UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Dynamic Inferencing in Parallel Distributed Semantic Networks

Permalink
https://escholarship.org/uc/item/38b4m7h3

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 13(0)

Author
Sumida, Ronald A.

Publication Date
1991

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/38b4m7h3
https://escholarship.org
http://www.cdlib.org/

Dynamic Inferencing in Parallel Distributed Semantic
Networks*

Ronald A. Sumida
Artificial Intelligence Laboratory
Computer Science Department
University of California
Los Angeles, CA, 90024

Abstract

The traditional approach to dynamic inferencing
is to represent knowledge in a symbolic hierarchy,
find the most specific information in the hierarchy
that relates to the input, and apply the attached
inferences. This approach provides for inheritance
and parallel retrieval but at the expense of very
complex learning and access mechanisms. Par-
allel Distributed Processing (PDP) systems have
recently emerged as an alternative. PDP sys-
tems use a very simple processing mechanism, but
can only access high-level knowledge sequentially
and require an enormous amount of training time.
This paper presents Parallel Distributed Seman-
tic (PDS) Networks, an approach that integrates
the best features of symbolic and PDP systems
by storing the content of symbolic hierarchies in
ensembles of PDP networks, connecting the net-
works in the manner of a semantic network, and
using Propagation Filters to determine how infor-
mation is passed between networks. Simulation
results are presented which indicate that PDS Net-
works and Propagation Filters are able to perform
pattern completion from partial input, generate
dynamic inferences, and propagate role bindings.

Introduction

In order to dynamically generate inferences, a natural
language understanding system must be able to ac-
cess knowledge structures at varying levels of gener-
ality and to use the associated information in making
the proper inferences. For example, consider the fol-
lowing texts which involve both general and specific
information about various hit actions.

Text 1
John hit Mary because she dumped him for Bill.

Understanding why John hit Mary involves accessing
general information about why humans hit one an-
other, whereas understanding:

*This research is supported by a grant from the Keck
Foundation.

913

Text 2
Douglas hit Tyson. He wanted to win the title.

requires utilizing the specific knowledge that one rea-
son why boxers hit one another is to win a competitive
activity.

Previous Work

Symbolic/Localist systems represent general and spe-
cific knowledge by forming an explicit hierarchy with
each concept represented by a symbol or node, and
with related inferences attached at the appropriate
level. Figure 1 is an example of a semantic network
with part of a simplified hierarchy for understanding
the texts above. At the top of the hierarchy is the
general hit act (HIT), followed by levels for one person
hitting a person (HUMAN-HIT-HUMAN), and a boxer
hitting his opponent (BOXER-HIT-BOXER). Each of
these levels is connected to knowledge about the moti-
vation for the hit act.

The language understander generates inferences by:
(1) searching the hierarchy for the most specific node
that applies to the input and binding the appropri-
ate roles, (2) applying the attached inferences, and (3)
propagating the role bindings. A number of methods
for searching the hierarchy have been proposed, such as
localist connectionist spreading activation (e.g. [Waltz
and Pollack, 1985),[Sumida et al., 1988)).

The advantage of the hierarchical approach is that it
provides an economical method for representing struc-
tured knowledge (through inheritance) and it allows
large amounts of knowledge to be searched in paral-
lel (by applying the search procedure simultaneously
to different parts of the network). Unfortunately, this
approach suffers from three major shortcomings. First,
it is not clear how specific the information represented
in the hierarchy should be. Should there be an explicit
level for a male hitting a female? Second, a combinato-
rial explosion problem occurs when new information is
added to memory, since there are an enormous number
of ways that shared features can be combined to index
the new information. Third, the process of searching
the hierarchy introduces serious complexities. With
spreading activation systems, for example, the search



motivated-by

Figure 1: Semantic network with a hierarchy of HIT
acts. Single arrows indicate parent/child (is-a) rela-
tionships. Straight lines indicate role/filler relation-
ships. Double arrows labeled “=" signify equivalence
relationships.

procedure itself is simple but the complexity is hidden
in the procedure for determining the link weights.
Parallel Distributed Processing (PDP) Systems rep-
resent concepts as patterns of activation in a highly in-
terconnected network of units [Rumelhart and McClel-
land, 1986]. PDP systems provide inheritance between
concepts by having the patterns for a general concept
and its descendants share parts, so that any effects
caused by the pattern for the general concept will be
transferred over to its descendants [Hinton, 1981]. Ex-
ceptions are encoded by the parts of the pattern that
are not shared, so that the unique parts of the pattern
can override information from the ancestors. Proposi-
tional information is stored in PDP systems by using
triples of the form (Rolel Relation Role2). A sequence
of propositions can be encoded in a PDP network (e.g.
[Pollack, 1988]) by generating a reduced description
(over the hidden units) for a triple, and presenting it
as input along with the next triple in the sequence.
PDP systems offer a solution to the problems plagu-
ing symbolic/localist systems for storing hierarchical
information and generating inferences because they:
(1) do not need to make a discrete decision about what
knowledge structures to include in the network. The
extent to which a concept exists in the hierarchy is
determined by statistical correlations between training
patterns, (2) avoid combinatoric problems since the
network automatically determines (through the learn-
ing procedure) which of the shared features are salient,
and (3) use an extremely simple processing mechanism.
Unfortunately, PDP systems suffer from their own
unique problems because they have a very limited rep-

914

resentation of structured knowledge and they store too
much information in a single network. The first prob-
lem is that it takes an enormous amount of time to
train the network because of the incredibly large num-
ber of concepts that it must hold. The second problem
is the Knowledge-Level Parallelism Problem [{Sumida
and Dyer, 1989). Since the network can only store
or retrieve one triple at a time, it is not possible to
search large amounts of knowledge in parallel. This is
particularly problematic in inferencing, where a large
number of alternatives must be pursued in parallel for
efficiency reasons.

Parallel Distributed Semantic (PDS)
Networks

The PDS network approach is to combine the best fea-
tures of symbolic/localist semantic networks and PDP
approaches by: (1) Storing the content of a symbolic
hierarchy in an ensemble of PDP units. For exam-
ple, the HIT hierarchy of Figure 1 is stored in a PDP
network, as shown in Figure 2. Similarly, informa-
tion about humans is stored in a second PDP network.
Each level of the hierarchy is represented as a pat-
tern of activity over the appropriate ensemble. For
instance, HUMAN-HIT-HUMAN and BOXER-HIT-
BOXER are stored as alternative patterns of activation
over the HIT ensemble. (2) Connecting the PDP net-
works according to the structure of a semantic network.
In Figure 2, the HIT and HUMAN PDP networks are
connected in the same general manner as in Figure 1.

Figure 2: Two PDP networks for storing the hierarchy
of Figure 1. The circled dots in the figure indicate an
ensemble of units. The conceptual ensembles (i.e., HIT
and HUMAN) are labelled with capital letters and the
role ensembles are indicated by lower-case labels placed
inside the oval of units.

In a previous paper [Sumida and Dyer, 1989], we



showed how PDS networks store stafic role bindings,
in which a previously encountered concept is hound Lo
arole of a known proposition. This paper demonstrates
how PDS networks have been expanded to create gen-
eralizations and to generate dynamic inferences. In
order to generate dynamic inferences, PDS networks:
(1) store each hierarchy in the appropriate network by
presenting training instances and having the network
automatically generate the proper generalizations, (2)
classify new input according to the proper level of the
hierarchy from the generalizations made during train-
ing, and (3) propagate patterns for the role bindings to
the proper, related networks. For example, to under-
stand Text 2 using PDS networks: (1) the HIT hierar-
chy is stored by training the HIT network on a num-
ber of instances of humans hitting one another and
boxers hitting boxers. The network then generalizes
the training data to learn patterns for HUMAN-HIT-
HUMAN and BOXER-HIT-BOXER, (2) a new pat-
tern, Douglas hit Tyson, is presented and classified as
the BOXER-HIT-BOXER level of the hierarchy that
was generalized from the training instances, and (3)
the Douglas and Tyson patterns are propagated to the
COMPETITIVE-ACTIVITY network.

Storing Information in PDS Networks

Hierarchical information is stored in a PDS network
by generating a unique pattern (for each training in-
stance) that represents a reduced description of the in-
put. The network automatically generalizes from these
training patterns to generate a pattern that represents
a level of the hierarchy. For example, to represent the
BOXER-HIT-BOXER level from Figure 1, a number
of instances of boxers hitting one another are presented
to the network, a unique pattern is generated for each,
and the network generalizes from these patterns to gen-
erate the pattern for BOXER-HIT-BOXER. A reduced
description of the input is generated by using a slightly
modified version of the standard encoder network. In a
standard encoder network, the input and output layers
have the same number of units and are presented with
exactly same pattern. The weights are modified so that
the input patterns are trained to recreate themselves
as output. The resulting pattern over the hidden units
is taken to represent the reduced description. In the
modified network that we use, the same set of units is
used for both the input and output layers. The net-
work can be viewed as an encoder net with the output
layer folded back onto the input layer and with two
sets of connections: from the single input/output layer
to the hidden layer and from the hidden layer back to
the input/output layer.

As an example, consider the simplified figure of the
HUMAN ensemble shown in Figure 3. The network
relates the representation of a human with the fea-
tures of that person. The sex, height, and occupation
role groups cumulatively represent the input/output
layer and the HUMAN group represents the hidden

915

units. The black arrows indicate connections from the
input/output layer to the hidden layer, and the grey
arrows indicate connections from the hidden layer back
to the input/output layer. The thick lines in the figure
connect. a role group to an ensemble which can fill it
and indicate links which propagate a pattern without
changing it. The jagged lines in the figure are sug-
gestive of the patterns of activation that are presented
to the network. Suppose that we want to train the
network of Figure 3 on a tall, male boxer. We need
to generate a unique pattern in the HUMAN ensemble
that is a reduced description of the input and that rep-
resents the boxer. The pattern is generated by placing
the features for the boxer into the appropriate ensem-
bles (male into the SEX ensemble, tall into the SIZE
ensemble, and boxer into the JOB ensemble), propa-
gating the patterns into the input/output role ensem-
bles (male from SEX to sex role, tall from SIZE to
height role, and boxer from JOB to occupation role,
as indicated by the single dotted arrows in the figure),
and training the network by altering the connections
between the role groups and the HUMAN units that
form the hidden layer (the double dotted arrows indi-
cate the training process). The resulting pattern over
the HUMAN units (Boxerl) represents the boxer.

HUMAN

Boxer 1 =

Figure 3: Representing a boxer in the HUMAN net-
work.

Suppose that we now want to represent a proposition
for one boxer hitting another, specifically, (Boxerl-
HIT-Boxer2). The idea is to use exactly the same
method described above for representing a human, but
this time applied to the HIT network of Figure 4. Thus,
the Boxerl pattern is propagated from HUMAN to the
actor role of HIT, the Boxer2 pattern is generated in
the same manner described above and then propagated
from HUMAN to the object role of HIT, and the net-
work is trained so that the input/output pattern (the
conjunction of Boxerl and Boxer2) will recreate itself
as output. The resulting pattern over the hidden HIT
units is the representation and reduced description for
the proposition (BOXER1-HIT-BOXER?2).

The other training instances are created in exactly



\
A
AW = Boxer 2

Figure 4: Representing one boxer hitting another in
the HIT network.

-
Boxer 1 = MAA
HUMAN

the same manner. Various humans are represented in
the HUMAN network by presenting their features and
generating a reduced description. Various hit acts are
represented in the HIT network by presenting the actor
and object and again generating a reduced description.

Classifying the Input and Propagating
Role Bindings

As a result of the training process, the hidden units
learn to classify the input by responding to common
features of the training patterns. Particular hidden
units develop patterns that generalize from the features
shown during training and thus represent a level of the
hierarchy. For example, in the simulations described
in the next section, two of the HIT units respond with
a pattern of “01” when two boxer patterns are pre-
sented. The hidden units allow the network to classify
a new concept based on its similarity to ones seen dur-
ing training. When the pattern for the new concept is
presented, the hidden units that are sensitive to its fea-
tures becomne activated. The pattern over these units
serves to classify the input. The hidden units also help
the network perform pattern completion from partial
or noisy input, so that when an unfamiliar pattern is
presented that is similar to a known one, the hidden
units will respond to the similar features and recreate
the known pattern.

The subset of hidden units that classifies the in-
put acts as a Propagation Filter that directs where
role bindings are propagated. Propagation filters are
based on the idea of skeleton filters [Sejnowski, 1981,
Hinton, 1981] which use a pattern over one group of
units to enable a restricted subset of a group of fil-
ter units. Propagation filters consist of: (1) groups of
filter units, each of which gate the connection from a
source to a destination and (2) a set of selector units
that choose which filter group to enable. The pattern
over the selector units opens up the proper filter group
by driving its units above threshold. For example, in

916

Figure 5, the “01” pattern over units 2 and 3 of the
selector opens up groupl of the filter, which allows the
pattern to be passed from sourcel to destinationl. The
pattern in source2 is not propagated because the units
in group2 remain well below threshold.

selector AI\N\ e e

ke

sourcel filter groupl destination 1

source2 filter group2 destination2

M

Figure 5: A Propagation Filter with groupl enabled
and group?2 disabled.

To illustrate how propagation filters are applied to
propagating role bindings, suppose that we train the
network on numerous examples of boxers hitting one
another and of people hitting other people. As we men-
tioned earlier, one result of the training is that two of
the HIT units learn to respond with “01” when two
boxer patterns are presented and with “10” or “00”
when two non-boxers are presented. These two units
constitute a selector that enables the filters connecting
the roles of HIT with the roles of COMPETITIVE-
ACTIVITY, provided that the pattern over the two
units is “01”. Similarly, the two units enable the filters
connecting the roles of HIT with the roles of ANGER if
the pattern is “10” or “00”. For example, suppose that
we test the network on [Douglas HIT Tyson| by gener-
ating the pattern for Douglas in the HUMAN network
(by the procedure shown in Figure 3), propagating the
Douglas pattern to the actor role of HIT, and gener-
ating the Tyson pattern in HUMAN and propagating
it to the object role of HIT. As illustrated in Figure 6,
the network classifies it as BOXER-HIT-BOXER by
generating the “01” pattern over the two HIT units.
The “01” pattern enables the filter group that con-
nects the actor of HIT with the first participant role
of COMPETITIVE-ACTIVITY and the object of HIT
with the second participant role of COMPETITIVE-
ACTIVITY. Thus, the Douglas pattern is propagated
to the participantl role and Tyson to participant2.
The filters that connect the actor and object roles of
HIT with the roles of ANGER (not shown in the fig-
ure) are not enabled, since they require that the two
selector units have a pattern of “10” or “00”. As a
result, the Douglas and Tyson patterns are not prop-



agated to ANGER. Note that if the input had been
[John HIT Mary] as in Text 1, then the two HI'l' units
would respond with “10”, which would instead open
the filters from HIT to ANGER and result in John be-
ing propagated to the actor role of ANGER and Mary
to the object role.

COMPETITIVE-
HIT ACTIVITY
Douglas-
Hl'f-'l}!son: L]
7 [
o Jf
0600 < oeee
Douglu:W ,_.-";---W— L
(3
j art2
cd%' esee oboo
SIS A
Figure 6: Testing the HIT network on [Douglas
HIT Tyson]. The “01” pattern over the two

units of HIT opens the filters connecting HIT with
COMPETITIVE-ACTIVITY, and allows the Douglas
and Tyson patterns to be propagated.

Implementation Details and Simulation
Results

PDS Networks are implemented in a natural language
understanding system called DCAIN which is written
in the C programming language and is fully imple-
mented on the examples shown above. In our sim-
ulations, the HUMAN network was divided into the
following 8 role groups: occupation (boxer, business-
man, career woman or teacher), strength (strong, aver-
age, or weak), height (tall, medium, or short), weight
(heavy, average, or light), sex (male or female), hair
color (blond, brown, red, or black) and length (short,
medium, or long), eye-color (blue or brown), and skin-
color (dark or light).

The following is a list of the tasks on which PDS
networks were tested. In every case, the network per-
formed successfully: (1) Retrieving the correct (i.e.,
consistent with the training data) features given a sin-
gle characteristic. For example, given the boxer occu-
pation, the network correctly filled in the strong, tall
and heavy features. (2) Retrieving the correct human
given enough distinguishing characteristics. (3) Cate-
gorizing familiar HIT acts (i.e., those seen during train-
ing) and generating the proper inferences. (4) Cate-
gorizing new HIT acts involving familiar humans and
generating the proper inferences. New hit acts were
created by selecting a pair of familiar humans whom
the network had not seen hit one another. (5) Catego-
rizing new HIT acts involving new humans and gener-

917

ating the proper inferences. New humans were created
by varying irrelevant features (such as hair and eye-
color) of the humans that the network had seen during
training.

Future Work

DCAIN needs to be expanded to: (1) dynamically
form the overall PDS network structure. DCAIN can
add new information and form generalizations within a
single network while avoiding the problems of localist
systems. However, DCAIN does not currently learn
the overall structure of the system, and must be ex-
panded to do so. (2) include structural language infor-
mation and incorporate more conceptual knowledge,
(3) address the issue of ambiguity, (4) address timing
and sequencing issues, and (5) incorporate elements of
explanation-based generalization.

Conclusions

Parallel Distributed Semantic (PDS) Networks store
the content of symbolic hierarchies in ensembles of
PDP networks, connect the networks in the manner
of a semantic network, and use propagation filters to
perform dynamic inferencing. PDS Networks are im-
plemented in DCAIN, a natural language understand-
ing system that: (1) uses a simple procedure for de-
termining link weight values, (2) exploits automatic
generalization, (3) represents structure, (4) provides
knowledge-level parallelism, and (5) drastically reduces
training time. Thus, DCAIN has a number of ad-
vantages over previous connectionist systems, and in-
tegrates the best features of symbolic and PDP ap-
proaches while avoiding their associated problems.

References

[Hinton, 1981] G. E. Hinton. Implementing Semantic Net-
works in Parallel Hardware. In Parallel Models of Asso-
ciative Memory, Lawrence Erlbaum, Hillsdale, NJ, 1981.

[Pollack, 1988] J. Pollack. Recursive Auto-Associative
Memory. In Proceedings of the Tenth Annual Confer-
ence of the Cognitive Science Society, Montreal, 1988.

[Rumelhart and McClelland, 1986] D. E. Rumelhart and
J. L. McClelland. Parallel Distributed Processing, Vol-
ume 1. MIT Press, Cambridge, Massachusetts, 1986.

[Sejnowski, 1981] T. J. Sejnowski. Skeleton Filters in
the Brain. In Parallel Models of Associative Memory,
Lawrence Erlbaum, Hillsdale, NJ, 1981.

[Sumida et al., 1988] R. A. Sumida, M. G. Dyer, and M.
Flowers. Integrating Marker Passing and Connectionism
for Handling Conceptual and Structural Ambiguities. In
Proceedings of the Tenth Annual Conference of the Cog-
nitive Science Society, Montreal, 1988.

[Sumida and Dyer, 1989] R. A. Sumida and M. G. Dyer.
Storing and Generalizing Multiple Instances while Main-
taining Knowledge-Level Parallelism. In Proceedings of
the Eleventh International Joint Conference on Artificial
Intelligence, Detroit, 1989.

[Waltz and Pollack, 1985] D. Waltz and J. Pollack. Mas-
sively Parallel Parsing. Cognitive Science, 9:51-74, 1985,



	cogsci_1991_913-917



