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Mapping human tissues with highly
multiplexed RNA in situ hybridization

Kian Kalhor 1,13, Chien-Ju Chen1,2,13, Ho Suk Lee1,3, Matthew Cai1,
Mahsa Nafisi 1, Richard Que1, Carter R. Palmer4,5, Yixu Yuan1, Yida Zhang6,
Xuwen Li 7, Jinghui Song1, Amanda Knoten8, Blue B. Lake1,7, Joseph P. Gaut9,
C. Dirk Keene 10, Ed Lein 11, Peter V. Kharchenko6,7, Jerold Chun 4,
Sanjay Jain 8,9, Jian-Bing Fan12 & Kun Zhang 1,7

In situ transcriptomic techniques promise a holistic viewof tissue organization
and cell-cell interactions. There has been a surge of multiplexed RNA in situ
mapping techniques but their application to human tissues has been limited
due to their large size, general lower tissue quality and high autofluorescence.
Here we report DART-FISH, a padlock probe-based technology capable of
profiling hundreds to thousands of genes in centimeter-sized human tissue
sections. We introduce an omni-cell type cytoplasmic stain that substantially
improves the segmentation of cell bodies. Our enzyme-free isothermal
decoding procedure allows us to image 121 genes in large sections from the
human neocortex in <10 h. We successfully recapitulated the cytoarchitecture
of 20 neuronal and non-neuronal subclasses. We further performed in situ
mapping of 300 genes on a diseased human kidney, profiled >20 healthy and
pathological cell states, and identified diseased niches enriched in tran-
scriptionally altered epithelial cells and myofibroblasts.

Analyzing single-cell expression of genes in their spatial context plays a
critical role in deciphering the complex cellular organization in mul-
ticellular organisms1,2. Gene expression in its spatial context is espe-
cially important infields such as embryo development3, neuroscience4,
and in histopathology5. The emergence of single-molecule fluores-
cence in situ hybridization (smFISH, Supplementary Table 1 for all
acronyms in the manuscript) methods allowed us to simultaneously
measure several RNA species in single cells6,7 by imaging fluorophore-
tagged DNA oligos, or probes, that tile the RNA molecules. Because of
its high sensitivity, smFISH has become the gold standard assay to
measure RNA expression in situ and has been used to show the
importance of RNA localization in cell migration, neuron connectivity,

and local protein synthesis8,9. However, since smFISH is limited by
spectral overlap of the fluorophores, it has limited multiplexing
capacity10, and does not scale well for tasks such as resolving cellular
heterogeneity in complex tissues, which require profiling hundreds of
RNA species.

Recently, in situ hybridization techniques with combinatorial
encoding have emerged in which the identity of hundreds or thou-
sands of RNA species can be decoded with tens of FISH cycles11,12.
Although thesemethods have increased themultiplexity by 2-3 orders
ofmagnitude compared to smFISH, they typically require longer target
RNA transcripts (>1.5kb), restricting the analysis of important mole-
cules such as neuropeptides and interferons11,13. Furthermore, because
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of the low signal-to-noise ratio (SNR) from detected transcripts, these
methods need high magnification objectives with high numerical
aperture (NA), making it difficult and time-consuming to image large
regions of interest (ROIs). The low SNR also makes it challenging to
apply these methods to human tissues which may have a high auto-
fluorescence background caused by lipofuscin granules14,15, proteins
such as collagen and elastin16, or mitochondria17,18. Methods that ligate
padlock probes annealing to mRNA derivatives, followed by rolling
circle amplification (RCA) have been employed to boost SNR from
individual transcripts. However, these methods are associated with
high probe set expenses and complex decoding procedures. They
further lack an efficient approach to stain the cell bodies for
segmentation19–21 (Supplementary Table 2).

With the advent of sequencing-based spatial transcriptomics
methods22–27, transcriptome-wide profiling of RNA molecules in tissue
sections was made possible by transferring the RNA molecules to a
slide coated with spatially-barcoded oligos. In this way, the spatial
information of each RNA molecule can be registered through next-
generation sequencing. Nevertheless, when compared to in situ
methods, sequencing-based spatial transcriptomic tools in general
have lower capture efficiency, complex slide preparation procedures,
higher sequencing costs, and limited spatial resolution due to feature
size and lateral diffusion28.

Here, we developed Decoding Amplified taRgeted Transcripts
with Fluorescence in situ Hybridization (DART-FISH) to overcome
some of these limitations. The key technical features include a robust
barcoding scheme, a set of molecular protocols for padlock probe
production in large pools, in situ padlock capture and amplification, a
cytoplasmic stain called RiboSoma, isothermal and enzyme-free
decoding, and a computational method for decoding features at the
pixel level from dense fluorescent images based on sparse deconvo-
lution. We benchmarked DART-FISH by measuring 121 genes in a large
section (~30 mm2) of the human primary motor cortex (M1C). We
validated its sensitivity and specificity by comparing it to RNAscope, a
commercially available smFISH method (Methods). Moreover, we
successfully recapitulated the spatial organization of major neuronal
and non-neuronal cell types, detected short neuropeptide genes (e.g.,
SST and NPY), and validated a deep layer neuron marker (TMSB10).
Finally, we applied DART-FISH to measure 300 genes in a diseased
human kidney section and characterized the spatial distribution of
normal and disease-altered cell types and pathological niches. Overall,
the DART-FISH workflow provides solutions to several foundational
problems in the field while remains easy to implement and requires no
specialized or custom-made equipment.

Results
DART-FISH framework
DART-FISH involves in situ feature generation by padlock probe cap-
ture of targeted transcripts and rolling circle amplification (RCA), fol-
lowed by a highly robust decoding process of sequential isothermal
hybridization. (Fig. 1a, Methods). Specifically, RNA molecules in fresh-
frozen tissue sections are fixed with paraformaldehyde (PFA), per-
meabilized, and then reverse-transcribed with a mixture of random
and poly-deoxythymidine (dT) primers. To assess the RNA content in
human tissues as well as the retention of the cDNA molecules in situ,
we added a 5’ handle to the reverse-transcription primers to enable the
collective visualization of all cDNA molecules with fluorescent oligos
(Fig. 1b). We call this labeling method RiboSoma because the resulting
signal labels the cell bodies. During protocol optimization, we noticed
that crosslinking the cDNA molecules immediately after reverse-
transcription to a polyacrylamide (PA) gel enhances the RiboSoma
signal (Supplementary Fig. 1a) suggesting better retention of cDNA
in situ throughout the DART-FISH protocol. This cDNA embedding
strategy also led to 1.5-fold median increase of the feature
count per gene (Supplementary Fig. 1b, c), compared to when the

polyacrylamide gel is cast after RCA. Thus, RiboSoma serves as a
marker for cDNA content of the tissue and provides a quality control
for in situ reactions.

Following gel embedding and RNA digestion, cDNAmolecules are
hybridized with a library of padlock probes and circularized at a high
temperature to ensure specificity29,30. On their backbone, padlock
probes carry a universal sequence used for amplification and gene-
specific barcodes. The circularized padlock probes are then rolling-
circle-amplified, generating RCA colonies in situ (rolonies) with hun-
dreds of copies of barcode sequences concatenated in the form of a
DNA nanoball. The rolonies are then covalently attached to the poly-
acrylamide gel to secure their positions during decoding. The result of
the experiment is then assessed in the “anchor round” imaging, where
fluorescent probes are hybridized to the universal sequences and the 5’
handles on cDNA molecules to visualize the spatial distribution of all
rolonies and cells (i.e., RiboSoma, Fig. 1b).

To achieve highmultiplexity within only a few rounds of imaging,
combinatorial labeling was used to generate gene-specific barcodes31.
In this barcoding scheme, n rounds of imaging are performed where
every barcode is “on” in exactly k rounds and “off” in other rounds
(Fig. 1c).When “on”, the barcode signals in one of the three fluorescent
channels; it emits no fluorescence when “off”. With n rounds of ima-
ging, a total of 0exnkð Þ3k unique barcodes can be generated, allowing
us to measure hundreds of RNA species with limited rounds of
decoding (n=6 and k =3 in Fig. 1 with 540 valid barcodes). This can be
extended to 7 rounds of decoding for up to 945 genes (k = 3), 8 rounds
of decoding for 5670 genes (k =4), and so on. This barcoding scheme
has a proven robustness evident by its wide adoption by Illumina’s
gene expression, SNP genotyping and DNA methylation arrays31–33.
Hence, DART-FISH uses a barcoding strategy that can theoretically
generate enough diversity to encode hundreds to thousands of genes
within less than 10 rounds of imaging.

To implement this barcoding system such that the decoding
process is fast and robust, gene-specific barcodes are created by the
concatenation of k 20-nucleotide-long decoder sequences placed on
the backbone of padlock probes34. The decoder sequences are derived
from Illumina BeadArray technology and have limited cross-
hybridization31 (Supplementary Data 1). In each round of imaging,
three unique fluorescent decoding probes are hybridized and imaged.
Rolonies will be "on" only if a decoding probe that corresponds to one
of their decoder sequences is present. After imaging, the decoding
probes are stripped andwashed away at room temperature to prepare
for the next round (Fig. 1b and e). During this procedure, the rolonies
are stable with minimal movement, degradation and background
buildup (Supplementary Fig. 1d). Note that this process enables rapid
and reliable decoding since it depends solely on the hybridization of
short oligonucleotides at room temperature, eliminating the need for
sophisticated temperature control setups and avoiding the complica-
tions of performing enzymatic reactions onamicroscope. Thus,DART-
FISH uses an enzyme-free and isothermal method to decode the
rolonies which allows short between-cycle preparation times.

It has been shown that increasing the number of padlock probes
per gene leads to a higher detection sensitivity in situ35. For such
applications, it is common to pool individually synthesized padlock
probes35–37. This strategy, while manageable for small-scale studies,
would be prohibitively expensive when probing hundreds of genes is
desired. To overcome this limitation, we adapted an enzymatic pro-
tocol to produce thousands of padlock probes in-house starting from
an oligo pool synthesized on microarrays38 (Methods, Supplementary
Fig. 3c). We were able to target 121 genes each with up to 50 padlock
probes for less than 25% the cost of the direct synthesis option. Note in
our strategy the cost per probe decreases further by including more
probes in the pool, whereas for direct synthesis the cost per probe
remains constant. Consequently, individually synthesizing 20,000
probes to target 400 genes is almost 10 times as expensive as array
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synthesis. To fully utilize this feature, multiple probe sets that, for
instance, target different organs or organisms can be pooled together
and amplified separately for a fraction of the upfront cost of the direct
synthesis approach. This strategy opens up the possibility of using
different probe sets in any regular research lab.

Targeting more genes with high sensitivity can result in optical
overcrowding, whichmay hinder rolony decoding. Physical expansion

of the tissues37,39,40 has been used as an effective strategy to distance
rolonies and reduce overcrowding but it leads to larger imaging areas,
longer imaging time and thus lower throughput37. A computational
solution to the overcrowding problem can vastly increase the
throughput. We reasoned that given the size of the rolonies (<1µm)41

and our pixel size (~0.3µm with 20x objective), each pixel will at most
overlap a few rolonies. On the other hand, given that a small fraction of
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all possible barcodes are used, it may be possible to deconvolve mix-
tures of barcodes from fluorescent intensity values at the pixel level.
To this end we developed the SparseDeconvolution (SpD) decoding
algorithm: we formalized this deconvolution as a regularized linear
regression problem, where barcodes can combine linearly to form the
observed pixel intensities and optimized the combinations under a
condition that promotes sparsity (Methods, Fig. 1d). We solve this
problem for every pixel and obtain initial weight maps for every single
barcode (Fig. 1f). This is followed by filtering and aggregating the
neighboring pixels to formspots (Supplementary Fig. 2a,b). To control
the quality of the deconvolution procedure, we add empty barcodes
that are not used in the probe set to the codebook. While the fraction
of empty barcodes is 5-8% of used barcodes, the fraction of spots
decoded as empty is below 0.25% (empty rate, Supplementary
Fig. 2c–e). We compared SpD with existing methods, including a naive
algorithm that directly matches pixels to individual barcodes42 and
more sophisticated deconvolution algorithms42–44. The results on
synthetic data show a complementary performance of SpD to the
other deconvolution algorithms while a superior performance to the
direct matching algorithm (Supplementary Fig. 2f). The simulations
also show that specificity, which is unobserved on real data, is related
to empty rate and one can keep specificity high by keeping the empty
rate low. With this computational framework, we could mitigate opti-
cal overcrowding and increase our throughput by imaging with a 20x
objective lens.

Benchmarking and validation of DART-FISH
To assess the performance of DART-FISH for profiling more than one
hundred RNA species in large human tissue sections with fast image
acquisition, we applied it to a 10μm-thick, 6.9-by-4.3-mm2 fresh-frozen
post-mortem human M1C brain section45. The anatomy, function, and
gene expressionofM1Chavebeenwidely investigated at the single-cell
level46–50, giving us awell-defined standard to compare across different
studies. Note that archived human brain samples represent one of the
most challenging sample types for spatial RNA mapping, due to the
presence of high autofluorescence45 and in general, lower RNA
quality51.

Wedesigned 5097padlock probes to target a selected panel of 121
genes containing known marker genes to resolve the spatial organi-
zation of excitatory and inhibitory neurons, as well as non-neuronal
cells (Supplementary Data 2). The corresponding codebook followed a
3-on-3-off barcoding scheme. Imaging 6 rounds of decoding, the
anchor round and the nuclear stain of this ~30 mm2 section of human
M1C took about 10 h. After image preprocessing and spot decoding by
SpD, we obtained 2,008,260 transcripts (0.2% empty calls with 8
empty barcodes). The expression level of these 121 genes was highly
consistent between two replicates (correlation coefficient r2 = 0.988,
Fig. 2b), demonstrating a high reproducibility of DART-FISH.

We segmented the cells usingRiboSoma,which revealed cell body
morphology better than nuclear staining (Supplementary Fig. 4a, b),
and assigned the transcripts to the closest cell if the distance to the cell
boundary was less than 3μm (Methods, Supplementary Fig. 4c). Other
transcripts were discarded from downstream analyses. Among the
target genes, we noticed a higher fraction of MBP transcripts were
found to be outside the cell bodies (93% outside, Supplementary
Fig. 4d)while co-localizingwith RiboSoma in the extrasomatic spaceof
the cortex (Supplementary Fig. 4e). This observation reflects the local
translation of MBP transcripts at the axon-glia contact sites52. Overall,
wedetected 26,646 cellswith 802,361 transcripts thatwere assigned to
a segmented cell with an average of 30 transcripts and 11 unique genes
per cell (Fig. 2c).

To assess spatial specificity of transcript localization, we first
inspected the marker genes SLC17A7 and SATB2 in excitatory
neurons and GAD1 and GAD2 in inhibitory neurons. As expected,
the SLC17A7 and SATB2 transcripts were mainly aggregated in the
soma of excitatory neurons with mutual exclusivity to GAD1 and
GAD2 transcripts in inhibitory neurons (Fig. 2d, e). We then
compared the expression of 10 marker genes with the results of
RNAscope generated on a parallel M1C tissue section (Methods).
As shown in Fig. 2f and Supplementary Fig. 4f, the spatial dis-
tribution of these marker genes in the same region demonstrates
high concordance between RNAscope and DART-FISH. Specifi-
cally, the pan-excitatory neuron marker, SLC17A7, showed pro-
nounced enrichment in the L2-L6 cortical layers. CUX2, RORB, and
FEZF2 were enriched in supragranular, granular, and infragranular
layers of the neocortex, respectively, which is consistent with
previous studies53–57. The observed localization of CBLN2 in neo-
cortical layers 2/3 and 5/6 neocortex also agrees with a previous
report58. Collectively, these results indicate that DART-FISH can
specifically map the spatial localization of these marker genes in
human M1C.

To estimate the sensitivity of DART-FISH, we selected a similar
region of interest (ROI) with equal area between RNAscope and DART-
FISH samples and compared the number of transcripts of each gene.
We found that the estimated sensitivity ranged from 3.9% to 67.7%,
depending on the transcript (Fig. 2g). We correlated our data to the
publicly available MERFISH59 and EEL FISH60 datasets from the human
brain (Pearson’s r = 0.755 and 0.750, respectively, Fig. 2h and i), which
we consider a high concordance given the differential probing effi-
ciencies between different technologies, and the fact that samples
from different regions were used for each technology. In summary,
DART-FISH is a reproducible spatial transcriptomic method with the
sensitivity and specificity to detect hundreds of RNA species in their
spatial context, with the potential for providing biologically mean-
ingful insights to the humanbrain despite the high natural background
autofluorescence.

Fig. 1 | DART-FISH workflow. a Schematics of DART-FISH. RNA molecules in a
fresh-frozen and formaldehyde-fixed tissue section were reverse-transcribed with
primers carrying a 5’ handle with an acrydite modification. A polyacrylamide (PA)
gelwas cast on the tissue, incorporating the cDNAmolecules in the gelmatrix. After
RNA removal, padlock probes were hybridized to cDNA and circularized, followed
by rolling circle amplification (RCA) to create rolonies. Rolonies were further
crosslinked to the gel. b Imaging DART-FISH samples. Samples went through
anchor round imaging followed by decoding rounds. In anchor round imaging,
fluorescent probes complementary to the universal sequence and the 5’ cDNA
handle, present on all cDNA molecules, were hybridized at room temperature to
visualize the distribution of rolonies and the shape of the somas (RiboSoma),
respectively. After imaging, the fluorescent probeswere stripped andwashed away
at room temperature. In the subsequent decoding rounds, round-specific decoding
probeswerehybridized, imagedand stripped. This procedurewas repeatedn times
(n=6 in this example). c An example codebook for DART-FISH. Each gene was

barcoded such that the corresponding rolonies showfluorescent signal in k (k = 3 in
this example) rounds of decoding and remain off in other rounds. 5–10% of the
codebook consists of empty barcodes that do not have representative padlock
probes and were only used for quality control in the decoding pipeline.
d SparseDeconvolution (SpD) decoding algorithm. The intensity of pixels across n
rounds of 3-channel imaging was modeled as a weighted combination of the bar-
codes in the codebook. The decoding was formulated as a regularized linear
regression such that most barcodes do not contribute to the observed intensity.
e Example of decoding by FISH on the PA gel. The lower panel shows themaximum
intensity projection of the fluorescent images across 6 decoding rounds and 3
channels (scale bar 5 μm). The upper panel is a cartoon drawing depicting the
decoding of a RORB spot corresponding to the white square. f Lasso maps. Lasso
maps are the solutions to the optimization in d and represent the gene weights for
each of NRGN, SLC17A7, UCHL1, RORB, TMSB10, and an Empty barcode in e (scale
bar 5 μm).
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Organization of cell types in the human primary motor cortex
To assess whether DART-FISH is able to resolve the organization of
various cell types of humanM1C, we set out to performcell annotation
by performing clustering on DART-FISH cells and matching them to
the highest correlated subclass from a recent single-nucleus RNA
sequencing (snRNA-seq) reference of M1C61 (Methods, Fig. 3a and b,
Supplementary Fig. 5a, b). We resolved 20 subclasses from the major

excitatory, inhibitory, and non-neuronal cell classes,which constituted
24.3%, 10.6%, and 65.1%, respectively, in the M1C (Fig. 3c–g). For exci-
tatory neuronal subclasses, we successfully detected their laminar
distribution, with L2/3 IT neurons localized at the superficial layer of
the cortex and L6b/CT neurons deep in the cortex and close to the
white matter (Fig. 3b–d), in line with the evolutionarily conserved
organization of excitatory neurons in the mammalian M1C46. Of note,
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L6 IT Car3 cells seem to bepositionedmore superficially than the L6 IT
population, consistent with recent observations in human visual cor-
tex and middle temporal gyrus61,62 (Fig. 3d). In contrast, inhibitory
neuronal subtypes generally showed wider spatial gradients along the
cortical axis; for instance the Vip population was enriched in layer 2-4
as suggested by previous studies in the mouse49,63 (Fig. 3b and e).
Moreover,weobserved somecells belonging to the excitatoryneurons
and inhibitory neurons localized in the white matter region, which
likely are the adult remnants of early generated subplate neurons
discovered in previous studies64,65. For non-neuronal cells, we
observed oligodendrocytes appearing at layer 4 and peaking in the
white matter66 in spite of the uniform distribution of the oligoden-
drocyte progenitors across the tissue section (OPC, Fig. 3f)67.

We further assessedwhether we could detect short genes (<1.5kb)
with DART-FISH. smFISH-basedmethods rely on tiling sufficiently long
RNAmolecules with probes to generate detectable fluorescent signals.
In contrast, DART-FISH requires only one padlock probe to bind suc-
cessfully to the target to detect it. To boost our chances for detecting
shorter genes, we allowedoverlapping targets inour design strategy to
obtain more probes for short RNA species68 (Supplementary Fig. 3b,
NPY as an example). We compiled a list of 33 differentially expressed
genes shorter than 1.5kb comprising well-studied genes as well as less
well-known computationally derived marker genes in the brain (Sup-
plementary Data 2). For example, by targeting SST (607 nt) and NPY
(893 nt), we could uncover a rare subclass of inhibitory neurons, Sst
Chodl (0.1% abundance, Fig. 3g), specified by the expression of these
short neuropeptides (Fig. 3b and h). Sst Chodl cells were found to be
enriched in deeper layers, consistent with previous reports69. In addi-
tion to these short neuropeptides, DART-FISH also detected other
short RNA species, including PCP4 (534nt) and TMSB10 (461nt) with
pronounced localization (Fig. 3h). PCP4 is reported to be a layer 5-6
marker in the mouse cerebral cortex70 while TMSB10 seems to be a
deep layer marker gene. To quantify how well the targeted genes
performed,we correlated their average expression at the subclass level
betweenDART-FISH and snRNA-seq (Methods, Supplementary Fig. 5c).
We found 25 of 33 (75%) of the genes shorter than 1.5kb and 81 of 88
(92%) of the longer genes had higher correlations than 0.5 (Supple-
mentaryData 2). This is similar to aMERFISHdata set targeting another
region of the human cortex with 250 genes (88% with >0.5 Pearson’s
correlation, Supplementary Fig. 5c). Taken together, we showed that
DART-FISH can accurately map the distribution of all the main neu-
ronal and non-neuronal subclasses in the human brain and can
uncover rare cell populations by detecting short genes.

Mapping cellular neighborhoods in histopathologically abnor-
mal human kidney
To demonstrate the applicability of DART-FISH to a clinically relevant
tissue context, we next applied it to the human kidney. The kidney is
composed of repetitive functional tissue units, called nephrons, with
various closely organized cell types, including endothelial, stromal,
immune and epithelial cells that regulate the filtration of the blood as
well as other homeostatic functions such as maintaining electrolyte
and fluid balance71 (Fig. 4a, Supplementary Fig. 6a). The homeostatic

interactions between these cell types are perturbed in kidney disease
and can lead to fibrosis and decline in kidney function72. We recently
reported an atlas of cell types in healthy and diseased patients, and
identified multiple mal-adaptive cell states that are associated with
kidney disease73,74. In the same study, we used sequencing-based spa-
tial transcriptomics methods with 10um and 55um resolution to map
cellular neighborhoods in healthy and diseased samples, respectively,
which lacked the resolution needed to delineate the exact cellular
composition, the boundaries and the positioning of cells within the
neighborhoods.We reasoned that the high spatial resolution provided
by DART-FISH is complementary to the sequencing-based methods
and can help define cellular niches more accurately.

Guided by the published single-nucleus reference atlas, we
designed a panel of 300 genes with 6299 padlockprobes following the
3-on-4-off barcoding scheme, focusing on the major healthy cell types
of the kidney, immune cells and cell states implicated in kidney disease
(Supplementary Data 3). We then performed DART-FISH on tissue
sections from the kidney cortex of a patient with various clinical fea-
tures, including glomerulosclerosis, interstitial fibrosis, tubular atro-
phy, and chronic inflammation identified by a pathologist. Our gene
panel correctly mapped the spatial organization of cells in different
regions of the nephron, including glomeruli and cortical tubules
(Fig. 4b). For instance, the transcripts NPHS2 and EMCN, which mark
podocytes and glomerular capillary endothelial cells, respectively, are
mainly found in the glomerular tuft of the round appearing renal
corpuscles.We then compared our datawith a Slide-seq dataset froma
healthy individual. At the bulk level, the DART-FISH data is correlated
with slide-seq (Pearson’s r = 0.609) with cells in DART-FISH demon-
strating more copies of the targeted genes than Slide-seq beads73

(median fold-change per gene=2.2 for the top 150 genes in slide-seq,
Supplementary Fig. 6b). The comparison also showed upregulation of
markers of inflammation in the DART-FISH dataset, consistent with the
underlying pathology in our sample (Supplementary Fig. 6b). Hence,
the spatial distribution of known kidneymarker genes and their overall
counts are consistent with kidney biology and prior data.

To find the molecular identity of the cells in the human kidney,
cell segmentation was performed using both RiboSoma and nuclear
stains. We found RiboSoma to be superior to the nuclear stain in
revealing tubular morphology and distinguishing the interstitial cells
(Supplementary Fig. 6c). Subsequently, with 30,000 segmented cells
with anaverageof 30detected transcripts and20uniquegenesper cell
(Supplementary Fig. 6d, e, empty rate <0.25%with 15 empty barcodes),
the kidney DART-FISH data was annotated to cortical and altered cell
types as identified in the single-cell kidney atlas73 (Fig. 4c, Supple-
mentary Fig. 6f, Supplementary Fig. 7, Methods). These annotated cell
types were of the expected relative proportions and showed strong
and specific differential expression of corresponding marker genes
(Fig. 4d, Supplementary Fig. 6f, Supplementary Fig. 8a). Thus, DART-
FISH could confidently resolve >20 cell types and states in the human
kidney.

Next, we investigated the neighborhoods formed by the healthy
cell types. The complex archetypical structure of the renal corpuscle
was successfully recapitulated, with podocytes (POD), glomerular

Fig. 2 | Benchmarking DART-FISH on the human M1C. a Parallel sections were
taken from a dissected post-mortem human M1C tissue block. Spatial distribution
of 121 genes wasmeasured byDART-FISHwith 6 rounds of decoding.b Scatter plot
showing reproducibility between parallel tissue sections processed independently.
Each dot represents the total count of each gene detected in each replicate. c The
histogram for the number of high quality decoded rolonies per cell. d Spatial dis-
tribution of excitatory neuron markers (SLC17A7 and SATB) and inhibitory neuron
markers (GAD1 and GAD2) in the whole tissue. The dashed rectangular box
delineates theROI in f. eZoomed-inviews to show the segregationof excitatoryand
inhibitory markers at single-cell level in 4 ROIs indicated by the black squares in c.
Scale bars 20 μm. f Validation of DART-FISH by RNAscope. Spatial distribution of

SLC17A7, CUX2, CBLN2, RORB and FEZF2 across the cortical layers measured by
RNAscope (left) and DART-FISH (right). Scale bar 100μm. g Quantitative compar-
ison of counts for SLC17A7, PVALB, CBLN2, RORB, CUX2, AQP4, APBB1IP, FEZF2,
GAD2, and LAMP5 in DART-FISH and RNAscope in equivalent ROIs. Percentages
represent total spots detected in DART-FISH divided by total spots detected in
RNAscope multiplied by 100. h Comparing DART-FISH and MERFISH59 (sam-
ple H18.06.006.MTG.4000.expand.rep2). Each dot represents the mean count per
cell for the 56 shared genes. i Comparing DART-FISH and EEL FISH60 (data from
human visual cortex). Each dot represents the total count for one of the 60 shared
genes. Source data are provided as a Source Data file.
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capillary endothelial cells (EC-GC) andglomerularmesangial cells (MC)
confined within the glomerular tuft, surrounded by parietal epithelial
cells (PEC) or the outer layer of the Bowman’s capsule and juxtaposed
with the renin-secreting cells (REN) in the wall of the arterioles (Fig. 4e,
Supplementary Fig. 6a, Supplementary Fig. 7). We also detected
medullary rays with the characteristic bundling of the tubules of

cortical thick ascending limb (C-TAL), the S3 segment of proximal
tubules (PT-S3) and collecting ducts (Fig. 4f). Further, collecting ducts
comprising intermixed principal cells (PC) and alpha- and beta-
intercalated cells (C-IC-A and IC-B) could be clearly resolved. These
results show that our cell type annotations closely match the known
structures within the human kidney.

Fig. 3 | DART-FISH mapping of cell types in the human M1C. a UMAP plot of all
annotated excitatory neurons (L2/3 IT, L4 IT, L5 IT, L5/6 NP, L6 IT, L6 IT Car3, and
L6b/CT), inhibitory neurons (Pvalb, Vip, Lamp5, Lamp5 Lhx6, Sst, Sst Chodl, and
Chandelier), and non-neuronal (Astro, Endo, VLMC, Oligo, OPC, and Micro/PVM)
subclasses. Astro: astrocytes, Endo: endothelial cells, VLMC: vascular and lepto-
meningeal cells, Oligo: oligodendrocytes, OPC: oligodendrocyte precursor cells,
Micro/PVM: microglia/perivascular macrophages, IT: intratelencephalic, CT: corti-
cothalamic, NP: near-projecting. b Dot plot of marker gene expression across
annotated subclasses. c Spatial distribution of all annotated cell types in the entire
M1C tissue section from upper cortical layer at the top to the white matter (WM) at

the bottom. The dashed rectangular box delineates the ROI in d–f. d–f show the
density plot (left) and spatial distribution (right) of excitatory neurons, inhibitory
neurons, and non-neuronal subclasses, respectively. g Pie chart depicting the
relative frequency of annotated subclasses (n = 1 section). h Spatial distribution of
targeted short RNA species PCP4, TMSB10, SST, and NPY in the M1C tissue section.
PCP4 and TMSB10 are layer 5 and layer 5–6 markers, respectively. Sst Chodl cells
(0.1% abundance) are SST+ NPY+. Inset 1 shows an example of a Sst Chodl cell, while
inset 2 is a SST+ NPY- cell from the more frequent Sst subclass (abundance 3.5%).
Inset scale bars 20μm.
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Fig. 4 | DART-FISHmapping of a diseased human kidney. a Applying DART-FISH
to a 4.9x3.8mm2 section from the cortex of the human kidney (adapted from
BioRender). The nephron schematics shows the expected epithelial subclasses in
the section101. b The spatial expression of key marker genes for the cortical seg-
ments: EMCN: glomerular capillary endothelial cells (EC-GC), NPHS2: podocytes
(POD), LRP2: proximal tubules (PT), SLC12A1: cortical thick ascending limbs (C-
TAL), SLC12A3: distal convoluted tubules (DCT), AQP2: cortical principal cells of the
collecting duct (C-PC). c UMAP of all annotated subclasses. PEC: parietal epithelial
cells, aPT: altered proximal tubules, DTL: descending thin limbs, aTAL: altered thick
ascending limbs, DCT: distal convoluted tubules, CNT: connecting tubules, C-IC-A:
cortical intercalated cell type A, IC-B: intercalated cell type B, EC-PTC: peritubular
capillary endothelial cell, MC: mesangial cell, REN: renin-positive juxtaglomerular
granular cell, VSMC: vascular smoothmuscle cell, VSMC/P: vascular smoothmuscle
cell/pericyte, FIB: fibroblast, MYOF: Myofibroblast, MAC-M2: M2 macrophage,

IMM-Lym: lymphoid cell, IMM-Myl: myeloid cell. d Dot plot of marker gene
expression for the annotated subclasses. e An example of a glomerulus with part of
the juxtaglomerular apparatus. (top) cells colored by the annotated subclass,
(bottom) marker genes corresponding to the subclasses. Each dot represents one
rolony. Dashed line delineates the boundary of the renal corpuscle. f Example of a
medullary ray with a bundle of TALs, PT-S3, and collecting ducts. Note that for
clarity, some cell types, i.e., aPT, FIB, aTAL1 and MYOF are plotted (top) but their
corresponding marker genes are omitted (bottom). g Example of a pathological
niche with inflammation, a sclerosed glomerulus and altered proximal tubule cells
adjacent to a more normal glomerulus (top). The same area on an H&E-stained
parallel section from the same tissue block confirms the decellularization and
inflammation observed in DART-FISH. The black arrow points to the sclerotic glo-
merulus. h Example of a pathological niche composed of aTAL1 cells and myofi-
broblasts. Red arrows point toward densities of MYOF and aTAL1 cells.
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To compare the tissue morphology obtained from DART-FISH
with a clinically relevant histological stain, we performed Hematoxylin
and Eosin (H&E) staining on a parallel section from the same tissue
block. In an area with putative inflammation on the H&E slide, we
observed an abundance of immune cells of both lymphoid and mye-
loid origin on the DART-FISH section (Fig. 4g). These immune cells
surround a sclerotic glomerulus, which in contrast to a more normal
glomerulus, is depleted from cells and is instead fibrotic (shown by an
arrow in Fig. 4g). In DART-FISH, this phenomenon can be clearly
detected by contrasting the low cell numbers revealed by RiboSoma
and the physically occupied space through the accompanying trans-
mitted light image (Supplementary Fig. 6h). Thus, by paired H&E
staining we showed that DART-FISH can capture different pathological
phenomena with a molecular resolution beyond that of the traditional
histology.

In addition to healthy cell types,DART-FISHwas also able to reveal
distinct pathological cell states. This includes a population of myofi-
broblasts (MYOF) expressing matrisome genes, including COL1A1,
TNC, DCN and POSTN, suggestive of their ECM-producing role in kid-
ney fibrosis (Supplementary Fig. 8b)73,75. Furthermore, we detected
altered PT (aPT) and TAL (aTAL1) populations, both of which expres-
sed PROM1, in line with recent findings73,76. To determine whether
these pathological cell states form distinctive niches, computational
methods were applied to find pairs of cell types that show enrichment
in their spatial colocalization77. Interestingly, in neighborhoods around
MYOFs, there was an increased presence of aTAL1 cells compared to
C-TAL and aPT (Fig. 4h, Supplementary Fig. 6i). This observation
indicates a possible interplay between the maladaptive repair of TALs
and fibrosis. We speculate that there are a variety of cellular neigh-
borhoods associated with adaptive repair and fibrosis that could be
defined through further studies. All in all, these results demonstrate
how DART-FISH as a single-cell resolution spatial transcriptomic
technique can be used to interrogate neighborhoods of cell types and
states defined by single-cell RNA sequencing studies in diseased
human tissues.

Discussion
In this study we introduced DART-FISH, a high throughput RNA
in situ mapping technique, and demonstrated its application to
human tissues, even with high native autofluorescence background.
In the human brain, we recovered the spatial distribution of 20 cell
types from the 3 main cell classes. This included the laminar orga-
nization of the excitatory neurons in the cortex and the broader
layer-specificity of inhibitory neurons, and the ubiquity of the non-
neuronal cells across the brain cortex.We also profiled a sample from
a histopathologically abnormal human kidney and demonstrated
identification of rare cells such as REN-producing cells, the intricate
functional niches, and quantified the interactions between patholo-
gical cell states.

DART-FISH is a cost-effective technology capable of fast decoding
on relatively large tissue sections. Using our protocol for padlock
probe production from oligo pools, the cost of synthesis per gene
scales sublinearly with the number of genes. Hence, oligo pricing will
not hinder scaling the probe set to tens of thousands of transcripts.
Moreover, DART-FISH does not need any specialized equipment for
neither rolony generation nor decoding. The decoding process is
relatively fast because it depends on the diffusion and hybridization of
very short oligos and a strong signal can be obtained by 5-10min of
incubation with the fluorescent decoding probes at room tempera-
ture. Likewise, stripping and washing away the unbound decoding
probes is straightforward and fast at room temperature. This process
canbeperformedon a stationary glass-bottompetri dishor a coverslip
mounted on a microscope and does not require reaction chambers or
flowcells with sophisticated temperature control. The large size and
the bright signal of the rolonies permit the use of 20x objective lenses

for decoding, which makes it possible to image centimeter-sized
samples in a manageable time with an ordinary confocal microscope.

What distinguishes DART-FISH from other techniques of a similar
class is how the cDNA molecules are treated35,36. We demonstrated
here that embedding the cDNA molecules in a polyacrylamide gel
significantly enhances the retention of the cDNA throughout the rol-
ony generation procedure and increases the sensitivity, a point not
taken into account in previously published methods. Additionally, we
introduced RiboSoma, a cDNA labeling technique, as a cell morphol-
ogy marker which reveals more information about cell bodies than
nuclear stains. We anticipate that this tool can be highly useful for cell
body segmentation, particularly in thicker samples.

RCA-based in situ detection systems are prone to optical and
physical overcrowding as more and more genes are detected with
higher efficiency. Tomitigate this issue,wedeveloped a computational
method (SpD) that used the redundancy in the barcode space to
deconvolvemixed barcodes from singlepixels. This strategy improved
our decoding efficiency compared to naive decoding methods42. The
utility of this method increases with higher redundancy in the barcode
space by creating longer barcodes with more “on” cycles, and careful
assignment of barcodes to genes such that genes that tend to co-
express in the same cell types have unique barcode combinations. In
addition, more sophisticated deconvolution methods that share
information between neighboring pixels can potentially improve
decoding efficiency43,44,78. As the field is moving towards detecting
more genes in parallel, pixel-based deconvolution methods like SpD
could become increasingly relevant.

Although we have only tested DART-FISH on fresh-frozen tissue
sections, we think it should be compatible with other tissue pre-
servation methods as long as the RNA integrity is well-preserved. We
have found tissue quality to be a critical source of variability across
experiments and hence should be controlled by meticulous prepara-
tion and handling of tissue blocks. Future studies that systematically
evaluate various preservation methods for post-mortem human tis-
sues will be key to advancing the field. Note that different fixation
methods, as well as different tissue types, may require optimization of
the tissue processing steps (e.g., permeabilization) before reverse-
transcription. RiboSoma can be a helpful guide through this optimi-
zation, as the overall intensity of the signal and the morphological
patterns can be used to compare different treatment conditions.

Due to its streamlined nature and simplicity, the basic DART-FISH
chassis described here can be effectively extended in multiple ways.
Theworkflow can be combined with antibody staining, for instance, to
target extracellular factors such as matrix proteins and cell-cell com-
munication molecules to enhance the definition of cell-cell interac-
tions in pathological niches79. The thickness of tissue sections could be
increased for higher resolution mapping of neighborhoods and cell
connectivities; while increasing section thickness to 20-30μm should
be readily achievable, other strategies in sample mounting and hand-
ling may be necessary to increase the diffusion into even thicker sec-
tions (>100μm)80. Padlock probes could also be designed to anneal
directly to mRNA followed by circularization using an RNA-mediated
DNA ligase, which would skip the cDNA synthesis and can improve the
detection sensitivity.

Methods
Human tissue samples
Humanbrain. Human Brain tissue was obtained from the University of
Washington Biorepository and Integrated Neuropathology (BRaIN)
Laboratory under UW School of Medicine and HIPAA compliance.
Informed consent was obtained for the use of data and samples. One
donor brain with postmortem interval ≤12 h and RIN score ≥7 was
selected for DART-FISH assay. Regions were identified and isolated
utilizing architectural landmarks, aidedby theAllen BrainHumanBrain
Atlas81. Multiple parallel 10-μm-thick cryosections were taken from the
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tissue block and mounted onto vectabond-coated 24 x 60 mm No.1.5
coverslips (Azer Scientific, 1152460). Brain cryosections were stored at
−80 °C until use.

Human kidney. Kidney tissue was obtained from the Kidney Transla-
tional Research Center (KTRC) biorepository under a protocol
approved by the Washington University Institutional Review Board
(IRB 201102312). Informed consent was obtained for the use of data
and samples. The kidney tissue was dissected from the whole kidney
and freshly frozen in Optimal Cutting Temperature embedding media
in cryomolds on a liquid nitrogen chilled metal block and stored at
−80 oC until ready for experimental use74. 10-μm-thick sections were
cut from the frozen blocks for DART-FISH and flanking sections were
used for histopathological assessment by a renal pathologist.

Reagents and enzymes
All reagents were listed as in Supplementary Data 1.

Gene selection
A list of genes was selected based on differential expression analysis of
snRNA-seq data from human primary motor cortex46,48,50 and a few
curated marker genes were added manually to target 121 genes in the
human M1C. Human kidney gene selection was performed by
gpsFISH82,83 to distinguish subclass level 2 annotation in our kidney
reference atlas73. snRNA-seq data from the kidney reference atlas with
cell type annotation at subclass level 2 was used as input of gpsFISH.
Curated marker genes from prior knowledge were also included as
input. The size of the gene panel was set to 300. We ran the optimi-
zation for 100 iterations to ensure convergence although the optimi-
zation converged around iteration 50.

Probe design and production
DART-FISHprobedesign. For short genes (length < 1.5kb), we defined
the constitutive exon as the union of all isoforms in GencodeV41. For
other genes, the constitutive exons were defined as regions in RefSeq
where at least (33% for the brain, 50% for the kidney) of isoforms
overlap. We used a modified version of ppDesigner38 (https://github.
com/Kiiaan/sppDesigner) to find padlock target sequences along the
constitutive exons. ppDesigner was run on two settings: 1) no overlap
between probes allowed, 2) overlap of up to 20nt allowed. Individual
armswereconstrainedbetween 17nt and22nt longwith the total target
sequences no longer than 40nt. The resulting target sequences were
aligned to GRCh38/hg38 with BWA-MEM84 and sequences with
MAPQ< 40 or secondary alignment were removed. We further
removedprobes that haveGATC (DpnII recognition site). For thebrain,
a maximum of 50 probes per gene were selected prioritizing the non-
overlapping set. For the kidney, a maximum of 40 probes per gene
were selected with no overlap. Finally, the target sequences were
concatenated with amplification primer sequences, universal
sequence, and gene-specific decoder sequences to produce final
padlockprobe sequences (Supplementary Fig. 3c) andwere ordered as
an oligo pool from Twist Bioscience (South San Francisco, CA).
Amplification primer pairs pAP1V41U and AP2V4 were used for the
kidney probe set, while the brain probe set was amplified with AP1V7U
and AP2V7 primer pair (Supplementary Data 1).

To select a set of barcodes, we computationally created all pos-
sible barcodes in the compact format: an n digit barcode with “1”, “2”
and “3” representing each of the three fluorescent channels and “0”
indicating off cycles. For example, the barcode for RORB in Fig. 1c is
“132000” in the 6-digit format. This amounted to 480 and 840 multi-
color barcodes forbrain andkidney, respectively.We thenused abrute
force algorithm to find the largest subset of barcodes, Q, in which
every pair had a Hamming distance > 2. Followed by this, we created a
graph,G, in which every possible barcode is a node, and pairs of nodes
are connected with edges if their Hamming distance is 1. We then

found amaximal independent set (MIS, networkx v2.6.2) that included
the nodes inQ. Thismethod ensures that every pair of barcodes in the
MIS have Hamming distance >1. Because the algorithm for findingMIS
is random, we ran it 20,000 times and selected the largest MIS across
the runs. For the brain, theMIS consisted of 159 barcodes, 121 of which
were randomly assigned to the genes. For the kidney, the MIS had 269
barcodes.We randomly added 31 additional barcodes and counted the
number of edges of the induced subgraph of G with the selected
nodes. We repeated this selection 20,000 times and proceeded with
the runwith the lowest edge count. 300geneswere randomly assigned
to these barcodes.

Large-scale padlock probe production. A step-by-step protocol can
be found on protocols.io (dx.doi.org/10.17504/protocols.io.n92ldm3
pxl5b/v1) and is illustrated in Supplementary Fig. 3c. Briefly, oligo
pools were PCR amplified on a 96-well plate (10pM per reaction) using
KAPA SYBR fast and 0.4μM of each amplification primer (pAP1V41U
and AP2V4 for kidney, AP1V7U and AP2V7 for brain, Supplementary
Data 1, Supplementary Fig. 3c) until plateau. The PCR products were
pooled and concentrated with ethanol precipitation and further pur-
ified using QIAquick PCR purification kit (Qiagen 28106).

For the brain probe set, the purified amplicons were divided into
parallel reactions (about 5ug each) and were digested with Lambda
Exonuclease (0.5U/ul) in 1x buffer (NEB M0262L) at 37 °C for 2 h and
purified using Zymo ssDNA/RNA clean & concentrator kit following
manufacturer’s instructions (Zymo D7011). Next, the single-stranded
probes were further digested with 5 units of USER enzyme (NEB
M5505L) in 1x DpnII buffer at 37 °C for 3 h. Subsequently, for each
reaction we added DpnII guide oligo (Supplementary Data 1) to final
concentration of 5uM in 1x DpnII buffer, heated the mix to 94 °C for
2min, cooled to 37 °C and added 50 units of DpnII in 1x DpnII buffer
and incubated for 5 h. Finally, probes were size-selected using a TBE-
Urea gel.

For the kidney probe set, DpnII digestion was performed after
PCR. In detail, the purified amplicons were divided into parallel reac-
tions (about 5ug each) and were digested with DpnII (1U/ul) in 1x
NEBuffer DpnII (NEB R0543L) at 37 °C for 3 h and purified with QIA-
quick PCR purification kit. The purified products were digested with
Lambda Exonuclease (0.5U/ul) in 1x buffer (NEB M0262L) for 2 h and
purified with Zymo ssDNA/RNA clean & concentrator kit. Finally, the
library was digested with USER (0.0625U/ul, M5505L) in 1x NEBuffer
DpnII in parallel reactions (about 2.5ug each) for 6 h at 37 °C followed
by 3 h at room temperature and purified with Zymo ssDNA/RNA clean
& concentrator kit.

DART-FISH
The overall workflow, including reverse transcription, cDNA cross-
linking, padlock probe capture, RCA, rolony crosslinking and image
acquisition, is illustrated in Fig. 1. A step-by-step protocol can be found
at protocols.io (dx.doi.org/10.17504/protocols.io.e6nvwjxnzlmk/v1).

Reverse transcription and cDNA crosslinking. Tissue sections were
fixed in 4% PFA in 1x PBS at 4 °C for 1 h, followed by two 3-minute
washes with PBST (1x PBS and 0.1% Tween-20). Then, a series of 50%,
70%, 100%, and 100% ethanol were used to dehydrate the tissue sec-
tions at room temperature for 5min each. Next, tissues were air dried
for 5min and in the meantime silicone isolators (Grace Bio-Labs,
664304) were attached around the tissue sections. Then, the tissue
sections were permeabilized with 0.25% Triton X-100 in PBSR (1x PBS,
0.05U/μl Superase In, 0.2U/μl Enzymatics RNase Inhibitor) at room
temperature for 10min, followed by two chilled PBSTR (1x PBS, 0.1%
Tween-20, 0.05U/μl Superase In, 0.2U/μl Enzymatics RNase Inhibitor)
washes and a water wash. Next, the sections were digested with 0.01%
pepsin in 0.1 N HCl (pre-warmed 37 °C for 5min) at 37 °C for 90 s and
washed with chilled PBSTR twice. Afterwards, acrydite-modified dT
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and N9 primers (Acr_dc7-AF488_dT20 and Acr_dc10-Cy5_N9, Supple-
mentary Data 1) weremixed to a final concentration of 2.5 μMwith the
reverse-transcription mix (10U/μL SuperScript IV (SSIV) reverse tran-
scriptase, 1x SSIV buffer, 250 μMdNTP, 40 μM aminoallyl-dUTP, 5 mM
DTT, 0.05U/ul Superase In and 1U/μL Enzymatics RNase inhibitor). The
sections with the mix were incubated at 4 °C for 10min and then
transferred to a humidified 37 °C oven for overnight incubation. After
reverse transcription, tissue sections were washed with chilled PBSTR
twice and incubated in 0.2 mg/mL Acryloyl-X, SE in 1x PBS at room
temperature for 30min. Then, the tissue sections were washed once
with PBSTR, followed by incubation with 4% acrylamide solution (4%
acrylamide/bis 37:1, 0.05U/μL Superase-In, and 0.2U/μL RNase inhi-
bitor) at room temperature for 30min. Subsequently, the acrylamide
solution was aspirated and gel polymerization solution (0.16%
Ammoniumpersulfate and 0.2% TEMED in the 4% acrylamide solution)
wasadded. Immediately, the tissueswere coveredwithGel Slick (Lonza
#50640)-treated circular coverslips of 18 mm diameter (Ted Pella,
260369), transferred to an argon-filled chamber at room temperature
and incubated for 30min. After gel formation, the tissue sections
were washed with 1x PBS twice and the coverslip was gently removed
with a needle. At this point, the cDNA is crosslinked to the
polyacrylamide gel.

Padlock probe capture. After cDNA crosslinking in gel, remaining
RNA was digested with RNase mix (0.25U/μL RNase H, 2.5% Invitrogen
RNase cocktail mix, 1x RNase H buffer) at 37 °C for 1 h followed by two
PBST washes, 3min each. The padlock probe library was mixed with
Ampligase buffer. Then, themixture was heated to 85 °C for 3min and
cooled on ice. Subsequently, the mixture was supplemented with
33.3U/μL Ampligase enzyme such that the final concentration of pad-
lock probe library was 180 nM and 100 nM for the kidney and brain
probe set, respectively, in 1x Ampligase buffer. Finally, the samples
were incubated with probes at 37 °C for 30min, and then moved to a
55 °C humidified oven for overnight incubation.

RCA and rolony crosslinking. After padlock probe capture, the tissue
sections were washed with 1x PBS three times, 3min each and hybri-
dized with RCA primer solution (0.5 μM rca_primer, 2x SSC, and 30%
formamide) at 37 °C for 1 h. Then, the tissue sectionswerewashedwith
2x SSC twice and incubated with Phi29 polymerase solution (0.2 U/μL
Phi29 polymerase, 1x Phi29 polymerase buffer, 0.02 mM aminoallyl-
dUTP, 1 mg/mL BSA, and 0.25 mM dNTP) at 30 °C in a humidified
chamber for 7 h. Afterwards, the tissue sections were washed with 1x
PBS twice, 3min each and the rolonies were crosslinked with 5 mM
BS(PEG)9 in 1x PBS at room temperature for 1 h. The crosslinking
reaction was terminated with 1M Tris, pH 8.0 solution at room tem-
perature for 30min. Finally, samples were washed with 1x PBS twice
and stored in a 4 °C fridge until image acquisition.

Image acquisition
Human Brain. Human brain tissue sample was stained with 1x True-
Black in 70% ethanol at room temperature for 2min to reduce the
lipofuscin autofluorescence and washed with 1x PBS three times for
3min each before imaging. For the anchor round imaging, amixture of
anchor round probes, including DARTFISH_anchor_Cy3, dcPro-
be10_ATTO647N, and dcProbe7_AF488 probes, werediluted to 500nM
in 2x SSC and 30% formamide. Then, the samples were stained with
anchor roundprobes at room temperature for 5min andwashedwith 1
mL washing buffer (2x SSC, 10% formamide and 0.1% Tween-20) twice
for 2min each prior to imaging. The samples were immersed in 1 mL
imaging buffer (2x SSC and 10% formamide) during imaging. For
decoding imaging, each imaging cycle startedwith incubating samples
with stripping buffer (2x SSC, 80% formamide, and 0.1% Tween-20) at
room temperature for 5min, washed with washing buffer twice for
2min each, stained with a mixture of AlexaFluor488, Cy3, and

ATTO647 fluorophore-labeled decoding probes (dcProbe0-AF488,
dcProbe0-Cy3, and dcProbe0-ATTO647N as an example for round 1) in
2x SSC and 30% formamide for 10min, and washed with washing
buffer three times for 2min each. Then, the samples were immersed in
1 mL of imaging buffer while imaging. After the last cycle of decoding
imaging, DRAQ5 staining (5 μM, room temperature, 10min) was per-
formed for nuclei segmentation. Z-stack images were acquired by a
resonant-scanning Leica TCS SP8 confocal microscope with 20x oil-
immersion objective (NA =0.75), pinhole size of 1 airy unit, pixel size of
284 nm x 284 nm (zoom=2) with 1024 x 1024 pixels per image, and 2
line averaging with 26 z-stacks (step size 1μm).

Human Kidney. The same fluorescent probes were used as in the
humanbrain imaging in this order: anchor round, decoding rounds 1 to
7, DRAQ5 nuclear staining. All hybridizations were performed with
500nMof each of the fluorescent oligos in 2x SSC and 30% formamide
for 15min. Following hybridization, the unbound probes were washed
with 4–5 washes with PBST each 2–3min. Imaging was performed in
PBST on a resonant-scanning Leica SP8 with a 20x oil-immersion
objective (NA =0.75), pinhole size of 2 airy units, pixel size of 366 nmx
366 nm (zoom=1.55) with 1024 x 1024 pixels per image, 3 line aver-
aging, with 24 z-stacks (step size 2.5um). After each imaging round,
stripping was performed with 80% formamide in 2x SSC and 0.1%
Tween-20, 3 times each 3-5min, followed by 2 quick washes with PBST
to prepare for the next hybridization.

RNAscope
Sample preparation. RNAscope HiPlex 50x probe stocks of human
SLC17A7, RELN, CUX2, RORB, CBLN2, FEZF2, GAD2, PVALB, LAMP5, PLP1,
AQP4,and APBB1IP with HiPlex12 Reagent Kit v2 (488, 550, 650) Assay
(ACD, 324419) were purchased fromAdvanced Cell Diagnostics (ACD).
The 50x probe stocks and RNAscope HiPlex diluent were warmed at
40 °C for 10min. The pre-warmed 50x probe stocks were pooled and
diluted to 1x with pre-warmed RNAscope HiPlex diluent before use.
RNAscope experiments were carried out according to the manu-
facturer’s protocol (document number UM324419) with slight mod-
ifications for post-mortem human brain tissue. Briefly, the human
brain tissue sectionswerefixedwith 4%PFA in 1x PBS at 4 °C for 1 h and
dehydrated with a series of 50%, 70%, 100%, and 100% ethanol at room
temperature for 5min each. Then, silicone isolators of 20 mm in dia-
meter (Grace Bio-Labs, 664304) were applied around the tissue sec-
tions and the tissue sections were slightly digested with 5 drops of
Protease IV at room temperature for 30min and washed with 1x PBS
for 2min twice. Subsequently, enough volumeof 1x pooledprobeswas
added to cover the tissue sections entirely and the probe hybridization
was performed in the 40 °CHybEZ Hybridization System for 2 h. Then,
the tissue sections were washed with 1 mL 1x wash buffer at room
temperature for 2min twice. Later, the tissue sections were hybridized
with RNAscope HiPlex Amp1, incubated in the 40 °C HybEZ Hybridi-
zation System for 30min, and washed with 1x wash buffer at room
temperature for 2min twice. Afterwards, we followed the same pro-
cess to hybridize the tissue sections with RNAscope HiPlex Amp2 and
RNAscope Hiplex Amp3. Finally, we incubated the tissue section with
freshly prepared 5% HiPlex FFPE reagent at room temperature for
30min and washed the tissue sections with 1 mL 1x wash buffer at
room temperature for 2min twice prior to image acquisition.

Image acquisition. The tissue sections with silicone isolators were
mounted on the stage of a Leica SP8 confocalmicroscope and 4 cycles
of imaging were performed to image 12 RNA species. In the first ima-
ging cycle, RNAscope HiPlex Fluoro T1-T3 probes were prewarmed at
40 °C, added to cover the tissue sections entirely, and hybridizedwith
the tissue sections for 5min thrice. After probe hybridization, the tis-
sue sections were washed with 1 mL 1x wash buffer at room tempera-
ture for 2min twice and immersed in 1 mL 4x SSC buffer. Z-stack
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images were acquired by Leica TCS SP8 confocal microscope with 63x
oil-immersed objective (NA 1.4) and pixel size of 113 nmx 113 nm. Then,
the fluorophores were cleaved with freshly prepared 10% cleaving
solution (100 μL cleaving solution diluted with 900 μL 4x SSC buffer)
at room temperature for 15min and the tissue sections were washed
with 0.5% PBST (1x PBS with 0.5% Tween-20) at room temperature for
2min twice. The fluorophore cleaving process was repeated once to
ensure the fluorophores were removed entirely. This process was
repeated 3 more rounds to image RNAscope HiPlex Fluoro T4-T12. An
additional "Empty" cycle was performed to image the auto-
fluorescence of the human brain tissue without any probes. After the
last imaging cycle, we added 80% formamide in 2x SSC buffer to
removeRNAscope probes completely and stained the nuclei with 5μM
DRAQ5 at room temperature for 10min.

RNAscope data processing. RNAscope data was processed with the
DART-FISH pipeline with one modification. The images from the
“Empty” cycle were subtracted from all RNAscope images to remove
the autofluorescence.

DART-FISH data processing (DF3D)
The DART-FISH datasets were processed by our custom pipeline. The
source codes of the pipeline can be found in this Github page (https://
github.com/Kiiaan/DF3D). Raw z-stack images with 4 channels (3
fluorescent channels and brightfield) from the microscope were
registered to a reference round by affine transformation implemented
in SimpleElastix85 using the brightfield channel as the anchor. Then,
each field of view (FOV) underwent decoding to obtain a list of can-
didate spots. Spots from all FOVs were pooled and filtered (See Sparse
deconvolution (SpD) decoder for more details). To obtain the global
position of the rolonies, the FOVs were stitched by applying FIJI’s86

Grid/Collection Stitching plugin87 (in headlessmode) to the registered
and maximum-projected brightfield images. Note that the theoretical
positions of the FOVs, defined by the microscope, were used as initial
positions for stitching.

Cell boundaries were segmented with Cellpose (v2.1.1)88,89. The
“cyto” model in Cellpose was fine tuned on each tissue by manually
segmenting a handful of composite images of DRAQ5 (nuclei channel)
and N9 cDNA stain (cyto channel) using the package’s graphical user
interface.

Sparse deconvolution (SpD) decoding. In DART-FISH, each gene is
represented by a barcode that can be readout in n rounds of 3-channel
imaging. Each barcode is designed to emit fluorescence (be “on”) in
exactly k rounds, each time in a single fluorescent channel and stay
“off” in other rounds. We concatenate the rounds and channels and
represent the barcodes as 3n-dimensional vectors. In other words,
barcode i is represented by vector xi in which 1’s are placedwhere “on”
signal is expected, and 0’s everywhere else. The codebook matrix X
(3nxN) is then defined as X = ½x1,x2,:::,xN �, whereN is the total number
of barcodes. In the same way, for every pixel we concatenate the
fluorescent intensity values (scaled between 0 and 1) to create a
3n-dimensional vector y.

The fluorescence signal at each pixel can be sourced from more
thanone rolony if thedistancebetweenneighboring rolonies is smaller
than the optical resolution of the imaging system, or if 3-dimensional
stacks are analyzed as maximum-projected 2D images. Nevertheless,
because of physical constraints, only a handful of rolonies are expec-
ted to be the source of signal to each pixel. In this regard, because of
the redundancy in thebarcode space, combinations of barcodes in one
pixel can be decomposed into their original composing barcodes. We
formulated this problem as a regularized linear regression problem
where a weighted sum of a few barcodes creates the observed signal
intensity, where the vectorw= ½w1,w2,:::,wN �T shows the contribution
of each barcode (Fig. 1d) with most wsð1≤ s ≤NÞ elements equal to 0.

We initially used lasso to solve this problem (α0 =0 in Fig. 1d) to pro-
mote the sparsity ofw, but later decided to use elastic net with a non-
zero value for α0 that is much smaller than α (α0 =α=100) to increase
stability. We call the solution to this problem bwlasso. Note that, we
constrain the problem topositiveweight values (bwlassos

≥0 for every s).
The regression problems are solved for all the foreground pixels
(jjyjj2 >0:25) individually. For every barcode i, we can construct an
image with the estimated weight values as pixels: 0 for background
and rejected pixels, and non-zero values from bw. We call these images
weight maps. Figure 1f shows weight maps constructed with bwlasso

which have not been filtered.
With our current barcode space, we can only confidently

decompose bi-combinations. Hence, for every instance of the elastic
net problem, we applied an elbow filter and accepted the solution only
when the top one or two weights were significantly larger than other
weights.

In more detail, for every pixel, the weights in bwlasso are sorted in
decreasingorder. If the second largestweight is smaller than half of the
top weight, then the top weight passes the elbow filter. Otherwise, if
the third largest weight is smaller than 30% of the largest weight, the
top twoweights pass the elbow filter. All the values that do notpass the
filter are set to zero. For accepted solutions, we performed anordinary
least square (OLS) regression using the top one or two weights to
obtain unbiased weights (bwOLS). Supplementary Fig. 2a shows weight
maps constructed with bwOLS (OLS maps) after applying a Gaussian
smoothing.

Estimating channel-specific coefficients. So far, we have assumed
that pixel intensities fromdifferent rounds and fluorescent channels all
have the same scale and distribution. However, there is usually a var-
iation among rounds and fluorescent channels, with some channel-
roundsbeingbrighter thanothers. To account for this effect,wemodel
the channel-specific variations as a multiplicative factor that connects
the weights at each pixel to intensities: y= c�Xw where
c= ½c1, c2,:::, c3n�T is the channel coefficient vector and denotes
element-wisemultiplication. Suppose for a set of pixels yð1Þ ,yð2Þ,:::, yðPÞ

the true barcode weights wð1Þ,wð2Þ,:::,wðPÞ are given. For pixel i and
channel j, we could write: yðiÞj = cj

PN
b= 1Xjbw

ðiÞ
b = cj

PN
b= 1ðxjÞbw

ðiÞ
b where

ðxjÞb shows the b’s element of the j’s barcode. In this case, each cj can
be estimated by solving an OLS problem between yð:Þj andPN

b = 1ðxjÞbw
ð:Þ
b . Conversely, if the channel coefficients are given, we can

set up the decoding problemwith normalized intensities: �y=y=c=Xw
with = being element-wise division. We estimate the channel coeffi-
cients in an iterative manner following the algorithm below:
1. Initialize c= 1 (no channel variation)
2. Take a random sample of foreground pixels
3. Normalize the pixel intensities in the sample with c
4. Run SpD on the normalized pixels
5. Keep pixels with one dominant unsaturated weight (weight in

range 0.1 and 0.5) and obtain unbiased weights through OLS
6. Update the values of c by solving 3n OLS problems
7. Repeat steps 3–6 niter times

We do this procedure for 2 iterations and apply the obtained
values when decoding all fields of view.

Setting the elastic net regularization parameter. Because of physical
constraints, the solution to the deconvolution problem must be
sparse, i.e., only a few non-zero weights should explain the observed
intensities. The sparsity of the solution is directly controlled by the L1
regularization term, α (Fig. 1d). For a given pixel y, higher values of α
shrink the estimated weights (jjbwlassojj1!0). Conversely, lower values
of α allowmore weights to be non-zero and jjbwlassojj1 to grow larger. In
fact, one can show if the L2 regularization term, α0 =0, the largest
weight to be undetected for a pixel made purely from one barcode is
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wmax =
3n
k α 90. For instance, given α =0:05 and codebook parameters

n=6, k =3, then wmax =0:3. This means that a pixel composed of one
barcode needs to have an underlying intensity >0:3 to get a non-zerobwlasso. In other words, setting α too strictly will result in dimmer pixels
to have bwlasso =0, while setting α too loosely will result in spurious
non-zero values in bwlasso for brighter more complex pixels, potentially
not passing the elbowfilter and thus bwOLS =0. To accommodate awide
range of rolony intensities, we choose α adaptively based on the pixel
norm jjyjj2. First, we form a training data from a random subset of
foreground pixels indexed by i. For a given pixel norm u, we find the
alpha thatmaximizes aweighted sumof jjbwðiÞ

OLSjj1 givingmoreweights
to training pixels with closer norms to u (equation ∗):

αðuÞ=argmaxα
X
i

g
u� jjy ið Þjj2

σ

� �
jjbwðiÞ

OLSðαÞjj1

where gð:Þ is the Gaussian function. In practice, for the training pixels
we solve the sparse decoding problem for every value of α on a grid
from 0.01 to 0.1 with a step size of 0.005, αtrain, to obtain estimated
weights bwðiÞ

OLSðαÞ. Then we create a grid of norms utrain, spanning 0
and 2.8 with 50 steps. For every value of u in utrain, we solve equation ∗
on the αtrain grid. In other words, we create a lookup table connecting
values of utrain to the best α in αtrain. For new pixels, α is determined by
the closest norm in the lookup table.

Spot calling. To call spots,Gaussian smoothing is applied to individual
OLS maps, followed by peak_local_max filter (scikit-image 0.19.391)
which returns a binary image with 1’s at the local maxima of the
smoothed OLS maps. These peaks are then used as markers for
watershed segmentation. From each segmented region, the following
features are retained to be used in downstream steps: area, centroid,
maximum and average intensity. This formed a list of candidate spots
from each FOV.

Spot filtering. To control the specificity of the decoding procedure,
we augmented the codebook with a number of barcodes (5-10% of the
used barcodes) not used in the probe set (empty barcodes). After spot
calling, we record the properties (e.g., area, maximum and average
intensity) of spots with an empty barcode. Indeed, we see that empty
spots tend to be smaller with lower average/maximum weight (Sup-
plementary Fig. 2c and d). On a small fraction of spots from all fields of
view, we train a random forest classifier (scikit-learn v1.1.3) with area,
maximum and average weights as features to predict empty/non-
empty labels (Supplementary Fig. 2e). We applied the classifier to all
spots and obtained emptiness probabilities and set a threshold on
these probabilities (0.3–0.35).

Spot assignment to cells. The cell boundaries were computed by
applying find_boundaries (scikit-image 0.19.391) to the segmentation
mask. The distances of all spots were calculated to the closest
boundary pixel. The distance was set to 0 if a spot was inside a
boundary. A spot was assigned to its closest cell if the distancewas less
than or equal to 11μm in the kidney, 3μm for non-MBP and 0μm for
MBP spots in the brain.

Cell annotation
We used anndata92–94 (v0.8.0) and scanpy92(v1.9.1) to handle and ana-
lyze the data. The data normalization was performed using analytic
Pearson residuals95 (clipped at 40) with a lower bound placed on gene-
level standard deviations96. Clustering was done with the Leiden
algorithm97 implemented in scanpy.

Annotating the Brain data set. Cells with counts less than 5 and
more than 300 were removed (2980 out of 26348). The top 100
highly variable genes (scanpy.experimental.pp.highly_variable_gene(.,

flavor=’pearson_residuals’)) were used for normalization, embedding
and annotations. PCA was performed on pearson residuals, and the
neighborhood graph was created with this command scanpy.pp.-
neighbors(., n_neighbors = 20, n_pcs = 15, metric=’cosine’). Single-nucleus
RNA-seq reference from Jorstad et al.61 was subsetted to M1C cells and
normalized in the same way as DART-FISH. Pax6 and Scng subclasses
were removed since we did not design our probe set to target those.
Average normalized counts (centroids)were computed for every other
subclass in the “within_area_subclass” slot and all clusters of DART-
FISH. To annotate the DART-FISH clusters at the class level (excitatory,
inhibitory, non-neuronal), we first correlated each cluster to all single-
nucleus subclasses, and assigned that cluster to the class of the most
highly correlated subclass. Annotation of each class was done
separately.

For excitatoryneurons, allDART-FISHcells that had a class label of
“excitatory” and had at least 20 transcripts were kept (5957 cells). We
realized that the Leiden clustering was unstable and by mere shuffling
of the order of cells, we would obtain very different clusters. We rea-
soned that by removing somecells that tend tomovebetween clusters,
we could get more stable clusters and have more confidence in their
annotation. To find cells that don’t stably cluster, we ran clustering 20
times, every time shuffling the order of the cells. For every cell, we
calculated thenumber of times itwas co-clusteredwith everyother cell
and took the average of the non-zero values as the co-clustering index
(CCI). A perfectCCI of 20means that the cell is clusteredwith the same
partners in every clustering instance, while lower values show devia-
tions from this limit. We removed the cells with a CCI smaller than 6
and repeated this filtering procedure for three more iterations. The
final results show a more stable clustering of the remaining 5101 cells.
We then constructed a new neighborhood graph using newly com-
puted principal components (n_neighbors=10, n_pcs=15), followed by
Leiden clustering. The cluster centroidswere calculated and correlated
to the reference subclass centroids. We assigned clusters to their
maximally correlated reference subclass if we could also see differ-
ential expression of their marker genes (scanpy’s rank_genes_groups),
otherwise we labeled them as NA. Of note, the DART-FISH population
labeled as L6b/CT was highly correlated with reference subclasses L6b
and L6 CT (Supplementary Fig. 5b) and showed expression of marker
genes from both subclasses.

For inhibitory neurons and non-neuronal cells, the clustering was
more stable to begin with, and we started by constructing the neigh-
borhood matrix (For inhibitory neurons: n_neighbors=20, n_pcs=10.
For non-neuronal cells: n_neighbors=25, n_pcs=15) and clustering.
Then clusters were assigned to the reference subclass with maximum
Pearson’s correlation if the marker genes matched, or otherwise were
labeled as NA.

Drawing cortical layer boundaries. Cortical layer boundaries were
automatically drawn via Support Vector Machine (SVM) decision
boundaries. The Scikit-learnpythonpackage (v1.1.3) was used to train a
SVM on the following excitatory neuron subtype labels: “L2/3 IT”, “L4
IT”, “L5 IT”, “L6 IT”, “L6b/CT”. First, cells with fewer than 10 total gene
counts were filtered out. The x and y coordinates of the cells are
standardized via the StandardScaler() function, and the data was fed
into a SVMwith a radial basis function (RBF) kernel with balanced class
weights and one vs. one decision function. The RBF SVMmodel is then
applied to ameshgridwith afine step sizewith the samegeometric size
as the original tissue image. The trained SVM classified the cell type
label of each point on the meshgrid to define borders between the
cortical layers specified by the excitatory neuron subclasses. We drew
contours based on the borders between the various subclasses, and
manually superimposed them onto Fig. 3c.

Gene concordance analysis. The RNA portion of the SNARE-seq2
(snare) dataset from Bakken et al.46 and Plongthongkum et al.50 was
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used in this section. First, the snare data was subsetted to the DART-
FISH genes. Then, DART-FISH and snare data were both normalized
(scanpy.pp.normalize_total(., target_sum = 1000)) followed by log-
normalization (scanpy.pp.log1p(.)). The average normalized gene
expression was calculated for all subclasses. For each gene, the con-
cordancewasdefined as the Pearson’s correlationbetween the average
expressions across the subclasses between the DART-FISH and snare
data (top panel of Supplementary Fig. 5c). The same analysis was
performed for a MERFISH data set from Fang et al.59 (sample
H18.06.006.MTG.250.expand.rep1) with the following details: the
subclass labels frommetadata column “cluster_L2”were renamed tobe
consistent with DART-FISH annotations. In particular, subclasses L6b
and L6 CT were merged, and subclass L5 ET was removed. Note that
subclasses Sst Chodl, Chandelier and Lamp5 Lhx6 were not annotated
in the MERFISH dataset and were removed from the DART-FISH ana-
lysis for consistency. The rest of the analysis was carried out with
242 shared genes between the datasets (bottom panel of Supple-
mentary Fig. 5c).

Annotating the kidney data set. Cells with less than 5 and more than
100 transcripts were filtered (2024 out of 65565). The top 250 highly
variable genes were kept for downstream analyses (scanpy.exper-
imental.pp.highly_variable_gene(., flavor=’pearson_residuals’)). PCA was
performed on pearson residuals, and the neighborhood graph was
constructed using the command scanpy.pp.neighbors(., n_neighbors =
20, n_pcs = 20, metric=’cosine’) followed by Leiden clustering (l1 clus-
tering). From the kidney reference atlas73, degenerative, cycling, tran-
sitioning and medullary cell types were removed. The counts were
transformed to pearson residuals and the remaining subclass level 1
and level 2 centroids were calculated. We then calculated the Pearson
correlations between subclass level 1 centroids and cluster centroids
and assigned each l1 cluster to the subclass level 1 with maximum
correlation. We then subclustered each of the l1 clusters and assigned
those to subclass level 2 identities with maximum correlation, only if
the relevantmarker genes were expressed. Through this procedure we
could not resolve PT-S1 and PT-S2 subtypes separately; thus, we
labeled the clusters that were highly correlatedwith these populations
as PT-S1/S2. Similarly, for immune cells, this procedure could con-
fidently resolve MAC-M2 cells and the general myeloid (IMM_Myl) and
lymphoid (IMM_Lym) populations. To annotate the immune cells at
higher level of granularity, we updated their subclass level 2 labels with
the following strategy: Each DART-FISH cell with subclass level 1 label
“IMM” was separately correlated with the following immune subtypes
in the reference atlas: B, PL, T, MAC-M2, MDC, cDC. The immune
subtypes with highest and 2nd highest correlation were kept. If the
highest correlation was larger than 0.4 and the ratio of the highest to
the 2nd highest correlation was larger than 1.25, the label was updated
to that of the highest correlated subtype, otherwise it remained
unchanged.

Cell-cell interaction analysis. We used squidpy.gr.co_occurrence
function (v1.2.4.dev27+gb644428) with n_splits = 1 and an interval
between 7μm and 110μm77.

Comparison of decoding methods. Datasets of varying levels of
complexity were simulated to compare SpD with StarFish42 (pixel-
based naive matching), BarDensr44 and ISTDECO43 (deconvolution-
based methods). The synthetic datasets were constructed using the
human brain codebook (3-on-3-off, 121 genes with 10 empty barcodes)
with equal abundance of all genes and uniform spatial distribution of
spots. The roloniesweremodeled as gaussian spotswith peak intensity
randomly chosen to be between 0.25 and 0.7 and sigma between 2 and
2.5 pixels. To model channel-specific intensity variation, we randomly
drew 18 channel-specific coefficients from a uniform distribution
between 0.75 and 1.25 to scale their respective images, while clipping

the intensity values above 1. We simulated multiple datasets varying
the number of spots between 5 � 103 to 4 � 105 spots in a field of view
of size 1024 x 1024 pixels. Different decodingmethodswere applied to
the synthetic datasets with default settings to the extent possible, with
no post-hoc filtering of the spots. The only exception was StarFish for
which the distance threshold was set to 0.7 as a fair balance between
specificity and sensitivity. Then, the groundtruth spots were matched
one-to-one to the decoded spots if the barcodeswere identical and the
centroidswere closer than 6pixels. Sensitivity is defined as the fraction
of groundtruth spots matched with a decoded spot. Specificity is
defined as the fraction of matched decoded spots over all decoded
spots. Empty rate is the fractionof empty barcodes among all decoded
barcodes and is inversely related to specificity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The spot tables, RiboSoma images and segmentation masks are
available on figshare for human brain (https://doi.org/10.6084/m9.
figshare.23932863.v1)98 and for human kidney (https://doi.org/10.
6084/m9.figshare.23937057.v1)99. All registered DART-FISH images,
codes and intermediate outputs of the processing pipeline are avail-
able on Zenodo (https://doi.org/10.5281/ZENODO.8253771)100. Source
data are provided with this paper. The single-nucleus RNA sequencing
reference atlas of human kidney73 is available on GEO (GSE183277).
SNARE-seq data for human M1C46,50 is available at Brain Cell Data
Center (https://biccn.org/data) under U01 ZhangKun grant ID
(U01MH114828). The M1C data from Jorstad et al.61 is available for
download from the Neuroscience Multi-omics Archive (https://data.
nemoarchive.org/publication_release/Human_Cross_Areal_Analysis/).
Source data are provided with this paper.

Code availability
The python code for the DART-FISH processing pipeline and SpD are
available on this Github repository: https://github.com/Kiiaan/DF3D.
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