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Abstract
Primary age-related tauopathy (PART) is a neurodegenerative en-

tity defined as Alzheimer-type neurofibrillary degeneration primar-

ily affecting the medial temporal lobe with minimal to absent

amyloid-b (Ab) plaque deposition. The extent to which PART can

be differentiated pathoanatomically from Alzheimer disease (AD) is

unclear. Here, we examined the regional distribution of tau pathol-

ogy in a large cohort of postmortem brains (n¼ 914). We found an

early vulnerability of the CA2 subregion of the hippocampus to neu-

rofibrillary degeneration in PART, and semiquantitative assessment

of neurofibrillary degeneration in CA2 was significantly greater

than in CA1 in PART. In contrast, subjects harboring intermediate-

to-high AD neuropathologic change (ADNC) displayed relative

sparing of CA2 until later stages of their disease course. In addition,

the CA2/CA1 ratio of neurofibrillary degeneration in PART was sig-

nificantly higher than in subjects with intermediate-to-high ADNC

burden. Furthermore, the distribution of tau pathology in PART

diverges from the Braak NFT staging system and Braak stage does

not correlate with cognitive function in PART as it does in individu-

als with intermediate-to-high ADNC. These findings highlight the

need for a better understanding of the contribution of PART to cog-

nitive impairment and how neurofibrillary degeneration interacts

with Ab pathology in AD and PART.

Key Words: Alzheimer disease, CA2, Cognitive status, Cornu

ammonis, Hippocampal subfields, Neurodegenerative disease, Pri-

mary age-related tauopathy.

INTRODUCTION
Primary age-related tauopathy (PART), previously

termed tangle-only dementia, tangle-predominant senile de-
mentia, or regarded as age-related neurofibrillary degeneration
(1–3), is defined as the presence of Alzheimer-type neurofi-
brillary pathology in the medial temporal lobe and other struc-
tures in the absence of significant amyloid-b (Ab) plaque
deposition. In contrast and by definition, a diagnosis of Alz-
heimer disease (AD) neuropathologic change (ADNC)
requires the presence of neurofibrillary degeneration alongside
neuritic and diffuse amyloid-b (Ab) plaques (4, 5). The Braak
staging system for neurofibrillary degeneration begins with

pretangles and neurofibrillary tangles (NFTs) in the locus coe-
ruleus (termed a–c), followed by the transentorhinal and ento-
rhinal cortex at Braak stages I–II and the hippocampal CA1
subregion at Braak stage III–IV, with neocortical neurofibril-
lary degeneration in Braak stages V–VI (6–9). As compared
with AD (10), neurofibrillary degeneration in PART generally
has a more limited distribution, with Braak stages typically
ranging from I to IV. The diffuse and neuritic plaque burden
ranges from Thal phase 0 to 2 and CERAD neuritic plaque
score of none to sparse, but exact cutoffs are challenging to de-
lineate (11). Many individuals above the age of 20 display
some degree of tau pathology in the brainstem, principally the
locus coeruleus, and almost all individuals above the age of 50
display, at minimum, neurofibrillary degeneration in the ento-
rhinal and transentorhinal regions. However, it has also been
demonstrated that over 80% of individuals in the 50–60-year
age range, and at least 20% of people over the age of 80, have
no amyloid plaque deposition (12). Thus, the term PART was
created to describe these subjects who display NFTs without
Ab plaques. Whether older individuals with PART will de-
velop amyloid pathology is difficult to ascertain, but Ab pla-
que levels plateau in very old age (13). That is to say, despite
current debate (14–16), a compelling argument can be made
supporting the hypothesis that PART is a distinct neuropatho-
logic entity, and not merely a stage along a pathologic contin-
uum eventually leading to ADNC (4). Distinguishing
neuropathological features would be helpful for further ad-
vancing our understanding of this issue.

Numerous studies have addressed the regional vulnera-
bility of the hippocampal cornu ammonis (CA) subregions in
various neurodegenerative diseases, ischemia, and epilepsy.
Neurofibrillary degeneration in AD occurs earliest and is most
severe in the entorhinal cortex and CA1/subiculum (9, 17–19);
the CA2 subregion of the hippocampus is thought to be spared
until Braak stage V in AD (6, 12). Pick disease affects the en-
torhinal cortex, dentate gyrus, and CA1 most severely (20),
while hippocampal neurofibrillary degeneration in chronic
traumatic encephalopathy (CTE) is often most severe in the
CA2 and CA4 subregions (21). In addition, 4R-tauopathies,
such as progressive supranuclear palsy (PSP), corticobasal de-
generation (CBD), and argyrophilic grain disease (AGD),
have a predilection for CA2 (19, 22). Other neurologic disor-
ders affecting the hippocampus similarly have stereotypically
affected regions: a-synuclein pathology in Lewy body disease
(LBD) tends to occur earliest in the CA2 and CA3 subregions
(23, 24), while neuron loss and gliosis associated with ische-
mia, epilepsy, and TDP-43 pathologies tend to affect select
regions of the CA1 subfield (25–29).

As the next step toward understanding the neuropatho-
logic signature of PART, we studied the hippocampal forma-
tion from 914 individuals derived from 21 different
neurodegenerative disease brain banks and assessed the distri-
bution of p-tau and Ab pathology. Here, we characterize the
neuropathologic and clinicopathologic differences that we ob-
served in PART as compared with ADNC focusing on the hip-
pocampus proper. Delineating these differences will further
our understanding of the mechanisms by which individuals
with PART differ from those with amyloid plaque deposition,
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and how the presence of plaques may promote a more wide-
spread distribution of neurofibrillary degeneration.

MATERIALS AND METHODS

Ethics Approval and Consent to Participate
This study was conducted in accordance with the decla-

ration of Helsinki and was performed with IRB approval at all
applicable institutions.

Patient Samples
Autopsy case material was derived from 21 institutions:

Banner Sun Health Research Institute, Boston University
School of Medicine, Columbia University Irving Medical
Center, Emory Healthcare, Johns Hopkins Medical Center,
Massachusetts General Hospital, Mayo Clinic, Medical Uni-
versity of Vienna, Mount Sinai Medical Center, Newcastle
Medical Centre, Northwestern Medical Center, Oregon Health
& Sciences University, Rush University Medical Center, Uni-
versity of California, Irvine Medical Center, University of
California, San Diego Medical Center, University of Kentucky
HealthCare, University of Pennsylvania Health System, Uni-
versity of Pittsburgh Medical Center, University of Texas
Southwestern Medical Center, University of Washington
Medical Center, and Washington University in St. Louis. The
clinical inclusion and exclusion criteria include age �50 years
and absence of motor neuron disease (MND), movement dis-
orders, or frontotemporal dementia (FTD). Neuropathologic
inclusion criteria include Braak stage 0–VI, absent or sparse
neuritic plaques by CERAD criteria, and absence of other
tauopathies (Supplementary Data Table S1).

A total of 914 cases were included for preparation of
histologic and immunohistochemical stains with the subse-
quent generation of whole slide images using an Aperio scan-
ner at The University of Texas Southwestern Medical Center,
Dallas, Texas. Unstained slides from the hippocampus (level
7) (30) and middle frontal gyrus (4-mm-thick sections from
formalin-fixed, paraffin-embedded blocks) were requested.
Unstained sections designated as hippocampus were received
for 1013 cases. Corresponding unstained frontal sections were
received for 476 cases. A total of 99 cases were considered in-
adequate for diagnosis (due to torn tissue, wrong section or
wrong level of the hippocampus). These cases were excluded
from all analyses. Clinical cognitive data, such as Clinical De-

mentia Rating (CDR) and Mini-Mental State Examination
(MMSE) scores, were available for 279 and 250 cases, respec-
tively. The age, Braak stage (6), CERAD neuritic plaque score
(31), Thal phase (32), neuropathologic diagnosis and cognitive
status (if available) for the study subjects are outlined in the
Table.

Neuropathological Analyses
Comprehensive histopathological workups were per-

formed as per the protocols of the respective brain banks. Ad-
ditional staged assessments were performed at UT
Southwestern Medical Center, including Luxol fast blue/he-
matoxylin & eosin (LFB/H&E), Hirano modified Bielschow-
sky silver stain, and phospho-tau (p-tau)
immunohistochemistry (IHC) (AT8; MN1020, Thermo Fisher
Scientific, Waltham, MA). One hippocampal and one frontal
section from each case were stained with LFB/H&E. In addi-
tion, hippocampal sections from each case were immunos-
tained for p-tau. Frontal sections were stained with Hirano
silver stain and b-amyloid IHC (6E10; SIG-39320, Covance,
Inc., Princeton, NJ) on a Leica Bond III automated stainer,
according to the manufacturer’s protocols (Leica Microsys-
tems, Buffalo Grove, IL). If a case was immunopositive for b-
amyloid in the frontal neocortex, then b-amyloid IHC was
subsequently performed on the hippocampal section to deter-
mine the Thal phase and p-tau IHC was performed on the fron-
tal section to assess possible neuritic plaque burden. In
addition, hippocampal sections from a subset of cases with
prominent CA2 neurofibrillary degeneration were immunos-
tained for 3R-tau (RD3; 05-803, EMD Millipore Corporation,
Temecula, CA) and 4R-tau (ET3, gift of Dr. Peter Davies).
Stained sections were scanned on an Aperio CS2 ScanScope
whole slide scanner (Leica Microsystems).

Histopathological Assessments and
Semiquantitative Analysis

All cases were analyzed using Aperio ImageScope (ver-
sion 12.3) software (Leica Microsystems). Scoring was per-
formed by 2 board-certified neuropathologists familiar with
neurodegenerative disorders (J.M.W. and T.E.R.). An esti-
mated Thal phase was assigned using frontal and/or hippo-
campal b-amyloid immunostained sections: Thal
0¼ complete absence of b-amyloid-immunoreactive plaques;
Thal 1¼ any parenchymal b-amyloid plaques in the frontal

TABLE. Overview of Demographic, Clinical, and Pathologic Features

Braak Stage n CERAD NP Score Thal Phase Diagnosis Age Range,

Years (Average)

Cognitive Status*

None Sparseþ 0 1–2 3þ Definite

PART

Possible

PART

ADNC Other Normal MCI Dementia

0–I 152 151 1 99 46 7 83 36 6 27 51–98 (75.6) 66 18 7

II 102 99 3 62 35 5 62 35 4 1 55–102 (78.8) 19 9 6

III 295 287 8 167 108 20 167 108 16 4 57–108 (86.4) 106 35 44

IV 348 299 49 172 148 28 172 148 27 1 53–107 (89.9) 87 19 30

V1 17 9 8 3 2 12 2 2 12 1 84–95 (88.9) 3 1 10

*Clinical data not available for all cases.
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neocortex only; Thal 2¼ any parenchymal b-amyloid plaques
in the frontal neocortex as well as the transentorhinal/entorhi-
nal cortex or CA1 subregion of the hippocampus; Thal 3¼ any
parenchymal b-amyloid plaques in the frontal neocortex,
transentorhinal/entorhinal or CA1 subregion, and the molecu-
lar layer of the dentate gyrus; and Thal 4¼ any parenchymal
b-amyloid plaques in the frontal neocortex, transentorhinal/
entorhinal or CA1 subregion, and CA4 subregion of the hippo-
campus, as previously reported (32). CERAD neuritic plaque
scores were estimated based on the density of neuritic plaques
on the Hirano silver stain in the frontal neocortex, as previ-
ously reported (31). Cases with a Thal phase of 0 and CERAD
neuritic plaque score of none were defined as definite PART,
while cases with a Thal phase of 1–2 (or CERAD neuritic pla-
que score of sparse) were defined as possible PART as per
published consensus criteria (11). Furthermore, cases that
qualified as intermediate or high ADNC based on the NIA-AA
Reagan criteria (5) were defined as such. From the 914 cases
in the cohort, 486 cases were designated as definite PART,
329 cases were designated as possible PART, 28 cases dis-
played minimal neuropathologic changes, 6 were neither
PART nor ADNC (for example, PSP and GGT), and 65 were
designated as ADNC or were on the AD continuum (for exam-
ple, cases with Braak stage I or II, but Thal phase of �3 were
placed in the ADNC category). Supplementary Data Figure S1
demonstrates an overview of the diagnostic categories and dis-
tribution of the 1013 cases that were received for analysis.

Hyperphosphorylated tau (p-tau, AT8) IHC stains of the
hippocampal and frontal sections were evaluated for each case
to reassess p-tau burden and Braak stage (Supplementary Data
Fig. S2) (6). A minority of cases with NFTs in the frontal neo-
cortical sections were given a Braak score of at least V, as the
primary visual and auditory cortex were unavailable for rere-
view. Neurofibrillary degeneration in all hippocampal subre-
gions (CA1–CA4) (Supplementary Data Fig. S3) (26, 33), the
entorhinal cortex, and dentate gyrus were given semiquantita-

tive scores of severe ¼ 3, moderate ¼ 2, mild ¼ 1, rare to
sparse¼ 0.5, or none¼ 0 (Supplementary Data Fig. S4).

Statistical Analysis
A Student t-test (unpaired) was utilized to assess statisti-

cal significance in the difference of p-tau burden in the CA1
and CA2 subregions of the hippocampus. Differences in the p-
tau burden present in all hippocampal subregions were calcu-
lated using analysis of variance (ANOVA). ANOVA and Stu-
dent t-tests were utilized for statistical analyses of the
relationship between Thal phase, neuritic plaque score and
CA2/CA1 ratio. Clinical correlations with Braak stage were
calculated using linear regression. All statistical analyses were
calculated using GraphPad Prism version 8.4 (GraphPad, La
Jolla, CA).

RESULTS

Hippocampal Subregion Distribution of
Neurofibrillary Degeneration in PART

Semiquantitative analysis of the AT8-immunostained
hippocampi revealed that neurofibrillary degeneration in
PART was significantly greater in the CA2 subregion of the
hippocampus than in CA1 (p¼ 0.0001, Fig. 1A), unlike
ADNC in which no significant difference between CA1 and
CA2 neurofibrillary degeneration was observed (p¼ 0.3854,
Fig. 1B). We also found that the CA2/CA1 ratios of neurofi-
brillary degeneration in the PART cases were significantly
higher than in the ADNC cases (p¼ 0.0118, Figs. 1C, 2, and
3). This subregion distribution trend was previously presented
as preliminary data (34) prior to analyzing the full cohort. Sub-
sequently, other studies reported similar neuropathologic
changes in smaller independent PART cohorts (35, 36).

FIGURE 1. Differential hyperphosphorylated tau (p-tau) burden in primary age-related tauopathy (PART) versus Alzheimer
disease neuropathologic change (ADNC). (A) Semiquantitative scores for neurofibrillary degeneration in CA1 and CA2 in PART
by p-tau (AT8) immunostaining, demonstrating a significantly higher level of neurofibrillary degeneration in CA2 compared with
CA1 (p¼0.0016). (B) Semiquantitative scores in subjects with ADNC, demonstrating no significant difference between CA1 and
CA2 subregions (p¼0.3854), unlike PART. (C) Ratio of CA2 to CA1 neurofibrillary degeneration by semiquantitative AT8 analysis
in PART (n¼720) and ADNC (n¼57), demonstrating a significantly higher CA2/CA1 ratio in PART compared with ADNC
(p¼0.0118).
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Analysis of CA2 Neurofibrillary Degeneration in
PART

Many 4R-tauopathies, such as CBD, PSP, and AGD, simi-
larly display a selective vulnerability of the CA2 subregion of the
hippocampus for neurofibrillary degeneration (22). It is known
that PART harbors 3R/4Rþ Alzheimer-type NFTs (11). How-
ever, the predilection for CA2 raised the question of whether the
tangles present in CA2 in PART are the usual 3R/4Rþ
Alzheimer-type NFTs or solely 4R-tau-immunopositive tangles.
With 3R-tau and 4R-tau immunostains, we confirmed that PART
CA2 NFTs are both 3Rþ and 4Rþ (Fig. 4). Thus, they represent
3R/4RþAlzheimer-type NFTs in a non-Alzheimer-type distribu-
tion. This also demonstrated that the PART CA2 tangles are dis-
tinct from the 4Rþ pretangles that are observed in AGD.

Analysis of Entorhinal Cortex and All Subregions
of the Hippocampus in PART and ADNC

Semiquantitative scoring of neurofibrillary degeneration
was performed on the entorhinal cortex, subiculum/CA1,

CA2, CA3, CA4, and dentate gyrus. There were significant
differences identified between all analyzed subregions in defi-
nite and possible PART groups (Fig. 5A, B), however, the
only difference found in the ADNC cases was between the en-
torhinal/CA1/CA2 and CA3/CA4/dentate regions (Fig. 5C).
Significant differences were found in every subregion between
our ADNC cases and the possible and definite PART groups,
with the exception of CA2, in which no significant difference
was observed when comparing any group (Fig. 5D). That is to
say, all subregions of ADNC cases have higher scores than
PART, except the CA2 subregion. The mean CA2 score in
ADNC cases is not significantly different from the mean CA2
score in PART, although the trend appears to be higher in
ADNC cases. This is most likely because the overall average
Braak stage for the ADNC cases is higher than that of the
PART cases (Supplementary Data Fig. S2). CA2 neurofibril-
lary degeneration is present in PART as an early finding, with-
out corresponding elevation of NFT pathology in the
entorhinal or CA1 subregions, as is observed in ADNC. In
fact, 73 PART cases displayed absent or sparse neurofibrillary

FIGURE 2. Examples of hyperphosphorylated tau (p-tau, AT8) immunostaining in hippocampi in primary age-related tauopathy
(PART) and Alzheimer disease neuropathologic change (ADNC). There is an early predilection for CA2 pathology in PART with
relative sparing of the entorhinal and CA1 regions, and sparing of CA2 in ADNC with more dense neurofibrillary degeneration in
CA1 and the entorhinal regions. All scale bars ¼ 4 mm.

Walker et al J Neuropathol Exp Neurol • Volume 80, Number 2, February 2021

106



degeneration in the entorhinal cortex with a corresponding
CA2 score of �1, whereas only 1 ADNC case displayed this
pattern.

Relationship of Thal Phase and CA2/CA1 Ratio
For this analysis, cases were separated into subgroups

based on Thal phase. Significant differences were identified in
the CA2/CA1 ratio in all subgroups with decreasing CA2/CA1
ratio as Thal phase increases (Fig. 6A). In the Thal phase 3
subgroup (n¼ 30), there were 5 cases without neuritic plaques
in the hippocampus or frontal neocortex. Four out of 5 cases
were clinically categorized as “normal.” The other case was a
101-year-old individual given a clinical diagnosis of AD. On
our examination, this individual had Braak stage IV with se-
vere aging-related tau astrogliopathy (ARTAG). The average
CA2/CA1 ratio in the Thal phase 3 cases without neuritic pla-

ques was 2.13, whereas the average CA2/CA1 ratio in the
Thal phase 3 cases with neuritic plaques was 0.95 (p¼ 0.001,
Fig. 6B). Cognitive status did not correlate in these subgroups.
However, one would expect that cases without neuritic pla-
ques and with higher CA2/CA1 ratio would have significantly
better cognition. Thus, Thal phase 3 cases lie on a border
where they could represent AD-related or PART pathology
with significant CA2 neurofibrillary degeneration and a higher
CA2/CA1 ratio. In addition, the Thal phase 3 cases with the
high CA2/CA1 ratio were less cognitively impaired based on
clinical diagnoses.

Clinicopathologic Correlations of NFD in PART
and ADNC

While Braak stage had a significant positive correlation
with cognitive function in cases with ADNC in terms of CDR

FIGURE 3. Examples of representative hippocampal sections from subjects with primary age-related tauopathy (PART) and
Alzheimer disease neuropathologic change (ADNC) demonstrating AT8 and b-amyloid immunostaining patterns. Higher power
images of the CA2 and CA1/subiculum subregions demonstrate significantly more neurofibrillary degeneration in the CA2
subregions of PART compared with ADNC, and significantly more neurofibrillary degeneration in the CA1/subiculum subregions
of ADNC compared with PART. Scale bars in top 8 panels ¼ 4 mm; scale bars in bottom 8 panels ¼ 300 mm.
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(r¼ 0.66; p¼ 0.0057), Braak stage did not correlate with
CDR in PART (r¼ 0.10; p¼ 0.1249) (Fig. 7A). In addition,
there was a significant inverse correlation between Braak
stage and MMSE scores in ADNC cases (r ¼ –0.53;
p¼ 0.0224), whereas there was no correlation between Braak
stage and MMSE in PART (r¼ –0.01; p¼ 0.8441) (Fig. 7B).

DISCUSSION
In this report, we demonstrate significant differences in

the hippocampal distribution of neurofibrillary degeneration
in PART compared with AD. The distribution of NFTs in
PART does not follow the typical Braak staging system. In-

stead, NFTs demonstrate a predilection to affect the CA2 sub-
region of the hippocampus before the entorhinal cortex and
the CA1 subregion in PART (Figs. 2 and 3) and demonstrates
a significantly higher CA2/CA1 ratio of neurofibrillary degen-
eration compared with ADNC (Fig. 1C). This selective vulner-
ability of CA2 is similar to 4R-tauopathies, however the NFTs
in PART are 3R/4Rþ Alzheimer-type NFTs (Fig. 4). It is pos-
sible that the lack of abundant plaques may drive this altered
distribution of neurofibrillary degeneration (4). Consistent
with this hypothesis, there was a trend in this cohort for the
CA2/CA1 ratio to increase with lower Thal phase (Fig. 6). It
would be interesting to expand this analysis with more
ADNC cases, to more fully understand the spectrum of

FIGURE 4. Tau isoform expression in the CA2 subregion in PART. (A–C) Low power of hippocampi from 3 AT8-immunostained
PART, as well as high-power images of the CA2 subregions with AT8 (D–F), 3R-tau (G–I), and 4R-tau immunostaining (H–J).
PART brains display both 3R and 4R-tau isoforms, unlike 4R-tauopathies that may demonstrate CA2 selective AT8-
immunopositive lesions, such as PSP, CBD, and AGD. Scale bars in top 3 panels ¼ 4 mm; scale bars in bottom 9 panels ¼
500 mm.
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amyloid-associated tau changes. We also think that individu-
als with intermediate amyloid pathology (i.e. Thal phase 3)
could represent an intermediate state that may display ADNC
or PART-like distribution (with a predilection for CA2), and

individuals with PART-like pathology may have a signifi-
cantly milder disease.

CA2 NFTs are also observed in CTE, another mixed
3R/4R tauopathy (21). In CTE, this change is often found in
combination with CA4 neurofibrillary degeneration, and these
cases often have a low amyloid burden. These cases with
CA2/CA4 neurofibrillary degeneration may represent CTE
superimposed on PART; however, CTE could be an entirely
separate entity that displays a predilection for CA2 and CA4
on its own given the young age of many reported participants
with CTE and hippocampal tau pathology (29). It is also
known that LBD involves selective vulnerability of the CA2-3
subregions of the hippocampus for a-synuclein-immunoreac-
tive Lewy bodies and Lewy neurites (23, 24). However, the
amount of CA1 pathology in cases of LBD correlates better
with cognitive function than the amount of CA2 pathology
(37, 38).

Previous studies comparing PART and AD have demon-
strated less overall cognitive impairment and less steep rates
of decline in PART patients, as well as a later onset of disease
symptoms (39). In the current study, we found that unlike AD,
there is no significant correlation between Braak stage and
cognitive function in PART (Fig. 7). The reasons for this are
unclear; however, this is consistent with PART being a more
benign aging phenomenon. It is also possible that there are
more resilient individuals within the PART cohort. An

FIGURE 5. Selective vulnerability of hippocampal subregions in primary age-related tauopathy (PART) compared with Alzheimer
disease neuropathologic change (ADNC). Semiquantitative scores for tau in each hippocampal subregion (entorhinal cortex,
CA1–4, dentate gyrus) in (A) definite PART (n¼486), demonstrating significant differences between all measured regions, (B)
possible PART (n¼329), demonstrating varying significant differences between entorhinal, CA1, CA2, CA3, CA4, and dentate
regions, and (C) ADNC (n¼65), demonstrating significant differences between the entorhinal/CA1/CA2 and CA3/CA4/dentate
regions. In addition, there are significant differences in semiquantitative scores between ADNC and both definite and possible
PART in the entorhinal, CA1, CA3, CA4, and dentate regions without significant differences in the CA2 subregion between any
subgroup (D).

FIGURE 6. Thal phase is inversely correlated with CA2/CA1 p-
tau burden ratio. (A) There is a significant progression toward
higher CA2/CA1 ratio with lower Thal phase (p¼0.034). (B)
There is a significantly higher CA2/CA1 ratio in Thal phase 3
cases with no neuritic plaques in the hippocampus or
neocortex as compared with Thal phase 3 cases with CERAD
�1 (p¼0.0011).
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alternative hypothesis is that the cognitive tests currently used
do not adequately assess the functionality of the regions most
severely involved in PART, such as CA2. Studies have dem-
onstrated that CA2 may be involved in social memory (40,
41). This has mostly been shown in animal models with recog-
nition of conspecifics. Functional MRI (fMRI) activation of
CA2, CA3, and dentate gyrus has been described in learning
(encoding) names of new faces (42, 43). In addition, one study
demonstrated that anterior CA2 is used for learning the names
and posterior is used for recall (retrieval) (43). Through disor-
ders, such as prosopagnosia, we know that the fusiform gyrus
is involved in face recognition, but there could be a network
including CA2 and fusiform gyrus.

Limitations of the current study include the paucity of
cognitive data, and the imbalance of sample sizes between the
PART and ADNC groups, however the clinical and histologic
data derived from the smaller number of ADNC cases is con-
sistent with previously published reports on AD. In addition,
since the study was designed to include a large number of total
cases, only frontal and hippocampal sections were reevaluated
for each case, precluding complete reassessment of Braak
staging as this would require tau-stained sections of additional
brain regions.

In conclusion, PART displays a predilection for CA2
neurofibrillary degeneration, which may be an aging process
that is distinct from AD and independent of amyloid pathol-
ogy, whereas significant CA1 neurofibrillary degeneration in
the presence of amyloid plaques may be the initial dementia
causing pathologic change in AD. Of course, more often than
not, there are comorbidities, such as cerebrovascular disease,
limbic predominant age-related TDP-43 encephalopathy
(LATE), and LBD that may affect cognitive function. How-
ever, when only taking neurofibrillary degeneration into ac-
count, it appears that the path toward CA2 may be more
benign. In future studies, it would be of interest to investigate
the presence of comorbidities in PART, such as AGD,

ARTAG, CTE, LATE, LBD, and cerebrovascular disease, and
how the presence of these affect cognition. In addition, it is
imperative that we develop a better understanding of the role
of CA2 and the effect of pathology in the CA2 subregion as
they relate to cognition and prognosis.
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