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Abstract

This study evaluates the potential for fluorescence lifetime imaging (FLIm) to enhance 

intraoperative decisionmaking during robotic-assisted surgery of oropharyngeal cancer. Using a 

custom built FLIm instrument integrated with the da Vinci robotic surgical platform, we first 

demonstrate that cancer in epithelial tissue diagnosed by histopathology can be differentiated from 

surrounding healthy epithelial tissue imaged in vivo prior to cancer resection and ex vivo on the 

excised specimen. Second, we study the fluorescence properties of tissue imaged in vivo at 

surgical resection margins (tumor bed). Fluorescence lifetimes and spectral intensity ratios were 

calculated for three spectral channels, producing a set of six FLIm parameters. Current results 

from 10 patients undergoing TORS procedures demonstrate that healthy epithelium can be 

resolved from cancer (P < .001) for at least one FLIm parameter. We also showed that a 

multiparameter linear discriminant analysis approach provides superior discrimination to 

individual FLIm parameters for tissue imaged both in vivo and ex vivo. Overall, this study 

highlights the potential for FLIm to be developed into a diagnostic tool for clinical cancer 

applications of the oropharynx. This technique could help to circumvent the issues posed by the 

lack of tactile feedback associated with robotic surgical platforms to better enable cancer 

delineation.
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1 | INTRODUCTION

In the United States, oral and oropharyngeal cancer together represent 3.0% of all new 

cancer cases, are associated with a 65.3% survivability after 5 years from initial onset, and 

are expected to afflict 53 000 individuals in 2019 [1]. Based on global trends, oropharyngeal 

cancer comprises approximately half of these cases [2]. Over the last two decades, robotic-

assisted surgery has become widely utilized for the surgical resection of oropharyngeal 

cancers. Transoral robotic surgery (TORS) confers many advantages compared to 

conventional endoscopy procedures; this includes deeper access to anatomical sites which 

enables precise operation in tight spaces without a large open incision, improved patient 

functional outcomes, and improved dissection ability of lesions and neoplastic growths [3].

Adequate intraoperative delineation of cancer is the key factor for long-term survival of 

patients diagnosed with oral and oropharyngeal cancer [4]. This requires rapid evaluation of 

the extent of molecular changes (neoplastic area) of the epithelial surface (mucosa). The 

traditional gold standard for intraoperative oral and oropharyngeal cancer delineation is 

white-light visualization, tactile feedback, and pathologic consultation through a 

combination of techniques including frozen section histopathology [5]. During conventional 

surgical resection procedures, surgeons typically leverage all three methods, as well as other 

screening tests, to provide informed intraoperative diagnosis [5].

The current approach for TORS presents two fundamental limitations. First, the TORS 

platform eliminates the surgeon’s ability to sense tissue and bone resistances, which creates 

a loss of haptic feedback [3, 6, 7]; this limitation has been cited to make TORS procedures 

more challenging [6, 7]. Second, the reliance of frozen section analysis during TORS 

procedures introduces long procedural waiting times, sampling error, the inability to provide 

continuous assessments of pathology margins, invasiveness associated with biopsies, and the 

potential for interpretative errors [8].

Alternative techniques for real-time intraoperative cancer delineation in oral anatomy have 

been evaluated and reported to address such intraoperative challenges [9–12]. This includes 

fluorescence spectroscopy and imaging techniques based on exogenous (using both non-

targeted and targeted probes) [13, 14] and endogenous [15–17] fluorescence.
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Recently, there has been in increased interest in the development of autofluorescence 

techniques for intraoperative use [12, 18]. The strong emission of endogenous fluorophores 

(e.g. nicotinamide adenine dinucleotide [NADH] and flavin adenine dinucleotide (FAD) in 

the epithelial cell layers, collagen crosslinks in the stroma upon UV-vis excitation) were 

previously exploited and shown to improve the ability to distinguish normal from 

premalignant or malignant oral tissue in humans [18]. For example, autofluorescence 

devices for early detection of oral neoplasia (including the FDA approved VELscope, LED 

Dental Inc.) have been reported previously [9, 10, 12, 13, 19]. Although, these devices rely 

on the shallow penetration (<400 μm) of UV-Vis excitation light, it has been shown that they 

can detect changes in the epithelium with high sensitivity [18]. However, autofluorescence 

techniques based on steady-state fluorescence intensity analysis are confounded by factors 

such as irregular tissue surfaces (excitation/collection geometry), non-uniform tissue 

illumination, and variable presence of endogenous absorbers such as blood in the operative 

field [17]. Accordingly, lifetime-based autofluorescence analysis has been identified as an 

attractive alternative due to its insensitivity to the confounding factors of intensity-based 

analysis.

Tissue autofluorescence time-resolved measurements have recently demonstrated potential 

to delineate cancer intraoperatively from surrounding normal tissues in patients [20–23], 

including oral cancer [20, 24, 25]. Time-resolved autofluorescence techniques can address 

limitations of the steady-state based methods by resolving the dynamics of the fluorescence 

decay (lifetime) [23]. By taking advantage of alterations in tissue structural and metabolic 

characteristics associated to neoplastic processes [23, 26], lifetime-based methods have the 

potential to provide information about tissue molecular composition, including enzyme 

cofactors involved in cellular metabolism (eg, NAD(P)H and FAD), matrix proteins 

(collagen and elastin), and inflammatory activity.

In a recent study [20], we demonstrated the integration of a fluorescence lifetime imaging 

(FLIm) system into the da Vinci Surgical System, and highlighted its functionality during 

conventional TORS procedures. Herein, this work showed that FLIm-derived parameters can 

discriminate between different tissue types at the epithelial surface during oropharyngeal 

cancer procedures, including carcinoma, carcinoma over lymphoid tissue, and normal tissue 

[20]. However, we noted that optical/fluorescence parameters can be affected by a variety of 

experimental situations. This includes diverse tissue types (e.g. tumor of distinct phenotypes 

or heterogeneity) and conditions (thickness of the epithelial layer, presence of lymphoid 

tissue, approach to tumor removal, cautery, and hemostasis).

The goals of this study were to conduct FLIm measurements during conventional TORS 

procedures, to evaluate the effects of experimental procedures on FLIm data, and to 

determine whether a combination of FLIm-derived parameters can be always found and used 

as means of intrapatient diagnostic contrast irrespective of experimental situations. For this, 

we evaluated the ability of a multiparameter discrimination approach that uses a set of 

spectral and time-domain fluorescence parameters to resolve healthy epithelium from cancer 

tissue imaged both in vivo prior to resection and ex vivo in surgically-excised specimens. 

Multiparameter and single parameter approaches were compared. In addition, we sought to 

investigate the FLIm characteristics of the tumor bed imaged post-resection and to perform 
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quantitative comparisons with other imaged tissue types (in vivo healthy epithelium and in 
vivo cancer).

2 | MATERIALS AND METHODS

2.1 | Instrumentation

2.1.1 | FLIm device—A custom-built fiber-based point-scanning FLIm system was 

coupled to the da Vinci Si Surgical System via a 5Fr EndoWrist Introducer (schematic 

depicted in Figure 1A) as previously described [20]. In brief, tissue autofluorescence was 

excited with a 355 nm (<600 ps FWHM) pulsed laser (micro Q-switched laser, 120 Hz 

repetition rate, Teem Photonics, France) delivered through a 365 μm core multimode optical 

fiber inserted in the EndoWrist Introducer. The same fiber optic was used to collect the 

autofluorescence emanating from the tissue regions evaluated. The fiber’s proximal 

collection end was coupled to a wavelength selection module (WSM) which features a set of 

four dichroic mirrors and bandpass filters (i.e. CH1: 390 ± 20 nm; CH2: 470 ± 14 nm; CH3: 

542 ± 25 nm; and CH4: 629 ± 26.5 nm) used to spectrally resolve the autofluorescence 

signal. These spectral bands were tailored to capitalize on the autofluorescence emission 

maxima of endogenous fluorophores previously reported as the main contributors to head 

and neck cancer autofluorescence emission, specifically collagen, NAD(P)H, FAD, and 

porphyrins [23]. The optical signal from each spectral band was time-multiplexed into a 

single microchannel plate photo-multiplier tube (MCPPMT, R3809U-50, 45 ps FWHM, 

Hamamatsu, Japan), amplified (AM-1607–3000, Miteq Inc., USA), and time-resolved by a 

high sampling frequency digitizer (12.5 GS/s, 3GHz, 8-bit, 512 Mbytes, PXIe-5185, 

National Instruments, Austin, TX, USA) at 80 ps time intervals.

The RF amplifier was AC coupled with a low cutoff frequency of 10 kHz which filters out 

any signal contribution from the continuous-wave aiming beam and operating room lights 

[28]. The principle behind this technique was described in detail in our earlier work [28, 29]. 

In vivo and ex vivo data were collected using configurations 1 and 2 respectively, as 

highlighted in Figure 1B.

2.1.2 | FLIm point-measurement localization—To determine the spatial location of 

each FLIm point measurement, we employed a previously reported method [28]. 

Specifically, a 455 nm continuous-wave aiming beam (TECBL50G-440-USB, World Star 

Tech, Canada) was injected into the WSM optical path and delivered to tissue through the 

same fiber optic used to induce and collect tissue autofluorescence [28]. Then, the position 

of the aiming beam was localized within a two-dimensional (2D) white light image of the 

tissue specimen captured by the camera integrated into the da Vinci system. This localization 

was performed by transforming the image into the HSV color space, thresholding the hue 

and saturation channels, and performing a series of morphological operations to isolate the 

center of the beam [28]. By performing aiming beam segmentation in parallel with the 

deconvolution of autofluorescence decay signals, FLIm parameter visualizations can be 

generated. This approach is depicted in Figure 2. A mounted camera was used for aiming 

beam localization for ex vivo measurements of excised tissue specimens.
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2.2 | Human patients and data collection

Under Institutional Review Board (IRB) approval, 10 human patients undergoing upper 

aerodigestive onco-logic surgery (using the da Vinci Surgical System at the University of 

California Davis Medical Center) were recruited from the Otolaryngology Head & Neck 

Surgery clinic after determination of their eligibility for this research. The patients enrolled 

in this study, along with their corresponding surgical locations, etiologies, and residual 

cancer status are enumerated in Table 1. Research was conducted on patients only after their 

informed consent was obtained.

Prior to robotic surgery, the EndoWrist instrument containing the fiber optic from the FLIm 

instrument was installed in the da Vinci surgical robot and was placed inside the oral cavity 

of the patient under anesthesia. Surgeons (DGF, AFB, MGM) identified the tissue areas of 

interest based on preoperative planning. FLIm measurements were then acquired by 

scanning the EndoWrist instrument over that region. FLIm data was collected during three 

distinct stages of surgical resection (Figure 2A): (a) in vivo prior to tumor excision from 

anticipated cancer locations and the surrounding healthy peripheral tissue (defined as a 10 

pixel distance from the surgical excision margins which corresponds to approximately 0.75 

mm), (b) in vivo after surgical tumor excision in the resection bed, and (c) for the excised ex 
vivo specimen. The average time spent to map out an entire tissue specimen (and 

neighboring periphery if in vivo) is approximately 0.75 to 1.5 minutes depending on the 

tissue area. Immediately following an ex vivo scan, the resected specimen was sent for 

sectioning and histopathology staining. Hematoxylin and eosin and P16 immunostaining 

was used as the primary agent for pathology detection. The fixed sections were placed on 

slides, scanned for virtual retrieval using an Aperio digital pathology slide scanner (Leica 

Biosystems), and annotated by a pathologist (RGE) as illustrated in Figure 2B. Careful notes 

were taken to designate the precise location where histological sections were taken from the 

excised sample to coregister the pathologist’s annotations to the ex vivo sample. The 

spatially orientated ex vivo specimen, along with clinical notes from the surgeon and 

pathologist, were used to perform coregistration of the in vivo images at the pre-resection 

and post-resection (tumor bed) locations as illustrated in Figure 2B. The operating surgeon 

was consulted during each procedure to assist with orienting the excised specimen on in vivo 
anatomy. The pathologist was not presented with any FLIm results in order to prevent any 

potential bias in the pathology interpretation.

2.3 | Data analysis and visualization

2.3.1 | Deconvolution and FLIm parameter extraction—Following the acquisition 

of the raw fluorescence decay signal, background subtraction was applied to each spectral 

channel. The extraction of FLIm parameters including spectral intensity ratio and average 

fluorescence lifetime values was performed for each channel using a constrained least-

squares (CLS) deconvolution via Laguerre expansion as described previously [27]. This 

method allows for fast and accurate analysis of fluorescence decay dynamics and for real-

time computation of fluorescence lifetime values and other relevant decay parameters. 

Intensity ratios were calculated for a given spectral channel by dividing the integral of that 

channel’s fluorescence decay curve by the sum of decay curve integrals for all channels.
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2.3.2 | FLIm parameter visualization—Once a set of FLIm measurements and (x,y) 

locations have been acquired for a given scan, each of the calculated signal parameters can 

be visualized through the generation of a parameter heat map. Each heat map can be overlaid 

separately onto the captured white light image to highlight how each parameter varies across 

the scanned tissue. A pixel-wise interpolation method was used to combine the inverse 

distance weighted interpolation of Shepard’s Method [30] with signal-to-noise ratio (SNR) 

weighting. Measurements with a close spatial proximity to a given pixel of interest and a 

high SNR value have the most influence on the final output. The applied visualization 

method was implemented in the Python programming language and employs the OpenCV 

image processing library [31].

2.3.3 | Data annotation, coregistration, and preprocessing—Histopathology 

annotations were performed for each case using a custom software tool developed in 

MATLAB. Here, a set of pixel-wise annotations were generated for a given scan and 

represented as a gray scale image where each pixel value (0–255) corresponds to a specific 

tissue condition. Four total pixel values were used in this study for coregistration analysis to 

designate: (a) no coregistration annotation, (b) cancer, (c) healthy epithelium, and (d) 

electrocauterized submucosa (tumor bed). For this study focused on intrapatient contrast, 

only binary classifications are performed, thus if dysplasia or ulceration was noted as benign 

by the pathologist, we classify this tissue as healthy epithelium. Thin (≤125 μm) and thick 

epithelium (>125 μm) regions (quantified by histology) were both grouped and treated as 

healthy epithelium as well in the binary classification analysis. The pixel-level annotations 

generated using this tool were stored for each sample as an image in the portable networks 

graphics format to avoid compression artifacts. These annotations were then coregistered 

with FLIm measurement (x, y) locations calculated by the aiming beam software.

FLIm measurements were coregistered to tissue annotations and analyzed only at regions 

directly guided by histopathology (annotated pixels) or within a 10-pixel distance from an 

annotation. Ten pixels correspond to less than 0.06% of the FOV (field of view) width 

captured using the system’s camera. This approach was used consistently across all patients 

with no patient-level fine-tuning applied. Measurements near heterogeneous tissue 

conditions (i.e. boundaries between cancer and healthy tissue) were excluded by removing 

any measurement within a 10-pixel radius of multiple disparate tissue conditions. A larger 

exclusion radius would remove a large quantity of data points from the analysis stage of this 

initial study. This filtering process was applied consistently across all patients. Performing 

both of these steps helps to mitigate tissue labeling errors.

A SNR threshold of 30 dB was applied across all spectral channels. Outlier removal was 

performed prior to any univariate statistical analysis for each FLIm parameter using a 

median absolute deviation (MAD) filtering approach [32], where parameter values ±2.5 

MAD from their respective median were removed for each patient. This MAD filtering 

procedure was performed separately for in vivo pre-resection scans, ex vivo scans, and 

cavity scans. Spectral channel 4 was excluded from analysis due to the poor signal properties 

observed, thus six FLIm parameters were evaluated in this study: average fluorescence 

lifetime and spectral intensity ratio from spectral channels 1–3. Outlier removal and SNR 

filtering removed 0.5% and 2.5% of data points respectively.
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2.3.4 | Statistics and discrimination metrics—Statistical tests and discrimination 

metrics were implemented to quantify FLIm’s ability to distinguish between tissue 

conditions (e.g. healthy epithelium and cancer). In each case we compare measurements for 

healthy tissue and cancer unless otherwise stated. Statistically, we make no assumptions of a 

normal distribution for acquired FLIm data, however, we assume independence and equal 

variance, therefore we sought to evaluate our results with the Wilcoxon rank sum test, a non-

parametric statistical method for significance testing [33, 34]. Receiver operating 

characteristic (ROC) analysis and precision-recall curve analysis were performed for each 

FLIm parameter to calculate a set of discrimination metrics.

Once calculated for a given variable, area-under-the-curve (AUC) and average precision 

(AP) provide a comprehensive overview of its discriminative power. Average precision is 

influenced more by the performance of the positive class (eg, cancer) and can highlight poor 

discrimination even if the dataset is imbalanced between classes (i.e. majority healthy), 

while AUC treats each class with equal importance. For each patient, analysis was 

performed separately for each specimen context (in vivo prior to tissue resection, ex vivo 
after tissue resection for the excised specimen, and in vivo for the cavity where the tumor 

was removed).

2.3.5 | Multiparameter discrimination—Linear discriminant analysis (LDA) was 

performed to investigate if a weighted linear combination of the six calculated FLIm 

parameters can provide better discrimination of tissue types than individual FLIm 

parameters. This analysis was performed separately for each patient and tissue context as the 

focus of this work was on intrapatient contrast sources in FLIm rather than the development 

of a generalized classifier. The LDA variable was calculated for each case through singular 

value decomposition, minimizing the intraclass variance and maximizing the interclass 

variance. The optimized set of weights was applied to the FLIm data for a given scan before 

min-max scaling was performed, producing a set of LDA variables in the range of 0.0–1.0 

for this scan, which are used to distinguish healthy tissue from cancer. AUC and AP were 

calculated for this LDA variable, allowing for a direct comparison with each individual 

FLIm parameter in terms of discriminative power. The objective here was not to train a 

generalized classifier but to compare single parameter and multiparameter tissue 

discrimination approaches within individual patients.

3 | RESULTS

FLIm measurements acquired from patients (n = 10) and subsequently analyzed generated a 

total of 42 777 FLIm data points coregistered with histopathology. 13 765 of these data 

points were associated to cancer and the remaining 29 012 to healthy tissue (epithelium and 

tumor bed). This dataset includes nine in vivo pre-resection scans, nine ex vivo post-

resection scans, and seven post-resection tumor bed scans, for which no residual cancer was 

observed. Not all scan types were acquired for all patients due to changes in surgical plans 

during the OR acquisition process. Patient 9 did not have cancer, thus the patient was 

omitted from Figures 5 and 6 accordingly as intrapatient tissue type discrimination cannot be 

performed; a tumor bed scan however was successfully acquired and is included in the 

analysis. Table 1 summarizes the patient information involved in this study.
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Here, detailed results (in vivo and ex vivo epithelial scans, as well as tumor bed scans) from 

two case studies (“A” and “B”), a summary of the statistical significance and discriminative 

metrics for the entire 10-patient cohort, and a comparison of normal tissue FLIm signatures 

between the three imaging contexts (pre-resection in vivo, post-resection ex vivo specimen, 

and post-resection cavity in vivo) are presented. These case studies were selected for the 

following reasons: (a) they highlight different levels of single parameter contrast (both in 
vivo and ex vivo) and show how limited contrast can be overcome through a multiparameter 

LDA approach when necessary and (b) distinct tissue conditions (ie, levels of heterogeneity) 

are observed in the histopathology for each case.

Each case study presents heat map visualizations of all six FLIm parameters with the 

associated AUC and AP score, violin plots (a non-parametric data visualization method 

which includes both a box plot and a kernel density plot) for all six FLIm parameters with 

statistically significant change (P < .001) highlighted, a heat map visualization of the 

multiparameter LDA variable along with AUC and AP score, and the associated ground 

truth drawn from histopathology coregistration (both high-level and fine-grained labels). 

Following the in vivo and ex vivo scan for each case, the FLIm profile of the imaged tumor 

bed scan is presented. Violin plots (a nonparametric method) were employed as a normal 

distribution cannot be assumed for FLIm data, while the kernel density plot included can 

highlight a multimodal data distribution. For in vivo pre-resection and ex vivo scans, the aim 

was to evaluate whether neoplastic changes in epithelial tissue diagnosed by conventional 

histopathology can be differentiated from surrounding healthy epithelial tissue, while for the 

post-resection cavity scan, the goal was to evaluate changes in optical parameters due to 

cauterization/surgical injury.

3.1 | Case study A

Case study A (Figure 3) presents FLIm measurements for Patient 8. Statistically significant 

change (P < .001) was observed between tissue conditions for five FLIm parameters in the in 
vivo pre-resection scan and four FLIm parameters in the ex vivo post-resection scan. LDA 

improved both AUC and AP score for both scans compared to the best performing individual 

parameter in each case. For the in vivo scan, the use of the LDA variable improved AUC and 

AP by just 0.02 and 0.01 respectively, suggesting that when good single-parameter contrast 

is observed (ie, AUC of 0.89) that a multiparameter approach (LDA) only results in marginal 

improvement. For the ex vivo scan, the use of the LDA variable improved AUC and AP by 

0.04 and 0.01 respectively, these marginal improvements due to the already strong single 

parameter contrast observed (AUC of 0.74). A bimodal distribution was observed within the 

tumor bed for intensity ratio in CH1, CH2, and CH3, suggesting that distinct tissue 

conditions are present.

3.2 | Case study B

Case study B (Figure 4) presents FLIm measurements for Patient 5. Statistically significant 

change (P < .001) is observed between tissue conditions for two FLIm parameters in the in 
vivo pre-resection scan and four FLIm parameters in the ex vivo post-resection scan. LDA 

improved both AUC and AP score in both scans compared to the best performing individual 

parameter in each case. For the in vivo scan, the use of the LDA variable improved AUC and 
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AP by 0.11 and 0.12 respectively, highlighting the advantage of a multiparameter approach 

when single parameter contrast is not strong (ie, AUC of 0.60). For the ex vivo scan, the use 

of the LDA variable improved both the AUC and AP by 0.11, once again highlighting the 

benefit of a multiparameter approach. A bimodal distribution is observed within the tumor 

bed for average lifetime in channels 1–3 and intensity ratio CH1, suggesting heterogeneity 

within this region.

3.3 | Patient-level significance, ROC-AUC and average precision comparisons

Statistically significant change (P < .001) between healthy epithelium and cancer is observed 

for at least one FLIm parameter in all in vivo pre-resection scans and 8/9 ex vivo post-

resection scans.

A comparison of patient-level ROC-AUC scores for the in vivo pre-resection scans and ex 
vivo scans is presented in Figure 5. The main sources of contrast among the six FLIm 

parameters varied among patients for each scan context. In all scans, the use of the LDA 

variable resulted in superior AUC score, with a 0.07 ± 0.03 mean increase observed for the 

in vivo pre-resection scans and a 0.06 ± 0.03 mean increase observed for the ex vivo post-

resection scans. In terms of single parameter discriminative performance, the highest single 

parameter mean AUC was observed for CH3 intensity ratio in both scan contexts. A single 

parameter AUC score greater than 0.70 was observed for 6/9 in vivo pre-resection scan and 

4/9 ex vivo post-resection scans.

A comparison of patient-level average precision for the in vivo and ex vivo post-resection 

scans is presented in Figure 6. As observed for ROC-AUC analysis, the main sources of 

contrast varies between patients for both scan contexts. The use of LDA resulted in a 

superior overall AP score, with a 0.08 ± 0.06 mean increase observed for the in vivo pre-

resection scans and a 0.06 ± 0.03 mean increase observed for the ex vivo post-resection 

scans. In terms of single parameter discriminative performance, the highest single parameter 

mean AP was observed for CH3 intensity ratio in the in vivo pre-resection scans and CH1 

intensity ratio for the ex vivo scans. A single parameter AP score greater than 0.70 was 

observed in 6/9 in vivo pre-resection scans and 3/9 ex vivo post-resection scans.

3.4 | Comparison of healthy epithelium in the tonsil region

Figure 7 illustrates the range of FLIm parameter values for all measurements of 

noncauterized healthy epithelium taken in three distinct experimental conditions (contexts): 

in vivo pre-resection (n = 5606 measurements), ex vivo post-resection (n = 7252 

measurements), and in vivo post-resection (peripheral to tumor bed) (n = 4060 

measurements). Box plots (a non-parametric method) were used to display the values 

distribution as a normal distribution for FLIm data cannot be assumed. All measurements 

were performed for the tonsil region of the oral cavity (n = 9). Data from any non-tonsil 

patient (i.e. Patient 9) is excluded from this analysis to restrict the focus to a single 

anatomical location (tissue type). The same preprocessing steps are performed as for 

previous experiments.

Due to the high number of measurements included in this analysis (n > 10 000), P values are 

not computed as these statistics are shown to always indicate significance as N grows very 
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large [35]. Alternatively, Cohen’s d [36] effect size (ES) was computed to overcome this 

high sample size and quantify parameter change in healthy epithelium between imaging 

contexts. Higher ES values are observed between healthy epithelium contexts for intensity 

ratio parameters compared to average lifetimes. Channel 3 has the smallest set of ES values 

between healthy epithelium contexts for both average lifetime and intensity ratio, indicating 

this channel’s FLIm profile may be the most robust to these context changes. For average 

lifetime in channels 2 and 3, there is a small ES observed between pre-resection in vivo and 

post-resection peripheral tissue (in vivo), suggesting a consistent FLIm profile for these 

parameters before and after resection. For channel 1 average lifetime, a high ES is observed 

between healthy epithelium in all three imaging contexts, suggesting this parameter is less 

robust to these changes with respect to a healthy epithelium imaging context.

3.5 | Comparison of tumor bed with pre-resection healthy epithelium and cancer

Average lifetime parameters observed in the tumor bed (in vivo) (n = 19 567) are compared 

with those observed pre-resection for both in vivo healthy epithelium (n = 6151) and in vivo 
cancer (n = 3760) across the entire 10-patient cohort. Cohen’s d [36] ES is once again 

employed due to the high sample size. For channel 1 average lifetime an ES of 1.45 and 1.5 

are respectively observed when comparing tumor bed with healthy epithelium and cancer, 

suggesting a consistent change for this parameter when compared to both tissues. 

Conversely, for average lifetime in channels 2 and 3, no ES value greater than 0.36 is 

observed when comparing tumor bed with healthy epithelium and cancer, suggesting a less 

prominent change for these channels.

4 | DISCUSSION

Conventional oral and oropharyngeal surgery relies on visual inspection of changes of the 

epithelial surface and palpation to determine tumor margins prior to en bloc surgical 

resection. Intraoperative cancer assessments are primarily based on histopathologic analysis 

of the excised tissue specimens and/or biopsy samples. This process has inherent limitations: 

(a) it is subjective as it is based on the experience of the surgeon and pathology team, (b) the 

processing of frozen sections are not performed in real-time, thus introducing waiting time 

to the procedure, and (c) is subject to sampling error (which might not detect small 

infiltrative cancers in the initial sectioning for frozen section pathology assessments). 

Moreover, during TORS procedures, the surgeon lacks tactile cues. This current study 

demonstrates that FLIm, a label-free spectroscopic imaging technique, can be easily 

integrated with conventional TORS procedures and is inherently insensitive to illumination 

artifacts such as operating room light. Our results demonstrate that a set of FLIm-derived 

parameters can be used to distinguish between oropharyngeal cancer and healthy 

surrounding tissues both in vivo prior to surgical resection and ex vivo in excised en block 
tissue specimens. Our results establish the initial feasibility for FLIm’s potential to aid in 

real-time cancer delineation, tissue resection decision-making, and validation of the 

adequacy of resection.

First, we sought to investigate the use of FLIm to provide intrapatient contrast between 

healthy surface epithelium and cancer in two scenarios: (a) in vivo prior to resection and (b) 
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ex vivo post-resection in surgically excised specimens (Figures 3–6). The former is to 

evaluate FLIm’s potential for real-time guidance of TORS procedures (decision-making) 

while the latter is to evaluate FLIm’s potential for use as an intraoperative pathology tool. 

While the number of individual parameters able to resolve healthy tissue from tumor varies, 

for 9/9 in vivo pre-resection scans and 8/9 ex vivo scans, we show that at least one FLIm 

parameter shows statistically significant difference (P < .001) per patient between healthy 

epithelial tissue and cancer. The experimental context by which data was acquired (in vivo 
or ex vivo) and tissue heterogeneity (e.g. variable thickness of the epithelial layer, 

ulcerations within tumor mass) appears to play a role in the number of parameters needed 

for discrimination. Overall, more parameters are needed for discrimination when more 

complex histopathological features were observed for a given patient. We highlight that a 

weighted linear combination of all six FLIm parameters by LDA provides superior 

discrimination of tissue conditions in both scenarios. Intensity ratio parameters are shown to 

have superior discriminative power to average lifetimes within this study in terms of mean 

AUC and AP scores in both scenarios, but average lifetime parameters do contribute to the 

performance of the LDA. A better FLIm-based diagnostic assessment can be achieved in 
vivo vs. ex vivo as demonstrated by the AUC and AP values. However, it is to be noted that 

the scaled LDA parameter is not a probability score for a given condition and should not be 

interpreted as such.

Second, we sought to evaluate the use of FLIm as a means to detect potential residual cancer 

in the deep margins at the locations where the tumor was surgically excised (tumor bed) and 

to investigate the fluorescence properties of healthy and/or electrocauterized submucosa 

(Figures 3 and 4, bottom panel). Out of the 10-patient cohort investigated, no patients 

presented with residual cancer following their procedure; as we continue enrolling patients 

in this research study, we anticipate that some patients will present with residual cancer and 

we subsequently wish to investigate FLIm’s ability to detect residual tumor on the 

electrocauterized submucosa during cavity scans. However, we were able to make 

interesting observations. FLIm parameters from tumor bed (healthy electrocauterized 

submucosa) measured in vivo, in particular average lifetime values in CH1, were 

significantly lower when compared to the values obtained for tumor measured in vivo pre-

resection in the same patient. This trend was observed for all patients (CH1: ES of 1.45) 

indicating that CH1 (associated with the fluorescence emission of matrix proteins) might be 

able provide a means of contrast if residual tumor is present. For CH2 and CH3, an ES of 

0.15 and 0.29 was observed, indicating little effect. We also noted that the average lifetime 

values of healthy electrocauterized submucosa were also significantly lower relative to 

healthy epithelium (CH1: ES of 1.5).

Third, we study the effect of the surgical procedure and potential hemostasis on healthy 

epithelium (Figure 7). Thus, we analyzed changes in FLIm parameters in three imaging 

contexts: (a) before the surgical procedure in vivo, (b) after en bloc tissue excision ex vivo, 

and (c) after the surgical procedure in vivo at the margins (peripheral to tumor bed). Current 

results indicate that FLIm parameters for healthy and pathological tissue changes with 

imaging context; this phenomena is expected due to the inherent sensitivity of endogenous 

fluorophores to their local microenvironment [37]. The literature demonstrates that 

biological tissue is under tremendous stress when it is surgically separated from the body 
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[38], particularly due to the loss of blood supply and oxygenation changes following 

resection. Such conditions lead to a rapid shift (on the order of minutes) [39] of tissue 

metabolism towards anaerobic respiration [40], and rapid cell death [40], which will 

manifest with changes in tissue autofluorescence properties following excision. It has also 

been established that the molecular changes induced during and after tumor resection are 

heteromorphic (exhibiting unique differences among patients) [38, 39], while also 

demonstrating dependence on the anatomical tissue resected [38]. In addition to the 

aforementioned changes in surgically excised specimens, the healthy tissue surrounding the 

periphery of a surgical resection bed also changes as a result of the procedure, where surgery 

introduces a cascade of biological responses due to injury [41]. In particular, surgery creates 

a hypermetabolic response, induces catabolic metabolism changes, creates local 

vasodilation, and initiates other inflammation-mediated biochemical changes [41]. These 

findings help define the basis for FLIm’s parameters tissue context dependence, thus 

highlighting the motivation for analyzing each scan context separately. Additionally, the 

tumor bed is composed of submucosal tissue, which has different molecular and 

morphological properties compared to mucosa, and thus requires separate analysis.

This work demonstrates that intensity ratios are more likely to vary with imaging context. 

With respect to average lifetime, results show that CH1 (most sensitive to changes in matrix 

protein’s fluorescence), is most affected by the imaging context, whereas the lifetime 

parameters from CH2 and CH3 (associated with metabolic changes) are less affected. In 

particular, no major differences were observed for measurements performed in vivo pre- and 

post-resection. However, changes were observed for surgically excised specimens. These 

findings suggest a potential recovery of metabolic features of the epithelial tissue at the 

periphery of the tumor bed, but as expected, irreversible changes take place in the excised 

tissue specimens.

Although CH3 intensity ratio overall enabled the best separation of cancer vs. healthy tissue 

for this dataset, it is important to note that lifetimes were still very informative in 

distinguishing healthy tissue from cancer and in some cases, offered the best tumor vs. 

healthy contrast on a patient-by patient basis. For example, for patient 2, CH1 lifetime 

provided the strongest contrast between healthy tissue and cancer. When coupled with LDA, 

even if intensity ratio enabled the best data class separation, lifetimes bolstered the overall 

cancer vs. healthy tissue discrimination capacity for all patients.

In clinical practice, we envision that FLIm will leverage weighed combinations of all 

channels, using both intensity and lifetime data, to detect cancer. Having at least one channel 

which provides adequate tumor vs. healthy contrast is not required for cancer delineation; 

based on the results of this study, there is no single FLIm parameter that can distinguish 

healthy tissue from cancer in all contexts, therefore a multiparameter approach is required. 

For example, in Figure 5, in vivo and ex vivo for patient 7, there is no single metric from one 

channel that gives a significant difference, however after using weighted combinations of the 

FLIm metrics in an LDA, adequate tumor vs healthy contrast is achieved.

Among the data collected, differences are observed among which individual FLIm 

parameters provides the best healthy vs. cancer discrimination. These differences may be 
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explained by the intrinsic differences between patients, as well as the aforementioned 

heteromorphic molecular changes for excised specimens. Because FLIm uses low 

penetration 355 nm UV light in our study, we detect surface-level features which are 

understood to vary between patients based on a number of factors including age, different 

anatomical locations, variables such as oral cavity health (impacted by tobacco and 

nicotine), variable thicknesses of the epithelium, the degree of malignancy of the tumor, and 

other biological factors. This highlights the importance of developing a large working 

database to assess the extent of interpatient variability.

This manuscript demonstrates that a set of FLIm parameters can always achieve contrast 

between healthy and tumor tissue for a 10 patient cohort. This is an important first step 

towards training a general classifier since discrimination is only possible if the FLIm method 

itself is capable of providing adequate healthy vs. tumor contrast. Having used this work as a 

baseline to demonstrate the feasibility of FLIm for intraoperative cancer detection, training a 

general classifier is the focus of our future work. In training a general classifier, our goal will 

be to incorporate a larger data population (after performing further clinical studies) which 

accounts for the diverse range of head and neck anatomic sites, cancer types, and inherent 

tissue differences across patients. Future work will also seek to evaluate how FLIm 

parameters are specifically affected by the presence of more granular features, such as the 

presence of ulceration, necrosis, low-grade and high-grade dysplasia.

Collectively, this preliminary study demonstrates that FLIm can be utilized as a label-free 

technique leveraging intrinsic contrast to enable discrimination between healthy tissue and 

cancer. We acknowledge that exogenous contrast agents may serve as a valuable 

complimentary technique to this method, however exogenous contrast agents have various 

limitations.

To cite two particular examples, indocynine green (ICG), an FDA approved fluorescent 

probe, is most commonly used in clinical practice, including robotic surgery. The integration 

of the “Firefly” module into the da Vinci Surgical System enables intraoperative 

visualization of blood flow and related perfusion employing ICG [42]. However, as ICG is 

not a molecularly targeted imaging probe [43], it relies on the presence of leaky capillaries 

[44], and lacks specificity [43] for early neoplastic lesions. Thus, this approach is not used 

for TORS. Recently, Panitumumab-IRDye800CW, a molecular targeted near-infrared 

fluorescence imaging agent, was reported as a means of aiding the surgeon in detecting 

intraoperatively close or positive margins in head and neck cancer patients [45]. 

Nevertheless, while very promising, this technique is based on a rather qualitative 

interpretation of fluorescence emission, relies on exogenous contrast, and requires a 

controlled light environment. To date, this agent has not been employed for TORS.

A variety of implementation challenges were encountered during this study. First, errors 

observed in the aiming beam position estimation (approximately 35% of measurements) 

required very time-consuming manual correction to be performed for all patients prior to 

data analysis to ensure correct coregistration, thus an improved method for point 

measurement localization will need to be developed in order to deploy this imaging modality 

for diagnostic use in a clinical setting. Second, the ground truth associated with each patient 
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is limited in scope due to the histological coregistration process which restricts the amount 

of data points which can be used for analysis. Machine learning and transfer learning 

techniques will be investigated to overcome this data limitation, in addition to expanding the 

number of patients in our database. A third challenge arises from the three-dimensional (3D) 

nature of the scanned tissue region, particularly for in vivo scans, which makes it difficult to 

coregister the acquired measurement data using a 2D annotation and visualization pipeline. 

3D visualization and coregistration techniques will be investigated in future work via 

augmented reality techniques.

Due to limitations imparted by the physics of autofluorescence, we remark that FLIm is only 

able to detect cancer present on exposed mucosal surfaces (within 200–300 μm depth from 

surface). Suitably, cancers originating at the depths of tonsillar crypts with a submucosal 

origin may evade detection; this fundamental limitation introduces the potential to miss the 

submucosal extent of known cancers and/or permit small submucosal tumors to evade 

detection when looking for unknown primary cancers. This penetration depth limitation can 

be addressed however through incorporation of the FLIm probe into a biopsy needle and/or 

coupling FLIm to a molecular-based exogenous probe.

Both in vivo and ex vivo FLIm can be informative in intraoperative settings. The in vivo pre-

resection scan allows for FLIm to add additional information prior to initiating tumor 

resection to help account for the loss of tactile feedback and visual cues imparted by robotic 

surgery. This can enable better initial resection of tumor tissue and permit more conservative 

preliminary resection practices. The ex vivo scan however is also important as the excised 

specimen can be leveraged for a confirmatory verification that all tumor has been 

appropriately removed from the patient. Both in vivo and ex vivo scans can be implemented 

together as they are label free, can complement the surgical verification process, and are 

relatively quick to implement in situ. FLIm has potential in many other areas of clinical 

practice beyond otolaryngology applications, including neurosurgery [21] and breast cancer 

surgery [46] as previously reported.

5 | CONCLUSION

The results of this study suggest that fluorescence lifetime imaging (FLIm) has the potential 

to be developed into a diagnostic tool for clinical cancer applications of the oropharynx. 

Once such a system is implemented and extensively validated, this technique can help to 

circumvent the issues posed by the lack of tactile feedback associated with robotic surgical 

platforms and assist in cancer delineation. The real-time dynamics of FLIm signal 

acquisition and processing has potential to address the time-consuming nature of 

conventional intraoperative diagnostic standards (e.g. frozen section biopsies) while also 

remaining entirely non-invasive. However, we acknowledge that this technology is still early 

in development and requires further investigation. In order for FLIm to be used as a 

universal transoral diagnostic standard, the biological complexity of cancer and the 

fundamental biochemical variability across patients needs to be considered in order to 

develop a generalized combination of signal parameters which can be utilized for diagnostic 

decision-making. Machine learning methods will be investigated as means to produce such a 

generalized model and define the fluorescence decay signatures of specific conditions. We 
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anticipate that continued rigorous research in this area will enable the generation of larger 

and more robust data sets to better elucidate the extent of interpatient variability, and identify 

common autofluorescent properties which can be leveraged for pathology contrast.
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FIGURE 1. 
Overview of the fluorescence lifetime imaging (FLIm) instrumentation and workflow in the 

operating room. (A) Schematic of the custom-built FLIm system, featuring the excitation 

beam to generate autofluorescence, the aiming beam to spatially coregister data, and the four 

spectral channels to resolve fluorescence lifetime and spectral intensity. Also illustrated is an 

example of the measured fluorescence waveforms output from the four time-delayed spectral 

channels; the method for the detailed calculation of fluorescence lifetime and spectral 

intensities for each spectral channel is described by Liu et al. [27]. (B) Integration of the 

FLIm system with the da Vinci robotic system in the OR workflow: (1) represents the in 
vivo workflow for both pre-resection and post-resection (cavity) analysis where the da Vinci 

surgical system (including the integrated camera) was leveraged to collect measurements, 

and (2) represents the ex vivo workflow used for resected specimen pathology assessments 

where an Omniguide Laser Handpiece was used to perform a hand-held scan visualized by a 
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mounted camera. The surgeon console and da Vinci system images are adapted with 

permission from Intuitive Surgical Inc
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FIGURE 2. 
Method for fluorescence lifetime imaging (FLIm) data acquisition and coregistration with 

tissue histopathology. (A) First, the in vivo pre-resection region of interest was identified by 

the surgeon (DGF, AFB, and MGM) as demonstrated in the white light image (WLI). A 

FLIm scan was performed at the anticipated cancer location to generate a FLIm-augmented 

WLI. Peripheral healthy tissue surrounding the cancer region was also included in the scan, 

where peripheral tissue was defined as a 10 pixel distance from the surgical margins (images 

are 1280 × 720 pixels for all scan types). Ten pixels correspond to approximately 0.75 mm. 

Second, following the cancer resection (facilitated by the da Vinci robot surgical platform) 

an in vivo post-resection scan was performed at the resection cavity. Surrounding peripheral 

tissue which was unaltered by the procedure was also included in the scan. Third, an ex vivo 
post-resection scan was performed on the surgically excised specimen. (B) In order to 

coregister FLIm data to histology, the surgically excised ex vivo specimen was first sliced in 

a grossing room under the surgeon’s direction and careful notes were acquired regarding the 

sectioning process. The sections (such as “Slice X” denoted in the figure tile) were then 

stained with hematoxylin and eosin and P16 antibodies, the pathologist (RGE) annotated the 

corresponding histology, and the results were extrapolated onto the respective slice ex vivo. 

The spatially oriented ex vivo specimen, along with clinical notes from the surgeon and 
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pathologist, were used to perform subsequent coregistration in vivo at the pre-resection 

location using pathology annotations from the tissue surface. Post-resection (cavity) 

coregistration was performed using pathology annotations from the deep tissue margin (as 

indicated on the “Slice X” histology). All scale bars represent 0.5 cm
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FIGURE 3. 
Case study A (Patient 8): Upper panel: pre-resection in vivo scans. (A) Heat map 

visualizations of six fluorescence lifetime imaging (FLIm) parameters (three intensity ratios 

and three average lifetime values with corresponding area-under-the-curve [AUC] and 

average precision [AP] values). (B) Violin plots for the six FLIm parameters (statistical 

significance marked (*) for (P < .001). (C) Heat map visualization of the linear discriminant 

analysis (LDA) variable (corresponding AUC and AP values) with the coregistered 

pathology results (endothelial surface) mapped on the da Vinci camera while light video 

image. Thin (≤125 μm) and thick epithelium (>125 μm) regions (quantified by histology) 

were analyzed concurrently for the LDA analysis. Middle panel: post-resection ex vivo 
scans. (A) Heat map visualizations of six FLIm parameters (three intensity ratios and three 

average lifetime values with corresponding AUC and AP values). (B) Violin plots for the six 

FLIm parameters (statistical significance marked [*] for P < .001). (C) Heat map 
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visualization of the LDA variable (corresponding AUC and AP values) with the coregistered 

pathology results mapped on the ex vivo mounted camera white light video image. For LDA 

analysis, thin and thick epithelium regions were analyzed concurrently. Bottom Panel: post-

resection in vivo tumor bed scans. (A) Heat map visualization for six FLIm parameters. (B) 

Violin plots for six FLIm parameters depicting the broad distribution of cauterized healthy 

submucosa. Note: No residual tumor (positive margins) were found corresponding to the 

tissue deep margin surface. (C) White light image of the tumor resection bed
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FIGURE 4. 
Case study B (Patient 5): Upper panel: pre-resection in vivo scans. (A) Heat map 

visualizations of six fluorescence lifetime imaging (FLIm) parameters (three intensity ratios 

and three average lifetime values with corresponding area-under-the-curve [AUC] and 

average precision [AP] values). (B) Violin plots for the six FLIm parameters (statistical 

significance marked [*] for P < .001). (C) Heat map visualization of the linear discriminant 

analysis (LDA) variable (corresponding AUC and AP values) with the coregistered 

pathology results (endothelial surface) mapped on the da Vinci camera white light video 

image. Thin (≤125 μm) and thick epithelium (>125 μm) regions (quantified by histology) 

were analyzed together for the LDA analysis. Middle panels: post-resection ex vivo 
specimen scans. (A) Heat map visualizations of six FLIm parameters (three intensity ratios 

and three average lifetime values with corresponding AUC and AP values). (B) Violin plots 

for the six FLIm parameters (statistical significance marked [*] for P < .001). (C) Heat map 
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visualization of the LDA variable (corresponding AUC and AP values) with the coregistered 

pathology results mapped on the ex vivo mounted camera white light video image. For LDA 

analysis, thin and thick epithelium regions were analyzed together under epithelium, and 

SCC with and without ulcerations were analyzed together under the cancer group. Bottom 

panels: post-resection in vivo tumor bed scans. (A) Heat map visualizations for six FLIm 

parameters. (B) Violin plots for six FLIm parameters depicting the broad distribution of 

cauterized healthy submucosa. Note: No residual tumor (positive margins) were found 

corresponding tissue specimen (deep margins surface). (C) White light image of the tumor 

bed region. SCC, squamous cell carcinoma
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FIGURE 5. 
A comparison of patient-level ROC-area-under-the-curve [AUC] performance for (A) in 
vivo pre-resection scans and (B) ex vivo post-resection scans. μ corresponds to the mean 

performance for each parameter including the linear discriminant analysis (LDA) variable. 

For each scan type, use of the LDA variable resulted in superior AUC to the best performing 

signal parameter, with a 0.07 ± 0.03 mean increase observed for the in vivo pre-resection 

scans and a 0.06 ± 0.03 mean increase observed for the ex vivo scans. A single parameter 

AUC score greater than 0.70 was observed for 6/9 in vivo pre-resection scan, and 4/9 ex vivo 
scans
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FIGURE 6. 
A comparison of patient-level average precision performance for (A) in vivo pre-resection 

scans and (B) ex vivo post resection scans. μ corresponds to the mean performance for each 

parameter including the linear discriminant analysis (LDA) variable. For each scan type, the 

use of the LDA variable resulted in superior AP to the best performing signal parameter, 

with a 0.08 ± 0.06 mean increase observed for the in vivo pre-resection scans and a 0.06 ± 

0.03 mean increase observed for the ex vivo scans. A single parameter AP score greater than 

0.70 was observed in 6/9 in vivo pre-resection scans and 3/9 ex vivo scans

Weyers et al. Page 26

Transl Biophotonics. Author manuscript; available in PMC 2020 July 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 7. 
Comparison of fluorescence lifetime imaging parameter values for all measurements of non-

cauterized healthy epithelial tissue (tonsil regions, n = 9 patients) taken in vivo pre-resection 

(n = 5606 measurements), ex vivo post-resection (n = 7252 measurements), and in vivo post-

resection (peripheral to tumor bed) (n = 4060 measurements). Intensity ratios and average 

lifetimes for (A) CH1 fluorescence emission, (B) CH2 fluorescence emission, and (C) CH3 

fluorescence emission. Cohen’s d [36] effect size (ES) is computed between imaging 

contexts. *ES > 0.5; **ES > 0.8
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