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Investigating the Role of the Lung and Gut Microbiota in HIV-associated 

Bacterial Pneumonia 

 

Meera K. Shenoy 

 

ABSTRACT 

In the era of highly active antiretroviral therapy (HAART), human 

immunodeficiency virus (HIV) infected patients are living longer, healthier lives, yet 

pulmonary infections still pose a common and frequently fatal co-morbidity in this 

population. Despite the frequency and severity of this disease, particularly within HIV 

and TB co-endemic regions of Africa, little is known about factors that determine patient 

endotypes, disease severity, and outcomes. Advanced HIV infection is known to 

compromise mucosal barrier defense, lead to macrophage dysfunction, and shift lung 

and gut microbiota composition. Hence we hypothesized that distinct pathogenic 

microbiota exist on these mucosal surfaces and relate to patient immune and disease 

endotypes in HIV infected patients with bacterial pneumonia. We initially profiled 16S 

rRNA in bronchoalveolar lavage (BAL) from a large cohort (n=182) of Ugandan HIV-

pneumonia patients and identified three lower airway community states that repeated 

across the population and differentially related to microbiological, immunological, and 

clinical factors. Patients with the lowest mortality rate possessed Gammaproteobacteria-

dominated communities, while patients with the highest mortality rate were colonized by 

Prevotellaceae-dominated communities, expressed more T-helper 2 (Th2) and Th17 

cytokines within their lower airways, and were more frequently administered the 
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antibiotic ceftriaxone. Building on these observations, we examined bacterial and fungal 

microbiota composition in paired BAL and stool samples from an independent cohort 

(n=120) and validated these airway microbiota states. Additionally, we demonstrated 

that gut microbiota composition is related to circulating CD4 count, airway microbiota 

composition, and patient outcomes. Gut microbiota from patients with the lowest CD4 

counts were enriched for microbes shared with patient airways (based on identical 16S 

rRNA sequences) and were depleted of traditional gut-associated microbes. Compared 

to patients with high CD4 counts, sterile microbial products from patients with low CD4 

counts induced fewer activated and CD206+IL-10+ tissue repair macrophages and more 

IL-1b+ pro-inflammatory macrophages in vitro. Overall, we demonstrate that there are a 

small number of distinct lower airway and gut microbiota within HIV infected patients 

with bacterial pneumonia that are differentially related to immune and patient outcomes. 

Stratifying patients based on lung and gut microbial communities may allow for more 

effective endotyping, leading to novel, tailored patient treatments. 
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The human body is extensively colonized by mixed-species communities of 

microbes (bacteria, fungi, and viruses), which play an important role in metabolism, 

immune response, and host health (1). These microbes primarily exist in close contact 

with each other both as biofilms that are adherent to host mucosal and dermal surfaces, 

and as free-swimming or planktonic cells (2, 3). Studies of the human microbiome, 

defined as the aggregate of mixed species microbial genomes and their interactions 

within a given body niche (for terminology see Table 1), have increased greatly over the 

last decade. This is primarily due to the advent of culture-independent approaches such 

as sequence-based 16S rRNA biomarker and shot-gun metagenomic approaches, as 

well as advances in mass spectrometry permitting detection and quantification of 

metabolites and proteins associated with human microbiomes. Unlike higher burden 

microbial sites, such as the gut, the lung was considered sterile prior to culture-

independent methods. Due to the large surface area of the lungs, low microbial burden 

in healthy subjects, and difficulty in obtaining samples without sampling through the 

upper airways, study of the lung microbiome is challenging. Nonetheless, recent studies 

controlling for oral contamination have demonstrated that microbes can be detected in 

the lungs of both healthy subjects and patients with airway disease (4, 5). 

 While HIV infected individuals are living longer, healthier lives in the era of 

HAART, pulmonary disease still presents a common co-morbidity in this population (6, 

7). Due to the increased risk of pulmonary disease and loss of mucosal barrier immunity 

in the HIV infected population, there is much interest in the role of the lung microbiome 

in HIV pathogenesis. Recent investigations have advanced the field by moving beyond 

descriptive microbiota (the profile of bacteria present in a given sample) studies towards 
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an integrated understanding of how distinct pathogenic lung microbiota and their 

associated metabolic products promote host immune dysfunction within HIV infected 

patient populations. This introduction summarizes these findings as well as discusses 

the potential role of the gut microbiome in HIV-associated pulmonary disease. 
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Table 1. Terminology used in lung microbiome research. 

Table 1. Terminology used in lung microbiome research. 

Term Definition 

16S rRNA gene 

This gene is exclusive to, and ubiquitous within, the bacterial kingdom. It encodes multiple 
regions of sequence hyper-variability (V1-7) that permit identification of and phylogenetic 
classification of bacteria. Hence sequencing this gene or its hyper-variable regions is 
commonly used to assay bacterial microbiota composition. 

Bronchoalveolar lavage (BAL) 
Obtained via bronchoscopy, BAL fluid represents a wash of a small portion of the lower 
airways that allows for collection of fluid, metabolites, and microbes. It is one of the most 
common methods of sampling the lower airways. 

BAL, acellular Acellular BAL is generated by centrifuging BAL fluid at moderate speed and using the 
resulting supernatant but not the cell pellet for down-stream analyses. 

BAL, whole Whole BAL is generated by spinning BAL at high speed and using the cell pellet but not 
the supernatant for down-stream analyses. 

Biofilm 
Community of surface-attached microbes protected by an extracellular matrix. Biofilms are 
frequently comprised of multiple species and reside on both human mucosal and dermal 
surfaces. 

Biomarker sequencing 
A method of assessing microbial composition within a mixed-species community by 
sequencing a single conserved gene with high sequence variation, e.g., the16S rRNA 
gene for bacterial community analysis. 

Burden Total number of bacteria (or fungi, etc.) measured within a sample. Also referred to as 
biomass. 

Dispersion 
Measure of how variable microbial community composition is across subjects within a 
population, i.e. if a population shows high dispersion, then their microbiomes are very 
different from one another. 

Dysbiosis An imbalance within a microbial community i.e. differing from a healthy state. 

Metabolome The complete set of small-molecule chemicals found within a given site. 

Microaspiration Aspiration of nasopharyngeal or gastric fluid into the lower airways, allowing for microbes 
from other anatomic sites to take up residence in the lower airways. 

Microbiome The collection of microbial genomes, functions, and interactions within a given ecosystem. 

Microbiota A catalog of the collection of microbes within an ecosystem. 

Mycobiome The collection of fungal genomes found within an ecosystem. 

Next-generation sequencing 
(NGS) 

Sequencing approaches that permit faster, more economical, and high-throughput 
generation of nucleic acid reads.  

Phylogenetic diversity A composite metric taking into account the distribution, phylogenetic variability, and 
number of species within an ecosystem. 

Quality filtering The process of rigorously cleaning and filtering sequence data sets to only include high 
quality sequences. 

Richness The total number of species within an ecosystem. 

Microbial selective pressures Factors that shape the composition or activity of microbes. 

Shotgun metagenomics Sequencing and reassembly of multiple distinct genomes present within an ecosystem. 

Systems biology An interdisciplinary field focused on understanding human health and disease by 
reconstructing biological networks across cells, tissues, or whole body. 

Virome The collection of viral genomes found within an ecosystem. 
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HIV infected versus uninfected bacterial lung microbiota 

Early studies by a multi-center consortium, the Lung HIV Microbiome Project 

(LHMP), sought to identify whether HIV infection resulted in changes to the lung 

bacterial microbiota. Their first study observed increased presence of Tropheryma 

whipplei, the causative agent of Whipple’s disease, in HIV infected airways, which 

decreased following antiretroviral therapy (ART) (8). LHMP’s follow-up study in 2015, 

however, was unable to validate this finding (9). Results may have differed due to the 

degree of patient immunodeficiency, study size, environmental factors such as 

geography, or microbiological variability across patients. 

 Animal models present a controlled way to address some of these confounding 

factors. Morris and colleagues developed a simian-HIV (SHIV)-infected cynomolgus 

macaque model for longitudinally studying the HIV-associated lung microbiome (10). 

Animal models allow repeated sampling over time, which is difficult in humans, and 

macaques are outbred, walk upright, and have a similar immune system to humans, 

making them a more accurate HIV infected lung microbiome model than mice. Using 

this model, the authors demonstrate relatively stable lower airway (BAL-derived) 

microbiota over time, with more variation observed between monkeys than between 

time points from the same monkey. While Tropheryma dominated a subset of lower 

airway samples, this finding was independent of SHIV infection and unique to one of the 

two macaque colonies studied, suggesting that environmental exposures, rather than 

SHIV infection, select for Tropheryma colonization. Thus Tropheryma is not necessarily 

a hallmark of SHIV infection, though it should be noted that this study was limited by 

small numbers and lack of a longitudinally-followed SHIV uninfected group.  
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While most lung microbiome studies examine relatively healthy (mean CD4>500 

cells μl-1) populations, a recent study of HIV infected patients with advanced disease 

(baseline CD4 count <262 cells μl-1), longitudinally sampled bacterial composition of 

human acellular BAL (see Table 1) for three years following initiation of HAART (11). 

HIV uninfected subjects’ lung microbiota significantly differed from that of HIV infected 

patients before and after HAART, suggesting that severe HIV-associated immune 

dysfunction leads to long-term changes in the lung microbiome. HIV infected, treatment-

naïve individuals were enriched for Streptococcus and displayed increased population 

dispersion (or microbiota composition variability) compared to uninfected subjects. 

Interestingly, following one year of HAART, patients were enriched for Prevotella and 

Veillonella as well as Streptococcus and displayed decreased dispersion. Prevotella, 

Veillonella, and Streptococcus are considered part of a healthy oral microbiota (12), 

though their over-growth is associated with periodontal disease (13). Enrichment of 

these oral commensals within the lungs as well as increased community dispersion 

characterizes advanced HIV infection. Community dispersion lessens with HAART, 

implying that HAART promotes compositionally consistent lung microbiota but is unable 

to completely reverse microbial dysbiosis, at least within three years of treatment. This 

parallels the inability of HAART to fully restore the gut microbiota (14), and suggests 

HIV infection results in systemic microbial dysbiosis that HAART only partially reverses. 

Increased dispersion across the HIV infected population offers a possible explanation 

for the inability of studies with higher CD4 counts (9, 10) to identify consistent HIV 

infection signatures. The authors posit that HIV immunodeficiency permits many types 

of microbial dysbiosis, as illustrated by the large dispersion in HIV-associated lung 



7 
 

microbiota. Thus the emerging hypothesis is that multiple distinct pathogenic microbial 

communities exist and likely contribute to chronic inflammation, patient heterogeneity, 

and pulmonary disease progression across HIV infected populations. 

 

HIV bacterial lung microbiota in pulmonary disease 

Despite the efficacy of HAART in reducing viral load and increasing CD4 count, 

pulmonary disease is still a common co-morbidity within HIV infected patients. Bacterial 

pneumonia affects 5-30 percent of HIV infected patients compared to less than one 

percent of immunocompetent individuals, and results in lower pulmonary function and 

higher long-term mortality rates compared to CD4-matched controls (15-17). Prior 

studies demonstrated that the lungs of HIV infected pneumonia patients are enriched for 

a phylogenetically diverse array of bacteria, including Firmicutes and Prevotellaceae, 

compared to primarily Proteobacteria-enriched communities in HIV uninfected 

pneumonia patients (18). Additionally, HIV-pneumonia lower airway communities 

differed based on patient geographic location, with Ugandan HIV-pneumonia patients 

having significantly higher richness and diversity compared to San Franciscan patients 

(19). These differences in bacterial composition potentially suggest distinct mechanisms 

of microbial pathogenesis in HIV infected versus uninfected pneumonia as well as a role 

for geographic, ethnic, and environmental exposures in shaping lung communities. 

In the largest HIV lung microbiota study to date (n=182 patients), distinct 

microbial community states (MCS) were identified in Ugandan, HIV infected pneumonia 

patients, the results of which are presented in Chapter 2 (20).  Briefly, MCS were 

characterized by two repeating patterns of distinct airway (BAL) microbiota; the first was 
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dominated by Pseudomonadaceae co-associated with Sphingomonadaceae, and the 

second by a reciprocal gradient of Prevotellaceae to Streptococcaceae dominance with 

Veillonellaceae co-colonization. The first MCS colonized less than a quarter of patients 

and bore resemblance to HIV uninfected pneumonia lung communities. In contrast, the 

second colonization pattern encompassed over 100 patients who were frequently 

administered the antibiotic ceftriaxone, possessed significantly higher phylogenetic 

diversity and richness, and trended towards higher short- and long-term mortality. This 

MCS was characterized by the same oral commensals as aforementioned studies (10, 

11), suggesting that lung colonization by oral commensals may precede and drive 

clinical presentation of pneumonia as well as explain the higher prevalence and severity 

of pneumonia in HIV infected patients. This study is the first to demonstrate that distinct 

microbial communities arise in the lower airways of HIV patients with pneumonia and 

are linked to patient outcomes. 

Chronic obstructive pulmonary disease (COPD) has increased in prevalence in 

the HAART era, and lung microbial dysbiosis may contribute to COPD chronic 

inflammation (21-23). In the SHIV infected macaque model previously discussed, the 

authors induced COPD by co-housing SHIV infected macaques alongside SIV and 

Pneumocystis co-colonized macaques, a known model for inducing Pneumocystis-

associated COPD (24, 25). Monkeys that eventually developed COPD were enriched 

for Veillonella prior to SHIV infection and displayed increasing abundances of Prevotella 

and Fusobacterium over the course of SHIV infection and following development of 

COPD (10). In light of Prevotella and Veillonella enrichment in advanced HIV infection, 

this correlation of their abundance with COPD development suggests that microbes 
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enriched in HIV infection may drive the increased prevalence of COPD in this 

population. The consistent enrichment of Prevotella and Veillonella across advanced 

HIV infection, pneumonia, and COPD argues that these microbes play a central role in 

HIV airway pathogenesis and may provide a new avenue for microbial species-targeted 

therapeutics to alleviate chronic pulmonary inflammation. 

 

Lung mycobiome and virome in HIV infection 

HIV infected individuals have increased susceptibility to airway infections with 

fungi such as Pneumocystis and viruses such as Cytomegalovirus in addition to 

bacterial infections (26, 27). Despite the frequency of these infections, there is little 

known about the lung mycobiome or virome in HIV infection. A recent study by Cui and 

colleagues sought to ameliorate this dearth, by studying fungal communities in HIV 

infected patients with and without COPD (28). The authors found that both HIV infection 

(relative to neither infection nor COPD) and COPD (relative to HIV infection without 

COPD) are associated with airway (BAL) enrichment of a number of fungi, including 

Pneumocystis jiroveci and Ceriporia lacerata. Pneumocystis jiroveci has previously 

been associated with COPD (25, 29) and both fungi are known causes of pneumonia 

(16, 30). Finding these fungi in the SHIV-COPD macaque model, without clinical 

manifestations of pneumonia, suggests that mycobiome dysbiosis and opportunistic 

fungal pathogens precede development of and predispose patients towards fungal 

pneumonia and COPD. 

 Even less is known about the lung virome than the mycobiome. To date, no peer-

reviewed studies have examined the lung virome in HIV infection. A study of lung 
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transplant patients included three HIV infected, treatment-naïve individuals as a control 

and found that HIV infected and uninfected individuals shared low but detectable levels 

of Anellovirus and bacteriophages, whereas high levels were found in transplant 

patients (31). Additionally, a recent review included preliminary data examining ten 

healthy HIV infected individuals receiving long term ART and detected Parvoviridae, 

Herpesviridae (family of Epstein-Barr virus and Cytomegalovirus), Flaviviridae, and 

bacteriophages in BAL, though there was no uninfected comparison (32). Overall, the 

lung virome and mycobiome are areas that require far more study, particularly in the 

context of host immunity and the overall microbiome, before it will be possible to 

understand their contribution to HIV pathogenesis. 

 

Metabolic and immune signatures associated with HIV lung microbiota 

One of the main challenges in studying the lung microbiome is proving it plays a 

functional role in shaping human health and disease. More recently, studies of the gut 

microbiome have revealed that microbial-derived metabolites, e.g., short-chain fatty 

acids, play a key role in immune modulation (33). Cribbs and colleagues recently 

examined BAL bacterial community structure in relation to lower airway metabolic 

profiles (34). Using liquid chromatography-high-resolution mass spectrometry, the 

authors demonstrate that HIV infection and CD4 count are related to specific lower 

airway metabolic features, and a subset of these, including lineolate, 

glycerophospholipid, and fatty acid metabolism, are linked to members of 

Caulobacteraceae, Staphylococcaceae, Nocardioidaceae, and Streptococcus. It 

remains unclear whether these metabolites are indeed microbial derived or whether HIV 
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infection re-directs host metabolism, which in turn selects for these bacteria. However, 

this was the first study to indicate that the lower airway metabolome and microbiome of 

HIV infected patients are co-associated, and suggests a plausible mechanism for 

microbial pathogenesis in HIV infected patients. 

A similar approach was applied to the aforementioned Ugandan HIV infected 

pneumonia patients, which will be discussed in Chapter 2. In this study, the predicted 

gene products of distinct airway MCS were enriched in paired serum, and significantly 

associated with lung immune response and mortality outcomes (20). Patients colonized 

by Prevotellaceae-dominated communities were enriched for products of branched 

chain amino acid (BCAA) metabolism within their serum, and possessed high levels of 

lower airway inflammation, including the T helper cell 17 (Th17) cytokine interleukin 17 

(IL-17A). Products of the BCAA pathway can be bacterial derived (35) and positively 

regulate mechanistic target of rapamycin (mTOR) signaling (36), a key component of 

Th17 differentiation (37), suggesting that Prevotellaceae-dominated communities may 

induce Th17 inflammation through BCAA metabolism. Association between lung Th17 

inflammation and Prevotella and its co-colonizer, Veillonella, is corroborated by multiple 

studies: the presence and abundance of these oral commensals within the lungs is 

associated with increased Th17 inflammation in healthy individuals (38) and can induce 

Th17 inflammation in vitro and in mouse models (39). Studying microbes in the context 

of the metabolome and immune response marks a profound transition in how we view 

the presence of microbes in the lungs. Decades of previous literature have focused on 

microbes within the lungs solely as isolated pathogens; however, newer data implicate 
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them as cooperative, metabolically active communities whose metabolic products 

influence immune function. 

Segal and colleagues applied a similar systems biology approach to examining 

the microbial, metabolic, and immune correlates of tuberculosis (TB) risk in a cohort of 

HIV infected individuals in Cape Town, South Africa receiving ART (40). Individuals who 

proceeded to active pulmonary TB within 3 years were enriched for the microbial-

derived short chain fatty acids (SCFA) propionate and butyrate and depleted for 

interferon gamma (IFNγ) and IL-17A within serum, relative to those who did not develop 

TB. In vitro addition of butyrate to peripheral blood mononuclear cells stimulated with 

Mycobacterium tuberculosis (MTB) antigen decreased IFNγ and IL-17A production, 

establishing an immune regulatory role for this microbial-derived metabolite. These 

patients were also colonized by Prevotella and Veillonella, emphasizing a role for these 

anaerobic oral commensals in HIV-associated pulmonary disease. While several 

studies have been unable to tie lung bacterial composition to circulating CD4 counts 

(11, 20, 40), lung CD4 counts were found to negatively correlate with Prevotella or 

Veillonella abundance. These recent studies provide evidence of lung microbial 

metabolites manipulating immune responses and disease outcomes, as well as 

emphasize the potential pathogenicity of oral commensal expansion in the lungs of HIV 

infected patients. 

 

HIV infected bacterial gut microbiota and their potential role in HIV-associated 

pulmonary disease 
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A number of studies have demonstrated that HIV infected patients possess 

dysbiotic gut microbiota that are significantly and consistently distinct from the gut 

microbiota of HIV uninfected individuals. Initial analyses have disagreed in whether HIV 

infected microbiota displayed decreased richness and diversity (41, 42) relative to 

uninfected individuals or whether there is no difference or increased diversity (43, 44). 

However, taxonomic analyses of both stool samples and mucosal biopsies from across 

the United States have consistently revealed increased Prevotella and Proteobacteria 

abundance and decreased Bacteroides abundance as hallmarks of the HIV-associated 

gut microbiome (14, 42-44). In Western nations with high protein diets, such as the 

United States, the healthy gut microbiota is consistently characterized by a high ratio of 

Bacteroides to Prevotella abundance (45), which is shifted towards a high Prevotella to 

Bacteroides ratio in HIV infection. This gut bacterial dysbiosis was demonstrated by 

Vujkovic-Cvijin and colleagues to only partially and inconsistently be reversed by 

HAART treatment (14). Additionally, the authors found that an HIV infected long term 

non-progressor had gut microbiota similar to that of HIV uninfected individuals rather 

than HIV infected patients, indicating that gut microbiota dysbiosis is a hallmark of 

progressive HIV infection and cannot be fully reversed with ART, similar to airway 

microbiota dysbiosis. 

The aforementioned studies examined United States populations; however, a 

recent study examined the gut microbiota of rural Ugandan, HIV infected and uninfected 

individuals (46). The authors found that HIV infected patients in this rural, primarily 

vegetarian population possessed decreased richness and diversity, but were unable to 

detect a consistent HIV-associated gut microbiota that differed from HIV uninfected 
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individuals. Additionally, while the authors were unable to demonstrate a relationship 

between CD4 count and gut microbiota composition, they did detect shifts in specific 

taxa. Finally, soluble (s)CD14, a monocyte-derived cytokine and marker of microbial 

translocation, was increased in the circulation of HIV infected individuals with CD4 

counts below 200 cells/µl and was moderately correlated (r=0.479) with viral load, 

indicating that the patients with the most severe HIV-associated disease possessed 

increased microbial translocation into the circulation. While this was the first 

investigation into the gut microbiota of HIV infected African populations, challenges with 

sequencing run effects and cohort size limited the conclusions of this study. 

Investigations thus far have established that dysbiotic gut microbiota colonize 

HIV infected individuals, worsen with HIV disease progression, and are not successfully 

reversed with ART. However, these investigations have focused on HIV infected 

populations as a whole, without delving into HIV-associated diseases. HIV infected 

individuals are at increased risk of pulmonary diseases such as COPD and bacterial 

pneumonia even in the HAART era (6, 21). A recent investigation into the role of the gut 

microbiome in a mouse model of bacterial pneumonia demonstrated that systemic 

microbiome depletion prior to airway infection with Streptococcus pneumonia leads to 

more severe morbidity and mortality, which is reversed with gut microbial reconstitution 

by fecal microbial transplant (FMT). This finding in conjunction with the increased 

prevalence of pulmonary infection in HIV infected patients suggests a probable role for 

the gut microbiome in modulating and understanding pulmonary disease within this 

population. Since monocyte-derived macrophages are necessary for controlling the 

rampant inflammation that characterizes bacterial pneumonia patients with low CD4 
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counts and patients with advanced HIV infection display macrophage dysfunction, gut 

microbes and their products may prime airway and systemic immune responses through 

monocyte-derived macrophages. Findings presented in Chapter 3 are the first to link 

HIV-associated gut microbiota dysbiosis to bacterial pneumonia disease severity, 

airway microbe translocation, and macrophage dysfunction in HIV infected pneumonia 

patients, and establish a relationship between the gut microbiome and HIV-associated 

pulmonary disease. 

 

SUMMARY OF THE FIELD SO FAR 

The microbiome in HIV is still a field in its early stages, but recent studies, which 

expand beyond microbial description towards a multi-layered systems biology approach 

together with laboratory models, have provided novel insights and potential 

mechanisms of microbial pathogenesis in this patient population. Expansion of the oral 

commensals Prevotella, Veillonella, and Streptococcus within HIV infected lungs has 

been replicated across a number of studies, and implicated in metabolic and immune 

interactions (see Figure 1). Early work also suggests that fungal dysbiosis may precede 

and predispose HIV infected individuals to pulmonary diseases such as COPD, though 

these studies, like those of the lung virome, are nascent. While investigations into the 

gut microbiome in HIV infection has produced more consistent results, these studies 

also require further follow-up before we can truly understand how the gut microbiota 

contributes to and responds to the HIV pathogenesis. 

While recent work has vastly expanded our understanding of the lung 

microbiome in HIV infection, standardizing methodology and directly proving microbial 
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colonization and functionality still remain challenges for the field. Since the lower 

airways in particular possess relatively low microbial burden and samples are difficult to 

collect, it is important to limit contamination and maximize representative nucleic acids 

recovery. Kit-based DNA extractions can introduce contamination, and can result in 

diminished nucleic acids recovery from more difficult-to-lyse microbes (47, 48). 

Additionally, the type of sample interrogated, e.g., whole versus acellular BAL, can also 

influence microbial detection (microbes are commonly adherent to airway mucosal 

cells). In addition to sample processing considerations, future studies will need to 

continue incorporating large cohorts, systems biology approaches, and mechanistic in 

vitro and animal models to ascertain how the lung microbiome drives HIV pathogenesis. 

Nonetheless, recent studies have set a firm foundation for the field. Numerous groups 

have shown that oral commensal colonization of the lower airways is associated with 

inflammation and metabolic reprogramming in HIV infected patients, suggesting a role 

for these microbes in HIV-associated airway pathogenesis. The studies described in this 

thesis contribute to and build on these findings. These studies collectively demonstrate 

that the gut-lung microbial axis is key to understanding HIV-associated pulmonary 

disease and that microbial community types and effects need to be considered when 

deciding how best to treat HIV infected pneumonia patients.  
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Figure 1. 

 

Figure 1. Consistent characteristics of lung microbiota in HIV infection, and their 

metabolic, immune, and pulmonary disease associations. Changes to the lung 

microbiota in HIV infection are replicated across multiple studies and are related to 

metabolic and immune functions. Enrichment of the oral commensal bacteria Prevotella, 

Veillonella, and Streptococcus as well as the fungi Pneumocystis jiroveci have been 

identified by numerous studies in the lower airways of HIV infected patients and are 

associated with pneumonia, COPD, and pulmonary tuberculosis (TB). Chronic immune 

dysfunction is characteristic of HIV infection and associated pulmonary diseases; Th17 

inflammation is specifically related to bacterial pneumonia outcomes; reduced Th1 and 
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Th17 cytokine expression is related to increased risk of active TB. Microbial enrichments 

are depicted in blue, metabolism in green, immune response in red, and pulmonary 

disease in purple. Th1, T-helper cell 1. Th17, T-helper cell 17. COPD, chronic 

obstructive pulmonary disease. 
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CHAPTER 2 

 

Immune Response and Mortality Risk Relate to Distinct Lung Microbiomes in HIV-

Pneumonia Patients 

 

 

 

 

 

 

 

Content in this chapter was modified from the following publication: 

 

M. K. Shenoy, S. Iwai, D. L. Lin, W. Worodria, I. Ayakaka, P. Byanyima, S. Kaswabuli, 

S. Fong, S. Stone, E. Chang, J. L. Davis, A. A. Faruqi, M. R. Segal, L. Huang, and S. V. 

Lynch. Immune Response and Mortality Risk Relate to Distinct Lung Microbiomes in 

Patients with HIV and Pneumonia. Am J Respir Crit Care Med 195, 104-114 (2017). 
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ABSTRACT 

The potential role of the airway microbiota in dictating immune responses and 

infection outcomes in HIV-associated pneumonia is largely unknown. Ugandan HIV 

infected pneumonia patient (n=182) BAL samples were obtained to assess lower airway 

bacterial community composition via amplification and sequencing of the V4 region of 

the 16S rRNA gene. Host immune response gene expression profiles were generated 

by QPCR using RNA extracted from BAL fluid. Liquid and gas chromatography mass 

spectrometry was used to profile serum metabolites. Based on airway microbiome 

composition, the majority of patients segregated into three distinct groups, each of 

which were predicted to encode metagenomes capable of producing metabolites 

characteristically enriched in paired serum samples from these patients. These three 

groups also exhibited differences in mortality; those with the highest rate had increased 

ceftriaxone administration and culturable Aspergillus, and demonstrated significantly 

increased induction of airway T-helper 2 responses. The group with the lowest mortality 

was characterized by increased expression of T cell immunoglobulin and mucin domain 

3 (TIM-3), which down-regulates T-helper 1 pro-inflammatory responses and is 

associated with chronic viral infection. These data provide evidence that compositionally 

and structurally distinct lower airway microbiomes are associated with discrete local 

host immune responses, peripheral metabolic reprogramming, and different rates of 

mortality. 
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INTRODUCTION 

Sub-Saharan Africa accounts for 71% of persons estimated to be living with HIV 

infection worldwide, with 63,000 acquired immunodeficiency syndrome-(AIDS)-related 

deaths per year in Uganda alone (49). Pulmonary infections pose a common and 

frequently fatal co-morbidity in HIV infected patients in Africa; two of the most prevalent 

are TB and bacterial pneumonia, incident in approximately 80% of this patient 

population (50). Overall, TB is the leading cause of death in HIV infected patients 

worldwide (51, 52). In HIV-TB co-endemic areas, bacterial pneumonia is a common 

cause of hospital admission, with mortality rates over 30% even with antiretroviral and 

antibiotic treatments (17, 53). 

Even in the absence of acute respiratory infection, HIV infected patients exhibit a 

broader breadth of lower airway bacterial taxa compared to that detected in healthy 

subjects (11), indicating that HIV infection may present a risk factor for developing 

pulmonary infection. Despite high morbidity and mortality within this population, little is 

known about factors that influence heterogeneity in patient outcomes, and, specifically, 

whether variation in airway microbiota composition and immune response are related to 

patient survival. We demonstrated, in a non-HIV infected, antimicrobial-treated 

pneumonia cohort, that following antimicrobial treatment, a precipitous decline in airway 

microbiome diversity and domination of the community by a distinct respiratory 

pathogen, e.g., Streptococcus pneumonia or Pseudomonas aeruginosa is associated 

with increased 28-day mortality (54). In a study of 60 Ugandan HIV infected, 

antimicrobial-treated pneumonia patients, patients with reduced airway bacterial 

microbiota richness and diversity exhibited higher bacterial burden and increased 
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expression of pro-inflammatory TNFα and MMP-9 (19), thus providing the first evidence 

that HIV-airway microbiota composition is related to immune response. These 

observations led us to hypothesize that in the context of HIV-associated immune 

dysfunction and antimicrobial administration, acute pneumonia patient subsets can be 

identified based on their lower airway bacterial composition. We further rationalized that 

these compositionally distinct airway microbiota function as discrete pathogenic units 

which induce characteristic airway immune responses and are associated with mortality. 

To address this hypothesis, we examined clinical and demographic factors related to 

the bacterial airway microbiome, as well as relationships between community 

composition, host immune response, and patient outcomes in a large cohort of 

Ugandan HIV infected pneumonia patients. 

 

RESULTS 

Lower airway microbiota composition is associated with demographic, clinical, 

and microbiological factors 

Lower airway bacterial microbiota profiles of 190 Ugandan HIV infected patients 

with acute pneumonia were generated by 16S rRNA amplicon sequencing of whole BAL 

fluid (Fig. S1A: read depth). Overall, 182 samples with sufficient sequence reads and 

adequate bacterial community coverage were used for all microbiota analyses (Fig. 

S1B). A total of 6,915 operational taxonomical units (OTUs; >97% 16S rRNA V4-

sequence similarity; range 124–869, median 335.5 taxa per sample) were identified, 

indicating robust bacterial presence. 
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Demographic and clinical data (Table S2) were used in PERMANOVA analysis 

(55). PERMANOVA allows for the identification of factors related to observed variation 

in bacterial beta-diversity (inter-sample bacterial compositional differences); we 

measured beta-diversity using a weighted UniFrac dissimilarity matrix, which considers 

phylogenetic relatedness and species abundance in distance calculations (56). Gender 

(R2=0.021; p<0.017, Fig. S2A), consumption of alcohol ever (R2=0.015, p<0.045, Fig. 

S2B), the presence of culturable Aspergillus in BAL (R2=0.038, p<0.004; Fig. S2C), BAL 

or sputum culture positivity for Mycobacterium (R2=0.027, p<0.021; Fig. S2D), and 

ceftriaxone administration within the last two weeks, or at the time of bronchoscopy 

(R2=0.016, p<0.040 and R2=0.061, p<0.001 respectively; Table 1; Fig. 1A) were 

significantly related to airway bacterial community composition. Seventy-day mortality 

trended strongly towards a relationship with airway microbiota composition [Canberra 

(beta-diversity distance based on taxa presence/absence); R2=0.0061, p<0.053]. 

Mortality trended strongly towards significance using a Canberra but not a weighted 

UniFrac dissimilarity matrix, suggesting that presence (or absence) of particular taxa in 

airway communities is related to mortality, rather than relative abundance or 

phylogenetic relatedness of community members present. 

Since microbes engage in inter-species cell-cell communication that dictates 

abundance and behavior of other microorganisms in their environment (57, 58), we 

rationalized that inter-species interactions also occur in complex multi-species bacterial 

microbiota, resulting in deterministic community structures. Indeed, Shannon’s diversity 

index (which considers abundance and richness, PERMANOVA: R2=0.17, p<0.001; Fig. 

1B), Faith’s Phylogenetic diversity (phylogenetic variation, R2=0.09, p<0.001), Chao1 
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index (species richness estimator, R2=0.08, p<0.001), and observed species richness 

(total species, R2=0.08, p<0.001), were all significantly associated with airway bacterial 

beta-diversity. These alpha-diversity indices (measurements of variation within samples) 

explained a greater degree of microbial community variability (8-17%) than clinical or 

demographic features (reflected in the strength of PCoA groupings in Figs. 1 and S1), 

suggesting that microbiological influences appear to play a larger role in defining airway 

taxonomic content than clinical-demographic features. 
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Table 1. Clinical, demographic, and microbiological features are significantly 

associated with airway bacterial beta-diversity in HIV infected patients with 

pneumonia. 

Variable Type Variable Name Sample 
(n) Yes | No 

PERMANOVA 
R2 p-value 

Clinical and 
demographic 70-Day mortalitya 182 143 | 39  

(Live | Dead) 0.006 0.053 

 
Alcohol ever 
consumed 182 113 | 69 0.015 0.045 

 Ceftriaxone at 
bronchoscopy 174 54 | 120 0.061 0.001 

 Ceftriaxone within 
last 2 weeks 178 137 | 41 0.016 0.040 

 
Culture identified 

Aspergillus 157 15 | 142 0.038 0.004 

 Gender 182 110 | 72   (F | M) 0.021 0.017 

 
TB positive by 

culture 182 40 | 1 | 141 (Positive 
| Scanty | Negative) 0.027 0.021 

Variable Type Variable Name Sample 
(n) 

Range  
[min-max (med)] 

PERMANOVA 
R2 p-value 

Microbiological Chao1 182 170-1326 (484.1) 0.080 0.001 

 

Faith's 
Phylogenetic 

Diversity 
182 8.792-45.83 (21.97) 0.091 0.001 

  Observed species 182 39-865 (340.5) 0.076 0.001 

 Shannon diversity 182 0.642-6.427 (4.011) 0.169 0.001 

 Simpson diversity 182 0.112-0.977 (0.867) 0.154 0.001 

aPERMANOVA value calculated using a Canberra distance matrix. 
 

  



26 
 

Figure 1. 

 

Figure 1. Antibiotic administration, alpha-diversity, and probabilistic modeling 

differentiate bacterial community types within the lower airways of HIV-

pneumonia patients. PCoA of n=182 lower airway BAL bacterial community profiles of 

Ugandan HIV-pneumonia patients illustrates that A. Ceftriaxone (in yellow versus no 

ceftriaxone in purple), a third generation cephalosporin, administered at time of 

bronchoscopy is significantly associated with community composition (PERMANOVA, 

R2=0.061, p<0.001), as is B. Shannon diversity (PERMANOVA, R2=0.17, p<0.001, 

scaled from red high to blue low). C. Based on Laplace approximation, where a lower 

value indicates a better model fit, Dirichlet Multinomial Mixtures identified two 
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compositionally distinct bacterial microbiota (n=136 and n=46) in the lower airways of 

HIV-pneumonia patients. D. PCoA illustrates that DMM-defined lower airway bacterial 

communities are compositionally distinct (PERMANOVA, R2=0.246, p<0.001). 
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HIV-pneumonia patients stratify into two groups based on bacterial community 

composition 

Dirichlet Multinomial Mixtures [DMM (59)] modeling examines taxa frequencies 

and determines how many “meta-communities” or microbial community states (MCS), 

exist within a dataset. Application of DMM to our cohort identified two significantly 

distinct MCS (n=46 and n=136, R2=0.246, p<0.001) using a Laplace Approximation 

(Fig. 1C and D), which evaluates model fit [lowest Laplace value corresponds to the 

number of meta-communities that best-fit the model (Fig. 1C)]. Specific co-occurring 

bacterial families were characteristically enriched in these two groups; MCS1 microbiota 

were characteristically dominated by Pseudomonadaceae, which typically co-occurred 

with Sphingomonadaceae and Prevotellaceae. The second, larger group, exhibited a 

reciprocal gradient of Streptococcaceae or Prevotellaceae domination, which we 

designated MCS2A and MCS2B, respectively. Streptococcaceae-dominated MCS2A 

communities co-associated with Prevotellaceae and Veillonellaceae, and 

Prevotellaceae-dominated MCS2B assemblages with Veillonellaceae and 

Streptococcaceae (Fig. 2A). These distinct microbial states exhibited significant 

differences in diversity, with MCS1 exhibiting the lowest mean diversity compared to 

MCS2A or MCS2B communities (Faith’s Phylogenetic diversity; one-way ANOVA, 

p<0.001, Fig. 2B). 

Using dominant family to classify samples, PCoA-ordination of weighted UniFrac 

distance matrices confirmed a strong and significant relationship between MCS class 

and bacterial beta-diversity (PERMANOVA, R2=0.670, p<0.001, Fig. 2C), corroborating 

the existence of compositionally distinct microbial states. Removal of the dominant 
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family reads and re-application of DMM to the remaining data yielded the same two 

groups (n=46, n=136), indicating that dominant family is not the sole defining feature of 

these airway microbiota. 
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Figure 2. 

 

Figure 2. Two compositionally distinct lower airway microbial states exist in HIV 

infected pneumonia patients. A. Mean community composition of each state at the 

family level. B. Lower airway phylogenetic diversity differs significantly across microbial 

states (one-way ANOVA, p<0.001). C. PCoA plot illustrating weighted UniFrac 

distances permits visualization of MCS1 (green) and the sister states MCS2A (blue) and 

MCS2B (red), which collectively explain a significant proportion of bacterial community 

variation (PERMANOVA, R2=0.67, p<0.001) within the lower airways of this patient 
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population. Patient lower airway communities that do not fit one of these three mean 

community compositions are depicted in gray. 

 

  



32 
 

Lower airway states are related to clinical and microbiological factors 

We next asked whether the specific factors that explained the variation in 

bacterial beta-diversity were differentially associated with microbial state (Table S2). 

Neither gender nor alcohol consumption significantly differed across groups; however, 

MCS1 communities had significantly higher Mycobacterium detection (Chi-squared, 

p=0.006; Fig. 3A), while MCS2B communities exhibited increased culturable Aspergillus 

(Chi-squared, p=0.07; Fig. 3B). In parallel, the MCS2B group had significantly increased 

ceftriaxone administered (n=29/65), whereas MCS1 patients were almost never treated 

with ceftriaxone (n=1/36, Chi-squared, p<0.0001; Fig. 3C). Since ceftriaxone 

administration may be reflective of infection severity, we compared variables associated 

with disease severity upon study enrollment (e.g., fever, sputum production, chest pain, 

etc.) between ceftriaxone-treated and untreated patients; however, no statistically 

significant differences were observed. 

 Mortality was tracked from enrollment through 70-days post-bronchoscopy. 

MCS2B patients exhibited the most deaths at 1-week post-enrollment (n=5/67) while 

MCS1 patients all survived (p=0.08; Fig. 3D). At 70-days, MCS2B patients still had the 

highest mortality (22%), followed by MCS2A (16%) and MCS1 patients (13%), though 

this trend did not reach significance (log-rank test, p>0.05, Fig. S3). 
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Figure 3.

 
Figure 3. Culture positivity for Mycobacterium or Aspergillus, as well as antibiotic 

administration and mortality differ between MCS. A. Mycobacterium (Chi-squared, 

p=0.006) or B. Aspergillus (p=0.07) culture positivity, C. ceftriaxone administration at 

bronchoscopy (p<0.0001), and D. mortality after 1 week of enrollment (p=0.08) differ 

amongst microbial states (positive in black, negative in gray). 
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Airway microbial states are predicted to encode functionally distinct 

metagenomes 

 We next predicted the metagenomic content of each microbial state using the 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

[PICRUSt (60)] package. Each microbial state was predicted to encode significantly 

distinct metagenomes and enriched for a characteristic set of gene pathways 

(PERMANOVA; R2=0.10, p<0.001; Fig. 4A). A total of 238 Kyoto Encyclopedia of 

Genes and Genomes [KEGG (61, 62)] pathways differed significantly between the three 

groups (Kruskal-Wallis, 329 pathways tested, q<0.05, Table S3). Despite decreased 

community diversity, MCS1 communities were predicted to encode a greater range of 

functional pathways compared to the other groups (Kruskal-Wallis, pairwise, p<0.001, 

q<0.05). This group was predicted to be significantly enriched for a broad range of 

pathways involved in β-lactam, linoleic and arachidonic acid, and tryptophan 

metabolism; the majority of which (69%) were encoded by Pseudomonadaceae in these 

communities. MCS2A bacterial communities were enriched for pathways involved in 

biosynthesis of flavonols and ion channels, while MCS2B bacterial communities 

encoded glycan metabolism and glycosphingolipid biosynthesis pathways and lacked 

type II polyketide biosynthesis. Few pathways were predicted to be significantly 

enriched in MCS2B, indicating that associated increased mortality risk may be either 

driven by differential expression of pathways shared across compositionally distinct 

communities, or that non-bacterial species such as Aspergillus, detected with greater 

frequency in this microbial state, contribute substantially to their associated 

pathogenesis. 
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Microbial community types induce distinct and characteristic lower airway 

immune responses 

 RNA extracted from a subset of compositionally representative BAL samples 

(n=10/MCS) was used to analyze expression of a diverse panel of immune markers, 

chosen for their known associations with HIV, chronic bacterial infections, or airway 

inflammatory responses. mRNA expression levels (GAPDH-normalized) were used to 

generate a multivariate profile of host immune response. PERMANOVA analysis 

indicated that airway immune response was significantly related to the MCS present 

(PERMANOVA; R2=0.168, p<0.005). Specific immune responses were significantly 

enriched in particular MCS (one-way ANOVA, p<0.05; Fig. 4B). For example, MCS1 

patients exhibited significantly higher expression of T cell immunoglobulin and mucin 

domain 3 (TIM-3), a glycoprotein expressed by T and innate cells that down-regulates 

T-helper 1 activity and pro-inflammatory responses (63), and plays a key role in the T 

cell dysfunction that occurs during chronic viral infection (64, 65). 

By contrast, MCS2A demonstrated the lowest TIM-3 expression and significantly 

increased expression of protein-arginine deiminase type-4 (PADI4), which converts 

arginine to citrulline, an α-amino acid post-translationally incorporated into histones, 

filaggrin and proteins involved in myelination (66). Additionally, this MCS trended toward 

significantly higher levels of interleukin-10 (IL-10; anti-inflammatory cytokine) and 

programmed cell death protein 1 (PD-1; T cell negative regulator and exhaustion 

marker), and lower levels of forkhead box P3 (FOXP3; master regulator of regulatory T 

cells) expression. MCS2B subjects displayed increased interferon-alpha (IFNα), which 
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characteristically protects against infection in immunocompetent subjects, but is 

associated with rapid disease progression in HIV infection (67), IL-13 (mediator of T- 

helper 2 cell function), occludin/ELL Domain-Containing Protein 1 (OCEL1; maintains 

and regulates tight junctions), and protein tyrosine phosphatase receptor type C 

(PTPRC; expressed on micro-vesicles produced by HIV infected cells) were also 

significantly increased. These patients also trended towards increased expression of IL-

5 (mediator of T-helper 2 cell function which stimulates B cell growth), MUC5AC (the 

primary airway mucin), PD-1, and IL-33 (pro-inflammatory cytokine which induces Th2 

responses), indicating a significant T-helper 2 skew. 

 

Airway microbial states are associated with distinct circulating metabolites 

 Paired serum from patients for whom BAL immune profiles were generated 

(n=30), were examined using Liquid and Gas Chromatography-Mass Spectrometry to 

determine whether distinct systemic metabolic profiles were associated with airway 

MCS. A total of 60 metabolites differed significantly between all three groups (Kruskal-

Wallis, p<0.05; Fig. 4C and Table S4). As the in silico metagenomic analysis predicted, 

MCS1 patients were characterized by significant enrichment of xanthurenate (a 

tryptophan metabolite) and arachidonic acid metabolites, including the eicosanoids 

leukotriene B4, a pro-inflammatory lipid-mediator, and 15-HETE (15-

hydroxyeicosatetraenoic acid), which induces pulmonary vasoconstriction and edema 

(68). In addition, MCS1 patients were significantly enriched for multiple products of 

primary and secondary bile acid metabolism (e.g., chenodeoxycholate, 

glycodeoxycholate, taurochenodeoxycholate, and ursodeoxycholate), several of which 
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have been shown to upregulate inflammatory responses along with LPS (69), indicating 

that the activities of the gastrointestinal microbiome may also contribute to the tone of 

host inflammation in MCS1. 

As predicted, MCS2B patients were characterized by significantly reduced 

relative levels of circulating metabolites compared to MCS1 patients. However, 

significant increases in amino acid metabolites 3-methyl-2-oxobutyrate and 4-methyl-2-

oxopentanoate (both involved in valine and leucine metabolism), monoacylglycerols 

associated with lipid metabolism (1-dihomo-linolenylglycerol and 1-myristoylglycerol), 

and inosine (purine metabolism) were significantly enriched. MCS2A patients exhibited 

a mixture of metabolites identified in the other MCS but at lower concentrations, with a 

unique increase in lysolipid and pyrimidine metabolism and a decrease in 

monoacylglycerols. Thus, products of several of the biosynthetic or metabolic pathways 

predicted to discriminate between patients with specific MCS were significantly and 

differentially enriched in their circulation. 

To verify that specific MCS, their predicted metagenomes, local airway immune 

responses, and serum metabolites were inter-related, we applied Procrustes (70, 71) 

and Mantel (72) analyses. Both confirmed a strong and significant correlation between 

each of these data matrices [correlation between bacterial community composition and 

1. PICRUSt metagenomic prediction (Procrustes: r2=0.513, p<0.001; Mantel: r2=0.674, 

p<0.001), or 2. Airway immune expression (Procrustes: r2=0.147, p=0.031; Mantel: 

r2=0.122, p=0.067), or 3. Serum metabolites (Procrustes: r2=0.414, p<0.001; Mantel 

r2=0.286, p<0.001)]. This result indicates that our HIV infected pneumonia patients who 
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possess distinct airway MCS exhibit corresponding features of immune dysfunction and 

a characteristic peripheral metabolome. 
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Figure 4. 
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Fig. 4. Airway microbial states are predicted to encode distinct metagenomes, 

and each is shown to induce different lower airway immunological responses and 

is associated with significantly different serum metabolomes. A. PCoA of in silico 

metagenomic predictions (generated using PICRUSt), indicates that the variation in 

predicted metagenomic content is significantly explained by MCS designation 

(PERMANOVA, R2=0.10, p<0.001). B. qRT-PCR array assessing immune-associated 

gene expression within the lower airways of patients is significantly associated with 

MCS (PERMANOVA, R2=0.168, p<0.005). PERMANOVA explains how well specific 

factors such as MCS explain multivariate data such as cytokine expression (not 

confined to PCoA or microbiota). Pathway significance: †p<0.1 *p<0.05 **p<0.01. C. 

Comparative LC/MS metabolomic analysis of paired patient serum identified 60 

metabolites that differed significantly between all three groups (Kruskal-Wallis; p<0.05). 

Color code: MCS1 (green), MCS2A (blue), MCS2B (red), and communities not fitting 

into a MCS mean community composition (gray). 
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DISCUSSION 

Factors that influence pneumonia outcomes in HIV infected patients are poorly 

defined and we hypothesized that the airway microbiome may influence these 

outcomes. In this study, three distinct microbial states were identified that exhibited 

significant differences in alpha diversity, culturable Aspergillus or Mycobacterium, 

ceftriaxone administration, immune responses, and metabolic signatures, and trended 

towards differences in mortality. Recent work by Cribbs and colleagues demonstrated 

HIV infected patients are enriched for pneumonia-associated bacteria, including 

Streptococcus, even in the absence of airway infection, and exhibit a distinct metabolic 

microenvironment compared to healthy subjects (34). Together with this study, our work 

suggests that specific lower airway microbial states may lead to functionally relevant 

metabolic shifts that relate to distinct pathways of disease pathogenesis in HIV infected 

individuals. 

Segal and colleagues have shown that healthy individuals who have an 

enrichment of oral taxa, including Prevotella, within their lower airways, exhibit 

increased inflammatory cytokines and Th17 cells (38). This corroborates our findings 

that Prevotellaceae-dominated airway microbiota promote inflammation within the lower 

airways, including IL-17A expression. Recent studies have demonstrated that the 

composition of the airway microbiota influences susceptibility to Aspergillus infection 

(73) and that HIV-associated airway disease is related to fungal community alterations, 

including Aspergillus enrichment (28). Our data support these findings and suggests 

that Aspergillus prospers in a Prevotellaceae-dominated microbiota in the context of a 

Th2-skewed airway immune response. Several recent studies have confirmed the 
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capacity of multiple Aspergillus species to induce Th2 responses (74), particularly in 

early-stage airway infection (75), suggesting that this species may not simply co-

colonize MCS2B airways, but may actively define immunological responses 

characteristic of this patient subgroup. Patients with this airway microbiota were more 

likely to have been administered ceftriaxone and exhibited the highest mortality rates; 

one possible conclusion from these observations is that ceftriaxone administration 

selectively enriches for an MCS2B microbial community, and that their inter-kingdom 

microbial activities elicit a host immune response that increases mortality risk. However, 

the paucity of pre-antibiotic bronchoscopic samples, which are both ethically and 

logistically difficult to obtain, precludes definitive conclusions on whether ceftriaxone 

administration is responsible for the presence of this more severe MCS, or whether 

MCS2B assemblages pre-existed in these patients’ airways prior to hospitalization. 

MCS1 patients, who exhibited the lowest levels of profiled immune activation 

markers, were predicted to be enriched for pathways involved in linoleic and arachidonic 

acid metabolism. Leukotriene B4, a product of arachidonic acid metabolism typically 

produced by leukocytes in response to inflammatory mediators, was detected in 

significantly increased concentrations in these patients’ serum. While circulating 

leukotriene B4 in MCS1 patients is likely produced by leukocytes, our data suggest that 

microbial metabolism of arachidonic acid may contribute to their circulating leukotriene 

B4 and that microbial-derived lipid inflammation may underlie their immune dysfunction. 

Mycobacterium was more prevalent in MCS1 patients, who also exhibited a significant 

increase in TIM-3 expression. This is consistent with the findings of Behar and 
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colleagues who demonstrated in vivo surface expression of Tim-3 on macrophages 

infected with M. tuberculosis (76). 

MCS2A appears to represent an intermediate microbial state, between the 

MCS2B and MCS1 groups in terms of clinical associations, alpha-diversity, composition, 

metabolites, and immune expression. This raises the possibility that airway microbiota 

may be dynamic and transition through distinct microbiological states, particularly under 

antimicrobial selective pressure; however, large longitudinal studies are necessary to 

address this possibility. Nonetheless, patients with MCS2A were uniquely characterized 

by increased lower airways PADI4 expression. Extracellular bronchial PADI4 has been 

shown to citrullinate the innate immune defensin human cathelicidin LL-37/human 

cationic antimicrobial protein-18, rendering it less efficient at neutralizing 

lipopolysaccharide. PADI4 is detected in the airways of patients with chronic obstructive 

pulmonary disease, who also exhibit impaired antibacterial response against 

Streptococcus (77), indicating that MCS2A patients, who exhibit expansion of 

Streptococcaceae and induction of PADI4, may also have diminished capacity to 

respond to the dominant bacterial family present in their airways. 

Although lower airway colonization is considered uniformly detrimental to 

patients, we show that specific, repeated airway microbiome states, discriminated upon 

the basis of microbial composition, function, host immune response, and clinical 

outcomes, exist in HIV infected pneumonia patient subsets. Though the majority of 

patients fall into the three microbial states described, we recognize that not all patients 

belong to these groupings, which is not surprising in light of recent work by Twigg and 

colleagues showing far greater variation across lower airway communities in advanced-
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HIV patients than healthy individuals (11). Larger cohorts of patients are necessary to 

sufficiently power studies examining other rarer microbial states and their immunological 

and clinical implications. This cohort provides insight into HIV infected Ugandan 

pneumonia patients; however, these results may have limited applicability to patients in 

Western countries due to differences in patient demographics, laboratory testing and 

antibiotic availability, and high HIV-TB co-prevalence in Uganda. Furthermore, while 

BAL allows identification of general microbiota patterns within the lower airways, 

examining spatial-specific microbiota and their interactions with the host requires lung 

biopsies or brushings, which are beyond the scope of this study. While this study did not 

use paired oral-BAL samples to control for oral contamination, we have previously 

shown that oral and lower airway microbiota within HIV infected pneumonia patients 

display niche specificity (18). Our data trend towards a significant relationship between 

mortality and airway MCS. We calculated that to achieve an eighty percent likelihood of 

detecting a significant difference in mortality (power=0.8), 100 patients per MCS would 

have to be studied, underscoring the need and utility of larger cohorts. Despite these 

limitations, this study identified several factors that shape microbial community 

composition in the lower airways of HIV infected pneumonia patients. Moreover, it 

identifies distinct bacterial microbiota states that repeat over large numbers of patients 

and builds an argument that pneumonia patient heterogeneity, with respect to both 

immunological and clinical outcomes, may be related to compositional and functional 

differences in airway microbiomes.  
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MATERIALS AND METHODS 

Subjects and sample collection 

We enrolled HIV infected subjects admitted to Mulago Hospital in Kampala, 

Uganda for acute pneumonia from October 2009-December 2011 as part of the Lung 

Microbiome in Cohorts of HIV Infected Persons (Lung MicroCHIP) Study. Patients 

underwent two sputum acid fast bacilli (AFB) smear examinations to diagnose 

pulmonary TB. AFB smear-negative patients underwent bronchoscopy with BAL for 

clinical diagnosis, with 10mL set aside for microbiome analysis (19). Bronchoscopy was 

performed a median of 3 days after hospital admission (interquartile range 1-4 days). 

Bronchoscopy with BAL was performed, and BAL was stored 1:2 in RNAlater (Thermo 

Fisher Scientific). Notably, during the bronchoscopy, suction is not started until the 

bronchoscope has been wedged, limiting oral contamination. Venipuncture for blood 

specimens was performed at enrollment, hospital day #1, and collected into serum 

separator tubes. MCS groups were rigorously checked across dates of collection, 

shipping groups, and sequencing batches to ensure that microbial community was not a 

result of collection, shipping, or sample processing methods. Each of the three MCS 

described were observed throughout the timeline of sample collection and processing. 

Over 98% of subjects had received antibiotics prior to bronchoscopy. Clinical data were 

collected and diagnoses were assigned using standardized forms as previously 

described (19). Study endpoint was mortality follow-up at 70-days post bronchoscopy. 

 

Ethics statement 
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The Makerere University School of Medicine Research Ethics Committee, the 

Mulago Hospital Research and Ethics Committee, the Uganda National Council for 

Science and Technology, and the University of California San Francisco Committee on 

Human Research approved the protocol. Subjects provided written, informed consent. 

 

BAL processing and extraction 

 BAL was stored 1:2 vol:vol in RNAlater for stable storage and shipping from 

Uganda to San Francisco. RNA and DNA were extracted in parallel from whole BAL. 

Thawed BAL samples were centrifuged at high speed, the supernatant was removed 

and pellets were resuspended in sterile PBS, and centrifuged again at high speed, prior 

to extraction. Total DNA and RNA were extracted from whole BAL in parallel using an 

AllPrep DNA/RNA extraction kit (Qiagen) according to manufacturer’s instructions. 

 

DNA and RNA extraction 

Total DNA and RNA were extracted from whole BAL in parallel using an AllPrep 

DNA/RNA extraction kit [Qiagen, (18)]; RNA quality and purity were assessed as 

previously described (19). 

 

16S rRNA gene amplification and sequencing 

The V4-region of bacterial 16S rRNA gene was amplified using primers with 

barcodes for multiplex sequencing (Table S1). PCRs were performed in triplicate with 

parallel no-template control reactions in which no amplification product was observed. 

Triplicate PCR product was pooled and visualized on 2% agarose gel. If there were no 
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visible background bands >150bp, Agencourt AMPure XP System (Beckman Coulter) 

was used for PCR product purification, otherwise the product was purified using 

QIAquick Gel Extraction Kit (Qiagen). Quality of purified amplicon was confirmed using 

a Bioanalyzer and the Agilent DNA 1000 Kit (Agilent Technologies). Purified products 

were quantified using Qubit dsDNA HS Assay Kit (Life Technologies) and pooled 

equimolar for multiplex sequencing. Sequencing was performed using a MiSeq platform 

and MiSeq Control Software v2.2.0 (Illumina). 

A mock community composed of equal genomic concentration (2 ng per reaction) 

of Escherichia coli ATCC25922, Pseudomonas aeruginosa ATCC27853, 

Corynebacterium tuberculostearicum ATCC35692, Lactobacillus sakei ATCC15521, 

and L. rhamnosus ATCC53103 was used to monitor and standardize data between 

runs.  

 

Microbiome data processing 

251 bp paired-end reads were assembled using FLASh [Fast Length Adjustment 

of SHort reads(78)] with parameters: -r 251 -f 300 -s 30 -m 15. Assembled sequences 

were quality trimmed using QIIME software (71) with default settings except Phred 

quality threshold -q 30. Chimeras were removed using ChimeraSlayer (79). Each 

sample was rarefied 100 times to 100,000 reads in the R environment (80); the centroid 

of each sample distribution was subsequently used for analysis (n=182). Greengenes 

database May 2013 (81) was used to classify taxa; singleton OTUs were removed. 

 

Immune gene expression 
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Total RNA (0.5 ug) was reverse transcribed using the RT First Strand Kit, and 

cDNA gene expression was assessed on a custom RT Profiler PCR Array (both 

Qiagen). Real time PCR and detection was performed on QuantStudio 6 Flex (Thermo 

Fisher Scientific) by two-step cycling: 95°C for 10 minutes, then 40 cycles: 15 seconds 

at 95°C, 1 minute at 60°C. The custom PCR array included IFNγ, IFNα, TNFα, 

MUC5AC, IL-17A, IL-4, IL-5, IL-13, IL-33, OCEL1, CCL11, PADI4, IL-10, FOXP3, PD-1, 

TIM-3, CD45RO, CD2, CD39, and GAPDH; the last was used with the delta-delta CT 

method to normalize host immune gene expression (82). 

 

Metabolic profiling 

Metabolic profiles were generated from 100 uL of patient serum (n=30) by 

Ultrahigh Performance Liquid and Gas Chromatography-Tandem Mass Spectrometry 

(UPLC-MS/MS, GC-MS) at Metabolon according to a standard protocol. 

 

Microbial and statistical analyses 

 Microbial analyses were performed using QIIME software (71). Results were 

visualized using Emperor (83). Metagenomic predictions were generated using 

PICRUSt (60). Procrustes (“transform_coordinate_matrices.py” script, “-r 1000”) and 

Mantel tests (“compare_distance_matrices.py” script) were performed in QIIME using 

Bray Curtis dissimilarity [compositional dissimilarity based on taxon relative abundance 

(84)]. Statistical analyses (e.g., one-way ANOVA, Kruskal-Wallis, etc.) were performed 

in the R-environment. Dirichlet Multinomial Mixtures  and log-rank test were performed 

using the DirichletMultinomial (59) and survival packages, respectively. Permutational 
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Multivariate Analysis of Variance [PERMANOVA (55), vegan v.2.3.0, 1000 

permutations] and PCoA were performed using weighted UniFrac (56, 85) and 

Canberra dissimilarity measurements. PERMANOVA independently considers each 

factor (e.g., age, gender) against bacterial community beta-diversity variance, permuting 

data independently, and thus does not require false discovery correction. The resulting 

R2 provides the proportion of variation explained, e.g., a factor that has a R2=0.021 

explains 2% of the variation in community composition. 

 

Data and materials availability 

Raw sequencing data available via the SRA database under SRP077299.  
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SUPPLEMENTARY FIGURES AND TABLES 

Figure S1. 

 

Figure S1. Sequence read depth and observed species distributions. A. 

Distribution of sequence read depths across all 190 sequenced BAL samples. Read-

depth sub-sampling cut-off was set to 100,000 sequences per sample, resulting in the 

exclusion of eight samples (with insufficient read depth) from further analyses. B. 

Rarefaction curves showing total observed species per sample across multiple read 

depths, indicates that 100,000 reads results in good community coverage, 

demonstrated by curves approaching a plateau. 
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Figure S2. 

 

Figure S2. Clinical and demographic factors are significantly associated with 

community composition. PCoAs comparing community composition of the lower 

airways to A. gender (PERMANOVA, R2=0.021, p<0.017), B. alcohol ever consumed 

(PERMANOVA, R2=0.015, p<0.045), C. Aspergillus positive culture (PERMANOVA, 

R2=0.038, p<0.004), and D. Mycobacterium positive culture (PERMANOVA, R2=0.027, 

p<0.021). 
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Figure S3. 

 

Figure S3. Microbial community states are associated with mortality outcomes. 

Kaplan-Meier curves comparing mortality among microbial states from enrollment for 70 

days (p>0.05). 
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Table S1. Primer sequences 

Primer Name Primer Sequence 

515F_w_adapter 5'-AATGATACGGCGACCACCGAGATCTACAC-TATGGTAATT-
GTGTGCCAGCMGCCGCGGTAA -3' 

806R_w_adapter 5'-CAAGCAGAAGACGGCATACGAGAT-XXXXXXXXXXXX-
AGTCAGTCAG-CCGGACTACHVGGGTWTCTAAT-3'a 

a 12 "X" represents 12-bp Golay barcode   
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Table S2. Summary of demographic variables. 

Variable 
Name Samples (n) 

Yes | No  
Or 

Range  
[min-max (med)] 

Statistical 
Test across 

MCS 
MCS1 MCS2A MCS2B p-

value Sig. 

Pneumocystis 
positive 

(diagnosis by 
BAL 

microscopy) 

182 6 | 176 (y|n)  χ² test 1 | 37 3 | 36 2 | 65 0.43  

Mycobacteria 
culture 
positive 

182 41 | 141 (y|n)  χ² test 23 | 15 32 | 7 58 | 9 0.006 ** 

Aspergillus 
culture 
positive 

157 15 | 142 (y|n)  χ² test 1 | 37 4 | 31 9 | 41 0.07 † 

Pulmonary 
Kaposi's 
Sarcoma 

182 14 | 168 (y|n)  χ² test 2 | 36 2 | 37 7 | 60 0.49  

Age 182 19.1 - 62.6 (34.1) One-way 
ANOVA 36.5 35.1 35.6 0.84  

Gender 182 110 | 72 (F|M)  χ² test 23 | 15 28 | 11 36 | 31 0.19  

Clinical score 
at admission 133 

1 | 4 | 59 | 39 | 28 
| 2 (Normal 
|Unaffected| 

Ambulatory| <50% 
in bed| >50% in 
bed| Bed bound 

 χ² test 0 | 1 | 11 
| 4 | 5 | 0 

0 | 2 | 16 
| 5 | 6 | 0 

1 | 1 | 
25 | 14 | 

8 | 2 
0.83  

Temperature 
at admission 

(Celsius) 
182 33.7 - 39.9 (36.7) One-way 

ANOVA 36.7 37.1 36.7 0.25  

Heart rate at 
admission 182 48 - 165 (101.5) One-way 

ANOVA 101.1 107.6 97.2 0.06 † 

Respiratory 
rate at 

admission 
(breaths/ 
minute) 

182 18 - 64 (30) One-way 
ANOVA 30.5 32.9 30.1 0.19  

Oxygen 
saturation at 
admission 

182 76 - 99 (96) One-way 
ANOVA 94.3 94.6 94.7 0.90  

Reported 
fevers, chills, 
night sweats 

182 159 | 23 (y|n)  χ² test 31 | 7 38 | 1 58 | 9 0.08 † 

How long 
fevers 

(weeks) 
159 1 - 24 (4) One-way 

ANOVA 5.0 4.4 5.0 0.8  

Weight loss at 
admission 182 170 | 12 (y|n)  χ² test 36 | 2 39 | 0 58 | 9 0.03 * 

Amount of 
weight loss 170 38 | 132  

(< 5kg | >= 5kg)  χ² test 11 | 25 9 | 30 12 | 46 0.55  

How long 
cough 

(weeks) 
182 1 - 24 (4) One-way 

ANOVA 6.2 7.0 6.4 0.76  

Coughing 
sputum at 
admission 

182 178 | 4 (y|n)  χ² test 38 | 0 39 | 0 64 | 3 0.17  
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Variable 
Name Samples (n) 

Yes | No  
Or 

Range  
[min-max (med)] 

Statistical 
Test across 

MCS 
MCS1 MCS2A MCS2B p-

value Sig. 

How long 
coughing 
sputum 
(weeks) 

178 1 - 24 (3) One-way 
ANOVA 4.3 5.6 4.5 0.33  

Color of 
sputum at 
admission 

178 
93 | 85  

(White or clear | 
Discolored) 

 χ² test 20 | 18 19 | 20 34 | 30 0.90  

Blood in 
sputum at 
admission 

178 35 | 143 (y|n)  χ² test 7 | 31 10 | 29 13 | 51 0.72  

Dyspnea at 
admission 182 82 | 100 (y|n)  χ² test 22 | 16 19 | 20 29 | 38 0.35  
How long 
dyspnea 
(weeks) 

82 1 - 24 (4) One-way 
ANOVA 4.7 4.7 4.2 0.9  

Severity of 
dyspnea 82 

42 | 40  
(Only exercise |     

At rest) 
 χ² test 10 | 12 10 | 9 15 | 14 0.87  

Chest pain at 
admission 182 116 | 66 (y|n)  χ² test 24 | 14 28 | 11 42 | 25 0.61  
How long 
chest pain 
(weeks) 

116 1 - 24 (2.5) One-way 
ANOVA 4.1 3.7 5.1 0.39  

Wheeze at 
admission 182 39 | 143 (y|n)  χ² test 10 | 28 10 | 29 13 | 54 0.64  
How long 
wheeze 
(weeks) 

39 1 - 16 (3) One-way 
ANOVA 3.7 4.9 3.7 0.67  

On 
Pneumocystis 

prophylaxis 
121 94 | 27 (y|n)  χ² test 18 | 9 22 | 3 30 | 10 0.19  

On 
antiretrovirals 121 39 | 82 (y|n)  χ² test 8 | 19 8 | 17 13 | 27 0.97  

CD4 count 179 1 - 697 (71) One-way 
ANOVA 179 119 134 0.19  

Previous 
diagnosis TB 182 14 | 168 (y|n)  χ² test 1 | 37 5 | 34 4 | 63 0.19  
Smoked >99 
cigarettes in 

lifetime 
182 41 | 141 (y|n)  χ² test 10 | 28 4 | 35 19 | 48 0.09 † 

Alcohol ever 182 113 | 69 (y|n)  χ² test 20 | 18 27 | 12 44 | 23 0.27  

Last known 
vital status 182 143 | 39 

(live|dead)  χ² test 32 | 6 32 | 7 51 | 16 0.56  

Vital status 30 
days post 

bronchoscopy 
182 163 | 19 

(live|dead)  χ² test 35 | 3 35 | 4 58 | 9 0.67  

Vital status 70 
days post 

bronchoscopy 
182 148 | 34 

(live|dead)  χ² test 33 | 5 33 | 6 52 | 15 0.44  

Reported 
sulfamethoxa

zole-
trimethoprim 
within last 2 

weeks 

178 137 | 41 (y|n)  χ² test 30 | 7 30 | 6 48 | 19 0..32  

Reported 
penicillin 

within last 2 
weeks 

178 83 | 95 (y|n)  χ² test 17 | 20 16 | 20 31 | 36 0.98  
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Variable 
Name Samples (n) 

Yes | No  
Or 

Range  
[min-max (med)] 

Statistical 
Test across 

MCS 
MCS1 MCS2A MCS2B p-

value Sig. 

Reported 
ceftriaxone 
within last 2 

weeks 

178 137 | 41 (y|n)  χ² test 32 | 6 25 | 11 54 | 13 0.26  

Reported 
quinolone 

within last 2 
weeks 

172 13 | 159 (y|n)  χ² test 3 | 34 3 | 30 7 | 59 0.91  

Reported 
macrolide 

within last 2 
weeks 

178 50 | 128 (y|n)  χ² test 12 | 25 11 | 25 16 | 51 0.59  

Sulfamethoxa
zole-

trimethoprim 
at 

bronchoscopy 

177 103 | 74 (y|n)  χ² test 19 | 18 25 | 11 33 | 34 0.13  

Penicillin at 
bronchoscopy 177 46 | 131 (y|n)  χ² test 8 | 29 9 | 27 18 | 49 0.84  
Ceftriaxone at 
bronchoscopy 174 54 | 120 (y|n)  χ² test 1 | 35 11 | 25 29 | 36 6.3x1

0-5 *** 

Quinolone at 
bronchoscopy 170 7 | 163 (y|n)  χ² test 3 | 34 2 | 31 2 | 63 0.53  
Macrolide at 

bronchoscopy 174 27 | 147 (y|n)  χ² test 4 | 33 5 | 31 11 | 54 0.70   

Significance: † p<0.1, * p<0.05, ** p<0.01, *** p<0.001             
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Table S3. PICRUSt predicted pathways enriched in each microbial state. 

Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

MCS1 Apoptosis Cell Growth and Death Cellular Processes 9.30E-22 3.00E-19 

 Cell cycle - Caulobacter Cell Growth and Death Cellular Processes 1.60E-15 5.30E-13 

 Meiosis - yeast Cell Growth and Death Cellular Processes 2.80E-11 9.30E-09 

 p53 signaling pathway Cell Growth and Death Cellular Processes 3.10E-18 1.00E-15 

 Bacterial chemotaxis Cell Motility Cellular Processes 5.50E-19 1.80E-16 

 Bacterial motility proteins Cell Motility Cellular Processes 9.90E-19 3.20E-16 

 Cytoskeleton proteins Cell Motility Cellular Processes 3.30E-19 1.10E-16 

 Flagellar assembly Cell Motility Cellular Processes 1.20E-18 3.80E-16 

 Endocytosis Transport and Catabolism Cellular Processes 3.80E-09 1.30E-06 

 Peroxisome Transport and Catabolism Cellular Processes 7.70E-18 2.50E-15 

 ABC transporters Membrane Transport Environmental 
Information Processing 4.30E-20 1.40E-17 

 Bacterial secretion system Membrane Transport Environmental 
Information Processing 5.20E-19 1.70E-16 

 Secretion system Membrane Transport Environmental 
Information Processing 7.70E-21 2.50E-18 

 Transporters Membrane Transport Environmental 
Information Processing 1.10E-21 3.60E-19 

 
MAPK signaling pathway 

– yeast Signal Transduction Environmental 
Information Processing 6.30E-18 2.10E-15 

 
Phosphatidylinositol 

signaling system Signal Transduction Environmental 
Information Processing 1.10E-21 3.50E-19 

 Two-component system Signal Transduction Environmental 
Information Processing 2.30E-20 7.40E-18 

 Bacterial toxins Signaling Molecules and 
Interaction 

Environmental 
Information Processing 7.30E-12 2.40E-09 

 Cellular antigens Signaling Molecules and 
Interaction 

Environmental 
Information Processing 3.10E-22 1.00E-19 

 
Chaperones and folding 

catalysts 
Folding, Sorting and 

Degradation 
Genetic Information 

Processing 1.40E-19 4.70E-17 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Proteasome Folding, Sorting and 
Degradation 

Genetic Information 
Processing 1.60E-16 5.30E-14 

 Protein export Folding, Sorting and 
Degradation 

Genetic Information 
Processing 4.00E-06 1.30E-03 

 
Protein processing in 

endoplasmic reticulum 
Folding, Sorting and 

Degradation 
Genetic Information 

Processing 1.50E-13 4.90E-11 

 RNA degradation Folding, Sorting and 
Degradation 

Genetic Information 
Processing 9.90E-18 3.20E-15 

 Sulfur relay system Folding, Sorting and 
Degradation 

Genetic Information 
Processing 4.20E-19 1.40E-16 

 Ubiquitin system Folding, Sorting and 
Degradation 

Genetic Information 
Processing 7.80E-15 2.50E-12 

 Base excision repair Replication and Repair Genetic Information 
Processing 1.40E-17 4.50E-15 

 Chromosome Replication and Repair Genetic Information 
Processing 8.00E-18 2.60E-15 

 
DNA repair and 

recombination proteins Replication and Repair Genetic Information 
Processing 7.00E-15 2.30E-12 

 DNA replication Replication and Repair Genetic Information 
Processing 1.80E-05 6.00E-03 

 DNA replication proteins Replication and Repair Genetic Information 
Processing 1.50E-06 5.00E-04 

 Mismatch repair Replication and Repair Genetic Information 
Processing 1.60E-05 5.40E-03 

 
Non-homologous end-

joining Replication and Repair Genetic Information 
Processing 1.90E-18 6.20E-16 

 Nucleotide excision repair Replication and Repair Genetic Information 
Processing 7.60E-09 2.50E-06 

 Transcription factors Transcription Genetic Information 
Processing 4.20E-22 1.40E-19 

 Transcription machinery Transcription Genetic Information 
Processing 8.90E-20 2.90E-17 

 Ribosome biogenesis Translation Genetic Information 
Processing 1.50E-18 4.80E-16 

 
Ribosome biogenesis in 

eukaryotes Translation Genetic Information 
Processing 1.40E-17 4.50E-15 

 Bladder cancer Cancers Human Diseases 6.70E-13 2.20E-10 

 Colorectal cancer Cancers Human Diseases 3.10E-18 1.00E-15 

 Pathways in cancer Cancers Human Diseases 1.40E-19 4.50E-17 

 Prostate cancer Cancers Human Diseases 2.50E-15 8.00E-13 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Renal cell carcinoma Cancers Human Diseases 1.10E-18 3.70E-16 

 Small cell lung cancer Cancers Human Diseases 3.00E-18 9.80E-16 

 
Hypertrophic 

cardiomyopathy (HCM) Cardiovascular Diseases Human Diseases 3.90E-16 1.30E-13 

 Viral myocarditis Cardiovascular Diseases Human Diseases 3.10E-18 1.00E-15 

 Primary immunodeficiency Immune System Diseases Human Diseases 3.30E-13 1.10E-10 

 
Systemic lupus 
erythematosus Immune System Diseases Human Diseases 2.30E-17 7.40E-15 

 African trypanosomiasis Infectious Diseases Human Diseases 2.50E-18 8.30E-16 

 

Chagas disease 
(American 

trypanosomiasis) 
Infectious Diseases Human Diseases 6.10E-18 2.00E-15 

 

Epithelial cell signaling in 
Helicobacter pylori 

infection 
Infectious Diseases Human Diseases 1.10E-12 3.60E-10 

 Influenza A Infectious Diseases Human Diseases 3.10E-18 1.00E-15 

 Pertussis Infectious Diseases Human Diseases 2.80E-18 9.20E-16 

 Toxoplasmosis Infectious Diseases Human Diseases 3.10E-18 1.00E-15 

 Tuberculosis Infectious Diseases Human Diseases 4.20E-15 1.40E-12 

 Vibrio cholerae infection Infectious Diseases Human Diseases 1.50E-13 4.90E-11 

 
Vibrio cholerae 

pathogenic cycle Infectious Diseases Human Diseases 4.00E-19 1.30E-16 

 Type I diabetes mellitus Metabolic Diseases Human Diseases 7.50E-05 2.50E-02 

 Type II diabetes mellitus Metabolic Diseases Human Diseases 5.70E-18 1.90E-15 

 Alzheimer's disease Neurodegenerative 
Diseases Human Diseases 1.10E-18 3.60E-16 

 
Amyotrophic lateral 

sclerosis (ALS) 
Neurodegenerative 

Diseases Human Diseases 2.00E-18 6.50E-16 

 Huntington's disease Neurodegenerative 
Diseases Human Diseases 6.50E-21 2.10E-18 

 Parkinson's disease Neurodegenerative 
Diseases Human Diseases 3.80E-19 1.30E-16 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Prion diseases Neurodegenerative 
Diseases Human Diseases 4.20E-16 1.40E-13 

 
Alanine, aspartate, and 
glutamate metabolism Amino Acid Metabolism Metabolism 1.30E-18 4.30E-16 

 
Amino acid related 

enzymes Amino Acid Metabolism Metabolism 1.10E-16 3.80E-14 

 
Arginine and proline 

metabolism Amino Acid Metabolism Metabolism 7.50E-19 2.50E-16 

 
Cysteine and methionine 

metabolism Amino Acid Metabolism Metabolism 2.10E-17 6.80E-15 

 
Glycine, serine, and 

threonine metabolism Amino Acid Metabolism Metabolism 1.50E-18 5.00E-16 

 Histidine metabolism Amino Acid Metabolism Metabolism 9.00E-18 2.90E-15 

 Lysine biosynthesis Amino Acid Metabolism Metabolism 1.70E-17 5.60E-15 

 Lysine degradation Amino Acid Metabolism Metabolism 2.00E-18 6.60E-16 

 Phenylalanine metabolism Amino Acid Metabolism Metabolism 1.30E-18 4.30E-16 

 

Phenylalanine, tyrosine, 
and tryptophan 

biosynthesis 
Amino Acid Metabolism Metabolism 2.70E-17 8.90E-15 

 Tryptophan metabolism Amino Acid Metabolism Metabolism 1.30E-18 4.40E-16 

 Tyrosine metabolism Amino Acid Metabolism Metabolism 2.80E-19 9.10E-17 

 
Valine, leucine, and 

isoleucine biosynthesis Amino Acid Metabolism Metabolism 6.00E-21 2.00E-18 

 
Valine, leucine, and 

isoleucine degradation Amino Acid Metabolism Metabolism 4.20E-18 1.40E-15 

 beta-Lactam resistance Biosynthesis of Other 
Secondary Metabolites Metabolism 5.60E-15 1.80E-12 

 Betalain biosynthesis Biosynthesis of Other 
Secondary Metabolites Metabolism 1.10E-07 3.50E-05 

 Caffeine metabolism Biosynthesis of Other 
Secondary Metabolites Metabolism 1.10E-09 3.70E-07 

 Flavonoid biosynthesis Biosynthesis of Other 
Secondary Metabolites Metabolism 1.20E-13 3.90E-11 

 Isoflavonoid biosynthesis Biosynthesis of Other 
Secondary Metabolites Metabolism 5.30E-05 1.80E-02 

 
Isoquinoline alkaloid 

biosynthesis 
Biosynthesis of Other 

Secondary Metabolites Metabolism 6.40E-21 2.10E-18 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Novobiocin biosynthesis Biosynthesis of Other 
Secondary Metabolites Metabolism 5.60E-20 1.80E-17 

 

Penicillin and 
cephalosporin 
biosynthesis 

Biosynthesis of Other 
Secondary Metabolites Metabolism 1.10E-17 3.70E-15 

 
Phenylpropanoid 

biosynthesis 
Biosynthesis of Other 

Secondary Metabolites Metabolism 7.70E-17 2.50E-14 

 

Stilbenoid, 
diarylheptanoid, and 
gingerol biosynthesis 

Biosynthesis of Other 
Secondary Metabolites Metabolism 9.30E-15 3.10E-12 

 Streptomycin biosynthesis Biosynthesis of Other 
Secondary Metabolites Metabolism 4.20E-15 1.40E-12 

 

Tropane, piperidine, and 
pyridine alkaloid 

biosynthesis 

Biosynthesis of Other 
Secondary Metabolites Metabolism 1.30E-20 4.20E-18 

 

Amino sugar and 
nucleotide sugar 

metabolism 
Carbohydrate Metabolism Metabolism 8.10E-12 2.70E-09 

 
Ascorbate and aldarate 

metabolism Carbohydrate Metabolism Metabolism 2.90E-17 9.60E-15 

 Butanoate metabolism Carbohydrate Metabolism Metabolism 2.70E-19 8.80E-17 

 
C5-Branched dibasic acid 

metabolism Carbohydrate Metabolism Metabolism 3.60E-19 1.20E-16 

 
Citrate cycle  
(TCA cycle) Carbohydrate Metabolism Metabolism 9.00E-19 2.90E-16 

 
Fructose and mannose 

metabolism Carbohydrate Metabolism Metabolism 9.20E-14 3.00E-11 

 
Glycolysis / 

Gluconeogenesis Carbohydrate Metabolism Metabolism 4.90E-19 1.60E-16 

 
Glyoxylate and 

dicarboxylate metabolism Carbohydrate Metabolism Metabolism 2.50E-18 8.20E-16 

 
Inositol phosphate 

metabolism Carbohydrate Metabolism Metabolism 5.30E-20 1.70E-17 

 
Pentose and glucuronate 

interconversions Carbohydrate Metabolism Metabolism 5.20E-18 1.70E-15 

 
Pentose phosphate 

pathway Carbohydrate Metabolism Metabolism 3.30E-18 1.10E-15 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Propanoate metabolism Carbohydrate Metabolism Metabolism 1.80E-19 6.00E-17 

 Pyruvate metabolism Carbohydrate Metabolism Metabolism 2.50E-21 8.40E-19 

 
Starch and sucrose 

metabolism Carbohydrate Metabolism Metabolism 1.10E-09 3.50E-07 

 
Carbon fixation in 

photosynthetic organisms Energy Metabolism Metabolism 5.60E-12 1.80E-09 

 
Carbon fixation pathways 

in prokaryotes Energy Metabolism Metabolism 1.00E-18 3.30E-16 

 Methane metabolism Energy Metabolism Metabolism 2.50E-17 8.20E-15 

 Nitrogen metabolism Energy Metabolism Metabolism 3.70E-19 1.20E-16 

 Oxidative phosphorylation Energy Metabolism Metabolism 4.80E-19 1.60E-16 

 Sulfur metabolism Energy Metabolism Metabolism 1.20E-18 4.00E-16 

 Cytochrome P450 Enzyme Families Metabolism 2.20E-10 7.10E-08 

 Peptidases Enzyme Families Metabolism 3.30E-18 1.10E-15 

 Protein kinases Enzyme Families Metabolism 2.40E-21 7.80E-19 

 Glycosyltransferases Glycan Biosynthesis and 
Metabolism Metabolism 4.90E-18 1.60E-15 

 
Lipopolysaccharide 

biosynthesis 
Glycan Biosynthesis and 

Metabolism Metabolism 2.20E-19 7.10E-17 

 
Lipopolysaccharide 

biosynthesis proteins 
Glycan Biosynthesis and 

Metabolism Metabolism 8.40E-22 2.70E-19 

 
Peptidoglycan 
biosynthesis 

Glycan Biosynthesis and 
Metabolism Metabolism 5.80E-06 1.90E-03 

 
alpha-Linolenic acid 

metabolism Lipid Metabolism Metabolism 1.20E-17 4.10E-15 

 
Arachidonic acid 

metabolism Lipid Metabolism Metabolism 1.10E-20 3.70E-18 

 
Biosynthesis of 

unsaturated fatty acids Lipid Metabolism Metabolism 1.10E-18 3.70E-16 

 Ether lipid metabolism Lipid Metabolism Metabolism 1.50E-14 5.00E-12 

 Fatty acid biosynthesis Lipid Metabolism Metabolism 4.00E-21 1.30E-18 

 Fatty acid metabolism Lipid Metabolism Metabolism 2.30E-18 7.40E-16 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Glycerolipid metabolism Lipid Metabolism Metabolism 5.10E-22 1.70E-19 

 
Glycerophospholipid 

metabolism Lipid Metabolism Metabolism 2.10E-18 7.00E-16 

 Linoleic acid metabolism Lipid Metabolism Metabolism 1.30E-18 4.30E-16 

 Lipid biosynthesis proteins Lipid Metabolism Metabolism 5.90E-18 1.90E-15 

 
Primary bile acid 

biosynthesis Lipid Metabolism Metabolism 4.80E-17 1.60E-14 

 Steroid biosynthesis Lipid Metabolism Metabolism 3.20E-15 1.10E-12 

 
Steroid hormone 

biosynthesis Lipid Metabolism Metabolism 3.80E-18 1.20E-15 

 

Synthesis and 
degradation of ketone 

bodies 
Lipid Metabolism Metabolism 6.60E-20 2.20E-17 

 Biotin metabolism Metabolism of Cofactors 
and Vitamins Metabolism 3.70E-18 1.20E-15 

 Folate biosynthesis Metabolism of Cofactors 
and Vitamins Metabolism 8.50E-18 2.80E-15 

 Lipoic acid metabolism Metabolism of Cofactors 
and Vitamins Metabolism 2.60E-19 8.50E-17 

 
Nicotinate and 

nicotinamide metabolism 
Metabolism of Cofactors 

and Vitamins Metabolism 1.30E-19 4.40E-17 

 One carbon pool by folate Metabolism of Cofactors 
and Vitamins Metabolism 8.80E-16 2.90E-13 

 
Pantothenate and CoA 

biosynthesis 
Metabolism of Cofactors 

and Vitamins Metabolism 1.00E-15 3.30E-13 

 
Porphyrin and chlorophyll 

metabolism 
Metabolism of Cofactors 

and Vitamins Metabolism 4.10E-19 1.30E-16 

 Retinol metabolism Metabolism of Cofactors 
and Vitamins Metabolism 8.80E-18 2.90E-15 

 Riboflavin metabolism Metabolism of Cofactors 
and Vitamins Metabolism 2.30E-21 7.60E-19 

 Thiamine metabolism Metabolism of Cofactors 
and Vitamins Metabolism 1.40E-13 4.60E-11 

 

Ubiquinone and other 
terpenoid-quinone 

biosynthesis 

Metabolism of Cofactors 
and Vitamins Metabolism 3.10E-22 1.00E-19 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Vitamin B6 metabolism Metabolism of Cofactors 
and Vitamins Metabolism 1.30E-17 4.40E-15 

 beta-Alanine metabolism Metabolism of Other Amino 
Acids Metabolism 1.70E-18 5.70E-16 

 
Cyanoamino acid 

metabolism 
Metabolism of Other Amino 

Acids Metabolism 1.50E-18 4.80E-16 

 
D-Arginine and D-

ornithine metabolism 
Metabolism of Other Amino 

Acids Metabolism 9.10E-07 3.00E-04 

 
D-Glutamine and D-

glutamate metabolism 
Metabolism of Other Amino 

Acids Metabolism 5.40E-16 1.80E-13 

 Glutathione metabolism Metabolism of Other Amino 
Acids Metabolism 3.00E-19 9.90E-17 

 
Phosphonate and 

phosphinate metabolism 
Metabolism of Other Amino 

Acids Metabolism 1.50E-22 4.90E-20 

 
Selenocompound 

metabolism 
Metabolism of Other Amino 

Acids Metabolism 2.00E-15 6.60E-13 

 
Taurine and hypotaurine 

metabolism 
Metabolism of Other Amino 

Acids Metabolism 5.70E-18 1.90E-15 

 

Biosynthesis of 
siderophore group 

nonribosomal peptides 

Metabolism of Terpenoids 
and Polyketides Metabolism 3.00E-19 9.80E-17 

 
Biosynthesis of type II 

polyketide products 
Metabolism of Terpenoids 

and Polyketides Metabolism 1.10E-16 3.50E-14 

 Carotenoid biosynthesis Metabolism of Terpenoids 
and Polyketides Metabolism 1.40E-15 4.70E-13 

 Geraniol degradation Metabolism of Terpenoids 
and Polyketides Metabolism 7.10E-18 2.30E-15 

 
Limonene and pinene 

degradation 
Metabolism of Terpenoids 

and Polyketides Metabolism 9.10E-19 3.00E-16 

 
Polyketide sugar unit 

biosynthesis 
Metabolism of Terpenoids 

and Polyketides Metabolism 6.20E-11 2.00E-08 

 Prenyltransferases Metabolism of Terpenoids 
and Polyketides Metabolism 4.90E-10 1.60E-07 

 
Terpenoid backbone 

biosynthesis 
Metabolism of Terpenoids 

and Polyketides Metabolism 8.10E-14 2.60E-11 



65 
 

Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Tetracycline biosynthesis Metabolism of Terpenoids 
and Polyketides Metabolism 2.80E-24 9.10E-22 

 Purine metabolism Nucleotide Metabolism Metabolism 9.50E-16 3.10E-13 

 
Aminobenzoate 

degradation 

Xenobiotics 
Biodegradation and 

Metabolism 
Metabolism 6.10E-19 2.00E-16 

 Atrazine degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 9.20E-19 3.00E-16 

 Benzoate degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 3.00E-19 9.70E-17 

 Bisphenol degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 4.30E-18 1.40E-15 

 Caprolactam degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 5.80E-19 1.90E-16 

 
Chloroalkane and 

chloroalkene degradation 

Xenobiotics 
Biodegradation and 

Metabolism 
Metabolism 7.10E-20 2.30E-17 

 

Chlorocyclohexane and 
chlorobenzene 

degradation 

Xenobiotics 
Biodegradation and 

Metabolism 
Metabolism 7.50E-18 2.50E-15 

 Dioxin degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 7.30E-18 2.40E-15 

 
Drug metabolism - 
cytochrome P450 

Xenobiotics 
Biodegradation and 

Metabolism 
Metabolism 1.10E-18 3.70E-16 

 
Fluorobenzoate 

degradation 

Xenobiotics 
Biodegradation and 

Metabolism 
Metabolism 2.10E-17 6.90E-15 

 
Metabolism of xenobiotics 

by cytochrome P450 

Xenobiotics 
Biodegradation and 

Metabolism 
Metabolism 7.80E-19 2.60E-16 

 Naphthalene degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 1.40E-19 4.50E-17 

 Nitrotoluene degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 6.30E-11 2.10E-08 

 
Polycyclic aromatic 

hydrocarbon degradation 

Xenobiotics 
Biodegradation and 

Metabolism 
Metabolism 1.10E-16 3.50E-14 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 Styrene degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 6.70E-19 2.20E-16 

 Toluene degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 1.50E-17 4.90E-15 

 Xylene degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 2.00E-16 6.50E-14 

 
Cardiac muscle 

contraction Circulatory System Organismal Systems 3.90E-19 1.30E-16 

 Mineral absorption Digestive System Organismal Systems 1.50E-12 4.90E-10 

 
Adipocytokine signaling 

pathway Endocrine System Organismal Systems 2.30E-16 7.40E-14 

 GnRH signaling pathway Endocrine System Organismal Systems 3.80E-09 1.30E-06 

 Insulin signaling pathway Endocrine System Organismal Systems 2.00E-14 6.50E-12 

 Melanogenesis Endocrine System Organismal Systems 4.20E-08 1.40E-05 

 PPAR signaling pathway Endocrine System Organismal Systems 1.10E-18 3.50E-16 

 
Progesterone-mediated 

oocyte maturation Endocrine System Organismal Systems 2.30E-15 7.70E-13 

 Renin-angiotensin system Endocrine System Organismal Systems 1.60E-16 5.40E-14 

 Circadian rhythm - plant Environmental Adaptation Organismal Systems 3.20E-15 1.10E-12 

 Plant-pathogen interaction Environmental Adaptation Organismal Systems 1.30E-18 4.30E-16 

 
Proximal tubule 

bicarbonate reclamation Excretory System Organismal Systems 2.20E-17 7.30E-15 

 
Antigen processing and 

presentation Immune System Organismal Systems 2.30E-15 7.70E-13 

 
Fc gamma R-mediated 

phagocytosis Immune System Organismal Systems 3.80E-09 1.30E-06 

 Glutamatergic synapse Nervous System Organismal Systems 2.30E-20 7.60E-18 

 Cell division Cellular Processes and 
Signaling Unclassified 7.20E-20 2.40E-17 

 Cell motility and secretion Cellular Processes and 
Signaling Unclassified 6.00E-19 2.00E-16 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 
Inorganic ion transport 

and metabolism 
Cellular Processes and 

Signaling Unclassified 1.00E-18 3.30E-16 

 

Membrane and 
intracellular structural 

molecules 

Cellular Processes and 
Signaling Unclassified 4.40E-20 1.40E-17 

 
Other ion-coupled 

transporters 
Cellular Processes and 

Signaling Unclassified 5.10E-19 1.70E-16 

 Other transporters Cellular Processes and 
Signaling Unclassified 1.20E-18 4.00E-16 

 Pores ion channels Cellular Processes and 
Signaling Unclassified 2.80E-19 9.20E-17 

 
Signal transduction 

mechanisms 
Cellular Processes and 

Signaling Unclassified 9.20E-22 3.00E-19 

 
Protein folding, and 

associated processing 
Genetic Information 

Processing Unclassified 1.70E-18 5.50E-16 

 

Replication, 
recombination, and repair 

proteins 

Genetic Information 
Processing Unclassified 3.20E-17 1.00E-14 

 
Transcription related 

proteins 
Genetic Information 

Processing Unclassified 1.90E-21 6.10E-19 

 Translation proteins Genetic Information 
Processing Unclassified 5.40E-17 1.80E-14 

 Amino acid metabolism Metabolism Unclassified 2.00E-17 6.40E-15 

 

Biosynthesis and 
biodegradation of 

secondary metabolites 
Metabolism Unclassified 5.70E-19 1.90E-16 

 Carbohydrate metabolism Metabolism Unclassified 5.10E-20 1.70E-17 

 Energy metabolism Metabolism Unclassified 5.00E-19 1.70E-16 

 
Glycan biosynthesis and 

metabolism Metabolism Unclassified 2.70E-18 8.80E-16 

 Lipid metabolism Metabolism Unclassified 9.70E-20 3.20E-17 

 
Metabolism of cofactors 

and vitamins Metabolism Unclassified 1.10E-18 3.60E-16 

 Others Metabolism Unclassified 2.30E-20 7.50E-18 

 Function unknown Poorly Characterized Unclassified 4.10E-19 1.30E-16 

 
General function 
prediction only Poorly Characterized Unclassified 2.30E-18 7.70E-16 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

MCS2A Phosphotransferase 
system (PTS) Membrane Transport Environmental 

Information Processing 4.40E-11 1.40E-08 

 Ion channels Signaling Molecules and 
Interaction 

Environmental 
Information Processing 3.10E-14 1.00E-11 

 RNA polymerase Transcription Genetic Information 
Processing 3.20E-08 1.00E-05 

 RNA transport Translation Genetic Information 
Processing 1.50E-19 5.00E-17 

 
Bacterial invasion of 

epithelial cells Infectious Diseases Human Diseases 1.40E-05 4.40E-03 

 
Staphylococcus aureus 

infection Infectious Diseases Human Diseases 4.80E-18 1.60E-15 

 
Flavone and flavonol 

biosynthesis 
Biosynthesis of Other 

Secondary Metabolites Metabolism 4.10E-13 1.30E-10 

 Galactose metabolism Carbohydrate Metabolism Metabolism 9.80E-10 3.20E-07 

 D-Alanine metabolism Metabolism of Other Amino 
Acids Metabolism 5.60E-08 1.90E-05 

 Ethylbenzene degradation 
Xenobiotics 

Biodegradation and 
Metabolism 

Metabolism 4.10E-17 1.30E-14 

 
Carbohydrate digestion 

and absorption Digestive System Organismal Systems 1.00E-11 3.40E-09 

 
RIG-I-like receptor 
signaling pathway Immune System Organismal Systems 1.10E-04 3.60E-02 

 Sporulation Cellular Processes and 
Signaling Unclassified 2.80E-11 9.10E-09 

 Nucleotide metabolism Metabolism Unclassified 1.50E-05 4.90E-03 

MCS2B Lysosome Transport and Catabolism Cellular Processes 1.00E-18 3.40E-16 

 Amoebiasis Infectious Diseases Human Diseases 3.30E-11 1.10E-08 

 
Glycosaminoglycan 

degradation 
Glycan Biosynthesis and 

Metabolism Metabolism 6.20E-20 2.00E-17 

 

Glycosphingolipid 
biosynthesis - ganglio 

series 

Glycan Biosynthesis and 
Metabolism Metabolism 1.90E-20 6.30E-18 
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Enriched 
Group Pathway Sub Pathway Super Pathway p-value Bonferroni  

p-value 

 

Glycosphingolipid 
biosynthesis - globo 

series 

Glycan Biosynthesis and 
Metabolism Metabolism 2.10E-20 6.80E-18 

 N-Glycan biosynthesis Glycan Biosynthesis and 
Metabolism Metabolism 3.60E-18 1.20E-15 

 Other glycan degradation Glycan Biosynthesis and 
Metabolism Metabolism 1.00E-16 3.40E-14 

 
Various types of N-glycan 

biosynthesis 
Glycan Biosynthesis and 

Metabolism Metabolism 2.50E-05 8.10E-03 

 Sphingolipid metabolism Lipid Metabolism Metabolism 3.70E-17 1.20E-14 

 Zeatin biosynthesis Metabolism of Terpenoids 
and Polyketides Metabolism 1.40E-18 4.50E-16 

 
Protein digestion and 

absorption Digestive System Organismal Systems 1.30E-20 4.40E-18 

 
NOD-like receptor 
signaling pathway Immune System Organismal Systems 2.20E-15 7.10E-13 

  Restriction enzyme Genetic Information 
Processing Unclassified 4.80E-18 1.60E-15 
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Table S4. Metabolites enriched in each microbial state.  

Enriched 
group Metabolite Super 

pathway Sub pathway p-
value 

MCS1 4-guanidinobutanoate Amino Acid Guanidino and Acetamido 
Metabolism 0.008 

 cis-urocanate Amino Acid Histidine Metabolism 0.005 

 trans-urocanate Amino Acid Histidine Metabolism 0.004 

 xanthurenate Amino Acid Tryptophan Metabolism 0.048 

 glucose Carbohydrate Glycolysis, Gluconeogenesis, 
and Pyruvate Metabolism 0.002 

 1-methylnicotinamide Cofactors and 
Vitamins 

Nicotinate and Nicotinamide 
Metabolism 0.007 

 biopterin Cofactors and 
Vitamins Tetrahydrobiopterin Metabolism 0.043 

 15-HETE Lipid Eicosanoid 0.016 

 leukotriene B4 Lipid Eicosanoid 0.02 

 eicosanodioate Lipid Fatty Acid, Dicarboxylate 0.048 

 maleate (cis-Butenedioate) Lipid Fatty Acid, Dicarboxylate 0.044 

 13-HODE + 9-HODE Lipid Fatty Acid, Monohydroxy 0.017 

 scyllo-inositol Lipid Inositol Metabolism 0.038 

 1-palmitoylglycerophosphate Lipid Lysolipid 0.043 

 
1-palmitoylglycerol (1-

monopalmitin) Lipid Monoacylglycerol 0.038 

 
1-stearoylglycerol (1-

monostearin) Lipid Monoacylglycerol 0.046 

 
2-palmitoylglycerol (2-

monopalmitin) Lipid Monoacylglycerol 0.02 

 glycerophosphoinositol Lipid Phospholipid Metabolism 0.016 

 chenodeoxycholate Lipid Primary Bile Acid Metabolism 0.028 

 glycochenodeoxycholate Lipid Primary Bile Acid Metabolism 0.022 

 taurochenodeoxycholate Lipid Primary Bile Acid Metabolism 0.039 

 glycocholenate sulfate Lipid Secondary Bile Acid Metabolism 0.017 

 glycodeoxycholate Lipid Secondary Bile Acid Metabolism 0.041 

 glycolithocholate sulfate Lipid Secondary Bile Acid Metabolism 0.021 
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Enriched 
group Metabolite Super 

pathway Sub pathway p-
value 

 glycoursodeoxycholate Lipid Secondary Bile Acid Metabolism 0.016 

 taurocholenate sulfate Lipid Secondary Bile Acid Metabolism 0.05 

 taurodeoxycholate Lipid Secondary Bile Acid Metabolism 0.013 

 ursodeoxycholate Lipid Secondary Bile Acid Metabolism 0.03 

 
21-hydroxypregnenolone 

disulfate Lipid Steroid 0.012 

 
5alpha-pregnan-3(alpha or 
beta),20beta-diol disulfate Lipid Steroid 0.038 

 pregnen-diol disulfate Lipid Steroid 0.04 

 N6-methyladenosine Nucleotide Purine Metabolism, Adenine 
containing 0.031 

 4-ureidobutyrate Nucleotide Pyrimidine Metabolism, Uracil 
containing 0.044 

 glycylphenylalanine Peptide Dipeptide 0.03 

 glycylvaline Peptide Dipeptide 0.039 

 lysyltyrosine Peptide Dipeptide 0.006 

 phenylalanylaspartate Peptide Dipeptide 0.005 

 tyrosyllysine Peptide Dipeptide 0.002 

 thymol sulfate Xenobiotics Food Component/Plant 0.017 

 1-methylxanthine Xenobiotics Xanthine Metabolism 0.009 

 7-methylxanthine Xenobiotics Xanthine Metabolism 0.037 

 theobromine Xenobiotics Xanthine Metabolism 0.046 

MCS2A N-acetylphenylalanine Amino Acid Phenylalanine and Tyrosine 
Metabolism 0.022 

 maltose Carbohydrate Glycogen Metabolism 0.035 

 
1-margaroylglycerophospho-

ethanolamine Lipid Lysolipid 0.008 
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Enriched 
group Metabolite Super 

pathway Sub pathway p-
value 

 
1-palmitoylglycerophospho-

glycerol Lipid Lysolipid 0.024 

 
2-stearoylglycerophospho-

ethanolamine Lipid Lysolipid 0.015 

 
5alpha-pregnan-

3beta,20alpha-diol disulfate Lipid Steroid 0.023 

 N4-acetylcytidine Nucleotide Pyrimidine Metabolism, Cytidine 
containing 0.028 

MCS2B 3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine and Valine 
Metabolism 0.016 

 4-methyl-2-oxopentanoate Amino Acid Leucine, Isoleucine and Valine 
Metabolism 0.044 

 methionine sulfone Amino Acid Methionine, Cysteine, SAM and 
Taurine Metabolism 0.043 

 
1-dihomo-linolenylglycerol 

(alpha, gamma) Lipid Monoacylglycerol 0.028 

 
1-myristoylglycerol (1-

monomyristin) Lipid Monoacylglycerol 0.044 

 inosine Nucleotide 
Purine Metabolism, 

(Hypo)Xanthine/Inosine 
containing 

0.031 

 phenylalanyltryptophan Peptide Dipeptide 0.047 

MCS1 & 
MCS2A phenylalanine Amino Acid Phenylalanine and Tyrosine 

Metabolism 0.024 

 
1-palmitoylglycerophospho-

ethanolamine Lipid Lysolipid 0.048 

MCS1 & 
MCS2B glycolithocholate Lipid Secondary Bile Acid Metabolism 0.046 

MCS2A 
& 

MCS2B 
alpha-ketoglutarate Energy TCA Cycle 0.036 
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Gut Microbiota is Related to Peripheral CD4 Counts, Lung Microbiota, and In Vitro 

Macrophage Dysfunction in HIV-Pneumonia Patients 
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ABSTRACT 

Bacterial pneumonia is a common and frequently fatal co-morbidity in HIV 

infected individuals in Africa. Prior investigations have described the lower airway 

microbiota in this population or the gut microbiota of HIV infected individuals; however, 

the relationship between the lower airway and gut microbiomes in HIV infected patients 

with bacterial pneumonia and their joint contribution to patient outcomes is unknown. 

We profiled paired BAL and stool bacterial and fungal communities from a large cohort 

(n=120) of Ugandan, HIV infected patients with acute pneumonia. We demonstrate that 

the lower airway microbiota of HIV-pneumonia patients stratify into distinct microbial 

community states that are significantly related to microbiological factors, but not to 

disease severity. In contrast, variation in gut microbiota significantly relates to patient 

mortality, disease severity as measured by CD4 count, and similarity between gut and 

lung microbial communities. We further establish that patients with low CD4 counts 

possess gut microbiota that are more similar to airway microbiota, are enriched for 

microbes shared with the airways, and elicit poorly activated, pro-inflammatory 

macrophages in vitro, when compared to gut microbiota from patients with high CD4 

counts. These findings provide the first evidence that understanding and modulating the 

gut microbiota may be pivotal to improving outcomes in HIV infected patients with lower 

airway infections.  
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INTRODUCTION 

Despite the efficacy of HAART in improving the health of HIV infected patients, 

pulmonary disease still presents a common co-morbidity within this population (6, 7). In 

HIV and TB co-endemic areas of Africa, the most common cause of inpatient hospital 

admission is pneumonia, resulting in permanent declines in pulmonary function and 

mortality rates between 5 and 30% despite antiretroviral and antibiotic treatment (15-

17). Previous investigations of the HIV-associated pneumonia microbiome have focused 

on the airways, and have demonstrated that the lung microbiome of pneumonia patients 

differs based on HIV infection status and geography (18, 19). We recently identified 

three consistent, repeating patterns of microbial co-association within the lower airways 

of Ugandan HIV infected pneumonia patients, defined by the dominance of 

Prevotellaceae, Streptococcaceae, or Pseudomonadaceae and associated with local 

immune response, but only weakly related to patient outcomes (20). No study to date 

has demonstrated a consistent relationship between lung microbiota and circulating 

CD4 count, despite known shifts in lung microbiota of HIV infected patients with 

advanced disease (11). 

 In addition to changing the lower airway microbiome, HIV infection is known to 

shift gut microbiota, impair mucosal barrier function, and permit microbial translocation. 

A number of studies have established that HIV infection causes gut microbiota dysbiosis 

within United States populations, consistently characterized by increased Prevotella and 

Proteobacteria and decreased Bacteroides abundance (14, 43, 44). Vujkovic-Cvijin and 

colleagues showed that gut dysbiosis is only inconsistently and partially rescued with 

HAART treatment; while Dillon and colleagues demonstrated that gut dysbiosis is 
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associated with chronic gut mucosal inflammation. This microbial dysbiosis and 

associated inflammation causes increased barrier permeability and microbial 

translocation (86, 87). Overall, these studies have demonstrated that HIV infection 

results in consistent microbial dysbiosis and translocation, but investigations have yet to 

determine whether these large scale changes to the microbiome are related to HIV co-

morbidities or disease severity. We hypothesized that the joint dysbiosis of gut and lung 

microbial communities and mucosal barrier breakdown would lead to increased 

microbial translocation between these two distal sites within HIV infected pneumonia 

patients. We further rationalized that this gut-lung microbial axis would influence 

immune response and patient outcomes. To investigate this hypothesis, we collected 

paired lower airway and stool samples from a large cohort of Ugandan, HIV infected 

patients with bacterial pneumonia, and asked whether gut and airway microbial 

community composition were related to one another, patient disease severity, and in 

vitro immune activation.  
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RESULTS  

HIV infected pneumonia patients display bacterial anatomic site specificity 

Paired BAL and stool samples were obtained from Ugandan HIV infected 

patients admitted to Mulago hospital for acute bacterial pneumonia (n=153). Study 

subjects possessed a median circulating CD4 count of 131 cells μl-1 and were 

administered antibiotics and antifungals (for full patient characteristics see Table S1). 

Bacterial profiles were generated using 16S V4 rRNA amplicon sequencing for lower 

airway and stool samples. Combined BAL and stool sample operational taxonomic unit 

(OTU) picking (representatively rarefied to 51,997 reads per sample) and PCoA (Bray 

Curtis dissimilarity) of 16S bacterial sequences revealed that BAL and stool samples 

from this severely immunocompromised population cluster based on sample type rather 

than patient sampled (Fig. S1A). OTU distribution modeling, as previously described 

(88), with validation by Random Forest was used to identify the most differential taxa 

between stool and BAL communities; taxa most enriched within the stool were 

traditional gut-associated microbes including Bacteroides, Faecalibacterium, and 

Ruminococcaceae, while BAL was enriched for airway-associated microbes including 

Streptococcus, Veillonella, and Haemophilus (Fig. S1B).  These results demonstrate 

that despite severe illness, this HIV infected pneumonia study population retains overall 

microbial site specificity. 

 

Lower airway microbiota stratify into distinct bacterial microbiota community 

states 
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To investigate patient lower airway microbial communities in greater depth, BAL 

bacterial 16S sequences were clustered into OTUs and representatively rarefied to 

67,135 reads per sample for a final high-quality data set of n=117 samples. Lower 

airway bacterial microbiota displayed distinct compositional patterns [permutational 

multivariate analysis (PERMANOVA) with weighted UniFrac distance, R2=0.658, 

p<0.001], with a gradient of Prevotellaceae- to Streptococcaceae-dominance over the 

majority of samples (n=95), or strong dominance by other airway pathogens consisting 

primarily of members of the Gammaproteobacteria (n=16; Fig. 1A). Delving into these 

patterns of microbiota demonstrated that Prevotellaceae- and Streptococcaceae-

dominated communities were highly similar in composition; the two most abundant taxa 

in both groups were Prevotellaceae and Streptococcaceae, with consistent 

Veillonellaceae and Paraprevotellaceae co-colonization (Fig. 1B and 1C). 

Gammaproteobacteria-dominated samples were primarily characterized by 

Pasteurellaceae- (n=11) or Pseudomonadaceae- (n=3) dominance, appeared more 

compositionally variable by PCoA, and clustered distinctly from the majority of 

Prevotellaceae and Streptococcaceae dominated samples (Fig. 1B and 1C). Our data 

corroborate previous findings that HIV infected patients’ lower airway microbiota stratify 

into specific clusters of microbial communities, and during HIV-associated bacterial 

pneumonia, lower airway communities are primarily dominated by a gradient of 

Prevotellaceae to Streptococcaceae or by members of the Gammaproteobacteria (11, 

20). 

 To determine how our microbial community states compared to previous findings, 

we investigated their association with microbiological factors and disease severity. We 
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previously reported that Prevotellaceae- and Streptococcaceae-dominated lower airway 

samples were associated with higher bacterial diversity, administration of the first-line 

pneumonia antibiotic ceftriaxone, and the presence of culturable fungi. In our current 

study, Prevotellaceae- and Streptococcaceae-dominated samples possessed 

significantly higher Shannon’s bacterial diversity than Gammaproteobacteria-dominated 

samples (Kruskal Wallis, p<0.0001; Fig. 1D). Additionally, there were far fewer non-

Prevotellaceae- nor Streptococcaceae-dominated samples in this cohort compared to 

our previous study (19% versus 42% of cohort), which we attribute to the near universal 

administration of ceftriaxone (91%) in this cohort.  

To address whether these bacterial community states differentially associated 

with fungi, we amplified and sequenced ITS2 rRNA from our BAL samples. BAL fungal 

community profiles (n=26) were representatively rarefied to 1044 reads per sample; the 

low number of samples with fungal amplification and rarefying depth demonstrate that 

this patient population is truly a bacterial, rather than fungal, pneumonia population. 

Fungal communities were primarily and highly dominated by Candida (n=19/26), and 

dominant fungal taxa was associated with variation in fungal composition (Bray Curtis 

PERMANOVA, R2=0.673, p<0.001; Fig. S2A). CD4 count was also related to fungal 

composition (Bray Curtis PERMANOVA, R2=0.220, p<0.01; Fig. S2B); this association 

was likely driven by the Pneumocystis jiroveci-dominated samples (n=3), all possessing 

low CD4 counts (cells/μl < 34). Pneumocystis jiroveci is a common cause of fungal 

pneumonia, so we assessed how each bacterial community state associated with fungal 

community profiles (Fig. S2C). While most of our BAL samples produced robust 16S 

amplification, Pneumocystis-dominated samples were among those that did not produce 
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a 16S amplicon, reaffirming that the patients with sequenced 16S bacterial amplicons 

were truly bacterial pneumonia patients. There was no association between lower 

airway fungal and bacterial composition, which may have been due to the high anti-

fungal prophylaxis administration (83%); however, there was a pattern of increased 

fungal co-colonization with Streptococcaceae- and Prevotellaceae-dominated 

communities compared with only a single Gammaproteobacteria-dominated community 

with fungal co-colonization, though due to small fungal sample size this association was 

not significant (chi-square test, p=0.46; Fig. 1E). This pattern is corroborated by 

previous findings (20), but larger cohorts would be needed for validation. 

Finally, we assessed whether lower airway bacterial community states were 

related to systemic patient health. CD4 count and gut microbial dysbiosis are known 

hallmarks of advanced HIV infection. Despite microbiological differences, circulating 

CD4 count (cells μl-1) was not associated with microbiota community state (Kruskal 

Wallis, p=0.85; Fig. 1F). As a measure of how similar paired BAL and stool microbiota 

communities were within the same patient, we calculated paired distance using Bray 

Curtis dissimilarity, which weights higher abundance, rather than phylogenetically 

related (UniFrac) or lower abundance (Canberra) taxa. This distance allows assessment 

of the relative similarity of lower airway and gut microbial communities across the 

patient population. Using this metric, we determined that lower airway community states 

did not differ in their similarity to their paired stool samples (Kruskal Wallis, p=0.62; Fig. 

1G), thus variation in pneumonia lower airway bacterial community is not related to 

systemic markers of patient disease severity nor to gut microbiota composition. Since 

lower airway bacterial community composition was not a good indicator of systemic 
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disease, we next asked whether gut microbiota would be a better indicator of disease 

severity and patient outcome. 
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Figure 1. 
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Figure 1. Distinct bacterial community states are found in the lower airways of 

HIV infected pneumonia patients and relate to microbiological factors, but are not 

a good indicator of systemic immune response or gut microbiota. A. Unsupervised 

hierarchical clustering (using Bray Curtis dissimilarity (BC) and Ward 2 clustering) of 

BAL samples and abundance heat map of bacterial families present in at least 1 sample 

at ≥ 3% relative abundance (ordered from highest to lowest abundance) indicate 

patterns of microbial colonization in BAL. B. PCoA of weighted UniFrac distance for n = 

117 BAL samples representatively rarefied to 67,135 reads/sample illustrates patterns 

of bacterial family dominance, which significantly explain variation in lower airway 

bacterial communities (PERMANOVA, R2 = 0.658, p < 0.001). C. Mean community 

composition at the family level summarized by dominant family microbial community 

state. Bacterial family dominance is related to D. BAL Shannon’s diversity (KW, 

p<0.0001; Mann-Whitney U Test p-values plotted) and potentially to E. fungal co-

colonization (Chi-square, p=0.46), but not to F. CD4 count (cells/μl; KW p=0.85), or to 

G. similarity to paired stool sample (paired distance measured by BC; KW, p=0.62). PC 

= principal coordinate; PERMANOVA = permutational multivariate ANOVA; KW = 

Kruskal Wallis rank sum test. 
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Stool microbiota composition is related to clinical and immunological factors 

To investigate patient gut microbial communities in greater depth, stool bacterial 

16S sequences were clustered at 97% sequence identity into OTUs and rarefied to 

120,665 reads per sample (n=106). Stool bacterial community composition was 

generally characterized by high relative abundance of Ruminococcaceae, 

Bacteroidaceae, Enterococcaceae Enterobacteriaceae, or Prevotellaceae with 

Ruminococcaceae (Fig. 2A). PERMANOVA analysis of stool samples revealed that 

variation in community composition was related to all clinical, demographic and 

microbiological factors, but not to how the samples were processed (Table 1). Of these 

factors, dominant family explained the most variation in community composition (Bray 

Curtis PERMANOVA, R2=0.319, p<0.001; Fig. 2B) and was related to the percent 

dominance by the dominant family (Kruskal Wallis, p<0.001), suggesting that dominant 

bacterial families within gut microbiota are related to overall bacterial community 

composition.  

Stool fungal microbiota composition was investigated by amplifying and 

sequencing ITS2 rRNA from stool. Fungal microbiota profiles (n=90) were 

representatively rarefied to 2,565 reads per sample. Stool fungal community 

composition was related to dominant family (Bray Curtis PERMANOVA, R2=0.442, 

p<0.001; Fig. S3A), and, similar to BAL fungal communities, was frequently and highly 

dominated by Candida (72/90 samples with 94% mean dominance; Table S2). Stool 

fungal communities were not related to patient factors, bacterial microbiota, or paired 

airway fungal community composition (data not shown), and when stool and BAL were 

jointly clustered into OTUs, samples did not cluster based on anatomic site as bacterial 
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communities did (Fig. S3B). Since stool fungal communities were highly homogenous, 

we focused on understanding variation in the stool bacterial microbiota. 

 To better understand patient disease, variation in stool bacterial composition and 

microbiological characteristics were examined in relation to patient outcomes.  While 

mortality was low within this cohort (6%), stool bacterial composition was related to 

mortality at time of hospital discharge (Bray Curtis PERMANOVA, R2=0.018, p=0.017; 

Fig. 2C), and stool Shannon’s diversity was significantly lower for in patients who went 

on to be deceased compared to survivors (Mann-Whitney, p<0.01; Fig. 2D). This 

supports the traditional premise that lower stool bacterial diversity is a sign of poor 

health. While stool microbiota was related to patient mortality, the ratio of deceased to 

non-deceased patients was too small to adequately interrogate this relationship. As 

such, we decided to examine circulating CD4 count as it is widely accepted as a 

surrogate for HIV-associated disease severity. This holds true within our HIV infected 

pneumonia population, with deceased patients having significantly lower CD4 counts 

(cells μl-1) compared to survivors (Mann-Whitney, p<0.01; Fig. 2E). The cohort’s mean 

CD4 count was 186, median was 131, and range was 1-1010 cells μl-1 (Fig. S4A). CD4 

count differed significantly based on dominant family, with the lowest CD4 counts in 

Enterobacteriaceae dominated samples (Kruskal Wallis, p=0.02; Fig. S4B), and was 

significantly associated with variation in overall bacterial composition (Bray Curtis 

PERMANOVA, R2=0.017, p=0.025; Fig. S4C). Since the CD4 distribution within the 

study population was severely skewed by high CD4 counts, the data were grouped by 

quartile into CD4 low (cells μl-1 < 34, quartile 1), CD4 intermediate (34 < cells μl-1 < 293, 

quartiles 2 and 3), and CD4 high (cells μl-1 > 293, quartile 4) patients to better 
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understand the extremes of patient disease within this population and detect consistent 

patterns in gut microbiota based on CD4 count. As with continuous CD4 count, CD4 

groups were significantly associated with stool bacterial composition (Bray Curtis 

PERMANOVA, R2=0.052, p=0.002; Fig. S4D) and the increase in R2 (3.5%) gained by 

grouping CD4 count illustrates that consistent compositional patterns are associated 

with low versus high CD4 counts. Additionally, patients with high CD4 counts possessed 

significantly higher Faith’s phylogenetic diversity than patients with low CD4 counts 

(Mann-Whitney, p<0.005; Fig. 2F), confirming that stool bacterial microbiota are related 

to CD4 count and disease severity. 

 Since stool bacterial microbiota was related to patient outcomes and disease 

severity, we next asked whether it was also related to airway composition. To 

investigate this, the similarity between paired BAL and stool bacterial microbiota was 

examined using Bray Curtis paired distance. The distribution of paired distances was 

skewed towards lower distances, with mean distance 0.981, median 0.994, and range 

0.810-0.999 (Fig. S5A). In contrast to airway microbiota, variation in stool composition 

was significantly related to paired distance (Bray Curtis PERMANOVA, R2=0.026, 

p=0.007; Fig. S5B), indicating that increased similarity between patient stool and airway 

microbiota is determined by variation in stool, rather than airway, bacterial composition. 

Not only was paired distance related to stool composition, it was also related to mortality 

at hospital discharge, with deceased patients possessing more similar airway and gut 

microbiota (Mann-Whitney, p=0.01; Fig. 2G). To better understand the relationship 

between paired distance and stool composition, patients were stratified based on paired 

distance quartiles into low [paired distance (PD) < 0.9816, quartile 1], intermediate 
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(0.9815 < PD < 0.9972, quartiles 2 and 3), and high (PD > 0.9971, quartile 4) PD. PD 

groups significantly explained variation in stool bacterial composition (PERMANVOA 

with Bray Curtis dissimilarity, R2=0.054, p=0.002; Fig. S5C), and patients with low PD 

possessed significantly lower Faith’s phylogenetic diversity than those with high PD 

(Mann-Whitney, p=0.03, Fig. 2H). Decreased gut diversity has previously been 

associated with gastrointestinal disease and dysbiosis, meaning that within this cohort, 

patients with more severe gut dysbiosis possess bacterial communities that more 

closely resemble the airways. Finally, administration of the antibiotic ceftriaxone was 

related to stool composition (Bray Curtis PERMANOVA, R2=0.019, p=0.01; Fig. S6A) 

and associated with more dominated stool bacterial microbiota (Mann-Whitney, p=0.08; 

Fig. S6B). Ceftriaxone has previously been shown to relate to airway microbiota 

composition in the HIV infected pneumonia population, suggesting that similarity 

between lower airway and gut microbiota may in part be due to antibiotic administration 

in addition to mucosal barrier breakdown. 
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Table 1. Clinical and microbiological features are significantly associated with 

variation in stool microbial composition in HIV infected patients with bacterial 

pneumonia. 

Category Factor PERMANOVAa 
Clinical 

 
R2 p-value 

 
CD4 count (grouped quartile 1 versus 4) 0.052 0.002 

 
Ceftriaxone at time of sampling 0.019 0.014 

 
Mortality at hospital discharge 0.018 0.017 

 
CD4 count (cells/μl) 0.017 0.025 

 
Pulmonary tuberculosis 0.009 0.499 

 

Ceftriaxone within 3 months prior to 
hospitalization 0.008 0.634 

Microbiological 
   

 
Dominant family 0.319 0.001 

 
Shannon diversity 0.145 0.001 

 
Paired BAL dominant family 0.122 0.033 

 
Total observed speciesb 0.111 0.001 

 
Faith's phylogenetic diversity 0.104 0.001 

 
Percent dominance 0.072 0.001 

 

Bray Curtis distance to paired BAL sample 
(grouped quartile 1 versus 4)c 0.054 0.002 

 

Bray Curtis distance to paired BAL sample 
(continuous) 0.026 0.007 

 

Faith's phylogenetic diversity of paired 
BAL sampled 0.021 0.028 

 
Fungal percent dominance 0.022 0.1 

 
Fungal dominant genus 0.095 0.284 

Processing 
   

 
Sequenced on NextSeq run 1 0.012 0.132 

 
Sequenced on NextSeq run 2 0.012 0.132 

 
ITS2 fungal amplicon sequenced 0.013 0.162 

 
16S amplification plate 0.022 0.221 

 
16S primer plate 0.022 0.221 

 
Extraction plate 0.007 0.824 

aPermutational multivariate ANOVA results for Bray Curtis distance shown; 
representative of weighted and unweighted UniFrac and Canberra distances.  
bSimilar results for chao1 richness estimate  
cSimilar results for weighted and unweighted UniFrac and Canberra distances.  
dStool composition is not significantly related to BAL richness or Shannon diversity. 
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Figure 2. 
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Figure 2. Stool microbiota composition is related to clinical and immunological 

factors and is a better indicator of HIV infected pneumonia patient health than 

lower airway microbiota. A. Unsupervised hierarchical clustering (using Bray Curtis 

dissimilarity (BC) and Ward 2 clustering) and abundance heat map of bacterial families 

present in at least 1 sample at ≥ 3% relative abundance (ordered from highest to lowest 

abundance) indicate patterns of microbial colonization in stool. PCoA of BC dissimilarity 

for n = 106 stool samples representatively rarefied to 120,665 reads/sample illustrates 

that B. dominant bacterial family [PERMANOVA, R2 = 0.319, p < 0.001; Other = 

Streptococcaceae (covered by Enterococcaceae on left) and Porphyromonadaceae] 

and C. mortality outcome at hospital discharge (PERMANOVA, R2 = 0.018, p = 0.017) 

significantly explain variation in stool bacterial microbiota. Mortality at hospital discharge 

is significantly associated with D. stool Shannon’s diversity (Mann-Whitney U Test, 

p<0.01) and E. CD4 count (cells/μl; MW, p<0.01). F. CD4 count grouped (by quartile 1 

versus 4) is significantly related to stool Faith’s phylogenetic diversity. Similarity 

between lower airway and stool samples (Bray Curtis Paired Distance) is significantly 

related to G. mortality at hospital discharge (MW, p=0.01), and H. when grouped (by 

quartile 1 versus 4), to stool Faith’s phylogenetic diversity (MW, p<0.03). PC = principal 

coordinate; PERMANOVA = permutational multivariate ANOVA; MW = Mann-Whitney U 

Test. 
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Gut microbiota of HIV-pneumonia patients with low CD4 counts are enriched for 

shared airway microbes and depleted of healthy gut microbes 

To validate whether CD4 count is directly related to similarity between the airway 

and gut microbiota, the proportion of patients with low and high paired distances was 

compared between patients with low and high CD4 counts. Patients with low CD4 

counts were significantly more likely to have low PD, while patients with high CD4 

counts were more likely to have high PD (Fisher’s exact test, p<0.001; Fig. 3A). OTU 

distribution modeling was used to understand how CD4 low and CD4 high patient stool 

microbiota differ and why this might be related to paired distance (Fig. 3B), and was 

validated with Random Forest (Fig. S7A). Traditional airway-associated microbes 

including Streptococcus, Veillonella, unclassified Lactobacillales, and Megasphaera 

were the top enriched taxa in the stool of patients with low CD4 counts, while Prevotella 

copri, Faecalibacterium prausnitzii, unclassified Ruminococcaceae, Bacteroides, and 

Ruminococcus were the top enriched taxa in patients with high CD4 counts. Prevotella 

copri, Faecalibacterium prausnitzii, Ruminococcaceae, and Bacteroides are traditional, 

healthy constituents of the gut microbiota, which would explain why they are enriched in 

the stool of healthier, CD4 high patients and depleted as CD4 count decreases. 

Interestingly, identical Streptococcus and Megasphaera OTU sequences to those 

enriched in stool of CD4 low patients were also found in patient BAL using independent 

OTU clustering, suggesting that these microbes are translocating between the airways 

and the gut. 

Supporting the idea of microbial translocation between the airways and gut, 

patients with low paired distances were highly enriched for Streptococcus, 
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Lactobacillus, and unclassified Enterobacteriaceae within the gut that were shared with 

airways, while high PD was primarily distinguished by enrichment of Prevotella copri 

within the gut (Fig. 3C and Fig. S7B). As a final validation of microbial translocation, the 

most highly enriched OTUs were compared between PD and CD4 groups (Fig. 3D). A 

number of CD4 and PD low stool enriched taxa overlapped, almost all of which were 

Streptococcus or Veillonella OTUs. Two Prevotella copri OTUs overlapped between 

CD4 and PD high stool samples, while no enriched OTUs overlapped between CD4 

high and PD low stool, nor between CD4 low and PD high stool, demonstrating that low 

CD4 count in HIV-pneumonia patients is strongly associated with enrichment of 

microbes within the gut that are shared with and potentially translocated from the 

airways. These same analyses within the lower airways yielded far fewer taxa, though 

Streptococcus was enriched within CD4 low airways (Fig. S8A), Lactobacillus was 

enriched within PD low airways (Fig. S8B), and unclassified Enterobacteriaceae was 

mutually enriched within CD4 and PD low airways (Fig. S8C). While gut microbiota 

varied greatly based on patient disease severity, variation in airway microbiota did not 

strongly relate to CD4 count or gut microbiota similarity, suggesting that the gut 

microbiota may be a better indicator of patient outcomes in this population. Overall, 

these data demonstrate that HIV infected pneumonia patients with severe disease 

experience gut bacterial dysbiosis resulting in depletion of healthy gut microbes and 

enrichment of microbes shared with pneumonia patient airways. 
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Figure 3. 

 
Figure 3. Patients with low CD4 counts possess stool microbiota that are more 

similar to their paired airway samples, are enriched for microbes shared with their 

lower airways, and are depleted for members of the healthy gut microbiota. A. 

Patients with low CD4 counts are significantly more likely to have low paired distance 

(quartile 1 versus 4 for each factor, Fisher’s Exact Test, p<0.001). Mean difference in 

reads/sample are plotted for the top taxa (OTUs summarized to genus taxonomy) 

differentiating B. CD4 low and high, as well as C. paired distance low and high, stool 

bacterial communities, demonstrating enrichment of shared airway taxa and depletion of 

healthy-associated gut microbes in CD4 and paired distance low patients. D. Mean 

difference in reads/sample are plotted for top differential taxa shared between CD4 and 

paired distance enrichment comparisons. All data plotted were filtered based on q < 

0.05, read difference ≥ 100, and presence in ≥ 50% of the enriched group; no OTUs 

with the same genus level taxonomy assignment were significantly enriched in two 

different directions for any comparison.  OTU = operational taxonomic unit; ^ = identical 

16S sequence shared with independent BAL sample OTU picking.  
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Gut microbial products differentially modulate healthy macrophage phenotype 

based on patient CD4 count 

Macrophage dysfunction is a hallmark of advanced HIV infection and 

characterized by decreased circulating monocytes and increased pro-inflammatory 

macrophages within the gut, but the cause of this aberrant behavior is unknown (89). 

Peripheral monocyte-derived macrophages are necessary for controlling lower airway 

infections, and resolving inflammation in pneumonia, yet in HIV infected individuals, 

pneumonia is not only more common, but it is also frequently fatal due to rampant, 

systemic inflammation. We hypothesized that the gut microbiota, which is a known 

modulator of systemic metabolism and airway immunity (33, 90, 91), contributes to 

macrophage dysfunction within HIV infected individuals and relates to patient disease 

severity. To investigate this, the THP-1 macrophage cell line was differentiated for two 

days with phorbol 12-myristate 13-acetate (PMA) prior to treatment with patient sterile 

fecal water (SFW) for 24 hours; SFW is made by homogenizing stool in buffer and 

removing all live cells, in order to treat macrophages with sterile fecal microbial 

metabolites and ligands. Following SFW treatment, THP-1 cells were assessed via flow 

cytometry for differentiation (CD14+CD68+), activation (CD80+CD86+), pro-

inflammatory (IL-1β+), and tissue repair (CD206+IL-10+) markers. Treatment with SFW 

from CD4 or PD low patients resulted in significantly fewer activated macrophages 

compared to CD4 or PD high SFW (Mann-Whitney; CD4 p=0.047, Fig. 4A; PD p<0.01, 

Fig. 4B), though total macrophages did not differ between treatments (data not shown). 

CD4 or PD high SFW induced significantly fewer activated (CD4 p<0.0001, Fig. 4C; PD 

p<0.0001, Fig. 4D) and total (CD4 p<0.001, Fig. S9A; PD p<0.001, Fig. S9B) IL-1β+ 
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pro-inflammatory macrophages compared to CD4 and PD low samples, and conversely, 

significantly more activated (CD4 p<0.01, Fig. 4E; PD p<0.001, Fig. 4F) and total (CD4 

p<0.03, Fig. S9C; PD p<0.0001, Fig. S9D) CD206+IL-10+ tissue repair macrophages. 

Metabolites and ligands within stool, the majority of which are microbially derived, 

differentially modified activation and differentiation of a healthy macrophage cell line 

based on patient disease severity and degree of microbial translocation, indicating that 

changes to the gut microbiota associated with severe disease in HIV infected 

pneumonia patients could have meaningful consequences for macrophage dysfunction 

and pneumonia patient outcomes. 
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Figure 4. 

 

Figure 4. Sterile microbial stool metabolites and ligands from patients with low 

CD4 counts or paired distance induce increased pro-inflammatory and decreased 

tissue repair macrophage differentiation. Fewer activated CD80+ CD86+ THP-1-
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derived macrophages are induced more frequently by A. CD4 high compared to CD4 

low (KW, p<0.001), or B. paired distance high compared to paired distance low or 

medium (KW, p<0.0001; all treatments versus media or buffer p<0.001), patient SFW. 

Increased pro-inflammatory IL-1β+, activated THP-1-derived macrophages are induced 

by C. CD4 low compared to CD4 high (KW, p<0.0001), or D. paired distance low or 

medium compared to paired distance high (KW, p<0.0001; low or intermediate versus 

media or buffer p<0.01, high versus media or buffer p<0.08), patient SFW. Decreased 

tissue repair associated CD206+ IL-10+, activated THP-1-derived macrophages are 

induced by E. CD4 low compared to CD4 high (KW, p<0.001), or F. paired distance low 

compared to paired distance high or medium (KW, p<0.001; low versus media or buffer 

p<0.05, intermediate or high versus media or buffer p<0.06), patient SFW. Low and high 

groups are quartiles 1 and 4 respectively, with paired distance quartile 2 and 3 

combined into an intermediate group. Data representative of 2 independent 

experiments; 24 biological replicates with 3 technical replicates each are plotted. Plotted 

p-values from Mann-Whitney test. KW = Kruskal Wallis; SFW = sterile fecal water. 
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DISCUSSION 

The factors that determine disease severity and outcome in HIV infected patients 

with bacterial pneumonia are poorly understood. Previous work has focused on the role 

of the lower airway microbiome, and this is the first study to date to investigate the 

airway-gut microbial axis in this population. We hypothesized that the activities of the 

gut microbiota and their relationship with the airway microbiota are key to understanding 

pneumonia patient outcomes in the HIV infected population. This study demonstrates 

that HIV infected pneumonia patients with low CD4 counts have both increased lower 

airway to gut microbial translocation and community similarity, and the collective 

products of these gut microbial communities induce in vitro macrophage dysfunction 

that has previously been observed within this population. Previous work has 

demonstrated that lower airway microbial communities are related to local but not 

systemic immune response in HIV infected patients with and without pneumonia (20, 

40). Here we elucidate a relationship between gut microbiota composition and systemic 

immune response and describe a potential mode by which gut microbiota may modulate 

distal pneumonia inflammation and patient outcomes. 

 Previous investigations of the HIV-pneumonia lower airway microbiome have 

described distinct microbiota community states dominated by Prevotellaceae, 

Streptococcaceae, or Pseudomonadaceae, a member of the Gammaproteobacteria 

(20). Here we confirm the finding of distinct microbiota states characterized by 

dominance of Prevotellaceae, Streptococcaceae, or Gammaproteobacteria. 

Prevotellaceae and Streptococcaceae dominated communities possessed similar 
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microbes at varying abundances, and were significantly more diverse and had more 

fungal co-colonization compared to Gammaproteobacteria dominated communities.  

 This study built on prior lower airway microbiota framework, to investigate the 

airway-gut microbial axis in relation to disease severity. This study is the first to 

interrogate paired lung and gut microbial communities in the HIV infected pneumonia 

population and shows a direct relationship between overall stool microbial composition 

and circulating CD4 count. We attribute the ability to detect this overall shift in 

composition and patterns of consistently enriched or depleted taxa to the large cohort 

and rigorous quality filtering employed in this study. Here we report that Prevotella copri 

is enriched in patients with higher CD4 counts and less severe gut dysbiosis, while 

previous studies have reported an increased ratio of Prevotella copri to Bacteroides in 

HIV infected patients (14, 43, 44). It is important to note that these studies were 

conducted solely within the United States, a population that consumes a high protein, 

high fat diet which is associated with a low Prevotella to Bacteroides ratio in healthy 

individuals, whereas Asian and African populations with diets rich in starch or 

vegetables have a higher ratio of Prevotella to Bacteroides in healthy individuals (45, 

92, 93). Our study demonstrated increased Prevotella copri in healthier Ugandan, HIV 

infected patients, revealing that geography may also play a role in understanding HIV-

associated gut dysbiosis. 

Monocyte-derived macrophages are necessary for resolving lower airway 

infection and inflammation (94, 95), and progressive HIV infection results in depletion of 

circulating monocytes and build-up of poorly activated, pro-inflammatory macrophages 

within the gut (89, 96). The gut microbiome is known to modulate local and systemic 
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immunity (33, 90, 91, 97), and microbiome dysbiosis is a hallmark of HIV infection (14, 

43, 46), so we investigated whether sterile, fecal microbial products from HIV infected 

pneumonia patients differentially modulated macrophage function based on patient 

disease severity. Using the THP-1 cell line, we demonstrated that sterile fecal water 

(SFW) from patients with low CD4 counts is poorer at activating (CD80+CD86+) 

macrophages and differentiating tissue repair (CD206+IL-10+) macrophages compared 

to CD4 high patient SFW, but better at inducing pro-inflammatory (IL-1β+) 

macrophages. These results indicate that the gut microbiota from HIV infected 

pneumonia patients differentially modulates in vitro macrophage activation and 

differentiation based on HIV disease severity, and that this may contribute to in vivo 

macrophage dysfunction and pneumonia patient outcomes; however, follow-up animal 

models are necessary to prove whether manipulation of the gut microbiota independent 

of the airways can modulate pneumonia inflammation. 

 Microbial translocation is an established phenomenon within severely ill HIV 

infected individuals with mucosal barrier breakdown and CD4+ T cell depletion; in this 

study we demonstrate that the most severely ill patients with the lowest CD4 counts 

have gut microbiota that is enriched for microbes shared with the airways. While this 

study is cross-sectional and the direction of microbial translocation was not definitively 

determined, the significant relationship between paired distance and variation in gut, but 

not airway, microbiota suggests that the gut microbiota is gaining airway microbes, 

rather than vice versa. Additionally, the probable increase in lung mucosal barrier 

breakdown from pneumonia may explain how more microbes would travel distally from 

the lungs than from the gut. Nonetheless, longitudinal sampling of the lower airways and 
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gut are necessary to determine whether specific microbes are initially colonizing the 

respiratory or gastrointestinal tract. Further follow-up is also required to know whether 

these results can be generalized to the broader HIV infected population with and without 

pneumonia since this study focused solely on Ugandan HIV infected patients with 

bacterial pneumonia. 

 Despite these limitations, this study is the first to reveal a potential role for the gut 

microbiome in understanding HIV-associated pneumonia and a relationship between 

the gut-lung microbial axis and patient outcomes. Bacterial pneumonia in HIV infected 

individuals is frequently fatal, yet the determinants of patient outcomes are poorly 

understood. We demonstrate that gut microbiota composition is significantly related to 

pneumonia patient outcome and that the products of the gut microbiome may modulate 

macrophage phenotype. Overall, these investigations suggest that in the future, profiling 

and modulating the gut microbiome may provide a better avenue for developing patient 

interventions than the airway microbiome in HIV infected pneumonia patients. 
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MATERIALS AND METHODS 

Study Design 

We enrolled subjects infected with HIV admitted to Mulago Hospital in Kampala, 

Uganda for acute pneumonia from June 2012 to November 2015 as part of the Lung 

MicroCHIP (Lung Microbiome in Cohorts of HIV Infected Persons) study. Patients 

without a prior diagnosis of TB underwent bronchoscopy with BAL for clinical diagnosis, 

as previously described (20), with 10 ml set aside for microbiome analysis. 

Bronchoscopy was performed a median of 1 day after hospital admission (interquartile 

range, 1–3 d) with concurrent collection of stool. Patients underwent two sputum acid-

fast bacilli smear examinations to diagnose pulmonary TB. Clinical data were collected 

and diagnoses were assigned as previously described (19). Study endpoint was 

hospital discharge. 

 

Ethics Statement 

The Makerere University School of Medicine Research Ethics Committee, the 

Mulago Hospital Research and Ethics Committee, the Uganda National Council for 

Science and Technology, and the University of California San Francisco Committee on 

Human Research approved the protocol. Subjects provided written, informed consent. 

 

Bacterial and fungal community profiling 

DNA extraction 

Individual BAL and stool samples were placed into lysing matrix E (INTEGRA 

Biosciences) tubes pre-aliquoted with 500 μl of hexadecyltrimethylammonium bromide 
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(CTAB; Sigma Aldrich) DNA extraction buffer and incubated at 65º C for 15 minutes. An 

equal volume of phenol:chloroform:isoamyl alcohol (25:24:1; Sigma Aldrich) was added 

to each tube and samples were homogenized in a Fast Prep-24 homogenizer at 5.5 m/s 

for 30 seconds.  Tubes were centrifuged for 5 minutes at 16,000 x g and the aqueous 

phase was transferred to individual wells of a deep-well 96-well plate. An additional 500 

μl of CTAB buffer was added to the LME tubes, the previous steps were repeated, and 

the aqueous phases were combined.  An equal volume of chloroform was added to 

each sample and mixed followed by centrifugation at 3000 x g for 10 minutes to remove 

excess phenol. The aqueous phase (600 μl) was transferred to a deep-well 96-well 

plate, combined with 2 volume-equivalents of polyethylene glycol (PEG) and stored 

overnight at 4º C to precipitate DNA.  Plates were centrifuged for 60 min at 3000 x g to 

pellet DNA and the PEG solution was removed.  DNA pellets were washed twice with 

300 μl of 70% ethanol, air-dried for 30 minutes and suspended in 100 μl of sterile water.  

DNA samples were quantitated using the Qubit dsDNA HS Assay Kit and diluted to 10 

or 2 ng/μl for stool or BAL, respectively. No template controls (NTCs, one per extraction 

plate) were processed similar to samples. 

 

16S DNA amplification and sequencing 

The V4 region of the 16S rRNA gene was amplified in triplicate, as previously 

described (91). Triplicate reactions each possessed one no-template control to assess 

background contamination. Triplicate reactions were combined and purified using the 

SequalPrep Normalization Plate Kit (Invitrogen) according to manufacturer’s 

specifications. Purified amplicons were quantitated using the Qubit dsDNA HS Assay Kit 
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and pooled at equimolar concentrations. For NTCs, total volume was pooled because 

burden was too low for equimolar concentrations. The amplicon library was 

concentrated using the Agencourt AMPure XP system (Beckman-Coulter) quantitated 

using the KAPA Library Quantification Kit (KAPA Biosystems) and diluted to 2nM. 

Equimolar PhiX was added at 40% final volume to the amplicon library and sequenced 

on the Illumina NextSeq 500 Platform on a 153bp x 153bp sequencing run. 

 

ITS2 DNA Amplification and Sequencing 

  The internal transcribed spacer region 2 (ITS2) of the rRNA gene was amplified 

in triplicate, as previously described (91). Amplification and sequencing were performed 

with the same protocols as above with the following modifications: PhiX (5 pM final) to 

the amplicon library and sequenced on the Illumina MiSeq Platform on a 290bp x 290bp 

sequencing run. 

 

16S OTU Table Generation 

Raw sequence data were converted from bcl to fastq format using bcl2fastq 

v2.16.0.10.  Paired sequencing reads with a minimum overlap of 25 bp were merged 

using FLASH v1.2.11.  Successfully merged reads were identified, had index 

sequences extracted and were demultiplexed in the absence of quality filtering using 

QIIME (Quantitative Insights Into Microbial Ecology, v1.9.1).  Reads were then quality 

filtered using USEARCH’s fastq filter (v7.0.1001) to remove reads having >2 expected 

errors. Following this step, BAL and stool samples were both processed individually, as 

well as part of a combined dataset. Quality filtered reads were dereplicated at 100% 



106 
 

identity, clustered at 97% sequence identity into operational taxonomic units (OTUs) if 

they had ≥2 reads and had chimeras removed, and mapped back to the resulting OTUs 

using USEARCH v8.0.1623.  The Greengenes database (May 2013) was used to 

assign taxonomy to OTUs and QIIME was used to make the phylogenetic tree.  OTUs 

were filtered by 1) removing any known common contaminant OTU present in more 

than half of the Negative Extraction Controls for this study, and 2) removing any 

remaining OTU that had a total read count across all samples less than 1/5000th of a 

percent of the total read counts across all samples for total OTU picking, or removing 

any OTU with less than 70 reads for BAL samples and less than 250 reads for stool 

samples. Finally, sequencing reads were representatively normalized by rarefying 100 

times and using sample centroids as described previously (91). Total sample OTU 

picking was rarefied to 51,997, BAL alone to 67,135, and stool alone to 120,665 reads 

per sample. Total reads from each NTC were below the level of rarefying, and NTCs for 

BAL samples possessed a maximum of 2 reads/NTC at dereplication. 

 

ITS2 OTU Table Generation 

ITS2 OTU tables were generated using the same protocol as above with the 

following modifications and notes: 1) chimeras were removed and taxonomy was 

assigned using the UNITE database [January 2016, (98)]; 2) no phylogenetic tree was 

generated; 3) no NTC successfully sequenced; 4) any OTU was removed if it 

possessed a total read count less than 1/5000th of a percent of the total read counts 

across all samples for total, BAL, or stool OTU picking; and 5) samples were 
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representatively rarefied to 1000, 1044, or 2565 reads/sample for total, BAL, or stool 

OTU picking, respectively. 

 

THP-1 sterile fecal water (SFW) assay and flow cytometry. 

Stool samples from 12 CD4 low patients and 12 CD4 high patients were used as 

biological replicates, and also stratified based on Bray Curtis paired distance into 6 low, 

11 intermediate, and 7 high samples. Samples were chosen based on CD4 low or high 

status and sufficient material. Stool samples were homogenized 1 g ml−1 (w:v) in pre-

warmed phosphate-buffered saline (PBS) containing 20% heat-inactivated fetal bovine 

serum (FBS). Samples were vigorously vortexed, incubated (37° C water bath, 10 min), 

and centrifuged (14,000 x g, 10 min). Supernatant was removed to a new tube and 

centrifuged again (16,000 x g, 1 hour). Supernatant was filter-sterilized through a 0.4-

μm filter, followed by a 0.2-μm filter, before sterile fecal water (SFW) was used in the 

THP-1 assay described below. SFW buffer (PBS with 20% FBS) and R10 media 

[Roswell Park Memorial Institute media 1640 with 10% heat-inactivated FBS (antigen 

activator) and 2 mM L-glutamine and 100 U ml−1 penicillin–streptomycin added; Life 

Technologies] were used as the negative controls. 

The THP-1 monocyte cell line (passages 2-3) was cultured for 48 hours with 

10ng/ml Phorbol 12-Myristate 13-Acetate (PMA, Thermo Fisher Scientific) added to R10 

media to induce macrophage differentiation. Half of the culture media was changed to 

new R10 with SFW (final SFW concentration 8%) for 24 hours. Controls included R10 

and SFW buffer. To assess cytokine production, the cultures were mixed with GolgiPlug 

(Gplug; BD Biosciences) for 12 h before staining for flow cytometry. Experiment was 
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replicated twice due to fecal material scarcity, with three technical replicates per 

biological replicate. 

For flow cytometry, single-cell suspensions were stained using a panel of 

antibodies, including anti-CD14 (63D3, 1:100; BV711, BioLegend), anti-CD68 (Y1/82A, 

1:40; PE-Cy7,  BioLegend), anti-CD80 (2D10, 1:50; FITC, BioLegend), anti-

CD86 (IT2.2, 1:50; BV650, BioLegend); anti-CD206 (15-2, 1:50; APC-Cy7, BioLegend); 

anti-IL-1β (H1b-98, 1:20; Pacific Blue, BioLegend); and anti-IL-10 (JES3-9D7, 1:20; PE, 

Miltenyi Biotec). Validation for each primary antibody is provided on the manufacturers' 

websites. Dead cells were stained positive with LIVE–DEAD Aqua Dead Cell Stain (Life 

Technologies). Permeabilization buffer (BD Biosciences) was used to permeabilize cells 

before staining for the intracellular markers CD68, IL-1β, and IL-10. For flow analysis, 

live THP-1 macrophages were gated as CD14+CD68+ cells. Among macrophage 

subpopulations, activated cells were CD80+CD86+, pro-inflammatory cells were IL-β+, 

and tissue repair cells were both CD206+ and IL-10+. Stained cells were assayed via a 

flow cytometer on a BD LSR II (BD Biosciences). 

 

Statistical analysis. 

Diversity and richness indices were calculated using QIIME. Distance matrices 

[weighted UniFrac (99) for BAL comparison with previous lung studies; Bray–Curtis for 

stool and shared taxa] were calculated in QIIME (71) to assess compositional 

dissimilarity between samples, and visualized using PCoA plots constructed in Emperor 

(83). Bray Curtis paired distance was determined using whole dataset OTU picking. 

Permutational multivariate analysis of variance (PERMANOVA) was performed 
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using Adonis in the R environment (vegan package) to determine factors that explained 

variation in microbiota composition, and was used to confirm that BAL and stool 

composition were not related to processing factors (p≥0.1). Unsupervised hierarchical 

clustering was performed using the hclust function in the R environment (stats, 

heatmap3 packages) with Bray Curtis distance (vegan package) and Ward 2 cluster 

method on bacterial families present in ≥1 sample at ≥3% abundance.  

To determine which OTUs differed in relative abundance between patient CD4 or 

paired distance groups, the distribution of each OTU was modeled using Poisson, 

negative binomial, or zero-inflated negative binomial distributions and the best fit 

distribution was assigned based on Akaike information criterion (AIC), as previously 

described (88). This modeling approach is appropriate for sequence-count data, and 

was corrected for multiple testing using false-discovery rate [q < 0.05, (100)]. Results 

were presented if ≥50% of the enriched group possessed the OTU and mean OTU 

difference between patient groups was ≥100 reads/sample.  

When examining the association between clinical or microbiological factors and 

patient groups, P values were calculated on the basis of covariate distribution by 

Kruskal–Wallis (numerical, skewed distribution, >2 groups), Mann-Whitney (numerical, 

skewed, 2 groups), chi-square (categorical), or Fisher's exact (sparse categorical) tests. 

To test for THP-1 differences based on patient group, Kruskal Wallis was performed in 

GraphPad Prism 6. Except where indicated, all analyses were conducted in the R 

statistical programming environment. 

  



110 
 

SUPPLEMENTAL FIGURES AND TABLES 

Figure S1. 

 

Figure S1. HIV infected pneumonia patient stool and BAL exhibit site specificity. 

A. PCoA using Bray Curtis dissimilarity of n = 271 BAL (n = 125) and stool (n = 146) 
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bacterial community profiles (including 120 BAL-stool patient paired samples) 

representatively rarefied to 51,997 reads/sample. B. Mean difference in reads/sample 

are plotted for the top 30 taxa differentiating BAL and stool bacterial communities, using 

linear mixed effects and filtering based on q < 0.05, read difference ≥ 100, and presence 

in ≥ 50% of the enriched group. PC = principal coordinate; ^ = one of top 30 predictive 

taxa for random forest prediction of BAL and stool microbiota. 
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Figure S2. 

 

Figure S2. Lower airway fungal communities are primarily dominated by Candida. 

PCoA of Bray Curtis dissimilarity for n = 26 BAL fungal communities representatively 

rarefied to 1044 reads/sample demonstrate that A. the majority of samples with fungal 

profiles are dominated by Candida (PERMANOVA for dominant genus, R2 = 0.673, p < 

0.001), and B. CD4 count (grouped by quartile with quartiles 2 and 3 combined) is 

significantly related to fungal composition with Pneumocystis dominated patients all 

possessing low CD4 counts (PERMANOVA, R2 = 0.220, p < 0.01). C. Taxonomic 

profiles of fungal microbiota with bacterial dominant family indicated above. 

Pneumocystis dominated samples consistently lacked lower airway 16S bacterial 

amplification (in white), indicating that patients examined for bacterial pneumonia do not 
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have confounding Pneumocysis pneumonia. PC = principal coordinate; PERMANOVA = 

permutational multivariate ANOVA. 
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Figure S3. 

 

Figure S3. Similar to lower airways, stool of HIV infected pneumonia patients is 

consistently dominated by Candida and does not show anatomic site distinction 

from the lower airways. A. PCoA of Bray Curtis dissimilarity (BC) for n = 90 stool 

fungal communities representatively rarefied to 2565 reads/sample demonstrate that the 

majority of samples with fungal profiles are dominated by Candida (PERMANOVA for 

dominant genus, R2 = 0.442, p < 0.001). Candida cluster on the left is dominated by 

OTU 1, cluster on the bottom right by OTU2, and samples in the middle by OTU4. B. 

PCoA of BC for n=26 BAL and n = 94 stool fungal communities representatively rarefied 

to 1000 reads/sample demonstrate samples are not clustered by anatomic site. Two 

views are provided to fully display BAL microbiota distribution. PC = principal 

coordinate; PERMANOVA = permutational multivariate ANOVA; BAL = bronchoalveolar 

lavage. 
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Figure S4. 

 

Figure S4. Stool bacterial microbiota is related to circulating CD4 count. A. 

Histogram of CD4 count (cells/μl) distribution across patients with stool bacterial 

profiles. B. CD4 count (cells/μl) is significantly related to stool dominant bacterial family 

(plotted for families with > 2 samples; KW, p=0.02; plotted p-values are with Mann 

Whitney U test). PCoA of Bray Curtis dissimilarity for n = 106 stool samples 

representatively rarefied to 120,665 reads/sample demonstrates that CD4 count 

significantly explains variation in stool composition, both as C. a continuous variable as 

measured from patients (cells/μl; PERMANOVA, R2 = 0.017, p = 0.025) and as D. 

grouped by quartile (second and third combined into intermediate group; PERMANOVA, 
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R2 = 0.052, p = 0.002). PC = principal coordinate; PERMANOVA = permutational 

multivariate ANOVA. 
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Figure S5. 

 

Figure S5. Stool bacterial microbiota composition differs based on similarity to 

paired BAL sample. A. Histogram of paired BAL-stool microbiota distance [Bray Curtis 

(BC)] distribution (outlier distance = 0.8). PCoA of BC for n = 106 stool samples 

demonstrates that distance to paired BAL sample (BC) significantly explains variation in 

stool composition, both as B. a continuous variable (PERMANOVA, R2 = 0.026, p = 
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0.007) and C. grouped by quartile (second and third combined into intermediate group; 

PERMANOVA, R2 = 0.054, p = 0.002). PC = principal coordinate; PERMANOVA = 

permutational multivariate ANOVA; BAL = bronchoalveolar lavage. 
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Figure S6. 

 

Figure S6. The antibiotic ceftriaxone is significantly related to stool bacterial 

microbiota. A. PCoA of Bray Curtis dissimilarity for n = 106 stool samples 

demonstrates that ceftriaxone administration at time of sample collection significantly 

explains variation in stool composition (PERMANOVA, R2 = 0.019, p = 0.01). B. 

Ceftriaxone administration trends towards an association with lower stool bacterial 

diversity (Mann Whitney U Test, p = 0.08). PC = principal coordinate; PERMANOVA = 

permutational multivariate ANOVA. 
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Figure S7. 

 

Figure S7. Random Forest confirms CD4 and paired distance associated 

enrichments. Random Forest mean decrease accuracy plotted for the top 30 most 

predictive taxa of A. CD4 group (quartile 1 versus 4), confirms enrichment of 

Faecalibacterium, Bacteroides, and Ruminococcaceae in stool bacterial communities of 

patients with high CD4 counts, and of B. paired distance group (Bray Curtis, quartile 1 

versus 4), confirms enrichment of Veillonella and Streptococcus in stool bacterial 

communities of patients with more similar stool and lower airway samples. [Prevotella] = 

Prevotella within the family Paraprevotellaceae. 
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Figure S8. 

 

Figure S8. Enterobacteriaceae is consistently enriched in the lower airways of 

patients with low CD4 counts and paired distance. Mean difference in reads/sample 

are plotted for the top taxa (OTUs summarized to genus taxonomy) differentiating A. 

CD4 low and high, as well as B. paired distance low and high, BAL bacterial 

communities. C. Mean difference in reads/sample are plotted for top differential taxa 

shared between CD4 and paired distance enrichment comparisons. All data plotted 

were filtered based on q < 0.05, read difference ≥ 100, and presence in ≥ 50% of the 

enriched group; no OTUs with the same genus level taxonomy assignment were 
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significantly enriched in two different directions for any comparison. BAL = 

bronchoalveolar lavage; OTU = operational taxonomic unit. 
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Figure S9. 

 

Figure S9. Sterile microbial stool metabolites and ligands from patients with low 

CD4 counts or paired distance induce increased pro-inflammatory and decreased 

tissue repair macrophage differentiation. Increased pro-inflammatory IL-1β+, total 

THP-1-derived macrophages are induced by A. CD4 low compared to CD4 high (KW, 

p<0.0001), or B. paired distance low or medium compared to paired distance high (KW, 

p<0.0001; all treatments versus buffer or media p<0.0001), patient SFW. Decreased 

tissue repair associated CD206+ IL-10+, total THP-1-derived macrophages are induced 

by C. CD4 low compared to CD4 high (KW, p<0.001), or D. paired distance low 

compared to paired distance high or medium (KW, p<0.001; all treatments versus buffer 

or media p<0.01), patient SFW. Low and high groups are quartiles 1 and 4 respectively, 
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with paired distance quartile 2 and 3 combined into an intermediate group. Plotted p-

values from Mann Whitney test. KW = Kruskal Wallis; SFW = sterile fecal water. 
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Table S1. Clinical and demographic features of the HIV infected pneumonia 

patient cohort. 

Variable Sample (n) Yes/Noa Min-Max 
(Median) 

Gender 153 77|76 (F|M)  

Smoker 153 35|118  

Age 153  19-69 (34) 

Temperature (ºC) 153  34.7-41 (36.9) 

Chest pain 153 97|56  

Cough 153 153|0  

Dyspnea 153 83|79  

Wheeze 153 34|119  

Previous TB diagnosis 153 19|134  

Pulmonary Kaposi's Sarcoma 146 6|140  

Pneumocystis prophylaxis 123 101|22  

Antiretrovirals at admission 123 64|59  

Antibiotics at sample collection 146 146|0  

Ceftriaxone at sample collection 146 136|10  
a Unless otherwise noted    
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Table S2. HIV infected pneumonia patient stool fungal composition is 

consistently dominated by Candida or Saccharomyces. 

Dominant Genus Sample 
number (n =) 

Mean 
dominance (%) 

No fungal profilea 57 NA  

Candida 72 94 

Saccharomyces 12 82 

Trichosporon 1 66 

Aspergillus 1 87 

Cryptococcus 1 85 

Unclassified 
Ustilaginales 1 50 

Wallemia 1 58 

Wickerhamomyces 1 24 
aEither less amplification than no template controls or 

did not reach multiply rarefying depth of 2565 
reads/sample 
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 The research described above highlights the importance of the lung and gut 

microbiomes in HIV infected patients with bacterial pneumonia, demonstrating that 

types of microbial communities and their functions can be used to better understand 

patient outcomes. Despite high morbidity and mortality within the HIV infected 

pneumonia population, little is known about factors that influence heterogeneity in 

patient outcomes, and, specifically, whether variation in airway or gut microbiota 

composition and function are related to patient immune response, disease severity, and 

survival. The goal of this thesis was to determine whether specific microbial 

communities and their functions are clinically meaningful to understanding patient 

disease and outcomes within HIV infected patients with bacterial pneumonia. While 

previous studies have emphasized that HIV infection results in changes to the gut or 

lung microbiota (8, 11, 43), the studies herein describe the relationship between 

microbial community composition and function with HIV-associated pneumonia 

morbidity and mortality and outline a potential mechanism by which HIV-induced 

changes to the microbiota may lead to pneumonia outcomes.  

This thesis builds on previous investigations of the lung microbiome that 

associated HIV infection and co-morbidities including pneumonia, pulmonary 

tuberculosis, or COPD with increased abundances of Prevotella, Streptococcus, and 

Veillonella within the lower airways (10, 11, 18, 40). The studies described in Chapter 2 

demonstrate that Ugandan HIV-pneumonia patients colonized by Prevotellaceae-

dominated communities are enriched for products of branched chain amino acid (BCAA) 

metabolism within their circulation, and express a number of T helper cell 2 (Th2) and 

Th17 cytokines within their lower airways, including interleukin 17 (IL-17A). BCAA 
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pathway products can be bacterial derived (35) and positively regulate mechanistic 

target of rapamycin (mTOR) signaling (36), a key component of Th17 differentiation 

(37), suggesting that Prevotellaceae-dominated communities may induce Th17 

inflammation through BCAA metabolism, though the direct production of BCAA by 

Prevotellaceae in these patients still needs to be demonstrated. Nonetheless, 

association between lung Th17 inflammation and Prevotella and its co-colonizer, 

Veillonella, is corroborated by multiple studies: the presence and abundance of these 

oral commensals within the lungs is associated with increased Th17 inflammation in 

healthy individuals (38) and can induce Th17 inflammation in vitro and in mouse models 

(39). The studies within this thesis illustrate a shift in the airway microbiome field 

towards considering airway microbes within the context of host-wide metabolism and 

immune response, rather than as isolated microbial infections. Little is known about the 

causes of patient survival and recovery within this population, so stratifying patients into 

clinically meaningful groups based on lower airway microbial communities provides a 

novel basis for understanding and treating this patient population. 

While airway infections such as pneumonia are traditionally studied in the context 

of microbial colonization of the airways, in Chapter 3 a novel relationship is 

demonstrated between gut microbial composition and HIV-pneumonia patient disease 

severity. Recently, the gut microbiome has been shown to influence and modulate local 

and systemic immune responses through metabolic products such as short chain fatty 

acids or linoleic acid metabolites, even in the context of airway disease such as asthma 

(33, 91, 97). The studies of the gut-lung axis described above demonstrate a novel role 

for the gut microbiome with airway disease in HIV infected patients; increased gut 
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microbial dysbiosis and airway microbial translocation to the gut in HIV-pneumonia 

patients was associated with increased disease severity as measured by lower CD4 

counts, more airway-like gut communities, and in vitro immune response. These studies 

emphasize the systemic impact of HIV infection and HIV-associated co-morbidities and 

suggest that mucosal barrier breakdown in pneumonia patients may lead to airway 

pathogen colonization within the gut. The products of these altered gut communities 

induced dysfunctional, pro-inflammatory macrophages in vitro, suggesting that the gut 

microbiome may participate in innate immune priming in this patient population and 

dysbiotic microbiota may help drive systemic inflammation and severe outcomes within 

this patient population. These studies illustrate how the gut microbiome may afford a 

second avenue for understanding this patient population and tailoring anti- and pro-

biotic therapies to treat the systemic microbial and immune dysfunction within HIV 

infected patients with pneumonia. 

Despite the utility of HAART in treating HIV infection and improving patient 

health, pulmonary disease such as pneumonia still presents a challenging co-morbidity 

with this population (6, 17). These studies generated the first evidence that types of lung 

and gut microbial communities are tied to patient outcomes within the HIV-associated 

bacterial pneumonia population and have the ability to drive innate immune dysfunction 

in vitro that mirrors patient immune responses. Future studies can build on these early 

indications of a systemic microbial-immune interaction by investigating whole microbial 

meta-genomes and –transcriptomes in large cohorts of patients, as well as 

incorporating in vitro and animal model investigations to dissect the influence of specific 

microbial-microbial interactions on host immune response. The gut and lung 



132 
 

microbiomes present a novel area for understanding and treating disease in HIV 

infected patients with bacterial pneumonia. This thesis identified distinct community 

states within the lower airways and airway microbial translocation to the gut which are 

associated with patient outcomes, demonstrating that patient stratification based on gut 

and lung microbial communities may lead to more targeted and effective disease 

treatments for HIV infected pneumonia patients in the future. 
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