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ABSTRACT OF THE DISSERTATION

Numerical Study of Shock Focusing Phenomena Using Geometrical Shock
Dynamics

by

Heng Liu

Doctor of Philosophy in Structural Engineering

University of California San Diego, 2021

Professor Veronica Eliasson, Chair

Shock wave focusing can lead to extreme thermodynamic conditions, and applications

have been extended to a variety of areas such as civil engineering and medical treatment.

Among all numerical approaches, geometrical shock dynamics (GSD) is a model capable

of efficiently predicting the position, shape and strength of a shock. Compared to the

traditional Euler method that solves the inviscid Euler equations, GSD is a reduced-order

model derived from the method of characteristics that is more computationally efficient

since it only considers the motion of the shock front instead of the entire flow field.

Whitham’s original theory of GSD successfully relates the change of area upon the

xii



shock front to the shock motion with an assumption of a uniform state behind the shock,

so it is able to accurately predict the behavior of a shock wave with constant properties

behind it. However, the truncation of the post-shock flow term discredits its application

to shock waves with decaying properties behind (e.g., in the case of blast waves). In this

study three two-dimensional GSD models were first reviewed with a focus on how the

post-shock flow effect is accounted for. It turned out that the completeness of the post-shock

flow term determines the accuracy of GSD for blast waves, but prior knowledge of the

particular blast is required to achieve full completeness. The point-source GSD (PGSD)

model thus stands out since it encodes the analytical solution to blast propagation and is

independent of the initial energy content of the point-explosion. Then a general framework

based on PGSD was proposed aiming at efficiently solving the irregular reflection phase of

blast focusing problems. Lagrangian simulations were thus performed for the symmetric

interaction between two cylindrical blasts and compared to the experimental results. An

agreement in attenuation of the maximum pressure at the Mach stem was observed but

an overestimation of the Mach stem growth at its early stage by PGSD was also seen.

To address this issue, an alternative model called PGSDSS was developed that combines

PGSD and the shock-shock approximate theory for cylindrical shock reflection off a straight

surface.

Another advantage of PGSD is its capability to be extended to three dimensions.

Unlike the traditional three-dimensional GSD studies using triangulated meshes, in this

study the shock surface is represented by a point cloud arranged in an octree data structure,

such that a fast k-nearest neighbor search is possible without the need of connectivity

information. Differential geometric properties required by PGSD are obtained by computing

the moving least squares (MLS) surface that approximates the underlying shock surface.

The resulting MLS-PGSD model was utilized to investigate first the propagation of a single

spherical micro-blast in air and then its reflection off a solid wall. A good agreement of the

xiii



blast front contour at different time instants with the experimental results was reached.
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Chapter 1

Introduction

1.1 Motivation

A shock wave is always closely related to high energy density since it is most often

generated by a sudden release of energy in a confined space. Analogously, if existing shocks

are propagating in a confined volume concentration of energy is supposed to be achieved,

that is manifested by extreme conditions created at the focal region including very high

pressure and temperature. Shock wave focusing takes place when a shock propagates

through non-uniform or moving media, reflects from solid or porous surfaces, or multiple

shocks interact with each other [6].

In nature, bubble cavitation is one common source that leads to shock focusing

during its collapse phase. When collapse eventually happens as the result of increased

pressure surrounding a bubble and its own surface tension, a significant amount of energy

contained inside is released in the form of shock wave accompanied by jet and visible light

emission (i.e., luminescence). Then what follows is the interaction between shocks emitted

by collapsing bubbles. Cavitation bubbles can be generated in different situations. For

example, in ocean fast swimmers like dolphins can generate cavitation bubbles around the
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trailing edge of their rear fin due to the movement of fins [6, 7]. Once collapse, the resulting

jets and shock waves may hurt the dolphin and limit its speed. Cavitation can also be

observed in plants. Within xylem, which is a tissue in vascular plants that transports water

and nutrients from roots to stems and leaves, cavitation of water columns would result in

embolism thus reduce hydraulic conductivity [8].

On the other hand, shock wave focusing events happening in human society often

result in undesired effects, though most of them are non-intentional. One example is a

sonic boom that disrupts people and cause minor damage to structures. Weak shocks are

generated continuously from an aircraft body traveling through air at a speed faster than

sound. As shocks coalesce, the accumulative effects make the sonic boom intense enough to

be detrimental at large distances. Another unfavored occurrence of shock focusing is that

in an underground coal mine structure. When an accidental explosion occurs underground,

shock waves are forced to propagate in the channels and may focus. If no mitigation

methods are implemented to effectively reduce the energy of the explosion, people’s lives

and infrastructure are in great risk [9].

However, one application of shock wave focusing in medicine is beneficial to patients

as a noninvasive treatment to eliminate kidney stones. In extracorporeal shock wave

lithotripsy (ESWL), weak shocks are generated in the lithotripter and focus in the patient’s

body where the kidney stone exists. At the focal region pressure is increased to a level

that leads to the fragmentation of the stone, while outside the focal region weak shocks

pass through with minimal damage to the surrounding tissues.

To summarize, the extreme conditions created at the focal region stemming from

shock focusing can be either detrimental or beneficial, but an accurate prediction of shock

focusing events is rarely a trivial task due to the nonlinear nature of shock waves and

complicated physics associated with their interactions. Therefore, to better take advantage

of benefits from shock focusing and attenuate its damage to environment and human lives,
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understanding the basic physical mechanisms governing focusing behaviors is important.

1.2 Literature Review

Before proceeding to literature review on shock focusing, flow properties behind

a shock front should be first discussed. In fact, there exist many approaches to generate

shock waves but almost all require a sudden release of energy in a confined volume with its

expansion exceeding the ambient speed of sound [10]. One practical method to generate

shocks is to use a shock tube with constant cross section area, in which a sudden release of

pressurized gas towards the low-pressure section produces compression waves that later

coalesce into a shock wave. Figure 1.1 presents the time history of pressure experienced

at a fixed location for the shock generated this way (often referred to as a “shock wave

with constant properties behind”). Ambient pressure P0 is recorded first at the point of

measurement until the arrival time of the shock front, t0. Abruptly, the pressure rises to

its peak value P+
s in a step function manner, then stays constant for an extended period of

time. Detonation of high explosive materials is another common source to be considered.

However, in this situation, as a shock wave propagates outwards away from the center of

explosion, pressure, density and particle velocity internal to the shock front are decaying

with time. Such observation is also illustrated in the pressure-time profile in Figure 1.1

where a discontinues increase of pressure is followed by a gradual decline. The duration

over which the pressure remains above P0 is defined as the positive phase and labeled as

∆t+. The pressure continues to drop reaching its lowest value P−s and then recovers to the

ambient level by either a gradual increase or a secondary shock at a later time. Analogous

to ∆t+, ∆t− is used to refer to the negative phase. If the flow properties following a shock

front decay exponentially, this type of wave is specifically defined as a blast wave.
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Figure 1.1: Typical time history of pressure at a fixed point experiencing a shock wave.
Red solid line: shock wave with constant properties behind; Black dotted line: shock
wave with decaying properties behind.

1.2.1 Shock Wave Focusing

The very first analytical work on cylindrical and spherical shock focusing can be

traced back to the early 1940’s. The motion of converging shock waves in a perfect gas at

rest was studied by Guderley in 1941 [11], who demonstrated the existence of similarity

solutions in the vicinity of the convergence center by reducing the problem into a nonlinear

first-order ordinary differential equation. Stanyukovich [12] first developed an approximate

method to determine the constant similarity exponent α of the shock front trajectory

formula R ∼ (−t)α, where R being the distance from the shock front to the focal point

and t the time to reach the position, based on the analysis of the singular points of the

differential equation. Mishkin and Fujimoto [13] argued that there should exist a single

maximum pressure in the flow behind the shock front for all values of specific heat ratio γ.
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This concept led to the determination of α in a closed form. However, their argument was

challenged by Lazarus [14] as he showed a critical value γc beyond which the maximum in

pressure is not resolved [15]. Such comment was later supported by Yousaf [16] who proved

the equivalence of methods outlined by Stanyukovich [12] and Mishkin and Fujimoto [13].

Since Stanyukovich’s result is an approximation to α, Mishkin’s and Fujimoto’s claim of

exact expression for the similarity exponent was a false one. The self-similar solutions were

then extended for non-ideal gas satisfying the equation of state of the Mie-Gruneisen type

by Ramu [17], and for relaxing gas by Sharma [18]. Several experiments were performed

to determine the similarity exponent, among which the first one was made by Perry and

Kantrowitz [19], who pioneered the techniques to obtain cylindrically converging shocks in

a shock tube. Baronets [20] found the exponent to vary with shock velocity through his

experiments of imploding cylindrical shocks in argon and xenon created by means of pulsed

induction discharges. Takayama et al. [21] measured the similarity exponent by performing

least squares fits to streak camera recordings of converging cylindrical shock trajectories

in air (γ = 1.4). The exponent for three different values of specific heat ratios (γ =1.13,

1.40 and 1.55) were determined experimentally by Kjellander et al. [22] with various initial

Mach numbers.

Approximate solutions were developed since the 1970’s that deal with complex

situations arising from the interaction between multiple cylindrical or spherical shock waves.

Among those, the Low Altitude Multiple Burst (LAMB) rules [23] were extensively used

to approximate combined density, velocity and peak overpressure at a point in space due

to coalesced waves. It is worth pointing out that the procedure of pressure addition is a

nonlinear one that preserves the vector nature of the velocity and momentum [10]. The

LAMB rules can be seen as loose conservation laws of mass, momentum and energy, so their

accuracy depends on the selected models used to describe a single blast wave propagation

in the free-field. The concept of image bursts [10] further simplifies the application of the
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LAMB rules to symmetric interaction of shock waves by replacing imaginary sources with

an ideal planar reflecting surface. Despite Brode’s doubt about the assumptions of the

rules [24], the nonlinear addition rules-based LAMB model was numerically implemented

for various shock interaction applications. Yeghiayan et al. [25] used the LAMB codes

to analyze gust, overpressure and thermal damage on an aircraft as the result of the

enhancement of effects due to multiple bursts. Craver et al. [26] summarized the influence

of shock wave produced by one burst on the flow field of another in terms of the fire

ball development predicted by the LAMB codes. A number of LAMB calculations were

carried out by Abeyta et al. [27] to take advantage of the model’s efficiency. Overpressure

and overpressure impulse-time histories at several fixed locations were reported to help

determine physically plausible attack scenarios. Keefer and Reisler [28] placed multiple

charges in equilateral triangular patterns to study simultaneous and non-simultaneous

detonations. Their experiments showed that the maximum overpressure can be achieved

by simultaneous detonations but required optimization of charge placement, and such

observation was verified by the LAMB model. Moreover, the overpressure resulted from

multiple charge detonation was found to cause damage at greater distance than if the

same explosive weight had been denoted as a single charge. A similar topic regarding the

influence of initial configuration of shocks that coalesce into a cylindrical one later was

discussed by Yee and Abe [29]. Based on the simulation results, they delivered a report

that clarifies the fact that initially non-circular shock wave yields higher pressure near the

central point than initially circular shock wave.

With the advancement of computer hardware and algorithms specifically tailored

for computational fluid dynamics, numerically solving the Euler or Navier-Stokes equations

became an available option for shock focusing problems. Book and Löhner [30] performed

finite element simulations to investigate cylindrically converging shock and observed the

quatrefoil appearance of the shock front at a sufficiently low Mach number. Implosion
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of two-dimensional polygonal shock fronts were studied by Aki and Higashino [31] with

a finite difference scheme. Reconfiguration events during the process were observed that

revealed the complexity of physics existing in the flow field ahead of the shock front.

Non-circular shock wave focusing was also explored by Betelu and Aronson [32] who

successfully described the intermediate asymptotic stage seen in the numerical simulations

with the self-similar solutions. Balasubramanian and Eliasson [33] disturbed a cylindrically

converging shock by placing cylindrical obstacles radially in its path in a series of Euler

simulations. After analyzing the pressure and temperature recorded at the focal point

for various configurations of obstacle size and number, they theorized that there should

exist an optimal configuration that leads to the most extreme conditions at the center.

Interaction of multiple simultaneous and non-simultaneous blast waves was numerically

studied by Qiu and Eliasson [34]. The Euler equations were solved with point-source blasts

initially defined by Taylor’s similarity law [35], and a trend was found similar to that of

Keefer and Reisler’s [28]. Results showed that multiple munitions can be beneficial for

creating peak overpressure at the focal point when compared to a single munition.

As an appealing alternative to a full Euler simulation, geometrical treatment of

shock propagation has been developed since the 1950’s. Chisnell [36] considered the

convergence of a shock wave in a channel with varying cross section area and came up

with a closed-form approximate solution for the change in shock strength as a function of

channel area. The same expression was also independently derived by Chester [37] and

Whitham [38, 39, 40], respectively. As illustrated in Figure 1.2, the so-called geometrical

shock dynamics (GSD) discretizes a shock front into numerous small particles, then rays

are introduced as orthogonal trajectories of the successive positions of these particles

on the shock front. Each shock particle propagating along its own ray is treated as a

problem of shock propagation in a non-uniform tube with solid walls, and the area-Mach

number relation bridges the velocity of the particle to its ray tube area. Because of
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its computational efficiency, GSD has been widely numerically implemented by scholars

to study shock focusing behaviors especially when running time is the primary concern

[41, 42, 43, 3].

Figure 1.2: Schematic illustration of successive shock front positions at three different
time instants and rays in geometrical shock dynamics.

As mentioned above, Perry and Kantrowitz’s experiment [19] sparked the discussion

about the stability of converging shocks as they argued that a converging wave is considered

to be stable if it approaches perfect cylindrical or spherical shape without the interference

of random disturbances as it propagates. They succeeded in converging a moderately strong

shock wave with an initial Mach number of 1.7 in an axially symmetric shock tube, and

presented schlieren photographs showing various phases of the formation as well as the

stability of these converging waves. Knystautas et al. [44] achieved a stable convergence

by patching up a number of planar detonation waves. They claimed that a polygonal

shaped front was first generated then transitioned to a smooth cylindrical front through

Mach reflections on collisions, but the quality loss of photographs makes it difficult to
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confirm. Roig and Glass [45] designed a hemispherical chamber to experimentally study

imploding spherical shocks. A blast wave was created by exploding the reactive gas at the

origin of the hemisphere, then it became a converging shock when reflecting back from

the inside of the chamber surface. The time-resolved pressure histories were found to be

lower than the theoretical predictions. The same experimental setup was used by Saito and

Glass [46] but temperature was measured spectroscopically at a much smaller observation

area. As the result of the more precise measurement, their temperature results agreed

better with the expected values. The stability of converging cylindrical shocks was also

investigated experimentally using an annular shock tube by Wu et al. [47]. The breakdown

of shock front curvature by artificial perturbations demonstrated the inherent unstable

nature of converging shocks. Similar discussions from the viewpoint of the effects of initial

disturbances’ growth on the final shock wave convergence were also made by Takayama et

al. [21], Watanabe et al. [48, 49], Matsuo et al. [50], Neemeh and Ahmad [51] and Eliasson

et al. [52, 53]. Hosseini and Takayama [54] investigated the convergence and acceleration

of spherical shock waves. Influence of the flow field ahead and the product gases on the

converging shock waves were discussed.

Shock focusing due to the interaction between two identical weak blasts were studied

by Higashino et al. [2]. By simultaneously exploding a pair of thin wires made of either

copper or nichrome with a certain amount of initial energy, a symmetric interaction was

achieved. The resulting schlieren photographs recorded the transitions from regular to

irregular reflection, and pressure gauges registered time histories of the maximum pressure

at the shock front. A similar experiment was conducted by Jiang et al. [4] who observed

the reflection of a micro-blast generated by pulsed-laser beam focusing off a solid wall.

This is equivalent to the shock interacting with another one of the same strength and size

initialized on the opposite side of the wall according to the concept of image bursts [10].

Shock focusing was also examined as a technique to attenuate undesired propagation of
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shock waves. In a laboratory environment an array of obstacles placed along a logarithmic

spiral geometry showed its potential to confine the energy of a plane incident shock in a

relatively small area in an air-filled shock tube test section (Ivanov et al. [55]) as well as in

a water-filled test section (Wang et al. [56, 57, 58]).

1.2.2 Transition from Regular Reflection to Irregular Reflection

As extreme conditions at the focal region are mostly created through shock reflections,

it is worth to note important contributions to the analysis of shock wave reflection. Since

Ernst Mach [59] reported his discovery on shock reflection back in 1878 research has been

conducted on this subject. Of particular interest is the determination of transition criteria

from regular reflection (RR) to irregular reflection (IR) in various flow conditions. A regular

reflection is defined as a shock pattern consisting of two shocks, namely the incident shock

and the reflected shock, meeting at the reflection point. This type of shock reflection is

supposed to be observed when an incident shock reflects off a surface with a proper angle

in supersonic flow as illustrated in Figure 1.3(a), or a moving shock collides on an oblique

surface inclined at a large angle as in Figure 1.3(c). Different than RR, an IR pattern

features at least three shocks. The most often seen, but not the easiest configuration is a

(single) Mach reflection (MR) as the cases shown in Figure 1.3(b) and (d) for steady flow

reflection and pseudy-steady flow reflection, respectively. Besides the incident shock and

the reflected shock, a third shock wave, the Mach stem, exists in an MR configuration. The

three discontinuities meet at the triple point, from which a streamline originates separating

flows deflected by the reflected shock and Mach stem. Flows on both sides of the streamline

share the same pressure but may have different magnitudes of velocity in a direction parallel

to the streamline.

The criteria for the transition from RR to IR in steady and pseudo-steady flows have

been well established to date. The reflection domains are usually plotted in a complementary
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(a) (b)

(c) (d)

Figure 1.3: Schematic illustration of two basic shock wave reflection configurations:
(a) Regular reflection in steady flows; (b) Irregular reflection in steady flows; (c) Regular
reflection in pseudo-steady flows; (d) Irregular reflection in pseudo-steady flows. Triple
point represented by a red dot.

wedge angle versus incident Mach number plane, i.e., the θcw −Ms plane as presented in

Figure 1.4. Basically there are four well known transition criteria that determine if an RR or

IR should take place under certain circumstances. The detachment criterion proposed

by von Neumann [60] defines a set of conditions beyond which the flow cannot be deflected

anymore by the reflected shock, hence a two-shock configuration can no longer persist.

The transition line in the θcw −Ms plane from the detachment criterion that separates the

RR and IR domains can be computed using the two-shock theory [61]. Initiated by von

Neumann and then reintroduced by Hornung et al. [62], the sonic criterion states that

the transition is only possible when the wedge corner generated signal can catch up with

the reflection point in an RR configuration. This requires the flow immediately behind the
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reflected shock to be at least sonic such that the signal that propagates at the local speed of

sound can communicate the reflection point. Lock and Dewey [63] carried out an ingenious

experiment that qualitatively proved the soundness of the sonic criterion. They succeeded

in showing the sonic point measured by apparatus (the catch-up point) to agree well with

the transition angle detected by visual inspection for planar shock over a straight surface.

It is worth noting that in the θcw −Ms plane the transition line from the sonic criterion

obtained from solving the two-shock theory is very close to that from the detachment

criterion so it is not shown in Figure 1.4. Later, Henderson and Lozzi [64] suggested

another theory to determine the transition conditions for strong shocks and named it the

mechanical-equilibrium criterion. They argued that a sudden pressure change due to

the change of boundary conditions must be supported by either a compression wave or

a rarefaction wave. Since no pressure discontinuity was observed during the transition

process, the transition should take place when the reflected shock polar intersects the

incident shock polar at the normal shock point in a shock polar plot. In order to compute

the transition line from the mechanical-equilibrium criterion the three-shock theory [65]

needs to be solved. Considering that only an IR configuration includes an independent

length scale, Hornung et al. [62] proposed a so-called length-scale criterion, which is

equivalent to the mechanical-equilibrium criterion in steady flows and boils down to the

sonic criterion in pseudo-steady flows. After reviewing all four transition criteria, Ben-Dor

summarized in his book [1] that the length-scale concept is the one that most likely leads

to a proper prediction of the RR-IR transition because it successfully covers steady flow

reflection and pseudo-steady flow reflection at the same time. As both an RR and IR

are theoretically possible in the domain between the transition line resulted from the

detachment criterion and that predicted by the mechanical-equilibrium criterion in the

θw −Ms plane, i.e., the dual-solution domain, a hysteresis process can be expected. One

possible reason for the discrepancy between the transition angle resulted from solving the
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sonic criterion and that determined on the basis of visualization records is viscosity, which

is neglected in the two-shock and three-shock theories. Skews [66] proved this by designing

an experiment that aims to eliminate the influence of the boundary layer. By reflecting

two identical shocks off each other in a bifurcated shock tube, the common-used wedge

was effectively replaced by a virtual centerline in between the two shocks. Satisfactory

synchronized results were obtained for different incident shock Mach numbers and the

trend agreed very well with the sonic criterion.

Figure 1.4: Domains of RR and IR as defined by the mechanical-equilibrium and the
detachment criteria. In steady flows θcw = 90◦ − φ1 and in pseudo-steady flows θcw = θw.
From [1], with permission from Springer.

To further explain different types of IR, Law and Glass [67] and Ben-Dor [68]
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proposed a theory in which the shock reflection process can be considered to be a combination

of two subprocesses, namely the shock-reflection process and the flow-deflection process.

The reflected shock resulted from the shock-reflection process interacts the bow shock

generated by the deflection of the shock-induced flow around a wedge corner, and a band

of disturbances bridges the pressure gap, if any. Such a perturbation concept is inherently

related to the sonic criterion. Following the perturbation concept, Ben-Dor developed

analytical models for transitional Mach reflection (TMR) and double Mach reflection

(DMR) [1]. The derivation was based on the assumption that the kink (the second triple

point in DMR), defined as a position in the reflected shock where the curvature reverses,

must be the furthest point that can be reached by the leading edge generated disturbances.

Figure 1.5, from Ben-Dor [1], shows an example how irregular reflection pattern can be

predicted for a given scenario using the models of the most recent knowledge and with

experimental results. Except von-Neumann reflection (vNR), other irregular reflection

patterns may also exist under special circumstances. One recent numerical investigation

[69] proved the possibility of forming a three-shock confluence with a reflected shock bent

towards the surface to which a Mach stem is attached. This shock configuration is unstable

as the triple point is moving away from the surface in supersonic flows.

Compared to the well-established transition criteria for shock reflection in steady and

pseudo-steady flows, the determination of critical conditions for a moving shock reflecting

off a non-straight surface is still in dispute. This scenario belongs to shock reflection in

unsteady flows as a continuous change of boundary conditions takes place during the shock

reflection process. The reflected shock keeps adjusting itself to the changing wedge angle

that leads to non-self-similar solutions. In contrast, pseudo-steady flow reflection is less

complicated as it can maintain its self-similarity if no more independent scale lengths are

introduced, for example, by shear stresses and heat flux [70]. Figure 1.6 shows another

example of unsteady flow reflection as the result of the interaction between two initially
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Figure 1.5: Transition lines that separate different types of shock wave reflections.
Notation: SMR - single Mach reflection, PTMR - pseudo-transitional Mach reflection,
TMR - transitional Mach reflection and DMR - double Mach reflection. From [1], with
permission from Springer.

separated curved shocks. A closer inspection of the RR configuration and the subsequent

(single) MR configuration is further illustrated in Figure 1.7. With regard to analytical

models for shock reflection in unsteady flows, Ben-Dor [1] derived one for planar shock

reflection off a cylindrical concave surface using the perturbation concept. Recently Geva

et al. [71] introduced a modification to the two-shock theory to account for the flow behind

the reflected shock propagating along the convex wedge. Based on the “no penetration”

condition, a rotational velocity was imposed on the reflected shock about the reflection

point in addition to a translational movement. Subsequently, they claimed that the RR-IR

transition occurs when the reflected shock is perpendicular to the incident shock.

An extensive set of experiments were conducted by Skews and Kleine [72, 73] using
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Figure 1.6: Schematic illustration of one scenario of shock wave reflection in unsteady
flows: regular reflection between two initially separated curved shocks.

the perturbation technique to investigate the transition from RR to IR for a planar shock

reflecting off a cylindrical convex surface. By placing transverse strips of adhesive tape on

the wedge surface, finite perturbations can be generated when the incident shock passes by.

Then the catch-up point, defined as where the flow reaches the sonic point with respect to

the reflection point, is able to be determined by relating the evolution of shock configuration

to the interaction between the disturbances and the shock pattern. This is done due to

the fact that, in the upstream flow region of the catch-up point only regular reflection is

possible according to the sonic criterion. Results showed that compared to the measured

wedge angle at which the Mach stem became visible, the catch-up point appeared much

earlier in the experiment, i.e., the RR-IR transition was delayed that occurred at a smaller

angle than that predicted by the sonic criterion. Another case showing discrepancy between

the catch-up point and the transition angle determined by visual inspection was reported

by the same authors [74], where the corner generated signal was left behind the incident

shock when the IR-RR transition initiated on a cylindrical concave surface. This indicates

a delayed IR-RR transition that occurred at a larger angle than that predicted by the sonic

criterion. The experiments of a planar shock reflecting off coupled surfaces were performed
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by Skews and Blitterswijk [75] and Geva et al. [76]. In addition to noting the delay of the

transition from RR to IR, they further asserted that shock reflection is influenced by the

history of the flow process.

(a) (b)

Figure 1.7: Schematic illustration of two basic shock wave reflection configurations in
unsteady flows between two initially separated curved shocks: (a) Regular reflection;
(b) Irregular reflection. Triple points represented by red dots.

However, most experiments carried out almost 30 years ago suffered from lack

of resolution [77, 78, 79]. This is revealed by the experiment of Kleine et al. [80] who

investigated the reflection of blast waves from a straight surface. Though the influence of

the boundary layer was successfully eliminated by interacting two blasts in air, the measured

transition spot from RR to IR based on visualization records still deviated substantially

from the two-dimensional high-resolution numerical results. After reviewing all possible

causes, they attributed such discrepancy to the non-optimal optical visualization system.

Later, based on experiences Kleine et al. [81] proposed that, in order to observe the Mach

stem at its very early stage an ideal visualization capability should allow the detection of

minuscule flow features with a characteristic length below 0.05 mm.

Adequate resolution is also required for numerical simulations that solve inviscid

conservation equations. Hryniewicki et al. [82] applied an Euler solver with adaptive mesh

refinement (AMR) to measure the transition angle for a planar shock over a straight wedge.
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Their results presented an RR-IR transition line no more than 1.6 degrees above the sonic

criterion for an incident shock Mach number ranging from 1.6 to 4.0. Vignati and Guardone

[83] numerically investigated the leading edge reflection pattern for cylindrically converging

shock over convex obstacles. The resulting transition line that separates the RR and IR

domains quantitatively agreed with that from the sonic criterion. More importantly, their

results demonstrated that the suggestions made by Ben-Dor and Takayama [84] that shock

reflection in unsteady flows can be interpreted as a sequence of pseudo-steady states were

correct. A similar trend was also found by Gray and Skews [85] in their numerical simulation

of a converging cylindrical shock reflection off a straight wedge. Hakkaki-Fard and Timofeev

[86] numerically tested the perturbation concept for shock reflection in unsteady flows

using different levels of refined grids. Compared to the analytical transition conditions

obtained from solving a series of pseudo-steady shock reflection problems at each wedge

angle, a good agreement was achieved using the most refined grid. Therefore, they claimed

that the inconsistency between the sonic criterion applied to shock reflection in unsteady

flows and the transition angles measured in Skews and Kleine’s series of experiments

[66, 73, 74] is due to insufficient optical resolution. By analyzing the interaction between

the shock-reflection-induced disturbances and flow-deflection-induced disturbances with

high-resolution simulations, Wang and Zhai [87] reached a conclusion that as long as the

wedge is convex the flow in the vicinity of the reflection point will not be affected by

the unsteady flow caused by wedge angle variation, so the transition is only determined

by the local flow properties. That being said, the RR-IR transition can be predicted by

the pseudo-steady flow criteria, regardless of wedge curvature, shock intensity and initial

collision angle. There exist additional studies on shock reflection in unsteady flows utilizing

geometrical shock dynamics including the works of Itoh et al. [88] and Barkhudarov et

al. [89].
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1.3 Contributions

This work will be presented with one chapter on two-dimensional GSD models

(Chapter 2) and another one on a three-dimensional GSD algorithm developed by the

author (Chapter 3). A final summary (Chapter 4) wraps up all the experiences gained from

this project and further ideas are shared in the hope of shedding light on future efforts to

extend the applications of GSD.

Major contributions made in this work are summarized as follows:

1. Presented a comprehensive study on two-dimensional geometrical shock dynamics

and primary extensions that account for the post-shock flow effect.

2. Investigated the influence of the completeness of the post-shock flow term in an

accurate description of blast propagation.

3. Proposed a general solution framework based on PGSD aiming at efficiently solving

two-dimensional symmetric blast focusing problems.

4. Developed the MLS-PGSD model that can predict blast interactions in three-

dimensional space.
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Chapter 2

2D Geometrical Shock Dynamics

In general, to study shock interaction problems, the Navier-Stokes equations or the

Euler equations, if only inviscid adiabatic compressible flows are considered, are solved

numerically. The results involve all flow variables within the simulation domain such

that shock fronts are either captured by detecting sharp discontinuous changes in the

variables if shock-capturing schemes are applied, or explicitly introduced in the solution by

shock-fitting schemes. However, since the shock front would have a large Mach number in

compressive regions, a smaller time step is needed to satisfy the Courant-Friedrichs-Lewy

(CFL) condition [90] to maintain the numerical stability. Moreover, the thickness of the

shock front is usually on a much smaller scale compared to the grid size and large gradients

are always present in the neighborhood of the shock front, so for the sake of accuracy a

coarse grid resolution is not an option. Such a high demand for refined resolution in both

time and space would result in expensive computational cost, which makes efficiency the

major concern for implementing the Navier-Stokes or the Euler simulations.

For the purpose of efficiently modeling shock focusing problems numerically, geo-

metrical treatment of shock behavior has received considerable attention over the last few

decades. In 1957 Whitham [38, 39, 40] published a hyperbolic model that simplifies the full
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Euler equations into descriptions of only the position, geometry and strength of a shock

by applying linearized characteristic rules. The resulting theory called geometrical shock

dynamics (GSD) successfully reduces the dimensionality of the problem by one [91, 92],

and thus the complexity as well as the cost of the numerical computation is significantly

reduced. In GSD theory, a shock front is discretized into numerous small particles and rays

are introduced as orthogonal trajectories of the successive positions of these particles on

the shock front. Then one treats each shock particle propagating along its own ray as a

problem of shock propagation in a non-uniform tube with solid wall as illustrated in Figure

1.2. This allows the determination of a relation between the ray tube area and the shock

Mach number — the “Area-Mach number (A−M)” relation, which is the fundamental

component of GSD. Notably, the same relation was independently derived by Chester [37]

and Chisnell [36], separately, such that the A−M relation is also known as the CCW theory.

It turns out that the results of GSD are accurate for shock propagation in uniform media

with moderate strength if no large gradient exists in the post-shock flow. Various efforts

were made to extend the application of GSD including modifications to accommodate for

moving media [93], post-shock flow effects [3, 94, 95, 96] and detonation waves [97, 98].

2.1 A−M Relation

A short review of the A −M relation is first given as follows. Suppose a shock

propagates down a tube of which the cross section area varies slowly as shown in Figure

2.1. If the cross section area of the tube is given as a function of the distance down the

tube, A(x), it is uniform before where the shock enters the tube and we write

A(x) = A0 = constant for x = 0. (2.1)

21



The tube starts to vary slowly in the neighborhood of x = 0 where the magnitude of change

satisfies

|A(x)− A0|
A0

� 1. (2.2)

Figure 2.1: Schematic illustration of a shock propagating down a tube with varying
cross section area.

By averaging the equations of one-dimensional inviscid compressible flow with

varying cross section area for conservation of mass, momentum and energy along the tube,

a set of partial differential equations (PDEs) dependent only upon the variable x can be

obtained as follows

∂tρ+ u∂xρ+ ρ∂xu+ ρu
A′(x)

A(x)
= 0, (2.3)

∂tu+ u∂xu+
∂xp

ρ
= 0, (2.4)

∂tp+ u∂xp− a2(∂tρ+ u∂xρ) = 0. (2.5)

Here ρ, u and p respectively denote density, particle velocity and pressure and A′(x) = dA
dx

in one-dimensional space. Speed of sound, a, is given by

a2 =
γp

ρ
, (2.6)

where γ is the ratio of specific heats.

These equations hold everywhere in the smooth parts of the flow field that are
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intersected by gasdynamic discontinuities, such as a shock in this case. At time instant

t = 0 the incident shock arrives at position x = 0 and it separates the flow field into two

regions: the undisturbed stationary state ahead of the shock with constant pressure p0,

density ρ0 and speed of sound a0, and the initial uniform state behind the shock featuring

u = u1, a = a1, p = p1 and ρ = ρ1.

In the case of small variation of cross section area along the tube, it is reasonable to

assume that the resulting disturbance to the initial state behind the shock and the change

in shock Mach number is small. Therefore, the problem can be solved as a perturbation on

the solution to the Euler equations for a uniform tube. The linearized differential equations

are as follows

∂t(δρ) + u1∂x(δρ) + ρ1∂x(δu) + ρ1u1
A′(x)

A0

= 0, (2.7)

∂t(δu) + u1∂x(δu) +
∂x(δp)

ρ1
= 0, (2.8)

∂t(δp) + u1∂x(δp)− a21(∂t(δρ) + u1∂x(δρ)) = 0, (2.9)

where small perturbations are registered as δρ = ρ− ρ1, A′(x) = (A(x)− A0)
′ and so on.

These equations can be cast into characteristic form

C+ : {∂t + (u1 + a1)∂x}((δp) + ρ1a1(δu)) + ρ1u1a
2
1

A′(x)

A0

= 0, (2.10)

C− : {∂t + (u1 − a1)∂x}((δp)− ρ1a1(δu)) + ρ1u1a
2
1

A′(x)

A0

= 0, (2.11)

P : {∂t + u1∂x}((δp)− a21(δρ)) = 0. (2.12)

The general solution to the above compatibility equations can be obtained by

integrating three families of characteristics featuring dx
dt

= u1 +a1,
dx
dt

= u1−a1 and dx
dt

= u1,
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respectively

(δp) + ρ1a1(δu) = − ρ1u1a
2
1

(u1 + a1)

A(x)− A0

A0

+ F (x− (u1 + a1)t), (2.13)

(δp)− ρ1a1(δu) = − ρ1u1a
2
1

(u1 − a1)
A(x)− A0

A0

+G(x− (u1 − a1)t), (2.14)

(δp)− a21(δρ) = H(x− u1t), (2.15)

where F , G and H are arbitrary functions. Each solution always holds along the corre-

sponding characteristic line which is generally approximated by a straight line in an x− t

diagram. The three arbitrary functions can be determined from the initial conditions of the

problem along with the boundary conditions at the shock. Because the C+ characteristics

behind the shock originate in the initial uniform state where u = u1, ρ = ρ1, p = p1

and A = A0, thus from equation (2.10) the arbitrary function F must be zero. It is this

integration that provides sufficient information to determine the change in shock Mach

number resulted from disturbances overtaking the shock. In fact, the other two functions

G and H are not trivial and they are of subsidiary interest.

Considering the state immediately behind the shock are always related to the

ambient undisturbed state ahead of the shock by the shock jump conditions

u =
2a0
γ + 1

(
M − 1

M

)
, (2.16)

p =
ρ0a

2
0

γ(γ + 1)

[
2γM2 − (γ − 1)

]
, (2.17)

ρ =
(γ + 1)ρ0M

2

(γ − 1)M2 + 2
, (2.18)
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the perturbations at the shock can be expressed in terms of the change in Mach number

(δp) = p− p1 =
4ρ0a

2
0

γ + 1
M0(M −M0), (2.19)

(δu) = u− u1 =
2

γ + 1
a0(1 +

1

M2
0

)(M −M0), (2.20)

where the shock Mach number is defined as the ratio of shock velocity in lab coordinates

to the velocity of sound in the undisturbed gas, i.e., M = U
a0

, and γ is the ratio of specific

heats that is set to be γ = 1.4 throughout this work.

When these equations are substituted into equation (2.10) with F = 0 we have

[
4

γ + 1
M0 +

2

γ + 1

(
1 +

1

M2
0

)
ρ1a1
ρ0a0

]
(M −M0) = −ρ1a

2
1

ρ0a20

u1
u1 + a1

A− A0

A0

. (2.21)

Once again, apply the shock jump conditions in equation (2.21) to express u1, ρ1 and a1 in

terms of M0, and the following equation can be obtained

A− A0

A0

= −g(M0)(M −M0), (2.22)

where

g(M) =
M

M2 − 1

(
1 +

2

γ + 1

1− µ2

µ

)(
(1 + 2µ+

1

M2

)
, and (2.23)

µ2 =
(γ − 1)M2 + 2

2γM2 − (γ − 1)
. (2.24)

Though a tube varies slowly, massive changes in cross section area accumulate over

a sufficiently large length. To make the small perturbation theory work, the tube can be

broken down into successive small lengths such that A(x) only changes slightly along each

tube element. Therefore, in each of such elements it is admissible to linearize about the

local conditions and develop a small perturbation theory as described above. However, it
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should be noted that the state at the entry to each element is not strictly uniform except

the very first one due to error accumulation over the successive small tube elements, which

complicates the problem by having a non-zero function F in equation (2.10). But, if such

imperfection is neglected, equation (2.22) can be applied to each tube element with A0

and M0 taken to be the cross section area and shock Mach number at the entry to the

subsection. This leads to the differential form of a relation, M = M(A), which is also

called the A−M relation, expressed as

1

A

dA

dM
= −g(M). (2.25)

The solution of equation (2.25) by integral may be written

A

A0

=
f(M)

f(M0)
, (2.26)

where

f(M) = exp

{
−
∫ M

1

g(ω)dω

}
. (2.27)

For one-dimensional problems where a shock is propagating down a tube with

varying cross section area, the ray tube is naturally defined by the solid walls and the

area term A appearing in all above equations is exactly the ray tube area. However, if

a shock front in a higher dimensional space is considered and no solid walls exist, the

approximation of the area term becomes the priority for solving the problem. If a shock

front is assumed to consist of numerous fluid particles, rays can then be introduced as

orthogonal trajectories of the successive positions of the particles on the shock front. One

way to understand these rays is to view them as particle paths, which are equivalent to

solid walls in inviscid flows, such that the area term can be defined as the cross section
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area of the tube bounded by rays. As a result, the shock front propagation problem breaks

down into descriptions of shock front elements propagating down individual ray tubes.

Though such approximation of ray tubes and corresponding areas may be imperfect

for a shock front with complex geometry, it is independent of the motion rule that governs

the propagation of each shock element. If the motion rule defines how the local Mach

number varies with the ray tube area, the inverse function of equation (2.26) can be used

to compute the Mach number given current ray tube area and reference values. It is worth

noting that f(M) is a monotonically decreasing function that approaches infinity when the

shock is attenuated into a Mach wave. Though the A−M relation is derived based on the

one-dimensional Euler equations, Whitham [40] argues that the results may be extended

for spherical shocks of moderate strength. This makes the A −M relation the core of

geometrical treatment of shock propagation problems in two- and three-dimensional space.

2.2 Geometrical Shock Dynamics

If a shock front at time t is supposed to be in the form:

α(x) = a0t, (2.28)

where a0 is still the undisturbed speed of sound, then successive shock front positions

are given by the family of implicit surfaces S(x, t) = α(x)− a0t = 0. For example, at a

specific time instant t1, all the particles on the shock front can be found at coordinates

satisfying the instantaneous surface function, i.e., {x|α(x)− a0t1 = 0}. Viewed this way,

the area of each elementary ray tube is related to the shock front position. Moreover, the

instantaneous Mach number at any particle should be able to be determined in terms of

α(x) as the shock motion is indicated by its successive positions. The A−M relation then

provides a bridge to derive α(x).
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Partial differential equations for geometrical shock dynamics were given by Whitham

in [40] as

M =
1

‖∇α‖
, (2.29)

∇ · n
A

= 0, (2.30)

A

A0

=
f(M)

f(M0)
, (2.31)

where n = ∇α
‖∇α‖ is the unit normal to the shock front.

2.3 Numerical Methods

Since only a small number of problems can be solved analytically using the method

of GSD, many algorithms were developed to numerically implement GSD models including

front tracking methods [3, 41, 42, 43, 92, 94, 95, 99, 100], finite difference [91] and finite

volume schemes [101, 102] based on the conservation form of GSD, and a recent level-set

fast marching approach [103], just to name a few. Among all these schemes, the front

tracking-based Lagrangian schemes are the most popular ones that have been used for a

wide range of shock dynamics problems since accuracy and speed can be well balanced.

First developed in two dimensions by Henshaw et al. [41] and then extended to three

dimensions by Schwendeman [42], the front tracking methods discretize a shock front

into particles. These particles advance along individual rays normal to the shock front

subjected to the local Mach number. Following this concept, Schwendeman [99] computed

the propagation of shock waves in gases with non-uniform properties. Best [94] and Peace

et al. [95] applied the front tracking method to quantitatively investigate influence of the

post-shock flow effect on the accuracy of GSD by taking into consideration the interaction

between the shock front and the non-uniform flow behind. Qiu and Eliasson [43, 3] used
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this approach to study blast interaction to take advantage of its fast speed and achieved

a good agreement with results from the Euler simulations. Ridoux et al. [100] extended

Henshaw’s Lagrangian scheme to remove its limitation for expansive shocks.

The Lagrangian schemes to solve various GSD models for two- and three-dimensional

shock propagation problems in this work are based on the front tracking method. Instead

of solving partial differential equations (2.29) – (2.31), the idea is to derive a kinematic

equation purely from geometry in addition to the A−M relation.

If x is used to denote the position vector of a particle on the shock front, then the

shock front kinematics is given by

dx

dt
= a0Mn, (2.32)

where n refers to the unit normal to the shock front that defines the propagation direction

of the particle.

The A−M relation is preserved, but in a numerically manageable form. Through

some algebraic manipulation a kinetic relation is derived from the A−M relation as

dM

dt
=
−a0M
g(M)

A′

A
, (2.33)

where g(M) is given in equation (2.22).

The last piece of information needed for integrating equations (2.32) – (2.33) is

an explicit expression for A′

A
≡ 1

A
dA
dn

. Best [94] for the first time mathematically deduced

A′

A
for a diverging shock. Since the problems are restricted to two-dimensional flows, the

shock front is represented as a one-dimensional curve and arc-length becomes the most

natural choice of the argument for all variables. Considering that the arc-length is also a

function of time, x, n and M are written as x(s(t)), n(s(t)) and M(s(t)), respectively, in

the following expressions for illustration purpose. Then A′

A
is given as a dot product as
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follows

A′

A
=
dx(s(t))

ds(t)
· dn(s(t))

ds(t)
, (2.34)

where

n(s(t)) =

(
dy(s(t))

ds(t)
,−dx(s(t))

ds(t)

)
. (2.35)

A closer inspection of equation (2.34) reveals the fact that A′

A
is indeed the curvature.

This can be seen by substituting equation (2.35) into the right side of equation (2.34),

which yields curvature, κ,

A′

A
= x′(s)y′′(s)− x′′(s)y′(s) = κ(s). (2.36)

Here it should be noted that, since equation (2.36) is derived for a diverging shock

on which any part has a convex shape, a positive curvature should always be obtained

as the result of such geometry. In contrast, a negative curvature is expected in concave

regions where the area of shock surface is decreasing.

All quantities required for equations (2.32) and (2.33) are thus known. The two-

dimensional GSD model now can be numerically solved at a set of particles xi that represent

the shock front. The discretized forms of the ordinary differential equations (ODEs) become

dxi
dt

= a0Mini, (2.37)

dMi

dt
=
−a0Mi

g(Mi)
κi, (2.38)

for i = 1, 2, ...N , and should be integrated simultaneously. This can be achieved by, for

example, adopting a third-order Runge-Kutta scheme [104].
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For the purpose of evaluating curvature, spline interpolation is fitted to the shock

front with the parameterization with respect to arc-length. If si is used to denote the

arc-length along the curve from the first particle to particle i, it can be approximated as

below with satisfying precision if the particle density is sufficient

si(t) =


0, if i = 1

si−1(t) + ‖xi(t)− xi−1(t)‖. if i = 2, 3, ...N

(2.39)

Then, the first- and second-order derivatives required for equation (2.36) can be

obtained at particles from spline interpolation. It is worth noting that equation (2.36) is

only valid for unit-speed curves that are usually in the form of being parameterized with

respect to arc-length. If a curve is not parameterized by arc-length, a correction factor

that accounts for the speed of the curve should be added to the function of curvature.

So an approximation of arc-length is necessary, which requires the shock front to be

adequately resolved. Guided by the resolution conditions proposed by Henshaw et al. [41],

an appropriate number of particles that balances accuracy and speed should be selected to

represent the shock front. If the average arc-length between particles is denoted by dsavg,

the criterion is given by

∆savg(0) =
sN(0)

N
= k1 � 1. (2.40)

Such condition provides a lower bound on the number of particles, and usually k1 = 0.01.

Seeing that particles tend to spread out in expansive regions and cluster together in

compressive regions, in order to maintain shock front resolution throughout the Lagrangian

simulation a scheme that adds or deletes particles according to the local density is needed.
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The particle spacing is checked every few time steps and demands that

σmin ≤ σi(t) =
∆si(t)

∆savg(t)
≤ σmax for i = 2, 3, ...N, (2.41)

where ∆si(t) = si(t) − si−1(t), and σmin and σmax are typically set to be 0.5 and 1.5,

respectively. If σi(t) > σmax, a point is added using spline interpolation evaluated at

1
2
(si(t) + si−1(t)); if σi(t) < σmin, the particle xi is deleted. By removing redundant

particles, not only is the numerical cost reduced, but the numerical stability is ensured

at each time step. Moreover, since rays tend to cross each other, triple points form in

compressive regions of the shock front, and therefore removing some clustered particles

enables the triple points to be effectively fitted into the shock front.

The two-step smoothing procedure is another component of the numerical imple-

mentation of GSD that is used to dampen high frequency errors in xi(t) and Mi(t). If

x̃i and M̃i(t) stand for the smoothed position and the smoothed value of Mach number

associated with the i’th particle, respectively, then the smoothing procedure is given by

x̃i(t) =
1

2
(xi−1(t) + xi+1(t)) , (2.42)

M̃i(t) =
1

2
(Mi−1(t) +Mi+1(t)) , (2.43)

where first i-even and then i-odd particles are scanned. Best [94] found it desirable to

apply such a smoothing procedure for compressive flows every few time steps, but that is

unnecessary in the case of expansive flows.

An appropriate time step size is guided by the CFL condition. Following [41] the

scheme used in this work that provides the upper bound on the selection of a time step,
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∆t, is given by

∆t

∆smin(t)
=

∆t

σmin∆savg
< k2, (2.44)

where the constant k2 is usually taken to be 0.2.

2.4 Application of GSD to Blast Waves

It is well known that GSD is accurate for shock waves with constant properties

behind [40, 41, 3, 91, 96], but blast waves are the ones that occur most frequently in

both nature and man-made applications. For a blast wave flow properties behind the

shock front are decaying exponentially as illustrated in Figure 1.1. This contradicts the

assumption made in deriving GSD, which requires a uniform state behind the shock. To

investigate whether the accuracy is compromised if such assumption is violated, in this

section Whitham’s original GSD model will be numerically implemented for the propagation

of a single cylindrical blast and compared to both the analytical and Euler solutions.

Once a shock front is discretized, the position and Mach number of each particle

are required by the Lagrangian scheme as initial input. Such information can be obtained

from empirical laws or numerical solutions for a particular explosion. In this work Bach

and Lee’s analytical solution to a point-blast wave [105] as well as the Euler equations of

gas dynamics are solved not only to provide initial conditions for the Lagrangian scheme

that solves GSD but also to be used as references to evaluate the accuracy of various GSD

models in predicting blast motion.

The analytical solution will be elaborated on in detail in Section 2.6 along with

an improved GSD model. In terms of solving the Euler equations, a brief discussion is

provided here. The primary solver used in this work for two- and three-dimensional shock

dynamics problems is Overture [106], an open-source framework with both incompressible
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and compressible flow solver capabilities. To simulate blast propagation in air, conservation

laws of mass, momentum and energy for inviscid compressible flows are solved with a

second-order Godunov scheme [107]. The unsteady Euler equations are represented in

conservation form as

∂Q

∂t
+
∂E

∂x
+
∂F

∂y
+
∂G

∂z
= 0, (2.45)

with Q, E, F and G given by

Q =



ρ

ρu

ρv

ρw

e


,E =



ρu

ρu2 + p

ρuv

ρuw

(e+ p)u


,F =



ρv

ρvu

ρv2 + p

ρvw

(e+ p)v


G =



ρw

ρwu

ρwv

ρw2 + p

(e+ p)w


, (2.46)

where ρ is the density, u, v and w are the velocity components in the x-, y- and z-directions,

and e is the energy per unit volume. Pressure p is related to the above variables by the

equation of state (EOS) for the perfect gas

p = (γ − 1)

[
e− ρ(u2 + v2 + w2)

2

]
, (2.47)

The conversion of the Euler equations from three to two dimensions can be simply

achieved by discarding all terms in the z-direction.

Instead of simulating a condensed energy source, the PDE solver starts with a specific

wave front of finite size such that extremely fine mesh and severe numerical oscillations

arising from sharp discontinuities at the wave front can be avoided. The initial conditions

used for the Euler equations are based on Taylor’s similarity law [35]. This similarity law

describes the distribution of flow properties within the blast front by assuming appropriate
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similarity assumptions for an expanding blast of constant total energy E:

p

p0
= R−3s (t)f1(ξ), (2.48)

ρ

ρ0
= ψ(ξ), (2.49)

u = R
− 3

2
s (t)φ1(ξ). (2.50)

Here, p0 and ρ0 denotes the ambient pressure and density ahead of the blast front. Nondi-

mensionalized variable, ξ = r
Rs

, the ratio between the radial distance measured from

the explosion center and the radius of the blast front at time instant t, is used as the

independent variable for functions f1, ψ and φ1.

Furthermore, the non-dimensional form of f1 and φ1 can be achieved by

f =
a20f1
C2

, (2.51)

φ =
φ1

C
, (2.52)

where a0 is the speed of sound in ambient air and C is a constant related to E.

Applying these assumptions to the conservation equations of mass, momentum, and

equation of state for a spherically symmetric flow yields the non-dimensional forms as

follows

φ̇(ξ − φ) =
ḟ

γψ
− 3

2
φ, (2.53)

ψ̇

ψ
=
φ̇+ 2φ/ξ

ξ − φ
, (2.54)

3f + ξḟ +
γψ̇

ψ
f(−ξ + φ)− φḟ = 0, (2.55)

where ḟ ≡ df
dt

and so on.
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The three ODEs can be numerically integrated simultaneously from ξ = 1 to 0.

The values of f , ψ and φ at the blast front (ξ = 1) are determined by the shock jump

conditions with an assumption of ps � p0 for a strong blast at its very early stage. Thus

the distributions of pressure, density and particle velocity within the blast front can be

obtained as shown in Figure 2.2, and remain the same for any total energy, E.

Approximate formulas that further reduce the effort to compute initial conditions

for the Euler equations are presented by Taylor [35]. The release of energy, E, from the

explosion only affects the maximum pressure and particle velocity at blast front by

pmax = 0.155R−3s E, (2.56)

umax = 0.360R
− 3

2
s

(
E

ρ0

) 1
2

. (2.57)

As indicated by equations (2.56) – (2.57), once the initial radius is chosen, all initial

conditions are determined for the numerical simulation of a spherical blast given energy.

Throughout this work, spherical blasts are simulated with an initial radius R0 = 1.5 mm,

which is the same as that used by Jiang et al. [4] who performed Euler simulations to

investigate the motion of a spherical micro-blast wave induced by laser beam focusing. For

two-dimensional blast dynamics problems, the similarity law is modified to generate initial

conditions for cylindrical blasts [108] with the same initial radius, i.e., R0 = 1.5 mm. The

verification of the Euler solver and the initial conditions, and the grid independence study

can be found in Appendix A.

Both Bach and Lee’s analytical solution and the Euler equations for a single

cylindrical point-blast were numerically solved with an initial energy input E0 = 8, 000 J/m.

To study the shock front behavior during its expansion, the variation of Mach number as a

function of radius (i.e., M − R) is shown in Figure 2.3. A discrepancy can be observed

between the M −R curves from the analytical and Euler solutions at an early stage when
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Figure 2.2: Normalized initial conditions based on Taylor’s similarity law [84].

the blast front is very strong. The two curves gradually get closer as the blast front further

expands and almost agree once the radius exceeds its initial size by a factor of 20.

Whitham’s original GSD model represented by the system of equations (2.32) –

(2.33) was solved with the Lagrangian scheme presented in Section 2.6 to verify its accuracy

in predicting the blast motion. To start the scheme a shock front was represented by

particles placed on a circle with a radius of 10.06 mm with spacing ∆s ≈ 0.1 mm. The

corresponding Mach number at R0 = 10.06 mm was found to be 11.81 and 9.76 according

to the Euler simulation and analytical solution, respectively. Smoothing procedures are not

needed for a single blast expansion but particles would be added if the local particle density

becomes scarce as the blast front area increases. The GSD results are presented in Figure

2.3 where each resulting M − R curve lies well above its corresponding reference. This
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Figure 2.3: M −R plots of the propagation of a single cylindrical blast in air. Initial
conditions: E0 = 8, 000 J/m for the Euler and analytical solutions.

indicates that the blast front was not sufficiently attenuated throughout the Lagrangian

simulation by the original GSD model.

2.5 Post-shock Flow Effect

To explore the reason why GSD falls short of accuracy when being applied to blast

waves, the derivation of Whitham’s original model needs to be reevaluated. Recall that

when deducing the differential form of the A−M relation that is valid only for a sufficiently

large length in a non-uniform tube, the small perturbation theory is applied to each tube

element by linearizing about the local conditions. That being said, in practice the initial

uniform properties behind the shock, u1, a1, p1 and ρ1 in equation (2.10) are replaced by
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the local properties, u, a, p and ρ, respectively. So the whole derivation of the A −M

relation is indeed just the substitution of the shock jump conditions as a function of Mach

number into the compatibility equation along the C+ characteristics. Then the resulting

differential equation gives the variation of M with x (also with A since A = A(x)).

The compatibility equation along the C+ characteristics without linearization is

∂p

∂t
+ (u+ a)

∂p

∂x
+ (ρa)

(
∂u

∂t
+ (u+ a)

∂u

∂x

)
+ ρua2

A′(x)

A(x)
= 0, (2.58)

which can be rearranged into

∂p

∂x
+ ρa

∂u

∂x
= − 1

u+ a

(
∂p

∂t
+ ρa

∂u

∂t
+ ρua2

A′(x)

A(x)

)
. (2.59)

Consider that all total derivatives consist of changes of the property with respect to both

time and location, then dtp and dtu along the shock trajectory are

dp

dt
=
∂p

∂t
+ a0M

∂p

∂x
, (2.60)

du

dt
=
∂u

∂t
+ a0M

∂u

∂x
. (2.61)

Multiply equation (2.61) by ρa then add it to equation (2.60) to get

dp

dt
+ ρa

du

dt
=
∂p

∂t
+ ρa

∂u

∂t
+ a0M

(
∂p

∂x
+ ρa

∂u

∂x

)
. (2.62)

Substituting equation (2.59) into the right hand side of equation (2.62) with some algebraic

manipulations yields

(
dp

dM
+ ρa

du

dM

)
dM

dt
= −

[
a0M

ρua2

u+ a

A′(x)

A
+

(
a0M

u+ a
− 1

)(
∂p

∂t
+ ρa

∂u

∂t

)]
. (2.63)

It is not difficult to find that the equivalence of equation (2.63) to the A−M relation,
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(2.33), is established by the use of shock jump conditions in determination of dp
dM

and du
dM

,

along with the truncation of the term
(
a0M
u+a
− 1
) (

∂p
∂t

+ ρa∂u
∂t

)
. Now, it is necessary to make

some comments about the accuracy of the A−M relation derived in the manner presented

in Section 2.1. Best [94] concluded that the criterion of Whitham’s A−M relation being a

good approximation through linearization is

a0M
ρua2

u+ a

∣∣∣∣A′(x)

A

∣∣∣∣� ∣∣∣∣ a0Mu+ a
− 1

∣∣∣∣ ∣∣∣∣∂p∂t + ρa
∂u

∂t

∣∣∣∣ . (2.64)

Equation (2.64) lists two sources of disturbances that possibly modify the shock front: the

term on the left hand side of this inequality characterizes the effect of changing area upon

the shock front, and the right hand side represents the interaction between the shock front

and the flow behind. The expression ∂p
∂t

+ ρa∂u
∂t

is called the “post-shock flow term” as it

measures the non-uniformity of the flow behind the shock. It is equal to zero for a uniform

flow, which is exactly the case of applying small perturbation theory to deduce the A−M

relation as done by Whitham. Though the change of area upon the shock front disturbs

the flow immediately behind it such that
∣∣∂p
∂t

+ ρa∂u
∂t

∣∣ > 0, its absolute value is usually

very small along the C+ characteristics originating in a uniform state. This justifies the

appropriateness of using the A−M relation to describe the motion of an initially uniform

shock wave. However, this term can also be fairly large if a strong gradient exists in the flow

just behind the shock front. To what extent such non-uniformity affects the shock motion

is determined by
∣∣a0M
u+a
− 1
∣∣, which indicates the coincidence of the C+ characteristic line

and the shock trajectory. Recall that when deriving the A−M relation the compatibility

equation along the C+ characteristics is applied at the shock front by using the shock jump

conditions, but such being a good approximation requires the leading C+ characteristic to

coincide with the shock trajectory. This is true only for the case in the sonic limit, i.e.,

M → 1, where the disturbances stemming from the non-uniform flow behind the shock
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propagate along the C+ characteristics, but do not meet the shock front so they impose no

influence on its motion. On the other hand, if M →∞, Best reported that
∣∣a0M
u+a
− 1
∣∣ tends

to be 0.215 for γ = 1.4 [94], which suggests the significance of the post-shock flow effect

as in this situation disturbances overtake and then modify the shock front. Consequently,

since
(
a0M
u+a
− 1
) (

∂p
∂t

+ ρa∂u
∂t

)
is not zero for most cases, the A−M relation is accurate only

when the effect of area change upon the shock dominates that of the interaction between

the shock front and the non-uniform flow behind.

For the case of shocks with decaying properties behind, blast waves for example, the

gradient in the flow immediately behind the shock front can make the term
∣∣∂p
∂t

+ ρa∂u
∂t

∣∣
very large. As long as the shock is of moderate strength, disturbances will catch up

with the shock front and modify it. The inequality in criterion (2.64) is then violated

since
(
a0M
u+a
− 1
) (

∂p
∂t

+ ρa∂u
∂t

)
becomes as significant as a0M

ρua2

u+a
A′(x)
A

in terms of magnitude.

Therefore, to make the A−M relation appropriate for this type of shocks, a correction term

must be added that accounts for the post-shock flow effect, and obviously, the truncated

term itself is a good indication. A generalization of GSD was carried out by Best [94], who

closed the motion rule for shock propagation by an infinite sequence of ordinary differential

equations given as follows

dM

dt
=

−a0M
dMp+ ρadMu

[(
ρua2

u+ a

)
A′

A
+

(
1

u+ a
− 1

a0M

)
Q1

]
, (2.65)

dQk

dt
= − a0M

{
∂k

∂t

(
ρua2

u+ a

)
A′

A
+

k∑
i=1

[(
k

i

)
∂i

∂t

(
1

u+ a

)
Qk−i+1

]
+
∂k−1

∂t

(
∂(ρa)

∂t

∂u

∂x
− ∂(ρa)

∂x

∂u

∂t

)
+

(
1

u+ a
− 1

a0M

)
Qk+1

}, (2.66)

for k = 1, 2, , ..., where

Qk =
∂k−1

∂t

(
∂p

∂t
+ ρa

∂u

∂t

)
. (2.67)
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The above closed system can be written in a concise form by setting M to be Q0:

dtQk = f(Q0, ..., Qk+1, A
′/A), for k = 0, 1, .... Evidently the expression for dtQk depends

on Qk+1, such that each differential equation in the system is coupled to its successor in the

sequence. By truncating all the terms involving Qk+1, a kth-order complete GSD system

is achieved. It is so named because the post-shock flow effect is only partially complete

as the result of nonexistence of derivatives of orders higher than k. For example, the

front-tracking based two-dimensional original GSD model consisting of equations (2.32)

and (2.33) only achieves zeroth-order completeness. Moreover, if Q1 is preserved but terms

involving Q2 are discarded, the first-order complete GSD model is obtained as follows,

which contains three coupled ordinary differential equations for three unknowns, namely,

x(t), M(t) and Q1(t):

dx

dt
= a0Mn, (2.68)

dM

dt
=

−a0M
dMp+ ρadMu

[(
ρua2

u+ a

)
A′

A
+

(
1

u+ a
− 1

a0M

)
Q1

]
, (2.69)

dQ1

dt
= −a0M

[
∂

∂t

(
ρua2

u+ a

)
A′

A
+
∂(ρa)

∂t

∂u

∂x
− ∂(ρa)

∂x

∂u

∂t
+
∂

∂t

(
1

u+ a

)
Q1

]
. (2.70)

Once initial conditions are provided, the system can then be solved by numerical integration.

The first-order complete GSD model was solved with the Lagrangian scheme for the

same case as the original GSD model presented in Section 2.3. In addition to the initial

blast radius and Mach number, the initial value of Q1 is also necessary to start the scheme.

Since Q1 requires partial derivatives with respect to time and location, which are not

present until the scheme advances at least one time step, it is possible to estimate its value

at R0 = 10.06 mm only if prior knowledge exists. By estimating dxM from the analytical

solution, all partial derivatives can be computed as functions of dxM [94] and then Q1

follows. As a result, the M − R curves obtained from solving the first-order complete

GSD model with appropriate initial conditions are shown in Figure 2.4. Obviously, though
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closing the system with one more equation untruncated (i.e., dQ1

dt
) succeeds in attenuating

the blast front when compared to the original GSD model, the first-order complete GSD

model predicts a much weaker blast at distance.

To investigate if solving a higher-order complete GSD model leads to a better

accuracy, equation (2.63) is revisited. By explicitly computing the post-shock flow term,

∂tp+ ρa∂tu, through the similitude relation dxM(M) obtained from the analytical solution,

the so-called modified GSD model [3] comprised of equations (2.71) and (2.72) is

considered to have preserved the full completeness without truncation at any level of Qk.

The resulting blast behavior excellently recovers the analytical solution as shown in Figure

2.4. This agrees with our expectation considering that the modified GSD model should be

able to correctly and sufficiently account for the post-shock flow effect by fully expressing

the post-shock flow term.

dx

dt
= a0Mn, (2.71)

dM

dt
=

−a0M
dMp+ ρadMu

[(
ρua2

u+ a

)
A′

A
+

(
1

u+ a
− 1

a0M

)(
∂p

∂t
+ ρa

∂u

∂t

)]
. (2.72)

The influence of the completeness of the post-shock flow term is best illustrated in Fig-

ure 2.5, where the values of a0M
dMp+ρadMu

(
ρua2

u+a

)
A′

A
and a0M

dMp+ρadMu

(
1

u+a
− 1

a0M

) (
∂p
∂t

+ ρa∂u
∂t

)
that represent the geometrical effect and the post-shock flow effect respectively are tracked

throughout the Lagrangian simulation. Since the opposite of these two terms make up the

blast acceleration, dM
dt

as in equation (2.72), a positive value signals its effect in attenuating

the blast front. In light of the fact that the geometrical effects obtained from solving the

first-order complete GSD model and from the modified GSD model do not deviate much

from each other as seen in Figure 2.4, the change of area upon the blast front should not

be the reason for the discrepancy manifested in the blast behaviors for these two models.

On the other hand, starting at the same initial value the post-shock flow effect from the
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Figure 2.4: M − R plots of the propagation of a single cylindrical blast in air for
different GSD models. Initial conditions: E0 = 8, 000 J/m for the analytical solution;
R0 = 10.06 mm and M0 = 9.76 for the GSD, 1st-order complete GSD and modified
GSD solutions.

modified GSD model soon departs from the first-order complete GSD result on its way

to the peak value. Then the curve gradually slides and falls below its counterpart at

R ≈ 17 mm. Such observation of the post-shock flow effects at an early stage is echoed in

the M −R curves where the modified GSD model attenuates the blast front as accurately

as the analytical solution suggests, while the first-order complete GSD model predicts

a stronger blast. Later, as shown in Figure 2.5, the post-shock flow effect estimated by

the first-order complete GSD model keeps increasing until arriving at its highest point

at R ≈ 25 mm, but its variance with the modified GSD result accumulates till the two

curves intersect for the second time. This explains the over-attenuation of blast velocity
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further away from the explosion center by the first-order complete GSD model as shown

in Figure 2.4. Therefore, by comparing the post-shock flow effects from the two models

and analyzing how their resulting blast behaviors differ accordingly, a conclusion can be

made here that, the level of the completeness of the post-shock flow term determines the

accuracy of geometrical shock dynamics when being applied to blast waves.
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Figure 2.5: Variation of values involving the geometrical term and post-shock flow
term as a function of blast radius. Initial conditions: R0 = 10.06 mm and M0 = 9.76
for the 1st-order complete GSD and modified GSD solutions.
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2.6 Point-source GSD

The analytical solution to point-blast propagation and an improved GSD model

based on it, referred to as point-source GSD, will be elaborated on in this section. Similar,

but different than the classical self-similar solutions by Taylor [35] and Sedov [109] that

are confined to the early stage of explosion when a blast front is still very strong, an

approximate analytical method that is able to describe the entire propagation regime of a

blast wave was proposed by Bach and Lee [105]. Such analytical solution was proved to be

accurate even for weak blasts, which renders itself a perfect benchmark for the problems

of blasts interacting at relatively low Mach numbers. The derivation of Bach and Lee’s

analytical solution is reviewed below.

Conservation equations of mass, momentum and energy for the unsteady one-

dimensional adiabatic motion behind the blast wave are respectively written in a dimen-

sionless form as follows

(φ− ξ)∂ψ
∂ξ

+ ψ
∂φ

∂ξ
+ jφ

ψ

ξ
= 2θη

∂ψ

∂η
, (2.73)

(φ− ξ)∂φ
∂ξ

+ θφ+
1

ψ

∂f

∂ξ
= 2θη

∂φ

∂η
, (2.74)

(φ− ξ)
(
∂f

∂ξ
− γf

ψ

∂ψ

∂ξ

)
+ 2θf = 2θη

(
∂f

∂η
− γf

ψ

∂ψ

∂η

)
, (2.75)

where particle velocity profile φ, pressure profile f and density profile ψ are defined with

respect to two dimensionless independent variables ξ = r
Rs(t)

and η =
c20
Ṙ2
s

= 1
M2
s

as

φ(ξ, η) =
u(r, t)

Ṙs(t)
, (2.76)

f(ξ, η) =
p(r, t)

ρ0Ṙs(t)2
, (2.77)

ψ(ξ, η) =
ρ(r, t)

ρ0
, (2.78)
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and

θ(η) =
RsR̈s

Ṙ2
s

. (2.79)

Similar to Taylor’s similarity law, ξ is the ratio between the radial coordinate

measured from the explosion center and the instantaneous blast front radius, and η is a

function of Rs. The numerical constant j that appears in the conservation equation of mass

is defined as j = 0, 1, 2 for planar, cylindrical and spherical blast wave, respectively. The

total energy enclosed by the blast wave should be conserved at all times and the energy

integral is given as

y

(
I

η
− 1

γ(γ − 1)(j + 1)

)
= 1, (2.80)

where

I =

∫ 1

0

(
f

γ − 1
+
ψφ2

2

)
ξjdξ, (2.81)

y =

(
Rs

R0

)j+1

, (2.82)

R0 =

(
E

ρ0a20kj

) 1
j+1

. (2.83)

It is worth noting that R0 is also called the characteristic explosion length, which is an

intrinsic property of the explosion with total energy E. Also, kj = 1, 2π, 4π for j = 0, 1, 2,

respectively.

According to the shock jump conditions, the boundary conditions should be satisfied
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for variables at blast front ξ = 1 as follows:

φ(1, η) =
2(1− η)

γ + 1
, (2.84)

f(1, η) =
2

γ + 1
− (γ − 1)η

γ(γ + 1)
, (2.85)

ψ(1, η) =
γ + 1

γ − 1 + 2η
. (2.86)

A hidden physical boundary condition must be satisfied at the origin of the explosion:

φ(0, η) = 0. This implies that the particle velocity should be zero at the center of symmetry.

Now the mathematical formulation governing the flow field generated by the passage of a

blast wave is complete. The solution to the energy integral (2.80) and conservation laws

(2.73) – (2.75) satisfying boundary conditions (2.84) – (2.86) defines the dynamics of the

blast wave and its flow structure at any instance of time.

Bach and Lee assumed a power-law density profile behind the blast wave

ψ(ξ, η) = ψ(1, η)ξq(η), (2.87)

where the exponent q can be determined by substituting the density profile into the integral

of conservation of mass

q(η) = (j + 1)[ψ(1, η)− 1]. (2.88)

With the density profile known, equation (2.73) reduces to an ordinary linear

differential equation of particle velocity profile φ(ξ, η). By satisfying the boundary condition

φ(0, η) = 0, the particle velocity profile takes the form

φ(ξ, η) = φ(1, η)ξ(1−Θ ln ξ), (2.89)

48



where

Θ =
−2θη

φ(1, η)ψ(1, η)

dψ(1, η)

dη
. (2.90)

Finally, by substituting the density profile and particle velocity profile along with

their partial derivatives with respect to ξ and η into the conservation of momentum, one

can obtain the pressure profile after some algebraic manipulations

f(ξ, η) = f(1, η) + f2(ξ
q+2 − 1) + f3{ξq+2[(q + 2) ln ξ − 1] + 1}

+ f4{2− ξq+2[(q + 2)2 ln2 ξ − 2(q + 2) ln ξ + 2]}, (2.91)

where

f2 =
ψ(1, η)

q + 2

{
(1−Θ)

[
φ(1, η)− φ2(1, η)

]
− θ

[
φ(1, η)− 2η

dφ(1, η)

dη

]}
, (2.92)

f3 =
ψ(1, η)

(q + 2)2

{
θ

[
Θφ(1, η)− 2η

d[Θφ(1, η)]

dη

]
−Θφ(1, η)−Θ2φ2(1, η) + 2Θφ2(1, η)

}
,

(2.93)

f4 = Θ2φ2(1, η)
ψ(1, η)

(q + 2)3
. (2.94)

Here, q is given as in equation (2.88) and all the variables with ξ = 1 are evaluated at the

blast front given in equations (2.84) – (2.86).

Since θ contained in the particle velocity and pressure profiles is yet unknown,

in order to complete the solution the relationship between θ and η must be determined.

By substituting all density, particle velocity and pressure profiles i.e., equations (2.87),

(2.89) and (2.91) into the energy integral (2.80), one can solve for a differential form of the
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relationship

dθ(η)

dη
= − 1

2η

{
θ + 1− 2φ(1, η)− D + 4η

γ + 1
− (γ − 1)(j + 1)

[
φ(1, η)− (D + 4η)2

4θy(γ + 1)

]}
+

D + 4η

8η2(γ + 1)

[
(D + 4η)φ(1, η)

θ
− φ(1, η)(γ + 1)

θψ(1, η)
+ 2(η + 1)

+(γ − 1)(j + 1)
(γ + 1)φ2(1, η)

2θ

]
+

2θ[2 + (γ − 1)(j + 1)]

D + 4η
, (2.95)

where D = γ(j + 3) + (j − 1).

Moreover, the relationship between the blast radius y and blast front velocity η is

also found to be related to θ as

dy

dη
= −(j + 1)y

2θη
. (2.96)

Then, the solutions to the pair of ordinary differential equations (2.95) and (2.96)

provide all the essential information about the propagation of a blast front including its

instantaneous radius, velocity and acceleration. Functions θ(η) and y(η) can be obtained

simultaneously as the result of numerical integration (e.g. Runge-Kutta method) with the

boundary condition satisfied at η = 0. The initial energy E only contributes to y through

the characteristic explosion length R0, while θ(η) acts as a scaling law that is independent

of the energy of the explosion.

Recall that Whitham’s original GSD model yields accurate results only when the

flow behind the shock front is uniform such that the nonlinear geometrical effect becomes

the dominant reason for the change of shock motion. However, for other cases where

the shock front interacts strongly with the flow behind it, for example a blast wave, the

resulting post-shock flow effect may become equally or even more influential than the

geometrical effect so it should be taken into account in GSD. Considering Bach and Lee’s

analytical solution to point-blast propagation already encodes accurate blast behaviors,
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a modification to the original GSD model to include such essential blast property was

proposed by Yoo [110]. Rewrite equation (2.79) in the same manner as equation (2.38)

using the equivalence Ṙs = a0M and R̈s = a0
dM
dt

to get

dM

dt
=
a0M

2θ

Rs

=
−a0M
−j/Mθ

j

Rs

. (2.97)

In fact, j
Rs

is the curvature of a cylindrical (j = 1) and spherical (j = 2) blast, so dM
dt

can

be further expressed as

dM

dt
=
−a0M
Φ(M)

κ, (2.98)

where Φ(M) = − j
Mθ

and θ(M) is given in equation (2.79) with the argument η replaced by

1
M2 . Equation (2.98), which is the κ−M relation particular for blast front, is effectively

the core of the point-source GSD (PGSD) model. The main advantage of this model

is that it defines the motion rule of blast propagation for all energy contents without the

need to specify θ(η) for a particular point-source explosion. Moreover, the PGSD model

can be further modified for condensed explosives as long as the resulting blast behavior is

known beforehand. In this situation, the M − R data is mostly used to generate Φ(M)

that nonetheless encodes essential blast information only for that particular charge.

The same case was revisited here by solving the PGSD model with the Lagrangian

scheme. The propagation of a cylindrical blast in air was simulated with initial conditions

M0 = 9.76 and R0 = 10.06 mm. As shown in Figure 2.6, the resulting M−R curve overlaps

with the analytical solution as well as the modified GSD result, as expected.
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Figure 2.6: M − R plots of the propagation of a single cylindrical blast in air for
different GSD models. Initial conditions: E0 = 8, 000 J/m for the analytical solution;
R0 = 10.06 mm and M0 = 9.76 for the GSD, 1st-order complete GSD, modified GSD
and PGSD solutions.

2.7 A−M Relation and κ−M Relation

We are now in a good position to make additional comments about the equivalence

of A′

A
to curvature κ, which has already been proved for the case of a two-dimensional

diverging shock as in equation (2.36). A generalization of such equivalence is evident in

partial differential equation (2.30) that can be rewritten as

∇ · n− n · ∇A
A

= 0. (2.99)
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The equivalence

n · ∇A
A

=
1

A

dA

dn
=
A′

A
(2.100)

leads to

A′

A
= ∇ · n. (2.101)

In fact, the divergence of the unit surface normal is an alternative definition of

curvature [111]. To prove this, first consider a two-dimensional implicit surface α(x) as

defined in equation (2.28). Substituting n = ∇α
‖∇α‖ into the right hand side of equation

(2.101) gives

∇ · n = ∇ · ∇α
‖∇α‖

= (α2
xαyy − 2αxαyαxy + α2

yαxx)/‖∇α‖3

= κ,

(2.102)

and it has the same properties as claimed by Best [94]: κ > 0 for convex regions, κ < 0 for

concave regions, and κ = 0 for a plane shock.

Furthermore, for the case of shock surface propagation in three dimensions A′

A
is still

related to the curvature, but strictly speaking, it is the sum of two principal curvatures as

shown in equation (2.103)

A′

A
= ∇ · ∇α

‖∇α‖

= (α2
xαyy − 2αxαyαxy + α2

yαxx + α2
xαzz − 2αxαzαxz + α2

zαxx

+ α2
zαyy − 2αyαzαyz + α2

yαzz)/‖∇α‖3

= 2KM ,

(2.103)
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where the mean curvature KM is half the sum of the two principal curvatures.

Therefore, the A−M relation, equation (2.25), that describes how the shock front

strength varies with the area upon it can now be replaced by the κ−M relation, i.e.,

dM

dt
=
−a0M
g(M)

κ, (2.104)

where g(M) is given in equation (2.22), and for a shock surface in three dimensions the

sum of two principal curvatures is written in the form of κ for consistency.

The κ−M relation represents the rate of change of the shock front Mach number

subject to the local curvature, so it can be numerically integrated without needing the

reference values A0 and M0 as in equation (2.26). Moreover, given that it is always

cumbersome to define ray tubes and compute the cross section areas, another advantage of

replacing the A−M relation with the κ−M relation is that unlike ray tubes that only

exist virtually, curvature is clearly defined using differential geometry. This feature is also

inherent to the PGSD model, especially when it is used to deal with a blast surface in three

dimensions.

2.8 Application of PGSD to Blast Focusing Problems

The framework with the Lagrangian scheme solving the PGSD model used in this

section for symmetric blast interaction problems is summarized next:

Step 1 – Find the transition conditions:

The critical conditions for the transition from regular to irregular reflection taking

place where two neighboring blasts intersect should be first determined. If prior

knowledge is accessible, the instantaneous Mach number and position of the shock

front can be obtained through processing experimental schlieren images or from Euler
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simulations. Various theoretical analyses also exist for computing the transition

conditions and they are reviewed in detail in Section 1.2.2.

Step 2 – Generate initial input for the Lagrangian scheme:

The multi-blast front that is considered as a continuous curve seen in two-dimensional

space is discretized by particles. Given a perfect circular shape is well preserved

before any Mach stem arises, it is rational to assume that the velocity is evenly

distributed along the shock front. Therefore, the Mach number at the transition

instant and the instantaneous coordinates are stored at each particle as the initial

input for the Lagrangian scheme.

Step 3 – Compute the irregular reflection phase through PGSD:

Once the frequency to apply mesh smoothing and regularization procedures is

determined based on the shock front configuration and initial particle resolution,

the Lagrangian scheme is started to take over the following computation for the

irregular reflection phase. All the time steps registered in the scheme count from

the transition instant.

Step 4 – Post-process data:

Only information about the shock front position and velocity is returned from the

PGSD scheme once finished. Though the shock jump conditions can be used to

derive the pressure, density and particle velocity in the flow immediately behind the

shock front from the Mach number, accuracy is greatly in doubt if they are applied

to the Mach stem with a very limited volume inside which energy is extremely

condensed.

To evaluate the PGSD model as well as the application of geometrical shock dynamics

to blast focusing problems, a symmetric interaction of a pair of cylindrical weak blast

waves were simulated following the framework introduced above. This study is compared
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to Higashino’s experiments [2] in which two identical cylindrical blast waves were generated

simultaneously by exploding two wires of the same size and material as illustrated in

Figure 2.7. In the experiment, the exploding wires, made of either copper or nichrome,

were 34 mm in length and 0.1 mm in diameter. The wires were placed 60 mm apart and

exploded by an electrical discharge from capacitors that delivered energy of 25 J and 170 J

for copper and nichrome wires, respectively. The same experiments were also numerically

replicated by Qiu [3] using the modified GSD model. Due to uncertainties in the actual

energy release in the wire explosions including incomplete detonation of the full length of

wires and fractional usage of energy in explosions out of the total release from capacitors,

a number of Euler simulations at different energy levels were first performed by Qiu in the

hope of determining the actual energy release in explosions such that experimental results

can be best reproduced. As a result, 117.09 J/m and 58.54 J/m of energy density were

used to generate cylindrical point-blasts for Qiu’s Lagrangian simulations for the copper

and nichrome case, respectively.

Figure 2.7: Schematic illustration of the experiments of Higashino et al. [2]. θw: wedge
angle.
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An approach to compute the transition conditions from regular to irregular reflection

for the interaction between two identical cylindrical shocks was also introduced by Qiu [3].

It is done by communicating the shock motion known beforehand to the sonic criterion [62]

via the wedge angle. Following this method the initial conditions for the PGSD scheme

can be obtained with the energy density given above. An initial Mach number of 1.13 at

an initial radius of 46.60 mm for the copper case, and an initial Mach number of 1.30 at

an initial radius of 41.46 mm for the nichrome case turned out to be the instantaneous

conditions when Mach stems are about to form during the interaction. The initial two-blast

front was discretized with five particles per degree, i.e., a space step, ∆s ≈ 0.2 mm for

the copper wire explosion and ∆s ≈ 0.18 mm for the nichrome wire explosion. Mesh

smoothing and regularization procedures were implemented every few iterations such that

particles in compressive regions would not travel across each other, while in the meantime

the resolution could be well maintained in expansive regions.

Time history of the maximum pressure at the Mach stem was recorded in the PGSD

Lagrangian scheme and compared to the modified GSD results as shown in Figure 2.8.

Uncertainties exist in data that may pollute the time history of pressure by shifting the

curves horizontally. This arises from the inconsistency between the transition time instant

defined in Qiu’s numerical study and that defined in this work. Since time registered in a

Lagrangian simulation counts from the transition time instant, different definitions of such

reference for the same explosion case would make the comparison between the two models

less reliable. Consequently, it was carefully chosen for the current Lagrangian simulation

by checking the corresponding Euler simulation using the initial energy density mentioned

above.

Figure 2.8 suggests that the two models’ solutions to the same explosion case agree

in trend but differ in pressure values at the same time instance. Obviously, the maximum

pressure curves from the PGSD model always lie above the modified GSD results for both
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Figure 2.8: Ratio of maximum pressure at the Mach stem, Pm, to ambient pressure,
Pa, as a function of time. Modified GSD data reproduced from [3] providing initial
conditions to the current PGSD simulations. Experimental data reproduced from [2]
with permission from Springer.

cases. Such discrepancy may come from differences in the reference time, or even from

distinct intrinsic properties of the two models in terms of how the post-shock flow effect is

dealt with. In fact, according to [3] two similitude relations were generated for the modified

GSD model for each explosion case. One stems from the analytical solution and accounts

for the propagation of the expansive part of the two-blast front, so the resulting shock

behavior far away from the Mach stems should be in a good agreement with the PGSD

model. The second similitude relation governs the growth of the Mach stems. It is obtained

from the Euler simulations and applied to the particles on the Mach stems in the scheme.

In this way the interaction between the Mach stem and nonlinear flows behind is considered
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by the modified GSD model, which is possibly at a different level of intensity compared

to the post-shock flow effect for a point-blast. This may be true as the result of complex

flow field near the Mach stems, especially in the neighborhood of triples points those are

responsible for the maximum pressure at an early stage of irregular reflection.

Theoretically and proved by the comparison, the main advantage of the PGSD

model over the modified GSD model in solving blast dynamics problems lies in its efficiency.

Though the latter is faster than the Euler simulation due to being a reduced-order model,

it needs information beforehand about the blast behavior of a particular energy size, which

can be cumbersome to obtain. If the irregular reflection that occurs where two blasts meet

is of interest as well, one has to get access to the Euler solution to the same problem to

generate the second similitude relation, so the availability of the model is lowered. In

contrast, the PGSD model relies on θ(η) from the analytical solution [105] to account

for the post-shock flow effect. Since θ(η) is indifferent to the energy of the point-source

explosion, it only needs to be solved once and then can be used for any blast dynamics

problems. Consequently, despite being short of information about Mach stem generation,

the PGSD model preserves its speed to the fullest extent while only slightly compromising

the accuracy in limited situations. For each case of the copper and nichrome wire explosions,

the Lagrangian simulation took less than one minute on a single core of Intel Core(TM)

i7-8750H CPU operating at 2.20 GHz with 32 GB memory, whereas an Euler simulation

needed more than 48 hours with two cores of Intel Core(TM) i7-3930K CPU operating at

3.20 GHz with 16 GB memory.

This section will be closed by comparing the PGSD results to the experimental data

using the initial conditions provided in Higashino et al.’s work. The main difficulty to

make an appropriate comparison is still how to define the transition time that is used as

the reference for the PGSD model. In the experiments, uncertainties not only came from

image processing based on which the transition instant was determined, but also lay in the
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Figure 2.9: Arrival time of the shock front as a function of the radius reached.
Experimental data reproduced from [2] with permission from Springer providing initial
conditions to the current PGSD simulations.

time difference between the actual on-site of the wire explosion and when its luminosity

was detected by photo-cells. Therefore, the time instants recorded in the experimental

schlieren photographs should be treated with caution. In fact, the transition conditions

measured in the experiments were given in Table 1 in [2] along with those predicted by

von Neumann’s detachment theory [60]. To avoid uncertainties in the measured data, the

analysis of von Neumann was selected to generate the initial conditions for the PGSD

scheme. By matching the arrival time of the undisturbed part of the shock front in a
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least squares sense, as illustrated in Figure 2.9, the timeline of the Lagrangian simulation

is consistent with that of the corresponding experiment. This makes the time history

of the maximum pressure at the Mach front from the PGSD model comparable to the

experimental data.
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Figure 2.10: Ratio of maximum pressure at the Mach stem, Pm, to ambient pressure,
Pa, as a function of time. Experimental data reproduced from [2] with permission from
Springer providing initial conditions to the current PGSD simulations.

Figure 2.10 presents the results from the PGSD scheme with the same discretization

rule introduced above, i.e., ∆s ≈ 0.15 mm for the copper wire explosion and ∆s ≈ 0.16 mm

for the nichrome wire explosion. The mostly noticeable difference to the experimental

data is that the PGSD’s pressure value is higher than its counterpart at the same time

instance for each case. This means that a much faster Mach stem is predicted by the PGSD

model, in agreement with the observations in [3, 96]. Considering that geometrical shock
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dynamics always tends to generate irregular reflection in compressive flows even when

regular reflection is supposed to occur, the overestimation of Mach stem growth seems to

be inevitable.

2.9 PGSD with the Shock-shock Approximate The-

ory – PGSDSS

One property of geometrical shock dynamics is its natural tendency to produce

irregular reflection in compressive regions when regular reflection is expected. This is one

of the reasons why the framework introduced in Section 2.8 directly starts the Lagrangian

scheme at the transition instant from regular to irregular reflection for the problems of

blast interaction. Another advantage of skipping the regular reflection phase is that it

allows to construct the shock front in a more straightforward way. By using a continuous

shock front to represent interacting blasts, the Lagrangian simulation avoids all difficulties

in merging separated pieces if individual blasts were to be simulated at an early stage,

primarily updating the connectivity information. In this sense, if an alternative framework

with GSD is designed to solve blast focusing problems with initially separated blasts, it

should be able to simulate the regular reflection that occurs between each pair of two

neighboring ones. This is achieved by the model to be proposed in this section.

In fact, connectivity is not a one-time issue in terms of dealing with surface merging.

Instead, it must be resolved over and over again every time any pair of blasts touches

each other for the first time. In two-dimensional space, the task is manageable for some

particular cases with simple geometry and one is symmetric interaction, so the interaction

between multiple identical cylindrical blasts is aimed by this new model and the equivalence

of every two-blast interaction to a blast impacting onto a reflecting wall further simplifies

the problem. The blast is represented by a closed circle that evolves independently until it
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touches the wall. Then, regular reflection is supposed to take place that features a perfect

circular shape in the undisturbed part of the shock front. This can be achieved by applying

a transmissive-like boundary condition in the Lagrangian scheme. To be specific, at each

time step during regular reflection, particles that go across the wall are removed and new

particles may have to be added close enough to the wall as the new ends of the curve.

This renders the shock front no longer a closed curve such that the interpolation given in

equation (2.34) should be dealt with care to account for the possible unevenness of particle

resolution at both ends, but the effort needed to update the connectivity information

is minimal. The wedge angle θw is tracked throughout the simulation and such special

treatment of the regular reflection phase terminates once the pre-defined critical wedge

angle is reached, i.e., θw = θwc.

To address the issue of overestimating Mach reflection by the PGSD model, the

κ−M relation is replaced by the shock-shock approximate theory to govern Mach stem

growth in the new model. Whitham once applied the general theory of geometrical shock

dynamics to the problem of diffraction of a plane shock by a concave corner and obtained

the analytical solution to the trajectory of triple points (shock-shocks) [40]. Among all

corner geometries Whitham considered, the shock-shock approximate theory for plane

shock diffraction by a straight wedge as shown in Figure 2.11 becomes the inspiration

for the current analysis of irregular reflection generated by a cylindrical shock impacting

onto a reflecting wall. When a Mach stem is already formed, the shock front is separated

by the triple point into two regions in which the Mach number is constant: M0 for the

undisturbed part and Mw for the Mach stem. The angle χ is the deflection angle between

the triple point trajectory and the wedge reflecting surface tilted at θw above the ground.

If a straight Mach stem is assumed, the undisturbed rays contained in a stream tube of
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area A0 = AB′ sin(χ+ θw) pass through the area Aw = AB′ sin(χ), so a relationship

f(Mw)

f(M0)
=

sin(χ)

sin(χ+ θw)
(2.105)

can be obtained by using the A−M relation to connect ray tube area and Mach number.

Since the shock front is continuous at the triple point, the distance traveled by the triple

point as part of the undisturbed shock should be the same as that being one end of the

Mach stem, i.e., AB′ = a0M0t/ cos(χ+ θw) = a0Mwt/ cos(χ). This leads to the relationship

between the two Mach numbers

Mw

M0

=
cos(χ)

cos(χ+ θw)
. (2.106)

Given the Mach number of the plane incident shock M0 and wedge angle θw, the system

consisting of equations (2.105) and (2.106) provides the solutions to χ and Mw. In this

shock-shock approximate theory, nothing more than the trajectory of the triple point is

yielded that is described by a single variable χ.

Figure 2.11: Schematic illustration of the diffraction of a plane shock by a straight
wedge. Triple points represented by red dots.
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Figure 2.12: Schematic illustration of the treatment of cylindrical shock reflection off
a straight surface as the diffraction of a plane shock by a straight wedge. Triple points
represented by red dots.

When cylindrical shock reflection off a straight surface is considered, it is equivalent

to the diffraction of a cylindrical shock by a straight wedge with continuously decreasing tilt

angle. One difficulty remains and that is how to adapt the theory above to a curved incident

shock. The most straightforward way is to simply treat the incident shock as a plane shock

in the three-shock configuration as indicated in Figure 2.12. Once the transition angle θwc

is reached, the Mach stem arises from the reflecting surface, assumably in a perpendicular

manner. Then solve equations (2.105) and (2.106) with θw being the instantaneous wedge

angle and M0 being the Mach number for the expanding cylindrical shock. The resulting

deflection angle, χ, and Mach number at wall, Mw, together give the location of the triple

point after an infinitesimal period of time ∆t, i.e., B′ = (xA+Mwa0∆t, yA+tan(χ)Mwa0∆t).

However, B′ is not guaranteed to be on the undisturbed part of the shock front as there is
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no constraint on the radial position of the triple point in equations (2.105) – (2.106).

Figure 2.13: Schematic illustration of the diffraction of a cylindrical shock by a straight
surface. Triple points represented by red dots.

In contrast, the circular geometry of the undisturbed part of the shock front is

communicated to the triple point in an improved theory as presented in Figure 2.13. Here

A is still the current location of the triple point but the cylindrical incident shock is

no longer simplified as a plane shock. Instead, a curved shock element is considered as

the incident shock in the three-shock configuration and its curved shape is preserved in

developing the theory except when computing its ray area. This makes sense because in the

Lagrangian scheme introduce in Section 2.3, the arc-length between two neighbor particles

is approximated as a straight line in the calculation of the A −M relation. The other

end of the cylindrical shock element, point B, will become the triple point located at B′

after an infinitesimal time interval, but its current position is unknown. As a result, the
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instantaneous wedge angle θw is also unknown considering that the wedge bottom surface is

always parallel to the propagation direction of the incident shock that nonetheless depends

on the choice of B. In fact, θw is related to the location of B in the following way:

∠A′AA′′ + ∠B′AA′ + ∠BAB′ + ∠OAB = π,

−→ ∠A′AA′′ + χ+
π

2
− χ− θw +

π − θc
2

= π,

−→ θw = ∠A′AA′′ − θc
2
,

where point O is the explosion center that is given in the initial conditions, and θc is the

central angle of the minor arc between points A and B.

Similar to the shock-shock approximate theory for plane shock diffraction by a wedge, the

relationship between Mach numbers Mw and M0 is established by Mw

M0
= AA′

BB′ . The law of

sines further gives AA′

BB′ = AA′/AB′

BB′/AB′ = cos(χ)

sin(π
2
−θw−χ)/ sin(π2+

θc
2
)
, so

Mw

M0

=
cos(χ) cos( θc

2
)

cos(χ+ θw)
. (2.107)

On the other hand, the undisturbed rays contained in a stream tube of area A0 = AB

passing through the area Aw = A′B′ leads to

f(Mw)

f(M0)
=

sin(χ) sin(π
2

+ θc
2

)

sin(χ+ θw − θc
2

)
. (2.108)

The last piece of the new theory is a constraint that enforces the radial position of point

B′ to be consistent with the radius of the undisturbed part of the shock front after an

infinitesimal time span. This leads to another advantage of using a cylindrical shock as the
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incident shock over the simplification of it into a plane one. It is given by

‖(xA +Mwa0∆t, yA + tan(χ)Mwa0∆t)− (xO, yO)‖ = OB′. (2.109)

The shock-shock approximate theory for cylindrical shock reflection off a straight

surface is thus complete. A system comprised of equations (2.107) – (2.109) along with the

relation θw = ∠A′AA′′ − θc
2

should be solved by a numerical algorithm with (xA, yA), θw

and M0 known at the current time step. The radius of the undisturbed part of the shock

front at the next time step, OB′, is not necessary to be determined at point B′ that is

yet unknown; instead, the average radius can be used which is known after integrating

the PGSD model for a time interval ∆t. Moreover, equation (2.27), which only involves

the geometrical effect, is used in (2.108). This is reasonable given that the triple point is

always part of the undisturbed blast whose propagation is well described by the PGSD

model, such that the motion of a Mach stem is independent of the post-shock flow effect by

assuming a straight Mach stem. Consequently, the solutions to Mw, χ and θw in turn lead

to the exact location of B′ at the next time step. All particles that traverse line segment

A′B′ should be removed, which is considered to be the Mach stem.

Three processes, namely, individual blast expansion, a special treatment of regular

reflection and the shock-shock approximate theory for cylindrical shock reflection off a

reflecting surface for Mach reflection, together form the PGSD with the shock-shock

approximate theory (PGSDSS) model. It is the essential part of an alternative

framework for the symmetric interaction between initially separated blasts, along with

the determination of the transition angle and data post-processing. To test the proposed

PGSDSS model, the interaction between two identical cylindrical blasts located 20 mm

from each other was numerically investigated. By taking advantage of symmetry, only one

blast at a height of burst of 10 mm was actually simulated with the Lagrangian scheme
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Figure 2.14: Comparison of the trajectory of the triple point for the interaction
between two identical cylindrical blasts from the Euler and PGSDSS solutions. Initial
conditions: E0 = 10, 000 J/m for the Euler solution; R0 = 5 mm and M0 = 26.7 for the
PGSDSS solution.

solving the PGSDSS model. The initial conditions R0 = 5 mm and M0=26.7 were extracted

from a two-dimensional Euler simulation with an initial energy density of 10,000 J/m for

each point-explosion.

The triple point trajectory from the PGSDSS model with spacing ∆s ≈ 0.08 mm

is compared to the Euler result as presented in Figure 2.14. As a result, opposite to the

PGSD model, PGSDSS predicts a Mach stem that grows slower than the Euler simulation.

Though uncertainties exist in the Euler result because the triple points were manually

located at each time step by observing the sharp discontinues in flow properties, its size

in each data point should not exceed the grid size ∆s = 0.04 mm. Obviously, this is not
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Figure 2.15: Evolution of the shock front formed by the interaction between two
identical cylindrical blasts. Only half of the shock fronts shown with triple points
represented by red dots. Initial conditions: R0 = 5 mm and M0 = 26.7 for the PGSDSS
model.

sufficient to explain the discrepancy between the two trajectories of triple point further

away from the explosion center. One primary contributor may be the assumption of a

straight Mach stem made in the shock-shock approximate theory used in the PGSDSS

model. In fact, as found in the Euler simulation, a curved Mach stem is more often seen to

be generated from cylindrical shock reflection off a straight wall. This would result in a

more significant curvature reverse at the triple point that accelerates its motion. Also, an

even distribution of Mach number on the Mach stem is the result of trivial curvature but it
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in turn suppresses the change of the Mach stem’s shape. Figure 2.15 shows the shock front

evolution with triple points marked independently. As expected, a perfect circular shape is

excellently preserved in the undisturbed part of the shock front at each time step plotted.

Though the PGSDSS model was used only to describe the symmetric interaction between

two cylindrical blasts by exploiting its equivalence to one shock reflection off a straight

wall, it has the potential to deal with multi-blast interaction as long as the axial symmetry

can be established between every two neighboring blasts.

2.10 Chapter Summary

In this chapter, the general theory of geometrical shock dynamics (GSD) was first

reviewed in detail. As the essential component of GSD, the A−M relation was derived by

substituting the shock jump conditions as a function of Mach number into the compatibility

equation along the C+ characteristics. It relates the change of area upon the shock front

to shock motion with an assumption of a uniform state behind the shock. Numerical

implementation of GSD is most often carried out by a front-tracking based Lagrangian

scheme. It theoretically has an advantage over Euler simulations in efficiency as the result

of GSD being a reduced-order model. Whitham’s original GSD model [38, 39, 40] is able to

achieve a good accuracy for the cases where geometrical effect is the dominant reason for

shock motion, but falls short when being applied to blast waves where a strong gradient

exists in the flow immediately behind the front. Such post-shock flow effect was recovered by

Best [94] by integrating an infinite sequence of ordinary differential equations simultaneously.

An arbitrary-order complete GSD model can then be achieved by truncating equations in

the system but complexity increases considerably for every higher level of completeness.

Hence, the first-order complete GSD model was solved, along with Qiu’s modified GSD

model [3], with the in-house Lagrangian codes for the problem of a single cylindrical blast
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propagation in air. Compared to the modified GSD’s result that excellently agrees with

the analytical solution due to its ability to fully account for the post-shock flow effect,

the first-order complete GSD model only shows limited improvement over the original

GSD model. Such observation demonstrated the significance of the post-shock flow term’s

completeness in an accurate description of blast motion.

Then, the PGSD model [110] was introduced that encodes Bach and Lee’s analytical

solution to a point-blast. Unlike the modified GSD model that requires prior knowledge for

a specific explosion, PGSD can be used for any energy content if the analytical solution is

solved for once. This makes it an appropriate model for blast interaction problems since it

well balances accuracy and speed. Therefore, based on the Lagrangian scheme that solves

the PGSD model a framework was proposed to deal with symmetric blast focusing. By

choosing to start the scheme at the transition instance from regular to irregular reflection

that occurs between neighboring blasts, initial input can be generated with Mach number

evenly distributed on the shock front. The PGSD model then takes over the computation for

the subsequent Mach reflection phase, from which flow information immediately behind the

moving front can be obtained through the shock jump conditions. Following the framework,

Lagrangian simulations were performed aiming at numerically replicating Higashino et al.’s

experiments of the two-blast interaction produced by exploding copper or nichrome wires

simultaneously [2]. Though the simulation results have a similar trend in time history of

the maximal pressure at the Mach stem with the experimental data, the PGSD model

exhibits an obvious overshoot in both cases. This is believed to be caused by GSD’s inherent

tendency of overestimating the development of Mach reflection in compressive regions even

when regular reflection is supposed to take place.

To overcome this issue, a new model was developed that treats regular and irregular

reflection in different manners. The model is capable of being initialized with two separated

blasts represented by two closed circles in two-dimensional space. Once the two curves
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meet, regular reflection is realized by applying boundary conditions such that a perfect

circular shape can be preserved near the intersections. Irregular reflection follows as soon

as the pre-defined transition condition is reached. Mach stem growth is then governed

by the shock-shock approximate theory for cylindrical shock reflection off a straight wall,

while the undisturbed part of the shock front is still described by the PGSD model. The

so-called PGSDSS model was evaluated by comparing the triple point trajectory to the

Euler simulation for the interaction of two identical cylindrical blasts. As a result, the

PGSDSS model yielded almost a straight line of trajectory in the xy-plane that lies lower

than its counterpart all the time, which signals an underestimated Mach stem throughout

its development. Such observation is just opposite to that from the PGSD model which

instead overestimated the Mach stem growth, and one possible cause is the assumption of

a straight Mach stem made in deriving the shock-shock approximate theory.

Chapter 2, in part is currently being prepared for submission for publication of

the material. Heng, Liu; Veronica, Eliasson. The dissertation author was the primary

investigator and author of this material.
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Chapter 3

3D Point-source Geometrical Shock

Dynamics

After three two-dimensional GSD models that account for the post-shock flow effect

were investigated in Chapter 2, the PGSD model stood out due to its good accuracy for

blast propagation and adaptation to any point-explosion initial energy. Moreover, as the

result of replacing the A −M relation with the κ −M relation, another advantage of

PGSD is its capability to be simplify extended to three dimensions. Therefore, the goal of

this chapter is to develop a PGSD model suitable for three-dimensional shock dynamics

problems; particularly, how to compute the differential geometric properties of the shock

surface required by PGSD will be the focus. The choice of the parameters in the model as

well as the trade-offs between accuracy and efficiency will also be discussed.

3.1 Point Cloud and Octree Data Structure

A point (particle) cloud is a natural choice to represent the shock front in three-

dimensional space for GSD if it is chosen to be solved using a particle method. Assuming
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a point cloud consisting of points P = {pi} in the Euclidean space R3 sampled from a

shock front surface S at an arbitrary time instant, in general, a triangulated mesh can be

formed whose vertices belong to P . Connectivity information should be explicitly stored in

some data structure that provides essential support for basic operations such as inserting

and removing triangles when necessary. Thus, updating the connectivity information

is necessary throughout the numerical simulation. However, it would cause significant

inconvenience if regularization of triangulated surface needs to be frequently implemented,

especially for the cases of multi-shock interaction where points become densely spaced

in the neighborhood of triple points. In order to avoid errors arising from incorrectly

updating mesh connectivity and to enable a fast k-nearest neighbor search, a point cloud

is arranged in an octree date structure that only stores positional date without the need of

the connectivity information.

Since being introduced by Meagher in the early 1980’s [112], the octree data

structure has been widely used to store large quantity of three-dimensional data and deal

with positional queries. Octree as a spatial data structure is hierarchical in nature. It

consists of nodes that occupy the volume formed by a rectangular cuboid. Each node

has a chosen middle point, the geometric center of the body for example, that defines

three planes that pass it while being parallel to the xy-, xz- and yz-planes, respectively.

As a result, an inner octree node has eight children, each corresponds to an octant. In

practice, starting at a root node that occupies the space containing the whole point cloud,

a recursive subdivision procedure partitioning space into eight octants is performed until

a stopping criterion is reached. In general, the criterion defines the minimum number of

points and the maximum depth. The maximum depth indeed sets the lower bound to a

node’s size. If a node satisfies the stopping condition, a further subdivision is not necessary

and the node becomes a leaf node sitting at the bottom level of the octree, otherwise the

node is considered to be an internal node. In this way, all points in the cloud are assigned
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Figure 3.1: Schematic illustration of an octree data structure. Points (dots) and the
occupied leaf node presented in the same color.

to leaf nodes as illustrated in Figure 3.1 and a list of points is stored in each occupied

leaf. Since a point cloud that represents a shock surface in three dimensions is usually not

fully volumetric, a large portion of space is not occupied by points. Thus most internal

nodes only have few children without being empty and this makes the octree data structure

ideally suitable for efficiently storing and retrieving positional data of a shock surface. A

fast k-nearest neighbor search for a given point can be achieved by examining the neighbor

nodes of the occupied leaf in a strategic way suggested by Behley et al. [113].
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3.2 Moving Least Squares Surface

All surface approximation methods are based on the assumption that the given

point cloud is a good representation of the underlying surface in a sense that it should be

as small as possible while conveying sufficient essential shape information without noisy or

redundant points. Among smooth approximate surfaces, the moving least squares (MLS)

surface [114, 115, 116] is motivated by differential geometry and devised with an aim to

minimize the error of the approximation. This is done by locally approximating the surface

with polynomials in a weighted least squares sense.

The main idea of computing an MLS surface is the definition of a projection

procedure that is able to project any point near the point cloud onto the same surface.

Then, the MLS surface is such projection surface defined by the points that can be projected

onto themselves.

3.2.1 MLS Projection Procedure

Assuming a point cloud P = {pi ∈ R3} is sampled from a surface S, the goal of the

MLS projection procedure is to project an arbitrary point r ∈ R3 near the point cloud onto

a two-dimensional manifold Sp that approximates S. Two steps are involved to compute a

projector locally.

Step 1 – Reference plane:

A local reference plane H for r is computed with the support of r′s k-nearest

neighbors, pr
i . The plane is defined by the plane normal, nT , and a point passed

through, q, as H = {x|nT · (x − q) = 0}. q is the projection of r onto H and

defined as q = r + dnT . Figure 3.2 illustrates this projection process but from

a two-dimensional point of view for simplicity. The scalar variable d and vector

variable nT are computed via minimizing the local weighted sum of squared distance
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between pr
i and H

k∑
i=1

[nT · (pr
i − q)]2 θ(‖pr

i − q‖), (3.1)

where the weights attached to pr
i are defined by the weight function, θ(s), which

is a smooth, positive but monotonically decreasing function in the whole domain

of x. A popular form of the weight function is a Gaussian, θ(s) = e−
s2

h , where h

is a hyper-parameter that reflects the anticipated spacing between neighbor points

free of sharp features. A smaller h causes the weight function to decay faster, which

leads to a more local approximation and vice versa, such that h effectively serves as

a measurement of feature size. By changing h the surface tends to smooth out all

features of size smaller than h.

Step 2 – Local mapping:

The reference plane, H, approximates the tangent plane to S near r, and a local

orthonormal coordinate system is set up on it. The origin of the local coordinate

system is chosen to be located at q, and one axis coincides with the reference plane

normal, nT , which is known from step 1. Then a local polynomial approximation

g(xi, yi) to the heights zi of pr
i over H is computed by minimizing

k∑
i=1

[g(xi, yi)− zi]2 θ(‖pr
i − q‖), (3.2)

where (xi, yi) are the coordinates of the projection of pr
i onto the reference plane

and zi = nT · (pr
i − q). Similar to minimizing function (3.1), this is another

optimization problem that solves the coefficients of the bivariate polynomial g(x, y)

in a weighted least squares error sense. Then the projection of r onto Sp is defined

by the polynomial value at the origin, q + g(0, 0)nT , and it is part of the MLS
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surface.

Figure 3.2: Schematic illustration of the MLS projection. r: the point to be projected;
H: the reference plane defined by the normal, nT , and the projection, q; pr

i : the
supporting neighbors of r.

3.2.2 Computing the Projection

The first step of the MLS projection procedure is a nonlinear optimization problem

with constraints. For function (3.1), there may be more than one local minimum near r

given its k-nearest neighbors in the point cloud. Considering Sp approximates the underlying

surface S represented by the point cloud, if r is close to S, the resulting reference plane

should be close to r. In this sense, the least local minimum with a small absolute value

of d should be chosen. Moreover, the key to the success of finding the least one among

all local minimum heavily relies on the initial estimate of nT . Only if no sharp features

nor high curvature regions exist in the neighborhood of r, or no prior knowledge about

nT is provided, an iterative scheme should be adopted to find the initial value of nT by

minimizing function (3.1). First, the plane normal is solely solved by assuming d = 0. In

this situation the weights θi = θ(‖pr
i −r‖) are fixed, and function (3.1) becomes a quadratic
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function in nT = [n1, n2, n3]. To make sure n does not vanish, the constraint ‖nT‖ = 1

should always be satisfied. Then one can apply the method of Lagrange multipliers that

converts the optimization problem into solving

∇n1,n2,n3,λL(n1, n2, n3, λ) = 0, (3.3)

where L(n1, n2, n3, λ) =
∑k

i=1 [nT · (pr
i − r)]2 θi − λ(n2

1 + n2
2 + n2

3 − 1).

In fact, the search for such a reference plane with d = 0 resembles principal

component analysis (PCA). PCA can be seen as the result of projecting each data point

onto the first few components to achieve dimension reduction while preserving as much of

the variation in data as possible. In this specific case, all three dimensions are preserved if

the point cloud’s positional information is considered as features, and the direction that

exhibits the least amount of variation is the plane normal. Then the minimization problem

can be rewritten in a bilinear form

min
‖nT ‖=1

nT
TBnT , (3.4)

where the covariance matrix B = {bmn} ∈ R3×3 is defined as

bmn =
k∑
i=1

(prim − rm)(prin − rn) θi. (3.5)

The solution to the minimization problem (3.4) is given as the eigenvector of

the covariance matrix that corresponds to the smallest absolute eigenvalue. Once nT is

computed, the next step is to minimize function (3.1) with respect to d. Since nT is now

fixed, this is a nonlinear optimization problem in one dimension. Considering d should

have a small value, Alexa et al. [115] suggested to find d within the range of [−h
2
, h
2
] where

only one local minimum was found. Such constraint on h agrees with the intuition that
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h is related to feature size in a way that smooths out the features of size smaller than h.

Then d can be computed by evaluating the weighted least squares (3.6)

min
−h

2
6d6h

2

k∑
i=1

[nT · (pr
i − r − dnT )]2 θ(‖pr

i − r − dnT‖). (3.6)

Once d 6= 0 is returned, the iterative scheme shifts the focus to refine nT by fixing d.

Weights change with nT if d 6= 0, so neither problem (3.3) nor (3.4) should be evaluated

since they are for the case of fixed weights. Instead, the nonlinear minimization problem,

(3.7), is solved

min
‖nT ‖=1

k∑
i=1

[nT · (pr
i − r − dnT )]2 θ(‖pr

i − r − dnT‖). (3.7)

To summarize, the framework of an iterative scheme that minimizes function (3.1)

is listed as follows:

Initial guess of nT :

The success of finding the least one among all local minimum for function (3.1)

heavily relies on the initial estimate of nT . It is possible that an initial guess is

given as part of the input data in the form of surface normal. If no prior knowledge

is provided, it can be computed by solving either optimization problem (3.3) or (3.4)

for the regions free of sharp features and high curvature.

Iterative nonlinear minimization:

The following two steps are repeated until both nT and d change no more than a

pre-defined threshold:

1. Minimize along d that is bracketed in a range of [−h
2
, h
2
] by solving the optimization

problem (3.6).

2. Solve nT by minimizing the weighted least squares error as in (3.7) subject to
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‖nT‖ = 1.

In fact, the search space of nT can be visualized as tangent planes to a sphere

centered at r with a radius of d. Alexa et al. [114] found that nT only changes slightly

for a fixed d, so they approximated the sphere locally in the neighborhood of q using the

reference plane to be defined by q and nT . This simpler linear search space effectively

changes nT and d at the same time so makes the iterative scheme more efficient. However,

the difference between the sphere search and the plane search was found to be small.

The second step of the MLS projection procedure is a standard linear least squares

problem given θi = θ(‖pr
i − q‖) is known once the reference plane is determined. The

coefficients of the polynomial are solved by a system of linear equations of size equal to

the number of coefficients. Usually, polynomials of degree three is used in all the following

Lagrangian simulations.

3.3 Surface Normal and Curvature

The sign of curvature bears physical meaning as mentioned in Section 2.7 for

two-dimensional GSD: a positive curvature is the result of convex regions and a negative

curvature should be obtained where the shock front is concave. For a shock surface in three

dimensions, curvature should be defined in a similar way. Considering κ represents the sum

of two principal curvatures as in equation (2.98) and principal curvatures are simply the

maximum and minimum values of the normal curvature, the definition of normal curvature

should be revisited to guarantee a positive curvature anywhere on a diverging spherical

shock.

Given a unit tangent vector u to surface S at p, let α be an arc-length parameterized

curve in S with initial velocity α′(0) = u, then the normal curvature of S in the u direction
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can be computed by [117]

k(u) = α′′(0) · n(p) = κ(0)N (0) · n(p), (3.8)

where n(p) is the surface normal at p, and κ(0), N(0) are respectively the absolute

curvature value and the principal normal to the curve at κ(0) = p. Seeing that principal

normal, N = u
‖u‖ , is the one always pointing in the direction that the tangent plane is

turning, the sign of a principal curvature indeed depends on the choice of the surface

normal orientation. On a sphere any point is umbilic and the value of normal curvature is

exactly the same anywhere, so only if the surface normal points inward the sum of the two

principal curvatures is positive for a diverging spherical shock. However, this contradicts

the GSD theory in which the surface normal is supposed to have the same orientation as

the direction of propagation.

In practice, principal curvatures are not obtained from equation (3.8), instead they

are computed through the first and second fundamental forms. In the second step of

the MLS projection procedure, a bivariate polynomial g(xi, yi) that approximates the

heights zi is solved in a local coordinate system by minimizing the sum of weighted

squared errors. Therefore, an MLS surface patch can be expressed as a parametric surface

x(u, v) = (u, v, g(u, v)), and the first and second fundamental forms follow as below

E = xu · xu, F = xu · xv, G = xv · xv; (3.9)

L = xuu · n, M = xuv · n, N = xvv · n. (3.10)

where n is the unit surface normal that can be constructed by

n =
xu × xv
‖xu × xv‖

, (3.11)
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but its orientation is arbitrary. Then the mean curvature KM is given by

KM =
GL+ EN − 2FM

2(EG− F 2)
. (3.12)

The mean curvature computed this way still depends on the choice of the orientation

of the surface normal, n, as discussed earlier. To guarantee positive normal curvatures

anywhere on a diverging spherical shock surface, the idea is to store the outward surface

normals known at the current iteration as the reference for the next iteration. Then

at each iteration the orientation of the surface normal to an MLS surface patch can be

determined by comparing it to the reference stored at the same point. This is true only if

the normal to the moving surface at each point does not vary much between iterations and

this assumption is proved to be valid in practice. Once the surface normal is ensured to be

pointing outward, according to equation (3.8) normal curvatures must be negative in all

directions at any point on a sphere due to N(0) < 0. Therefore, to accommodate for the

curvature’s definition in the κ−M relation, i.e., equation (2.98), it is necessary to define κ

specifically for a shock surface in three dimensions as

κ = −2KM . (3.13)

Though it is attractive to use the normal to the reference plane, nT , as the normal to

the shock surface, n, in the PGSD scheme, they are not the same in general. In comparison

to the reference plane that approximates the tangent plane to the shock surface, the

polynomial obtained from the second step of the MLS projection allows a more accurate

evaluation of the surface normal at the same point based on a detailed description of the

local geometry. However, the difference between n and nT is usually not large as long as

nT makes sense in the first place. That being said, a successful calculation of the surface

normal significantly depends on the reference plane being a solid approximate of the local
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tangent to the shock surface. If the first step of the MLS projection procedure fails to

yield an nT that faithfully reflects the local geometry such as in the neighborhood of high

curvature regions and sharp features, it is not realistic to expect an accurate n from the

second step.

3.4 MLS-PGSD

As discussed in the previous section, the curvature (sum of two principal curvatures)

of a shock surface at a given point can be obtained by computing the local MLS surface

patch centered at that point. To be specific, on the reference plane a two-dimensional local

coordinate system is built with an arbitrarily defined orthonormal basis, which enables

the computation of the first- and second-order derivatives of the image function x(u, v)

with respect to u and v. This leads to the first and second fundamental forms, and then

the surface normal and curvature at the point simply follow. It should be pointed out

that, curvature is an intrinsic geometric property that is independent of the choice of the

coordinate system, but the calculation of the surface normal must undergo a transformation

from local to global coordinate system so in the end the surface normal is defined in the

same space as the point cloud.

Since surface normal and curvature are obtained from computing the MLS surface,

the three-dimensional PGSD model is named MLS-PGSD, and it consists of the same

essential components as the two-dimensional model:

dx

dt
= a0Mn, (3.14)

dM

dt
=
−a0M
Φ(M)

κ. (3.15)

Here, Φ(M) = − 2
Mθ

with θ(M) defined by Bach and Lee’s analytical solution [105] and
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introduced in Section 2.6. Moreover, Φ(M) for a spherical blast only needs to be solved for

once due to its adaptation to any size of explosion, just similar to its counterpart for a

cylindrical blast.

Now all ingredients of a Lagrangian scheme that solves the MLS-PGSD model are

ready except surface regularization techniques. Similar to the scheme introduced in Section

2.3 , the time step size is still guided by the CFL condition [90]. In this case ∆smin can be

found when searching the k-nearest neighbors within the octree data structure for each

point to construct the MLS surface. Such a procedure also reveals the local point density,

based on which insertion and removal of points are applied every few iterations.

Unlike deleting points from the point cloud in compressive regions of the shock

front, adding points on the MLS surface where the local point density is insufficient is not a

trivial task. Inspired by Alexa et al. [114], the basic idea is to compute the Voronoi diagram

of the MLS surface and then add points at vertices of the diagram, if needed. However,

computing the Voronoi diagram of the entire MLS surface is computationally expensive

and not necessary. In practice, only local MLS surface patches with a lower point density

than a user defined threshold is considered, and Voronoi diagrams are computed on local

reference planes instead of on MLS surface patches. To be more specific, when computing

the MLS surface following the procedures outlined in Section 3.2, all candidate points are

first detected. These candidates are the ones centered at which a local MLS surface patch

is built with fewer number of supporting neighbors than the threshold adapted to the local

geometry. These patches may overlap but a fix to one patch usually solves the issue for the

overlapping ones. Starting from a randomly selected point on the list, a local reference

plane H is built in the first step of the MLS projection procedure and all supporting

neighbors are projected onto H. A Voronoi diagram of these points is computed and each

vertex is equidistant from three or more neighbors, so circles can be drawn centered at

vertices that touch neighbors without including any one of them inside. Then the circle

86



with the largest radius is chosen and its center (i.e., a Voronoi vertex) is projected onto the

MLS surface thus becoming an added point. Such process is repeated interactively until

the point density of this surface patch satisfies the density requirement set by the user.

Moreover, all supporting neighbors of the current MLS surface patch should be compared

to the points on the list. If a point on the list is found to be part of the current patch, it

does not need a fix so it is removed from the list. In this way, no efforts are wasted in

up-sampling overlapping patches.

Figure 3.3 illustrates this point-insertion procedure, in which all supporting neighbors

represented by the black dots have already been projected onto the reference plane centered

at the red square. A Voronoi diagram of these points is computed and cells are bounded by

red segments. The vertex marked bold in the top-left corner is found to have the largest

radius, so it is projected onto the local MLS surface patch and becomes the first added

point there. At the end of the process, as indicated by Figure 3.3, five other vertices are

also chosen to generate added points and the updated Voronoi cells are segmented by black

dashed lines. As a result, the point density becomes nearly uniform on both the reference

plane and the MLS surface patch.

A smoothing procedure can also be applied to dampen high frequency errors

accumulated during the propagation of a shock surface in three dimensions. In contrast to

the smoothing procedure designed for two-dimensional shock problems that is independent

of the PGSD model, smoothing is naturally embedded in the MLS projection procedure.

In fact, the MLS projection procedure not only provides the surface normal and curvature

at the point to be projected, but also its projection on the MLS surface. Such relocation of

points effectively removes high frequency noise present in numerical data in a least squares

sense while ensuring the minimal loss of information. Additionally, since point relocation is

just a side product of computing the MLS surface, application of the smoothing procedure

does barely increase the computational cost.
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Figure 3.3: Schematic illustration of a Voronoi diagram on the local reference plane
centered at a point (red square). In the regions of insufficient point (black dots) density
Voronoi vertices (bold black dots) projected onto the MLS surface becoming the added
points.

To verify that the MLS-PGSD model encodes the correct analytical information

of blast motion in three dimensions, the propagation of a single spherical blast was first

simulated and compared to the analytical solution. The initial conditions for the Lagrangian

scheme (R0 = 30 mm and M0 = 21.69) were first obtained from Bach and Lee’s analytical

solution (E0 = 10, 000 J). Then a point cloud comprised of 1318 points was generated that

represents the instantaneous blast surface. As shown in Figure 3.4, the resulting M −R

plot from the MLS-PGSD model agrees excellently with that from the analytical solution
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with the largest discrepancy of 1.7% found at R = 59 mm. This shows that the accuracy

of the MLS-PGSD model is good for being used for more complicated shock interaction

problems in three-dimensional space.
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Figure 3.4: M −R plots of the analytical and MLS-PGSD solutions to the propagation
of a single spherical blast. Initial conditions: E0 = 10, 000 J for the analytical solution;
R0 = 30 mm and M0 = 21.69 for the MLS-PGSD solution.

3.5 Application of MLS-PGSD to Blast Focusing Prob-

lems

In Section 2.8, a solution framework was proposed to solve two-dimensional blast

focusing problems with the Lagrangian scheme solving the PGSD model. Analogously,

interactions between spherical blasts of equal strength are supposed to be dealt with by a
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similar framework but using the MLS-PGSD model. In this section, the MLS-PGSD model

will be tested for the symmetric interaction between a pair of spherical micro-blast waves

and compared to the experimental as well as Euler results. The experimental data is from

the work of Jiang et al. [4], in which the behavior of a micro-blast wave was investigated

by examining its propagation in space and subsequent reflection off a solid wall. In the

experiment, a blast was generated by focusing laser beams in ambient air with a wall set at a

stand-off distance of 5 mm below the focal point of the laser beams. The resulting blast can

be considered as a point-blast and it was observed to have a nearly perfect spherical shape.

The total energy released was measured to be 1.38 J, which is approximately equivalent to

3.3 mg TNT if assuming the conversion is only performed energy-wise. Euler simulations

were also carried out by Jiang et al. [4] for the same configuration as the experiment. They

used Taylor’s similarity law to generate initial conditions for the axisymmetric simulation as

discussed in Section 2.4, and the following calculation was taken over by a finite difference

scheme.

Figure 3.5: Schematic illustration of the experiment of Jiang et al. [4]. H: height of
burst and β: angle of incidence.

In this work, the objective of the Lagrangian simulations that solve the MLS-PGSD

model is to match the experiment of Jiang et al. [4] with minimal computational cost.
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Therefore, the generation of the initial point cloud that leads to the most efficient calculation

becomes the priority of the problem. Following the framework proposed in Section 2.4, the

simulation should start when the transition from regular to Mach reflection first occurs.

This transition information is given in the work of Jiang et al. [4] where the critical angle of

incidence was measured between 30◦ to 37◦ in the experiment, while their Euler simulation

indicated a larger critical angle. To resolve such conflict, transition criteria can be used

as a reference. As discussed in Section 1.2.2, since the high-resolution requirement for

observing a Mach stem at its very early stage can be satisfied due to the advancement

in both computer hardware and experimental visualization systems, some recent studies

[82, 83, 86, 87] successfully predicted the transition from regular to irregular reflection

in unsteady flows using the pseudo-steady flow criteria, specifically, the sonic criterion.

Slightly different than the experimental observation, the sonic criterion predicts a critical

transition angle of around 39◦ for this micro-blast reflection case. Therefore, taking both

the experimental observation and theoretical prediction into consideration, the critical

angle of incidence was finally chosen to be 37◦ for the current Lagrangian simulation to

make it comparable with the experiment.

Regarding the blast Mach number at the transition instance, though not provided

in the work of Jiang et al. [4] it can be approximated using Bach and Lee’s analytical

solution to point-blast propagation. But, before proceeding to the determination of the

instantaneous Mach number, the analytical solution itself as well as the MLS-PGSD model

needs to be first proved to be valid for the propagation of a micro-blast as described

by the experiment. By applying the shock jump conditions to compute the pressure in

the flow immediately behind the blast front using Mach number, the resulting curves of

maximum pressure at the blast front against the blast radius are presented in Figure 3.6.

A good agreement was found between the current results (Lagrangian simulation and

analytical solution) and that from Jiang et al.’s experiment in spite of possible uncertainties
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Figure 3.6: Pressure at the blast front as a function of distance from the explosion
center. Initial conditions: E0 = 1.38 J for the analytical solution; R0 = 5 mm and
M0 = 4 for the Lagrangian simulation. Experimental and Euler simulation data
reproduced from [4], with permission from Springer.

in the calibrated measurements, especially near the 5-mm location where the pressure

from the current computations only shows a very slight discrepancy to the experimental

data point. This agreement is also supported by the micro-blast reflection experiment. In

the experiment the Mach number was estimated to be 3.8 at the moment when the blast

touched the wall, while both the current computations reported a Mach number of 4.0 at

the same stand-off distance.

In the case of a height of burst of 5 mm, an incidence angle of 37◦ corresponds to a

spherical blast with a radius of 6.26 mm. For this size the blast front Mach number is found

to be 3.08 using the analytical solution. Based on such a configuration, a point cloud was
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Figure 3.7: Initial point cloud that represents a surface created by the interaction
between two identical spherical blasts.

generated that represents a continuous surface created by the symmetric interaction between

two special blasts of the same strength, which is equivalent to a single blast reflecting off a

solid wall. As shown in Figure 3.7, the point cloud consists of two sub-clouds that each

represent a spherical blast, and no points exist inside any part of the spheres including

where the two spheres overlap. Points are placed consistently in a latitudinal manner in

the neighborhood of the intersection with point density gradually reduced towards the
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orthodrome furthest away from the intersection. On the back of the two spheres points are

more arbitrarily positioned but the point density is nearly uniform. Such arrangement of

points is particularly designed to accommodate for the future growth of the Mach stem in

the compressive regions. As for the size of the point cloud, if too many points are used to

represent the underlying surface the simulation speed would be significantly lowered, but in

the case of too few points the geometry of the Mach stem may not be well defined and the

features contained in the neighborhood of triple points may not be preserved. As a result,

in this case 4662 points were used to develop the point cloud that balances simulation

speed and accuracy.

However, in the real world, the process of regular reflection between two spherical

blasts represents physical singularities in space that emerge where blasts intersect in

the sense of discontinuity in curvature and an undefined tangent plane. The subsequent

transition to irregular reflection leads to not only a change in the shape of the shock front

but also the smoothing of singularities due to a combination of physical properties, including

viscosity and specific heat ratio. Though these physical attributes are not considered in

the present mathematical model for simplicity, smoothing naturally occurs in the current

numerical simulation. In the MLS-PGSD model, a continuous shock front surface is required

and presented by a point cloud. For the case of micro-blast reflection off a solid wall,

triple points arise as the result of the occurrence of Mach reflection and are manifested

in the form of singularities of the shock surface. These singularities may not be precisely

spatially represented by points in the cloud, but they are still smeared during the MLS

projection procedure. Even though such smearing of the singularities is purely numerical

rather than physical, it provides essential differential geometry information that is needed

for the PGSD model. More importantly, given the violent nature of Mach reflection that

expands at a very high velocity, severe numerical instability is more likely to arise in the

neighborhood of triple points. In fact, despite the smoothing procedure that is only applied
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every few iterations, the number of supporting points used to build an MLS surface patch

is the key for maintaining numerical stability and accuracy. The choice of the number of

neighbors is subject to the local surface smoothness but should be independent of point

spacing that varies as the surface evolves, such that an n-tier type structure is used to

define the neighborhood domain as illustrated in Figure 3.8. If the point to be projected is

in the undisturbed part of the shock front, a two-tier point structure built around that

point is sufficient to yield accurate surface normal and curvature as proved in the previous

case of propagation of a single micro-blast. A similar structure was also used by Zhang

et al. [118], albeit defined in a triangulated mesh, to develop a least squares smoothing

procedure for the case of a collapsing bubble surface in three dimensions. On the other

hand, if the point to be projected is near triple points, at least a four-tier point structure

is needed. The resulting MLS surface patch is of a similar size as that approximating the

undisturbed part of the shock front due to the higher point density in the neighborhood of

triple points as designed in the initial point cloud. A similar effect can also be achieved by

adjusting h of the weight function while having the same point structure anywhere, but

this is less efficient.

To further speed up the Lagrangian simulation, the MLS projection procedure was

also optimized. For points far away from the compressive regions, by assuming that the

reference plane H passes through the point to be projected in the first step of the MLS

projection procedure, the number of variables in nonlinear equation (3.1) is reduced to

one, i.e., (nT , d) → nT . Such assumption is reasonable if the input point is close to the

underlying surface that is free of any sharp features, the points on the back of two spheres

for example. This simplification saves the computational cost of iterative minimization

while only minimally affecting accuracy of the projection. However, for the points in the

neighborhood of the compressive regions, a complete optimization of equation (3.1) is

necessary, otherwise the resulting surface normal and curvature may be wrong.
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(a) (b)

Figure 3.8: Schematic illustration of the neighbor point domain with a two-tier type
structure around the point to be projected (red square) within a search ball for (a)
consistent placement of points; (b) more arbitrary placement of points.

Only three time instants were chosen in the work of Jiang et al. [4] to present the

instantaneous interferograms obtained in the experiment, during which the blast front

experienced the transition from regular to irregular reflection due to its interaction with

the solid wall. To replicate such a process, the Lagrangian simulation was started at the

transition instance with the initial point cloud expanding at M0 = 3.08 and lasted more

than 4 µs. By projecting the resulting point cloud onto the xz-plane, the two-dimensional

contours of the blast front at 2 µs and 4 µs (time starts from the transition instant in the

Lagrangian simulation) were obtained. In Figure 3.9 the numerical results are overlaid

onto the corresponding experimental interferograms with the same scale, despite the fact

that it is unclear whether optical distortions were removed in the experiments. The first

observation is that the undisturbed part of the shock front from the Lagrangian simulation

agrees well with that from the experiment at both selected time instances, though the

interferograms appear to be slighted distorted while the Lagrangian contours maintain a

perfect spherical shape. However, Figure 3.9(a) indicates that the Mach stem predicted by
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(a)

(b)

Figure 3.9: Overlay of the blast front contours at the same time instances from
the current Lagrangian simulation (red circles) and the experimental interferograms
(background) from [4] with permission from Springer. (a) 2 µs after the transition
instant; (b) 4 µs after the transition instant.

the MLS-PGSD model has been propagating at a lower speed along the wall compared

to the experiment while the Mach stem height is of similar magnitude. This observation
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may be partially due to the choice of the number of supporting neighbors used to build the

local MLS surface patches for the sake of numerical stability, which nonetheless excessively

restricted the growth of the Mach stem at its early stage. Consequently, the neighboring

part of the contour lags behind. After another 2 µs, as the Mach stem weakened during

propagation, the effect of smearing should be alleviated so the blast front contour predicted

by the MLS-PGSD model is expected to match better the experimental interferogram. This

is verified by Figure 3.9(b), in which the two blast front contours almost overlap despite

the slight distortion in the experimental interferogram.

Maximum pressure at the Mach stem can also be extracted from the Lagrangian

solution and it was found to be on the plane of z = 0 throughout the simulation. That

being said, the extreme events always occurred at the reflecting wall from the perspective

of image bursts [10], and this makes the maximum pressure profile comparable to the data

from height of burst studies if expressed as a function of angle of incidence. In an effort that

combines experimental and analytical results, several reflected pressure profiles at the wall

as a function of angle of incidence were given by Unified Facilities Criteria 3-340-02 (UFC)

[5] for some characteristic scaled heights of charge, H/W
1
3 , where W being the weight of

the TNT charge and H the height of burst. For this micro-blast reflection case, the scaled

height of charge turns out to be 1.83 ft/lb
1
3 . The closest characteristic value reported by

UFC is 1.9 ft/lb
1
3 and the corresponding pressure history is reproduced in Figure 3.10. In

general, the curve from the Lagrangian simulation shares a similar trend with the UFC

data and they gradually get closer with an increase in the angle of incidence. However, in

contrast to the observation made in the case of two-dimensional symmetric blast interaction

where the Mach stem was overestimated by the PGSD model, in this case the peak pressure

at the Mach stem was found to be lower than that of the UFC data. The reason is still

unknown and the lack of the source of information of the UFC data further obscures the

comparison. On the other hand, the three-dimensional Euler solution (the setup of the
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current Euler simulation and its comparison with Jiang et al.’s results [4] can be found

in Appendix A.1) shows a better agreement with that from the Lagrangian simulation

as shown in Figure 3.10. However, this time the Lagrangian simulation is conservative

in developing the Mach stem at its early stage. The reason may partially be the choice

of the number of neighbor points to compute the local MLS surface patches as discussed

earlier. Additionally, since the maximum pressure can only be obtained from GSD by being

converted from the resulting shock front Mach number, its accuracy is questionable if the

energy is condensed in a limited volume bounded by the shock front, when a Mach stem

is just formed, for example. Thus, such comparison of pressure at the very early stage of

Mach stem growth is less reliable.

Finally, the advantage of geometrical shock dynamics in efficiency is inherited by

the three-dimensional MLS-PGSD model and was proved in this study. The Lagrangian

simulation for the reflection case took approximately 16 hours on a single core of Intel

Core(TM) i7-8750H CPU operating at 2.20 GHz with 32 GB memory, while the three-

dimensional Euler simulation was finished after 14 days with four cores of Intel Core(TM)

i7-3930K CPU operating at 3.20 GHz with 16 GB memory.
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Figure 3.10: Maximum pressure at the Mach stem, Pm, as a function of angle of
incidence, β. Initial conditions for the Euler and Lagrangian MLS-PGSD simulations
based on the experiment [4]. UFC data reproduced from [5] for the scaled height of

charge of 1.9 ft/lb
1
3 .

3.6 Chapter Summary

In this chapter, by taking advantage of PGSD in its capability to be extended to

three dimensions, the MLS-PGSD model that describes blast motion in three-dimensional

space was proposed and the associated Lagrangian scheme was elaborated on. The essential

component of this novel model is to compute the MLS surface that approximates the

underlying shock front surface defined by a point cloud. The main idea of computing an

MLS surface is the definition of a projection procedure that is able to project any point

near, or in, the point cloud onto the same surface. Then, the MLS surface is such projection

surface defined by the points that can be projected onto themselves. Since the projection
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involves two procedures that each solve an optimization problem, the related theories and

techniques were also given in detail in this chapter.

The application of the projector to each point in the cloud not only yields differential

geometric properties that are needed by PGSD, but also is able to obtain a piecewisely

smoothed surface that filters out high frequency errors in a least squares sense. Such

smoothing can be viewed as a surface regularization tool and almost no extra computational

cost is added. Deleting points from the point cloud is a simple task, if necessary, since the

octree data structure does not store any connectivity information. Point-insertion is also

viable though requires some efforts. It is achieved by computing the Voronoi diagrams on

local reference planes and then adding points at vertices where the point density is most

scarce.

Lagrangian MLS-PGSD simulations were performed for a height of burst case and

compared to the experiment of Jiang et al. [4]. In the experiment, investigations were made

for the propagation of a spherical micro-blast generated by focusing laser beams and then

subsequent reflection off the wall. Following the same order, the MLS-PGSD model was

first verified by the experimental data for the propagation phase. Once the point cloud

for the irregular reflection phase was generated using the information of transition from

regular to irregular reflection, the Lagrangian scheme took over the following calculation

for the Mach reflection. The resulting blast front contours after 2 µs and 4 µs counting

from the transition instant were overlaid onto the experimental interferograms. At t = 2 µs,

the Lagrangian simulation predicted a Mach stem having propagated less distance along

the wall. This may be due to the choice of the number of neighbor points used to compute

the local MLS surface patches, which maintained the numerical stability at the expense of

restricting the Mach stem growth at its early stage. As the Mach stem weakens during

expansion, the effect of numerical smearing is alleviated so the two blast front contours

almost overlap at t = 4 µs. These observations were echoed in the plot of the maximum
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pressure at the Mach stem as a function of angle of incidence, in which the curve from

the Lagrangian simulation reaches the peak value at a later time when compared to the

three-dimensional Euler solution, but the two curves gradually converge with time.
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Chapter 4

Summary and Future Directions

4.1 Summary

This dissertation investigated the possibility of applying front-tracking based GSD

algorithms to two-dimensional and three-dimensional blast focusing problems. In Chapter

2, three models that extend two-dimensional GSD to account for the post-shock flow

effect were discussed in detail. The comparison between the first-order complete and fully

complete GSD models revealed the importance of preserving an intact post-shock flow

term, which is truncated by the original GSD model, in predicting blast motion. Among

these models, due to its accuracy and independence of initial energy of the point-explosion,

the PGSD model was chosen for a general framework aiming at efficiently solving the

irregular reflection phase of blast focusing problems. Experiments of Higashino et al. [2]

was numerically replicated by the Lagrangian simulations that solve the PGSD model, and

the resulting plot of the maximum pressure at the Mach stem as a function of time showed

a trend in agreement with the experiment, however, an overestimation of the Mach stem

growth was also observed. In order to address this issue, an alternative model that is able

to start the simulation with initially separated blasts was derived and examined for the
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symmetric interaction between two cylindrical blasts. The resulting trajectory of triple

points indicates an underestimated Mach stem possibly due to the assumption of a straight

Mach stem.

To take advantage of PGSD in its capability to be extended to three dimensions, a

Lagrangian scheme based on the MLS-PGSD model was developed for three-dimensional

blast focusing problems in Chapter 3. Unlike the traditional three-dimensional GSD studies

using triangulated meshes, in this new model a point (particle) cloud arranged in an

octree data structure was used to represent the shock surface. The curvature and surface

normal that is required by the model is achievable by computing the MLS surface that

approximates the underlying shock surface. Lagrangian simulations were performed for

the case of a micro-blast reflection off a reflecting wall and compared to the experimental

results of Jiang et al. [4]. A good agreement of the blast front contour at different time

instants was confirmed. Moreover, a three-dimensional Euler simulation was also carried

out for the same case. The difference of the maximum pressure at wall at the early stage

of Mach stem growth revealed the possible influence of the choice of the parameters in

computing the MLS surface.

Additionally, as presented in the Appendix, the Euler solver used throughout this

work and the method to generate initial conditions for blast simulations were verified by

the comparison with Jiang et al.’s study [4]. Grid independence studies were then carried

out to determine the grid size that best balances simulation speed and accuracy.

4.2 Future Directions

The PGSD model introduced in Section 2.6 encodes correct point-blast propagation

information by containing the essential component of Bach and Lee’s analytical solution.

In fact, not only point-explosion is targeted, a model in a similar form can encode any real
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explosion whose resulting blast wave is affected by numerous factors including shape of

the charge, efficiency of energy release, gas product and media, etc. To obtain the κ−M

relation for the new model, some form of formula describing how the resulting blast behaves

as it expands is required either in a direct or an indirect manner. However, unlike the

PGSD model, the new model developed for a particular explosion event is not necessarily

independent of energy size.

All GSD models are essentially built upon some κ−M relation, though that varies

for different types of shock waves. The κ−M relation describes how a shock front element

accelerates subject to the local curvature, so the calculation of curvature becomes the

priority when the accuracy of that GSD model is concerned. Among all the two-dimensional

Lagrangian schemes that solve a GSD model, cubic spline interpolation is the most popular

tool used to compute the curvature. Such interpolation process inevitably smooths out

singularities, for example triple points in the cases of multi-shock interaction. On the

other hand, such smoothing in turn reshapes the neighborhood of the singularities that are

originally undefined due to discontinuous tangent and curvature. As a result, differential

geometric properties required by GSD can then be determined at the singularities. Moreover,

as shown in Section 2.8, GSD always tends to overestimate the growth of a Mach stem,

and it is reasonable to relate this observation to imperfect estimation of the curvature at

the triple points. In the future, the interpolation procedure should be further investigated

in the hope of making the resulting curvature better reflect the local shock behavior near

triple points.

Similarly, when applying the κ−M relation to three-dimensional shock focusing

problems, the calculation of curvature (i.e., sum of two principal curvatures) is the major

source of error. Unlike two-dimensional cases in which the resulting cubic spline interpolant

connects all given particles, the MLS surface approximation is indeed a least squares fitting

method that does not necessarily pass through every point (particle) in three-dimensional
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space, so the curvature is estimated at these relocations rather than where points are

originally positioned. In general, this approximate surface is smoothed and very close to

the underlying surfaces defined by the input point cloud. However, in the neighborhood

of where shocks intersect the relocation may be far enough away to make the resulting

curvature inappropriate. There are some parameters that can be tuned to adjust the

local surface smoothness still having to be systematically studied, including those in the

weight function and octree data structure. The number of neighbor points used to build a

local MLS surface patch also affects how far the point to be projected would be moved,

however, that depends on the local point placement. For the case of micro-blast reflection

off a wall as presented in Section 3.5, points were initially densely placed in a consistent

pattern near triple points, while a more arbitrary placement was utilized for the points far

away from the triple points. In the future, completely arbitrary initial placement of points

should be a direction to explore and the effort may concentrate on how to suppress error

accumulation as the result of a significantly uneven point distribution. This investigation

will also extend the application of the MLS-PGSD model to more complicated multi-blast

interaction problems. Finally, in order to accelerate the three-dimensional problem solving

process, parallelization of the Lagrangian MLS-PGSD scheme is a priority such that the

benefit of GPU computing can be exploited.
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Appendix A

A.1 Verification of the Euler Solver and Initial Con-

ditions

To verify the Overture Euler solver [106] and the initial conditions for blast dynamics

problems, simulations were performed for the propagation of a spherical blast in air created

by a 1.38 J point-explosion and compared to the results presented in the work of Jiang

et al. [4]. For this specific case, initial conditions were provided by Taylor’s similarity law

[35] that solves flow properties internal to the shock front at a particular radius. Then

the Euler equations were solved Overture’s three-dimensional inviscid compressible solver

on a computational domain that covers a cube of 16 mm with varied grid sizes. A probe

was inserted 5 mm away from the explosion center at which pressure was collected as a

function of time.

Figure A.1(a) shows the measured pressure time history from Jiang et al.’s experi-

ment. In the experiment a micro-blast wave was created by pulsed-laser beam focusing

with a total energy of 1.38 J discharged at 1.4 kV. Jiang et al.’s numerical result is

presented in Figure A.1(b) in which results from our current Euler simulations are also

shown. In general, a similar trend can be seen in all pressure profiles but peak pressure

values differ. Approximately 1.9 MPa was recorded as the highest value by the pressure
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transducer in the experiment, whereas a peak value of 1.7 MPa can be read from Jiang

et al.’s axisymmetric simulation with gird size ∆x×∆r = 0.035 mm× 0.05 mm. Despite

substantial discrepancy in blast arrival time between the experiment and all current Eu-

ler simulations (also manifested in Jiang et al.’s simulation) due to uncertainties in the

experimental data, a peak pressure of 1.55 MPa was achieved in this study compared

to 1.9 MPa from Jiang et al. This result was achieved by using a uniform grid size of

∆s = ∆x = ∆y = ∆z = 0.05 mm. In comparison, though adaptive mesh refinement (AMR)

was implemented for all current simulations that equally regrids a cubic grid into eight

when necessary, a coarse grid (i.e., ∆s = 0.1 mm) did not yield a peak pressure as high as

using a fine grid (i.e., ∆s = 0.05 mm). It is worth pointing out that the choice of the initial

spherical blast radius also plays an important role in final results. If Taylor’s similarity law

was solved at R0 = 3 mm to generate initial conditions, a slightly underdeveloped blast

was observed when compared to R0 = 1.5 mm using the same mesh. So according to this

present study, the three-dimensional Euler simulation for the case of micro-blast reflection

(as presented in Section 3.5) used a uniform grid size of ∆s = 0.05 mm with AMR.
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Figure A.1: Time history of pressure recorded 5 mm away from the explosion center:
(a) Experimental data from Jiang et al. [4], with permission from Springer; (b) Numerical
results from current Euler simulations and that reproduced from Jiang et al. [4], with
permission from Springer.
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A.2 Grid Independence Study for 2D Euler Simula-

tions

Though the Overture Euler solver and the usage of Taylor’s similarity law to

generate initial conditions for blast dynamics problems have been discussed as above, a

grid independence study is still needed to find a proper grid size for two-dimensional

simulations. The test case is blast reflection off a solid wall. Specifically, as illustrated

in Figure A.2, a single explosive with a total energy of 8,000 J/m is positioned 10 mm

above the reflecting wall and two probes are placed (i) 5 mm above the wall (Probe A),

and (ii) at the wall (Probe B). The former probe would not only record pressure history

of the incident blast that expands from the initial radius of 1.5 mm, but also monitor

the influence of the reflected wave on the flow at that location. Three different squared

grid sizes were tested: 0.1 mm, 0.04 mm and 0.016 mm. Figure A.3(a) shows the time

history of pressure recorded by probe A. The results from the 0.04 mm grid and the 0.1 mm

grid display a maximum difference in incident blast Mach number of 8.3%, while 5.3% is

observed between the 0.016 mm grid and the 0.04 mm grid. Moreover, the 0.016 mm grid

and the 0.04 mm grid predict an almost identical second peak as the result of the passage

of the reflected shock, while the coarsest mesh slightly delays its arrival. Regarding the

Mach number at wall, lager discrepancies between these three grid sizes can be seen in

Figure A.3(b). Theoretically, a high grid resolution enables more accurate results, but it

requires more computational resources. For this test case, more than 72 hours were needed

for the simulation using the 0.016 mm grid with two cores of Intel Core(TM) i7-3930K

CPU operating at 3.20 GHz with 16 GB memory, while that using the 0.04 mm grid

only took almost 12 hours. Therefore, a uniform grid sized at 0.04 mm is chosen for the

two-dimensional Euler simulations throughout this work to balance simulation accuracy

and speed.
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Figure A.2: Schematic illustration of the 2D Euler simulation domain for the grid
independence study.
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Figure A.3: Time history of pressure recorded at: (a) Probe A located halfway between
the explosion center and the wall; (b) Probe B located at the wall.
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