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Abstract

Gestational hypertension, often associated with elevated soluble Fms-related receptor tyrosine kinase 1 (sFlt-1), poses significant risks to both
maternal and fetal health. Hydrogen sulfide (H2S), a gasotransmitter, has demonstrated blood pressure-lowering effects in hypertensive animals
and humans. However, its role in pregnancy-induced hypertension remains unclear. This study investigated the impact of GYY4137, a slow-release
H2S donor, on sFlt-1-induced hypertension in pregnant rats . Pregnant rats were administered sFlt-1 (6 μg/kg/day, intravenously) or vehicle from
gestation day (GD) 12–20. A subset of these groups received GYY4137 ( 50 mg/kg/day, intraperitoneal) from GD 16–20. Serum H2S levels, mean
arterial blood pressure, uterine artery blood flow, and vascular reactivity were assessed. Elevated sFlt-1 reduced both maternal weight gain and
serum H2S levels. GYY4137 treatment restored both weight gain and H2S levels in sFlt-1 dams. sFlt-1 increased mean arterial pressure and
decreased uterine artery blood flow in pregnant rats. However, treatment with GYY4137 normalized blood pressure and restored uterine blood
flow in sFlt-1 dams. sFlt-1 dams exhibited heightened vasoconstriction to phenylephrine and GYY4137 significantly mitigated the exaggerated
vascular contraction. Notably, sFlt-1 impaired endothelium-dependent relaxation, while GYY4137 attenuated this impairment by upregulating
eNOS protein levels and enhancing vasorelaxation in uterine arteries. GYY4137 mitigated sFlt-1-induced fetal growth restriction. In conclusion,
sFlt-1 mediated hypertension is associated with decreased H2S levels. Replenishing H2S with the donor GYY4137 mitigates hypertension and
improves vascular function and fetal growth outcomes. This suggests modulation of H2S could offer a novel therapeutic strategy for managing
gestational hypertension and adverse fetal effects.

Summary Sentence
H2S levels are reduced in sFlt-1-induced gestational hypertension; replenishing H2S levels using a slow-release donor alleviates vascular
dysfunction in hypertensive pregnant rats, offering a potential avenue for managing gestational vascular dysfunction.

D
ow

nloaded from
 https://academ

ic.oup.com
/biolreprod/article/111/4/879/7700836 by U

N
IV O

F C
ALIFO

R
N

IA IR
VIN

E user on 06 N
ovem

ber 2024


 -30
16008 a -30 16008 a
 
mailto:skumar82@wisc.edu
mailto:skumar82@wisc.edu
mailto:skumar82@wisc.edu
mailto:skumar82@wisc.edu
mailto:skumar82@wisc.edu
mailto:skumar82@wisc.edu


880 H2S donor mitigates gestational vascular dysfunction, 2024, Vol. 111, No. 4

Graphical Abstract
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Introduction

Hypertensive disorders in pregnancy (HDPs), including
chronic hypertension, preeclampsia, gestational hypertension,
and chronic hypertension with superimposed preeclampsia,
are serious complications that occur in pregnant women. The
prevalence of HDPs in the United States has risen, affecting
around 15% of women in their reproductive years [1]. These
disorders are significantly associated with severe maternal
outcomes such as stroke and heart attack [2] and are the most
important cause of pregnancy-related death in the United
States [1]. Furthermore, mothers who survive HDPs and their
offspring face an increased risk of long-term health issues,
including cardiovascular and metabolic diseases [3–10]. The
exact mechanism of HDPs is unclear, but it is suggested that
impaired endothelial function in the uterine arteries, leading to
insufficient blood flow to the feto-placental unit, contributes
to the development of HDPs [11]. Because of this unclear
mechanism, the current treatments for HDPs are limited.

Several studies have supported the hypothesis that HDPs,
especially preeclampsia, result from an unfavorable interac-
tion between placental and maternal factors [12, 13]. The
hypoxic placenta in preeclampsia releases proinflammatory
cytokines such as tumor necrosis factor-alpha and interleukin-
6, along with anti-angiogenic factors like soluble Fms-related
receptor tyrosine kinase 1 (sFlt-1) and soluble endoglin [12,
14]. Elevated levels of endogenous sFlt-1 disrupt the benefi-
cial effects of circulating vascular endothelial growth factor,

leading to systemic endothelial dysfunction, a hallmark of
preeclampsia [12, 13].

Furthermore, dysregulation of the hydrogen sulfide (H2S)
pathway has been implicated in the mechanisms underly-
ing preeclampsia and fetal growth restriction (FGR). H2S
is synthesized in the placenta from L-cysteine by enzymes
like cystathionine β-synthase (CBS) and cystathionine γ -lyase
(CSE) [15]. Studies have shown reduced placental H2S pro-
duction, CBS and CSE expression, and plasma H2S levels
in pregnancies complicated by preeclampsia and FGR [16,
17]. These reduced H2S levels have been associated with
the anti-angiogenic environment and endothelial dysfunc-
tion in preeclampsia [18, 19]. H2S is known for its abil-
ity to promote vasodilation [20], exert cytoprotective anti-
inflammatory effects [21], protect against reperfusion injury
[22], and stimulate angiogenesis [18], which are crucial for
pregnancy-related vascular adaptations [16, 17, 23]. The ther-
apeutic potential of sodium hydrosulfide (NaHS), an H2S
donor, has been explored for its vasodilator and cytoprotective
effects on endothelial cell function [24–27]. However, NaHS
has limitations, including instability in water solution and the
rapid release of H2S, which does not accurately mimic the
physiological process of H2S release in vivo. Therefore, in this
study, we investigated the effects of GYY4137 (GYY), which
releases H2S slowly and consistently over an extended period
and within a physiologically relevant concentration range [28,
29], in an sFlt-1-induced rat model of gestational hypertension
along with the underlying vascular mechanisms involved.
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Materials and methods

Experimental arrangement

All experimental procedures adhered to the guidelines set
forth by the National Institutes of Health (NIH Publication
No. 85–23, revised 1996) and received approval from the
Institutional Animal Care and Use Committee at the Uni-
versity of Wisconsin-Madison (IACUC protocol V005847).
Timed-pregnant Sprague–Dawley rats, obtained from Envigo
Laboratories (Indianapolis, IN) on gestation day 10 (GD) 10,
were housed under controlled conditions with a 12-h light:12-
h dark photoperiod in a temperature-regulated room (23◦C).
These rats had unrestricted access to food and water.

On GD 12, pregnant rats were divided into two groups,
each consisting of n = 12. The control group received saline
(vehicle), while the treatment group received sFlt-1 (recombi-
nant mouse VEGF R1/Flt-1 Fc Chimera, R&D system MN,
6 μg/kg/day, intravenously) from GD 12 to GD 20, as previ-
ously described [30]. The chosen dosage and duration of sFlt-1
administration replicate the elevated sFlt-1 levels observed in
pregnant women with preeclampsia [31, 32].

Additionally, a subset of control dams (n = 6) and sFlt-1-
administered dams (n = 6) were treated with GYY (GYY4137,
MCE NJ, 50 mg/kg/day, intraperitoneal) from GD 16 to GD
20. This specific dose of GYY was based on prior stud-
ies demonstrating beneficial effects in some animal models
[33–35].

On GD 20, the rats underwent euthanasia using CO2
asphyxiation. Maternal blood, male and female fetuses, and
their placentae were carefully removed and weighed. The
serum was separated and utilized for quantifying H2S lev-
els. Uterine arteries were dissected and isolated for vascu-
lar reactivity studies. The remaining uterine artery segments
were rapidly frozen in liquid nitrogen for subsequent protein
isolation.

H2S measurement in the maternal serum

The quantification of H2S concentrations in serum was
conducted in accordance with previously established method-
ologies [36]. Briefly, 75 μL aliquot of serum was combined
with 1% zinc acetate (250 μL) and distilled water (425 μL).
Subsequently, 150 μL of N-dimethyl-p-phenylenediamine
sulfate (20 mmol/L) in 7.2 M HCl and 150 μL of FeCl3
(30 mmol/L) in 1.2 M HCl were introduced to the mixture.
Following this, 10% trichloroacetic acid (250 μL) was added
and the solution was incubated at ambient temperature for a
duration of 10 min. The reaction mixture was then subjected
to centrifugation at 12 000 × g for 15 min to facilitate protein
removal. The absorbance of the resultant supernatant was
measured at a wavelength of 670 nm using a SpectraMax
i3x spectrophotometer (Molecular Devices, San Jose, CA).
The H2S concentration in the solution was determined
by comparison with a calibration curve generated using
NaHS. The H2S concentration is expressed as nM per mL
of serum.

Measurement of mean arterial blood pressure

The mean arterial blood pressure was measured in conscious
rats using a CODA computerized noninvasive blood pressure
system (Kent Scientific, Litchfield, CT) as described previously
[37]. The rats were adapted to a restraint warming chamber
for 2 days for 15 min each day, and then blood pressure
was measured the following days. Rats were allowed to rest

quietly for 10 min in a restrainer placed in a warming chamber
at 30◦C to stimulate blood flow to the tail. Occlusion and
volume pressure-recording cuffs were applied to the base of
the tail. The cuff was programmed to inflate and deflate
automatically within 90 s. Blood pressure was recorded and
analyzed using Kent Scientific software.

Uterine artery ultrasound

Rats were anesthetized with 2% isoflurane in oxygen and
placed in a heated platform for ultrasound imaging. Uterine
arteries were examined using a 30-MHz transducer and
Vevo 2100 ultrasound system (Visual Sonics, Toronto,
ON, Canada), as reported previously [38]. Briefly, the
velocities of the main uterine arteries were recorded below
the bladder and at the level where the main uterine artery
branches from the internal iliac artery. Peak systolic velocity
(PSV) and end-diastolic velocity (EDV), the area under
the peak velocity-time curve, and the R-R interval were
measured from three consecutive cardiac cycles, and the
results were averaged. Blood flow velocity distribution was
determined using the following formula: F = 1/2 MVπ (D/2)2

(where MV = mean peak velocity over the cardiac cycle
[cm/s], D = diameter [cm], and F = blood flow [mL/min]).
Uterine artery Resistance Index (RI = [PSV−EDV]/PSV) and
Pulsatility Index (PI = [PSV−EDV]/MV) were calculated to
quantify the pulsatility of blood velocity waveforms.

Preparation of uterine arteries

The rats were euthanized by CO2 inhalation, and uterine
vasculature was excised and immersed in ice-cold Krebs
physiological salt solution (KPS) (in mM): NaCl, 119; KCl,
4.7; CaCl2, 2.5; MgSO4, 1.17; NaHCO3, 25; KH2PO4, 1.18;
EDTA, 0.026; and d-glucose, 5.5. Uterine arteries (1.5-mm
segments of the first-order branch of the uterine artery) were
dissected free of fat and connective tissue and mounted using
tungsten wires on a wire myograph (Danish Myo Techniques,
Aarhus, Denmark) for the recording of isometric tension. The
tissues were incubated for 15 min in KPS at 37◦C, which
was gassed with 95% O2 and 5% CO2 to maintain pH 7.4
and allowed to equilibrate for 30 min before normalization
to an internal diameter of 0.9 of L13.3 kPa by using a
normalization software package (Myodata; Danish Myotech-
nologies). For endothelium-intact uterine artery rings, extreme
care was taken to avoid injury to the endothelium. For
endothelium-denuded rings, the endothelium was removed
by gently rubbing the ring interior with tungsten wire. The
presence and denudation of the endothelium were verified
by relaxation to acetylcholine (ACh) in arterial rings pre-
contracted by a submaximal concentration of phenylephrine
(PE).

Assessment of vascular contractile responses

The arterial rings were exposed to 80 mM potassium chloride
(KCl) until reproducible depolarization-induced contractions
were achieved. After washing and equilibration with KPS,
vascular contractile responses to cumulative additions of PE
(10−9–10−5 M) were determined.

Assessment of vascular relaxation responses

Endothelium-dependent relaxation was assessed by ACh
(10−9–10−6 M)-induced relaxation in PE-precontracted
arteries. The PE concentration used for precontraction
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was required to produce 80% of the maximal response.
Endothelium-independent relaxation was determined by
nitric oxide donor sodium nitroprusside (SNP) (10−9–
10−6 M)-induced relaxation in PE-precontracted endothelium-
denuded arteries.

Western blotting for eNOS protein quantification

The frozen uterine arteries were homogenized in ice-cold
RIPA buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl,
1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium
deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM β-
glycerophosphate, 1 mM Na3VO4, 1 μg/mL leupeptin; Cell
signaling Technology, Danvers, MA) containing a protease
inhibitor tablet (Roche, Indianapolis, IN) and phosphatase
inhibitor cocktail-2 and -3 (Sigma, St Louis, MO). Tissue
lysates were centrifuged (14 000g for 15 min at 4◦C), and
the protein content was measured using the Pierce BCA pro-
tein assay kit (Thermo Scientific, Waltham, MA). Then, the
supernatant was resuspended in the NuPAGE LDS sample
buffer and reducing agent (Invitrogen; Thermo Scientific,
Waltham, MA). Proteins (40 μg) alongside Chameleon Duo
Pre-stained Protein Ladder (LI-COR Corporate, Lincoln, NE)
were resolved on 4%–12% gradient NuPAGE Bis-Tris Gels
(Invitrogen) at 100 V for 2.0 h at room temperature and then
transferred onto Immobilon-P membranes (Millipore Inc., Bil-
lerica, MA) at 20 V for 1 h. The membranes were blocked with
5% BSA for 1 h and then incubated with primary antibodies
for 16 h at 4◦C. The primary antibodies were rabbit mon-
oclonal eNOS (1:1000; Catalog No. 32027, Cell Signaling,
Danvers, MA) and rabbit monoclonal GAPDH (1:2000; Cat-
alog No. 5174, Cell Signaling, Danvers, MA). After washing,
the membranes were incubated with horseradish peroxidase-
conjugated secondary antibodies for 1 h and then devel-
oped using the Pierce ECL detection kits (Thermo Scientific).
The densitometric analysis was done using ImageJ software.
Results were expressed as ratios of band intensity to that of
GAPDH.

Statistical analysis

Data are represented as the mean ± standard error of the
mean (SEM). The data were subjected to analysis using
the GraphPad Prism software (GraphPad Software, San
Diego, CA). The data derived from multiple vascular rings
and fetuses of the same rat were averaged and presented
as a single data point, with the “n” value denoting the
number of dams. Maternal weight gain was quantified as the
percentage change relative to the weights recorded on GD 12.
Cumulative concentration-response curves were analyzed via
computer-assisted fitting to a four-parameter sigmoid curve.
Contractile responses to PE were assessed as a percentage of its
maximal contraction and as a percentage of KCl contraction.
Relaxant responses to ACh were evaluated as the percentage
inhibition of the PE-induced contraction. Subsequently,
the maximal responses (Emax) and the concentrations
that produce 50% of the maximal effect (pD2 values)
were determined. The pD2 values were ascertained via
regression analysis and expressed as the negative logarithm
of the molar concentration. Analysis of variance tests was
performed, followed by Dunnets post hoc test for multiple
comparisons. Differences were deemed statistically significant
at P ≤ 0.05.

Results

Maternal weight gain and serum H2S levels

Compared to controls, sFlt-1 dams had reduced maternal
weight gain, and GYY treatment effectively counteracted this
sFlt-1-induced decrease in weight gain. The non-significant
difference between sFlt-1 + GYY and control or sFlt-1 alone
groups suggests that GYY treatment successfully preserved
maternal weight gain to levels comparable to controls and pre-
vented the suppressive effect of sFlt-1 (Figure 1A). Serum H2S
levels were lower in sFlt-1 dams, but GYY treatment restored
the H2S levels similar to that in control dams (Figure 1B).

Maternal arterial blood pressure and uterine artery
blood flow

sFlt-1 dams showed elevated mean arterial blood pressure,
and GYY treatment prevented the rise in blood pressure
induced by sFlt-1 (Figure 2). However, GYY treatment did not
affect blood pressure in the control dams (Figure 2).

In addition, sFlt-1 dams had a significant decrease in uter-
ine artery blood flow, along with increased resistance and
pulsatility indices compared to the control dams (Figure 3).
GYY treatment significantly reversed the decrease in uterine
artery blood flow and normalized resistance and pulsatility
indices to control levels (Figure 3). In the control dams, GYY
treatment did not alter resistance and pulsatility indices and
blood flow (Figure 3).

Vasoconstrictor response

sFlt-1 dams had enhanced PE-induced contraction in
endothelium-denuded uterine arteries, with increased sensi-
tivity compared to controls (Figure 4 and Table 1). However,
GYY treatment significantly reduced the sFlt-1-induced
exaggerated PE contraction (Figure 4A and B, Table 1).
GYY treatment did not affect PE contraction in controls
(Figure 4A and B, and Table 1).

KCl (80 mM)-induced vascular contraction response was
similar in uterine arteries among the different treatment
groups (Figure 4C and Table 1).

Vasodilator response

Endothelium-dependent relaxation mediated by ACh was
impaired in uterine arteries from sFlt-1 dams, as evidenced by
a lower ACh sensitivity than controls (Figure 5A and Table 1).
Treatment with GYY ameliorated endothelial dysfunction in
sFlt-1 dams by enhancing ACh sensitivity (Figure 5A and
Table 1). GYY did not affect ACh-induced relaxation in
control uterine arteries (Figure 5A and Table 1).

Endothelium-independent relaxation elicited by SNP, a NO
donor, was similar in uterine arteries from control and sFlt-1
dams, regardless of GYY treatment (Figure 5B and Table 1).

eNOS protein levels

The uterine arteries from sFlt-1 dams had reduced eNOS
protein expression (Figure 6). However, treatment with GYY
restored eNOS protein expression in sFlt-1 dams, while it had
no significant impact on the controls (Figure 6).

Litter size and fetal weights

Increased sFlt-1 levels caused a trend of decrease in litter
size (P = 0.14 vs control) (Figure 7A) and a significant FGR
with lower mean male (Figure 7B) and female (Figure 7C)
pup weight. Treatment with GYY attenuated the detrimental

D
ow

nloaded from
 https://academ

ic.oup.com
/biolreprod/article/111/4/879/7700836 by U

N
IV O

F C
ALIFO

R
N

IA IR
VIN

E user on 06 N
ovem

ber 2024



P. Yadav et al., 2024, Vol. 111, No. 4 883

Figure 1. Maternal weight gain and serum H2S levels. Pregnant rats were exposed to intravenous sFlt-1 (6 μg/kg/day) or vehicle from gestational day
(GD) 12 to 20. Both sFlt-1 and control groups received H2S donor GYY (50 mg/kg, i.p.) from GD 16 to 20. (A) Maternal weight change on GD 20 relative
to GD 12 is shown as a percentage. (B) Serum H2S levels were determined as described in the methods section. Data are means ± SEM of 6 rats per
group. Bars with asterisk (∗) denote significant differences (P ≤ 0.05).

Table 1. Vascular response in control and sFlt-1 dams with and without GYY4137

Variable Control Control + GYY sFlt-1 sFlt-1 + GYY

PE pD2 5.68 ± 0.01 5.65 ± 0.04 5.84 ± 0.07∗ 5.73 ± 0.04
Emax (%) 124.3 ± 4.17 136.1 ± 3.41 136.0 ± 7.83 128.5 ± 7.05

ACh pD2 7.36 ± 0.08 7.04 ± 0.11 6.32 ± 0.12∗ 7.31 ± 0.09
Emax (%) 90.60 ± 1.55 85.05 ± 3.15 83.72 ± 3.51 87.24 ± 1.64

SNP pD2 7.24 ± 0.14 7.16 ± 0.14 7.05 ± 0.19 7.20 ± 0.05
Emax (%) 97.35 ± 14.82 97.53 ± 12.70 96.17 ± 18.02 92.59 ± 4.56

KCl Emax (mN) 11.87 ± 0.77 11.47 ± 0.93 12.44 ± 0.79 11.36 ± 1.16

pD2 (half-maximal effective concentration) is expressed as −log[mol/L], and Emax (maximum effects) is shown as percentage of maximal contraction or
relaxation. All acronyms are explained in the text. Asterisk indicates significant differences (P ≤ 0.05) relative to other groups.

Figure 2. Maternal blood pressure response to H2S donor GYY. Pregnant
rats received sFlt-1 (6 μg/kg/day, i.v.) or vehicle from gestational day (GD)
12–20. GYY (50 mg/kg, i.p.) was administered to both sFlt-1 and control
groups from GD 16 to 20. On GD 20, mean arterial blood pressure was
noninvasively assessed using the CODA system. Data are means ± SEM
of 6 rats per group. ∗Denote significant differences (P ≤ 0.05) relative to
other groups.

effects of sFlt-1 by improving the litter size and fetal weight
(Figure 7A–C). GYY treatment in control dams did not sig-
nificantly affect litter size and fetal weights (Figure 7A–C).
The placental weight was unaffected with sFlt-1 and with or
without GYY treatment (Figure 7D and E).

Discussion

The primary outcomes of the present study are as follows: (1)
H2S levels are reduced in pregnant rats with elevated sFlt-1,

and GYY administration restored H2S to control levels. (2)
GYY mitigated hypertension induced by sFlt-1 in pregnant
rats by enhancing the blood flow in the uterine artery and
reducing the vascular contraction mediated by PE. (3) GYY
treatment led to an improvement in endothelial-dependent
vascular relaxation and associated with increased eNOS pro-
tein in the uterine arteries. (4) GYY treatment also enhanced
fetal growth in sFlt-1 dams, likely due to improved vasodi-
lation and increased blood flow in the uterine artery. These
findings suggest activating the H2S system with GYY can
mitigate hypertension, improve endothelial-mediated vascular
function, and enhance fetal growth in pregnant rats with
elevated sFlt-1.

The HDPs are hypothesized to involve an imbalance in
angiogenic factors, particularly leaning toward antiangiogenic
factors [39]. Studies consistently report elevated levels of
circulating sFlt-1 in women with preeclampsia [40, 41]. Exper-
imental evidence supports a connection between increased
maternal sFlt-1 and adverse maternal outcomes, such as ges-
tational hypertension, preeclampsia [42, 43], and reduced
birth weight [44, 45]. Our current observation of decreased
serum H2S levels in pregnant dams with elevated sFlt-1 is
consistent with previous findings of low H2S in preeclamptic
women [16]. Our previous study demonstrated that sFlt-
1 suppresses VEGF-stimulated CBS expression, leading to
reduced H2S production [46]; however, further investigation
is required to determine whether sFlt-1 directly interacts with
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Figure 3. Uterine artery hemodynamics after H2S donor GYY treatment. Uterine artery (A) blood flow, (B) resistance index, and (C) pulsatility index were
assessed using a 30-MHz transducer and Vevo 2100 micro-ultrasound on gestational day 19 in control and sFlt-1 dams with or without GYY. Data are
means ± SEM of 6 rats per group. Bars with asterisk (∗) denote significant differences (P ≤ 0.05).

Figure 4. Uterine artery contractility following H2S donor GYY treatment. Uterine artery rings were obtained from pregnant rats on gestational day 20
after exposure to control or sFlt-1, with or without GYY treatment. Vascular contractile responses to cumulative phenylephrine (PE) additions were
assessed in endothelium-removed rings and shown as (A) percentage of maximal contraction and (B) percentage of contraction elicited by 80 mM
potassium chloride (KCl). (C) Contractile responses to 80 mM KCl. Data are means ± SEM of 6 rats per group. ∗P ≤ 0.05 compared to all other groups.

other H2S synthesizing or metabolizing enzymes. GYY treat-
ment restored serum H2S levels in sFlt-1 dams as expected.
However, it is interesting to note that GYY treatment did
not affect serum H2S levels in control dams, suggesting a
possible feedback regulation to maintain H2S homeostasis
either by downregulating endogenous CBS and CSE activity
or upregulating H2S metabolism. This notion needs to be
investigated in future studies.

In this study, pregnant rats exposed to sFlt-1 exhibited
elevated blood pressure, consistent with previous findings

[32]. However, administration of the H2S donor GYY to sFlt-
1-exposed dams effectively prevented the increase in blood
pressure, indicating that GYY may have the potential to
attenuate sFlt-1-induced hypertension. This is consistent with
previous studies demonstrating the blood pressure-lowering
effects of other H2S donors in various hypertensive mod-
els, including RUPP, heme oxygenase-1 (HO-1) deficiency,
deoxycorticosterone (DOCA)-salt, inhibition of CSE, and LPS
models [16, 24, 25, 47, 48]. Future studies should investi-
gate multiple donors concurrently, such as GYY and others,
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Figure 5. Uterine artery relaxation after H2S donor GYY treatment. Uterine artery rings were obtained from pregnant rats on gestational day 20 after
exposure to control or sFlt-1, with or without GYY treatment. Rings were pre-contracted with submaximal phenylephrine and then the relaxation
responses to cumulative doses of (A) acetylcholine (ACh) in endothelium-intact rings and (B) sodium nitroprusside (SNP) in endothelium-removed rings
were assessed. Data are means ± SEM of 6 rats per group. ∗P ≤ 0.05 compared to other groups.

Figure 6. Uterine artery endothelial nitric oxide synthase (eNOS) protein
expression after H2S donor GYY treatment. Uterine artery samples from
pregnant rats on gestational day 20 after exposure to control or sFlt-1,
with or without GYY treatment, were subjected to Western blotting for
eNOS expression. The top panel shows representative blots for eNOS
and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), while the
bottom panel presents normalized densitometry data. Data are means ±
SEM of 6 rats per group. Bars with asterisk (∗) denote significant
differences (P ≤ 0.05).

within the same model to determine if GYY exhibits superior
or more consistent effects compared to other H2S-releasing
compounds.

Maternal vascular adaptations during pregnancy are essen-
tial for enhancing uterine artery blood flow to meet the
metabolic demands of the growing placenta and fetus [49,
50]. Uterine vascular remodeling and placental angiogenesis

play crucial roles in forming a “low resistance, high capaci-
tance vessel” capable of augmenting uterine blood flow [51,
52]. Significant changes occur in uterine spiral and placental
arteries, including increased branching, diameter, and total
area, contributing to enhanced uterine blood flow [53]. In
line with previous studies [54], we found that elevated sFlt-
1 reduced uterine artery blood flow and increased resistance
and pulsatility indices. Such alterations in uterine artery blood
flow and vascular resistance have been linked to adverse out-
comes like preeclampsia and FGR [55, 56]. However, in our
study, GYY administration to sFlt-1-exposed dams amelio-
rated these changes, improving uterine artery blood flow and
restoring the resistance and pulsatility indices. This aligns with
other studies where H2S donors enhanced endothelial func-
tion in the mesenteric arteries of nonpregnant streptozotocin-
induced diabetic rats [34] and uterine blood flow in preg-
nant Dahl salt-sensitive rats [27]. While the blockade of H2S
production has been reported to inhibit angiogenesis [57],
H2S has been shown to promote angiogenesis and neovas-
cularization [18, 58, 59]. The mechanism underlying GYY-
induced improvement in uterine artery blood flow could
involve enhancement in angiogenesis and placental vascular-
ization. Further investigations are warranted to elucidate the
role of GYY in vascular remodeling and placental vascular-
ization during elevated sFlt-1 levels.

We investigated uterine artery function to understand the
vascular mechanisms underlying the observed blood pressure
and uterine artery blood flow changes associated with GYY
treatment in sFlt-1 dams. The increased blood pressure in
sFlt-1 dams was accompanied by enhanced vasoconstric-
tion in response to PE, resembling the adrenergic hyper-
reactivity observed in hypertensive pregnancies [60, 61]. How-
ever, GYY administration effectively reversed the exagger-
ated vasoconstriction, suggesting adrenergic suppression in
restoring vascular function in sFlt-1-elevated dams. GYY
treatment did not significantly alter nonreceptor-mediated
(KCl-induced) contraction, indicating that the reduced PE
vasoconstriction in sFlt-1 dams given GYY is likely due to
modifications in adrenergic receptors or their downstream
signaling rather than broad nonreceptor-mediated changes,
such as vascular smooth muscle cell hypertrophy or hyper-
plasia. In line with this, GYY has been found to atten-
uate the excessive norepinephrine-induced vasoconstriction
in the mesenteric arteries of diabetic rats [34] and reduce
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Figure 7. Litter size, fetal, and placental weights after H2S donor GYY treatment. Pregnant rats were exposed to control or sFlt-1, with or without GYY
treatment. Litter size, fetal and placental weights were recorded on gestational day 20. (A) Litter size (B) male fetal weights (C) female fetal weights (D)
male placental weights, and (E) female placental weights were calculated as the mean data per dam/litter. Data are means ± SEM of 6 rats per group.
Bars with asterisk (∗) denote significant differences (P ≤ 0.05).

the responsiveness of adrenergic receptors to norepinephrine
in Wistar rats [62]. Further studies should investigate how
GYY mitigates adrenergic signaling in uterine arteries during
gestation.

To investigate the impact of GYY on endothelial function,
we evaluated the endothelium-dependent relaxation response
to ACh. Notably, ACh-induced relaxation was diminished
in the uterine arteries of dams exposed to sFlt-1, indicating
impaired endothelial control of vascular tone, aligning with
prior studies [63]. GYY treatment enhanced ACh-induced
relaxation in the uterine arteries of sFlt-1-exposed dams
while having minimal effects in control dams. These findings
suggest that GYY treatment preserves vascular relaxation
responses to ACh. Importantly, SNP (NO donor)-induced
relaxation response showed no significant difference between
the sFlt-1 dams with and without GYY, indicating that
the observed differences were unrelated to the smooth
muscle vasodilatory capacity but more related to endothelial
function.

In agreement with this, earlier studies have shown that GYY
enhances endothelium-dependent NO-mediated relaxations
in porcine coronary arteries exposed to hypochlorous acid
[64], mesenteric arteries of spontaneously hypertensive rats
[65], and aorta of diabetic rats [66], suggesting that GYY
may enhance NO synthesis in endothelial cells. This notion is
supported by the observation that the levels of eNOS protein

were increased in the uterine arteries of GYY-treated sFlt-1
dams. While the precise mechanism by which GYY induces
eNOS expression remains unclear, previous studies have
proposed that GYY can directly stimulate eNOS expression
in cultured human umbilical vein endothelial cells [67].
Furthermore, H2S was shown to preserve eNOS protein
stability in endothelial cells by promoting microRNA-455-
3p expression [68]. Overall, these findings provide evidence
supporting the role of H2S in augmenting eNOS function
and preserving endothelium-dependent vasodilation in sFlt-
1-elevated dams. Future studies should aim to elucidate
the precise molecular mechanism underlying GYY-mediated
upregulation of eNOS expression.

The link between sFlt-1 and negative outcomes, including
FGR and low birth weight, has been consistently noted in
human [27, 44] and animal studies [60, 63]. In our current
study, GYY administration significantly improved maternal
weight gain and weights of both male and female fetuses
in sFlt-1-exposed dams. Thus, the beneficial effect of GYY
treatment in sFlt-1 dams maybe attributed to the improvement
in vascular function and enhanced uterine artery blood flow.
Interestingly sFlt-1 and GYY did not affect placental weights
in line with previous reports [69]. Studies indicate that sFlt-
1 decreases placental nutrient transporters [70], raising the
possibility of GYY improving placental function such as
nutrient availability to the fetus.
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Although our preclinical investigations demonstrate the
efficacy of GYY in restoring maternal vascular function in the
sFlt-1 rodent model, the translatability of these findings to
human preeclampsia warrants cautious interpretation. Since
there are inherent discrepancies in sFlt-1/VEGF dynamics
between rodents and humans [71], further research is nec-
essary to determine the clinical relevance of our findings.
The use of alternative models that more accurately reca-
pitulate the human pregnancy milieu, such as non-human
primate models or humanized rodent models, may help bridge
the translational gap between preclinical models and human
preeclampsia.

In conclusion, this study aligns with the previous report that
increased maternal sFlt-1 during pregnancy disrupts endothe-
lial function, leading to hypertension and FGR [72]. We pro-
vide evidence that supplementation with H2S using the phar-
macological agent GYY in dams with elevated sFlt-1 restores
blood pressure, enhances uterine artery blood flow, reduces
exaggerated vasoconstriction, improves endothelial-mediated
relaxation, and enhances fetal growth. It is important to note
that our findings specifically highlight the mitigatory effect
of H2S on vascular hemodynamics in dams with elevated
sFlt-1, and caution should be exercised in generalizing these
results to other non-vascular sFlt-1-induced adverse outcomes
or other models of gestational hypertension. Nonetheless,
our results suggest that augmenting H2S activity through
pharmacological agonists holds promise as a preventive or
therapeutic strategy for managing gestational hypertension
and FGR associated with elevated sFlt-1.
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