2e´2pszqminr
2
u ď

δ

|Uz|N
,

and applying union bound over z “ 2, 3, . . . , N and u P Uz gives the claim.

Under this event, we have

∆u˚ ´ ∆u “

ˆ

1

2
` ∆u˚

˙

´

ˆ

1

2
` ∆u

˙

ď pUCBzqu˚ ´ pLCBzqu

ď pUCBzqu˚ ´ pLCBzqu˚ ` pUCBzqu ´ pLCBzqu

“ 4rz,

where the first inequality is clearly from the confidence interval, and the second inequality

holds because the two confidence intervals should intersect.

Next, we will introduce another lemma concerning the growth of pszqu for each u P Uz.
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Lemma 2.11.5. Denote Sz as all queries made till inserting the z-th item and M “ |U0|.

Suppose Sz ě 2M2 logpNM{δq. With probability 1 ´ δ, we have for any z P t2, 3, . . . , Nu,

pszqmin ě
Sz

2M
.

Proof of Lemma 2.11.5. For fixed z and u P Uz, by Hoeffding’s inequality we have

P
ˆ

pszqu

Sz

´
1

M
ă ´

1

2M

˙

ď P
ˆ

pszqu

Sz

´ E
„

pszqu

Sz

ȷ

ă ´
1

2M

˙

ď exp

ˆ

´
Sz

2M2

˙

ď
δ

NM
.

Applying union bound we know that with probability 1 ´ δ,

pszqu ě
Sz

2M
, @z P t2, 3, . . . , Nu, @u P Uz.

Since pszqmin :“ minuPUzpszqu, we have

pszqmin ě
Sz

2M
, @z P t2, 3, . . . , Nu.

With the two lemmas above, we can control the accuracy gap as follows:

Lemma 2.11.6. Denote ∆̄z “ 1
|Uz |

ř

uPUz
∆u. Suppose Sz ě 2|M |2 logpNM{δq. With prob-

ability 1 ´ 2δ, we have for any t P rN s,

∆u˚ ´ ∆̄z ď polylogpN,M, δ´1
q ¨

c

M

Sz

.

Proof of Lemma 2.11.6. The proof has two steps:

From Lemma 2.11.5 we know that with probability 1 ´ δ,

pszqmin ě
Sz

2M
, @t P rN s, @u P Uz.
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From Lemma 2.11.4, we know with probability 1 ´ δ(recall that przqu “

b

logp2|Uz |N{δq

2pszqmin
),

∆u˚ ´ ∆u ď 4rz

ď 4

d

M logp2MN{δq

Sz

“ 4
a

logp2MN{δq ¨

c

M

Sz

.

Define function F pxq “ x´2plog logpx´1q ` logpN{δqq with x P p0, 1{2s. We care about

the following term GAP which characterize the query complexity gap between our algorithm

and the optimal user.

GAPpN,M, δq “

N
ÿ

z“2

F p∆̄zq ´ F p∆u˚q.

The following lemma provides a way to linear bound the gap between function values:

Lemma 2.11.7. F pxq “ x´2plog logpx´1q ` logpN{δqq with x P p0, 1{2s is a convex function

over p0, 1{2s, and for any ∆ P ra, bs, we have

F p∆q ´ F pbq ď
F paq ´ F pbq

b ´ a
¨ pb ´ ∆q “ Lpa, bq ¨ pb ´ ∆q.

Furthermore, under the event of Lemma 2.11.6, for any z P rN s such that Sz ą 2M2 logpNM{δq,

we have ∆̄z P rc∆3
u˚ ,∆u˚s and therefore

F p∆̄zq ´ F p∆u˚q ď
F pc∆3

u˚q ´ F p∆u˚q

∆u˚ ´ c∆3
u˚

¨ p∆u˚ ´ ∆̄zq “ LpU0q ¨ p∆u˚ ´ ∆̄zq.

Here we use LpU0q “
F pc∆3

u˚ q´F p∆u˚ q

∆u˚ ´c∆3
u˚

is indeed an instance-dependent factor, with only loga-

rithmic dependent in N and δ´1(in F ). c is a global constant and in fact c “ 1{25.

Proof. Differentiate F pxq twice and it can be verified that F 2pxq ą 0. For any ∆ P ra, bs,

the inequality above is easy to prove via convexity.
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The rest is to prove that @t P rN s, we have ∆̄z P r∆u˚{M,∆u˚s. It is clear that the upper

bound holds because ∆u˚ :“ maxuPU0 ∆u.

The lower bound is proved as follows: We still have ∆̄z ą ∆u˚{M because at any time

u˚ always remains in the user set and by the assumption ∆u ą 0.

Also, since Sz ą 2M2 logpNM{δq, by Lemma 2.11.6, we have

∆u˚ ´ ∆̄z ď 4

d

M logp2MN{δq

Sz

ď 4

d

M logp2MN{δq

2M2 logpNM{δq

ď
4

?
M

.

Now we will prove that

max

"

∆u˚

M
,∆u˚ ´

4
?
M

*

ě c∆3
u˚ .

Suppose ∆u˚

M
ă c∆3

u˚ , then we have M ą c´1∆´2
u˚ , this means

∆u˚ ´
4

?
M

ě ∆u˚ ´ 4
?
c∆u˚ ě c∆3

u˚ .

The last inequality is due to ∆u˚ ď 1{2 and c “ 1{25.

Now we are ready to prove the main result:

Proof of Theorem 2.5.2. Based on our algorithmic design, we will not eliminate any user

until the cumulative number of queries Sz reaches the threshold Sz ě 2M2 logpNM{δq. We
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have

GAPpN,M, δq “

N
ÿ

z“2

F p∆̄zq ´ F p∆u˚q

“

N
ÿ

z“2

1tSz ă 2M2 logpNM{δqu
`

F p∆̄zq ´ F p∆u˚q
˘

l jh n

I1

`

N
ÿ

z“2

1tSz ě 2M2 logpNM{δqu
`

F p∆̄zq ´ F p∆u˚q
˘

l jh n

I2

.

For I1, no elimination is performed, so Uz “ U0, and we have

I1 “

N
ÿ

z“2

1tSz ă 2M2 logpNM{δqu
`

F p∆̄0q ´ F p∆u˚q
˘

.

For each term in I2, we have F p∆̄zq ´ F p∆u˚q ď LpU0q ¨ 4
a

logp2MN{δq ¨

b

M
Sz

due to

Lemma 2.11.7 and Lemma 2.11.6. Therefore,

I2 ď LpU0q4
a

logp2MN{δq

N
ÿ

z“2

1tSz ě 2M2 logpNM{δqu

c

M

Sz

.

2.11.3 Proof and Discussions of Proposition 2.5.3

Suppose M “ opN1{2q, since Sz ě z logpz{δq ě z(at least one comparison for an item),

from (2.5.2) we have

N
ÿ

z“2

1
␣

Sz ă 2M2 logpNM{δq
(

ď

N
ÿ

z“2

1
␣

z ă 2M2 logpNM{δq
(

“ opNq.
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The third term can be bounded with the fact 1
␣

z ă 2M2 logpNM{δq
(

ď 1,

LpU0q
a

logp2MN{δq

N
ÿ

z“2

1tSz ě 2M2 logpNM{δqu

c

M

Sz

ď LpU0q
a

logp2MN{δq

N
ÿ

z“2

c

M

Sz

ď LpU0q
a

logp2MN{δq

N
ÿ

z“2

c

M

z

ď 2LpU0q
a

logp2MN{δq
?
MN

“ OpLpU0q
a

logpMN{δq
?
MNq.

LpU0q is actually dominated by the minimal mean accuracy minz ∆̄z throughout the algo-

rithm. In practice, LpU0q is usually a constant, related to all users’ accuracy. In the worst

theoretical case, LpU0q will be dominated by F p∆u˚{Mq “ ÕpM2q, which further turns the

last term into ÕpM5{2N1{2q, and requires M “ opN1{5q so that this term becomes negligible.
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CHAPTER 3

Active Ranking without Strong Stochastic Transitivity

3.1 Introduction

Ranking from noisy comparisons has a wide range of applications including voting Caplin

and Nalebuff (1991); Conitzer and Sandholm (2005), identifying the winner/full ranking of

teams in sport leagues, ranking players in online gaming systems Herbrich et al. (2006b),

crowdsourcing services Chen et al. (2013), web search Dwork et al. (2001), and recommen-

dation systems Baltrunas et al. (2010); Piech et al. (2013). In practice, comparisons usually

contain certain levels of “noise”. For example, duels in a game are not always won by the more

proficient player, and preferences between movies/restaurants can also vary among different

individuals. The presence of noise is commonly studied using a probabilistic comparison

model Falahatgar et al. (2018); Ren et al. (2019), where an item has a certain probability to

win the comparison over another (pairwise) or a group of items (listwise).

We are interested in estimating the total ranking. To guarantee that the ranking is con-

sistent with the preference probabilities, it is often assumed Feige et al. (1994b); Mohajer

et al. (2017); Falahatgar et al. (2018); Ren et al. (2019) that if i ranks higher than j, then

i wins a comparison between j with probability pi,j ą 1
2
. It is clear that the closer pi,j is

to 1{2, the more difficult it becomes to compare i and j. This assumption is referred to as

Weak Stochastic Transitivity (WST). A more strict assumption, Strong Stochastic Transitiv-

ity (SST), is also often made Falahatgar et al. (2017a); Ren et al. (2018); Saha and Gopalan

(2019). SST requires items that have closer ranks to be more difficult to compare, i.e., if
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i ą j ą k, then pi,k ě max ppi,j, pj,kq ą 1
2
. Formal definitions of WST and SST are stated in

Section 3.2.

However, SST can be too strong for scenarios where preference probabilities are not based

on comparing a single quantifiable attribute. For instance, in sports, match outcomes are

usually affected by team tactics. Team k may play a tactic that counters team i, resulting

in a higher winning rate against team i compared with team j. Furthermore, items usually

have multidimensional features and people may compare different pairs based on different

features. A close pair in the overall ranking is thus not necessarily harder to compare than

a pair that has a large gap. For example, when comparing cars, people might compare a

given pair based on their interior design and another pair based on performance. As another

example, in an experiment with games of chance with different probabilities of winning

and payoffs Tversky (1969), it was observed that “people chose between adjacent gambles

according to the payoff and between the more extreme gambles according to probability, or

expected value.”

Motivated by such applications, in this chapter, we are interested in the problem of

recovering the full ranking of n items under a more general setting, where only WST holds,

while SST is not assumed to hold. We focus on only pairwise queries as they are easier

to obtain and less prone to error in practice. Furthermore, as many applications Chen

et al. (2013); Pfeiffer et al. (2012) allow interactions between users/annotators, we consider

comparisons collected in an adaptive manner. Our goal is to use as few comparisons as

possible and achieve a high confidence.

Existing algorithms Mohajer et al. (2017); Ren et al. (2019) cannot avoid comparing

every item i with the item i˚ that is the most similar to i, i.e.,
ˇ

ˇpi,i˚ ´ 1
2

ˇ

ˇ “ minj‰it
ˇ

ˇpi,j ´ 1
2

ˇ

ˇu.

Further, Ren et al. (2019) pointed out that comparing item pairs that are adjacent in the

true ranking are necessary. When SST holds, adjacent pairs are also the most difficult pairs

to distinguish, existing methods thus achieve sample-efficiency. For example, the Iterative-

Insertion-Ranking (IIR) algorithm proposed in Ren et al. (2019) maintains a preference tree
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and performs ranking by inserting items one after another. During the insertion process,

every item is possible to be compared with every other items (and thus the most similar

one), depending on the relative order of insertion and the true ranking. IIR was shown to

be sample complexity optimal under SST and some other conditions.

However, when SST does not hold, comparing nonadjacent items harms the performance.

Consider an extreme scenario where the true ranking is 1 ą 2 ą 3 and p1,2 “ p2,3 “ 0.8, p1,3 “

1
2

` 2´10. If item 1 is directly compared to item 3, then it takes Θ p220q comparisons1. For

instance, in IIR, this can happen during the insertion process of item 3 when item 1 happens

to be the root of the preference tree. On the other hand, a simple fix exists as we can let the

three pairs to be compared simultaneously. The comparisons between items 1 and 2, items 2

and 3 will terminate much earlier and provide us with the information 1 ą 2, 2 ą 3, which is

enough to recover the total ranking. Therefore, it is important to devise an algorithm whose

sample complexity will not be harmed when SST fails to hold.

Contribution. In this chapter, we propose an active algorithm, termed Probe-Rank, that

ranks n items based on pairwise comparisons. Probe-Rank is a maxing-based algorithm,

i.e., it ranks items by performing n ´ 1 steps of maxing. We show that as long as the WST

condition is satisfied, with probability at least 1´ δ, Probe-Rank returns the correct ranking

after conducting at most

O

˜

n
n
ÿ

i“1

´

∆̃´2
i

¯´

log log
´

∆̃´1
i

¯

` log pn{δq

¯

¸

(3.1.1)

comparisons, where ∆̃i “ minj:j and i are adjacent
ˇ

ˇpi,j ´ 1
2

ˇ

ˇ . Probe-Rank is the first algorithm

whose sample complexity only depends on comparison probabilities of adjacent items instead

of all pairs of items (Mohajer et al., 2017; Ren et al., 2019; Szörényi et al., 2015; Wu et al.,

2022). Theoretical analysis and numerical experiments under various settings are provided

1In fact, according to Farrell (1964), we need Θ
`

ppi,j ´ 1{2q´2
˘

comparisons to be confident enough about
the order between any two items i and j , i, j P rns.
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and show that Probe-Rank is more efficient than the state-of-the-art when comparing nonad-

jacent items is more difficult than comparing adjacent items. We also present a preliminary

analysis on the sample complexity lower bound in the worst-case scenario when SST does not

hold. Further, we present a variant of Probe-Rank, named Probe-Rank-SE, in Section 3.10.

Numerical experiments show that the variant is more sample-efficient under various settings.

3.2 Preliminaries

Notation We write p „ Unipa, bq to denote that p is sampled uniformly at random from

the interval pa, bq, and use Berppq to denote a Bernoulli random variable which equals 1 with

probability p. We use pi, jq to denote the unordered item pair, i.e., pi, jq “ pj, iq.

Problem setup We assume that there exists a total ordering ‘ą’ over rns such that σ1 ą

σ2 ą ¨ ¨ ¨ ą σn for some permutation σ of rns. The permutation σ is referred to as the

true ranking. Two items are called adjacent if they are adjacent in σ, i.e., one ranks right

next to the other. To ensure that the true ranking σ is consistent with comparisons, we

also assume that i has a higher rank than j if and only if pi,j ą 1
2
. In other words, if an

item i is more preferred than j in σ, then i has a better chance to win the comparison

with j. This assumption is known as Weak Stochastic Transitivity (WST). A more strict

assumption, Strong Stochastic Transitivity (SST), is also frequently adopted. In addition

to WST, SST assumes that whenever i ą j ą k, pi,k ě max ppi,j, pj,kq. In this chapter, we

assume only WST and our goal is to recover the true ranking σ with a given confidence

level δ by taking pairwise comparisons and to minimize the sample complexity. Problem

instances are uniquely determined by the permutation σ representing the true ranking and

the comparison probabilities P.

Definition 1 (δ-correct algorithm). An algorithm is said to be δ-correct if for any input

instance, with probability at least 1 ´ δ, it returns a correct result in finite time.
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It is clear that the closer pi,j is to 1
2
, the more difficult it becomes to obtain the ordering

between i and j. Therefore, the probability gap ∆i,j, defined as ∆i,j “
ˇ

ˇpi,j ´ 1
2

ˇ

ˇ, provides a

characterization of the ranking task difficulty and will be used as a parameter for measuring

sample complexities of algorithms. For instance, (Ren et al., 2019, lemma 12) shows that for

any δ-correct algorithm A, lim sup∆Ñ0
TAr∆s

∆´2plog log∆´1`log δ´1q
ą 0, where TAr∆s is the expected

number of samples taken by A on two items with probability gap ∆. Further, for each item

i, we define ∆i “ minj:j‰i ∆i,j, the minimum probability gap between item i and any other

item j, and

∆̃i “ min
j:j and i are adjacent in σ

∆i,j, (3.2.1)

the minimum probability gap between i and its adjacent items in the true ranking. Note

that ∆i ď ∆̃i by definition and the equality holds when SST is satisfied.

3.3 Related Work

The problem of ranking under coherent probabilistic comparisons dates back to 1994 Feige

et al. (1994b). Feige et al. (1994b) studied the comparison model assuming that i ą j ô

pi,j “ 1
2

` ∆ for some known ∆. It was shown that any δ-correct algorithm finds the true

ranking with at least Θpn∆´2 log pn{δqq comparisons in the worst case. Later in Mohajer

et al. (2017), a δ-correct algorithm TOP was proposed to rank the top-k elements by assuming

only the existence of a total ranking (WST). The state-of-the-art IIR algorithm was proposed

in Ren et al. (2019), as discussed in Section 3.1. A comparison of related algorithms are

presented in Table 3.1.

Ranking or maxing has also been widely studied under more strict assumptions, e.g., SST,

RST2 and STI3 and usually in the probably approximately correct (PAC) setting Falahatgar

2Under relaxed stochastic transitivity (RST), it is assumed that for all i ą j ą k, ∆i,k ě γmaxt∆i,j ,∆j,ku

for some 0 ă γ ă 1.

3Under stochastic triangle inequality (STI), it is assumed that for all i ą j ą k, ∆i,k ď ∆i,j ` ∆j,k.
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Table 3.1: δ-correct algorithms for exact ranking with sample complexity guarantee. Defini-

tions of ∆i,j,∆i, ∆̃i can be found in Section 3.2.

Algorithm Assumptions on P Sample complexity

Single Elimination

Tournament Mohajer et al. (2017)
WST O

ˆ

nplognq
2 logp1{δq

min1ďiăjďn ∆2
i,j

˙

PLPAC-AMPR Szörényi et al. (2015) The Plackett-Luce model O
´

n log nmaxiPrnst
1
∆2

i
logp n

δ∆i
qu

¯

Iterative-Insertion-Ranking Ren et al. (2019) WST O

ˆ

n
ř

i“1

1
∆2

i

´

log log 1
∆i

` log n
δ

¯

˙

Probe-Rank (ours) WST O

ˆ

n
n
ř

i“1

1

p∆̃iq
2

´

log log 1

∆̃i
` log n

δ

¯

˙

et al. (2017a,b, 2018); Ren et al. (2018); Saha and Gopalan (2019, 2020); Szörényi et al.

(2015); Yue and Joachims (2011a). In particular, Ren et al. (2018); Saha and Gopalan

(2019, 2020); Szörényi et al. (2015) considered parametric comparison models such as the

multinomial logit (MNL) model. Note that parametric models are often more restrictive

and can imply SST/STI conditions. In the PAC setting, the goal is to find an ϵ-ranking

r1 ą r2 ą ¨ ¨ ¨ ą rn such that pri,rj ą 1
2

´ ϵ for all i ă j. Although ϵ-rankings become closer

to the true ranking as ϵ goes to 0, it is pointed out by Ren et al. (2019) that PAC ranking

algorithms cannot be easily extended to the case when ϵ “ 0. Among all, Falahatgar et al.

(2018) is the most relevant work to this chapter. In Falahatgar et al. (2018), PAC ranking and

maxing were studied for both SST and WST settings. For WST, an instance-independent

lower bound Θpn2q was proved, and a brute-force algorithm which compares each pair to

an accuracy of ϵ and thus conducts Oppn2{ϵ2q logpn{δqq comparisons was proposed. Note

that in this chapter, we are aiming at recovering the exact ranking instead of an ϵ-ranking.

An exact ranking is preferred over an epsilon-ranking in competitive applications like voting

and sport games, where people are not satisfied with an approximate winner. Furthermore,

as suggested by Ren et al. (2019), analyzing the exact ranking helps us to gain a better

understanding about the instance-wise upper and lower bounds. A trivial extension of the

brute-force algorithm can lead to sample complexity Õ
´

n2

mini,j ∆2
i,j

¯

, which is substantially
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worse than our proposed algorithm.

Although we believe WST can be considered a natural and reasonably weak assumption,

there are situations that WST does not hold as a ranking over items may not exist or, if it

does, all comparison probabilities are not necessarily consistent with that ranking. So another

line of research is to allow comparison probabilities pi,j take any values in p0, 1q as long as

pi,j `pj,i “ 1. In such scenarios, rankings can be defined and derived based on various criteria

including Borda score Heckel et al. (2019); Katariya et al. (2018); Shah and Wainwright

(2017) and Copeland score Busa-Fekete et al. (2013); Zoghi et al. (2015a). The ranking

problem has also been studied from a heterogeneous perspective Jin et al. (2020); Wu et al.

(2022), where queries are made by multiple agents with different comparison probabilities.

In Haddenhorst et al. (2021), the problem of testing whether the WST condition holds was

studied. More broadly, the problems of ranking, maxing or selection can be formulated in

the context of dueling bandits. A comprehensive survey can be found in Bengs et al. (2021).

3.4 Proposed Algorithm

In this section, we propose a δ-correct algorithm for exact ranking of all problem instances

that satisfy the WST condition. As mentioned previously, our algorithm is designed to

outperform existing methods in situations where nonadjacent items can be more difficult to

compare than adjacent items.

To avoid spending unnecessary samples on item pairs with small probability gaps, we

propose a subroutine named Successive-Comparison (SC) (see Subroutine 10). SC uses a

parameter τ for controlling to what extent the comparison should last. Specifically, SC

compares a given item pair for a fixed number bτ “ rp2{ϵ2τ q logp1{δτ qs times with an accuracy

level ϵτ “ 2´τ and confidence level δτ “ 6δ{pτ 2π2q. If the empirical probability that i

(respectively, j) wins is over 1{2 by more than ϵτ{2, then SC returns i (respectively, j) as

the more preferred item. Otherwise, SC will return ‘unsure’ to inform us that more samples
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are needed.

For two items i and j, SC pi, j, δ, τq will be called successively with τ increasing by 1 at a

time. We show in Section 3.9 that after τ gets large enough such that ϵτ ď ∆i,j, the correct

ordering between i and j will be returned with high probability.

Subroutine 10 Successive-Comparisonpi, j, δ, τq (SC)
1: Input: items i, j, confidence level δ, probing parameter τ

2: wi “ 0, ϵτ “ 2´τ , δτ “ δ
cτ2

, c “ π2

6
, bτ “ r 2

ϵ2τ
log 1

δτ
s;

3: For t “ 1 to bτ do

4: compare i and j once; if i wins, wi “ wi ` 1;

5: p̂i “ wi{bτ ;

6: Return ri, js if p̂i ´ 1
2

ą 1
2
ϵτ ; Return rj, is if p̂i ´ 1

2
ă ´1

2
ϵτ ; and Return ‘unsure’ else;

Partial Order Preserving Graph During the ranking process, we maintain a directed

graph T to store the partial orders we have obtained from SC instances so far. The graph

T is initialized with n nodes V1, . . . , Vn and no edge exists between any two nodes. Nodes

V1, V2, . . . , Vn represent items 1, 2, . . . , n, respectively. In our algorithm, T is involved with

three types of operations, edge update, node removal and maximal set selection. Every time

an instance of SC returns a pairwise order, e.g., i ą j, we add a directed edge from Vi to Vj,

written as T “ T Y pi ą jq. Moreover, we also complete all edges in the transitive closure

of the existing edges. In other words, if the edge between Vi and Vj induces a directed path

from Vk1 to Vk2 , then a directed edge from Vk1 to Vk2 is also added to T . By completing

the transitive closure, we can avoid comparing pairs whose ordering can be inferred from

current knowledge and keep T acyclic. In the ranking process, we only run comparisons on

item pairs that are not connected by edges and hence no contradictions in orderings will

be returned by SC. By removing node Vi, we remove Vi and all edges of Vi from T . The

maximal elements of T are the nodes which do not have any incoming edges. Since edges

represent comparison results returned by SC, maximal elements correspond to items that
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have not lost to any other items. Note that since T is acyclic, maximal elements always

exist.

Next, we establish our ranking algorithm Probe-Rank (see Algorithm 11). Probe-Rank

finds the true ranking by performing maxing for n ´ 1 rounds. In every round t, subroutine

Probe-Max returns an item in St as the most preferred item (the maximum), where St

denotes the set of remaining unranked items right before round t. The strategy of Probe-

Max is to repeatedly apply SC on all item pairs. For every item pair pi, jq, we initialize a

global variable τi,j as the probing parameter for SC instances that run over i, j. The graph

T storing obtained partial orders is also viewed as a global variable. Parameters τi,j and

graph T will be accessed and altered in Probe-Max.

Algorithm 11 Probe-Rank
1: Input: items rns, confidence level δ

2: S1 “ rns, Ans “ r0sn, initialize T , τi,j “ 1 for all pairs of items i ‰ j;

3: For t “ 1 to n ´ 1 do

4: imax “ Probe-Max(St, 2δ{n2);

5: remove imax from T ; Ansrt ´ 1s “ imax; St`1 “ Stztimaxu;

6: Ansrn ´ 1s “ Snr0s; Return Ans;

In Probe-MaxpS, δq (see Subroutine 12), SC instances are performed only on items that

are possible to be the actual maximum. Let U be the set of maximal elements in T . By

definition, every item in U has not lost to any other item in S yet. Assuming all previous

comparison results (obtained form SC) are correct, to find the actual maximum, it suffices

to focus on items in U . We use S2 to denote the set of all unordered item pairs in S, i.e.,

S2 “ tpa, bq : a, b P S, a ‰ bu. All ‘legitimate’ pairs that can potentially provide us with

information about the maximum item in S are thus

P “ tpi, jq : pi P U or j P Uq , pi, jq P S2, pi, jq R T u, (3.4.1)

where pi, jq R T means that nodes Vi and Vj are not connected in T . While U contains more
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than one items, Probe-Max keeps applying SC on item pairs in P . If an item in U loses a

comparison, then we remove it from U . In every iteration of the while loop, the pairs pi˚, j˚q

in P with the smallest τ value are chosen and SC pi˚, j˚, δ, τi˚,j˚q are performed. Note that

the τ value increases by one after each call of SC. Starting with item pairs with small τ

values guarantees that we do not miss any useful information that can be obtained by paying

only a small amount of comparisons.

Subroutine 12 Probe-MaxpS, δq

1: Input: set of unranked items S, SC confidence level δ

2: Let U be the set of maximal elements according to T ;

3: While |U | ą 1 do

4: Let P “ tpi, jq : pi P U or j P Uq , pi, jq P S2, pi, jq R T u;

5: For pa, bq in argminpx,yqPP τx,y do

6: Ans “ SC pa, b, δ, τa,bq; τa,b “ τa,b ` 1;

7: If Ans is not ‘unsure’ then

8: w, l “ Ans; T “ T Y pw ą lq; If |U | ą 1 and l P U then U “ Uztlu;

9: Return U r0s;

We provide a simple example demonstrating the ranking process.

Example 3.4.1. Consider items t1, 2, 3, 4u with true ranking 1 ą 2 ą 3 ą 4. Figure 3.1

shows the status of T, U, St throughout the ranking process. In particular, we assume the

pairwise comparison results are all correct and returned in order 1 ą 2, 2 ą 4, 1 ą 3, 2 ą 3,

3 ą 4.
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1

2

3

4

(a) ranking starts.

S1 “ t1, 2, 3, 4u,

U “ S1.

1

2

3

4

(b) 1 ą 2 returned.

U “ t1, 3, 4u.

1

2

3

4

(c) 2 ą 4 returned.

U “ t1, 3u.

1

2

3

4

(d) 1 ą 3 returned.

U “ t1u.

2

3

4

(e) 1 is the maximum,

remove it. S2 “

t2, 3, 4u, U “ t2, 3u.

2

3

4

(f) 2 ą 3 returned.

U “ t2u.

3

4

(g) 2 is the max-

imum, remove it.

S3 “ t3, 4u, U “

t3, 4u.

3

4

(h) 3 ą 4 returned.

U “ t3u.

Figure 3.1: An illustration of the steps by Probe-Ranking, assuming true ranking as 1 ą 2 ą

3 ą 4.

3.5 Upper Bound on the Sample Complexity of Probe-Rank

In this section, we provide a sample complexity upper bound for the proposed algorithm

Probe-Rank.

Theorem 2. Let δ ą 0 be an arbitrary constant. For all problem instances satisfying the

Weak Stochastic Transitivity (WST) property, with probability at least 1 ´ δ, Probe-Rank

returns the true ranking of n items and conducts at most

O

˜

n
n
ÿ

i“1

´

∆̃´2
i

¯´

log log
´

∆̃´1
i

¯

` log
´n

δ

¯¯

¸

(3.5.1)

comparisons, where ∆̃i is defined as in (3.2.1).

The proof of Theorem 2 is deferred to Section 3.9.
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By the preceding theorem, the sample complexity of Probe-Rank is upper bounded by

the sum of terms p∆̃iq
´2plog logp∆̃iq

´1 ` logpn{δqq with an additional multiplicative factor

of n. Recall from Section 3.2 that the term p∆̃iq
´2plog logp∆̃iq

´1 ` logpn{δqq can be viewed

as a lower bound on the number of comparisons that is needed for obtaining the order

between i and its adjacent items with confidence level δ{n. Theorem 2 thus suggests that in

Probe-Rank, every item is compared until it can be distinguished from its neighbors and no

further. This matches with our intuition that only comparisons between adjacent items are

necessary, and a single nonadjacent pair being extremely hard to distinguish should not harm

the overall sample complexity. In contrast, sample complexities of existing algorithms are

determined by the smallest probability gap between items, which can lead to a substantially

large amount of unnecessary comparisons.

However, Probe-Rank achieves the dependence on ∆̃i instead of ∆i at the cost of an

additional multiplicative factor of n. Intuitively, because we have zero prior information

about which items are adjacent and which are not, Probe-Rank pays Θ pnq attempts for

each item i in order to ‘identify’ its neighbors and get the ordering feedback.

We compare Probe-Rank with the state-of-the-art IIR algorithm. Let C pProbeq and

C pIIRq denote the sample complexities of two algorithms. From Table 3.1 and Theorem 2,

C pProbeq “

n
ÿ

i“1

Θ̃
´

np∆̃iq
´2
¯

, C pIIRq “

n
ÿ

i“1

Θ̃
`

p∆iq
´2
˘

, (3.5.2)

noting that from the proofs, the sample complexity upper bounds are both tight in the worst

case.

Under WST with no other conditions assumed, ∆i ď ∆̃i. In particular, when ∆̃i{∆i “

Θp
?
nq for all i, then C pProbeq and C pIIRq are of the same asymptotic order with respect

to n; if ∆̃i{∆i “ ωp
?
nq, then Probe-Rank is asymptotically more sample-efficient than

IIR. These phenomena are also reflected in our numerical experiments in Section 3.6 (see

Figure 3.3).
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Remark. It is worth noting that IIR is optimal if the more strict assumption SST as well

as some other conditions are made, as shown in Ren et al. (2019). When SST holds, ∆̃i “ ∆i.

Probe-Rank thus suffers from an additional factor of n. This case is also included in our

numerical experiment (see Figure 3.2(a)).

3.6 Experiments

In this section, we present numerical experiments demonstrating the practical performance

of Probe-Rank. We compare Probe-Rank with the IIR algorithm, which was shown to

outperform all the other baseline algorithms both theoretically and numerically (Ren et al.,

2019). Our implementation can be found on Github 4.

We study different settings where SST is satisfied, not guaranteed, or violated, but WST

always holds, which is consistent with our theory. Specifically, we want to rank n items

with the true ranking σ1 ą σ2 ą ¨ ¨ ¨ ą σn, where n varies over r10, 100s. The probabilistic

comparison model pij is generated in different ways to satisfy different assumptions. Note

that ∆ and ∆d are tuning parameters in all the following settings.

‚ SST: SST is satisfied. Comparison probabilities pij are generated from the MNL model,

where pσi,σj
“ pexppsσi

´ sσj
q ` 1q´1, and sσ1 , . . . , sσn is a decreasing sequence where

sσi
“ 100∆d ¨

pn`1´iq
n

.

‚ WST: SST does not necessarily hold. Let pi,j „ Unip1
2

` ∆d, 1q for all items i ą j.

‚ NON-SST: SST does not hold. For adjacent items, we have pσi,σi`1
„ Uni

`

1
2

` ∆d, 1
˘

.

Otherwise, we have pσi,σj
„ Uni

`

1
2

`
∆d

10
, 1
2

` ∆d

˘

for j ą i ` 1.

‚ ADJ-ASYM: SST does not hold. This setting is used to verify the asymptotic analysis

in Section 3.5. For adjacent items, we set pσi,σi`1
“ 1

2
` ∆d. Otherwise, we set

4https://github.com/tao-j/aht/releases/tag/v0.1
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(c) NON-SST: ∆d “ 0.3

Figure 3.2: Comparison of sample complexities of Probe-Rank and IIR under various settings.

In each subfigure, ∆d is fixed while the number of items varies.

pσi,σj
“ 1

2
`

∆d

nα for j ą i ` 1. We consider cases where α equals 0.5 or 1.

‚ ADJ-CNST: SST does not hold. For adjacent items, we set pσi,σi`1
“ 1

2
` ∆. Otherwise

pσi,σj
“ 1

2
` ∆d for j ą i ` 1. Here ∆ ą ∆d.
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(a) ADJ-ASYM: ∆d “ 0.3,

α “ 1

25 50 75 100
Number of items to rank

105

107
S

am
pl

e
co

m
pl

ex
it

y

IIR

Probe-Rank

(b) ADJ-ASYM:

∆d “ 0.3, α “ 0.5

Figure 3.3: Relationship between n and gap ∆d

All experiments are averaged over

100 independent trials. For each trial,

the ground truth ranking σ is gener-

ated uniformly at random and the com-

parison probabilities are assigned ac-

cordingly. The confidence level δ is

fixed to be 0.1. Throughout the exper-

iment, every trial for every algorithm

successfully recovered the correct rank-

ing.

We use internal clusters of intel “Skylake” generation CPUs. Each job contains a single

model type for item numbers ranging from 10 to 100 with a step size of 10. Models are

generated from a job unique random seed shared among the two algorithms. Most jobs

with sample complexity smaller than 107 terminate in 3 minutes. For ∆d “ 0.1 under the
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ADJ-ASYM model, 3 hours are needed due to high sample complexity. Due to the space

limit, more detailed experimental setups and thorough ablation studies can be found in

Section 3.11.

Performance Comparison Figure 3.2 with y-axis in log-scale shows comparison of IIR

and Probe-Ranking under the SST, WST and NON-SST settings. The parameter ∆d is set to be

0.3. It can be seen that under the SST and WST settings (Figures 3.2(a), 3.2(b)), Probe-Rank

consumes less samples than IIR for small n. As n gets larger, however, IIR becomes more

sample-efficient due to that Probe-Rank has an additional factor of n in its sample complexity

compared with IIR for instances satisfy SST. However, under the NON-SST setting where SST

does not hold, Probe-Rank has a clear advantage over IIR, as shown in Figure 3.2(c).

Dependence on n and the Probability Gaps Following Theorem 2, we verify that the

sample complexity of Probe-Rank is lower than IIR when the number of items n gets larger.

We use the
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(a) NON-SST: n “ 80
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(b) ADJ-CNST: n “ 80, ∆ “

0.4

Figure 3.4: Ablation study on the dependence of the

sample complexity on the probability gap ∆d.

ADJ-ASYM setting to simulate situa-

tions where nonadjacent items can be

much more difficult to compare. In

particular, we choose α “ 1 (see Fig-

ure 3.3(a)) and α “ 1{2 (see Fig-

ure 3.3(b)). It can be seen from Fig-

ure 3.3(a) that as the number of items

n gets larger, the gap between the two

curves also gets larger. This matches

our analysis that when ∆̃i{∆i “

ωp
?
nq, then the sample complexity of

IIR is of higher order than that of Probe-Rank. When ∆̃i{∆i “ Θp
?
nq, Figure 3.3(b) shows
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that the gap between the two sample complexities varies little as n increases. Our analysis

also suggests that sample complexities of two algorithms are of the same order.

Furthermore, we show through the NON-SST and ADJ-CNST settings that when the prob-

ability gaps of nonadjacent item pairs decrease, the advantage of our algorithm will be more

and more prominent.

In Figure 3.4, we fix n “ 80 and let ∆d vary. Clearly, Probe-Rank has an advantage over

IIR in both settings. In particular, Figure 3.4(b) shows the comparison of two algorithms in

the ADJ-CNST setting with the probability gaps between adjacent items ∆ fixed as 0.4. As

the probability gap between nonadjacent items ∆d varies from 0.01 to 0.4, it can be seen that

the sample complexity of Probe-Rank does not vary much. However, the sample complexity

of IIR has a positive correlation with 1
∆2

d
. This numerical result matches our analysis that

Probe-Ranking is not affected by the comparison probability of nonadjacent items, which

does not hold for IIR.

3.7 Discussion on the Lower Bound

In this section, we provide some insights about the lower bound for pairwise ranking by

proposing a conjecture based on a particularly hard instance IWST that satisfies the WST

condition.

Problem 1 (IWST ). The problem instance IWST is constructed as follows. Consider n items

with an underlying ordering ‘ą’. For all i ą j,

pi,j “

$

’

&

’

%

1
2

` ∆, if i and j are adjacent,

1
2

` cn´10∆2{ logp1{δq, otherwise,

where c and ∆ are constants and n´10 can be replaced by any other quantity that is smaller

than n´2.

By a reduction, any δ-correct algorithm that finds the maximum item for IWST can be
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constructed to find the maximum item for ISNG, described below in Problem 2. Therefore,

a lower bound on the sample complexity for maxing in Problem 2 will imply a lower bound

of the same order for the maxing (and thus, ranking) problem for IWST . This lower bound

is also a worst-case lower bound for ranking under WST. In the following, we provide an

analysis for Problem 2. The reduction technique will be deferred to Section 3.12.

Problem 2 (ISNG). Consider n items with an underlying ordering ‘ą’. One can make

queries of the form ‘if i ą j’. The feedback Yi,j is a binary random variable which takes

value 1 if the answer is YES and takes value 0 otherwise. The random variables Yi,j are

defined to follow distributions:

Yi,j „

$

’

&

’

%

Berp1
2

´ 2∆q, if i ă j and i, j are adjacent,

Berp1
2
q, otherwise.

Consider random vectors defined by pi “ pYi,1, Yi,2, . . . , Yi,nq in Problem 2. The maxi-

mum element i˚ corresponds to the random vector pi˚ , where each entry is a 1{2-Bernoulli

random variable. For every other non-maximum element i, pi will contain exactly one

p1{2 ´ 2∆q-Bernoulli random variable. Under such problem setting, finding the maximum

item is equivalent to finding which vector has all its entries as 1{2-Bernoulli random variables.

We conjecture that any δ-correct algorithm that can find the maximum item for ISNG

has a sample complexity at least

Ω
`

n2∆´2 logp1{δq
˘

. (3.7.1)

We start from viewing it as a hypothesis testing problem. Consider that an agent is asked

to determine if p1 satisfies hypothesis H0, defined as

H0 : p1 “ pp1,1, . . . , p1,nq, where p1,k „ Berp1{2q, @k P rns,

or Hj, in which the j-th entry is biased:

Hj : p1 “ pp1,1, . . . , p1,nq, where p1,j „ Berp1{2 ´ 2∆q, p1,k „ Berp1{2q, @k ‰ j.
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Suppose the hypothesis testing algorithm A is δ-correct and stops within T rounds of inter-

actions. We denote ApT q as the output at the T -th round, which is either 0 (accept H0) or

1 (reject H0). For any given j ‰ 1, by the Bretagnolle–Huber inequality, we have

2δ ě P0pApT q ‰ 0q ` PjpApT q “ 0q ě
1

2
e´KLpPA

0 ||PA
j q, (3.7.2)

where P0 is the probability measure under H0, and PA
0 is the probability measure of the

canonical bandit model under H0. In fact, we have the divergence decomposition lemma

(Lattimore and Szepesvári, 2020, Lemma 15.1):

KLpPA
0 ||PA

j q “

n
ÿ

k“1

E0rNkpT qsKLpP0,k||Pj,kq “ E0rNjpT qsKLpBerp1{2q||Berp1{2 ´ 2∆qq,

(3.7.3)

where E0 denotes the expectation under H0; E0rNkpT qs denotes under H0, the expected

number of queries for the entry p1,k within T rounds.; P0,k, Pj,k are the Bernoulli distributions

specified by p1,k under H0, Hj, respectively. The second equality is due to the fact that the

only difference between H0 and Hj is that the j-th entry has different Bernoulli distributions.

Combining the two inequality above gives:

E0rNjpT qsKLpBerp1{2q||Berp1{2 ´ 2∆qq ě logp1{4δq. (3.7.4)

Since KLpBerp1{2q||Berp1{2´xqq ă p4xq2 for all x ă 2{9, we get E0rNjpT qs “ Ωp∆´2 logp1{δqq.

Thus, the total expected number of queries under H0 will be Ωpn∆´2 logp1{δqq.

In Problem 2, there are in total n vectors. We reasonably conjecture that to identify which

vector satisfies H0 requires at least Ωpnq attempts, with each attempt costs Ωpn∆´2 logp1{δqq,

i.e, any δ-correct algorithm requires Ω
`

n2 logp1{δq{∆2
˘

queries.

3.8 Conclusion and Future Work

In this chapter, we studied the problem of exact ranking under the most general assumption

WST. We proposed a δ-correct algorithm Probe-Rank, and derived an instance-wise upper
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bound on its sample complexity. The upper bound shows that the performance of Probe-

Rank only depends on the comparison probabilities of adjacent items and thus improves

existing results when SST does not hold. Numerical results also suggest that our ranking

algorithm outperforms the state-of-the-art. A discussion over the lower bound for pairwise

ranking is also provided. We propose a conjecture that in the worst case, any algorithm has

sample complexity n times the number of comparisons needed for comparing all adjacent

items. However, it remains an open problem whether our conjecture holds and will be left

to future work.

3.9 Proof of the Sample Complexity Upper Bound on Probe-Rank

In this section, we prove our theoretical upper bound presented in Theorem 2, Section 3.5.

We first show in the following lemma that the subroutine Successive-Comparison returns

desired outcomes with high probability. Given an item pair pi, jq with probability gap ∆i,j ą

0 and a positive integer τ , we say SC pi, j, δ, τq is successful if one of the following two events

holds,

E1 “ t∆i,j ě ϵτ and SC correctly returns ri, jsu, (3.9.1)

E2 “ t∆i,j ă ϵτ and SC returns ‘unsure’ or ri, jsu. (3.9.2)

Lemma 3. For an item pair pi, jq with probability gap ∆i,j ą 0 and a positive integer τ ,

SC pi, j, δ, τq is successful with probability at least 1 ´ δ
cτ2

, where c “ π2

6
.

Proof of Lemma 3. Hoeffding’s inequality gives that

Pr

ˆ

p̂i ´ pi,j ď ´
1

2
ϵτ

˙

ď exp

˜

´2bτ

ˆ

1

2
ϵτ

˙2
¸

ď
δ

cτ 2
. (3.9.3)

Therefore, the probability that SC outputs rj, is is at most

Pr

ˆ

p̂i ´
1

2
ă ´

1

2
ϵτ

˙

ď Pr

ˆ

p̂i ´ pi,j ď ´
1

2
ϵτ

˙

ď
δ

cτ 2
, (3.9.4)
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and the probability that SC returns ri, js or ‘unsure’ is at least 1 ´ δ
cτ2

.

Further, if ∆i,j ě ϵτ , the probability that SC returns ri, js is at least

Pr

ˆ

p̂i ´
1

2
ą

1

2
ϵτ

˙

“ Pr

ˆ

p̂i ą
1

2
`

1

2
ϵτ

˙

ě Pr

ˆ

p̂i ą pi,j ´
1

2
ϵτ

˙

ě 1 ´
δ

cτ 2
. (3.9.5)

This completes the proof.

By Lemma 3, with high probability, SC does not return the incorrect ordering. Further,

if τ is large enough, then SC is guaranteed to return the correct ordering. We use Lemma 3

to show the theoretical performance of Probe-Rank.

Theorem 2. Let δ ą 0 be an arbitrary constant. For all problem instances satisfying the

Weak Stochastic Transitivity (WST) property, with probability at least 1 ´ δ, Probe-Rank

returns the true ranking of n items and conducts at most

O

˜

n
n
ÿ

i“1

´

∆̃´2
i

¯´

log log
´

∆̃´1
i

¯

` log
´n

δ

¯¯

¸

(3.5.1)

comparisons, where ∆̃i is defined as in (3.2.1).

Proof of Theorem 2. Define events

Ei,jpτq “ tSC
`

i, j, 2δ{n2, τ
˘

is successfulu. (3.9.6)

Define the bad event

Ebad
“ Ypi,jqPrns2 Y

8
τ“1 pEi,jpτqq

c . (3.9.7)

By the union bound and Lemma 3

Pr
`

Ebad
˘

ď
ÿ

pi,jqPrns2

8
ÿ

τ“1

2δ

cn2τ 2
ď

8
ÿ

τ“1

δ

cτ 2
ď δ. (3.9.8)

In the following, we assume that Ebad does not happen.

Correctness. We show that when Ebad does not happen, in every round t, Probe-

MaxpSt, 2δ{n2q (line 4 of Algorithm 11) correctly returns the most preferred item in the set
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of remaining items St. Since the probability of Ebad is upper bounded by δ, the correctness

of Probe-Rank thus follows.

Let x be the most preferred item in St. When Ebad does not happen, all comparison

results returned by SC are correct and T is always consistent with the true ranking. Thus,

no item in St is known to rank higher than x, i.e., at the beginning of Subroutine 12, x P U .

Moreover, x will not be eliminated from U since x will not lose to any other item in St during

calls of SC.

We show that any other item in U will be eliminated from U after a finite number

of iterations of the while loop in Probe-Max. Let y ‰ x be an item in U . Since x is

the maximum, y ă x in the true ranking. Whenever ϵτy,x ď ∆x,y, a successful call of

SC px, y, 2δ{n2, τx,yq will return the result x ą y and remove y from U if Ebad does not

happen. Since ϵτy,x converges to 0, there must exist τ˚
x,y such that ϵτ˚

x,y
ď ∆x,y. After each

execution of SC, the corresponding τ value increases by one, therefore after at most
`

n
2

˘

τ˚
x,y

iterations of the while loop, SC
`

x, y, 2δ{n2, τ˚
x,y

˘

must have been called. The same argument

holds for any y P U, y ‰ x.

Sample complexity. We first note the asymptotic behavior that for any N ą 0,
N
ÿ

τ“1

bτ ď

N
ÿ

τ“1

2

4´τ
log

cτ 2n2

δ
ď

N
ÿ

τ“1

2

4´τ
log

cN2n2

δ
“ O

ˆ

4N log
cN2δ2

δ

˙

“ O pbNq . (3.9.9)

Without loss of generality, we assume the true ranking is 1 ą 2 ą ¨ ¨ ¨ ą n. When Ebad

does not happen, all comparison results returned by SC coincide with the true ranking.

Therefore, for every i P rn ´ 1s, item i belongs to S1, S2, . . . , Si and gets eliminated during

the execution of Probe-MaxpSi, 2δ{n2q.

Recall that SC is only called over item pairs in which at least one of them is a maximal

element. For every SC called on items a, b, if a is maximal, we say item a initializes the

comparison and we charge the number of comparisons taken by SC to item a (if both a

and b are maximal, we charge the number of samples to both). Let cpaq denote the number

of comparisons charged to a. The total sample complexity of Probe-Rank is thus at most
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ř

aPrns
cpaq.

Fix i P rns. We use τ ˝
i to denote the value of τi,i´1 when the order between i and i ´ 1

is revealed. Define τ ˝
1 “ 0 for completeness. We note that the order between i and i ´ 1

can not be inferred from any other comparison results therefore can only be returned by

SC pi, i ´ 1, 2δ{n2, τ ˝
i q. When Ebad does not happen, τ ˝

i ď rlog 1
∆i,i´1

s since a successful call

of SC
´

i, i ´ 1, 2δ{n2, rlog 1
∆i,i´1

s

¯

will return the order.

For each j ‰ i, we use τ˚
i,j to denote the value of τi,j when the last time SC is initialized by

i and called over i, j before the beginning of Probe-MaxpSi, 2δ{n2q. In other words, for any

τ ą τ˚
i,j, if SC pi, j, 2δ{n2, τq is called in Probe-MaxpSt, 2δ{n2q for some t ă i, then it must

not be initialized by i. Moreover, we use τ ti,j to denote the value of τi,j right after Probe-

MaxpSt, 2δ{n2q terminates. Since i is ranked and removed from T after Probe-MaxpSi, 2δ{n2q

is called, τ ii,j is also the value of τi,j when Probe-Rank terminates. It is clear that

cpiq ď
ÿ

j‰i

τ˚
i,j
ÿ

τ“1

bτ `
ÿ

j‰i

τ ii,j
ÿ

τ“τ i´1
i,j `1

bτ . (3.9.10)

We consider the first term on the right-hand side of (3.9.10). Before Probe-MaxpSi´1, 2δ{n2q

terminates, item i ´ 1 is in T . Therefore, whenever i is a maximal element, the order

between i and i ´ 1 must have not been revealed. So when i initializes the comparison

SC
`

i, j, 2δ{n2, τ˚
i,j

˘

, the item pair pi, i ´ 1q is also in the set of ‘legitimate’ pairs P . There-

fore, τ˚
i,j is no larger than the value of τi,i´1 at that point, and further no larger than τ ˝

i . The

same argument holds for any j. It follows that

ÿ

j‰i

τ˚
i,j
ÿ

τ“1

bτ ď
ÿ

j‰i

τ˚
i,j
ÿ

τ“1

bτ ď

τ˝
i
ÿ

τ“1

nbτ . (3.9.11)

Next, we bound the second term on the right-hand side of (3.9.10). Note that if there

is no SC called during Probe-MaxpSi, 2δ{n2q, then
ř

j‰i

řτ ii,j

τ“τ i´1
i,j `1

bτ “ 0. So it suffices to

consider the case when at least one instance of SC is called during Probe-MaxpSi, 2δ{n2q.

Consider the last group of SC called in Probe-MaxpSi, 2δ{n2q, here group means that there
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might be multiple item pairs whose τ values are the minimum in P . Denote their τ values

by τ i. There must be some SC pai, bi, 2δ{n2, τ iq returning bi ą ai such that ai is a maximal

item, otherwise no maximal item is removed from U and Probe-Max will not terminate.

When Ebad does not happen, ai is not the maximum in Si so ai ą i. Thus, item ai ´ 1 is also

in Si and before the call of SC pai, bi, 2δ{n2, τ iq, the ordering between ai ´ 1 and ai is not

revealed, i.e., τ i ď τ ˝
ai

. Moreover, τ ii,j ď τ i by the fact that we always compare item pairs

with the smallest τ values. It follows that

ÿ

j‰i

τ ii,j
ÿ

τ“τ i´1
i,j `1

bτ ď n
τ i
ÿ

τ“1

bτ “ O pnbτ iq . (3.9.12)

The same argument holds for all i P rn ´ 1s.

Consider the sets

D1 “ tbτ i : i “ 1, 2, . . . , n ´ 1u, D2 “ Y
n
i“2Di

2 “ Y
n
i“2tbτ : τ “ 1, 2, . . . , τ ˝

i u. (3.9.13)

We claim that if i1 ‰ i2, then the pairs pai1 , τ
i1q and pai2 , τ

i2q do not equal. With the facts

that ai ą i and τ i ď τ ˝
ai

, there is an injective mapping from D1 to D2 given by bτ i is mapped

to the element bτ i in Dai
2 . It follows that

n´1
ÿ

i“1

O pnbτ iq “ O

˜

ÿ

xPD1

nx

¸

ď O

˜

ÿ

xPD2

nx

¸

“ O

˜

n
ÿ

i“2

τ˝
i
ÿ

τ“1

nbτ

¸

. (3.9.14)

The reason for pairs pai1 , τ
i1q and pai2 , τ

i2q equal if and only if i1 “ i2 is as follows. Let

i2 ą i1 and suppose ai1 “ ai2 “ a. When SC pa, bi1 , 2δ{n2, τ i1q is called, SC pa, b, 2δ{n2, τ i1q

for all b such that pa, bq R T and τa,b “ τ i1 are also called. It follows that τa,b ą τ i for all such

b after this point. When SC pa, bi2 , 2δ{n2, τ i2q is called, the order between a and bi2 is not

know and thus also not known when SC pa, bi1 , 2δ{n2, τ i1q was called. So τ i2 must be larger

than τ i1 .
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Combining (3.9.10), (3.9.11) and (3.9.14) gives,

n
ÿ

i“1

cpiq ď

n
ÿ

i“2

ÿ

j‰i

τ˚
i,j
ÿ

τ“1

bτ `

n´1
ÿ

i“1

ÿ

j‰i

τ ii,j
ÿ

τ“τ i´1
i,j `1

bτ (3.9.15)

ď O

˜

n
ÿ

i“2

τ˝
i
ÿ

τ

nbτ

¸

“ O

˜

n
n
ÿ

i“2

bτ˝
i

¸

. (3.9.16)

The desired sample complexity follows from τ ˝
i ď rlog 1

∆i,i´1
s and

brlog 1
∆

s “ O

ˆ

1

∆2

ˆ

log log
1

∆
` log

n

δ

˙˙

, (3.9.17)

which completes the proof.

3.10 A Sample-Efficient Variant of Probe-Rank

In this section, we present a variant of Probe-Rank, named Probe-Rank-SE. When demon-

strating more detailed experiments in Section 3.11, Probe-Rank-SE is also included and is

shown to have better practical performance. However, we will not prove its correctness due

to the high similarity it shares with Probe-Rank.

Compared with Probe-Rank, the variant Probe-Rank-SE finds the ranking also by per-

forming n ´ 1 steps of maxing and differs only in the subroutine for collecting comparison

samples. Specifically, Probe-Rank-SE takes queries from all unknown item pairs simultane-

ously. Comparison results for pairs that terminate earlier are still collected and stored in

the graph T , which represents our current knowledge about the ranking. We use T to decide

whether to pause, drop or resume comparisons of remaining item pairs.

We adopt the Successive Elimination (SE) algorithm from Even-Dar et al. (2002a), shown

in Algorithm 13, as a procedure to perform comparisons.
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Subroutine 13 Successive Elimination (modified for comparing two items)
1: Input: items i, j, confidence level δ

2: t “ 1;

3: while true do

4: Compare i and j for 2t times; Let p̂ti be the winning rate of i;

5: Let αt “

b

logpct2{δq

2t
, c “ π2

3
;

6: Return i ą j if p̂ti ´ 1
2

ą αt; Return j ą i if p̂ti ´ 1
2

ă ´αt; t “ t ` 1 else;

7: end while

It was shown that with probability at least 1 ´ δ, Subroutine 13 correctly returns the

more preferred item between i and j using at most O
´

1
∆2

i,j

´

log 1
δ

` log log 1
∆i,j

¯¯

compar-

isons (Even-Dar et al., 2002a, Remark 1).

In Probe-Rank-SE, we do not call SE directly, rather, SE is used as a black-boxed unit

that repeatedly collects query samples from the input pair i, j. Moreover, after every sample,

it generates feedback which is either Null, i ą j or j ą i, where Null corresponds to that

the number of samples has not accumulated to 2t or
ˇ

ˇp̂ti ´ 1
2

ˇ

ˇ ă αt; feedback i ą j and

j ą i correspond to that inside the black box, SE actually terminates and returns the order

between i and j. Note that the SE procedure can be replaced by any algorithm that can

rank two items, including all best-arm-identification algorithms.

Denote the instance of Successive Elimination that runs over items i, j with confidence

level δ as SEi,jpδq. When the value of δ is given without ambiguity, we will drop the

dependence and write SEi,j as a shorthand. We define two operations on SEi,j, named

advance and feed. The advance operation returns one of the three possible internal outcomes,

Null, i ą j or j ą i. The feed operation is used for simulating the sampling process. We

write feed pSEi,j, Yi,jq to represent that SEi,j is fed with a comparison sample Yi,j. As a black-

boxed unit, before advance returns one of i ą j and j ą i, advance and feed operations are

invoked in an alternating fashion. The idea of viewing a sampling subroutine as a black-box
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controlled by artificial operations was also used in Ailon et al. (2014), but for a different

problem setting.

Probe-Rank-SE is presented in Algorithm 14. We initialize
`

n
2

˘

independent instances of

SEi,j p2δ{n2q, each for obtaining the order between an item pair pi, jq, 1 ď i ă j ď n. The

probability of being unable to recover the true ranking is thus upper bounded by probability

that at least one of the SE instances fails, which is at most δ. Same as Probe-Rank, we use

T to denote the transitive closure composed of results returned by the SE instances.

Algorithm 14 Probe-Rank-SE
1: Input: items rns, confidence level δ

2: S1 “ rns, Ans “ r0sn; initialize T ;

3: initialize SEi,j p2δ{n2q for all 1 ď i ă j ď n;

4: for t from 1 to n ´ 1 do

5: imax “Probe-Max-SE(St);

6: remove imax from T ; Ansrt ´ 1s “ imax; St`1 “ Stztimaxu;

7: end for

8: Ansrn ´ 1s “ Snr0s; Return Ans;

The procedure Probe-Max-SE serves as a switch for the SE instances. Let S2
t denote the

set of unordered item pairs tpi, jq : i, j P St, i ‰ ju. In each round t, all SE instances for

‘legitimate’ pairs in S2
t are turned on and take queries in a round-robin fashion. ‘Legitimate’

pairs are similarly defined as in Probe-Rank. A pair pi, jq is ‘legitimate’ if the order between

i, j is unknown, i.e., not in T , and at least one of i and j is a maximal element in St.
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Algorithm 15 Probe-Max-SEpStq

1: Let U be sets of maximal elements according to T

2: while |U | ě 1 do

3: C “ r s

4: for pi, jq in S2
t do

5: if (i P U or j P U) and pi, jq R T then

6: compare i with j once and get result Yi,j; feed pSEi,j pδ{n2q , Yi,jq

7: if advance pSEi,j p2δ{n2qq ““ i ą j then

8: C.appendpri, jsq;

9: else if advance pSEi,j p2δ{n2qq ““ j ą i then

10: C.appendprj, isq;

11: end if

12: end if

13: end for

14: for w, l in C do

15: if pw, lq R T then

16: T “ T Y pw ą lq;

17: if |U | ą 1 and l P U then

18: U “ Uztlu;

19: end if

20: end if

21: end for

22: end while

23: Return U r0s;
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3.11 Additional Experiments

In this section, we present more detailed numerical experiments comparing the sample com-

plexities of Probe-Rank, Probe-Rank-SE and the state-of-the-art algorithm IIR by Ren et al.

(2019). In particular, we focus on the WST, SST, NON-SST and ADJ-ASYM settings and per-

form these three algorithms with various parameters. Same as the results presented in

Section 3.6, all experiments are averaged over 100 independent trials. For each trial, the

ground truth ranking σ is generated uniformly at random and the comparison probabil-

ities are assigned according to the chosen setting. The confidence level δ is fixed to be

0.1. Throughout the experiment, every trial for every algorithm successfully recovered the

correct ranking. Moreover, for IIR, if the rank has not been recovered after the sample

complexity reaches 109, we manually stop the ranking process and record the sample com-

plexity as 109 to avoid extremely large running times. Note that the extreme cases happen

in Figures 3.8(a), 3.8(b) 3.8(c) and 3.12(d).

Figures 3.5, 3.6, 3.7 and 3.8 compare the three algorithms under different settings where

the difficulty parameter ∆d is fixed and the number of items n varies from 10 to 100. Fig-

ures 3.9, 3.10, 3.11 and 3.12 compare the three algorithms under different settings where the

number of items n is fixed and the difficulty parameter ∆d varies from 0.1 to 0.4. It can

be seen that Probe-Rank and its variant always consume less samples than IIR to recover

the true ranking. Note that in the WST setting, comparison probabilities are all identically

distributed and thus on average, adjacent items are as hard as nonadjacent items to compare.

When ∆d is fixed, as n gets larger and larger, IIR will eventually outperform Probe-Rank.

This is consistent with our theoretical results presented in Section 3.5. Moreover, as indi-

cated by the experimental results, Probe-Rank-SE can further reduce the sample complexity

compared with Probe-Rank.
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(a) WST: ∆d “ 0.1
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(b) WST: ∆d “ 0.2
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(c) WST: ∆d “ 0.3
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(d) WST: ∆d “ 0.4

Figure 3.5: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the WST setting. In

each subfigure, ∆d is fixed while the number of items varies.
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(a) SST: ∆d “ 0.1
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(b) SST: ∆d “ 0.2
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(c) SST: ∆d “ 0.3
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(d) SST: ∆d “ 0.4

Figure 3.6: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the SST setting. In

each subfigure, ∆d is fixed while the number of items varies.
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(a) NON-SST: ∆d “ 0.1
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(b) NON-SST: ∆d “ 0.2
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(c) NON-SST: ∆d “ 0.3
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(d) NON-SST: ∆d “ 0.4

Figure 3.7: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the NON-SST set-

ting. In each subfigure, ∆d is fixed while the number of items varies.
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(a) ∆d “ 0.1, α “ 1
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(b) ∆d “ 0.2, α “ 1
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(c) ∆d “ 0.3, α “ 1
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(d) ∆d “ 0.4, α “ 1
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(e) ∆d “ 0.1, α “ 0.5
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(f) ∆d “ 0.2, α “ 0.5
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Figure 3.8: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the ADJ-ASYM

setting. In each subfigure, ∆d and α are fixed while the number of items varies.
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Figure 3.9: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the WST setting. In

each subfigure, n is fixed while ∆d varies.
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Figure 3.10: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the SST setting. In

each subfigure, n is fixed while ∆d varies.
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Figure 3.11: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the NON-SST

setting. In each subfigure, n is fixed while ∆d varies.
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Figure 3.12: Comparison of Probe-Rank, Probe-Rank-SE and IIR under the ADJ-ASYM

setting. In each subfigure, n and α are fixed while ∆d varies.

3.12 Lower Bound Analysis

In this section, we present the reduction from the maxing problem for ISNG (Problem 2) to

the maxing problem for IWST (Problem 1). The two problems are restated as follows.

We first consider another problem instance ISYM and show that the maxing problem

for ISYM can be reduced to the maxing problem for IWST . The problem instance ISYM is

modified from IWST by setting the values of pi,j to be exactly 1
2
.

Problem 3 (ISYM). Consider n items with an underlying ordering ‘ą’. The comparison

probabilities are defined as:

pi,j :“

$

’

’

’

’

’

&

’

’

’

’

’

%

1
2

` ∆, if i ą j and i, j are adjacent,

1
2

´ ∆, if i ă j and i, j are adjacent,

1
2
, otherwise.
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Note that ISYM does not satisfy the WST condition as the comparison probabilities can

be 1
2
. However, any δ-correct algorithm that finds the maximum item for IWST efficiently

can also find the maximum item for ISYM efficiently, shown as follows.

Reduction from ISYM to IWST Let A be any δ-algorithm that finds the maximum item

for any instance that satisfies the WST condition. Algorithm A is also able to find the

maximum item for IWST with any c ą 0. Consider any interaction trajectory T defined by

the sequence of comparisons (including the choices for item pairs and their outcomes) with

length smaller than Cn2 logp1{δq{∆2 for some constant C. Under the two instances ISYM

and IWST , the probabilities of occurrences of T , denoted PSYM and PWST , satisfy

PSYMpT q

PWST pT q
ě

ˆ

1{2 ´ cn´10∆2{ logp1{δq

1{2

˙Cn2 logp1{δq{∆2

ą
` 1

1 ` 4cn´10∆2{ logp1{δq

˘Cn2 logp1{δq{∆2

ě e´4cn´10∆2{ logp1{δq¨Cn2 logp1{δq{∆2

“ e´4cCn´8

ě 1 ´ δ, (3.12.1)

where the first inequality holds because the likelihood ratio for one query is upper bounded

by the base and the number of queries on nonadjacent pairs is bounded by the exponent;

the second inequality assumes cn´10∆2{ logp1{δq ă 1{4, which holds for n sufficiently large;

the third inequality is due to p1 ` xq ď ex. The last inequality can hold by choosing a small

enough c.

If A solves the maxing problem for IWST with probability at least 1´ δ and conducts at
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most Cn2 logp1{δq{∆2 comparisons, then by inequality (3.12.1),

PSYMpA finds the correct maximumq “
ÿ

T PEf

PSYMpT q ě p1 ´ δq
ÿ

T PEf

PWST pT q

“ p1 ´ δqPWST pA finds the correct maximumq

ě p1 ´ δq
2

ą 1 ´ 2δ, (3.12.2)

where Ef denotes the collection of trajectories where A returns the correct maximum. In

other words, A is also a 2δ-correct algorithm that solves the maxing problem for ISYM and

conducts at most Cn2 logp1{δq{∆2 comparisons. Further, if we force A to terminate after

Cn2 logp1{δq{∆2 comparisons have been made, then A is still correct with probability at

least 1 ´ δ and with expected number of samples upper bounded by Cn2 logp1{δq{∆2.

The second step is to reduce the maxing problem for ISNG to the maxing problem for

ISYM .

Reduction from ISNG to ISYM Let A be any δ-correct algorithm that can find the

maximum item for ISYM . Without loss of generality, we can assume that when comparing

an item pair i, j, i ă j, A takes in answer 1 representing i is more preferred and answer 0

representing j is more preferred. We construct a δ-correct algorithm A1 that can find the

maximum item for ISNG from A:

Given A, whenever A compares item pair pi, jq,

with probability 1{2, A1 queries ‘if i ą j’, gets the sample Y and feeds Y to A;

with probability 1{2, A1 queries ‘if j ą i’, gets the sample Y and feeds 1 ´ Y to

A. Whenever A terminates and return an item, A1 also terminates and return

the same item.

It is clear that, if A queries an adjacent pair i, j with i ą j, the feedback Y is an average

over Yi,j (Berp1
2
q) and 1 ´ Yj,i (1-Berp1

2
´ 2∆q), which is Berp1

2
` ∆q; if i, j are adjacent and
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i ă j, the feedback Y is an average of Berp1
2

´ 2∆q and 1´Berp1
2
q, which is Berp1

2
´ ∆q; if

i, j are nonadjacent, the feedback Y is an average of two Berp1
2
q random variables, which is

still Berp1
2
q. Therefore, A gets the same feedback when it is performed over ISYM . If A is a

δ-correct maxing algorithm for ISYM and conducts at most Cn2 logp1{δq{∆2 comparisons on

average, then A1 is a δ-correct maxing algorithm for ISNG with the same sample complexity.

To summarize, if there exists a δ-correct algorithm A that solves the maxing problem

for IWST and conducts at most Cn2 logp1{δq{∆2 on average, then with the reduction, we

can conclude there exists a 2δ-correct algorithm A1 that solves Problem 2 with the same

sample complexity. Since the above argument holds for any C ą 0 and in Section 3.7, we

argued that Example 2 requires Ωpn2 logp1{δq{∆2q queries, we thus conjecture that any δ-

correct algorithm A that solves the maxing (and thus ranking) problem for IWST conducts

Ωpn2 logp1{δq{∆2q comparisons.
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CHAPTER 4

Borda Regret Minimization for Generalized Linear

Dueling Bandits

4.1 Introduction

Multi-armed bandits (MAB) (Lattimore and Szepesvári, 2020) is an interactive game where

in each round, an agent chooses an arm to pull and receives a noisy reward as feedback.

In contrast to numerical feedback considered in classic MAB settings, preferential feedback

is more natural in various online learning tasks including information retrieval Yue and

Joachims (2009), recommendation systems Sui and Burdick (2014), ranking Minka et al.

(2018), crowdsourcing Chen et al. (2013), etc. Moreover, numerical feedback is also more

difficult to gauge and prone to errors in many real-world applications. For example, when

provided with items to shop or movies to watch, it is more natural for a customer to pick a

preferred one than scoring the options. This motivates Dueling Bandits (Yue and Joachims,

2009), where the agent repeatedly pulls two arms at a time and is provided with feedback

being the binary outcome of “duels” between the two arms.

In dueling bandits problems, the outcome of duels is commonly modeled as Bernoulli

random variables due to their binary nature. In each round, suppose the agent chooses to

compare arm i and j, then the binary feedback is assumed to be sampled independently

from a Bernoulli distribution. For a dueling bandits instance with K arms, the probabilistic

model of the instance can be fully characterized by a K ˆ K preference probability matrix

with each entry being: pi,j “ Pparm i is chosen over arm jq.
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In a broader range of applications such as ranking, “arms” are often referred to as “items”.

We will use these two terms interchangeably in the rest of this chapter. One central goal of

dueling bandits is to devise a strategy to identify the “optimal” item as quickly as possible,

measured by either sample complexity or cumulative regret. However, the notion of opti-

mality for dueling bandits is way harder to define than for multi-armed bandits. The latter

can simply define the arm with the highest numerical feedback as the optimal arm, while for

dueling bandits there is no obvious definition solely dependent on tpi,j|i, j P rKsu.

The first few works on dueling bandits imposed strong assumptions on pi,j. For example,

Yue et al. (2012) assumed that there exists a true ranking that is coherent among all items,

and the preference probabilities must satisfy both strong stochastic transitivity (SST) and

stochastic triangle inequality (STI). While relaxations like weak stochastic transitivity (Fala-

hatgar et al., 2018) or relaxed stochastic transitivity (Yue and Joachims, 2011b) exist, they

typically still assume the true ranking exists and the preference probabilities are consistent,

i.e., pi,j ą 1
2

if and only if i is ranked higher than j. In reality, the existence of such coherent

ranking aligned with item preferences is rarely the case. For example, pi,j may be interpreted

as the probability of one basketball team i beating another team j, and there can be a circle

among the match advantage relations.

In this chapter, we do not assume such coherent ranking exists and solely rely on the Borda

score based on preference probabilities. The Borda score Bpiq of an item i is the probability

that it is preferred when compared with another random item, namely Bpiq :“ 1
K´1

ř

j‰i pi,j.

The item with the highest Borda score is called the Borda winner. The Borda winner is

intuitively appealing and always well-defined for any set of preferential probabilities. The

Borda score also does not require the problem instance to obey any consistency or transitivity,

and it is considered one of the most general criteria.

To identify the Borda winner, estimations of the Borda scores are needed. Since estimat-

ing the Borda score for one item requires comparing it with every other items, the sample

complexity is prohibitively high when there are numerous items. On the other hand, in
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many real-world applications, the agent has access to side information that can assist the

evaluation of pi,j. For instance, an e-commerce item carries its category as well as many

other attributes, and the user might have a preference for a certain category (Wang et al.,

2018). For a movie, the genre and the plot as well as the directors and actors can also be

taken into consideration when making choices (Liu et al., 2017).

Based on the above motivation, we consider Generalized Linear Dueling Bandits. In

each round, the agent selects two items from a finite set of items and receives a comparison

result of the preferred item. The comparisons depend on known intrinsic contexts/features

associated with each pair of items. The contexts can be obtained from upstream tasks,

such as topic modeling (Zhu et al., 2012) or embedding (Vasile et al., 2016). Our goal is to

adaptively select items and minimize the regret with respect to the optimal item (i.e., Borda

winner).

4.1.1 Organization of this Chapter

In this chapter, we will achieve the above-mentioned goal from both theoretical and empirical

perspectives. We review the most relevant work in the literature to ours in Section 4.2. We

present the backgrounds and preliminaries of the problem setting in Section 4.3 and discuss

the challenges of extending from previous works. In Section 4.4, we show a hardness result

regarding the Borda regret minimization for the (generalized) linear model. We prove a

worst-case regret lower bound Ωpd2{3T 2{3q for our dueling bandit model, showing that even in

the stochastic setting, minimizing the Borda regret is difficult. In Section 4.5, we propose an

explore-then-commit type algorithm under the stochastic setting, which can achieve a nearly

matching upper bound Õpd2{3T 2{3q. In Section 4.6, we propose an EXP3 type algorithm for

linear dueling bandits under the adversarial setting, which can achieve a nearly matching

upper bound Õ
`

pd logKq1{3T 2{3
˘

. In Section 4.7, we conduct empirical studies to verify the

correctness of our theoretical claims. Finally, we conclude the chapter with Section 4.8. We

defer the detailed proof of the theorems to Section 4.9.
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Additional Notations The weighted ℓ2-norm associated with a positive-definite matrix

A is defined as }x}A “
?
xJAx. The minimum eigenvalue of a matrix A is written as

λminpAq. We use A ľ B to denote that the matrix A ´ B is positive semi-definite.

4.2 Related Work

Multi-armed and Contextual Bandits Multi-armed bandit is a problem of identifying

the best choice in a sequential decision-making system. It has been studied in numerous

ways with a wide range of applications (Even-Dar et al., 2002b; Lai et al., 1985; Kuleshov

and Precup, 2014). Contextual linear bandit is a special type of contextual bandit problem

where the agent is provided with side information, i.e., contexts, and rewards are assumed to

have a linear structure. Various algorithms (Rusmevichientong and Tsitsiklis, 2010; Filippi

et al., 2010; Abbasi-Yadkori et al., 2011; Li et al., 2017; Jun et al., 2017) have been proposed

to utilize this contextual information.

Dueling Bandits and Its Performance Metrics Dueling bandits is a variant of MAB

with preferential feedback (Yue et al., 2012; Zoghi et al., 2014a, 2015b). A comprehensive

survey is provided by Bengs et al. (2021). As discussed previously, the probabilistic structure

of a dueling bandits problem is governed by the preference probabilities, over which an

optimal item needs to be defined. Optimality under the Borda score criteria has been

adopted by several previous works (Jamieson et al., 2015; Falahatgar et al., 2017a; Heckel

et al., 2018; Saha et al., 2021a). The most relevant work to ours is Saha et al. (2021a), where

they studied the problem of regret minimization for adversarial dueling bandits and proved

a T -round Borda regret upper bound ÕpK1{3T 2{3q. They also provide an ΩpK1{3T 2{3q lower

bound for stationary dueling bandits using Borda regret.

Apart from the Borda score, Copeland score is also a widely used criteria (Urvoy et al.,

2013; Busa-Fekete et al., 2013, 2014; Zoghi et al., 2015b, 2014b; Wu and Liu, 2016; Komiyama
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et al., 2016; Brandt et al., 2022; Bengs et al., 2023). It is defined as Cpiq :“ 1
K´1

ř

j‰i 1tpi,j ą

1{2u. A Copeland winner is the item that beats the most number of other items. It can

be viewed as a “thresholded” version of Borda winner. In addition to Borda and Copeland

winners, optimality notions such as a von Neumann winner were also studied by Ramamohan

et al. (2016); Dudík et al. (2015); Balsubramani et al. (2016). Saha and Krishnamurthy

(2021) considered a related regret definition based on the optimality gap in hindsight and

proposed algorithms for the general function class.

Another line of work focuses on identifying the optimal item or the total ranking, as-

suming the preference probabilities are consistent. Common consistency conditions include

Strong Stochastic Transitivity (Yue et al., 2012; Falahatgar et al., 2017a,b), Weak Stochastic

Transitivity (Falahatgar et al., 2018; Ren et al., 2019; Wu et al., 2022; Lou et al., 2022), Re-

laxed Stochastic Transitivity (Yue and Joachims, 2011b) and Stochastic Triangle Inequality.

Sometimes the aforementioned transitivity can also be implied by some structured mod-

els like the Bradley–Terry model. We emphasize that these consistency conditions are not

assumed or implicitly implied in our setting.

Contextual Dueling Bandits Dudík et al. (2015) first incorporated contextual informa-

tion into the dueling bandit framework. Later, Saha (2021) studied structured contextual

dueling bandits where each item i has its own contextual vector xi (sometimes called Linear

Stochastic Transitivity). Each item then has an intrinsic score vi equal to the linear product

of an unknown parameter vector θ˚ and its contextual vector xi. The preference probability

between two items i and j is assumed to be µpvi ´ vjq where µp¨q is the logistic function.

These intrinsic scores of items naturally define a ranking over items. The regret is also com-

puted as the gap between the scores of pulled items and the best item. Bengs et al. (2022)

further extended the problem to general link functions and proved a stronger lower bound

on the weak regret. Di et al. (2024) proposed a variance-aware algorithm for this setting

with improved regret upper bound. Unlike the works mentioned above, we assume that
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the contextual vectors are associated with item pairs and define regret on the Borda score.

In Section 4.3.3, we provide a more detailed discussion showing that the linear stochastic

transitivity setting can be viewed as a special case of our model.

4.3 Backgrounds and Preliminaries

4.3.1 Problem Setting

We first consider the stochastic preferential feedback model with K items in the fixed time

horizon setting. We denote the item set by rKs and let T be the total number of rounds. In

each round t, the agent can pick any pair of items pit, jtq to compare and receive stochastic

feedback about whether item it is preferred over item jt, (denoted by it ą jt). We denote

the probability of seeing the event i ą j as pi,j P r0, 1s. Naturally, we assume pi,j ` pj,i “ 1,

and pi,i “ 1{2.

In this chapter, we are concerned with the generalized linear model (GLM), where there

is assumed to exist an unknown parameter θ˚ P Rd, and each pair of items pi, jq has its own

known contextual/feature vector ϕi,j P Rd with }ϕi,j} ď 1. There is also a fixed known link

function (sometimes called comparison function) µp¨q that is monotonically increasing and

satisfies µpxq ` µp´xq “ 1, e.g. a linear function or the logistic function µpxq “ 1{p1 ` e´xq.

The preference probability is defined as pi,j “ µpϕJ
i,jθ

˚q. In each round, denote rt “ 1tit ą

jtu, then we have

Errt|it, jts “ pit,jt “ µpϕJ
it,jtθ

˚
q.

Then our model can also be written as

rt “ µpϕJ
it,jtθ

˚
q ` ϵt,

where the noises tϵtutPrT s are zero-mean, 1-sub-Gaussian and assumed independent from each

other. Note that, given the constraint pi,j ` pj,i “ 1, it is implied that ϕi,j “ ´ϕj,i for any

i P rKs, j P rKs.
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The agent’s goal is to maximize the cumulative Borda score. The (slightly modified 1)

Borda score of item i is defined as Bpiq “ 1
K

řK
j“1 pi,j, and the Borda winner is defined as

i˚ “ argmaxiPrKsBpiq. The problem of merely identifying the Borda winner was deemed

trivial (Zoghi et al., 2014a; Busa-Fekete et al., 2018) because for a fixed item i, uniformly

random sampling j and receiving feedback ri,j “ Bernoullippi,jq yield a Bernoulli random

variable with its expectation being the Borda score Bpiq. This so-called Borda reduction

trick makes identifying the Borda winner as easy as the best-arm identification for K-armed

bandits. Moreover, if the regret is defined as RegretpT q “
řT

t“1pBpi˚q ´ Bpitqq, then any

optimal algorithms for multi-arm bandits can achieve Õp
?
T q regret.

However, the above definition of regret does not respect the fact that a pair of items is

selected in each round. When the agent chooses two items to compare, it is natural to define

the regret so that both items contribute equally. A commonly used regret, e.g., in Saha et al.

(2021a), has the following form:

RegretpT q “

T
ÿ

t“1

`

2Bpi˚
q ´ Bpitq ´ Bpjtq

˘

, (4.3.1)

where the regret is defined as the sum of the sub-optimality of both selected arms. Sub-

optimality is measured by the gap between the Borda scores of the compared items and

the Borda winner. This form of regret deems any classical multi-arm bandit algorithm with

Borda reduction vacuous because taking jt into consideration will invoke ΘpT q regret.

Adversarial Setting Saha et al. (2021b) considered an adversarial setting for the multi-

armed case, where in each round t, the comparison follows a potentially different probability

model, denoted by tpti,jui,jPrKs. In this chapter, we consider its contextual counterpart.

Formally, we assume there is an underlying parameter θ˚
t , and in round t, the preference

probability is defined as pti,j “ µpϕJ
i,jθ

˚
t q.

1Previous works define Borda score as B1
i “ 1

K´1

ř

j‰i pi,j , excluding the diagonal term pi,i “ 1{2. Our
definition is equivalent since the difference between two items satisfies Bpiq´Bj “ K´1

K pB1
i ´B1

jq. Therefore,
the regret will be in the same order for both definitions.
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The Borda score of item i P rKs in round t is defined as Btpiq “ 1
K

řK
j“1 p

t
i,j, and the

Borda winner in round T is defined as i˚ “ argmaxiPrKs

řT
t“1Btpiq. The T -round regret is

thus defined as RegretpT q “
řT

t“1

`

2Btpi
˚q ´ Btpitq ´ Btpjtq

˘

.

4.3.2 Assumptions

In this section, we present the assumptions required for establishing theoretical guarantees.

Due to the fact that the analysis technique is largely extracted from Li et al. (2017), we

follow them to make assumptions to enable regret minimization for generalized linear dueling

bandits.

We make a regularity assumption about the distribution of the contextual vectors:

Assumption 4.3.1. There exists a constant λ0 ą 0 such that

λmin

` 1

K2

K
ÿ

i“1

K
ÿ

j“1

ϕi,jϕ
J
i,j

˘

ě λ0

.

This assumption is only utilized to initialize the design matrix Vτ “
řτ

t“1ϕit,jtϕ
J
it,jt so

that the minimum eigenvalue is large enough. We follow Li et al. (2017) to deem λ0 as a

constant.

We also need the following assumption regarding the link function µp¨q:

Assumption 4.3.2. Let 9µ be the first-order derivative of µ. We have

κ :“ inf
}x}ď1,}θ´θ˚}ď1

9µpxJθq ą 0.

Assuming κ ą 0 is necessary to ensure the maximum log-likelihood estimator can converge

to the true parameter θ˚ (Li et al., 2017, Section 3). This type of assumption is commonly

made in previous works for generalized linear models (Filippi et al., 2010; Li et al., 2017;

Faury et al., 2020).
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Another common assumption is regarding the continuity and smoothness of the link

function.

Assumption 4.3.3. µ is twice differentiable. Its first and second-order derivatives are

upper-bounded by constants Lµ and Mµ respectively.

This is a very mild assumption. For example, it is easy to verify that the logistic link

function satisfies Theorem 4.3.3 with Lµ “ Mµ “ 1{4.

4.3.3 Existing Results for Structured Contexts

A structural assumption made by some previous works (Saha, 2021) is that ϕi,j “ xi ´ xj,

where xi can be seen as some feature vectors tied to the item. In this work, we do not

consider minimizing the Borda regret under the structural assumption.

The immediate reason is that, when pi,j “ µpxJ
i θ

˚ ´ xJ
j θ

˚q, with µp¨q being the logistic

function, the probability model pi,j effectively becomes (a linear version of) the well-known

Bradley-Terry model. Namely, each item is tied to a value vi “ xJ
i θ

˚, and the comparison

probability follows pi,j “ evi
evi`evj

. More importantly, this kind of model satisfies both the

strong stochastic transitivity (SST) and the stochastic triangle inequality (STI), which are

unlikely to satisfy in reality.

Furthermore, when stochastic transitivity holds, there is a true ranking among the items,

determined by xJ
i θ

˚. A true ranking renders concepts like the Borda winner or Copeland

winner redundant because the rank-one item will always be the winner in every sense. When

ϕi,j “ xi ´ xj, Saha (2021) proposed algorithms that can achieve nearly optimal regret

Õpd
?
T q, with regret being defined as

RegretpT q “

T
ÿ

t“1

2xxi˚ ,θ˚
y ´ xxit ,θ

˚
y ´ xxjt ,θ

˚
y, (4.3.2)

where i˚ “ argmaxixxi,θ
˚y, which also happens to be the Borda winner2. Meanwhile, by

2Saha (2021) and the following works consider the case of time-varying features and consequently the
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Theorem 4.3.3,

Bpi˚
q ´ Bpjq “

1

K

K
ÿ

k“1

“

µpxxi˚ ´ xk,θ
˚
yq ´ µpxxj ´ xk,θ

˚
yq
‰

ď Lµ ¨ xxi˚ ´ xj,θ
˚
y,

where Lµ is the upper bound on the derivative of µp¨q. For logistic function Lµ “ 1{4. The

Borda regret (4.3.1) is thus at most a constant multiple of (4.3.2). This shows Borda regret

minimization can be sufficiently solved by Saha (2021) when structured contexts are present.

We consider the most general case where the only restriction is the implicit assumption that

ϕi,j “ ´ϕj,i.

4.4 The Hardness Result
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Figure 4.1: Illustration of the hard-to-learn preference probability matrix tpθi,juiPrKs,jPrKs.

There are K “ 2d`1 items in total. The first 2d items are “good” items with higher Borda

scores, and the last 2d items are “bad” items. The upper right block tpi,juiă2d,jě2d is defined

as shown in the blue bubble. The lower left block satisfies pi,j “ 1 ´ pj,i. For any θ, there

exist one and only best item i such that bitpiq “ signpθq.

best arm changes over time. Here we restrict to fixed arms for better illustration.
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This section presents Theorem 4.4.1, a worst-case regret lower bound for the stochastic

linear dueling bandits. The proof of Theorem 4.4.1 relies on a class of hard instances, as

shown in Figure 4.1. We show that any algorithm will incur a certain amount of regret when

applied to this hard instance class. The constructed hard instances follow a stochastic linear

model, which is a sub-class of the generalized linear model. Saha et al. (2021b) first proposed

a similar construction for finite many arms with no contexts. Their design contains K ´ 1

identical arms against one best arm. This design will not work in our setting as it leads to

lower bounds sub-optimal in dimension d. The new construction of our lower bound is based

on the hardness of identifying the best arm in the d-dimensional linear bandit model and

the proof of the lower bound takes a rather different route.

For any d ą 0, we construct the class of hard instances as follows. An instance is specified

by a vector θ P t´∆,`∆ud. The instance contains 2d`1 items (indexed from 0 to 2d`1 ´ 1).

The preference probability for an instance is defined by pθi,j as:

pθi,j “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1
2
, if i ă 2d, j ă 2d

1
2
, if i ě 2d, j ě 2d

3
4
, if i ă 2d, j ě 2d

1
4
, if i ě 2d, j ă 2d

` xϕi,j,θy,

and the d-dimensional feature vectors ϕi,j are given by

ϕi,j “

$

’

’

’

’

’

&

’

’

’

’

’

%

0, if i ă 2d, j ă 2d or if i ě 2d, j ě 2d

bitpiq, if i ă 2d, j ě 2d

´bitpjq, if i ě 2d, j ă 2d,

where bitp¨q is the (shifted) bit representation of non-negative integers, i.e., suppose x has

the binary representation x “ b0 ˆ 20 ` b1 ˆ 21 ` ¨ ¨ ¨ ` bd´1 ˆ 2d´1, then

bitpxq “ p2b0 ´ 1, 2b1 ´ 1, . . . , 2bd´1 ´ 1q “ 2b´ 1.
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Note that bitp¨q P t´1,`1ud, and that ϕi,j “ ´ϕj,i is satisfied. The definition of pθi,j can

be slightly tweaked to fit exactly the model described in Section 4.3 (see Remark 4.9.1 in

Section 4.9.1).

Some calculation shows that the Borda scores of the 2d`1 items are:

Bθ
piq “

$

’

&

’

%

5
8

` 1
2
xbitpiq,θy, if i ă 2d,

3
8
, if i ě 2d.

Intuitively, the former half of items (those indexed from 0 to 2d ´ 1) are “good” items

(one among them is optimal, others are nearly optimal), while the latter half of items are

“bad” items. Under such hard instances, every time one of the two pulled items is a “bad”

item, then a one-step regret Bθpi˚q ´Bθpiq ě 1{4 is incurred. To minimize regret, we should

thus try to avoid pulling “bad” items. However, in order to identify the best item among

all “good” items, comparisons between “good” and “bad” items are necessary. The reason is

simply that comparisons between “good” items give no information about the Borda scores

as the comparison probabilities are pθi,j “ 1
2

for all i, j ă 2d. Hence, any algorithm that

can decently distinguish among the “good” items has to pull “bad” ones for a fair amount of

times, and large regret is thus incurred. A similar observation is also made by Saha et al.

(2021a).

This specific construction emphasizes the intrinsic hardness of Borda regret minimization:

to differentiate the best item from its close competitors, the algorithm must query the bad

items to gain information.

Formally, this class of hard instances leads to the following regret lower bound for both

stochastic and adversarial settings:

Theorem 4.4.1. For any algorithm A, there exists a hard instance tpθi,ju with T ą 4d2,

such that A will incur expected regret at least Ωpd2{3T 2{3q.

The construction of this hard instance for linear dueling bandits is inspired by the worst-

case lower bound for the stochastic linear bandit (Dani et al., 2008), which has the order
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Ωpd
?
T q, while ours is Ωpd2{3T 2{3q. The difference is that for the linear or multi-armed

stochastic bandit, eliminating bad arms can make further exploration less expensive. But

in our case, any amount of exploration will not reduce the cost of further exploration. This

essentially means that exploration and exploitation must be separate, which is also supported

by the fact that a simple explore-then-commit algorithm shown in Section 4.5 can be nearly

optimal.

To prove the lower bound, we first apply a new reduction step to restrict the choice of

it. Then we bound from below the regret by the expected number of sub-optimal arm pulls.

The proof in Saha et al. (2021b) is directly based on hypothesis testing: either identifying

the best arm with gap ϵ within T rounds (if T ą K
1440ϵ3

) or incurring ϵT regret (if T ď K
1440ϵ3

).

In contrast, our proof technique bounds from below the regret by the expected number of

sub-optimal arm pulls and does not divide the problem instances into two cases (i.e. whether

T ď K
1440ϵ3

).

4.5 Stochastic Contextual Dueling Bandit

4.5.1 Algorithm Description

We propose an algorithm named Borda Explore-Then-Commit for Generalized Linear

Models (BETC-GLM), presented in Algorithm 16. Our algorithm is inspired by the algo-

rithm for generalized linear models proposed by Li et al. (2017).

At the high level, Algorithm 16 can be divided into two phases: the exploration phase

(Line 2-11) and the exploitation phase (Line 12-14). The exploration phase ensures that the

MLE estimator θ̂ is accurate enough so that the estimated Borda score is within Õpϵq-range

of the true Borda score (ignoring other quantities). Then the exploitation phase simply

chooses the empirical Borda winner to incur small regret.

During the exploration phase, the algorithm first performs “pure exploration” (Line 2-5),
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Algorithm 16 BETC-GLM
1: Input: time horizon T , number of items K, feature dimension d, feature vectors ϕi,j for

i P rKs, j P rKs, exploration rounds τ , error tolerance ϵ, failure probability δ.

2: for t “ 1, 2, . . . , τ do

3: sample it „ UniformprKsq, jt „ UniformprKsq

4: query pair pit, jtq and receive feedback rt

5: end for

6: Find the G-optimal design πpi, jq based on ϕi,j for i P rKs, j P rKs

7: Let Npi, jq “

Q

dπpi,jq

ϵ2

U

for any pi, jq P supppπq , denote N “
řK

i“1

řK
j“1Npi, jq

8: for i P rKs, j P rKs, s P rNpi, jqs do

9: set t Ð t ` 1, set pit, jtq “ pi, jq

10: query pair pit, jtq and receive feedback rt

11: end for

12: Calculate the empirical MLE estimator θ̂τ`N based on all τ ` N samples via (4.5.1)

13: Estimate the Borda score for each item:

B̂piq “
1

K

K
ÿ

j“1

µpϕJ
i,jθ̂τ`Nq, î “ argmaxiPrKsB̂piq

14: Keep querying p̂i, îq for the rest of the time.

which can be seen as an initialization step for the algorithm. The purpose of this step is to

ensure the design matrix Vτ`N “
řτ`N

t“1 ϕit,jtϕ
J
it,jt is positive definite.

After that, the algorithm will perform the “designed exploration”. Line 6 will find the

G-optimal design, which minimizes the objective function gpπq “ maxi,j }ϕi,j}
2
Vpπq´1 , where

Vpπq :“
ř

i,j πpi, jqϕi,jϕ
J
i,j. The G-optimal design π˚p¨q satisfies }ϕi,j}

2
Vpπ˚q´1 ď d, and can

be efficiently approximated by the Frank-Wolfe algorithm (See Theorem 4.5.4 for a detailed

discussion). Then the algorithm will follow πp¨q found at Line 6 to determine how many

samples (Line 7) are needed. At Line 8-11, there are in total N “
řK

i“1

řK
j“1Npi, jq samples
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queried, and the algorithm shall index them by t “ τ ` 1, τ ` 2, . . . , τ ` N .

At Line 12, the algorithm collects all the τ ` N samples and performs the maximum

likelihood estimation (MLE). For the generalized linear model, the MLE estimator θ̂τ`N

satisfies:
τ`N
ÿ

t“1

µpϕJ
it,jtθ̂τ`Nqϕit,jt “

τ`N
ÿ

t“1

rtϕit,jt , (4.5.1)

or equivalently, it can be determined by solving a strongly concave optimization problem:

θ̂τ`N P argmaxθ

τ`N
ÿ

t“1

ˆ

rtϕ
J
it,jtθ ´ mpϕJ

it,jtθq

˙

,

where 9mp¨q “ µp¨q. For the logistic link function, mpxq “ logp1 ` exq. As a special case of

our generalized linear model, the linear model has a closed-form solution for (4.5.1). For

example, if µpxq “ 1
2

` x, i.e. pi,j “ 1
2

` ϕJ
i,jθ

˚, then (4.5.1) becomes:

θ̂τ`N “ V´1
τ`N

τ`N
ÿ

t“1

prt ´ 1{2qϕit,jt ,

where Vτ`N “
řτ`N

t“1 ϕit,jtϕ
J
it,jt .

After the MLE estimator is obtained, Line 13 will calculate the estimated Borda score

B̂piq for each item based on θ̂τ`N , and pick the empirically best one.

4.5.2 A Matching Regret Upper Bound

Algorithm 16 can be configured to tightly match the worst-case lower bound. The configu-

ration and performance are described as follows:

Theorem 4.5.1. Suppose Assumption 4.3.1-4.3.3 hold and T “ Ωpd2q. For any δ ą 0, if

we set τ “ C4λ
´2
0 pd ` logp1{δqq (C4 is a universal constant) and ϵ “ d1{6T´1{3, then with

probability at least 1 ´ 2δ, Algorithm 16 will incur regret bounded by:

O
´

κ´1d2{3T 2{3
b

log
`

T {dδ
˘

¯

.

By setting δ “ T´1, the expected regret is bounded as Õpκ´1d2{3T 2{3q.
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For linear bandit models, such as the hard-to-learn instances in Section 4.4, κ is a univer-

sal constant. Therefore, Theorem 4.5.1 tightly matches the lower bound in Theorem 4.4.1,

up to logarithmic factors. The detailed proof can be found in Section 4.9.2.1.

Remark 4.5.2 (Regret for Fewer Arms). In typical scenarios, the number of items K is not

exponentially large in the dimension d. In this case, we can choose a different parameter set

of τ and ϵ such that Algorithm 16 can achieve a smaller regret bound Õ
`

κ´1pd logKq1{3T 2{3
˘

with smaller dependence on the dimension d. See Theorem 4.5.5 in Section 4.5.3.

Remark 4.5.3 (Regret for Infinitely Many Arms). In most practical scenarios of dueling

bandits, it is adequate to consider a finite number K of items (e.g., ranking items). Nonethe-

less, BETC-GLM can be easily adapted to accommodate infinitely many arms in terms of

regret. We can construct a covering over all ϕi,j and perform optimal design and explo-

ration on the covering set. The resulting regret will be the same as our upper bound, i.e.,

Õpd2{3T 2{3q up to some error caused by the epsilon net argument.

Remark 4.5.4 (Approximate G-optimal Design). Algorithm 16 assumes an exact G-optimal

design π is obtained. In the experiments, we use the Frank-Wolfe algorithm to solve the

constraint optimization problem (See Algorithm 20, Section 4.11.4). To find a policy π such

that gpπq ď p1`εqgpπ˚q, roughly Opd{εq optimization steps are needed. Such a near-optimal

design will introduce a factor of p1 ` εq1{3 into the upper bounds.

4.5.3 Regret Bound for Fewer Arms

In typical scenarios, the number of items K is not exponentially large in the dimension

d. If this is the case, then we can choose a different parameter set of τ and ϵ such that

Algorithm 16 can achieve a regret bound depending on logK, and reduce the dependence

on d. The performance can be characterized by the following theorem:
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Theorem 4.5.5. For any δ ą 0, suppose the number of total rounds T satisfies,

T ě
C3

κ6λ
3{2
0

max
!

d5{2,
logpK2{δq

?
d

)

, (4.5.2)

where C3 is some large enough universal constant. Then if we set τ “ pd logpK{δqq1{3T 2{3

and ϵ “ d1{3T´1{3 logp3K2{δq´1{6, Algorithm 16 will incur regret bounded by:

O
`

κ´1
pd logpK{δqq

1{3T 2{3
˘

.

By setting δ “ T´1, the expected regret is bounded as Õ
`

κ´1pd logKq1{3T 2{3
˘

.

The detailed proof can be found in Section 4.9.2.2.

4.6 Adversarial Contextual Dueling Bandit

This section addresses Borda regret minimization under the adversarial setting. As we

introduced in Section 4.3.1, the unknown parameter θt can vary for each round t, while the

contextual vectors ϕi,j are fixed.

Our proposed algorithm, BEXP3, is designed for the contextual linear model. Formally,

in round t and given pair pi, jq, we have pti,j “ 1
2

` xϕi,j,θ
˚
t y.

4.6.1 Algorithm Description

Algorithm 17 is adapted from the DEXP3 algorithm in Saha et al. (2021b), which deals

with the adversarial multi-armed dueling bandit. Algorithm 17 maintains a distribution

qtp¨q over rKs, initialized as uniform distribution (Line 2). In every round t, two items

are chosen following qt independently. Then Line 6 calculates the one-sample unbiased

estimate θ̂t of the true underlying parameter θ˚
t . Line 7 further calculates the unbiased

estimate of the (shifted) Borda score. Note that the true Borda score in round t satisfies

Btpiq “ 1
2

` x 1
K

ř

jPrKs
ϕi,j,θ

˚
t y. B̂t instead only estimates the second term of the Borda

score. This is a choice to simplify the proof. The cumulative estimated score
řt

l“1 B̂lpiq can
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Algorithm 17 BEXP3
1: Input: time horizon T , number of items K, feature dimension d, feature vectors ϕi,j for

i P rKs, j P rKs, learning rate η, exploration parameter γ.

2: Initialize: q1piq “ 1
K

.

3: for t “ 1, . . . , T do

4: Sample items it „ qt, jt „ qt.

5: Query pair pit, jtq and receive feedback rt

6: Calculate Qt “
ř

iPrKs

ř

jPrKs
qtpiqqtpjqϕi,jϕ

J
i,j, θ̂t “ Q´1

t ϕit,jtrt.

7: Calculate the (shifted) Borda score estimates B̂tpiq “ x 1
K

ř

jPrKs
ϕi,j, θ̂ty.

8: Update for all i P rKs, set

q̃t`1piq “
exppη

řt
l“1 B̂lpiqq

ř

jPrKs
exppη

řt
l“1 B̂lpjqq

; qt`1piq “ p1 ´ γqq̃t`1piq `
γ

K
.

9: end for

be seen as the estimated cumulative reward of item i in round t. In Line 8, qt`1 is defined

by the classic exponential weight update, along with a uniform exploration policy controlled

by γ.

4.6.2 Upper Bounds

Algorithm 17 can also be configured to tightly match the worst-case lower bound:

Theorem 4.6.1. Suppose Theorem 4.3.1 holds. If we set η “ plogKq2{3d´1{3T´2{3 and

γ “
a

ηd{λ0 “ plogKq1{3d1{3T´1{3λ
´1{2
0 , then the expected regret is upper-bounded by

O
`

pd logKq
1{3T 2{3

˘

.

Note that the lower bound construction in Theorem 4.4.1 is for the linear model and

has K “ Op2dq, thus exactly matching the upper bound. Meanwhile, it is viable to slightly
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modify Algorithm 17 to improve the regret to Õpd2{3T 2{3q for very large K. The high-level

idea is to use an ϵ-cover argument. In the d-dimensional space, it suffices to choose Opp1{ϵqdq

representative vectors to cover all the K average contextual vectors 1
K

řK
j“1ϕi,j. The detailed

reasoning and algorithm design can be found in Section 4.12.

4.7 Experiments

This section compares the proposed algorithm BETC-GLM with existing ones that are capa-

ble of minimizing Borda regret. We use random responses (generated from fixed preferential

matrices) to interact with all tested algorithms. Each algorithm is run for 50 times over a

time horizon of T “ 106. We report both the mean and the standard deviation of the cumu-

lative Borda regret and supply some analysis. The following list summarizes all methods we

study in this section, a more complete description of the methods and parameters is avail-

able in Section 4.10: BETC-GLM(-Match): Algorithm 16 proposed in this chapter with

different parameters. UCB-Borda: The UCB algorithm (Auer et al., 2002) using Borda re-

duction. DEXP3: Dueling-Exp3 developed by Saha et al. (2021a). ETC-Borda: A simple

explore-then-commit algorithm that does not take any contextual information into account.

BEXP3: The proposed method for adversarial Borda bandits displayed in Algorithm 17.

Generated Hard Case We first test the algorithms on the hard instances constructed in

Section 4.4. We generate θ˚ randomly from t´∆,`∆ud with ∆ “ 1
4d

so that the comparison

probabilities pθ
˚

i,j P r0, 1s for all i, j P rKs. We pick the dimension d “ 6 and the number of

arms is therefore K “ 2d`1 “ 128. Note the dual usage of d in our construction and the

model setup in Section 4.3.1. We refer readers to Theorem 4.9.1 in Section 4.9.1 for more

details.

As depicted in Figure 4.2(a), the proposed algorithms (BETC-GLM, BEXP3) outper-

form the baseline algorithms in terms of cumulative regret when reaching the end of time
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Figure 4.2: The regret of the proposed algorithms (BETC-GLM, BEXP3) and the baseline

algorithms (UCB-Borda, DEXP3, ETC-Borda).

horizon T . For UCB-Borda, since it is not tailored for the dueling regret definition, it suf-

fers from a linear regret as its second arm is always sampled uniformly at random, leading to

a constant regret per round. DEXP3 and ETC-Borda are two algorithms designed for K-

armed dueling bandits. Both are unable to utilize contextual information and thus demand

more exploration. As expected, their regrets are higher than BETC-GLM or BEXP3. We

do not fine-tune the hyper-parameters of both algorithms. In Section 4.13, we show fine-

tuning the error tolerance ϵ of BETC-GLM can further reduce the regret, and the two

algorithms perform equally well.

Real-world Dataset To showcase the performance of the algorithms in a real-world set-

ting, we use EventTime dataset (Zhang et al., 2016). In this dataset, K “ 100 historical

events are compared in a pairwise fashion by crowd-sourced workers. We first calculate the

empirical preference probabilities p̃i,j from the collected responses. A visualized preferential

matrix consisting of p̃i,j is shown in Figure 4.3 in Section 4.11.1, which demonstrates that
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STI and SST conditions hardly hold in reality. During simulation, p̃i,j is the parameter of

the Bernoulli distribution that is used to generate the responses whenever a pair pi, jq is

queried. The contextual vectors ϕi,j are generated randomly from t´1,`1u5. For simplicity,

we assign the item pairs that have the same probability value with the same contextual

vector, i.e., if p̃i,j “ p̃k,l then ϕi,j “ ϕk,l. The MLE estimator θ̂ in (4.5.1) is obtained to

construct the recovered preference probability p̂i,j :“ µpϕJ
i,jθ̂q where µpxq “ 1{p1 ` e´xq is

the logistic function. We ensure that the recovered preference probability p̂i,j is close to

p̃i,j, so that ϕi,j are informative enough. As shown in Figure 4.2(b), our algorithm outper-

forms the baseline methods as expected. In particular, the gap between our algorithm and

the baselines is even larger than that under the generated hard case. In both settings, our

algorithms demonstrated a stable performance with negligible variance.

4.8 Conclusion

In this chapter, we introduced Borda regret into the generalized linear dueling bandits set-

ting, along with an explore-then-commit type algorithm BETC-GLM and an EXP3 type

algorithm BEXP3. The algorithms can achieve a nearly optimal regret upper bound, which

we corroborate with a matching lower bound. The theoretical performance of the algorithms

is verified empirically. It demonstrates superior performance compared to other baseline

methods.

4.9 Omitted Proofs

4.9.1 Omitted Proof in Section 4.4

The proof relies on a class of hard-to-learn instances. We first present the construction again

for completeness.

For any d ą 0, we construct a hard instance with 2d`1 items (indexed from 0 to 2d`1 ´1).

96



We construct the hard instance pθi,j for any θ P t´∆,`∆ud as:

pθi,j “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1
2
, if i ă 2d, j ă 2d

1
2
, if i ě 2d, j ě 2d

3
4
, if i ă 2d, j ě 2d

1
4
, if i ě 2d, j ă 2d

` xϕi,j,θy, (4.9.1)

where the feature vectors ϕi,j and the parameter θ are of dimension d, and have the following

forms:

ϕi,j “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0, if i ă 2d, j ă 2d

0, if i ě 2d, j ě 2d

bitpiq, if i ă 2d, j ě 2d

´bitpjq, if i ě 2d, j ă 2d,

where bitp¨q is the (shifted) bit representation of non-negative integers, i.e., suppose x “

b0 ˆ 20 ` b1 ˆ 21 ` ¨ ¨ ¨ ` bd´1 ˆ 2d´1, then bitpxq “ 2b´ 1. Note that bitp¨q P t´1,`1ud, and

ϕi,j “ ´ϕj,i.

Remark 4.9.1 (d ` 1-dimensional instance). The hard instance described above does not

strictly satisfy the assumption that pθi,j “ xθ,ϕi,jy, but can be easily fixed by appending

an additional dimension to address the bias term defined in (4.9.1). More specifically, we

can set F pxq “ 1
2

` x and pθi,j “ F pxϕ̃i,j, θ̃yq, where θ̃ P t´∆,`∆ud ˆ t1
4
u Ă Rd`1 and

ϕ̃i,j “ pϕi,j, ci,jq, with ci,j “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0, if i ă 2d, j ă 2d

0, if i ě 2d, j ě 2d

1, if i ă 2d, j ě 2d

´1, if i ě 2d, j ă 2d.

To ensure }ϕ̃i,j}2 ď 1, we can further

set ϕ̃i,j Ð pd ` 1q´1{2ϕ̃i,j and θ̃ Ð pd ` 1q1{2θ̃.
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We rewrite (4.9.1) as:

pθi,j “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1
2
, if i ă 2d, j ă 2d

1
2
, if i ě 2d, j ě 2d

3
4
, if i ă 2d, j ě 2d

1
4
, if i ě 2d, j ă 2d

`

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

0, if i ă 2d, j ă 2d

0, if i ě 2d, j ě 2d

xbitpiq,θy, if i ă 2d, j ě 2d

´xbitpjq,θy, if i ě 2d, j ă 2d,

(4.9.2)

and the Borda scores are:

Bθ
piq “

$

’

&

’

%

5
8

` 1
2
xbitpiq,θy, if i ă 2d,

3
8
, if i ě 2d.

Intuitively, the former half arms indexed from 0 to 2d ´ 1 are “good” arms (one among them

is optimal), while the latter half arms are “bad” arms. It is clear that choosing a “bad” arm

i will incur regret Bpi˚q ´ Bpiq ě 1{4.

Now we are ready to present the proof.

Proof of Theorem 4.4.1. First, we present the following lemma:

Lemma 4.9.2. Under the hard instance, we constructed above, for any algorithm A that

ever makes queries it ě 2d, there exists another algorithm A1 that only makes queries it ă 2d

for every t ą 0 and always achieves no larger expected regret than A.

Proof of Lemma 4.9.2. The proof is done by reduction. For any algorithm A, we wrap A

with such a agent A1:

1. If A queries pit, jtq with it ă 2d, the agent A1 will pass the same query pit, jtq to the

environment and send the feedback rt to A;

2. If A queries pit, jtq with it ě 2d, jt ă 2d, the agent A1 will pass the query pjt, itq to the

environment and send the feedback 1 ´ rt to A;
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3. If A queries pit, jtq with it ě 2d, jt ě 2d, the agent A1 will uniform-randomly choose i1
t

from 0 to 2d ´ 1, pass the query pi1
t, i

1
tq to the environment and send the feedback rt to

A.

For each of the cases defined above, the probabilistic model of bandit feedback for A is

the same as if A is directly interacting with the original environment. For Case 1, the

claim is trivial. For Case 2, the claim holds because of the symmetry of our model, that

is pθi,j “ 1 ´ pθj,i. For Case 3, both will return rt following Bernoullip1{2q. Therefore, the

expected regret of A in this environment wrapped by A1 is equal to the regret of A in the

original environment.

Meanwhile, we will show A1 will incur no larger regret than A. For the first two cases,

A1 will incur the same one-step regret as A. For the third case, we know that Bθpitq “

Bθpjtq “ 3
8
, while ErBθpi1

tqs “ 5
8

` 1
2
xEi1

t
rbitpi1

tqs,θy “ 5
8

` 1
2
x0,θy “ 5

8
, meaning that the

one-step regret is smaller.

Lemma 4.9.2 ensures it is safe to assume it ă 2d. For any θ and k P rds, define

Pθ,k :“ Pθ

ˆ T
ÿ

t“1

1tbitrks
pitq ‰ signpθrks

qu ě
T

2

˙

,

where the superscript rks over a vector denotes taking the k-th entry of the vector. Meanwhile,

we define θzk to satisfy pθzkqrks “ ´θrks and be the same as θ at all other entries. We have

Pθzk,k :“ Pθzk

ˆ T
ÿ

t“1

1
␣

bitrks
pitq ‰ sign

`

pθzk
q

rks
˘(

ě
T

2

˙

“ Pθzk

ˆ T
ÿ

t“1

1tbitrks
pitq “ signpθrks

qu ě
T

2

˙

“ Pθzk

ˆ T
ÿ

t“1

1tbitrks
pitq ‰ signpθrks

qu ă
T

2

˙

.

Denote Pθ,Api1, j1, r1, i2, j2, r2, . . . q as the canonical probability distribution of algorithm A

under the model Pθ. By the Bretagnolle–Huber inequality and the decomposition of the
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relative entropy, we have

Pθ,k ` Pθzk,k ě
1

2
exp

`

´ KLpPθ,A}Pθzk,Aq
˘

ě
1

2
exp

ˆ

´ Eθ

„ T
ÿ

t“1

KL
´

pθi,j

›

›

›
pθ

zk

i,j

¯

ȷ˙

ě
1

2
exp

ˆ

´ Eθ

„ T
ÿ

t“1

10xϕit,jt ,θ ´ θzk
y
2

ȷ˙

“
1

2
exp

ˆ

´ Eθ

„

40∆2
T
ÿ

t“1

1tit ă 2d ^ jt ě 2du

ȷ˙

,

where the first inequality comes from the Bretagnolle–Huber inequality; the second inequality

is the decomposition of the relative entropy; the third inequality holds because the Bernoulli

KL divergence KLpp}p`xq is 10-strongly convex in x for any fixed p P r1{8, 7{8s, and indeed

pθi,j P r1{8, 7{8s as long as d∆ ď 1{8; the last equation holds because ϕit,jt has non-zero entries

only when pit, jtq belongs to that specific regions.

From now on, we denote NpT q :“
řT

t“1 1tit ă 2d ^ jt ě 2du. Further averaging over all

θ P t´∆,`∆ud, we have

1

2d

ÿ

θPt´∆,`∆ud

Pθ,k ě
1

4

1

2d

ÿ

θPt´∆,`∆ud

exp
`

´ 40∆2EθrNpT qs
˘

ě
1

4
exp

ˆ

´ 40∆2 1

2d

ÿ

θPt´∆,`∆ud

EθrNpT qs

˙

,

where the first inequality is from averaging over all θ; the second inequality is from Jensen’s

inequality.
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Utilizing the inequality above, we establish that

1

2d

ÿ

θPt´∆,`∆ud

RegretpT ;θ,Aq ě
1

2d

ÿ

θPt´∆,`∆ud

Eθ

„ T
ÿ

t“1

Bθ
pi˚

q ´ Bθ
pitq

ȷ

“
1

2d

ÿ

θPt´∆,`∆ud

Eθ

„ T
ÿ

t“1

xθ, signpθq ´ bitpitqy

ȷ

“
1

2d

ÿ

θPt´∆,`∆ud

Eθ

„ T
ÿ

t“1

d
ÿ

k“1

2∆1tbitrks
pitq ‰ signpθrks

qu

ȷ

“
2∆

2d

ÿ

θPt´∆,`∆ud

d
ÿ

k“1

Eθ

„ T
ÿ

t“1

1tbitrks
pitq ‰ signpθrks

qu

ȷ

ě
2∆

2d

ÿ

θPt´∆,`∆ud

d
ÿ

k“1

Pθ,k ¨
T

2

ě
∆dT

4
exp

ˆ

´ 40∆2 1

2d

ÿ

θPt´∆,`∆ud

EθrNpT qs

˙

, (4.9.3)

where the first inequality comes from the Borda regret; the second inequality comes from

the inequality ErXs ě aPpX ě aq for any non-negative random variable; the last inequality

is from rearranging terms and invoking the results above.

Meanwhile, we have (remember NpT q :“
řT

t“1 1tit ă 2d ^ jt ě 2du)

1

2d

ÿ

θPt´∆,`∆ud

RegretpT ;θ,Aq ě
1

2d

ÿ

θPt´∆,`∆ud

Eθ

„

1

4

T
ÿ

t“1

1tit ă 2d ^ jt ě 2du

ȷ

“
1

4

1

2d

ÿ

θPt´∆,`∆ud

EθrNpT qs, (4.9.4)

where the first inequality comes from that any items i ě 2d will incur at least 1{4 regret.

Combining (4.9.3) and (4.9.4) together and denoting that X “ 1
2d

ř

θPt´∆,`∆ud
EθrNpT qs,
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we have that for any algorithm A, there exists some θ, such that (set ∆ “ d´1{3T´1{3
?
40

)

RegretpT ;θ,Aq ě max

"

∆dT

4
expp´40∆2Xq,

X

4

*

“ max

"

d2{3T 2{3

4
?
40

expp´d´2{3T´2{3Xq,
X

4

*

ě
d2{3T 2{3

4
?
40

max

"

expp´d´2{3T´2{3Xq, d´2{3T´2{3X

*

ě
d2{3T 2{3

8
?
40

,

where the first inequality is the combination of (4.9.3) and (4.9.4); the second inequality is a

rearrangement and loosely lower bounds the constant; the last is due to maxte´y, yu ą 1{2

for any y.

4.9.2 Omitted Proof in Section 4.5

We first introduce the lemma about the theoretical guarantee of G-optimal design: given an

action set X Ď Rd that is compact and spanpX q “ Rd. A fixed design πp¨q : X Ñ r0, 1s

satisfies
ř

xPX πpxq “ 1. Define Vpπq :“
ř

xPX πpxqxxJ and gpπq :“ maxxPX }x}2Vpπq´1 .

Lemma 4.9.3 (The Kiefer–Wolfowitz Theorem, Section 21.1, Lattimore and Szepesvári

(2020)). There exists an optimal design π˚p¨q such that |supppπq| ď dpd`1q{2, and satisfies:

1. gpπ˚q “ d.

2. π˚ is the minimizer of gp¨q.

The following lemma is also useful to show that under mild conditions, the minimum

eigenvalue of the design matrix can be lower-bounded:

Lemma 4.9.4 (Proposition 1, Li et al. 2017). Define Vτ “
řτ

t“1ϕit,jtϕ
J
it,jt , where each

pit, jtq is drawn i.i.d. from some distribution ν. Suppose λmin

`

Epi,jq„νrϕJ
i,jϕi,js

˘

ě λ0, and

τ ě

ˆ

C1

?
d ` C2

a

logp1{δq

λ0

˙2

`
2B

λ0

,
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where C1 and C2 are some universal constants. Then with probability at least 1 ´ δ,

λminpVτ q ě B.

4.9.2.1 Proof of Theorem 4.5.1

The proof relies on the following lemma to establish an upper bound on |xϕi,j, θ̂τ`N ´ θ˚y|.

Lemma 4.9.5 (extracted from Lemma 3, Li et al. (2017)). Suppose λminpVτ`Nq ě 1. For

any δ ą 0, with probability at least 1 ´ δ, we have

}θ̂τ`N ´ θ˚
}Vτ`N

ď
1

κ

c

d

2
logp1 ` 2pτ ` Nq{dq ` logp1{δq.

Proof of Theorem 4.5.1. The proof can be divided into three steps: 1. invoke Lemma 4.9.4

to show that the initial τ rounds for exploration will guarantee λminpVτ q ě 1; 2. invoke

Lemma 4.9.3 to obtain an optimal design π and utilize Cauchy-Schwartz inequality to show

that |xθ̂τ`N ´θ,ϕi,jy| ď 3ϵ{κ; 3. balance the not yet determined ϵ to obtain the regret upper

bound.

Since we set τ such that

τ “ C4λ
´2
0 pd ` logp1{δqq

ě

ˆ

C1

?
d ` C2

a

logp1{δq

λ0

˙2

`
2

λ0

,

with a large enough universal constant C4, by Theorem 4.9.4 to obtain that with probability

at least 1 ´ δ,

λminpVτ q ě 1. (4.9.5)

From now on, we assume (4.9.5) always holds.

Define N :“
ř

i,j Npi, jq, Vτ`1:τ`N :“
řτ`N

t“τ`1ϕit,jtϕ
J
it,jt , Vτ`N :“ Vτ `Vτ`1:τ`N . Given

the optimal design πpi, jq, the algorithm queries the pair pi, jq P supppπq for exactly Npi, jq “
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rdπpi, jq{ϵ2s times. Therefore, the design matrix Vτ`N satisfies

Vτ`N ľ Vτ`1:τ`N

“
ÿ

i,j

Npi, jqϕi,jϕ
J
i,j

ľ
ÿ

i,j

dπpi, jq

ϵ2
ϕi,jϕ

J
i,j

“
d

ϵ2
Vpπq,

where Vpπq :“
ř

i,j πpi, jqϕi,jϕ
J
i,j. The first inequality holds because Vτ is positive semi-

definite, and the second inequality holds due to the choice of Npi, jq.

When (4.9.5) holds, from Theorem 4.9.5, we have with probability at least 1´ δ, that for

each ϕi,j,

|xθ̂ ´ θ˚,ϕi,jy| ď }θ̂τ`N ´ θ˚
}Vτ`N

¨ }ϕi,j}V´1
τ`N

ď }θ̂τ`N ´ θ˚
}Vτ`N

¨
ϵ}ϕi,j}Vpπq´1

?
d

ď }θ̂τ`N ´ θ˚
}Vτ`N

¨ ϵ

ď
ϵ

κ
¨

c

d

2
logp1 ` 2pτ ` Nq{dq ` logp1{δq (4.9.6)

where the first inequality is due to the Cauchy-Schwartz inequality; the second inequality

holds because Vτ`N ľ d
ϵ2
Vpπq; the third inequality holds because π is an optimal design

and by Lemma 4.9.3, }ϕi,j}
2
Vpπq´1 ď d; the last inequality comes from Theorem 4.9.5.
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To summarize, we have that with probability at least 1 ´ 2δ, for every i P rKs,

|B̂piq ´ Bpiq| “

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

`

µpϕJ
i,jθ

˚
q ´ µpϕJ

i,jθ̂q
˘

ˇ

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

j“1

ˇ

ˇ

ˇ
µpϕJ

i,jθ
˚
q ´ µpϕJ

i,jθ̂q

ˇ

ˇ

ˇ

ď
Lµ

K

K
ÿ

j“1

ˇ

ˇϕJ
i,j

`

θ˚
´ θ̂q

ˇ

ˇ

ď
3Lµϵ

κ
¨

c

d

2
logp1 ` 2pτ ` Nq{dq ` logp1{δq, (4.9.7)

where the first equality is by the definition of the empirical/true Borda score; the first

inequality is due to the triangle inequality; the second inequality is from the Lipschitz-ness

of µp¨q (Lµ “ 1{4 for the logistic function); the last inequality holds due to (4.9.6). This

further implies the gap between the empirical Borda winner and the true Borda winner is

bounded by:

Bpi˚
q ´ Bp̂iq “ Bpi˚

q ´ B̂pi˚
q ` B̂pi˚

q ´ Bp̂iq

ď Bpi˚
q ´ B̂pi˚

q ` B̂p̂iq ´ Bp̂iq

ď
6Lµϵ

κ
¨

c

d

2
logp1 ` 2pτ ` Nq{dq ` logp1{δq,

where the first inequality holds due to the definition of î, i.e., B̂p̂iq ě B̂piq for any i; the last

inequality holds due to (4.9.7).

Meanwhile, since N :“
ř

pi,jqPsupppπq
Npi, jq and |supppπq| ď dpd`1q{2 from Lemma 4.9.3,

we have that

N ď dpd ` 1q{2 `
d

ϵ2
,

because rxs ă x ` 1.
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Therefore, with probability at least 1 ´ 2δ, the regret is bounded by:

RegretpT q “ Regret1:τ ` Regretτ`1:τ`N ` Regretτ`N`1:T

ď τ ` N `
12LµϵT

κ
¨

c

d

2
logp1 ` 2pτ ` Nq{dq ` logp1{δq

ď τ ` dpd ` 1q{2 `
d

ϵ2
`

12LµϵT

κ
¨ O

˜

d1{2

d

log

ˆ

T

dδ

˙

¸

“ O

˜

κ´1d2{3T 2{3

d

log

ˆ

T

dδ

˙

¸

,

where the first equation is simply dividing the regret into 3 stages: 1 to τ , τ ` 1 to τ ` N ,

and τ ` N ` 1 to T ; the second inequality is simply bounding the one-step regret from 1 to

τ ` N by 1, while for t ą τ ` N , we have shown that the one-step regret is guaranteed to

be smaller than 12Lµϵ
a

d logp1 ` 2pτ ` Nq{dq ` logp1{δq{
?
2κ. The last line holds because

we set τ “ Opd ` logp1{δqq and ϵ “ d1{6T´1{3. Note that to ensure τ ` N ă T , it suffices to

assume T “ Ωpd2q.

By setting δ “ T´1, we can show that the expected regret of Algorithm 16 is bounded

by

Õ
`

κ´1
pd2{3T 2{3

q
˘

.

4.9.2.2 Proof of Theorem 4.5.5

The following lemma characterizes the non-asymptotic behavior of the MLE estimator. It is

extracted from Li et al. (2017).

Lemma 4.9.6 (Theorem 1, Li et al. 2017). Define Vs “
řs

t“1ϕit,jtϕ
J
it,jt , and θ̂s as the MLE

estimator (4.5.1) in round s. If Vs satisfies

λminpVsq ě
512M2

µpd2 ` logp3{δqq

κ4
, (4.9.8)
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then for any fixed x P Rd, with probability at least 1 ´ δ,

|xθ̂s ´ θ˚,xy| ď
3

κ

b

}x}2
V´1

s
logp3{δq.

Proof of Theorem 4.5.5. The proof can be essentially divided into three steps: 1. invoke

Lemma 4.9.4 to show that the initial τ rounds for exploration will guarantee (4.9.8) be

satisfied; 2. invoke Lemma 4.9.3 to obtain an optimal design π and utilize Lemma 4.9.6 to

show that |xθ̂τ`N ´θ,ϕi,jy| ď 3ϵ{κ; 3. balance the not yet determined ϵ to obtain the regret

upper bound.

First, we explain why we assume

T ě
C3

κ6λ
3{2
0

max
!

d5{2,
logpK2{δq

?
d

)

.

To ensure (4.9.8) in Theorem 4.9.6 can hold, we resort to Theorem 4.9.4, that is

τ ě

ˆ

C1

?
d ` C2

a

logp1{δq

λ0

˙2

`
2B

λ0

,

B :“
512M2

µpd2 ` logp3{δqq

κ4
.

Since we set τ “ pd logpK2{δqq1{3T 2{3, this means T should be large enough, so that

pd logpK2
{δqq

1{3T 2{3
ě

ˆ

C1

?
d ` C2

a

logp1{δq

λ0

˙2

`
1024M2

µpd2 ` logp3K2{δqq

κ4λ0

.

With a large enough universal constant C3, it is easy to verify that the inequality above will

hold as long as

T ě
C3

κ6λ
3{2
0

max
!

d5{2,
logpK2{δq

?
d

)

.

By Lemma 4.9.4, we have that with probability at least 1 ´ δ,

λminpVτ q ě
512M2

µpd2 ` logp3K2{δqq

κ4
. (4.9.9)

From now on, we assume (4.9.9) always holds.
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Define N :“
ř

i,j Npi, jq, Vτ`1:τ`N :“
řτ`N

t“τ`1ϕit,jtϕ
J
it,jt , Vτ`N :“ Vτ ` Vτ`1:τ`N .

Given the optimal design πpi, jq, the algorithm queries each pair pi, jq P supppπq for ex-

actly Npi, jq “ rdπpi, jq{ϵ2s times. Therefore, the design matrix Vτ`N satisfies

Vτ`N ľ Vτ`1:τ`N

“
ÿ

i,j

Npi, jqϕi,jϕ
J
i,j

ľ
ÿ

i,j

dπpi, jq

ϵ2
ϕi,jϕ

J
i,j

“
d

ϵ2
Vpπq,

where Vpπq :“
ř

i,j πpi, jqϕi,jϕ
J
i,j. The first inequality holds because Vτ is positive semi-

definite, and the second inequality holds due to the choice of Npi, jq.

To invoke Lemma 4.9.6, notice that λminpVq ě λminpVτ q. Along with (4.9.9), by Lemma 4.9.6,

we have for any fixed ϕi,j, with probability at least 1 ´ δ{K2, that

|xθ̂ ´ θ˚,ϕi,jy| ď
3

κ

b

}ϕi,j}
2
V´1

τ`N

logp3K2{δq

ď
3

κ

c

ϵ2

d
¨ }ϕi,j}

2
Vpπq´1 logp3K2{δq

“
3ϵ

κ

d

}ϕi,j}
2
Vpπq´1

d
¨
a

logp3K2{δq

ď
3ϵ

κ
¨
a

logp3K2{δq, (4.9.10)

where the first inequality comes from Lemma 4.9.6; the second inequality holds because

Vτ`N ľ d
ϵ2
Vpπq; the last inequality holds because π is an optimal design and by Lemma 4.9.3,

}ϕi,j}
2
Vpπq´1 ď d.

Taking union bound for each pi, jq P rKs ˆ rKs, we have that with probability at least
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1 ´ δ, for every i P rKs,

|B̂piq ´ Bpiq| “

ˇ

ˇ

ˇ

ˇ

1

K

K
ÿ

j“1

`

µpϕJ
i,jθ

˚
q ´ µpϕJ

i,jθ̂q
˘

ˇ

ˇ

ˇ

ˇ

ď
1

K

K
ÿ

j“1

ˇ

ˇ

ˇ
µpϕJ

i,jθ
˚
q ´ µpϕJ

i,jθ̂q

ˇ

ˇ

ˇ

ď
Lµ

K

K
ÿ

j“1

ˇ

ˇϕJ
i,j

`

θ˚
´ θ̂q

ˇ

ˇ

ď
3Lµϵ

κ
¨
a

logp3K2{δq, (4.9.11)

where the first equality is by the definition of the empirical/true Borda score; the first

inequality is due to the triangle inequality; the second inequality is from the Lipschitz-ness

of µp¨q (Lµ “ 1{4 for the logistic function); the last inequality holds due to (4.9.10). This

further implies the gap between the empirical Borda winner and the true Borda winner is

bounded by:

Bpi˚
q ´ Bp̂iq “ Bpi˚

q ´ B̂pi˚
q ` B̂pi˚

q ´ Bp̂iq

ď Bpi˚
q ´ B̂pi˚

q ` B̂p̂iq ´ Bp̂iq

ď
6Lµϵ

κ
¨
a

logp3K2{δq,

where the first inequality holds due to the definition of î, i.e., B̂p̂iq ě B̂piq for any i; the last

inequality holds due to (4.9.11).

Meanwhile, since N :“
ř

pi,jqPsupppπq
Npi, jq and |supppπq| ď dpd`1q{2 from Lemma 4.9.3,

we have that

N ď dpd ` 1q{2 `
d

ϵ2
,

because rxs ă x ` 1.
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Therefore, with probability at least 1 ´ 2δ, the regret is bounded by:

RegretpT q “ Regret1:τ ` Regretτ`1:τ`N ` Regretτ`N`1:T

ď τ ` N `
12Lµϵ

κ
T ¨

a

logp3K2{δq

ď τ ` dpd ` 1q{2 `
d

ϵ2
`

12Lµϵ

κ
T ¨

a

logp3K2{δq

“ O
`

κ´1
pd logpK{δqq

1{3T 2{3
˘

,

where the first equation is simply dividing the regret into 3 stages: 1 to τ , τ `1 to τ `N , and

τ `N `1 to T . the second inequality is simply bounding the one-step regret from 1 to τ `N

by 1, while for t ą τ `N , we have shown that the one-step regret is guaranteed to be smaller

than 12Lµϵ
a

logp3K2{δq{κ. The last line holds because we set τ “ pd logp3K2{δqq1{3T 2{3

and ϵ “ d1{3T´1{3 logp3K2{δq´1{6.

By setting δ “ T´1, we can show that the expected regret of Algorithm 16 is bounded

by

O
`

κ´1
pd logpKT qq

1{3T 2{3
q
˘

.

Note that if there are exponentially many contextual vectors (K « 2d), the upper bound

becomes Õpd2{3T 2{3q.

4.9.3 Omitted Proof in Section 4.6

We make the following notation. Let Ht´1 :“ pq1, P1, pi1, j1q, r1, . . . , qt, Ptq denotes the his-

tory up to time t. Here Pt means the comparison probability pti,j in round t. The following

lemmas are used in the proof. We first bound the estimate B̂tpiq.

Lemma 4.9.7. For all t P rT s, i P rKs, it holds that B̂tpiq ď λ´1
0 {γ2.

Proof of Lemma 4.9.7. Using our choice of qt ě γ{K, we have the following result for the
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matrix Qt:

Qt “
ÿ

iPrKs

ÿ

jPrKs

qtpiqqtpjqϕi,jϕ
J
i,j ľ γ2 1

K2

ÿ

iPrKs

ÿ

jPrKs

ϕi,jϕ
J
i,j. (4.9.12)

Furthermore, we can use the definition of the estimate B̂tpiq to show that

B̂tpiq “

C

1

K

ÿ

jPrKs

ϕi,j, θ̂t

G

“

C

1

K

ÿ

jPrKs

ϕi,j, Q
´1
t ϕit,jt

G

rtpit, jtq

ď
1

K

ÿ

jPrKs

}ϕi,j}
2
Q´1

t
,

where we use the fact that |rt| ď 1. Let Σ “ 1
K2

řK
i“1

řK
j“1ϕi,jϕ

J
i,j. With (4.9.12) we have

Qt ľ γ2Σ. Therefore, we can further bound B̂tpiq with

B̂tpiq ď
1

Kγ2

ÿ

jPrKs

}ϕi,j}
2
Σ´1

ď
1

γ2
max
i,j

}ϕi.j}
2
Σ´1

ď
λ´1
0

γ2
,

where the first inequality holds due to (4.9.12) and that }x}2A´1 ď }x}2B´1 if A ľ B; the third

inequality holds because we assume λ0 ď λmin

`

1
K2

řK
i“1

řK
j“1ϕi,jϕ

J
i,j

˘

and }ϕi,j} ď 1.

The following lemma proves that our (shifted) estimate is unbiased.

Lemma 4.9.8. For all t P rT s, i P rKs, the following equality holds:

ErB̂tpiqs “ Btpiq ´
1

2
.

Proof of Lemma 4.9.8. Using our definition of B̂tpiq, we have

B̂tpiq “

C

1

K

ÿ

jPrKs

ϕi,j, θ̂t

G

“

C

1

K

ÿ

jPrKs

ϕi,j, Q
´1
t ϕit,jt

G

rtpit, jtq.
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Therefore, by the law of total expectation (tower rule), we have

ErB̂tpiqs “ EHt´1

„

Epit,jt,rtq

”A 1

K

ÿ

jPrKs

ϕi,j, Q
´1
t ϕit,jt

E

rtpit, jtq|Ht´1

ı

ȷ

“ EHt´1

„

Epit,jtq

”A 1

K

ÿ

jPrKs

ϕi,j, Q
´1
t ϕit,jt

E

Ertrrtpit, jtq|pit, jtqs

ˇ

ˇ

ˇ
Ht´1

ı

ȷ

“ EHt´1

„

Epit,jtq

”A 1

K

ÿ

jPrKs

ϕi,j, Q
´1
t ϕit,jt

E

ptpit, jtq
ˇ

ˇ

ˇ
Ht´1

ı

ȷ

Then we use the definition of pt and the expectation. We can further get the equality

ErB̂tpiqs “ EHt´1

„

Epit,jtq

”A 1

K

ÿ

jPrKs

ϕi,j, Q
´1
t ϕit,jtϕ

J
it,jtθ

˚
E
ˇ

ˇ

ˇ
Ht´1

ı

ȷ

“ EHt´1

„

A 1

K

ÿ

jPrKs

ϕi,j, Q
´1
t

´

ÿ

iPrKs

ÿ

jPrKs

qtpiqqtpjqϕi,jϕ
J
i,j

¯

θ˚
E

ˇ

ˇ

ˇ

ˇ

Ht´1

ȷ

“ EHt´1

„

A 1

K

ÿ

jPrKs

ϕi,j,θ
˚
E

ˇ

ˇ

ˇ

ˇ

Ht´1

ȷ

“ Btpiq ´
1

2
.

Therefore, we have completed the proof of Lemma 4.9.8.

The following lemma is similar to Lemma 5 in Saha et al. (2021b).

Lemma 4.9.9. EHtrq
J
t B̂ts “ EHt´1

“

Ex„qtrBtpxq|Ht´1s
‰

´ 1
2
, @t P rT s.

Proof of Lemma 4.9.9. Taking conditional expectation, we have

EHtrq
J
t B̂ts “ EHt

«

K
ÿ

i“1

qtpiqB̂tpiq

ff

“ EHt´1

«

K
ÿ

i“1

qtpiqEpit,jt,rtq

”

B̂piq
ˇ

ˇ

ˇ
Ht´1

ı

ff

“ EHt´1

«

K
ÿ

i“1

qtpiq

ˆ

Btpiq ´
1

2

˙

ff

“ EHt´1

”

Ex„qt

”

Btpxq

ˇ

ˇ

ˇ
Ht´1

ıı

´
1

2
,

where we use the law of total expectation again as well as Theorem 4.9.8.
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The last lemma bounds a summation
ř

iPrKs
qtpiqB̂tpiq

2, which will be important in our

proof.

Lemma 4.9.10. At any time t, Er
ř

iPrKs
qtpiqB̂tpiq

2s ď d{γ.

Proof of Lemma 4.9.10. Let P̂tpi, jq “ xϕi,j, θ̂ty. Using the definition of B̂t and P̂tpi, jq, we

have the following inequality:

E

»

–

ÿ

iPrKs

qtpiqB̂tpiq
2

fi

fl “ E

»

–

ÿ

iPrKs

qtpiq

¨

˝

1

K

ÿ

jPrKs

P̂tpi, jq

˛

‚

2fi

fl

ď E

»

–

ÿ

iPrKs

qtpiq
1

K

ÿ

jPrKs

P̂ 2
t pi, jq

fi

fl

“ E

»

–

ÿ

iPrKs

qtpiq
1

γ

ÿ

jPrKs

γ

K
P̂ 2
t pi, jq

fi

fl

ď
1

γ
E

»

–

ÿ

iPrKs

ÿ

jPrKs

qtpiqqtpjqP̂ 2
t pi, jq

fi

fl .

The first inequality holds due to the Cauchy-Schwartz inequality; the second inequality holds

because the definition of qt satisfies qt ě γ{K.

Expanding the definition of P̂ 2
t pi, jq, we have

P̂ 2
t pi, jq “ r2t pit, jtq

`

ϕJ
i,jQ

´1
t ϕit,jt

˘2

ď ϕJ
it,jtQ

´1
t ϕi,jϕ

J
i,jQ

´1
t ϕit,jt ,

where we use 0 ď r2t pit, jtq ď 1. Therefore, the following inequality holds,
ÿ

iPrKs

ÿ

jPrKs

qtpiqqtpjqP̂ 2
t pi, jq ď

ÿ

iPrKs

ÿ

jPrKs

qtpiqqtpjqϕJ
it,jtQ

´1
t ϕi,jϕ

J
i,jQ

´1
t ϕit,jt

“ ϕJ
it,jtQ

´1
t

¨

˝

ÿ

iPrKs

ÿ

jPrKs

qtpiqqtpjqϕi,jϕ
J
i,j

˛

‚Q´1
t ϕit,jt

“ ϕJ
it,jtQ

´1
t ϕit,jt

“ tracepϕit,jtϕ
J
it,jtQ

´1
t q.
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Using the property of trace, we have

E

»

–

ÿ

iPrKs

ÿ

jPrKs

qtpiqqtpjqP̂ 2
t pi, jq

fi

fl ď trace

¨

˝

ÿ

iPrKs

ÿ

jPrKs

qtpiqqtpjqϕi,jϕ
J
i,jQ

´1
t

˛

‚“ d.

Therefore, we finish the proof of Lemma 4.9.10.

Proof of Theorem 4.6.1. Our regret is defined as follows,

EHT
rRT s “ EHT

«

T
ÿ

t“1

r2Btpi
˚
q ´ Btpitq ´ Btpjtqs

ff

“ max
iPrKs

EHT

«

T
ÿ

t“1

r2Btpiq ´ Btpitq ´ Btpjtqs

ff

.

The second equality holds because Bt and i˚ are independent of the randomness of the

algorithm. Furthermore, we can write the expectation of the regret as

EHT
rRT s “ 2max

iPrKs

T
ÿ

t“1

Btpiq ´

T
ÿ

t“1

EHT
rBtpitq ` Btpjtqs

“ 2max
iPrKs

T
ÿ

t“1

Btpiq ´ 2
T
ÿ

t“1

EHt´1 rEx„qt rBtpxq|Ht´1ss

“ 2max
iPrKs

T
ÿ

t“1

ˆ

Btpiq ´
1

2

˙

´ 2EHt

”

qJ
t B̂t

ı

, (4.9.13)

where the last equality is due to Lemma 4.9.9.

Then we follow the standard proof of EXP3 algorithm (Lattimore and Szepesvári, 2020).

Let St,k “
řt

s“1

`

Bspkq ´ 1
2

˘

, Ŝt,k “
řt

s“1 B̂spkq, ωt “
ř

kPrKs
expp´ηŜt,kq and ω0 “ K. We

have @a P rKs,

expp´ηŜT,aq ď
ÿ

kPrKs

expp´ηŜT,kq “ ωT “ ω0 ¨

T
ź

t“1

ωt

ωt´1

. (4.9.14)

For each term in the product, we have

ωt

ωt´1

“
ÿ

kPrKs

expp´ηŜt´1,kq

ωt´1

¨ expp´ηB̂tpkqq

“
ÿ

kPrKs

q̃tpkq expp´ηB̂tpkqq, (4.9.15)
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where the second equality holds because of the definition of q̃t. For any η ď λ0γ
2, Lemma

4.9.7 presents |ηB̂tpkq| ď 1. Thus, using the basic inequality exppxq ď 1 ` x ` x2{2 when

x ď 1, and exppxq ě 1 ` x, we have

ωt

ωt´1

ď
ÿ

kPrKs

q̃tpkq

´

1 ´ ηB̂tpkq ` η2B̂2
t pkq

¯

“ 1 ´ η
ÿ

kPrKs

q̃tpkqB̂tpkq ` η2
ÿ

kPrKs

q̃tpkqB̂2
t pkq

ď exp

¨

˝´η
ÿ

kPrKs

q̃tpkqB̂tpkq ` η2
ÿ

kPrKs

q̃tpkqB̂2
t pkq

˛

‚. (4.9.16)

Combining (4.9.14), (4.9.15) and (4.9.16), we have

expp´ηŜT,aq ď K exp

¨

˝

T
ÿ

t“1

»

–´η
ÿ

kPrKs

q̃tpkqB̂tpkq ` η2
ÿ

kPrKs

q̃tpkqB̂2
t pkq

fi

fl

˛

‚,

and therefore
T
ÿ

t“1

B̂tpaq ´

T
ÿ

t“1

q̃J
t B̂t ď

logK

η
` η

T
ÿ

t“1

ÿ

kPrKs

q̃tpkqB̂2
t pkq.

Since q̃t “
qt´γ{K
1´γ

, we have

p1 ´ γq

T
ÿ

t“1

B̂tpaq ´

T
ÿ

t“1

qJ
t B̂t ď

logK

η
` η

T
ÿ

t“1

ÿ

kPrKs

q̃tpkqB̂2
t pkq.

Choosing a “ i˚, changing the summation index to i and taking expectation on both sides,

we have

p1 ´ γqEHT

T
ÿ

t“1

B̂tpi
˚
q ´

T
ÿ

t“1

EHT

”

qJ
t B̂t

ı

ď
logK

η
` EHT

»

–η
T
ÿ

t“1

ÿ

iPrKs

qtpiqB̂
2
t piq

fi

fl .

Substituting the above inequality into (4.9.13) and using Lemma 4.9.8, 4.9.9, we can bound

the regret as

ErRT s ď 2γT `
2 logK

η
` 2η

T
ÿ

t“1

EHT

»

–

ÿ

iPrKs

qtpiqstpiq
2

fi

fl

ď 2γT ` 2
logK

η
`

2ηdT

γ

ď 2plogKq
1{3d1{3T 2{3

a

1{λ0 ` 2plogKq
1{3d1{3T 2{3

` 2plogKq
1{3d1{3T 2{3

a

λ0,
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where the second inequality holds due to Lemma 4.9.10. In the last inequality, we put in our

choice of parameters η “ plogKq2{3d´1{3T´2{3 and γ “
a

ηd{λ0 “ plogKq1{3d1{3T´1{3λ
´1{2
0 .

This finishes our proof of Theorem 4.6.1.
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4.10 Detailed Explanation of Algorithms in Experiments

The following list summarizes all the methods we implemented:

BETC-GLM(-Match): Algorithm 16 proposed in this chapter. For general link func-

tion, to find θ̂ by MLE in (4.5.1), 100 rounds of gradient descent are performed. The failure

probability is set to δ “ 1{T . Parameters τ and ϵ are set to values listed in Theorem 4.5.5.

For BETC-GLM-Match, we use the τ and ϵ outlined in Theorem 4.5.1.

UCB-Borda: The UCB algorithm (Auer et al., 2002) using Borda reduction technique

mentioned by Busa-Fekete et al. (2018). The complete listing is displayed in Algorithm 18.

DEXP3: Dueling-Exp3 is an adversarial Borda bandit algorithm developed by Saha et al.

(2021a), which also applies to our stationary bandit case. Relevant tuning parameters are

set according to their upper-bound proof.

ETC-Borda: We devise a simple explore-then-commit algorithm, named ETC-Borda.

Like DEXP3, ETC-Borda does not take any contextual information into account. The

complete procedure of ETC-Borda is displayed in Algorithm 19, Section 4.11.3. The failure

probability δ is optimized as 1{T .

BEXP3: The proposed method for adversarial Borda bandits displayed in Algorithm 17.

η and γ are chosen to be the value stated in Theorem 4.6.1.

4.11 Additional Information for Experiments

4.11.1 Data Visualization

The events in the EventTime dataset are ordered by the time they occurred. In Figure 4.3,

the magnitude of each p̃i,j is color coded. It is apparent that there is no total/consistent

ordering (i.e., p̃i,j ą 1
2

ô i ą j) can be inferred from this matrix due to inconsistencies in the

ordering and many potential paradoxes. Hence STI and SST can hardly hold in this case.
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Figure 4.3: Estimated preferential matrix consists of p̃i,j from the EventTime dataset.

4.11.2 The UCB-Borda Algorithm

The UCB-Borda procedure, displayed in Algorithm 18 is a UCB algorithm with Borda

reduction only capable of minimization of regret in the following form:

RegretpT q “

T
ÿ

t“1

`

Bpi˚
q ´ Bpitq

˘

.

Let ni be the number of times arm i P rKs has been queried. Let wi be the number of times

arm i wins the duel. B̂piq is the estimated Borda score. α is set to 0.3 in all experiments.

Algorithm 18 UCB-Borda
1: Input: time horizon T , number of items K, exploration parameter α.

2: Initialize: n “ w “ t0uK , B̂piq “ 1
2
, i P rKs

3: for t “ 1, 2, . . . , T do

4: it “ argmaxkPrKs

`

B̂k `

b

α logptq
nk

˘

5: sample jt „ UniformprKsq

6: query pair pit, jtq and receive feedback rt „ Bernoullippit,jtq

7: nit “ nit ` 1, wit “ wit ` rt, B̂pitq “
wit

nit

8: end for
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4.11.3 The ETC-Borda Algorithm

The ETC-Borda procedure, displayed in Algorithm 19 is an explore-then-commit type

algorithm capable of minimizing the Borda dueling regret. It can be shown that the regret

of Algorithm 19 is ÕpK1{3T 2{3q.

Algorithm 19 ETC-Borda
1: Input: time horizon T , number of items K, target failure probability δ

2: Initialize: n “ w “ t0uK , B̂piq “ 1
2
, i P rKs

3: Set N “ rK´2{3T 2{3 logpK{δq1{3s

4: for t “ 1, 2, . . . , T do

5: Choose action it Ð

$

’

&

’

%

1 ` pt ´ 1q mod K, if t ď KN,

argmaxiPrKsB̂piq, if t ą KN.

6: Choose action jt “

$

’

&

’

%

UniformprKsq, if t ď KN,

argmaxiPrKsB̂piq, if t ą KN.

7: query pair pit, jtq and receive feedback rt „ Bernoullippit,jtq

8: if t ď N then

9: nit “ nit ` 1, wit “ wit ` rt, B̂pitq “
wit

nit

10: end if

11: end for

4.11.4 The Frank-Wolfe Algorithm for Approximate G-optimal Design

In order to find a solution for the G-optimal design problem, we resort to the Frank-Wolfe

algorithm to find an approximate solution. The detailed procedure is listed in Algorithm 20.

In Line 4, each outer product costs d2 multiplications, K2 such matrices are scaled and

summed into a d-by-d matrix Vpπq, which costs OpK2d2q operations in total. In Line 5,

one matrix inversion costs approximately Opd3q. The weighted norm requires Opd2q and the

maximum is taken over K2 such calculated values. The scaling and update in the following
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lines only require OpK2q. In summary, the algorithm is dominated by the calculation in

Line 5 which costs Opd2K2q.

In experiments, the G-optimal design πpi, jq is approximated by running 20 iterations of

Frank-Wolfe algorithm, which is more than enough for its convergence given our particular

problem instance. (See Note 21.2 in (Lattimore and Szepesvári, 2020)).

Algorithm 20 G-optimal design by Frank-Wolfe

1: Input: number of items K, contextual vectors ϕi,j, i P rKs, j P rKs, number of iterations

R

2: Initialize: π1pi, jq “ 1{K2

3: for r “ 1, 2, ¨ ¨ ¨ , R do

4: Vpπrq “
ř

i,j πrpi, jqϕi,jϕ
J
i,j

5: i˚
r , j

˚
r “ argmaxpi,jqPrKsˆrKs||ϕi,j||Vpπrq´1

6: gr “ ||ϕi˚
r ,j

˚
r

||Vpπrq´1

7: γr “
gr´1{d
gr´1

8: πr`1pi, jq “ p1 ´ γrqπrpi, jq ` γr 1pi˚
r “ iq1pj˚

r “ jq

9: end for

10: Output: Approximate G-optimal design solution πR`1pi, jq
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4.12 BEXP3 with Many Arms

In this section, we discuss how our algorithm BEXP3 can be modified to obtain a Õpd2{3T 2{3q

regret, when the number of arms K is exponentially large (logK “ ωpdq).

The idea is to first construct an ϵ-cover S over the set of mean vectors
␣

1
K

ř

jPrKs
ϕi,j

(

iPrKs
,

so that for any i P rKs, there exist a vector ψi P S such that
›

›

1
K

ř

jPrKs
ϕi,j ´ ψi

›

›

2
ď ϵ. In

the d-dimensional space, it suffices to choose |S| “ Opp1{ϵqdq representative vectors to cover

all the vectors.

Algorithm 21 BEXP3 with large K

1: Input: time horizon T , number of items K, feature dimension d, feature vectors ϕi,j for

i P rKs, j P rKs, learning rate η, exploration parameter γ, covering radius ϵ.

2: Initialize: q1piq “ 1
K

.

3: Calculate an ϵ-cover S of
␣

1
K

ř

jPrKs
ϕi,j

(

iPrKs
, with |S| “ Opp1{ϵqdq.

4: Denote the vector in S closest to 1
K

ř

jPrKs
ϕi,j as ψi for all i P rKs.

5: for t “ 1, . . . , T do

6: Sample items it „ qt, jt „ qt.

7: Query pair pit, jtq and receive feedback rt .

8: Calculate Qt “
ř

iPrKs

ř

jPrKs
qtpiqqtpjqϕi,jϕ

J
i,j, θ̂t “ Q´1

t ϕit,jtrt.

9: Calculate the (shifted) Borda score estimates B̂tpiq “ xψi, θ̂ty.

10: Update for all i P rKs, set

q̃t`1piq “
exppη

řt
l“1 B̂lpiqq

ř

jPrKs
exppη

řt
l“1 B̂lpjqq

; qt`1piq “ p1 ´ γqq̃t`1piq `
γ

K
.

11: end for

Now BEXP3 will be performed as the original case except that at Line 9 in Algorithm 21,

we replace the average contextual vectors 1
K

řK
j“1ϕi,j with those nearest representative vec-

tors ϕi. Since there are only |S| “ Opp1{ϵqdq unique rewards, the EXP3 argument (4.9.14)
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can be performed on |S| unique arms instead of K arms:

expp´ηŜT,aq ď
ÿ

ϕPS
expp´ηŜT,ϕq “ ωT “ ω0 ¨

T
ź

t“1

ωt

ωt´1

,

where ω0 “ |S| instead of K.

Eventually the algorithm suffers a regret of Õpd2{3T 2{3 log1{3
p1{ϵqq. The ϵ-net incurs an

additional approximation error of order OpϵT q. Setting ϵ “ T´1 will improve the regret to

d2{3T 2{3 up to log factors.

4.13 Additional Comparison between BETC and BEXP3

In Figure 4.4 we show that under the same experimental setting, tuning the error tolerance

ϵ in BETC can further reduce its total regret up to a constant factor, showing that under

suitable hyper-parameter choices, BETC can outperform BEXP3.
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Figure 4.4: The performance of BETC under different choices of error tolerance ϵ, compared

with BEXP3. We examined BETC with ϵ, 2ϵ, 4ϵ, 8ϵ where ϵ “ d1{6T´1{3.
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CHAPTER 5

Self-Play Preference Optimization for Language Model

Alignment

5.1 Introduction

Large Language Models (LLMs) (e.g., Ouyang et al., 2022; OpenAI et al., 2023), have shown

remarkable capabilities in producing human-like text, fielding questions, and coding. De-

spite their advancements, these models encounter challenges in tasks requiring high levels of

reliability, safety, and ethical alignment. To address these challenges, Reinforcement Learn-

ing from Human Feedback (RLHF), also known as Preference-based Reinforcement Learning

(PbRL), presents a promising solution. This framework for policy optimization, highlighted

in works by Christiano et al. (2017) and recently in Ouyang et al. (2022), has led to signifi-

cant empirical success in fine-tuning instruction-following LLMs, making them more aligned

with human preferences and thus more helpful.

Most existing approaches to RLHF rely on either explicit or implicit reward models.

Taking InstructGPT (Ouyang et al., 2022) as an example, a reference policy πref is first

established, typically from supervised pre-training or instruction-based (supervised) fine-

tuning. An explicit reward function is obtained by training a reward model based on human

preference feedback data, employing the Bradley-Terry (BT) model (Bradley and Terry,

1952). Subsequently, reinforcement learning algorithms such as Proximal Policy Optimiza-

tion (Schulman et al., 2017, PPO) are used to fine-tune the reference LLM πref by maximizing

the expected reward function. The reward model provides a “reward score” rpy;xq for the
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given response y and prompt x, approximately reflecting how humans value these responses.

More recently, methods like Direct Preference Optimization (Rafailov et al., 2024, DPO)

have been introduced. These methods forgo the training of a separate reward model, instead

using the log-likelihood ratio to implicitly represent the reward score, which is then inte-

grated into the same Bradley-Terry model to directly optimize the LLM. Nonetheless, both

the two-step RLHF algorithms and the one-step direct preference fundamentally adhere to

the reward maximization objective and are determined by parametric models such as the

BT model.

Parametric preference models such as the Bradley-Terry model (Bradley and Terry, 1952)

and the Thurstone model (Thurstone, 1927a) provide reasonable approximations of human

preferences, yet they fall short of fully capturing the complexity of human behavior. These

models presuppose a monotonous and transitive relationship among preferences for different

choices. However, empirical evidence suggests otherwise. For instance, Tversky (1969) ob-

served human decisions can be influenced by different factors and exhibit inconsistency. Such

observations indicate that human preferences do not always adhere to a single, value-based

hierarchy and can even appear irrational, such as exhibiting loops in preference relations.

For LLMs, another motivating evidence is that Munos et al. (2023) has empirically shown

that directly predicting the pairwise preference can achieve higher accuracy than predicting

the preference via a BT-based reward model.

To address the inconsistency in human preference, researchers have proposed to work

directly with the preference probability and design algorithms that can more flexibly repre-

sent human preferences (Lou et al., 2022; Wu et al., 2023) in the ranking or bandit setting.

Recently, an emerging line of work (Wang et al., 2024; Munos et al., 2023; Swamy et al.,

2024) also proposed to study RLHF for LLMs under such general preference Ppy ą y1|xq,

where y and y1 are two different responses and x is prompt. The goal is to identify the Nash
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equilibrium or von Neumann winner of the two-player constant-sum game

pπ˚, π˚
q “ argmax

π
min
π1

Ex„X

”

Ey„πp¨|xq,y1„π1p¨|xq

“

Ppy ą y1
|xq

‰

ı

,

where each player is an LLM that outputs responses and aims to maximize its probability

of being preferred over its opponent. The preference Ppy ą y1|xq is assumed given by an

external source, such as human annotators or a strong language model. Munos et al. (2023)

studied the KL-regularized version of this game and proposed to approximate the Nash

equilibrium using an on-policy mirror descent algorithm.

Very recently, Swamy et al. (2024) proposed Self-play Preference Optimization (SPO)1 for

the same (unregularized) two-player constant-sum game. They provide a general reduction

of preference optimization to no-regret online learning for the multi-step Markov Decision

Process. When constrained to the bandit setting for LLMs, their proposed algorithmic

framework reduces to the famous Hedge algorithm (Freund and Schapire, 1997), which admits

the exponential update rule as described in (5.4.1). To approximately solve the exponential

update, Swamy et al. (2024) then proposed to employ typical policy optimization algorithms

such as Proximal Policy Optimization (PPO) (Schulman et al., 2017) or Soft Actor-Critic

(SAC) (Haarnoja et al., 2018) to maximize the win rate against the reference policy and

evaluated the performance of their self-play algorithms in robotic and game tasks. However,

it typically requires more effort to apply PPO or SAC to large-scale fine-tuning of LLM and

make them work stably. Therefore, it remains unclear how their self-play framework can be

applied to large-scale language model alignment efficiently.

In this chapter, motivated by these developments mentioned above, we propose a new

self-play algorithm that (1) enjoys provable guarantees to solve the two-player constant-sum

game; and (2) can scale up to large-scale efficient fine-tuning of large language models. In

detail, we formulate the RLHF problem as a constant-sum two-player game. Our objective

1The SPO framework does not pertain to the efficient fine-tuning of LLMs. Our Self-Play Preference
Optimization (SPPO) focuses on LLM alignment and was developed independently. To distinguish it from
the SPO framework, we use the abbreviation SPPO.
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is to identify the Nash equilibrium policy, which consistently provides preferred responses

over any other policy on average. To identify the Nash equilibrium policy approximately, we

adopt the classic online adaptive algorithm with multiplicative weights (Freund and Schapire,

1999) as a high-level framework that solves the two-player game. Further, each step of the

high-level framework can be approximated by a self-play mechanism, where in each round

the policy is playing against itself in the previous round by fine-tuning it on synthetic data

that are generated by the policy and annotated by the preference model.

Our contributions are highlighted as follows:

‚ Starting from the exponential weight update algorithm which provably converges to

the Nash equilibrium of the two-player constant-sum game, we propose the Self-Play

Preference Optimization (SPPO) algorithm for large language model alignment. The

algorithm converges to an approximate Nash equilibrium provably and admits a simple

form of loss function for easy optimization.

‚ We compare our method with the state-of-the-art method including DPO, Identity

Preference Optimization (IPO) (Azar et al., 2023), and Kahneman-Tversky Optimiza-

tion (KTO) (Ethayarajh et al., 2024), and show that our SPPO loss function can

effectively increase the log-likelihood of the chosen response and decrease that of the

rejected response, which cannot be trivially achieved by symmetric pairwise loss such

as DPO and IPO. Our experiments also confirm that SPPO outperforms iterative DPO

and IPO on various benchmarks.

‚ Empirically, SPPO significantly enhances the well-aligned Mistral-7B-Instruct-v0.2 and

Llama-3-8B-Instruct model, achieving an increase of over 11% on the length-controlled

win rate against GPT-4-Turbo on the AlpacaEval 2.0 (Dubois et al., 2024a) test set.

Additionally, SPPO exhibits strong generalist abilities across different tasks, includ-

ing MT-Bench, the Open LLM Leaderboard, and the PairRM score (Jiang et al.,

2023b). Unlike iterative DPO/IPO, which tends to show performance decay on other
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benchmarks when optimized towards the PairRM score, SPPO’s performance gain is

consistent. Notably, all the strong performances are achieved without external su-

pervision (e.g., responses, preferences, etc.) from GPT-4 or other stronger language

models. Despite using only the 60k prompts (without responses) from the UltraFeed-

back dataset (Cui et al., 2023) and forgoing any prompt augmentation, our method

achieves performance comparable to GPT-4 on the AlpacaEval 2.0 win-rate.

In this chapter, motivated by these developments mentioned above, we propose a new

self-play algorithm that (1) enjoys provable guarantees to solve the two-player constant-sum

game; and (2) can scale up to large-scale efficient fine-tuning of large language models. In

detail, we formulate the RLHF problem as a constant-sum two-player game. Our objective

is to identify the Nash equilibrium policy, which consistently provides preferred responses

over any other policy on average. To identify the Nash equilibrium policy approximately, we

adopt the classic online adaptive algorithm with multiplicative weights (Freund and Schapire,

1999) as a high-level framework that solves the two-player game. Further, each step of the

high-level framework can be approximated by a self-play mechanism, where in each round

the policy is playing against itself in the previous round by fine-tuning it on synthetic data

that are generated by the policy and annotated by the preference model.

5.1.1 Organization of this Chapter

We review relevant work in the literature in Section 5.2. We present the backgrounds and

preliminaries in Section 5.3. Starting from the exponential weight update algorithm which

provably converges to the Nash equilibrium of the two-player constant-sum game, we propose

the Self-Play Preference Optimization (SPPO) algorithm for large language model alignment

in Section 5.4. In Section 5.5, we show empirically that SPPO significantly enhances the

performance across various benchmarks, without external supervision (e.g., responses, pref-

erences, etc.) from GPT-4 or other stronger language models. We conclude the chapter with

127



Section 5.6. We defer the detailed proof of the theorems to Section 5.7.

5.2 Related Work

RLHF with Explicit/Implicit Reward Model Originally, reinforcement learning from

human feedback (RLHF) was proposed by Christiano et al. (2017) as a methodology that

first learns a reward model reflecting human preferences and then uses reinforcement learning

algorithms to maximize the reward. This methodology is applied by Ouyang et al. (2022) to

fine-tune instruction-following large language models and leads to the popular ChatGPT.

The reward model in the works mentioned above assumes a parametric model such as

the Bradley-Terry model (Bradley and Terry, 1952), which assigns a “score” representing

how preferred a given response is. More recently, Rafailov et al. (2024) proposed to instead

directly solve the closed-form solution of such a score implied by the Bradley-Terry model.

The Direct Policy Optimization (DPO) method is claimed to be more efficient and stable,

yet, still implicitly assumes such a reward model that specifies the “score”. In a similar

spirit, Zhao et al. (2023) proposed to calibrate the score so that the score of the winner

in comparison has a margin over the score of the loser, and induces a different SLic loss.

Similarly, Ethayarajh et al. (2024) derived a different loss function (called KTO) from the

Kahneman-Tversky human utility function, which implicitly denotes a score of the given

response. Liu et al. (2023) proposed Rejection Sampling Optimization (RSO) which utilizes

a preference model to generate preference pairs with candidates sampled from the optimal

policy; then preference optimization is applied on the sampled preference pairs. Hong et al.

(2024) proposed Odds Ratio Preference Optimization (ORPO) algorithm that can perform

supervised fine-tuning and preference alignment in one training session without maintaining

an intermediate reference policy.
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RLHF with General Preference Model Often, the human preference is not strictly

transitive, and cannot be sufficiently represented by a single numerical score. Azar et al.

(2023) proposed a general preference optimization objective based on the preference prob-

ability between a pair of responses instead of a score of a single response. They further

propose a learning objective based on identity mapping of the preference probability called

IPO (Preference Optimization with Identity mapping), which aims to maximize the current

policy’s expected winning probability over a given reference policy. Munos et al. (2023)

formulated the RLHF problem with general preference as a two-player, constant-sum game,

where each player is one policy that aims to maximize the probability of its response being

preferred against its opponent. They aim to identify the Nash equilibrium policy of this

game and propose a mirror-descent algorithm that guarantees the last-iterate convergence

of a policy with tabular representations2. Wang et al. (2024) proposed to identify the Nash

equilibrium policy for multi-step MDPs when a general preference model is present and

shows that the problem can be reduced to a two-player zero-sum Markov game.

Theory of RLHF There is also a line of research to analyze RLHF and provide its theoret-

ical guarantees. Zhu et al. (2023) studied the standard RLHF with separate reward-learning

and model-tuning and proposed a pessimistic reward-learning process that provably learns a

linear reward model. Wang et al. (2024) proposed a framework to reduce any RLHF problem

with a reward model to a reward-based standard RL problem. Additionally, they proposed

to identify the Nash equilibrium policy when a general preference model is present and

show that the problem can be reduced to a two-player zero-sum Markov game. Xiong et al.

(2023) studied the reverse-KL regularized contextual bandit for RLHF in different settings

and proposed efficient algorithms with finite-sample theoretical guarantees. Ye et al. (2024)

studied the theoretical learnability of the KL-regularized Nash-Learning from Human Feed-

back (NLHF) by considering both offline and online settings and proposed provably efficient

2Due to the tabular representation, computing the normalizing factor is prohibitive and the algorithm is
approximately executed by sampling one token instead of a full response.
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algorithms. Ji et al. (2024) proposed an active-query-based proximal policy optimization

algorithm with regret bounds and query complexity based on the problem dimension and

the sub-optimality gap.

Self-Play Fine-Tuning Most works mentioned above (Rafailov et al., 2024; Zhao et al.,

2023; Azar et al., 2023; Ethayarajh et al., 2024) consider one single optimization procedure

starting from some reference policy. The same procedure may be applied repeatedly for

multiple rounds in a self-play manner. In each round, new data are generated by the policy

obtained in the last round; these new data are then used for training a new policy that can

outperform the old policy.

The self-play fine-tuning can be applied to both scenarios with or without human pref-

erence data. For example, Singh et al. (2023) proposed an Expectation-Maximization (EM)

framework where in each round, new data are generated and annotated with a reward score;

the new policy is obtained by fine-tuning the policy on the data with a high reward. Chen

et al. (2024) proposed a self-play framework to fine-tune the model in a supervised way. In

each round, new preference pairs are synthesized by labeling the policy-generated responses

as losers and the human-generated responses as winners. Then DPO is applied in each round

to fine-tune another policy based on these synthesized preference data. Yuan et al. (2024)

proposed Self-Rewarding Language Models, where the language model itself is used to anno-

tate preference on its own responses. Iterative DPO is applied to fine-tune language models

on these annotated data. These works show iterative fine-tuning can significantly improve

the performance.

Swamy et al. (2024) considered a more general multi-step Markov Decision Process

(MDP) setting and proposed Self-play Preference Optimization (SPO), an RLHF frame-

work that can utilize any no-regret online learning algorithm for preference-based policy

optimization. They then instantiated their framework with Soft Policy Iteration as an ideal-

ized variant of their algorithm, which reduces to the exponential weight update rule (5.4.1)
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when constrained to the bandit setting. The main difference is that they focus on the multi-

round Markov decision process (MDP) in robotic and game tasks rather than on fine-tuning

large language models and approximating the update using policy optimization methods

such as PPO.

Concurrent to our work, Rosset et al. (2024) proposed the Direct Nash Optimization

(DNO) algorithm based on the cross-entropy between the true and predicted win rate gaps,

and provided theoretical guarantees on the error of finite-sample approximation. However,

their practical version still utilizes the iterative-DPO framework as in Xu et al. (2023) with

the DPO loss instead of their derived DNO loss. Notably, in their experiments, they added

the GPT-4 generated responses as their “gold sample” into their fine-tuning data, and used

GPT-4 as a judge to assign a numerical score to each response for preference pair construc-

tion. In sharp contrast, our work does not require the use of any strong external supervision

besides a small-sized reward model. Another concurrent work (Gao et al., 2024) proposed

REBEL, an iterative self-play framework via regressing the relative reward. When applied

to the preference setting, it results a similar algorithm to our algorithm SPPO, except that

SPPO approximates the log-partition factor logZπtpxq with η{2 while REBEL regresses

on the win rate difference (so that logZπtpxq is canceled). Additionally, Calandriello et al.

(2024) pointed out that optimizing the IPO loss (Azar et al., 2023) iteratively with self-play

generated data is equivalent to finding the Nash equilibrium of the two-player game, and

they proposed the IPO-MD algorithm based on this observation, which generates data with

a mixture policy similar to the Nash-MD algorithm.

5.3 Preliminaries

We consider the preference learning scenario as follows. Given a text sequence (commonly

referred to as prompt) x “ rx1, x2, . . . s, two text sequences y “ ry1, y2, . . . s and y1 are

generated as responses to the prompt x. An autoregressive language model π given the
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prompt x can generate responses y following the probability decomposition

πpy|xq “

N
ź

i“1

πpyi|x,yăiq.

Given the prompt x and two responses y and y1, a preference oracle (either a human anno-

tator or a language model) will provide preference feedback opy ą y1|xq P t0, 1u indicating

whether y is preferred over y1. We denote Ppy ą y1|xq “ Eropy ą y1|xqs as the probability of

y “winning the duel” over y1. The KL divergence of two probability distributions of density

p and q is defined as KLpp}qq “ Ey„ppyq

”

log ppyq

qpyq

ı

.

5.3.1 RLHF with Reward Models

Christiano et al. (2017) first learn a reward function rpy;xq following the Bradley-Terry

model (Bradley and Terry, 1952). For a prompt-response-response triplet px,y,y1q, the

Bradley-Terry model specifies the probability of y being chosen over y as

Ppy ą y1
|xq “

expprpy;xqq

expprpy;xqq ` expprpy1;xqq
“ σ

`

rpy;xq ´ rpy1;xq
˘

, (5.3.1)

where σpxq “ ex{pex ` 1q is the logistic function. The reward function associated with the

Bradley-Terry model can be estimated by maximizing the log-likelihood logPpy ą y1|xq.

Suppose the true reward function rpy;xqq is available, Christiano et al. (2017) proposed to

solve the following optimization problem with policy optimization algorithms in RL such as

PPO (Schulman et al., 2017):

max
θ

Ex„X ,y„πθp¨|xqrrpy;xqs ´ η´1Ex„X rKLpπθp¨|xq}πrefp¨|xqqs, (5.3.2)

where X is the prompt distribution.

Rafailov et al. (2024) identified that the optimization problem above has a closed-form

solution such that for any y,

π˚
py|xq9πrefpy|xq exppηrpy;xqq,
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which can be further converted to the DPO loss for any triplet px,yw,ylq where the winner

yw is chosen over the loser yl:

ℓDPOpx,yw,yl;θ; πrefq :“ ´ log σ

˜

η´1

„

log

ˆ

πθpyw|xq

πrefpyw|xq

˙

´ log

ˆ

πθpyl|xq

πrefpyl|xq

˙ȷ

¸

.

5.3.2 RLHF with General Preference

Following Wang et al. (2024); Munos et al. (2023), we aim to establish RLHF methods

without a reward model, as the human preference can be non-transitive (Tversky, 1969).

Under a general preference oracle Ppy ą y1|xq, we follow Dudík et al. (2015) and aim to

identify the von Neumann winner. More specifically, the von Neumann winner π˚ is the

(symmetric) Nash equilibrium of the following two-player constant-sum game:

pπ˚, π˚
q “ argmax

π
min
π1

Ex„X

”

Ey„πp¨|xq,y1„π1p¨|xq

“

Ppy ą y1
|xq

‰

ı

. (5.3.3)

In addition, we define the winning probability of one response y against a distribution of

responses π as

Ppy ą π|xq “ Ey1„πp¨|xqrPpy ą y1
|xqs,

and the winning probability of one policy π against another policy π1 as

Ppπ ą π1
|xq “ Ey„πp¨|xqEy1„π1p¨|xqrPpy ą y1

|xqs.

Furthermore, we define Ppπ ą π1q “ Ex„X rPpπ ą π1|xqs, where x is a prompt drawn from

the prompt distribution X . The two-player constant-sum game (5.3.3) can be simplified as

pπ˚, π˚
q “ argmax

π
min
π1

Ppπ ą π1
q.

5.4 Self-Play Preference Optimization (SPPO)

In this section, we introduce the Self-Play Preference Optimization (SPPO) algorithm, de-

rived from the following theoretical framework.
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5.4.1 Theoretical Framework

There are well-known algorithms to approximately solve the Nash equilibrium in a constant-

sum two-player game. In this work, we follow Freund and Schapire (1999) to establish an

iterative framework that can asymptotically converge to the optimal policy on average. We

start with a theoretical framework that conceptually solves the two-player game as follows:

πt`1py|xq9πtpy|xq exppηPpy ą πt|xqq, for t “ 1, 2, . . . . (5.4.1)

(5.4.1) is an iterative framework that relies on the multiplicative weight update in each

round t and enjoys a clear structure. Initially, we have a base policy π1 usually from some

supervised fine-tuned model. In each round, the updated policy πt`1 is obtained from the

reference policy πt following the multiplicative weight update. More specifically, a response y

should have a higher probability weight if it has a higher average advantage over the current

policy πt.

Equivalently, (5.4.1) can be written as

πt`1py|xq “
πtpy|xq exp

`

ηPpy ą πt|xq
˘

Zπtpxq
, (5.4.2)

where Zπtpxq “
ř

y πtpy|xq exp
`

ηPpy ą πt|xq
˘

is the normalizing factor (a.k.a., the partition

function). For any fixed x and y, the ideal update policy πt`1 should satisfy the following

equation:

log

ˆ

πt`1py|xq

πtpy|xq

˙

“ η ¨ Ppy ą πt|xq ´ logZπtpxq. (5.4.3)

Unlike the pair-wise design in DPO or IPO that cancels the log normalizing factor logZπtpxq

by differentiating (5.4.3) between y and y1, we choose to approximate (5.4.3) directly in

terms of L2 distance:

πt`1 “ argminπEx„X ,y„πtp¨|xq

ˆ

log

ˆ

πpy|xq

πtpy|xq

˙

´

´

ηPpy ą πt|xq ´ logZπtpxq

¯

˙2

. (5.4.4)
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Estimation of the Probability The optimization objective (5.4.4) can be approximated

with finite samples. We choose to sample K responses y1,y2, . . . ,yK „ πtp¨|xq for each

prompt x, and denote the empirical distribution by π̂K
t . The finite-sample optimization

problem can be approximated as

πt`1 “ argminπEx„X ,y„πtp¨|xq

ˆ

log

ˆ

πpy|xq

πtpy|xq

˙

´

´

ηPpy ą π̂K
t |xq ´ logZπ̂K

t
pxq

¯

˙2

. (5.4.5)

Specifically, Ppy ą π̂K
t |xq “

řK
k“1 Ppy ą yk|xq{K and Zπ̂K

t
pxq “ Ey„πtp¨|xqrexppηPpy ą

π̂K
t |xqqs. Zπ̂K

t
pxq, treated as an expectation, can be further estimated by B new samples

with in total OpKBq queries of the preference oracle P. (5.4.5) is an efficiently tractable

optimization problem. Informally speaking, when K Ñ 8, (5.4.5) will recover (5.4.4). We

have the following guarantee on the convergence of (5.4.4):

Theorem 5.4.1. Assume the optimization problem (5.4.4) is realizable. Denote πt as the

policy obtained via (5.4.4) and the mixture policy π̄T “ 1
T

řT
t“1 πt. By setting η “ Θp1{

?
T q,

we have that

max
π

“

Ppπ ą π̄T q
‰

´ min
π

“

Ppπ ă π̄T q
‰

“ Op1{
?
T q.

Theorem 5.4.1 characterizes the convergence rate of the average policy across the time

horizon T towards the Nash equilibrium, in terms of the duality gap. The proof is based on

Theorem 1 in Freund and Schapire (1999) with slight modification. For completeness, we

include the proof in Appendix 5.7.

Alternatively, we can avoid estimating logZπ̂K
t

pxq by replacing it simply with η{23 in

(5.4.5) to obtain a more clear objective:

πt`1 “ argminπEx„X ,y„πtp¨|xq

ˆ

log

ˆ

πpy|xq

πtpy|xq

˙

´ η

ˆ

Ppy ą π̂K
t |xq ´

1

2

˙˙2

. (5.4.6)

Intuitively, if a tie occurs (i.e., Ppy ą π̂K
t |xq “ 1{2), we prefer the model does not update

weight at y. If y wins over π̂K
t on average (i.e., Ppy ą π̂K

t |xq ą 1{2), then we increase

3Assuming the winning probability between any given pair is either 1 or 0 with equal chance, when
K Ñ 8, we can show that indeed Zπ̂K

t
pxq Ñ eη{2.
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the probability density at y to employ the advantage of y over π̂K
t . In our experiments, we

choose to minimize the objective (5.4.6).

5.4.2 The SPPO Algorithm

Based on the aformentioned theoretical framework, we propose the Self-Play Preference Optimization

algorithm in Algorithm 22.

Algorithm 22 Self-Play Preference Optimization(SPPO)
1: input: base policy πθ1 , preference oracle P, learning rate η, number of generated samples

K.

2: for t “ 1, 2, . . . do

3: Generate synthetic responses by sampling x „ X and y1:K „ πtp¨|xq.

4: Annotate the win-rate Ppyk ą yk1 |xq, @k, k1 P rKs.

5: Select responses from y1:K to form dataset Dt “ tpxi,yi, P̂ pyi ą πt|xiqquiPrNs.

6: Optimize πθt`1 according to (5.4.6):

θt`1 Ð argminθEpx,y,P̂ pyąπt|xqq„Dt

ˆ

log

ˆ

πθpy|xq

πtpy|xq

˙

´ η

ˆ

P̂ py ą πt|xq ´
1

2

˙˙2

.

(5.4.7)

7: end for

In each round t, Algorithm 22 will first generate K responses y1,y2, . . . ,yK according to

πtp¨|xq for each prompt x (Line 3). Then, the preference oracle P will be queried to calculate

the win rate among the K responses (Line 4). At Line 5, certain criteria can be applied to

determine which response should be kept in the constructed dataset Dt and construct the

prompt-response-probability triplet px,y, P̂ py ą πt|xqq. We will discuss the design choices

later in Section 5.5. One straightforward design choice is to include all K responses into Dt

and each P̂ pyi ą πt|xq is estimated by comparing yi to all K responses. In total, OpK2q

queries will be made. Then the algorithm will optimize (5.4.6) on the dataset Dt (Line 6).
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Comparison with DPO, IPO, and KTO In practice, we utilize mini-batches of more

than 2 responses to estimate the win rate of a given response, while the DPO and IPO loss

focus on a single pair of responses. When only a pair of responses yw and yl is available, we

have the pair-wise symmetric loss based on the preference triplet px,yw,ylq defined as:

ℓSPPOpx,yw,yl;θ; πrefq :“

ˆ

log

ˆ

πθpyw|xq

πrefpyw|xq

˙

´ η
´

Ppyw ą yl|xq ´
1

2

¯

˙2

`

ˆ

log

ˆ

πθpyl|xq

πrefpyl|xq

˙

´ η
´

Ppyw ă yl|xq ´
1

2

¯

˙2

, (5.4.8)

where Ppyw ą yl|xq can be either a soft probability within r0, 1s or a hard label 1 indicating

yw ą yl.

We now compare the SPPO loss to other baselines assuming a hard label yw ą yl is

given. For the ease of comparison, let

a “ β log

ˆ

πθpyw|xq

πrefpyw|xq

˙

, b “ β log

ˆ

πθpyl|xq

πrefpyl|xq

˙

, c “ βKLpπθ}πrefq,

then we have

ℓDPOpyw,yl,xq “ ´ log σpa ´ bq, (5.4.9)

ℓIPOpyw,yl,xq “ rpa ´ bq ´ 1s
2, (5.4.10)

ℓKTOpyw,yl,xq “ σp´a ` cq ` σpb ´ cq (simplified), (5.4.11)

where σpxq “ ex{pex ` 1q and the SPPO loss can be written as

ℓSPPOpyw,yl,xq “ pa ´ 1{2q
2

` pb ` 1{2q
2.

It can be seen that SPPO not only pushes the gap between a and b to be 1, but also

attempts to push value of a to be close to 1{2 and the value of b to be close to ´1{2

such that πθpyw|xq ą πrefpyw|xq and πθpyl|xq ă πrefpyl|xq. We believe this is particularly

important: when there are plenty of preference pairs, DPO and IPO can ensure the policy will

converge to the target policy, but when the preference pairs are scarce (e.g., one pair for each

prompt), there is no guarantee that the estimated reward of the winner a will increase and the
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estimated reward of the loser b will decrease. Instead, only the reward gap between the winner

and the loser (i.e., a´b) will increase. This phenomenon is observed by Pal et al. (2024) that

DPO only drives the loser’s likelihood to be small, but the winner’s likelihood barely changes.

We believe that fitting β log
´

πt`1py|xq

πtpy|xq

¯

directly to Ppy ą πt|xq ´ 1{2 is more effective than

IPO which attempts to fit β log
´

πt`1pyw|xq

πtpyw|xq

¯

´β log
´

πt`1pyl|xq

πtpyl|xq

¯

to Ppyw ą πt|xq´Ppyl ą πt|xq.

In addition, SPPO shares a similar spirit as KTO. The KTO loss pushes a to be large by

minimizing σp´a ` cq and pushes b to be small by minimizing σpb ´ cq. In contrast, SPPO

pushes a to be as large as 1{2 and b to be as small as ´1{2.

On the other hand, we would like to comment that although DPO and KTO can be

extended to their iterative variants, they are not by nature iterative algorithms and do not

have provable guarantees that they can reach the Nash equilibrium. In contrast, SPPO and

IPO are by design capable to solve the Nash equilibrium iteratively. SPPO is superior to

IPO because its design explicitly alleviates the data sparsity issue, as discussed above and

detailed in Pal et al. (2024).

5.5 Experiments

We conduct extensive experiments to show the performance of our method and compare it

with other baselines.

5.5.1 Experiment Setup

Base Model and Datasets We follow the experimental setup of Snorkel4, a model that

utilizes iterative DPO to achieve state-of-the-art performance on AlpacaEval benchmarks.

Specifically, we use Mistral-7B-Instruct-v0.2 as our base model5. Mistral-7B-Instruct-v0.2

4https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO

5https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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is an instruction fine-tuned version of Mistral-7B-v0.2 model (Jiang et al., 2023a). We also

adopt Ultrafeedback (Cui et al., 2023) as our source of prompts which includes around 60k

prompts from diverse resources. During generation, we follow the standard chat template

of Mistral-7B. To avoid overfitting during the fine-tuning, we split the dataset into three

portions and use only one portion per iteration. These settings were also adopted by training

the model Snorkel-Mistral-PairRM-DPO6 (Snorkel). We follow the splitting in Snorkel for a

fair comparison. Additionally, we use Llama-3-8B-Instruct7 as a stronger base model along

with the same preference dataset and data splitting.

Preference Model We employ PairRM (Jiang et al., 2023b), an efficient pair-wise pref-

erence model of size 0.4B. PairRM is based on DeBERTA-V3 (He et al., 2021) and trained

on high-quality human-preference datasets. Results on benchmarks like Auto-J Pairwise

dataset (Li et al., 2023a) show that it outperforms most of the language-model-based re-

ward models and performs comparably with larger reward models like UltraRM-13B (Cui

et al., 2023). We refer the readers to the homepage on Huggingface8 for detailed benchmark

results. We therefore keep PairRM as our ranking model following Snorkel for a balance

between accuracy and efficiency.

Specifically, PairRM will output a “relative reward” spy,y1;xq that reflects the strength

difference between y and y1, i.e.,

Ppy ą y1
|xq “

exppspy,y1;xqq

1 ` exppspy,y1;xqq
.

Unlike the Bradley-Terry-based reward model, PairRM only assigns the relative reward which

is not guaranteed to be transitive (i.e., spy1,y2;xq ` spy2,y3;xq ‰ spy1,y3;xq). So it indeed

models the general preference.

6https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO

7https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

8https://huggingface.co/llm-blender/PairRM
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Response Generation and Selection During the generation phase in each iteration,

we use top p “ 1.0 and temperature 1.0 to sample from the current policy. We sample

with different random seeds to get K “ 5 different responses for each prompt. Previous

works utilizing Iterative DPO choose 2 responses to form a pair for each prompt. For a fair

comparison, we do not include all K “ 5 responses in the preference data but choose two

responses among them. Following Snorkel, we choose the winner yw and loser yl to be the

response with the highest and lowest PairRM score, which is defined for each response yi as:

sPairRMpyi;xq :“
1

K

K
ÿ

k“1

spyi,yk;xq.

Probability Estimation We then estimate the win rate over the distribution by the

average win rate over all the sampled responses as explained in (5.4.5):

P̂ pyi ą πt|xiq “
1

K

K
ÿ

k“1

Ppyi ą yk|xq, @i P rKs.

Hyperparameter Tuning The experiments are conducted on 8 ˆ Nvidia A100 GPUs.

For SPPO, we trained three iterations in total. In each iteration, we selected the model

trained on the first epoch of the 20k prompts from UltraFeedback to proceed to the next

iteration. For both Mistral-7B-Instruct-v0.2 and Llama-3-8B-Instruct, the global training

batch size is set to 64, and η is set to 1e3. The learning rate schedule is determined by

the following hyperparameters: learning rate=5.0e-7, number of total training epochs=1,

warmup ratio=0.1, linear schedule. The best hyper-parameters for each model is selected by

the average win-rate (judged by PairRM-0.4B) on a hold-out subset of Ultrafeedback as the

metric. For more details on the win-rate comparison using PairRM as a judge, please refer

to Section 5.5.2 and Figure 5.3.

Baselines We evaluate the following base models as well as baseline methods for fine-

tuning LLMs:
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‚ Mistral-7B-Instruct-v0.2: Mistral-7B-Instruct-v0.2 is an instruction fine-tuned version

of Mistral-7B-v0.2 model (Jiang et al., 2023a). It is the starting point of our algorithm.

‚ Snorkel (Mistral-PairRM-DPO): We directly evaluate the uploaded checkpoint on Hug-

gingFace9. This model is obtained by three rounds of iterative DPO from Mistral-7B-

Instruct-v0.2.

‚ (Iterative) DPO: We also implement the iterative DPO algorithm by ourselves. The

experimental settings and model selection schemes align with those used for SPPO,

except for the adoption of the DPO loss function as defined in (5.4.9). Hyperparameters

are optimized to maximize the average win-rate assessed by PairRM at each iteration.

Note that the practical algorithm in Rosset et al. (2024) is essentially the same as

iterative DPO.

‚ (Iterative) IPO: We implement the iterative IPO algorithm by ourselves. The exper-

imental setting and the model selection scheme is the same as iterative DPO, except

that the loss function is the IPO loss (5.4.10). For fair comparison, hyperparameters for

IPO is also selected by evaluation using the average PairRM win-rate on the hold-out

subset of Ultrafeedback.

‚ Self-rewarding LM: Yuan et al. (2024) proposed to prompt the LLM itself as a pref-

erence judge to construct new preference pairs and iteratively fine-tune the LLM with

the DPO algorithm. We use the AlpacaEval 2.0 win rate reported by Yuan et al. (2024)

for comparison. Note that Self-rewarding LM is a trained from Llama 2 70B.

‚ Llama-3-8B-Instruct: Llama-3-8B-Instruct is an instruction-tuned model optimized for

dialogue use cases and outperforms many of the available open-source chat models on

common industry benchmarks.

9https://huggingface.co/snorkelai/Snorkel-Mistral-PairRM-DPO
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Benchmarks Following previous works, we use AlpacaEval 2.0 (Dubois et al., 2024a),

MT-Bench (Zheng et al., 2024), and Open LLM Leaderboard (Beeching et al., 2023a) as our

evaluation benchmarks.

‚ AlpacaEval 2.0 is an LLM-based automatic evaluation benchmark. It employs Al-

pacaFarm (Dubois et al., 2024b) as its prompts set composed of general human instruc-

tions. The model responses and the reference response generated by GPT-4-Turbo are

fed into a GPT-4-Turbo-based annotator to be judged. We follow the standard ap-

proach and report the win rate over the reference responses.

‚ MT-Bench (Zheng et al., 2024) is a collection of 80 high-quality multi-turn open-

ended questions. The questions cover topics like writing, role-playing, math, coding,

etc.. The generated answer is judged by GPT-4 and given a score directly without

pairwise comparison.

‚ Open LLM Leaderboard (Beeching et al., 2023a) consists of six datasets, each of

which focuses on a facet of language model evaluation. In detail, the evaluation rubric

includes math problem-solving, language understanding, human falsehood mimicking,

and reasoning. We follow the standard evaluation process and use in-context learning

to prompt the language model and compute the average score over six datasets to

measure the performance.

5.5.2 Experimental Results

We evaluate the models on the three benchmarks described above. We also compare models

based on the pre-trained preference model PairRM.

Evaluation using GPT-4 as a judge In the assessment of AI chatbots, human evaluation

remains the benchmark for quality and accuracy (Askell et al., 2021; Ouyang et al., 2022).

However, due to its limitations in scalability and reproducibility, we explore the alternative
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approach of using the advanced capabilities of GPT-4 (OpenAI et al., 2023) as an automatic

evaluation tool. We conduct GPT-4-based automatic evaluation on AlpacaEval 2.0 (Li et al.,

2023b) and MT-Bench (Zheng et al., 2023) to measure the chatbot capability of our model.

The results can be found in Table 5.1 for AlpacaEval 2.0 and Figure 5.2 (left) for MT-Bench.

We also provide a radar chart analyzing the MT-Bench results in Figure 5.2 (right). We

found that the performance of SPPO models consistently improves along with the iterative

alignment iterations.

Table 5.1 (AlpacaEval 2.0) shows the win rate over the GPT-4-Turbo baseline of different

models on 805 prompts. We also include one column indicating the length-controlled win

rate, and one column on the average length of each model, to account for the tendency

of the LLM-based judge to favor longer sequence outputs — an issue colloquially termed

the "reward hacking" phenomenon. According to the table, Mistral-7B-SPPO Iter3 has

the highest win rate, 28.52% for the length-controlled version, and 31.02% for the overall

win rate. The performance gains over previous iterations are 7.69% (Mistral-7B-Instruct

Ñ Iter1), 2.10% (Iter1 Ñ Iter2), and 1.64% (Iter2 Ñ Iter3), respectively, indicating steady

improvements across iterations, as illustrated in Figure 5.1. We also apply SPPO to a

stronger baseline model, i.e., Llama-3-8B-Instruct, and the fine-tuned model Llama-3-8B-

SPPO has a higher length-controlled win rate 38.77% and overall win rate 39.85%. The

performance gains are more significant: 8.81% (Llama-3-8B-Instruct Ñ Iter1), 3.42% (Iter1

Ñ Iter2), and 3.62% (Iter2 Ñ Iter3), summing up to a total gain of 15.85%.

Additionally, the data indicates that SPPO achieves superior performance compared to

the iterative variants of DPO and IPO. The length-controlled win rate for SPPO reaches

28.53%, outperforming the DPO’s best rate of 26.39% (by Snorkel) and IPO’s rate of 25.45%

. Notably, while DPO and IPO training tend to significantly increase the average output

length—2736 and 2654, respectively—SPPO shows a more moderate length increase, mov-

ing from 1676 in the base model to 2163 at the third iteration. This suggests that SPPO

improves performance while more effectively controlling the tendency towards longer output
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Table 5.1: AlpacaEval 2.0 evaluation of various models (detailed in Baselines) in terms of both normal and

length-controlled (LC) win rates in percentage (%). Mistral-7B-SPPO Iter3 model achieves the highest LC

win rate of 28.53% and a normal win rate of 31.02%. SPPO demonstrates steady performance gains across

iterations and outperforms other baselines which show a tendency to produce longer responses. Additionally,

re-ranking with the PairRM reward model (best-of-16) at test time consistently enhances the performance

across all models and SPPO (best-of-16) achieves high win rate without strong external supervision like

GPT-4. We additionally include the results obtained from fine-tuning Llama-3-8B-Instruct, which also show

steady performance improvement.

Model
AlpacaEval 2.0

LC Win Rate Win Rate Avg. Len

Mistral-7B-Instruct-v0.2 17.11 14.72 1676

Mistral-7B-Instruct-v0.2 (best-of-16) 22.45 17.94 1529

Snorkel (Mistral-PairRM-DPO) 26.39 30.22 2736

Snorkel (Mistral-PairRM-DPO best-of-16) 29.97 34.86 2616

Self-Rewarding 70B Iter1 - 9.94 1092

Self-Rewarding 70B Iter2 - 15.38 1552

Self-Rewarding 70B Iter3 - 20.44 2552

Mistral-7B-DPO Iter1 23.81 20.44 1723

Mistral-7B-DPO Iter2 24.23 24.46 2028

Mistral-7B-DPO Iter3 22.30 23.39 2189

Mistral-7B-IPO Iter1 23.78 20.77 1693

Mistral-7B-IPO Iter2 21.08 23.38 2660

Mistral-7B-IPO Iter3 20.06 22.47 2760

Mistral-7B-SPPO Iter1 24.79(+7.69) 23.51(+8.79) 1855

Mistral-7B-SPPO Iter2 26.89(+2.10) 27.62(+4.11) 2019

Mistral-7B-SPPO Iter3 28.53(+1.64) 31.02(+3.40) 2163

Mistral-7B-SPPO Iter1 (best-of-16) 28.71(+6.26) 27.77(+9.83) 1901

Mistral-7B-SPPO Iter2 (best-of-16) 31.23(+2.52) 32.12(+4.35) 2035

Mistral-7B-SPPO Iter3 (best-of-16) 32.13(+0.9) 34.94(+2.82) 2174

Llama-3-8B-Instruct 22.92 22.57 1899

Llama-3-8B-SPPO Iter1 31.73(+8.81) 31.74(+9.17) 1962

Llama-3-8B-SPPO Iter2 35.15(+3.42) 35.98(+4.24) 2021

Llama-3-8B-SPPO Iter3 38.77(+3.62) 39.85(+3.87) 2066
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Table 5.2: AlpacaEval 2.0 leaderboard results of both normal and length-controlled (LC) win rates in

percentage (%). Mistral-7B-SPPO can outperform larger models and Mistral-7B-SPPO (best-of-16) can

outperform proprietary models such as GPT-4(6/13). Llama-3-8B-SPPO exhibits even better performance.

Model
AlpacaEval 2.0

LC. Win Rate Win Rate

GPT-4 Turbo 50.0 50.0

Claude 3 Opus 40.5 29.1

Llama-3-8B-SPPO Iter3 38.8 39.9

GPT-4 0314 35.3 22.1

Llama 3 70B Instruct 34.4 33.2

Mistral-7B-SPPO Iter3 (best-of-16) 32.1 34.9

GPT-4 0613 30.2 15.8

Snorkel (Mistral-PairRM-DPO best-of-16) 30.0 34.9

Mistral Medium 28.6 21.9

Mistral-7B-SPPO Iter3 28.5 31.0

Claude 2 28.2 17.2

Snorkel (Mistral-PairRM-DPO) 26.4 30.2

Gemini Pro 24.4 18.2

Mistral 8ˆ7B v0.1 23.7 18.1

Llama 3 8B Instruct 22.9 22.6

GPT-3.5 Turbo 0613 22.7 14.1

Vicuna 33B v1.3 17.6 12.7

lengths compared to DPO and IPO. Finally, we present the best-of-16 results for each model,

selected using the PairRM reward model. We find that re-ranking with the preference model

at test time can consistently improve the performance of base model (Mistral-7B-Instruct-

v0.2), DPO (Snorkel), and SPPO (Iter3) by 5.34%, 3.57%, and 3.6%, respectively. Notably,
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Figure 5.1: Win Rate against GPT-4-Turbo with (a) and without (b) Length Controlling (LC) on Al-

pacaEval 2.0. SPPO demonstrates steady improvements on both LC and raw win rates.

this shows that while SPPO significantly enhances model alignment using PairRM-0.4B as

the sole external supervision, it has not resulted in over-optimization against the preference

model (Gao et al., 2023). Future work will explore further improvements in model align-

ment, potentially through additional iterations beyond the current three (following Snorkel’s

methodology).

In Table 5.2, we compare SPPO on the AlpacaEval 2.0 leaderboard with other state-

of-the-art AI chatbots. We found our SPPO model outperforms many competing models

trained on proprietary alignment data (e.g., Claude 2, Gemini Pro, & Llama 3 8B Instruct).

When applied to Llama 3 8B Instruct, our Llama-3-8B-SPPO exhibits an even higher win

rate. With test-time reranking, Mistral-7B-SPPO Iter3 (best-of-16) is even competitive to

GPT-4 0613 and Llama 3 70B Instruct.

In Figure 5.2 (left), we evaluate the performance of SPPO on MT-Bench. We can see that

Mistral-7B-SPPO Iter3 outperforms all baseline models, achieving an average score of 7.59.

While we are not certain why the MT-Bench performance drops at the first two iterations,

the performance of SPPO at the final iteration still improves over the base model. Since

the length-controlled AlpacaEval 2.0 has a 98% Pearson correlation with human evaluations
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Model
MT-Bench

1st Turn 2nd Turn Average

Mistral-7B-Instruct-v0.2 7.78 7.25 7.51

Snorkel (Mistral-PairRM-DPO) 7.83 7.33 7.58

Mistral-7B-DPO Iter1 7.45 6.58 7.02

Mistral-7B-DPO Iter2 7.57 6.56 7.06

Mistral-7B-DPO Iter3 7.49 6.69 7.09

Mistral-7B-SPPO Iter1 7.63 6.79 7.21

Mistral-7B-SPPO Iter2 7.90 7.08 7.49

Mistral-7B-SPPO Iter3 7.84 7.34 7.59

Writing

Roleplay

Reasoning

Math

Coding

Extraction

STEM

Humanities

0 2 4 6 8 10

model
Mistral-7B-Instruct-v0.2
SPPO Iter1
SPPO Iter2
SPPO Iter3

Figure 5.2: MT-Bench Evaluation. Left: Mistral-7B-SPPO Iter3 outperforms all baseline models by

achieving an average score of 7.59. Despite initial drops in performance in the first two iterations, SPPO

Iter3 improves upon the base model by the final iteration. Right: Radar chart of MT-Bench results for

Mistral-7B-SPPO. SPPO Iter3’s improves across different MT-Bench categories, showing significant gains in

RolePlay, Reasoning, Math, and Coding tasks.

and 10ˆ more evaluation prompts, it likely provides a more reliable evaluation than MT-

Bench. To gain a deeper understanding on MT-Bench performance, we plot the improvement

in Figure 5.2 (right), broken down by question prompt category. Mistral-7B-SPPO Iter3

demonstrates notable gains in RolePlay, Reasoning, Math, and Coding tasks.

Open LLM Leaderboard We further evaluate the capabilities of SPPO models using

Huggingface Open LLM Leaderboard (Beeching et al., 2023b). This leaderboard encompasses

6 different datasets, each focusing on a specific capability of LLMs: Arc (Clark et al., 2018),

HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021), MMLU (Hendrycks

et al., 2020), TruthfulQA (Lin et al., 2021), and GSM8k (Cobbe et al., 2021). The models are

prompted with zero or few-shot exemplars. The results, presented in Table 5.3, demonstrate

that SPPO can enhance the performance of the base model on Arc, TruthfulQA, and GSM8k,

and achieve the state-of-the-art performance with an averagte score of 66.75. However, these
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Table 5.3: Open LLM Leaderboard Evaluation. SPPO fine-tuning improves the base model’s

performance on different tasks, reaching a state-of-the-art average score of 66.75 for Mistral-

7B and 70.29 for Llama-3-8B. For Mistral-7B, subsequent iterations of DPO, IPO, and SPPO

see a decline in performance. It is possible that aligning with human preferences (simulated

by the PairRM preference model in our study) may not always enhance, and can even detract

from, overall performance.

Models Arc TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

Mistral-7B-Instruct-v0.2 63.65 66.85 77.98 41.93 84.89 59.15 65.74

Snorkel 66.04 70.86 77.74 36.77 85.64 60.83 66.31

Mistral-7B-DPO Iter1 63.14 68.39 77.19 40.33 85.25 59.41 65.62

Mistral-7B-DPO Iter2 64.16 67.84 76.09 39.95 85.23 59.03 65.38

Mistral-7B-DPO Iter3 65.19 67.89 77.27 32.30 85.49 59.00 64.52

Mistral-7B-IPO Iter1 64.68 68.60 77.98 43.75 85.08 59.04 66.52

Mistral-7B-IPO Iter2 62.12 66.30 77.51 39.20 83.15 59.70 64.66

Mistral-7B-IPO Iter3 62.97 67.12 77.51 37.45 83.69 59.57 64.72

Mistral-7B-SPPO Iter1 65.02 69.40 77.82 43.82 85.11 58.84 66.67

Mistral-7B-SPPO Iter2 65.53 69.55 77.03 44.35 85.29 58.72 66.75

Mistral-7B-SPPO Iter3 65.36 69.97 76.80 42.68 85.16 58.45 66.40

Llama-3-8B-Instruct 62.29 51.65 76.09 75.89 78.73 65.59 68.37

Llama-3-8B-SPPO Iter1 63.82 54.96 76.40 75.44 79.80 65.65 69.35

Llama-3-8B-SPPO Iter2 64.93 56.48 76.87 75.13 80.39 65.67 69.91

Llama-3-8B-SPPO Iter3 65.19 58.04 77.11 74.91 80.86 65.60 70.29

improvements do not hold in subsequent alignment iterations: DPO, IPO, and SPPO’s

performance declines after the first or second iterations. This limitation may be attributed

to the “alignment tax” phenomenon (Askell et al., 2021), which suggests that aligning with

human preferences (simulated by PairRM preference in our study) might not improve or even

hurt the general performance. Improving language model capabilities through alignment

iterations remains a topic for future research, and we posit that incorporating high-quality

SFT annotations (Chen et al., 2024) could play a significant role in this endeavor.
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Figure 5.3: Pairwise win rates among base model (Mistral-7B-Instruct-v0.2), DPO models, IPO models,

and SPPO models using PairRM-0.4B as a judge, which may favor models with longer outputs. On

benchmarks with more powerful judge models (e.g., GPT-4), such as AlpacaEval 2.0 and MT-Bench, SPPO

outperforms other baseline algorithms by a large margin.

Evaluation using PairRM as a judge As SPPO identifies the von Neumann winner

(see (5.3.3)) in a two-player constant-sum game, we examine the pairwise preferences among

SPPO models and other baselines. The pairwise win rates, measured by PairRM, are de-

picted in Figure 5.3. We observe that in all algorithms—namely DPO, IPO, and SPPO—the

newer model iterations surpass the previous ones. For example, SPPO Iteration 3 outper-

forms SPPO Iteration 2. Both SPPO and IPO consistently outperform DPO across all

iterations. While SPPO is superior to IPO in the first two iterations, IPO exceeds SPPO

in performance during the final iteration. Considering the superior performance of SPPO in
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Figure 5.4: AlpacaEval 2.0 evaluation on SPPO of different mini-batch size in terms of both normal

and length-controlled (LC) win rates in percentage (%). K “ 2, 5 denote different mini-batch sizes when

estimating the win rate Ppy ą πt|xq.

standard benchmarks evaluated by GPT-4 or against ground-truth answers (e.g., AlpacaEval

2.0, MT-Bench, and Open LLM Leaderboard), along with IPO’s tendency to produce longer

sequence outputs (see Avg. Len in Table 5.1), we believe this is due to IPO exploiting the

length bias in PairRM that favors longer sequences. Conversely, SPPO models benefit from

a more robust regularization within a multiplicative weight update framework.

5.5.3 Ablation Study

We study the effect of mini-batch size when estimating the win rate Ppy ą πt|xq. Specifically,

for each prompt, we still generate 5 responses and choose the winner yw and loser yl according

to the PairRM score. When estimating the probability, we varies the batch size to be

K “ 2, 3, 5. For K “ 2, we estimate Ppy ą πt|xq with only 2 samples yw and yl:

P̂ pyw ą πt|xq “
Ppyw ą yw|xq ` Ppyw ą yl|xq

2
“

1{2 ` Ppyw ą yl|xq

2
,

and P̂ pyl ą πt|xq similarly. K “ 5 indicates the original setting we use.
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We compare the results on AlpacaEval 2.0, as shown in Figure 5.4. We find that the

performance of SPPO is robust to the noise in estimating Ppy ą πt|xq. While K “ 5 initially

outperforms K “ 2 in the first iteration, the difference in their performance diminishes in

subsequent iterations. Additionally, we observe that K “ 2 exhibits a reduced tendency to

increase output length.

5.6 Conclusions

This chapter introduced Self-Play Preference Optimization(SPPO), an approach to fine-

tuning Large Language Models (LLMs) from Human/AI Feedback. SPPO has demonstrated

significant improvements over existing methods such as DPO and IPO across multiple bench-

marks, including AlpacaEval 2.0, MT-Bench, and the Open LLM Leaderboard. By integrat-

ing a preference model and employing a batched estimation process, SPPO aligns LLMs

more closely with human preferences and avoids common pitfalls such as “length bias” re-

ward hacking.

5.7 Omitted Proof

Proof of Theorem 5.4.1. Suppose the optimization problem is realizable, we have exactly

that

πt`1py|xq9πtpy|xq exppηPpy ą πt|xqq, for t “ 1, 2, . . . . (5.7.1)

To prove that the exponential weight update can induce the optimal policy, we directly

invoke a restated version of Theorem 1 in Freund and Schapire (1999):

Lemma 5.7.1 (Theorem 1 in Freund and Schapire (1999), restated). For any oracle P

and for any sequence of mixed policies µ1, µ2, . . . , µT , the sequence of policies π1, π2, . . . , πT
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produced by (5.7.1) satisfies:

T
ÿ

t“1

Ppπt ă µtq ď min
π

„

η

1 ´ e´η

T
ÿ

t“1

Ppπ ă µtq `
KLpπ}π0q

1 ´ e´η

ȷ

.

By setting µt “ πt, we have that

T

2
ď min

π

„

ηT

1 ´ e´η
Ppπ ă π̄T q `

KLpπ}π0q

1 ´ e´η

ȷ

,

where the LHS comes from that Ppπt ă πtq “ 1{2 and the RHS comes from that 1
T

řT
t“1 Ppπ ă

πtq “ Ppπ ă π̄tq. Now rearranging terms gives

1 ´ e´η

2η
ď min

π

„

Ppπ ă π̄T q `
KLpπ}π0q

ηT

ȷ

.

We can naively bound the KL-divergence KLpπ}π0q ď } log π0p¨q}8, which can be seen as a

(large) constant.

By choosing η “
} log π0p¨q}8?

T
, we have

1

2
´

} log π0p¨q}8

4
?
T

` OpT´1
q ď min

π

“

Ppπ ă π̄T q
‰

`

c

} log π0p¨q}8

T
,

where the LHS comes from Taylor’s expansion 1´e´η

2η
“ 1

2
´

η
4

`Opη2q. Notice that 1{2 at the

LHS is already the value of the symmetric two-player constant-sum game. This shows that

for appropriately chosen η and T , the mixture policy π̄T is close to the minimax optimal

policy (Nash equilibrium).

The optimality gap is thus bounded by

max
π

“

Ppπ ą π̄T q
‰

´ min
π

“

Ppπ ă π̄T q
‰

“ max
π

“

1 ´ Ppπ ă π̄T q
‰

´ min
π

“

Ppπ ă π̄T q
‰

“ 2

ˆ

1

2
´ min

π

“

Ppπ ă π̄T q
‰

˙

“ O

ˆ

1
?
T

˙

.
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CHAPTER 6

Conclusions and Future Directions

This dissertation addressed several key concerns in learning from preference feedback, in-

cluding the learning-to-rank problem and the problem of learning with general preference

feedback from the perspective of both theoretical analysis and empirical evaluation. Sev-

eral practical algorithms were proposed to achieve competitive performance with theoretical

guarantees. Specifically, the dissertation made the following key contributions:

‚ Proposed an adaptive sampling algorithm for heterogeneous rank aggregation that

can efficiently identify accurate users and utilize this information to perform ranking.

Theoretical guarantees showed the algorithm is comparable to an oracle that knows

the best user, with only a sublinear gap in sample complexity.

‚ Developed an active ranking algorithm called Probe-Rank that does not require the

strong stochastic transitivity assumption. Probe-Rank was shown both theoretically

and empirically to be more sample-efficient than existing methods when comparing

nonadjacent items is more difficult.

‚ Introduced a new problem setting for identifying the Borda winner in generalized linear

dueling bandits and proposed algorithms with matching upper and lower bounds on

the Borda regret.

‚ Formulated preference learning as a two-player constant-sum game and developed

a self-play algorithm called SPPO for large language model alignment. SPPO was
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demonstrated to significantly improve performance across multiple benchmarks com-

pared to existing methods.

This dissertation also suggests several potential directions and open questions for future

research. The first direction is to develop more flexible yet meaningful assumptions to char-

acterize human preferences from multiple sources. The current assumption of consistent

ranking across all users is often not fully satisfied in practice. One potential direction is to

assume each human user is independent from others, and the consensus preference between

any two items is reached by majority voting from all users. This would allow more flexible

preference behaviors while still providing some structure for learning algorithms. Also, it

is desirable to develop more efficient and scalable algorithms for preference-based reinforce-

ment learning in high-dimensional state and action spaces. Applying preference learning to

complex sequential decision making problems remains challenging.
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