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Inference, Prediction, and Entropy-Rate Estimation of
Continuous-time, Discrete-event Processes

Sarah E. Marzen1, ∗ and James P. Crutchfield2, †

1W. M. Keck Science Department of Pitzer, Scripps,
and Claremont McKenna College, Claremont, CA 91711
2Complexity Sciences Center and Physics Department,

University of California at Davis, One Shields Avenue, Davis, CA 95616
(Dated: May 11, 2020)

Inferring models, predicting the future, and estimating the entropy rate of discrete-time, discrete-
event processes is well-worn ground. However, a much broader class of discrete-event processes
operates in continuous-time. Here, we provide new methods for inferring, predicting, and estimating
them. The methods rely on an extension of Bayesian structural inference that takes advantage of
neural network’s universal approximation power. Based on experiments with complex synthetic data,
the methods are competitive with the state-of-the-art for prediction and entropy-rate estimation.

PACS numbers: 02.50.-r 05.45.Tp 02.50.Ey 02.50.Ga
Keywords: Poisson process, renewal process, hidden semi-Markov process, hidden Markov chain, ε-machine,
Shannon entropy rate, optimal predictor, minimal predictor

I. INTRODUCTION

Much scientific data is dynamic: rather than a static

image, we observe a system’s temporal evolution. The

additional richness of dynamic data offers improved un-

derstanding, but we may not know how to leverage the

richer temporal data to yield new insights into a system’s

behavior and structure.

For example, while there are extensive records of earth-

quake occurrence and magnitude, geophysics still can-

not predict earthquakes well or estimate their intrinsic

randomness [1]. Similarly, modern neurophysiology can

identify which neurons spike when, but neuroscience still

lacks a specification of the “neural code” that carries ac-

tionable information [2]. And, finally, we can observe

many organisms in detail as they conduct their lives, but

still are challenged to model their behavior [3, 4].

These natural processes operate not only in

continuous-time, but over discrete events—earthquake

or not; neural spike or not; eating, sleeping, or roaming.

Their observations belong to a finite set and are not

better-described as a collection of real numbers. These

disparate scientific problems and many others beg for

methods to infer expressive continuous-time, discrete-

event models, to predict behavior, and to estimate key

system properties.

The following develops a unified framework that lever-

ages the inferential and predictive advantages of the unifi-

larity of stochastic process models. This property means

that a model’s underlying states—the causal states [5]

or predictive-states [6]—can be uniquely identified from

∗ smarzen@cmc.edu
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past data. We adapt the universal approximation power

of neural networks [7] to this setting to model continuous-

time, discrete-event processes. Said simply, the proposed

model-inference algorithm is the continuous-time exten-

sion of Bayesian structural inference [8].

Using the Bayesian information criterion to balance

model size against estimation error [9], we infer the most

likely unifilar hidden semi-Markov model (uhsMm) given

data. This model class is more powerful than (“non-

hidden”) semi-Markov models (sMms) in the sense that

uhsMms can finitely represent continuous-time, discrete-

event stochastic processes that cannot be represented as

finite sMms. Moreover, with sMms emitted event sym-

bols depend only on the prior symbol and their dwell

times are drawn from an exponential distribution. With

uhsMms, in contrast, the probability of emitted symbols

depends on arbitrarily long pasts of prior symbols and

event dwell times depend on general (nonexponential)

distributions.

Beyond model inference, we apply the closed-form ex-

pressions of Ref. [10] to the inferred uhsMm to estimate a

process’ entropy rate, removing statistical sampling ap-

proximations in this last step and markedly improving

accuracy. Moreover, we use the inferred uhsMm’s causal

states to predict future events in a given time series via a

k-nearest neighbors algorithm. We compare the inference

and prediction algorithms to reasonable continuous-time,

discrete-event adaptations of current state-of-the-art al-

gorithms. The new algorithms are competitive as long as

model inference is in-class, meaning that the true model

producing the data is equivalent to one of the models in

our search.

Next, we review related work. Section III then in-

troduces unifilar hidden semi-Markov models, while Sec.
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IV shows that they are minimal sufficient statistics for

prediction. Section V describes our new algorithms for

model inference, entropy rate estimation, and time se-

ries prediction. We then test them on complex synthetic

data—data from processes that are memoryful and ex-

hibit long-range statistical dependencies. Finally, Sec.

VI discusses extensions and future applications.

II. RELATED WORK

Many methods exist for analyzing discrete-time pro-

cesses. The autoregressive AR-k procedure, a classical

technique, predicts a symbol as a linear combination of

previous symbols. A slight modification leads to the gen-

eralized linear model (GLM), in which the symbol proba-

bility is proportional to the exponential of a linear combi-

nation of previous symbols [11]. Previous approaches also

use the Baum-Welch algorithm [12], Bayesian structural

inference [8], or a nonparametric extension of Bayesian

structural inference [13] to infer a hidden Markov model

or probability distribution over hidden Markov models of

an observed process. If the most likely state of the hid-

den Markov model is correctly inferred, one can use the

model’s structure (state and transition probabilities) to

predict the future symbol.

More recently, recurrent neural networks and reservoir

computers have been trained to recreate the output of

any dynamical system. This is implemented via simple

linear or logistic regression for reservoir computers [14] or

via back-propagation through time for recurrent neural

networks [15].

Often continuous-time data can be profitably repre-

sented as discrete-time data with a high sampling resolu-

tion. As such, one can essentially sample continuous-

time, discrete-event data at high frequency and use

any of the previously mentioned methods for predicting

discrete-time data. Alternatively and more directly, one

can represent continuous-time, discrete-event data as a

list of continuous-valued dwell times and discrete sym-

bols.

When it comes to continuous-time, discrete-event pre-

dictors, much effort has concentrated on continuous-time

Markov processes with large state spaces [16–18]. In this,

system states are wholly visible, but there are relatively

sparse observations. As a result, we can impose struc-

ture on the kinetic rates (or intensity matrix) to simplify

inference. Others considered temporal point processes,

equivalent to the processes considered here. From them,

the interevent interval distribution’s dependence on the

history can be modeled parametrically [19] or using a

recurrent neural network [20–24]. Though these are gen-

erative models, in theory they can be converted into pre-

dictive models [10, 25]. And yet others used sequential

Monte Carlo to make predictions from sampling distri-

butions determined by these models [22, 23].

We take a new approach: Infer continuous-time hid-

den Markov models with a particular (and advantageous)

type of structure [10]. The models are designed to be a

stochastic process’ “optimal predictor” [5, 26] in that the

model’s hidden state can be inferred almost surely from

past data and in that the model’s hidden states are suf-

ficient statistics—they provide the analyst with all the

information needed to best predict the future and, in

fact, to calculate all other desired process properties.

III. BACKGROUND

We are given a sequence of symbols xi and dura-

tions τi of those events: a time series of the form

. . . , (xi, τi), (xi+1, τi+1), . . . , (x0, τ
+
0 ). This list consti-

tutes the data D. For example, animal behavioral data

are of this kind: a list of activities and durations. The

last seen symbol x0 has been seen for a duration τ+0 . Had

we observed the system for a longer amount of time, τ+0
may increase. The possible symbols belong to a finite set

xi ∈ A, while the interevent intervals τi ∈ (0,∞). We

assume stationarity—the statistics of {(xi, τi)}i∈I are in-

variant to the start time, where I is an interval of con-

tiguous times.

Having specified the time series of interest, we turn

to briefly introduce their representations—unifilar hidden

semi-Markov models. Denoted M, we consider them as

generating such time series [10]. The minimal such model

consistent with the observations is the ε-machine. Under-

lying a unifilar hidden semi-Markov model is a finite-state

machine with states g, each equipped with a dwell-time

distribution φg(τ), an emission probability p(x|g), and

a function ε+(g, x) that specifies the next hidden state

when given the current hidden state g and the current

emission symbol x.

This model generates a time series as follows: a hidden

state g is randomly chosen; a dwell time τ is chosen ac-

cording to the dwell-time distribution φg(τ); an emission

symbol x is chosen according to the conditional proba-

bility p(x|g); and we then emit the chosen x for duration

τ . A new hidden state is determined via ε+(g, x), and

we further restrict possible next emissions to be different

than the previous emission—a property that makes this

model unifilar—and the procedure repeats. See Fig. 1

for illustrations of a unifilar hidden semi-Markov model

that is an ε-machine with three hidden states {A,B,C}
which emits four events {0, 1, 2, 3} with probabilistically

varying durations.
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FIG. 1. Unifilar hidden semi-Markov model (uhsMm): At left, two presentations of an example. (Left bottom)
Generative three-state {A,B,C} model for a discrete-alphabet {0, 1, 2, 3}, continuous-time stochastic process. Dwell times τ
are drawn when transitioning between states, and the corresponding symbol is emitted for that amount of time. (Left top)
Corresponding “conveyor belt” representation of the process generated by the model beneath. Conveyor belts represent the
time since last symbol based on the height traveled along the conveyor belt; each conveyor belt has an event symbol. (Right)
Example time series realization generated from the uhsMm, where φA, φB , and φC are inverse Gaussian distributions with
(µ, λ) pairs of (1, 2), (2, 3), and (1, 3), respectively.

IV. OPTIMALITY

We introduce a theorem that elucidates the represen-

tational power of the unifilar hidden semi-Markov mod-

els (ε-machines) discussed here that closely follows the

proofs in Refs. [5, 26]. Let
←−
Y represent the random vari-

able for semi-infinite pasts and ←−y its realization, and let−→
Y represent the random variable for semi-infinite futures

and −→y its realization. As described in Sec. III, ←−y is a

list of past dwell times and past emitted symbols, ending

with the present symbol and the time since last symbol.

And, −→y is a list of future dwell times and future emitted

symbols, starting with the present symbol and time to

next symbol.

First, we define causal states as follows. Consider

an equivalence relation on pasts: two pasts are consid-

ered equivalent, ←−y ∼ε ←−y ′, if the conditional probability

distributions over futures given the past are equivalent:

P (
−→
Y |←−Y = ←−y ) = P (

−→
Y |←−Y = ←−y ′). This equivalence re-

lation partitions the set of pasts into causal states with

associated random variable S and realization σ, such that

σ = ε(←−y ) is the causal state σ containing the past ←−y .

Theorem 1. The causal states of a process generated

by a hidden semi-Markov model are minimal sufficient

statistics of prediction.

Proof. As the process is generated by a hidden semi-

Markov model, we can meaningfully discuss the con-

ditional probability distribution of futures given pasts.

From the definition of the equivalence relation, we have

that P (
−→
Y |←−Y = ←−y ) = P (

−→
Y |S = ε(←−y )). Let

−→
Y T denote

futures of total duration T . It follows from P (
−→
Y |←−Y =

←−y ) = P (
−→
Y |S = ε(←−y )) that H[

−→
Y T |←−Y ] = H[

−→
Y T |S] for

all T , from which it follows that I[
−→
Y T ;
←−
Y ] = I[

−→
Y T ;S].

(H[·], H[·|·], and I[·; ·] are respectively the entropy, con-

ditional entropy, and mutual information [27].) Hence,

causal states S are sufficient statistics of prediction.

We then turn to the minimality of causal states. Since

S is a sufficient statistic of prediction, the Markov chain−→
Y → S →←−Y holds. Consider any other sufficient statis-

tic R of prediction. We are guaranteed the Markov chain−→
Y → S → R. Consider P (S = σ|R = r) and futures of

length T . Note that:

P (
−→
Y T |R=r)=

∑
σ

P (S=σ|R=r)P (
−→
Y T |S=σ) .
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From the convexity of conditional entropy, we have that:

H[
−→
Y T |R=r]≥

∑
σ

P (S=σ|R=r)H[
−→
Y T |S=σ] ,

with equality if P (S = σ|R = r) has support on one

causal state σ. From the above inequality, we find that:∑
r

P (R=r)H[
−→
Y T |R=r]

≥
∑
r,σ

P (R=r,S=σ)H[
−→
Y T |S=σ] .

And so:

H[
−→
Y T |R] ≥ H[

−→
Y T |S]

and:

I[
−→
Y T ;R] ≤ I[

−→
Y T ;S] ,

for any length T . This implies I[
−→
Y ;R] ≤ I[

−→
Y ;S]. If

R is a sufficient statistic, then equality holds; hence,

P (S|R = r) has support on only one causal state, and

hence, H[S|R] = 0.

A subtlety here is that S is a mixed discrete-continuous

random variable and so, for the moment, we consider in-

finitesimal partitions of the aspect of S that tracks the

time since last event, and then take the limit as the par-

tition size tends to 0, as is often done in calculations

of entropy rate; see, e.g., Ref. [28]. From considering

H[S,R], we find:

H[S] +H[R|S] = H[R] +H[S|R]

H[S] +H[R|S] = H[R]

H[S] ≤ H[R] ,

where we used the fact that H[R|S] ≥ 0. We therefore

established that if R is a minimal sufficient statistic of

prediction, it must be equivalent to the causal states S.

In what follows, we relate causal states to the hidden

states of minimal unifilar hidden semi-Markov models.

Theorem 2. The hidden states of the minimal unifilar

hidden semi-Markov model—i.e., g, x, and τ—are causal

states.

Proof. Since a detailed proof is given in Ref. [26], we

state the issues somewhat informally. A minimal unifilar

hidden semi-Markov model has two key properties:

• Unifilarity : if the current hidden state and next

emission are known, then the next hidden state is

determined; and

• Minimality : minimal number of states (or genera-

tive complexity [29]) out of all unifilar generators

consistent with the observed process.

Let G be the random variable denoting the hidden state.

Clearly
←−
Y → G → −→Y for any hidden Markov model. The

unifilarity of the model guarantees that we can almost

surely determine the hidden state of the model given the

past and, hence, G → ←−Y → −→Y . The Data Processing

Inequality applied twice implies that I[
−→
Y ;
←−
Y ] = I[

−→
Y ;G],

and so the hidden state is a sufficient statistic of predic-

tion. As we are focusing on the minimal unifilar model,

G is the minimal sufficient statistic of prediction, and so

there is an isomorphism between the machine constructed

from S and the minimal unifilar machine.

Theorem 2 provides the inspiration for the algorithms

that follow.

V. CT-BSI AND COMPARISON ALGORITHMS

We investigate and then provide algorithms for three

tasks: model inference, calculating the differential en-

tropy rate, and predicting future symbols. Our main

claim is that restricting attention to a special type of

discrete-event, continuous-time model—the unifilar hid-

den semi-Markov models or ε-machine—renders all three

tasks markedly easier since the model’s hidden states are

minimal sufficient statistics of prediction, based on Thm.

2. The restriction is, in fact, not much of one, as the

ε-machines can finitely represent an exponentially larger

set of processes compared to those generated by Markov

and semi-Markov models.

A. Inferring Optimal Models of Unifilar Hidden

Semi-Markov Processes

The unifilar hidden semi-Markov models described ear-

lier can be parameterized. Let M refer to a model—in

this case, the underlying topology of the finite-state ma-

chine and neural networks defining the density of dwell

times. Let θ refer to the model’s parameters; i.e., the

emission probabilities and the parameters of the neural

networks. And, let D refer to the data; i.e., the list of

emitted symbols and dwell times. Ideally, to choose a

model we maximize the posterior distribution by calcu-

lating arg maxM Pr(M|D) and select parameters of that

model via maximum likelihood: arg maxθ Pr(D|θ,M).

In the case of discrete-time unifilar hidden Markov

models, Strelioff and Crutchfield [8] described the

Bayesian framework for inferring the best-fit model and

parameters. More than that, Ref. [8] calculated the
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posterior analytically, using the unifilarity property to

ease the mathematical and statistical burdens. Analytic

calculations in continuous-time may be possible, but we

leave that for a future endeavor. We instead turn to a

variety of approximations, still aided by the unifilarity of

the inferred models.

The main such approximation is our use of the

Bayesian inference criterion (BIC) [9]. Maximum a pos-

teriori model selection is performed via:

BIC =
kM
2

log |D| −max
θ

log Pr(D|θ,M) (1)

M∗ = arg min
M

BIC ,

where kM is the number of parameters θ. To choose a

model, then, we must calculate not only the parameters

θ that maximize the log likelihood, but the log likelihood

itself.

We make one further approximation for tractability

involving the uhsMm start state s0, for which:

Pr(D|θ,M) =
∑
s0

π(s0|θ,M) Pr(D|s0, θ,M) .

Since the logarithm of a sum has no simple expression,

we approximate:

max
θ

log Pr(D|θ,M) ≈ max
s0

max
θ

log Pr(D|s0, θ,M) .

If it is possible to infer the start state from the data—

which is the case for all the models considered here—then

the likelihood should overwhelm the prior’s influence.

Our strategy, then, is to choose parameters θ that max-

imize maxs0 log Pr(D|s0, θ,M) and to choose the model

M that minimizes the BIC in Eq. (1). This constitutes

inferring a model that explains the observed data and

minimizes generalization error.

What remains to be done, therefore, is approximating

maxs0 maxθ log Pr(D|s0, θ,M). The parameters θ of any

given model include p(s′, x|s), the probability of emitting

x when in state s and transitioning to state s′, and φs(t),

the interevent interval distribution of state s. Using the

unifilarity of the underlying model, the sequence of x’s

when combined with the start state s0 translate into a

single possible sequence of hidden states si. As such, one

can show that:

log Pr(D|s0, θ,M) =
∑
s

∑
j

log φs(τ
(s)
j )

+
∑
s,x,s′

n(s′, x|s) log p(s′, x|s) , (2)

where n(s′, x|s) is the number of times we observe

an emission x from a state s leading to state s′ and

where τ
(s)
j is any interevent interval produced when in

state s. It is relatively easy to analytically maximize

with respect to p(s′, x|s), including the constraint that∑
s′,x p(s

′, x|s) = 1 for any s. We find that:

p∗(s′, x|s) =
n(s′, x|s)
n(s)

, (3)

where n(s) is the number of times the model visits state

s.

Now, we turn to approximate the dwell-time distri-

butions φs(t). In theory, a dwell-time distribution can

be any normalized nonnegative function. Inference may

even seem impossible. However, with sufficient nodes

artificial neural networks can represent any continuous

function. We therefore represent φs(t) by a relatively

shallow (here, three-layer) artificial neural network in

which nonnegativity and normalization are enforced as

follows:

• The second-to-last layer’s activation functions are

ReLus (max(0, x) and so have nonnegative output)

and the weights to the last layer are constrained to

be nonnegative; and

• The output is the last layer’s output divided by a

numerical integration of the last layer’s output.

The log likelihood
∑
j log φs(τ

(s)
j ) determines the cost

function for the neural network. Then, the neural net-

work can be trained using typical stochastic optimization

methods. (Here, we use Adam [30].) The neural network

output can successfully estimate the interevent interval

density function, given sufficient samples, within the in-

terval for which there is data. See Fig. 2. Outside this

interval, however, the estimated density function is not

guaranteed to vanish as t → ∞, and it can even grow.

Stated differently, the neural networks considered here

are good interpolators, but can be bad extrapolators. As

such, the density function estimated by the network is

taken to be 0 outside the interval over which there is

data.

To the best of our knowledge, this is a new approach

to density estimation, referred to as ANN here. A pre-

vious approach to density estimation using neural net-

works learned the cumulative distribution function [33].

Another more popular approach expresses the interevent

interval as λ(t)e−
∫ t λ(s)ds, where λ(t) is the intensity

function. Analysts then either parameterize the inten-

sity function or use a recurrent neural network [20–23] to

model λ(t). Note that the log-likelihood for this latter ap-

proach also involves numerical integration, but this time,

of the intensity function. This integral accounts for the

probability of nonevents. Some assume a particular form

for the interevent interval and fit parameters of the func-
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FIG. 2. Estimated dwell-time density function for varying numbers of samples. (Left) Inferred density function
using the neural network described here compared to the true density function (dotted, green) when given 500 samples (blue)
and 5000 samples (orange). As the sample size increases, the inferred density function better approximates ground truth. An
interevent interval distribution with two modes was arbitrarily chosen by setting φ(τ) to a mixture of two inverse Gaussians.
(Right) Mean-squared error between the estimated density and the true density as we use more training data for three different
estimation techniques. The green line denotes the ANN algorithm introduced here, in which we learn densities from a neural
network, running with five different seeds and choosing the one with the lowest MSE; the blue line denotes the k-nearest
neighbors algorithm [9, 31]; and the orange line gives Parzen-window estimates [9, 32]. Our new method is competitive with
these two standard methods for density estimation and quantitatively equivalent to the Parzen estimator at moderate to large
samples.

tional form to data [19]. More traditional approaches to

density estimation include k-nearest neighbor estimation

techniques and Parzen-window estimates, both of which

need careful tuning of hyperparameters (k or h) [9]. They

are referred to here as kNN and Parzen, respectively.

We compare ANN, kNN, and Parzen approaches to in-

ferring an interevent interval density function that we

have chosen, arbitrarily, to be the mixture of inverse

Gaussians shown in Fig. 2 (Left). The k in k-nearest

neighbor estimation is chosen according to Ref. [31]’s cri-

terion and h is chosen to maximize the pseudo-likelihood

[32]. Note that, as Fig. 2 (Right) shows, this is not a

superior approach to density estimation in terms of min-

imization of mean-squared error, but it is parametric, so

that BIC model selection can be used.

The approach taken here is certainly not the only

promising approach one can invent. Future work will

investigate both the efficacy of parametrizing the inten-

sity function rather than the interevent interval density

function [20–23] and the benefits of learning normalizing

flows [34].

To test our new method for density estimation—that

is, training a properly normalized ANN—we generated a

trajectory from the unifilar hidden semi-Markov model

shown in Fig. 3 (left) and used BIC to select the correct

model. As BIC is a penalty for a larger number of pa-

rameters minus a log likelihood, a smaller BIC suggests

a higher posterior probability. With very little data, the

two-state model shown in Fig. 3 is deemed to be the most

likely generator. However, as sample size increases, the

correct four-state model eventually takes precedence. See

Fig. 3 (Right). The six-state model was never deemed

more likely than a two-state or four-state model. Note

that although this methodology might be extended to

nonunifilar hidden semi-Markov models, unifilarity al-

lowed for easily computable and unique identification of

dwell times with states in Eq. (2).

B. Improved Differential Entropy Rates

One benefit of unifilar hidden semi-Markov models is

that they directly lead to explicit formulae for informa-

tion generation—the differential entropy rate [10]—for a

wide class of infinite causal-state processes like those gen-

erated by uhsMms. Generally, entropy rates measure a

process’ inherent randomness [35] and so they are a fun-

damental characteristic. As such, much effort has been

invested to develop improved entropy-rate estimators for

complex processes [36–39] since they aid in classifying

processes [40]. We now ask how well one can estimate

the entropy rate from finite data for continuous-time,

discrete-event processes. In one sense, this is a subtle

problem: estimating a property of an effectively infinite-

state process from finite data.

Compounding this, infinite-state processes or not, dif-
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FIG. 3. Model order selection. (Left) Two-state model (top) and four-state uhsMm (bottom) for binary-alphabet,
continuous-time data. (Right) Adjusted BIC, or −BIC + (1.4 ∗N + 698 ∗ logN − 5.5), as a function of sample size for the
two-state, four-state, and six-state uhsMms at left. (The six-state uhsMm is not shown.) Adjusted BIC is shown only to make
it clearer where the four-state machine is deemed more probable than the two-state machine. Smaller BIC (higher Adjusted
BIC) implies a higher posterior probability and so a better fit.

ferential entropy rates are difficult to calculate directly

from data, since the usual method calculates the entropy

of trajectories of some length T , dividing by T to get a

rate:

hµ = lim
T→∞

T−1H
[−−−→
(x, τ)0:T

]
.

A better estimator, though, is the following [35]:

hµ = lim
T→∞

d

dT
H

[−−−→
(x, τ)0:T

]
,

which is the slope of the graph of H[
−−−→
(x, τ)0:T ] versus T .

As the entropy of a mixed random variable of unknown

dimension, this entropy appears difficult to estimate from

finite data. To calculate H[
−−−→
(x, τ)0:T ], we use an insight

from Ref. [41] and condition on the number of events N :

H
[−−−→
(x, τ)0:T

]
= H[N ] +H[

−−−→
(x, τ)0:T |N ] .

We then break the entropy into its discrete and continu-

ous components:

H[
−−−→
(x, τ)T |N = n] = H[x0:n|N = n] +H[τ0:n|x0:n, N = n]

and use the k-nearest-neighbor entropy estimator [42] to

estimate H[τ0:n|x0:n, N = n], arbitrarily choosing k = 3.

(Other ks did not substantially affect results.) We esti-

mate both H[x0:n|N = n] and H[N ] using plug-in en-

tropy estimators, as the state space is relatively well-

sampled. We call this estimator model-free, in that we

need not infer a state-based model to calculate the esti-

mate.

We introduce a model-based estimator, for which we

infer a model and then use the inferred model’s differ-

ential entropy rate as the differential entropy rate esti-

mate. To calculate the differential entropy rate from the

inferred model, we use a plug-in estimator based on the

formula in Ref. [10]:

ĥµ = −
∑
s

p̂(s)

∫ ∞
0

µ̂sφ̂s(t) log φ̂s(t)dt , (4)

where the sum is over the model’s internal states. The

parameter µs is simply the mean interevent interval out

of state s: µs =
∫∞
0
tφ̂s(t)dt. We find the distribution

p̂(s) over internal states s by solving the linear equations

[10]:

p(s) =
∑
s′

µs′

µs

ns′→s
ns′

p(s′) . (5)

We use the MAP estimate of the model as described

previously and estimate the interevent interval density

functions φs(t) using a Parzen-window estimate. The

smoothing parameter h was chosen to maximize the

pseudo-likelihoods [32], given that those proved to have

lower mean-squared error than the neural network den-

sity estimation technique in the previous subsection. In

other words, we use neural network density estimation

to choose the model, but with the model in hand, we

use Parzen-window estimates to estimate the density for

purposes of estimating entropy rate. A full mathematical

analysis of the bias and variance is beyond the present

scope.
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FIG. 4. Model-free versus model-based entropy rate estimators. Synthetic dataset generated from Fig. 3(top) with
φA(t) = φD(t) as inverse Gaussians with mean 1 and scale 5 and with φB(t) = φC(t) as inverse Gaussians with mean 3 and scale
2. The ground truth entropy rate from the formula in [10] is 1.85 nats. In orange, the model-free estimator (combination of
plug-in entropy estimator and kNN [42] entropy estimators) described in the text. In blue, the model-based estimator assuming
a two-state model, i.e., the top left of Fig. 3. In black, the model-based estimator assuming a four-state model, i.e., the
bottom left of Fig. 3. Lines denote the mean bias (left) or standard deviation (right) in entropy rate estimates, and error bars
show estimated standard deviation in such. The model-free method has much higher bias and variance than both model-based
methods.

Figure 4 compares the model-free method (k-nearest

neighbor entropy estimator) and the model-based

method (estimation using the inferred model and Eq.

(4) as a function of the length of trajectories simulated

for the model. In Fig. 4, the blue data points describe

what happens when the most likely (two-state) model is

used for the model-based plug-in estimator of Eq. (4).

Whereas, the black data points describe what happens

when the correct four-state model is used for the plug-in

estimator. That is, for the two-state model the estimate

given by Eq. (4) is based on the wrong model and, hence,

leads to a systematic overestimate of the entropy rate

(nonzero bias) with unreasonable confidence (low vari-

ance). When the correct four-state model is used for the

plug-in estimator in Fig. 4, the model-based estimator

has much lower bias and variance than the model-free

method.

To efficiently estimate the past-future mutual infor-

mation or excess entropy [35, 43, 44], an important

companion informational measure, requires models of

the time-reversed process. A sequel will elucidate the

needed retrodictive representations of unifilar hidden

semi-Markov models, which can be determined from the

“forward” unifilar hidden semi-Markov models. This and

the above methods lead to a workable excess entropy es-

timator.

C. Improved Prediction with Causal States

A wide array of techniques have been developed for

discrete-time prediction, as described in the introduction.

Using dwell times and symbols as inputs to a recurrent

neural network, for example, we can develop continuous-

time techniques that build on these discrete-time tech-

niques. However, we will demonstrate that we gain a

surprising amount by first identifying continuous-time

causal states.

The first prediction method we call predictive ANN

(PANN) (risking confusion with the ANN method for

density estimation described earlier) takes as input

(x−n+1, τ−n+1), . . . , (x0, τ
+
0 ) into a feedforward neural

network that is relatively shallow (six layers) and some-

what thin (25 nodes). (Other network architectures were

tried with little improvement.) The network weights are

trained to predict the emitted value x at time T later

based on a mean-squared error loss function. For this to

work, the neural network must predict the hidden state g

from the observed data. This can be accomplished if the

dwell-time distributions of the various states are dissim-

ilar. Increases in n can increase the network’s ability to

correctly predict its hidden state and thus predict future

symbols. This assumes sufficient data to avoid overfit-

ting; here, n is chosen via cross-validation.

The second method, called RNN, takes

(x−n+1, τ−n+1), . . . , (x0, τ
+
0 ) as input to a long short-

term memory (LSTM) neural network [45, 46]. (Though
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FIG. 5. Prediction. Mean-squared prediction error for the data point a time T away based on training with 500 (Left) and
5000 (Right) data points. 3000 epochs were used to train the ANN. 68% confidence intervals are shown. The data generating
uhsMm is that in Fig. 3 (Left, bottom). The CT-BSI method infers the internal state of the unifilar hidden semi-Markov
model; the PANN method uses the last n data points (xi, τi) as input into a feedforward neural network; and the RNN method
uses the past (xi, τi) as input to an LSTM.

any recurrent neural network could have been chosen.)

n was chosen by cross-validation. The LSTM is tasked

to produce an estimate of x at time T subject to a

mean-squared error loss function, similar to the PANN

method.

For both PANN and RNN, a learning rate was chosen

an order of magnitude smaller than the learning rate that

led to instability. In fact, a large number of learning rates

that were orders of magnitude smaller than the critical

learning rate were tried.

The third method is our Continuous-Time Bayesian

Structure Inference algorithm, labeled CT-BSI. It pre-

processes input data using an inferred unifilar hidden

semi-Markov model so that each time step is associated

with a hidden state g, a time since last symbol change

τ+0 , and a current emitted symbol x0. In discrete-time

applications, there is an explicit formula for the optimal

predictor in terms of the ε-machine’s labeled transition

matrix. However, for continuous-time applications, there

is no closed-form expression, and so we use a k-nearest

neighbor estimate of the data a time T into the future.

More precisely, we find the k closest data points in the

training data to the data point at present, and estimate

xT as the average of the future data points in the train-

ing set. In the limit of infinite data in which the correct

model is identified, for correctly-chosen k, this method

outputs an optimal predictor. We choose k via cross-

validation.

The synthetic dataset is generated from Fig. 3 (Left,

bottom) with φA(t) = φD(t) as inverse Gaussians with

mean 1 and scale 5 and with φB(t) = φC(t) as inverse

Gaussians with mean 3 and scale 2. We chose these

means and scales so that it would be easier, in princi-

ple, for the non-uhsMm methods (i.e., PANN and RNN)

to implicitly infer the hidden state (A, B, C, and D).

Given the difference in dwell time distributions for each

of the hidden states, such implicit inference is necessary

for accurate predictions.

Figure 5 demonstrates that CT-BSI outperforms the

feedforward neural network (PANN) and the recurrent

neural network (RNN). The corresponding mean-squared

errors for the three methods are shown there for two

different dataset sizes. Different network architectures,

learning rates, and number of epochs were tried; the re-

sults shown are typical. We employed a k-nearest neigh-

bor estimate on the causal states (i.e., the uhsMm’s

internal state) to predict the future symbol. Overall,

CT-BSI requires little hyperparameter tuning and out-

performs substantially more compute-intensive feedfor-

ward (PANN) and recurrent neural network (RNN) al-

gorithms.

The key here is trainability: It is difficult to train

RNNs to predict these sequences, even though RNNs are

intrinsically more expressive than PANNs. As such, they

perform measurably worse. PANNs work quite well, but

as shown in Fig. 5 (Left), with small amounts of data,

PANNs can sporadically learn wildly incorrect mappings

to future data. This occurs at intermediate timescales:

See the the marked increase in the size of the confidence

interval at T = 2× 10−2 in Fig. 5 (Left). However, this

also occurs at long timescales with larger data sets: See

the large increase in mean MSE from the superior perfor-

mance of CT-BSI at T = 100 in Fig. 5 (Right). CT-BSI,

in contrast, learns low variance predictions with lower
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MSE than both RNNs and PANNs.

VI. DISCUSSION

We introduced the Continuous-Time Bayesian Struc-

ture Inference (CT-BSI) algorithm to infer the causal

states [5] of continuous-time, discrete-event processes,

showing that it outperforms suitably generalized neu-

ral network architectures. This leveraged prior ground-

work on discrete-time, discrete-event processes [10] and

Bayesian Structural Inference for processes generated by

finite-state HMMs [8]. This led to a natural new entropy-

rate estimator that uses a process’ causal states and a

new predictor based on causal states that is more accu-

rate and less compute-intensive than competitors. Fi-

nally, and key to applications, compared to the neural

network competitors CT-BSI’s inferred causal states and

ε-machine give an explicit and interpretable mechanism

for a process’ generator.

The major challenge with applying these tools is model

mismatch—the true or a closely-related model might not

be inferred. This can lead to inaccurate estimations

of the entropy rate and also to inaccurate predictions.

However, as discussed, if sufficient data is available, a

more complex model will be favored, which might be

closer to ground truth. Additionally, we conjecture that

the processes generated by unifilar hidden semi-Markov

models are dense in the space of all possible station-

ary continuous-time, discrete-event processes. If true,

the restriction to unifilar models is not a severe limita-

tion, as there will always be nearby unifilar model with

which to estimate and predict. A second issue—which

also plagues the discrete-time, discrete-event Bayesian

structural inference algorithm [8]—is searching over all

possible topologies of unifilar hidden semi-Markov mod-

els [47]. Circumventing both of these challenges suggests

exploring nonparametric Bayesian approaches [48].

The new inference, estimation, and prediction algo-

rithms can be used to analyze continuous-time, discrete-

event processes—a broad class spanning from seismic

time series to animal behavior—leading to reliable es-

timates of the intrinsic randomness of such complex

infinite-memory processes. Future efforts will delve into

improved estimators for other time series information

measures [49], using model selection criteria more accu-

rate than BIC to identify MAP models, and into enu-

merating the topology of all possible uhsMm models for

nonbinary alphabets [47].
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[29] W. Löhr. Models of discrete-time stochastic processes and

associated complexity measures. PhD thesis, University

of Leipzig, May 2009.

[30] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv:1412.6980.

[31] K. Fukunaga and L. Hostetler. Optimization of k near-

est neighbor density estimates. IEEE Trans. Info. Th.,

19(3):320–326, 1973.

[32] J. S. Marron et al. A comparison of cross-validation tech-

niques in density estimation. Ann. Statistics, 15(1):152–

162, 1987.

[33] M. Magdon-Ismail and A. F. Atiya. Neural networks for

density estimation. In Adv. Neural Info. Proc. Sys., pages

522–528, 1999.

[34] I. Kobyzev, S. Prince, and M. A. Brubaker. Normalizing

flows: Introduction and ideas. arXiv:1908.09257.

[35] J. P. Crutchfield and D. P. Feldman. CHAOS, 13(1):25–

54, 2003.

[36] S. Egner, V. B. Balakirsky, L. Tolhuizen, S. Baggen, and

H. Hollmann. On the entropy rate of a hidden Markov

model. In Intl. Symp. Info. Th., 2004. ISIT 2004. Pro-

ceedings., page 12. IEEE, 2004.

[37] D. Arnold and H.-A. Loeliger. On the information rate

of binary-input channels with memory. In ICC 2001.

IEEE Intl. Conf. Commun. Conference Record (Cat. No.

01Ch37240), volume 9, pages 2692–2695. IEEE, 2001.

[38] I. Nemenman, F. Shafee, and W. Bialek. Entropy and in-

ference, revisited. In Adv. Neural Info. Proc. Sys., pages

471–478, 2002.

[39] E. Archer, I. M. Park, and J. W. Pillow. Bayesian en-

tropy estimation for countable discrete distributions. J.

Machine Learning Research, 15(1):2833–2868, 2014.

[40] M. Costa, A. L. Goldberger, and C.-K. Peng. Multiscale

entropy analysis of complex physiologic time series. Phys.

Rev. Let., 89(6):068102, 2002.

[41] J. D. Victor. Binless strategies for estimation of infor-

mation from neural data. Phys. Rev. E, 66(5):051903,

2002.
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