
University of California
Santa Barbara

Optimal Designs in Multi-Agent Systems and

Industrial Refrigeration

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Rohit Konda

Committee in charge:

Professor Jason R. Marden, Chair
Professor Mahnoosh Alizadeh
Professor João P. Hespanha
Professor James B. Rawlings

September 2024

The Dissertation of Rohit Konda is approved.

Professor Mahnoosh Alizadeh

Professor João P. Hespanha

Professor James B. Rawlings

Professor Jason R. Marden, Committee Chair

June 2024

Optimal Designs in Multi-Agent Systems and Industrial Refrigeration

Copyright © 2024

by

Rohit Konda

iii

To my family and friends.

iv

Acknowledgements

First and foremost, I would like to give thanks to my advisor, Professor Jason Marden.

In totality, my graduate studies would not be possible without the tremendous support

and guidance that I have received from Jason. Throughout, I have enjoyed our technical

discussions and I have matured as a presenter and a writer directly from Jason’s advice.

As an advisor, Jason has been nothing but approachable, friendly, and supportive - for

that I am forever grateful. Apart from my advisor I’d like to also thank the members of

my thesis committee: Professor Mahnoosh Alizadeh, Professor Joao Hespanha, Professor

James B. Rawlings, and Jesse Crossno. Your valuable feedback and advice has been of

tremendous help. Additionally, I would like to extend my gratitude to Jesse and the

CrossnoKaye team for an excellent internship and collaborative experience, from which

I have learned an immense amount.

I’m also very much grateful for the collaborative atmosphere that was present during

my period at Harold Frank Hall. First, I’d like to thoroughly the lab members that have

come before me: Keith Paarporn, David Grimsman, Rahul Chandan, Adel Aghajan, and

Bryce Ferguson. Your collective mentorship and friendship is very much appreciated. I

am also thankful that I can pass on the torch to the lab members that have come after

me: Gilberto Diaz-Garcia, Vade Shah, Maxwell Crisafulli, and Jordan Prescott. Its been

extremely rewarding to be able to work and grow alongside my peers during this process.

My heartfelt gratitude also extends to not only the other wonderful student members at

CCDC, but also to the peers that joined alongside our Whiteboard seminars.

Of course, the lows of my PhD would have been much drearier without the support

and good times had with the many friends I have had the pleasure of meeting along

the way in Santa Barbara. I am super grateful to have met so many wonderful people

along the way. Additionally, I’d like to especially thank my friends from undergraduate

v

and high school for keeping me sane through lockdown. My gratitude goes to the many

people that I have had the pleasure of meeting in the past five years.

Finally, I would like to express my heartfelt gratitude to my family, whose support and

encouragement have been instrumental for my studies. My parents, Vijay and Vindhya,

have always been my guiding lights, offering invaluable advice and constant motivation.

Their dedication and sacrifices have provided me with the foundation I needed to succeed.

Additionally, my brother Roshan has been a tremendous source of help and support. I am

deeply appreciative of their collective efforts and could not have reached this milestone

without their love and support.

vi

Curriculum Vitæ
Rohit Konda

Education

2024 Ph.D. in Electrical and Computer Engineering, University of California,
Santa Barbara.

2019 M.S. in Electrical and Computer Engineering, Georgia Institute of
Technology

2018 B.S. in Biomedical Engineering, Georgia Institute of Technology

Publications

Journal Publications

� Konda, Rohit, et al. ”Optimal Utility Design of Greedy Algorithms in Resource
Allocation Games.” IEEE Transactions on Automatic Control (2024).

� Squires, Eric, et al. ”Composition of safety constraints for fixed-wing collision
avoidance amidst limited communications.” Journal of Guidance, Control, and Dynamics
45.4 (2022): 714-725.

� Konda, Rohit, Aaron D. Ames, and Samuel Coogan. ”Characterizing safety: Minimal
control barrier functions from scalar comparison systems.” IEEE Control Systems
Letters 5.2 (2020): 523-528.

Conference Publications

� Konda, Rohit, et al. ”Utilizing Load Shifting for Optimal Compressor Sequencing in
Industrial Refrigeration.” 2024 American Control Conference (ACC). IEEE, 2024.

� Konda, Rohit, Rahul Chandan, and Jason R. Marden. “Quality of Non-Convergent
Best Response Processes in Multi-Agent Systems through Sink Equilibria.” 2023
62nd IEEE Conference on Decision and Control (CDC). IEEE, 2023.

� Zhang, Runyu, et al. ”Markov games with decoupled dynamics: Price of anarchy
and sample complexity.” 2023 62nd IEEE Conference on Decision and Control
(CDC). IEEE, 2023.

� Konda, Rohit, et al. ”Balancing asymptotic and transient efficiency guarantees in
set covering games.” 2022 American Control Conference (ACC). IEEE, 2022.

� Konda, Rohit, David Grimsman, and Jason R. Marden. ”Execution order matters
in greedy algorithms with limited information.” 2022 American Control Conference
(ACC). IEEE, 2022.

� Konda, Rohit, Rahul Chandan, and Jason R. Marden. “Mission Level Uncertainty
in Multi-Agent Resource Allocation.” 2021 60th IEEE Conference on Decision and
Control (CDC). IEEE, 2021.

vii

� Squires, Eric, et al. ”Safety with limited range sensing constraints for fixed wing
aircraft.” 2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021.

� Squires, Eric, et al. ”Model free barrier functions via implicit evading maneuvers.”
arXiv preprint arXiv:2107.12871 (2021).

� Konda, Rohit, et al. ”Provably-safe autonomous navigation of traffic circles.” 2019
IEEE Conference on control technology and applications (CCTA). IEEE, 2019.

viii

Abstract

Optimal Designs in Multi-Agent Systems and Industrial Refrigeration

by

Rohit Konda

The focus of this thesis is on developing control strategies for large-scale systems. We

look at two distinct problem areas: the design of coordination algorithms for multi-agent

systems and the optimization of industrial refrigeration systems.

In the first part of this thesis, we focus on multi-agent systems, where various decision-

makers interact with each other, each with their own local objectives. To understand and

design control strategies within these systems, we employ a game-theoretic viewpoint.

Under this framework, the utility functions and strategic interactions are explicitly

modeled to understand emergent behavior. Optimal incentive mechanisms can then be

derived to align joint outcomes with the collective objective. The subsequent chapters

explore different scenarios within this framework, such as collective transient behavior,

coordination in limited information settings, and run-time analysis. Overall, we aim to

classify multi-agent behavior and optimize outcomes under varying conditions.

In the second part of this thesis, we focus on designing control strategies for industrial

refrigeration settings. Industrial refrigeration plays a significant role in various sectors

and represents a major portion of total global energy usage. Despite this, there are

significant control opportunities in increasing the efficiency of such systems by carefully

modulating system variables, such as pressure and temperature, to operate close to

optimal thermodynamic conditions. We explore the control opportunities of compressor

sequencing and scheduling as a viable option to significantly reduce energy usage, by

utilizing techniques from inventory control and scheduling theory. By leveraging optimization

ix

methodologies, the manuscript seeks to enhance the efficiency of refrigeration systems,

thereby reducing energy usage and environmental impact.

x

Contents

Curriculum Vitae vii

Abstract ix

1 Introduction 1
1.1 Introduction to Utility Designs in Multi-Agent Systems 2
1.2 Introduction to Industrial Refrigeration 4

Part I Utility Design in Multi-Agent Systems 6

2 Game Dynamics 7
2.1 Strategic Form Games . 8
2.2 Learning Dynamics and Decision Algorithms 8

3 Guarantees in k - round walks 12
3.1 Introduction . 13
3.2 Model and Preliminaries . 15
3.3 One Round Walks . 20
3.4 Finite Walks . 46
3.5 Asymptotic Walks . 51
3.6 Tradeoffs . 57
3.7 Simulations . 68

4 Greedy Algorithms in Limited Information Settings 72
4.1 Introduction . 73
4.2 Model and Preliminaries . 75
4.3 Main Theoretical Results . 78
4.4 Applications in Submodular Settings . 90

xi

5 Nash equilibrium in Uncertain Settings 96
5.1 Introduction . 97
5.2 Model and Preliminaries . 99
5.3 Characterization of PoA . 104
5.4 Set Covering Results . 111

6 Nonconvergent Learning Dynamics 121
6.1 Introduction . 122
6.2 Model and Preliminaries . 124
6.3 Main Results . 129
6.4 Better Response Sink Equilibrium . 136
6.5 Appendix . 138

Part II Industrial Refrigeration 142

7 Load Shifting in Compressor Sequencing 143
7.1 Preliminaries on Industrial Refrigeration 144
7.2 Mathematical Model . 149
7.3 Results on Compressor Sequencing . 151
7.4 Simulations . 159

8 Inventory Control and Peak Pricing 162
8.1 Introduction to Peak Pricing . 163
8.2 Mathematical Model . 166
8.3 Results on Compressor Scheduling . 170
8.4 Simulations . 179

Bibliography 181

xii

Chapter 1

Introduction

Large-scale systems are prevalent in a diverse set of domains, spanning from industrial

processes [1] to transportation networks [2]. These systems typically involve numerous

interconnected components that interact dynamically with each other. Managing such

systems usually requires sophisticated control strategies that are capable of regulating

whole-scale behavior in an effective way. In this manuscript, we use frameworks from

control theory, optimization, and game theory to develop theoretical insights for efficient

control strategies for large-scale systems.

In this manuscript, effective control strategies are dictated by solving an underlying

optimization problem. However, in many instances, solving the optimization problem

directly can be infeasible, either due to informational constraints, computational complexity,

or other concerns. Thus, throughout this work, we will focus on developing online and

approximate solutions that yield well performing behavior, while reducing the computational

and informational burden of the underlying control algorithms. We do this in two

contexts: First, we will examine control designs in general multi-agent systems, where

are there different decision makers that have to interact; Second we will examine control

designs in industrial processes, where we develop insights on effective control strategies

1

Introduction Chapter 1

that minimize energy usage. We address both of these research directions separately in

this manuscript.

1.1 Introduction to Utility Designs in Multi-Agent

Systems

In the first part of the manuscript, we consider developing control strategies in

multi-agent systems, where multiple autonomous decision makers interact, each with

their own individual objectives. In these collective systems, agents may have different

constraints, information, or preferences leading to complex interactions that traditional

control methodologies may struggle to address. Thus, we look towards game theory as

a powerful framework in which to address control designs in these multi-agent systems.

Under a game-theoretic framework, we can formally model the strategic interactions

among agents, considering their decisions as part of a game, where each agent aims to

maximize their utility. By modeling the interactions and preference structure among

agents, game theory allows for control designs that account for the strategic behavior,

leading to distributed and efficient coordination algorithms.

Throughout our work, we shape agent’s behavior through utility design (also known

as mechanism design), where agent’s preferences via their individual utility function is

modified to promote better emergent behavior. Each agent’s utility function quantifies

its preferences over their decision set; under a rationality assumption, each agent employs

a decision making process that maximizes its own utility. However, by carefully designing

utility functions, a system designer can incentive cooperation and align individual goals

with a collective global objective. From coordination in traffic networks [3] to managing

distributed energy grids [4], game-theoretic approaches holds much promise as an methodology

2

Introduction Chapter 1

to address increasingly complex and interconnected systems.

Under this game-theoretic viewpoint, the focus of this study is on classifying behavior

under selfish processes and implementing utility design to incentivize better global behavior.

The main contributions of this part are dictated as follows:

� In Chapter 3, we focus on the quality of trajectories that result from selfish decision

making. We examine resource allocation scenarios and examine the performance

after agents are allowed to respond k times. We provide characterizations for agent

performance when k = 1, when k is finite, and when k → ∞ asymptotically. We

employ utility design to optimize the performance of the resulting game outcomes.

� In Chapter 4, we allow agents to selfishly respond in a sequential manner. wIn this

chapter, we examine when agents have limited information and must communicate

their decisions along a communication network. Along a given communication

network, we examine the resulting communication time guarantees to run this

sequential greedy process.

� In Chapter 5, we study scenarios where agents don’t have full access to a world

state. We examine the performance guarantees and optimal utility designs when

agents must selfishly respond to each other in limited information scenarios.

� In Chapter 6, we extend to general scenarios where agent objectives may be misaligned

for operational reasons. We then characterize the performance given a utility

structure when agents may be misaligned in their preference structure and must

behave rationally in respond to other agent’s decisions.

3

Introduction Chapter 1

1.2 Introduction to Industrial Refrigeration

Industrial refrigeration is a critical component in various sectors, ensuring that perishable

goods remain fresh; some examples include food and beverage, pharmaceuticals, and

industrial chemicals [5–7]. By maintaining specific temperature conditions, refrigeration

systems prevent spoilage and extending the shelf life of products, making it an integral

part of the global supply chain. As such, industrial refrigeration represents a significant

portion of commercial energy usage. However, managing refrigeration systems efficiently

poses a multifaceted challenge due to the intricate interplay between different system

states, such as temperature, humidity, and product specifications. By employing efficient

control algorithms and data-informed methodologies, refrigeration operators can optimize

the performance, potentially resulting in significant reductions in energy use and environmental

impact. As industries increasingly prioritize sustainability and resource conservation, the

integration of optimization methodologies into refrigeration systems represents a pivotal

step toward achieving these goals.

In this manuscript, we identify novel control opportunities to increase the efficiency

of refrigeration systems. We base our findings on data collected from a Butterball LLC

® located in Huntsville, AZ. We use tools from optimization and scheduling theory to

characterize optimal policies in these refrigeration systems. The main contributions of

this part are dictated as follows:

� In Chapter 7, we examine the problem of compressor sequencing, where the capacities

of multiple compressors must be scheduled in such a way to minimize energy use

while meeting the required thermal demands of the system. We characterize the

optimal sequencing algorithms and introduce load shifting as a novel mechanism

for aiding compressor sequencing. While load shifting has been traditionally used

to respond to variable cost structures, we introduce load shifting for compressor

4

Introduction Chapter 1

sequencing to allow for more efficient compressor configurations. We show the

benefits of this ideology through our theoretical results and simulation models.

� In Chapter 8, we discuss optimal scheduling that addresses the necessary thermal

loads while reducing operational expenses. We use methodologies from inventory

management to characterize the structure of the optimal control strategies. We

analyze the impact of various energy cost-rate frameworks, including time-of-use

(TOU) pricing and peak pricing schemes, on the control policies.

5

Part I

Utility Design in Multi-Agent

Systems

6

Chapter 2

Game Dynamics

In the advent of increasingly distributed architectures and multi-agent systems, there has

been significant effort from the theoretical community to understand and design such

systems. In this thesis, game theory is used as the fundamental methodology that we use

to design such systems. Game theory has solidified its usefulness as a modeling strategy

in economic contexts [8], computational contexts [9], and more recently, engineering

contexts [10]. In essence, game theory can be encapsulated by the study of players, their

decisions, and their preferences over their decisions.

However, much of the fundamental work and exploration in game theory has been on

the study of fixed points and equilibrium among multi-agent decisions - this viewpoint

has bled into the current framework in how game theory is mainly used. However, we

take a different viewpoint in this thesis, where we explicitly model the interaction process

between agents and study features of the decisions along that process. We introduce the

necessary preliminaries in this section.

7

Game Dynamics Chapter 2

2.1 Strategic Form Games

In this section, we review classical models of game theory. Formally, a strategic

form or normal form game consists a set of n players. The set of players is denoted

I .
= {1, . . . , n}. Each player has a set of admissible decisions Ai, in which they can

select a specific decision ai ∈ Ai from. The decision set Ai can be quite abstract, but

is usually assumed to be finite throughout this manuscript. Each player i can select an

action ai ∈ Ai, resulting in a joint action a
.
= (a1, . . . , an). The space of joint actions is

denoted as A .
=
∏

iAi.

Under the joint decision space, each player has a preference over the joint decision

space A. In generality, this is equivalent to A being an ordered space with some ordering

⪯i for each player. Usually, we will assume that the preference structure can be generated

through a given utility function Ui(a) : A → R. In this case decision a1 is preferred over

a2 for agent i if a2 ⪯i a1 or equivalently if Ui(a2) ≤ Ui(a1), in the usual sense in R. One

crucial aspect of this model is that the utility functions Ui ̸= Uj for i ̸= j may disagree

in general - different agents can have different preferences over the joint decisions. In this

way, game outcomes are not immediately apparent and there are different ways to model

agent interactions along this model. In this manuscript, we take a dynamical viewpoint

that will be discussed in the next section.

2.2 Learning Dynamics and Decision Algorithms

We take a dynamical view point to model interactions between players. Specifically,

we assume that each agent is endowed an update rule which produces the following non-

autonomous discrete process:

at+1
i = fi(t, a

t; {Ui}i∈I). (2.1)

8

Game Dynamics Chapter 2

In this way, the utility function Ui serves to parameterize the update rule fi. These

dynamics can also be extended to probabilistic formulations. We outline and discuss

some classical examples of decision making dynamics below.

2.2.1 Best Response Dynamics

We first outline a fundamental learning dynamics - best response dynamics, that

goes far back as Nash’s seminal paper [11]. Informally, best response dynamics involve

each player adjusting their decisions to maximize their individual utility in a continuous

manner based on the current strategies chosen by the other players. The best response is

the decision that maximizes the utility of the player, i.e. abr is a best response action for

agent i, if abri ∈ argmaxai Ui(ai, a−i), where a−i
.
= (a1, . . . , ai−1, ai+1, . . . , an) is the joint

action without the action of agent i. Note that player i must have access to the current

strategy selection a−i of the other agents for it to be able to compute its best response

action. Before defining the dynamics as in Eq. (2.1), we first outline the selection rule

or s : N→ 2I , that defines which players are performing a best response. For example, if

the best response is done simultaneously, s(t) = I, but if done in a round robin fashion,

s(t) = t mod n. Additionally, the selection rule can be defined in a probabilistic sense

as well. With this, the learning dynamics can be formally described as

at+1
i =


abri ≡ argmaxai Ui(ai, a

t
−i) if i ∈ s(t),

ati otherwise .

(2.2)

In general, we can assume that the best response set is unique, but if not, a decision

can be arbitrarily selected from it. One key aspect of best response dynamics is their

simplicity and intuitive appeal. Players update their strategies based on what they

perceive to be the most advantageous response to the strategies of others, reflecting

9

Game Dynamics Chapter 2

a natural decision-making process observed in many real-world scenarios. This makes

best response dynamics a valuable modeling tool, offering valuable insights into strategic

behavior and collective outcomes in games.

2.2.2 Greedy Algorithms

We provide some connections to best response dynamics and another classical local

decision making algorithm - the greedy algorithm. Greedy algorithms are defined by a

sequential process, where agents make a series of locally optimal choices, with the hope

that these local optimizations will lead to a globally optimal solution. The primary

characteristic of a greedy algorithm is its short-sightedness, as agents make decisions

solely on the information available at the current step. Greedy algorithms have been

shown to effective algorithmic solutions for broad classes of problems including graph-

theoretic, local search, and submodular settings [12]. Formally, the greedy algorithm can

be defined by the dynamics in Eq. (2.2) with the selection rule s(t) = t if t ≤ n and ∅ if

t ≥ n. Thus we can recover classical decision making algorithms from a game-theoretic

viewpoint.

2.2.3 Better Response Dynamics

We can also relax best response dynamics to consider better response dynamics, where

the decision-making and rationality assumptions of agents can be relaxed. While in a

best response process, agents maximize their utility, in a better response process, agents

are only expected to deviate to a decision that increases their utility over their current

decision. Formally, agents are able deviate to a decision in their better response set

defined by {ai ∈ Ai : Ui(ai, a
t−i) ≥ Ui(a

t)}. Better response processes may be a more

realistic decision-making model, where computing best responses may be intractable, but

10

Game Dynamics Chapter 2

it is possible for agents to make iterative improvements in their utility. This iterative

adjustment process can be seen in markets, where firms continuously adjust prices and

outputs in response to competitors [13], or in network settings, where users adjust their

usage patterns based on congestion and other users’ behaviors [14].

2.2.4 Other Learning Dynamics

There are whole host of learning dynamics that are possible to implement. For

example, adaptive play is an extension of the best response process to include memory

[15]. It is possible to inject noise into the learning process, as done in a noisy best response

process or log-linear learning [16]. There are also iterative update algorithms, such as

no-regret learning, or multiple-weights algorithm [17]. Overall, the decision-making of

the agents can be modeled in a variety of ways, but intrinsically employ some component

of selfish decision-making.

2.2.5 Nash Equilibrium as Fixed Points

The Nash equilibrium in game theory is a fundamental concept where each player’s

strategy is the best response to the strategies of others, resulting in no player having an

incentive to deviate unilaterally. This equilibrium can be understood as a fixed point of

best response dynamics (and other learning dynamics as well), where the strategy profile

is stable because every player’s strategy is optimal given the others’ strategies. Formally,

a joint decision ane is considered a Nash equilibrium if anei ∈ argmaxai Ui(ai, a
ne
−i) for

all players i ∈ I. In certain games structures, convergence to Nash equilibrium can be

guaranteed [18]. Thus, Nash equilibrium are classically taken as a model of emergent

outcomes in multi-agent systems. However, in this thesis, we take more of a dynamical

viewpoint, and move beyond equilibrium analysis.

11

Chapter 3

Guarantees in k - round walks

Developing competitive and distributed solutions for multi-agent problems is essential for

many emerging application domains. Game theory has proven to be valuable framework

for designing these algorithms. However, the majority of research within this framework

focuses on equilibrium behavior often neglecting transient behavior. In this chapter,

we address this gap by examining the transient efficiency guarantees of best response

processes in the context of resource allocation games, which have numerous applications

in various application domains. Our primary focus in this chapter is on characterizing

the optimal short-term system behavior along the best-response process. Remarkably,

we find that the transient performance guarantees are relatively close to optimal long-

term/asymptotic performance guarantees. Moreover, we explore the trade-offs involved

in optimizing for both asymptotic and transient efficiency through various utility designs.

Our analysis provides a comprehensive understanding of the span of utility designs and

their joint effect on transient and asymptotic guarantees. The results and discussion in

this chapter is based on the work presented in [19,20].

12

Guarantees in k - round walks Chapter 3

3.1 Introduction

Multi-agent architectures have recently gained considerable attention due to their

widespread applications. The underlying goal of these distributed systems is to coordinate

agents to desirable system states, as measured by some global objective, through local

decision making processes. As such, game theoretic methods have emerged as an important

design methodology in these settings. In this approach, each agent is treated as a player

in a non-cooperative game with their decision-making governed by a local-objective or

utility function.

Endowed with a utility function, each agent can update its decisions in a self-interested

manner to dynamically respond to environmental changes, including those induced by

other agents. In this chapter, we consider when agents use the classical update rule - the

round-robin best response algorithm. Under this process, the decision updates are done

in a sequential manner: at each iteration, a single, chosen agent optimizes its decision

against its utility function with all of the other agents keeping their decisions fixed.

As such, the utility structure of the agents can significantly influence the underlying

dynamical behavior of the agents: this is highlighted in Figure 3.1. Understanding this

relationship is important in classifying the emergent behavior, especially when a system

operator would like to design or tune the utility functions in an optimal fashion.

Figure 3.1: If a given multi-agent scenario with n agents is modeled as a game, the
construction of distributed algorithms can be decoupled into two domains: the design
of local objectives (utilities) and the design of the learning dynamics. In this chapter,
we fix the dynamics to the classical k round-robin best response and study the effects
of the utility design on the efficiency bounds for the resulting decision trajectory.
Moreover, we characterize the guarantees as the number of rounds k increases.

13

Guarantees in k - round walks Chapter 3

Therefore, in this chapter, we shift focus to the transient behavior of the round-

robin best response algorithm. Specifically, we benchmark the iterative process to be the

round-robin best response algorithm and study the performance guarantees that result

from various designs of utility functions in the context of the well-studied class of resource

allocation games.

While the many of the existing theoretical results on the Nash equilibrium behavior

are positive, these performance guarantees only emerge asymptotically. In fact, arriving

at Nash equilibrium may even take an exponential time [21], rendering the resulting

characterizations irrelevant in many realistic multi-agent scenarios. For example, there

may be an extremely large number of agents in the multi-agent scenario or the relevant

situational parameters may be time-varying and volatile or there may be computational

and run-time restrictions on the agents. In these instances, expecting that the agents

will converge to Nash equilibrium may not be a reasonable assumption.

Moreover, the work in this chapter belongs to a larger research trend that aims to

study game theoretic models beyond their respective equilibrium. In contrast to the

traditional game-theoretic approach, the game dynamics are embraced as a valuable

feature of the game, where a rigorous study of actualized play can provide important

insights about the game model (see, for e.g., [22–24]). Furthermore, characterizing

performance guarantees along these game dynamics is valuable to understanding the

transient behavior of the agents. In contrast to the study of equilibrium quality, the

literature on transient guarantees is much less developed. However, we highlight an

important subset of works that characterize transient performance guarantees in different

game-theoretic contexts: such problem domains include affine congestion games [25–28],

market sharing games [25,29], basic utility games [29], series-parallel networks, and load-

balancing games [30,31].

14

Guarantees in k - round walks Chapter 3

3.2 Model and Preliminaries

We consider distributed settings that are modeled as resource allocation games [32].

Let I = {1, . . . , n} be the collection of agents that can possibly utilize a portion of a

given finite set of resources R = {r1, . . . , rd}. Each resource r ∈ R is associated with a

welfare rule wr : N → R>0 that defines the welfare accrued at each resource based on

number of agents that utilize it. We use the denotation wr(0) = 0. The choice of resource

utilization for each agent is given by its action set Ai ⊆ 2R. As such, the quality of a

joint action a = (a1, . . . , an) ∈ A = A1 × · · · × An is classified through a system-level

objective function W : A → R>0 of the form

W(a) =
∑
r∈R

wr(|a|r), (3.1)

where |a|r = |{i ∈ I : r ∈ ai}| is the number of agents that utilize r in the joint

action a. These types of objectives are commonplace in many engineering domains, with

applications in information gathering, image segmentation, statistical summarization (see

[33]). We include a sample of these applications below.

Example 1 (Weapon-Target Assignment). Consider a weapon-target assignment problem

[34], in which a set of agents I defend against a set of R targets. Each agent i ∈ I has to

decide which targets r ∈ R to defend against with a pd chance of defending against each

target, where its decision ai ⊂ R is a subset of targets. Each target is also characterized

by its relative value vr ≥ 0. As a whole, the set of agents would like to maximize the

expected value of the targets defended. As such, the nonlinear objective of the agent’s

decisions is denoted by

W(a) =
∑
r∈R

vr ·
(
1− (1− pd)

|a|r
)
. (3.2)

15

Guarantees in k - round walks Chapter 3

Example 1A (Set Covering). If the probability of defending pd is 1, then we recover the

problem of set covering [35]. In this domain, there is no benefit for more than agent to

defend against a target, and as a whole, the agents would like to maximize the value of

the targets defended. Thus, the welfare function simplifies to

W(a) =
∑

r∈
⋃

i ai

vr. (3.3)

Example 2 (Wireless Transmission over a Network). Consider a group of communicating

agents, as in [36], that send transmissions through a shared network with nodes V and

edges E. Each agent would like to send a wireless transmission over the network from a

given start node si to an end node ti, and it must choose one out of the possible paths

from si to ti to transmit across. Thus, the resource set is E and the action set Ai ⊂ 2E

is the possible set of paths from si to ti. An edge e may experience congestion if multiple

transmissions utilize it; we assume that with each additional transmission, the rate of

transmission experiences a harmonic-like decay. As a whole, the agents would like to

send their transmissions with the highest rate. As such, the system welfare is

W(a) =
∑

e∈
⋃

i ai

|a|e∑
j=1

1

j
. (3.4)

Example 3 (k-Clustering). Consider a classical dimensionality reduction problem of

distilling a given data set into representative clusters, similar to [37]. Each data point

di has a set of possible representative clusters Ai ⊂ R that it can join. The objective is

to compute clusterings with maximum overlap between data points. Greedy algorithms

16

Guarantees in k - round walks Chapter 3

can provide quick solutions with respect to the following welfare function.

W(a) =
∑

r∈
⋃

i ai

(|a|r)2. (3.5)

The global directive of the agents is to coordinate to a joint action that maximizes

the system welfare, i.e. aopt ∈ argmaxa∈A W(a). In order to coordinate the agents in a

distributed fashion, we assume a game-theoretic setup, where each agent optimizes its

decision with respect to a given local objective, or utility function Ui : A → R in a self-

interested process. To establish the learning procedure of the agents, we focus attention

to a class of best response processes known as k-round walks (or k round-robin best

response), explicitly stated in Algorithm 1. At each step of the algorithm, an agent is

selected in a round-robin fashion to perform a best response; this goes on until k rounds

have been completed. For a given joint action α ∈ A, we say the action abri is a best

response for agent i if

abri ∈ Bri(α−i) = arg max
ai∈Ai

Ui(ai, α−i), (3.6)

where a−i = (a1, . . . , ai−1, ai+1, . . . an) denotes the joint action a without the action of

agent i. We also assume that the round-robin walk begins with none of resources being

utilized by any of the agents, denoted by the null joint action a∅ := ∅.

Algorithm 1 k-Round Walk

Require: a(0)← a∅, i← 1, τ ← 1, k, n
while τ ≤ kn do

Modify action of agent i to ai(τ)← Bri(a−i(τ − 1));
Fix other agent actions to a−i(τ)← a−i(τ − 1);
Increment τ by 1;
Set the next agent i← τ mod n by round-robin;

end while
return a(kn)

17

Guarantees in k - round walks Chapter 3

Running the k-round walk algorithm induces the action trajectory a(0) = a∅, a(1),

. . . , a(kn− 1), a(kn) with a(kn) being the end resulting joint action. The central goal of

this chapter is to understand how the utility functions of the agents affect the behavior

of the k-round walk. To this end, the performance of the joint action ak
.
= a(kn) after k

rounds can be characterized through the following metric 1

Eff(G; k) =
W(ak)

maxa∈A W(a)
∈ [0, 1], (3.7)

where a ratio closer to 1 implies the efficiency of the joint action after k rounds is closer

to optimal. We use tuple G ≜ (I,A,R,W, {Ui}i∈I) to define the game instance under

consideration. Furthermore, we characterize the performance of the limit points 2 of the

k-round walk as

Eff(G;∞) =
W(limk→∞ ak)

maxa∈AW(a)
. (3.8)

Accordingly, the form of the utility functions has a significant impact on the given

metric Eff(G; k). One natural utility function to consider is the common-interest (CI)

utility, where all the agents share the same utility function Ui(a) ≡ W(a) for all a ∈ A

and i ∈ I. In line with literature on submodular optimization [38], we demonstrate

that common interest utilities exhibit constant factor efficiency guarantees Eff(G; k).

However, as unveiled by subsequent results in this chapter, by finely adjusting the utility

functions, we can achieve superior efficiency guarantees. Following this perspective, lets

consider utility functions of the form

Ui(ai, a−i) =
∑
r∈ai

ur(|a|r), (3.9)

1We note that the resulting action a(kn) may not be unique if the best response Bri(a−i(τ)) is not
unique for some τ . In this case, we overload W(ak) to mean the minimum welfare minα∈ak W(α) for the
k-round walk.

2Since resource allocation games are potential games [18], the limit points of k-round walks are
necessarily a subset of the set of Nash equilbrium.

18

Guarantees in k - round walks Chapter 3

where the utility rule ur : N→ R>0 defines the resource-specific agent utility determined

by |a|r. We assume that ur(1) = wr(1) for all r ∈ R. Now, the choice of the utility rules

ur influences the resulting joint action trajectory, and in turn the resulting end joint

action ak.

In most scenarios of interest, a system designer is required to specify the utility rules

ur without specific knowledge of the resource allocation game parameters, such as the

number of agent I or the action set A. To that end, let W be the set of possible welfare

rules that could be associated with any resource, i.e., wr ∈ W for all r ∈ R. Here, the

system designer is tasked with associating a utility rule to each type of resource, i.e., the

utility rule for any resource r ∈ R with the welfare rule wr is of the form ur = U(wr)

where we refer to the map U : W → RN
≥0 as the utility design. We refer to the common

interest utility design as UCI. Lastly, we define the set of resource allocation games that

are induced by W and U as GW,U , where a game G ∈ GW,U if wr ∈ W and ur = U(wr)

for all resources r ∈ R.

The central focus of this chapter is to understand how the choice of utility rules,

derived from U(·), and the number of rounds k impacts the efficacy of the emergent

collective behavior in the k-round walk. Therefore, we additionally extend the efficiency

measure to the set of games GW,U and quantify the optimal efficiency guarantees as

Eff(W ,U ; k) = inf
G∈GW,U

Eff(G; k), (3.10)

Eff∗(W ; k) = sup
U :W→RN

>0

Eff(W ,U ; k). (3.11)

We similarly extend the definitions of Eff(G;∞). We importantly highlight that

limk→∞ Eff(W ,U ; k) ̸= Eff(W ,U ;∞) in general, as the limit limk→∞ and the infimum

infG∈GW,U cannot be interchanged. We devote the next section to characterizing the

introduced efficiency metrics.

19

Guarantees in k - round walks Chapter 3

Additional Notation. Given a set S, |S| represents its cardinality. We use the denotation

w(0) = u(0) = 0. We also assume without loss of generality that wr(1) = 1 if not stated

otherwise 3. We define the bent welfare rule for some b ≥ 1 and curvature C ∈ [0, 1] as

wb,C(j) = (1− C)j + C ·min{j, b}. (3.12)

3.3 One Round Walks

3.3.1 Main Optimization Program

Our main results address the performance of one round walks in resource allocation

games. Under this distributed algorithm design, each agent runs a local optimization

to decide its decision in a sequential fashion. Given a set of allowable welfare rules W

and a utility function design U , our first main result in Theorem 1 derives the efficiency

guarantees of the one-round walk through a linear program construction.

Let wℓ ∈ W and U(wℓ) = uℓ for some index ℓ. We use the notation w̄ℓ(i) =

wℓ(i)/wℓ(1) and ūℓ(i) = uℓ(i)/uℓ(1) to simplify the presentation of the results. Additionally,

we make the mild assumption that uℓ(1) = wℓ(1) to normalize the utility rules.

Theorem 1. Let W be the welfare set. Consider the one-round walk with a utility

function design U , where U(wℓ) = uℓ for each wℓ ∈ W. The resulting efficiency guarantee

3Consider any game G ∈ GW,U . For any resource r ∈ R with a welfare rule wr, we can define another
game G′ ∈ GW,U with instead |wr(1)| copies of resource r with a welfare rule w′

r(j) = wr(j)/wr(1). If
|wr(1)| is not integer, we can scale the number of resources uniformly and round to get arbitrarily close.
Thus we can assume without loss of generality that wr(1) = 1.

20

Guarantees in k - round walks Chapter 3

is Eff(W ,U ; 1) = infwℓ∈W 1/β(wℓ), where β(wℓ) ∈ [1,∞] is the solution to

β(wℓ) = min β subject to: (3.13)

βw̄ℓ(y) ≥ H ·

(
y∑

i=1

ūℓ(i)− z min
1≤i≤y+1

ūℓ(i)

)
+ w̄ℓ(z)

for all z, y ∈ N s.t. z ≥ 0 and y ≥ 1,

and H = sup{w̄ℓ(i)/i : i ∈ N,wℓ ∈ W}.

Proof. Linear Program Formulation of the One-Round Walk. We first give a

linear program that computes the efficiency Effn(W ,U ; 1) that is based on a search

for a worst case game construction G ∈ GnW,U that achieves the worst efficiency ratio

for the given one round walk. Here, GnW,U denotes the set of games with a fixed n

number of agents, set of welfare rules W and utility function design U . We also make

the assumption that the welfare set W is finite, but generalize beyond this assumption

later in the proof. A comparable primal-dual approach was also explored in [39] and [28]

for different settings.

First, we apply a key observation that for a game G, truncating the action set of each

agent i to Ai = {a∅i , abri , aopti } does not affect the efficiency metric Eff(G; 1). Here, a∅i

is the null action that does not select any resources, abri is the action that agent i takes

under a best response, and aopti is the action that agent i plays in a joint action that

optimizes the welfare aopt = argmaxa∈A W(a).4 Therefore, we can restrict attention to

the class of games Gn,3W,U ⊆ GnW,U , where agents only have these three actions available

without loss of generality. Furthermore, scaling W uniformly does not affect the ratio

Eff(G; 1) = W(abr)
W(aopt)

, and we can assume that W(abr) = 1 without loss of generality. So we

4Note that abri and aopti may be the same action, but using separate denotations does not affect the
game structure. Additionally, if abr is not unique, then the one that performs the worst with respect to
W is selected.

21

Guarantees in k - round walks Chapter 3

aim to find a game that maximizes the optimal welfare W(aopt) to provide the lowest ratio.

Consolidating the previous observations results in the following optimization problem

Effn(W ,U ; 1)−1 = max
G∈Gn,3

W,U

W(aopt) subject to: (3.14)

W(abr) = 1, (3.15)

Ui(a
br
j≤i, a

∅
j>i) ≥ Ui(a

br
j<i, a

opt
i , a∅j>i) ∀i ∈ I, (3.16)

The constraint inequality in Eq. (3.16) maintains that the joint action abr is indeed

a best response under the reduced action set Ai = {a∅i , abri , aopti }. To reformulate the

optimization problem in Eq. (3.14) as a linear program, some necessary definitions are

introduced. The possible resource allocations are enumerated by the following product

set

P =
∏
i∈I

{∅, {abri }, {a
opt
i }, {abri , aopti }},

where each resource is classified by the agent actions that can select it. Then the

respective vectors in {0, 1}n can be defined.

bp
i =

{
1 if abri ∈ pi, 0 otherwise

}
,

opi =
{
1 if aopti ∈ pi, 0 otherwise

}
,

where p ∈ P describes a resource type. We define the norm of bp to be |bp| =
∑

i∈I b
p
i

(similarly for |op| =
∑

i∈I o
p
i) and denote the number of nonzero elements before index i

as |bp|<i =
∑

1≤j<i b
p
j . With this, we describe the linear program in the following lemma.

Lemma 1. Consider the welfare set W = {w1, . . . , wm}. For n agents, the efficiency

22

Guarantees in k - round walks Chapter 3

guarantee of the one-round walk with the utility function design U is

Effn(W ,U ; 1)−1 = min
{λi≥0}i∈I ,β

β subject to: (3.17)

βw̄ℓ(|bp|) ≥ w̄ℓ(|op|) +
∑
i∈I

λi

[(
bp
i − opi

)
ūℓ(|bp|<i + 1)

]
for all p ∈ P and 1 ≤ ℓ ≤ m.

Proof. First we show the equivalence of the optimization program proposed in Eq. (3.14)

and the primal linear program described below. We later show that the dual of this primal

program is exactly the linear program in Eq. (3.17). Note that each decision variable

ηℓp ∈ R≥0 is a real non-negative number.

Effn(W ,U ; 1)−1 = max
{ηℓp≥0}ℓ,p∈P

∑
1≤ℓ≤m,
p∈P

w̄ℓ(|op|) · ηℓp s.t. (3.18)

∑
1≤ℓ≤m,
p∈P

w̄ℓ(|bp|) · ηℓp = 1 (3.19)

∑
1≤ℓ≤m,
p∈P

[(
bp
i − opi

)
ūℓ(|bp|<i + 1)

]
· ηℓp ≥ 0 ∀i ∈ I (3.20)

For the equivalence, we first define a vector label for each resource r as ℓr(i) = {ai ∈

Ai : if r ∈ ai}. This vector describes in what actions is the resource selected by each

agent i, with ℓr ∈ P . Furthermore, we denote the specific partition of the resource set

with Rℓ,p = {r ∈ R : ℓr = p, wr = wℓ}. Now we show that W(aopt) in Eq. (3.14) matches

23

Guarantees in k - round walks Chapter 3

Eq. (3.18).

W(aopt) =
∑
r∈R

wr(|aopt|r)

=
∑

1≤ℓ≤m,
p∈P

∑
r∈Rℓ,p

wℓ(|aopt|r)

=
∑

1≤ℓ≤m,
p∈P

w̄ℓ(|op|) · ηℓp,

where ηℓp = |Rℓ,p| ·wℓ(1). The first equality is from the definition of the welfare function.

The second equality results from partitioning the resource set. The third equality occurs

by the fact that |aopt|r =
∑

j∈I 1aoptj
(r) = |op| if r ∈ Rℓ,p; additionally, the value wℓ(|op|)

is constant for any r ∈ Rℓ,p. A similar argument can be made about the welfare of the

best response action W(abr), so Eq. (3.15) matches Eq. (3.19) as well.

Now we show the utility constraint in Eq. (3.16) matches the constraint in Eq. (3.20).

For conciseness, let a1 = (abrj<i, a
br
i , a∅j>i) and a2 = (abrj<i, a

opt
i , a∅j>i). The utility difference

can be written as

Ui(a
1)− Ui(a

2) =
∑
r∈abri

ur(|a1|r)−
∑

r∈aopti

ur(|a2|r)

=
∑
r∈R

(
1abri

(r)ur(|a1|r)− 1aopti
(r)ur(|a2|r)

)

24

Guarantees in k - round walks Chapter 3

=
∑

1≤ℓ≤m,
p∈P

∑
r∈Rℓ,p

(
1abri

(r)ur(|a1|r)− 1aopti
(r)ur(|a2|r)

)

=
∑

1≤ℓ≤m,
p∈P

∑
r∈Rℓ,p

[(
bp
i − opi

)
uℓ(|bp|<i + 1)

]

=
∑

1≤ℓ≤m,
p∈P

[(
bp
i − opi

)
ūℓ(|bp|<i + 1)

]
ηℓp.

The first equality is from the definitions of the utility functions. The second and third

equalities comes from rewriting the sum using indicator functions and partitioning the

resource set along P . The fourth equality is a result of three facts: that 1abri
(r) = bp

i ;

that 1aopti
(r) = opi ; that |a1|r =

∑
j<i 1abrj

(r) + 1 = |bp|<i + 1 if r ∈ abri (similarly for

|a2|r). The fifth equality comes from sliding out the relevant terms of the first sum and

using the assumption that uℓ(1) = wℓ(1).

We assume that ηℓp ≥ 0 to ensure a well-defined game parametrization. Observe that

in the primal program in Eq. (3.18), we have relaxed ηℓp ∈ R≥0 to be any non-negative

real number with ηℓp denoting the relative fraction of resources with a specific resource

type. We use this relaxation to normalize W(abr) = 1 and this relaxation is done without

loss of generality, since we can scale up the values {ηℓp}ℓ,p∈P (from the solution arguments

of Eq. (3.18)) uniformly and round to derive the resource set for a corresponding valid

game construction G that achieves an efficiency ratio Eff(G; 1) that is arbitrarily close

to the solution of the primal program.

We now verify that the dual of the primal program in Eq. (3.18) matches the linear

program defined in Eq. (3.17). Note that primal program in Eq. (3.18) can be concisely

25

Guarantees in k - round walks Chapter 3

written as

max
η

cTη subject to:

Kη = 1 L

Im·4n

 η ⪰ 0,

where η is the vector of {ηℓp}ℓ,p∈P , Im·4n corresponds to the identity matrix of dimension

m · 4n×m · 4n, and c, K, L are the compactly written vectors in equations (3.18), (3.19),

and (3.20) respectively. Writing the dual linear program gives

max
λ⪰0, ξ⪰0, β

−β subject to:

KT
ℓ β −

[
LT
ℓ , I4n

]λ
ξ

− cℓ = 0 ∀1 ≤ ℓ ≤ m,

where c = (cT1 , . . . , c
T
m)

T is associated with each 1 ≤ ℓ ≤ m (likewise for K and L).

Observe that the constraint set KT
ℓ β −

[
LT
ℓ , I4n

]λ
ξ

− cℓ = 0 is equivalently written as

KT
ℓ β − LT

ℓ λ − cℓ = ξ and as KT
ℓ β − LT

ℓ λ − cℓ ⪰ 0. Substituting back cℓ, Kℓ, Lℓ results

in the constraint

βw̄ℓ(|bp|) ≥ w̄ℓ(|op|) +
∑
i∈I

λi

[(
bp
i − opi

)
ūℓ(|bp|<i + 1)

]
,

which matches the constraint outlined in Eq. (3.17).

Continuing the Proof of Theorem 1. The dual program in Eq. (3.17) provides

a solution for Effn(W ,U ; 1)−1 = β∗ for a fixed n and finite W . However, the constraint

26

Guarantees in k - round walks Chapter 3

set is exponential in the number of agents. Thus, in this section, we remove redundant

constraints to arrive at a more tractable linear program. We first show the solution is

upper bounded by β∗ ≤ β̃ for any n, where β̃ = max1≤ℓ≤m β(wℓ) and β(wℓ) is the solution

to the program in Eq. (3.13).

Let n be the number of agents. Without loss of generality, we assume that wℓ(1) =

uℓ(1) = 1 for 1 ≤ ℓ ≤ m. For a given p ∈ P , we denote yp = |bp| and zp = |op| for

ease of notation. Additionally, to convey which indices the resource type p are non-

zero in and in what order, we define vectors Bp for abr and Op for aopt. Formally,

Bp : {1, . . . , yp} → {1, . . . , n} and Op : {1, . . . , zp} → {1, . . . , n} with

Bp(j) = i if bp
i = 1 and |bp|≤i = j,

Op(j) = i if opi = 1 and |op|≤i = j.

Considering the dual program in Eq. (3.17), we add the constraint that λi = H =

sup{wℓ(i)/i : i ∈ N, 1 ≤ ℓ ≤ m} explicitly. Since we shrink the feasible region, the optimal

solution to Eq. (3.17) potentially increases. We verify that the resulting feasible region is

nonempty. Consider the constraints according to p such that bp = 0. The corresponding

dual constraint takes the form

0 ≥ wℓ(zp)−
zp∑
j=1

λOp(j)uℓ(1) for all ℓ, p.

Simplifying the expression gives
∑zp

j=1 λOp(j) ≥ wℓ(zp), which is always satisfied if λi = H

for all i. If the constraints according p are such that bp ̸= 0, then the term βwℓ(y) is

present and strictly positive in the inequality (3.17) and β can be taken as high as needed

to satisfy the constraint. Therefore the feasible region is nonempty.

For any p ∈ P such that bp ̸= 0, we can simplify the dual constraint in Eq. (3.17),

27

Guarantees in k - round walks Chapter 3

for each ℓ, to

βwℓ(yp) ≥ wℓ(zp) +

yp∑
i=1

Huℓ(i)−
∑
i∈I

Hopi uℓ(|b
p|<i + 1).

Furthermore, for any p ∈ P , we observe that
∑

i∈I o
p
iuℓ(|bp|<i+1) ≥ zpmin1≤i≤yp+1 uℓ(i).

Thus, for any p ∈ P , we can replace the corresponding dual constraint with a more

binding constraint

βwℓ(y) ≥ wℓ(z) +

y∑
i=1

Huℓ(i)−
∑
i∈I

Hz min
1≤i≤y+1

uℓ(i),

for some 0 ≤ z ≡ zp ≤ n and 1 ≤ y ≡ yp ≤ n. Therefore, replacing the dual constraints

gives an upper bound for β∗ ≤ β̃. Since β̃ is the only variable in the optimization problem,

we can decouple the constraints for each ℓ and limit the number of agents n → ∞ to

arrive at the program in Eq. (3.13).

Now we show that the solution is lower bounded by β∗ ≥ β̃, where β∗ and β̃ are

defined as before. We show that when we remove dual constraints, we arrive at the set

of linear programs in Eq. (3.13). Since the feasible region expands, the optimal solution

potentially decreases. Let the set of agents be I = N and jpℓ = argmin1≤j≤yp+1 uℓ(j). We

remove all the dual constraints barring the constraints that correspond to p ∈ P with

either (a) yp = 0 and zp = z∗ℓ = argmaxwℓ(j)/j or (b) yp > 0 and Bp(jpℓ − 1) < Op(1)

and Op(zp) < Bp(jpℓ). The first property refers to all resource types where abr is never

selected but aopt is by z∗ℓ agents. The second property refers to all resource types where

the indices of the agents selecting aopt are between the agents with index Bp(jpℓ − 1) and

Bp(jpℓ).

Assume property (a). Then the corresponding dual constraint in Eq. (3.17) can be

written as

0 ≥ wℓ(z
∗
ℓ)−

z∗ℓ∑
j=1

λOp(j)uℓ(1),

28

Guarantees in k - round walks Chapter 3

for any resource type p ∈ P that satisfies property (a) and for all ℓ. Therefore, for any

j ∈ N, except for at most z∗− 1 (with z∗ ≡ maxℓ{z∗ℓ }) values, observe that λj ≥ H must

hold.

Now assume property (b). With respect to a resource type p ∈ P that satisfies

property (b), we observe that uℓ(|bp|<i + 1) = uℓ(j
p
ℓ) for any agent with index i = Op(j)

for some j. Therefore, under the two previous observations, we can rewrite the relaxed

dual program as

min
λ⪰0

β subject to: (3.21)

βwℓ(yp) ≥
yp∑
j=1

λBp(j)uℓ(j)−
zp∑
j=1

λOp(j)uℓ(j
p
ℓ) + wℓ(zp)

for all p ∈ P ′ and ℓ,

λi ≥ H for all i ∈ N but at most z∗ − 1 values,

where P ′ = {p ∈ P : p satisfies property (b)}. Observe that we recover the proposed

program given in Eq. (3.13) if we assume that the optimal dual variable is λi = H for all

i ∈ N. To show this claim, we confirm that the binding constraint for β in Eq. (3.21) is

larger when considering a different sequence of lambdas λ ̸= H1. In other words, for a

given y ≥ 1 and z ≥ 0, we show that for the resulting dual variables,

βλ := max
p∈P ′

{ 1

wℓ(yp)

(yp∑
j=1

λBp(j)uℓ(j)−
zp∑
j=1

λOp(j)uℓ(j
p)
)}

≥ H

wℓ(y)

(
y∑

j=1

uℓ(j)−
z∑

j=1

uℓ(j
p)

)
:= βy,z (3.22)

For any λ ̸= H1, consider two cases where either λ is a divergent sequence, or it is

bounded above. In the first case, since λ must satisfy λj ≥ 0 for all j ∈ N, the limit

limj→∞ λj = ∞. If uℓ(j) = 0 for all j, note that βy,z = 0 for any y ≥ 1 and z ≥ 0.

29

Guarantees in k - round walks Chapter 3

Since βλ must also be greater than 0, the inequality in Eq. (3.22) holds in this case. If

uℓ(J) > 0 for some J ∈ N, consider a constraint with p such that yp > J and zp = 0.

For any M > 0, we can choose Bp, such that λBp(j) > M for all 1 ≤ j ≤ yp. Thus

βλ ≥ 1
wℓ(yp)

∑yp
j=1 Muℓ(j). Since M is arbitrary, βλ = ∞ ≥ βy,z for any y ≥ 1 and z ≥ 0

as well.

In the second case, since λ is also bounded below by H, for all but a finite set of

values, there exists a convergent sub-sequence λss that converges to a value V ≥ H by the

Bolzano-Weierstrauss theorem. Let My
u = max1≤j≤y+1 uℓ(i), x = max(y, z), and ε > 0.

Since λss converges, there exists a J ∈ N such that for any j ≥ J , |λss(j)− V | ≤ ε
2My

ux
.

For a given y and z, consider any constraint with p ∈ P ′ such that yp = y and

zp = z. Additionally, Bp and Op can be chosen to ensure that |λBp(j) − V | ≤ ε
2My

ux

and|λOp(j) − V | ≤ ε
2My

ux
for all j. Therefore

βλ ≥
1

wℓ(yp)

(yp∑
j=1

λBp(j)uℓ(i)−
zp∑
j=1

λOp(j)uℓ(j
p)
)

≥ V

wℓ(y)

(y∑
j=1

uℓ(i)−
z∑

j=1

uℓ(j
p)
)
− ε

2
− ε

2

≥ βy,z − ε.

Since ε is arbitrary, we have that βλ ≥ βy,z for any y and z and we show the claim.

Therefore the proposed program is an upper bound for any n and we have shown the

equality β∗ = β̃ for any n.

Note that the welfare rule setW was assumed to be finite for the previous arguments.

Now we extend to more general sets of welfare rules. As the worst case efficiency is defined

as Eff(W ,U ; 1) = infG∈GW,U Eff(G; 1), for a given sequence εj → 0, there always exists a

game Gj ∈ GW,U such that Eff(Gj; 1) ≤ Eff(W ,U ; 1) + εj. Take a sequence of εj → 0.

Define a finite welfare set for each step as Wj :=
⋃

1≤k≤j{wr : r ∈ Rk} described as the

30

Guarantees in k - round walks Chapter 3

union of the welfare rules for each game in the sequence. For each step, we have that

Eff(W ,U ; 1) ≤ β̃ ≤ Eff(Gj; 1) ≤ Eff(W ,U ; 1) + εj, where β̃ is the solution derived from

the set of linear programs in Eq. (3.13) for the welfare set Wj. Taking j →∞ gives the

result.

Remark 1. Observe that the value β(w̃ℓ) = β(wℓ) is equal for the welfare rule w̃ℓ = a ·wℓ

for any a > 0 if the corresponding utility rule also satisfies ũℓ = a · uℓ. For a finite

collection of welfare rules, say {w1, . . . wm}, consider the set W = {w : w =
∑m

j=1 ajwj :

aj ≥ 0 for all j} that can be defined by the possible non-negative linear combinations. In

this instance, the quantity infwℓ∈W 1/β(wℓ) is then equal to min{1/β(w1), . . . , 1/β(wm)},

which can be computed from a finite set of linear programs.

Remark 2. Note that if the number of agents n is known, the linear program in Eq.

(3.13) provides a non-trivial lower bound for 1/β(wℓ) when only including the constraints

for z, y ≤ n. Thus, it is possible to derive lower bounds on the efficiency guarantees

through a set of tractable optimization programs.

The above theorem sets forth a prescriptive process by which to characterize the

efficiency guarantees of the one round walk through a linear program construction 5.

This is done through a novel parametrization of the set of resource allocation games

and careful elimination of the redundant constraints in the dual of resulting program.

While directly solving the optimization in Eq. (3.13) requires keeping track of a countable

number of constraints, this linear program construction provides valuable insights into the

achievable efficiency guarantees. Under certain sub-classes of welfare rules, the optimal

utility function design that optimizes Eff∗(W ; 1) can actually be derived in closed form.

This is done in the next two subsections with regards to submodular and supermodular

welfare rules.

5We note that the LP in Eq. (3.13) is decoupled for each welfare rule wℓ.

31

Guarantees in k - round walks Chapter 3

3.3.2 One Round Walks in Submodular Settings

Figure 3.2: In the top chart, following the results in Theorem 3, we visually compare
the efficiency guarantees of the best one-round walk with the guarantees of the
common interest version and the best achievable polynomial-time guarantees. We
note that the best one-round walk and common-interest are at worst ∼ 80% within
the best polynomial-time guarantees. In the bottom chart, we display the fractional
performance gains of the best one-round walk over the common-interest one (up to
∼ 13% better).

In this subsection, we will restrict attention to welfare rules that are submodular,

or informally, welfare rules that admit a notion of decreasing marginal-returns that are

commonplace in many objectives relevant to engineered systems. Many well-studied

applications including viral marketing, information gathering, image segmentation, statistical

summarization involve welfare objectives that are submodular (see [33] for a survey on

application domains). Example (2) involves welfare rules that are submodular. We

32

Guarantees in k - round walks Chapter 3

formally define submodular welfare rules below.

Definition 1 (Submodularity). A welfare rule w is submodular if w is non-decreasing

and concave in j, or equivalently that w(j+1)−w(j) is non-negative and non-increasing

in j.

Under the assumption of submodularity, we can simplify the linear program in Theorem

1.

Corollary 1. Let W be a set of submodular welfare rules. Consider the one-round walk

with a utility function design U . The resulting efficiency guarantee is Eff(W ,U ; 1) =

infwℓ∈W 1/β(wℓ), where β(wℓ) is given by Eq. (3.13) with H = 1.

Proof. We directly apply Theorem 1 to derive the efficiency guarantees for submodular

welfare rules. Note that if wℓ is submodular, w̄ℓ(i) ≤ i for all i. Thus, we can substitute

H = supi,ℓ w̄ℓ(i)/i = w̄ℓ(1)/1 = 1.

Furthermore, given a set of submodular welfare rules, we can derive the optimal one-

round walk, as well as its respective efficiency guarantees, through a corresponding linear

program. The construction of the program is derived from the characterization result in

Corollary 1 with the non-trivial fact that the optimal utility rules are non-increasing in

this domain.

Theorem 2. Consider the set W where each wℓ ∈ W is a submodular welfare rule.

The utility rules u1
ℓ of the optimal utility design for the one round walk are given by the

33

Guarantees in k - round walks Chapter 3

solutions to

(
u1
ℓ , β(wℓ)

)
∈ arg min

β,u∈RN
≥0

β subject to: (3.23)

βwℓ(y) ≥
y∑

i=1

u(i)− zu(y + 1) + wℓ(z) ∀y, z ≥ 1,

u(1) = wℓ(1),

with a corresponding efficiency guarantee of Eff∗(W ; 1) = infwℓ∈W 1/β(wℓ).

Proof. We simply refer to w̄ℓ as w in the following discussion. If the utility rule u is

assumed to be non-increasing, we will show that we recover the linear program in Eq.

(3.23). If u is non-increasing, then min1≤i≤y+1 u(i) = u(y + 1). Additionally, w(1) − 1 ·

u(y + 1) ≥ w(0) − 0 · u(y + 1) = 0 for any y ≥ 1, so z = 0 is a nonbinding constraint.

We lastly note that the values {u(i)}i∈I can be established as decision variables for the

program in Eq. (3.13) to produce the linear program in Eq. (3.23), rewritten below.

(β∗, u∗) ∈ arg min
β,{u(i)}i∈I

β subject to: (3.24)

βw(y) ≥
y∑

i=1

u(i)− zu(y + 1) + w(z) ∀y, z ≥ 1

u(1) = 1,

where β∗ is a tight characterization of the efficiency guarantee only if the resulting optimal

utility rule u∗ is non-increasing and a lower bound if not. We now verify that the optimal

utility rule u∗ is indeed non-increasing for this simplified program. First, rearranging the

terms in the constraint in Eq. (3.24) gives that for any y ≥ 1,

u∗(y + 1) ≥ sup
z≥1

(1
z

(y∑
i=1

u∗(i) + w(z)− β∗w(y)
))

. (3.25)

34

Guarantees in k - round walks Chapter 3

We verify u∗(y+1) is well-defined. Note that since u∗ is optimal, the efficiency bound

β∗ < ∞ is nontrivial (as the common interest design guarantees an efficiency guarantee

greater than 1/2 [40]). Then, by recursion and the fact that w(z)
z
≤ 1 for all z, there

exists a solution for u∗(y + 1) such that Eq. (3.25) holds with equality and the resulting

value is finite for all y ≥ 1. Additionally u∗(y) must be non-negative for all y ≥ 1, since

limiting z →∞ in Eq. (3.25) gives that u(y + 1) ≥ 0.

Now we show that the solution u∗ is non-increasing. Suppose for contradiction that

for some y ≥ 1, that u∗(y) < u∗(y + 1). Let zy+1 ∈ argmaxz≥1w(z) − zu(y + 1) be the

number that achieves the maximum.

We verify that zy+1 is well-defined. Suppose for contradiction that w(z)−zu∗(y+1) is

always increasing in z, so zy+1 is not well defined. Since β
∗ <∞, the limit limz→∞w(z)−

zu∗(y + 1) must converge and therefore u∗(y + 1) must be equal to Q = limz→∞ ∆w(z),

where we denote ∆w(z) = w(z)−w(z−1) for conciseness. From the original contradiction

assumption then u∗(y) < u∗(y + 1) = Q. Then taking the constraint in Eq. (3.24), with

y−1 and z →∞ gives βw(y−1) ≥ limz→∞w(z)−zu∗(y) ≥ ∞, which is a contradiction.

Now, substituting zy+1 into Eq. (3.25) for y and y + 1 produces the following

expressions

u∗(y + 1) =
1

zy+1

(y∑
i=1

u∗(i) + w(zy+1)− β∗w(y)
)

u∗(y) ≥ 1

zy+1

(y−1∑
i=1

u∗(i) + w(zy+1)− β∗w(y − 1)
)
.

Inputting these expressions into the assumption u∗(y) < u∗(y+1) reduces to the inequality

u(y) > β∗∆w(y). Similarly, for some j ≥ 1, substituting zy+j into Eq. (3.24) for y + j

35

Guarantees in k - round walks Chapter 3

and y + j + 1 gives

u∗(y + j + 1) ≥ 1

zy+j

(y+j∑
i=1

u∗(i) + w(zy+j)− β∗w(y + j)
)

u∗(y + j) =
1

zy+j

(y+j−1∑
i=1

u∗(i) + w(zy+j)− β∗w(y + j − 1)
)
.

Thus by substituting the second expression into first, the following inequality holds

u∗(y + j + 1) ≥ u∗(y + j) +
u∗(y + j)− β∗∆w(y + j)

zy+j

. (3.26)

We show, by induction, that the following expression holds for any j ≥ 1,

u∗(y + j)− β∗∆w(y + j)

zy+j
≥ u∗(y + 1)− β∗∆w(y + 1)

zy+1
> 0. (3.27)

The base case holds for j = 1, since

u∗(y + 1)− β∗∆w(y + 1) > u∗(y)− β∗∆w(y) > 0.

This comes from the assumption that u∗(y + 1) > u∗(y), ∆w(y + 1) ≤ ∆w(y) by

submodularity of w, and that u∗(y) − β∗∆w(y) > 0 from the previous argument. For

the inductive case for J ≥ 2, assume that the inequality holds for all j < J . Then, by

applying the induction assumption to Eq. (3.26) and subsequently to the definition of

zy+J , we have that

u∗(y + J) > u∗(y + J − 1) > · · · > u∗(y + 1)

zy+J ≤ zy+J−1 ≤ · · · ≤ zy+1.

Therefore the statement in Eq. (3.27) holds due to the aforementioned inequalities and

36

Guarantees in k - round walks Chapter 3

the fact that ∆w(y + J) ≤ ∆w(y + 1) due to submodularity of w. Therefore Eq. (3.27)

holds and we have that u∗(y + j + 1) ≥ u∗(y + j) +D, where D = u∗(y+1)−β∗∆w(y+1)
zy+1

> 0.

Following this, u∗(y + j) ≥ u∗(y + 1) +D(j − 1).

Now consider the constraint in Eq. (3.24) where y →∞ and z = 0. Since w(y) ≤ y,

β∗ ≥ lim
y→∞

1

y

y∑
i=1

u∗(i) ≥ ∞, (3.28)

where the last inequality results from the fact that u∗(y) ∼ y is of linear order by the

previous argument. Since β∗ must be finite, contradiction ensues and the solution u∗ must

be non-increasing and the efficiency guarantees are tight for the linear program.

Remark 3. Note that the optimization problem in Eq. (3.23) is intractable to solve

directly. However, if we fix the number of agents to n, and only consider the variables

u ∈ Rn
≥0 that are non-increasing and constraints for 1 ≤ y, z ≤ n, we can derive lower

bounds on the optimal efficiency guarantees.

Thus, in the submodular setting, it is possible derive characterizations of the optimal

one-round walk. While computing these characterizations is intractable in general, it is

possible to compute the optimal one-round walk guarantees in closed form for certain

classes of welfare rules. In fact, this is possible if the submodular welfare rules are

parametrized through their curvature. Curvature is a classical parametrization used

widely in submodular optimization problems (see [41, 42]) that characterizes the rate of

diminishing returns associated with a submodular welfare function. We note that any

submodular welfare function has a curvature C ∈ [0, 1]. In our setting, curvature can be

defined as follows.

Definition 2 (Curvature). A submodular welfare rule w has a curvature of C ∈ [0, 1] if

C = 1− limn→∞(w(n+ 1)− w(n))/w(1).

37

Guarantees in k - round walks Chapter 3

With this, we can arrive at a tight, closed-form characterization of the optimal performance

guarantees, as shown below.

Theorem 3. Let the setW comprise of all submodular welfare rules w that have curvature

of at most C ∈ [0, 1]. The efficiency guarantees of the one round walk for the optimal

utility design as well as common interest utility design are defined by

Eff∗(W ; 1) = 1− C

2
, (3.29)

Eff(W ;UCI, 1) = (1 + C)−1 . (3.30)

Furthermore, the utility rules u1
ℓ = U1(wℓ) for the optimal utility design can be compactly

expressed as

u1
ℓ(j) =

∑
b∈N

abub(j), (3.31)

where ab ∈ R≥0 and ub are defined in Eq. and Eq.

Proof. Proof of Efficiency for the Common Interest Utility Design. We verify

the equality in Eq. (3.30). The common interest utility design can be defined through

the utility rules umc
ℓ = UCI(wℓ) that satisfy umc

ℓ (j) = wℓ(j) − wℓ(j − 1) for all j. Now,

we can use Corollary 1 to characterize the efficiency guarantee of the common interest

utility design.

Consider the setW of submodular welfare rules that have curvature of at most C and

assume wℓ(1) = 1 without loss of generality. The utility rule umc
ℓ must be non-increasing,

and the constraints in Eq. (3.13) can be rewritten as

βwℓ(y) ≥
y∑

i=1

umc
ℓ (i)− zumc

ℓ (y + 1) + wℓ(z), (3.32)

for any y ≥ 1 and z ≥ 0. We claim the binding constraint is when z = y. Fixing y, the

38

Guarantees in k - round walks Chapter 3

only terms that depend on z is −zumc
ℓ (y+1)+wℓ(z). Examining the difference between

terms from z + 1 against z gives

wℓ(z + 1)− (z + 1)umc
ℓ (y + 1)− wℓ(z) + zumc

ℓ (y + 1)

= wℓ(z + 1)− wℓ(z)− umc
ℓ (y + 1)

= umc
ℓ (z + 1)− umc

ℓ (y + 1).

Since umc
ℓ is non-increasing, note that umc(z+1)−umc(y+1) is greater than 0 if z < y and

less than 0 if z > y. Therefore the tightest constraint is when z = y. Now we simplify

the solution for β(wℓ) in Eq. (3.13) under the assumption that z = y as

β(wℓ) = max
y≥1

{ 1

wℓ(y)

(y∑
j=1

umc
ℓ (j)− yumc

ℓ (y + 1) + wℓ(y)
)}

= max
y≥1

{
2− y

wℓ(y)
umc
ℓ (y + 1)

}
,

in which we have used the identity
∑y

j=1 u
mc
ℓ (j) =

∑y
j=1wℓ(j)−wℓ(j−1) = wℓ(y). Since

wℓ is submodular, j/wℓ(j) ≥ 1 for any j ∈ N, and because wℓ has at most curvature of C,

umc
ℓ (j) ≥ 1−C for any j ∈ N as well. Therefore, the solution is upper bounded by β(wℓ) ≤

1 + C and since w was chosen arbitrarily from W , the resulting efficiency guarantee is

Eff(GW,Umc ; 1) = infℓ 1/β(wℓ) ≥ (1 + C)−1. This efficiency guarantee is actually tight if

we consider the b-covering welfare rule wb,C with curvature C, as in Eq. (3.34). Observe

that under the b-covering welfare, the maximum is maxy≥1
y

wb,C(y)
umc(y + 1) = 1 − C at

y = b. Therefore, Eff(GW,Umc ; 1) = (1 + C)−1 with equality and we show the claim.

Proof of Efficiency of the Optimal Utility Design. We verify the equality in

Eq. (3.29) and structure of the optimal utility rules. Given a curvature C, let W be

the set of welfare rules that have curvature of at most C. From [42, Lemma 2], we know

39

Guarantees in k - round walks Chapter 3

there exists a basis set of welfare rules, such that for any w ∈ W , we can come up with

a decomposition w =
∑

b∈N α
bwb,C, with

αb = (2w(b)− w(b− 1)− w(b+ 1))/C and (3.33)

wb,C(j) =


j, if 0 ≤ j ≤ b

b+ (1− C) · (j − b) if j > b.

(3.34)

We refer to these welfare rules as b-covering welfare rules. We note that for any b ∈ N,

the welfare rule wb,C has a curvature of C. We consider a linear utility function design

Ulin(wℓ =
∑

b∈N α
bwb,C) =

∑
b∈N α

bub. Note that the constraint in Eq. (3.13) is satisfied

for any linear combination of wb,C and ub, so only we only need to confirm optimality of

ub for each b. For each welfare rule wb,C, we claim that the corresponding optimal utility

rule from running the program in Eq. (3.23) is

ub(j) =


(1− βb)(b+1

b
)j−1 + βb if j ≤ b+ 1

(1− C)βb if j ≥ b+ 1,

(3.35)

where βb =
(b+1

b
)b

(b+1
b

)b−C
is the resulting optimal efficiency. Taking the minimum across b,

we have that minb∈N
1
βb = 1 − C/2 for b = 1. Therefore, using Theorem 2, the optimal

efficiency guarantee is Eff∗(W ; 1) = 1− C/2.

Now we verify that ub and βb are indeed the optimal solutions. We first remove all

constraints in Eq. (3.23) apart from the ones that satisfy z = b for any y ≥ 1. This

results in a lower bound for βb that we claim later to be tight.

Rearranging the terms in the constraint in Eq. (3.24) gives that for any y ≥ 1, the

40

Guarantees in k - round walks Chapter 3

optimal solution satisfies

u∗(y + 1) = sup
z≥1

(1
z

(y∑
i=1

u∗(i) + w(z)− β∗w(y)
))

. (3.36)

Substituting in for w and the binding constraint z = b, the recursive equation for ub is

then

ub(1) = 1

ub(j + 1) =
1

b

j∑
i=1

ub(i) + 1− 1

b
β∗wb,C(j),

for some optimal β∗ ≥ 1. To solve for the closed form expression for ub, a corresponding

linear, time-invariant, discrete time system is constructed as follows.

x1(t+ 1) = x1(t) + x2(t)

x2(t+ 1) =
1

b
(x1(t) + x2(t)) + s(t)

s(t) = 1− 1

b
β∗wb,C(t).

For the initial condition (x1(1), x2(1)) = (0, 1), the corresponding solution x2(t) ≡ ub(j).

Then using the state transition matrix, we can solve for the explicit solution for x2(t) as

x2(1) =1 (3.37)

x2(t) =
1

b
Bt−2 +

t−2∑
τ=1

1

b
Bt−2−τ (1− β∗wb,C(τ))

+ (1− β∗wb,C(t− 1)) t > 1,

where B = b+1
b
. Simplifying the expression for x2(t) for t − 1 > b and substituting

41

Guarantees in k - round walks Chapter 3

wb,C(t) = (1− C)t+ Cmin(t, b) results in the following

x2(t) =
1

b
Bt−2

(
1 +

b∑
τ=1

B−τ (1− β∗τ)

+
t−2∑

τ=b+1

B−τ (1− β∗((1− C)τ + Cb))
)

+ (1− β∗(t− 1− C(t− 1) + Cb)).

Now we can use the series identities
∑d

j=1 p
j = p−pd−1

1−p
and

∑d
j=1 jp

j = p−(d+1)pd+1+dpd+2

(1−p)2

and simplify the terms to

x2(t) = Bt−2(β∗(CB1−b −B) +B) + (1− C)β∗.

Thus, the above expression is the closed form solution for ub when j − 1 > b. We have

already shown that the optimal utility rule ub must be non-increasing in the proof of

Theorem 2. This is only possible when β∗ ≥ Bb

Bb−C
. Therefore the optimal solution must

be β∗ = βb = Bb

Bb−C
. Substituting for β∗ in the expression in Eq. (3.37) and simplifying

results in the closed form expression in Eq. (3.35) for ub. It can be seen that ub defined

in Eq. (3.35) is indeed non-increasing. We lastly verify that the binding constraint for

ub is indeed when z = b for any y ≥ 1 and so βb is tight. In Eq. (3.23), we examine the

terms wb,C(z)− zub(y+1) for any y ≥ 1. Note that 1 = wb,C(z)−wb,C(z− 1) ≥ ub(y+1)

when z ≤ b and (1 − C) = wb,C(z) − wb,C(z − 1) ≤ ub(y + 1) when z ≥ b for any y.

Thus the maximum maxz w
b,C(z) − zub(y + 1) occurs when z = b, and we have shown

the claim.

Remark 4. We note that the efficiency guarantees, in Eq. (3.30), of the common interest

algorithm exactly matches the bound given for general submodular set functions [41].

42

Guarantees in k - round walks Chapter 3

In Theorem 3, we have characterized the efficiency guarantees of the optimal utility

design and common interest design in closed form. A visual comparison of the guarantees

is depicted in Figure 3.2. We also compare the efficiency guarantees to the best approximation

guarantee 1− C/e that is achievable by any polynomial time algorithm [43, Theorem 2]

in this setting. By only carefully designing the objectives that agents greedily optimize

against, we see that there can be significant gains in the performance guarantees in

submodular resource allocation games.

3.3.3 One Round Walks in Supermodular Settings

In this subsection, we now consider welfare rules that are supermodular. Under this

welfare structure, cooperative resource utilization results in a surplus of system welfare.

Applications of supermodular games include clustering (see Example (3) for more details)

and power allocation in networks [43]. A formal definition of supermodular welfare rules

is as follows.

Definition 3 (Supermodularity). A welfare rule w is supermodular if w is non-decreasing

and convex in j, or that w(j + 1)− w(j) is non-negative and non-decreasing in j.

Unlike in the submodular setting, the efficiency guarantees of the optimal utility design

and the common interest utility design can be characterized in closed form for supermodular

welfare rules. This is done in the following theorem.

Theorem 4. Consider the set W where each wℓ ∈ W is a supermodular welfare rule.

The efficiency guarantees of the optimal utility design and the common interest utility

design are

Eff(W ,UCI, 1) = Eff∗(W ; 1) = inf
wℓ∈W

lim
n→∞

n

w̄ℓ(n)
(3.38)

Furthermore, the utility rules u1
ℓ = U1(wℓ) for the optimal design is any rule that is

43

Guarantees in k - round walks Chapter 3

non-decreasing and satisfies

j∑
i=1

u1
ℓ(i)/wℓ(j) ≤ 1 for all j ≥ 1.

Proof. We first show that Eff∗(W ; 1) ≤ min1≤ℓ≤m limn→∞
n

w̄ℓ(n)
for a finite supermodular

welfare rule set 6. We do this through a game construction, depicted in Figure 3.3. Let

w∗ = argmin1≤ℓ≤m
n

w̄ℓ(n)
be the welfare rule rule that attains the minimum. Let the

game G have n agents with agent i having the action set Ai = {a∅i , abri , aopti }. There

are n + 1 resources which are all endowed with the welfare rule wr = w∗ for all r ∈ R,

with agent i either selecting abri = {ri+1} or aopti = {r1}. Under any utility rule u,

each agent i is indifferent to choosing abri or aopti if no other agents j ̸= i have selected

r1 through aoptj . Thus abr is a possible solution with a welfare of W(abr) = n · w∗(1).

The welfare of the optimal allocation aopt is W(aopt) = w∗(n). Therefore, we have that

Eff∗(W ; 1) ≤ Eff(G; 1) = min1≤ℓ≤m
n

w̄ℓ(n)
for any n and this is increasing in n so we have

the claim.

Now we show that for a utility design U , such that the utility rule uℓ = U(wℓ)

is non-decreasing and satisfies
∑j

i=1 uℓ(i)/wℓ(j) ≤ 1 for every j and ℓ, the one-round

efficiency is lower bounded by Effn(W ,U ; 1) ≥ min1≤ℓ≤m
n

wℓ(n)
for all n. To do this, we

can use a modified version of the linear program in Eq. (3.13) for n agents, in which

Effn(W ,U ; 1) ≥ min1≤ℓ≤m
1
βℓ
, where βℓ ∈ R is the solution to

βℓ = min β subject to:

βw̄ℓ(y) ≥ H

(
y∑

i=1

ūℓ(i)− z min
1≤i≤y+1

ūℓ(i)

)
+ w̄ℓ(z)

for all 0 ≤ z ≤ n and 1 ≤ y ≤ n,

6We assume that the welfare set W is finite for ease of presentation, and it is straightforward to
extend to more general sets of welfare rules.

44

Guarantees in k - round walks Chapter 3

where the linear program is a lower bound since we consider tighter constraints that allow

y and z to range from 1 to n. Since wℓ is supermodular, H = maxℓ w̄ℓ(n)/n and assuming

uℓ is non-decreasing, min1≤i≤y+1 ūℓ(i) = ūℓ(1) = 1. Thus, we can simplify the constraint

as

β ≥

(
H

y∑
i=1

ūℓ(i)− Hz + w̄ℓ(z)

)
/w̄ℓ(y) (3.39)

With this, we observe that w̄ℓ(z) − Hz is convex in z. So the binding constraint for

z occurs at either the end point z = 0 or z = n. Observe that max{w̄ℓ(n)−Hn, w̄ℓ(0)−

H0} = 0 and the terms can be cancelled out. Additionally, maxy
∑y

i=1 ūℓ(i)/w̄ℓ(y) = 1

occurs at the binding constraint y = 1, by assumption that
∑j

i=1 uℓ(i)/wℓ(j) ≤ 1 for all

1 ≤ j ≤ n. Therefore, βℓ = H = maxℓ w̄ℓ(n)/n for all ℓ under the binding constraint of

y = 1 and z = 0 and we indeed have that Eff∗(W ; 1) ≥ min1≤ℓ≤m limn→∞
n

w̄ℓ(n)
.

Note that the marginal contribution utility rule (see proof of Theorem 3) satisfies the

assumptions of optimality in Theorem 4 as
∑j

i=1 u
mc
ℓ (i) = wℓ(j) for any j and umc is

non-decreasing for supermodular welfare rules. Thus, the common interest utility design

inherits the same efficiency guarantee Eff(W ,UCI; 1) = Eff∗(W ; 1).

Figure 3.3: We depict the game construction in the proof of Theorem 4. If every
previous agent does not utilize r1 in the execution of the non-oblivious algorithm,
then the subsequent agents are also indifferent to their decisions and may also choose
not to utilize r1 resulting in a poor joint decision.

45

Guarantees in k - round walks Chapter 3

Remark 5. We can similarly define curvature for supermodular welfare rules, where

C = 1 − limn→∞(w(n + 1) − w(n))/w(1). Under this definition, note that the efficiency

guarantees in Theorem 4 can be equally stated as Eff∗(W ; 1) = (1− C)−1.

Remark 6. We remark the efficiency guarantees Eff∗(W ; 1) of the optimal non-oblivious

algorithm exactly matches the guarantees of Nash-seeking algorithms with optimal sharing

rules [43, Theorem 4]. Thus, greedy algorithms have similar guarantees to more complex

algorithm designs.

We can consider the non-oblivious algorithm with a Shapley (or equal-shares) [18]

utility function design for supermodular settings. Shapley utility functions are desirable

due to their well known budget balance property [32], where
∑

i Ui(a) = W(a) for all

joint actions a ∈ A. We observe that the Shapley utility rules (defined in this setting as

U(w) = ushap with ushap(j) = w(j)/j for all j ∈ N) satisfies the assumptions of Theorem 4

and thus maximizes the possible efficiency guarantees. However, we note that the optimal

utility rules are not unique, as the constant utility function design (defined as U(w) = u1

with u1(j) = w(1) for all j ∈ N) also satisfies the assumptions of Theorem 4. Additionally,

the standard greedy algorithm also has equivalent guarantees for supermodular welfare

rules. However, the average case guarantees of different non-oblivious algorithms may be

different; we leave it to future work to classify these algorithms based on their average

behavior.

3.4 Finite Walks

We restrict attention to submodular resource allocation games in this chapter. We

remark that the optimal efficiency guarantees after one round are relatively close to the

46

Guarantees in k - round walks Chapter 3

optimal polynomial time guarantees (see Figure 3.2) 7. However, while small, there is

still a gap between the optimal efficiency guarantees for k = 1 and the best polynomial

time guarantee. We expect this efficiency gap to decay as we run the k-round walk

for more rounds. However, we show surprisingly that further rounds do not increase the

relative efficiency guarantees. Specifically, running the k-round walk can not improve the

resulting efficiency guarantee for any given k over the guarantee of the one-round walk.

This is made formal in the upper bound characterization stated in the next theorem.

Theorem 5. Let the setW comprise of all submodular welfare rules w that have curvature

of at most C ∈ [0, 1]. Then the efficiency guarantees of the k-round walk, for any k ≥ 1,

is upper bounded by the expressions

Eff∗(W ; k) ≤ Eff∗(W ; 1) = 1− C/2, (3.40)

Eff(W ,UCI; k) = Eff(W ,UCI; 1) = (1 + C)−1, (3.41)

respectively for the the optimal utility design and the common interest utility.

Proof. We first provide upper bounds on the efficiency metric Eff∗(W ; k). To do this, we

construct a game G such that for any utility design U , rounds k ≥ 1, and curvature C,

we have that Eff(W ,U ; k) ≤ Eff(G; k) ≤ 1 − C/2. Let C be the curvature and consider

the bent welfare rule wb,C with b = 1 as in Eq. (3.12) with wb,C(2) = 2−C. Additionally,

let u = U(wb,C) be the corresponding utility rules for a given utility design. A two-agent

game G is constructed as follows. Let the resource set be R = R1 ∪R2 ∪R3, where Rj

is a set of resources such that the ratio of resources satisfies |R1| = |R2| = u(2) · |R3|.

If u(2) is not a whole number, we can scale up |Rj| uniformly and round u(2) · |R3|

to get arbitrarily close to the given ratio. Let x = |R1|. The action sets for the game

7Furthermore, when utilizing the common interest utility design, the efficiency guarantees are
identical.

47

Guarantees in k - round walks Chapter 3

construction the agents will be determined by u according to the following three cases:

(a) 0 ≤ u(2) ≤ (1− C), (b) (1− C) ≤ u(2) ≤ 1, and (c) u(2) ≥ 1.

For case (a), Agent 1’s actions are A1 = {a∅1 , a11 = R1, a
2
1 = R2}. Agent 2’s actions

are A2 = {a∅2 , a12 = R3, a
2
2 = R1}. The optimal allocation is aopt = {a21, a22} resulting in a

welfare of 2x. An allocation that can occur after a one round walk is abr = {a11, a12}

resulting in a welfare of (1 + u(2))x. Therefore, Eff(G; 1) ≤ (1+u(2))x
2x

≤ 1 − C
2

by

assumption of u ≤ 1 − C. Additionally, observe that abr is a Nash equilibrium and

therefore is still the resulting allocation after any number of additional rounds k ≥ 1.

Therefore Eff(W ,U ; k) ≤ Eff(G; k) ≤ 1− C
2
for this case of utility design.

For case (b), Agent 1’s actions are A1 = {a∅1 , a11 = R1, a
2
1 = R2}. Agent 2’s actions

are A2 = {a∅2 , a12 = R3, a
2
2 = R1}. The optimal allocation is aopt = {a21, a22} resulting in

a welfare of 2x. An allocation that can occur after a one-round walk is abr = {a11, a22}

resulting in a welfare of wb,C(2) · x. Therefore, Eff(G; 1) ≤ wb,C(2)·x
2x

= 1 − C
2
. For

k ≥ 2, there is a best response path that leads to the end state abr. This is achieved

by reaching a′ = {a11, a12} in the first round. As a′ is a Nash action, the best response

process can remains at a′ for k−1 rounds and in the last round, switch to abr. Therefore

Eff(W ,U ; k) ≤ Eff(G; k) ≤ 1− C
2
for this case.

For case (c), Agent 1’s actions are A1 = {a∅1 , a11 = R1, a
2
1 = R2}. Agent 2’s actions

are A2 = {a∅2 , a12 = R1, a
2
2 = R3}. The optimal allocation is aopt = {a21, a22} resulting

in a welfare of (1 + u(2))x. An allocation that can occur after a one round walk is

abr = {a11, a12} resulting in a welfare of wb,C(2) ·x. Therefore, Eff(G; 1) = wb,C(2)·x
(1+u(2))x

≤ 1− C
2

by assumption of u(2) > 1. Additionally, observe that abr is a Nash equilibrium and

therefore is still the resulting allocation after any number of additional rounds. Therefore

Eff(W ,U ; k) ≤ Eff(G; k) ≤ 1− C
2
for this case.

Since u = U(wb,C) was chosen arbitrarily, we have that the upper bound holds for

any utility design and we have shown that Eff∗(W ; k) ≤ 1−C/2. Furthermore, based on

48

Guarantees in k - round walks Chapter 3

our game construction, the efficiency bounds hold even when we relax the class of best

response dynamics that we consider. Since the game construction comprises of only two

agents, allowing agents to best respond multiple times during a round or best respond

out of order of round-robin does not improve the efficiency guarantees that result from

the given game G.

Figure 3.4: The worst case game construction achieving the k-round walk guarantee
dictated in Equation (3.40). P1 and P2 represent the two agents and |x| and |x ·u(2)|
represent the size of the resources. The black lines represent the selections in the
different joint actions by the two agents.

Common Interest Utility First, we note that since any best response improves

the welfare under the common interest utility, we must have that Eff(W ,UCI; k) ≥

Eff(W ,UCI; 1) = (1+C)−1. Now we show that the upper bound Eff(W ,UCI; k) ≤ (1+C)−1

to complete the equality in Eq. (3.41). As before, a game G is constructed such

that under the common interest design UCI, k ≥ 1, and curvature C, we have that

Eff(W ,UCI; k) ≤ Eff(G; k) ≤ (1 + C)−1. Let G have n players with a resource set

R = Ropt ∪ Rboth ∪ {rn} with |Ropt| = n and |Rboth| = n − 1. Each agent i has three

actions in its action set Ai = {a∅i , abri , aopti }. The resources are selected by the agents

in the following manner: each resource roptj ∈ Ropt is selected by agent j in action

49

Guarantees in k - round walks Chapter 3

aoptj ∋ roptj for all 1 ≤ j ≤ n; each resource rbothj ∈ Rboth is selected by agent j + 1 in

action aoptj+1 ∋ rbothj and by agent j in action abrj ∋ rbothj for all 1 ≤ j ≤ n − 1; agent n

selects the resource rn in action abrn . See Figure 3.5 for a visual representation of this

game.

Given a curvature C, consider two bent welfare rules w1, w2 ∈ W with curvature

C such that w1 = wb,C with b = 1 and w2 = C · w1. For any r ∈ Rboth ∪ {rn}, let

the corresponding welfare rule be wr = w1 and for any r ∈ Ropt, let the corresponding

welfare rule be wr = w2. Under this game construction it can be seen that under abr,

each resource r ∈ Rboth ∪ {rn} is selected by exactly one agent, resulting in a welfare of

W(abr) = n; also, under aopt, each resource r ∈ Rboth ∪ Ropt is selected by exactly one

agent, resulting in a welfare of W(aopt) = (n− 1)(1 + C) + C. Assuming that abr is the

joint action that results after k rounds, we have that Eff(G, k) ≤ n
(n−1)(1+C)+C

. Limiting

the number of agents n → ∞ to infinity gives the result. To verify that abr can result

after k rounds, observe that for agent 1 selecting abr1 over aopt1 results in a higher system

welfare. After that, agents 2 through n are indifferent between abrj and aoptj given that

the previous i < j players have selected abri . Therefore, abr is the resulting allocation

after one round. Additionally, abr is a Nash equilibrium, so after any number of rounds

k, the joint action abr is still the result of a k-round walk.

Remark 7. We remark that the results in Theorem 5 are not endemic to the k-round

walk algorithm. Allowing for variable turn order or only allowing strict best responses

does not affect the resulting upper bounds.

Notably, for any curvature C ∈ [0, 1], the upper bound in Eq. (3.40) exactly matches

the characterization in Eq. (3.29) and likewise for the upper bound in Eq. (3.41) and

the characterization in Eq. (3.30). Therefore, in regards to the efficiency guarantees,

50

Guarantees in k - round walks Chapter 3

Figure 3.5: The worst case game construction achieving the k-round walk guarantee
dictated in Equation (3.41). In this figure, rows represent players and columns
represent resources. Red circles represent selections in abr and blue circles represent
selections in aopt.

running the k-round walk algorithm for more than one round does not lead to gains in

performance.

3.5 Asymptotic Walks

With this, we can characterize the optimal efficiency guarantees for the k-round walk

when k = ∞ as well as the efficiency guarantees for the common-interest utility below.

We still restrict attention to submodular resource allocation games. We see that the

asymptotic guarantees match the best polynomial time guarantee in Figure 3.2.

Proposition 1. Let the set W comprise of all submodular welfare rules w that have

curvature of at most C ∈ [0, 1]. The optimal efficiency guarantees are

Eff∗(W ;∞) = 1− C/e. (3.42)

51

Guarantees in k - round walks Chapter 3

and the guarantees associated with the common interest are

Eff(W ,UCI;∞) = (1 + C)−1 . (3.43)

Proof. Note that resource allocation games are isomorphic to potential games, and, as

such, the limit points from any best response process must necessarily be in the set of

Nash equilibrium NE ⊆ A of the game. Thus the limit points limk→∞ ak of the k-round

walk are Nash equilibrium as well. We consider ane ∈ NE to be a Nash equilibrium if

any unilateral deviations are not preferable by any agent, or

anei ∈ arg max
ai∈Ai

Ui(ai, a
ne
−i) for all i ∈ I. (3.44)

Measuring the quality of Nash equilibrium is done through the classical metric of price

of anarchy as follows.

PoA(G) =
mina∈NE W(a)

maxa∈AW(a)
. (3.45)

We similarly define PoA(W ,U) = infG∈GW,U PoA(G) mirroring Eq. (3.10). The price

of anarchy is a well understood metric, with a host of results on its characterization,

complexity, and design [44]. As solutions of the ∞-round walk must also be Nash

equilibrium, we have that limk→∞ ak ⊆ NE. However, this inclusion may be strict,

as not every Nash equilibrium may be reachable from the k-round walk considered in

Algorithm 1. But in the next theorem, we show equivalence of price of anarchy and the

efficiency of the ∞-round walk. Thus in the subsequent sections, we can use previous

results in the literature on price of anarchy to quantify the efficiency of the ∞-round

walk.

Lemma 2. Let W be a set of welfare rules. The efficiency of the ∞-round walk is

52

Guarantees in k - round walks Chapter 3

equivalent to the price of anarchy

Eff(W ,U ;∞) = PoA(W ,U), (3.46)

if the utility rules uℓ = U(wℓ) for 1 ≤ ℓ ≤ m are non-increasing, and Eff(W ,U ;∞) ≥

PoA(W ,U) otherwise.

Proof. For ease of notation, we remove the subscript of umc
ℓ as uℓ. Since limk→∞ ak ⊆ NE,

by definition, the efficiency guarantee of Eff(W ,U ;∞) ≥ PoA(W ,U) must be higher than

the guarantee for the total set of Nash equilibrium.

Now we show the Eff(W ,U ;∞) ≤ PoA(W ,U) by a game construction G, in which

a Nash equilibrium with the efficiency arbitrarily close to PoA(W ,U) can result from a

one-round walk. Let ε1 > 0 and PoAn(W ,U) refer to the price of anarchy for the set

of games in GW,U that have only n number of agents. Note that PoAn(W ,U) is non-

increasing in n and lower bounded by 0. Therefore PoAn(W ,U) is a convergent sequence

in n and for any ε1, there exists an N1 ∈ N such that PoAN1(W ,U)− PoA(W ,U) ≤ ε1.

Generalizing [39, Theorem 2] to a set of welfare rules provides a characterization of

the price of anarchy for N1 agents as PoAN1(W ,U) = Q−1 with

Q = max
θ(y,x,z,ℓ)

∑
1≤ℓ≤m,
y,x,z

wℓ(z + x)θ(y, x, z, ℓ) (3.47)

s.t.
∑

1≤ℓ≤m,
y,x,z

[yuℓ(y + x)− zuℓ(y + x+ 1)]θ(y, x, z, ℓ) ≥ 0

∑
1≤ℓ≤m,
y,x,z

wℓ(y + x)θ(y, x, z, ℓ) = 1

θ(y, x, z, ℓ) ≥ 0,

53

Guarantees in k - round walks Chapter 3

where y, x, z ∈ N with 1 ≤ y + x + z ≤ N1. We refer to Θ(y, x, z, ℓ) to denote the

corresponding optimal variables for θ(y, x, z, ℓ) of the linear program. We construct a

matching game G as follows. Let N2 > N1 be the number of agents in the game and

D = N2 + y + x − 1. For each y, x, z, ℓ pair and 1 ≤ k ≤ D, we construct a set of

resources Rk
y,x,z,ℓ with |Rk

y,x,z,ℓ| = Θ(y, x, z, ℓ)/D 8. Each agent i has three actions in its

action set Ai = {a∅i , anei , aopti }. Each agent i selects {Rk
y,x,z,ℓ}i≤k≤y+x+i−1 in anei for each

pair y, z, x, ℓ. If y + z + x ≤ i ≤ N2, agent i selects {Rk
y,x,z,ℓ}i−z≤k≤x+i−1 in aopti for each

pair y, z, x. Otherwise for 1 ≤ i ≤ y+ z+ x− 1, aopti = a∅i and agent i doesn’t select any

resources in aopti . This is shown in Figure 3.6 for one y, x, z, ℓ. pair

Figure 3.6: In this figure, rows represent players and columns represent resources.
Red circles represent selections in ane and blue circles represent selections in aopt.

We first confirm that the action ane is indeed a Nash equilibrium. Showing this for

the first y + x + z − 1 agents is trivial, since no resources are selected in aopti . For the

8While Θ(y, x, z, ℓ)/D might not be an integer, we can scale |Rk
y,x,z,ℓ| uniformly and round to arrive

at a game construction with the arbitrarily close efficiency guarantees.

54

Guarantees in k - round walks Chapter 3

rest of the agents, the utility difference of a unilateral deviation to aopti from anei is

Ui(a
ne)− Ui(a

opt
i , ane−i)

≥
∑
r∈anei

ur(|ane|r)−
∑

r∈aopti

ur(|(aopti , ane−i)|r)

≥
∑
y,x,z,ℓ

[(y + x)uℓ(a+ x)−

xuℓ(y + x)− zuℓ(y + x+ 1)] · |Rk
y,x,z,ℓ|

≥ 1

D

∑
y,x,z,ℓ

[yuℓ(y + x)− zuℓ(y + x+ 1)]Θ(y, x, z, ℓ)

≥ 0.

The first inequality comes from the definitions of the utility function. The second

inequality comes from counting the resources that are selected in the either anei or aopti by

the agent in each set of resources in Rk
y,x,z,ℓ. The third inequality comes from simplifying.

The fourth inequality comes from the fact that since Θ(y, x, z, ℓ) has to satisfy the

inequality constraint in Eq. (3.47) to be feasible. Similarly, in a one-round walk, the

best response for the first y + x + z − 1 agents is anei . The best response for the other

agents during the one-round walk is also anei , since

Ui(a
ne
j<i, a

ne
i , a∅j>i)− Ui(a

ne
j<i, a

opt
i , a∅j>i)

=
∑
y,x,z,ℓ

[

y+x∑
j=1

uℓ(i)− xuℓ(y + x)− zuℓ(y + x+ 1)]|Rk
y,x,z,ℓ|

≥ 1

D

∑
y,x,z,ℓ

[yuℓ(y + x)− zuℓ(y + x+ 1)]Θ(y, x, z, ℓ)

≥ 0.

We use similar arguments as before, where the second inequality comes from the

55

Guarantees in k - round walks Chapter 3

fact that uℓ is non-increasing. Therefore, the Nash equilibrium ane is reached from an

empty configuration in one-round. Additionally, since ane is a Nash equilibrium, the

resulting action state after any k rounds can also be itself ane. Therefore in this game,

Eff(G;∞) ≤ PoA(G). Now we calculate the efficiency of the Nash equilibrium W(ane)

with respect to W(aopt). We have that

W(ane) =
∑
y,x,z,ℓ

wℓ(y + x) ·Θ(y, x, z, ℓ)
N2 − 2(y + x− 1)

N2

+ 2
∑

1≤ℓ≤m
1≤i≤y+x−1

wℓ(i)
Θ(y, x, z, ℓ)

N2

= 1 + O(
1

N2

),

where, since Θ(y, x, z, ℓ) is feasible, then it satisfies the equality constraint that
∑

y,x,z,ℓ wℓ(y+

x)Θ(y, x, z, ℓ) = 1. O(1
N2

) reflects that the rest of the terms are on order of 1/N2.

Similarly,

W(aopt) =
∑
y,x,z,ℓ

wℓ(z + x) ·Θ(y, x, z, ℓ)
N2 − 3(z + x− 1)

N2

+2
∑

1≤ℓ≤m
1≤i≤z+x−1

wℓ(i)
Θ(y, x, z, ℓ)

N2

= Q+O(
1

N2

),

where, since Θ(y, x, z, ℓ) is optimal, then
∑

y,x,z,ℓ wℓ(z+x)Θ(y, x, z, ℓ) = Q = PoAN1(W ,U)−1.

For any ε2, we can choose N2, such that O(1
N2

) ≤ ε2, so PoA(G) ≤ PoAN1(W ,U)−1 + ε2.

To put everything together, we have that

Eff(W ,U ;∞) ≤ Eff(G;∞) = PoA(G)

≤ PoAN1(W ,U)−1 + ε2 ≤ PoA(W ,U) + ε1 + ε2,

and since ε1 and ε2 are arbitrary, we have the result.

56

Guarantees in k - round walks Chapter 3

Remark 8. A simple corollary from the above proof also shows that Eff(W ,U ; k) ≤

PoA(W ,U) for any k ≥ 1 as well. Thus the efficiency guarantees of k-round walks are

upper bounded by the price of anarchy.

The equality Eff∗(W ;∞) = 1−C/e in Eq. (3.42) comes from the fact that Eff∗(W ;∞)

= supU PoA(W ,U) by Lemma 2 for the set of non-increasing utility rules and that

supU PoA(W ,U) = 1− C/e comes from [42, Theorem 1].

Now we show Eff(W ,UCI;∞) = (1 + C)−1. Since any best response with a common

interest utility must increase the welfare W, the limiting efficiency Eff(W ,UCI;∞) ≥

Eff(W ,UCI; 1) = 1/(1 + C) is greater than the efficiency of the one-round walk. Since

we consider welfare rules wr that are submodular, then the utility rules umc
r are non-

increasing, and we can apply Lemma 2 to have that Eff(W ,UCI;∞) = PoA(W ,UCI).

From applying [43, Corollary 1] with the bent welfare rule wb,C in Eq. (3.12) gives

PoA(W ,UCI)
−1 ≥ PoA(wb,C,UCI)

−1 =

1 +max
j≥1

{
j

wb,C(j)

[
2wb,C(j)− wb,C(j − 1)− wb,C(j + 1)

]}

Simplifying the inequality for b = 1 gives PoA(W ,UCI) ≤ (1 + C)−1. Since Eff(W ,UCI;∞)

is both upper bounded and lower bounded by (1 + C)−1, we have the result.

3.6 Tradeoffs

In Proposition 1 and Theorem 3, we describe the optimal performance guarantees for

k = 1 and k =∞. Accompanying these results are characterizations of the utility designs

that achieve said guarantees. As these utility designs are not equivalent, this prompts

the natural question: Does optimizing the efficiency guarantees for k = 1 have down-

stream effects on the efficiency for k = ∞, and vice versa? This question is precisely

57

Guarantees in k - round walks Chapter 3

addressed in the next theorem. Explicitly, we identify the reciprocal guarantees for both

the utility design that optimizes the transient guarantees for k = 1 and the utility design

that optimizes the asymptotic guarantees for k =∞.

Theorem 6. Let the setW comprise of all submodular welfare rules w that have curvature

of at most C ∈ [0, 1]. Consider U∗
∞ to be the utility design that achieves the optimal

Eff∗(W ;∞) and U∗
1 to be the utility design that achieves the optimal Eff∗(W ; 1). Then

we have that

Eff(W ,U∗
1 ;∞) = Eff∗(W ; 1) = 1− C/2 (3.48)

Eff(W ,U∗
∞; 1) ≤ 1 +

(C− 3)C

(2− C) e+ C
(3.49)

with Eff(W ,U∗
∞; 1) < Eff∗(W ; 1) holding strictly for C > 0 and Eff(W ,U∗

∞; 1) = 0 for

curvature C = 1.

Proof. We show the trade-offs in Theorem 6 that result from considering utility designs

that maximize the one-round walk efficiency versus the∞-round walk. We first show the

equality in Eq. (3.48). From Lemma 2, we have

Eff(W ,U∗
1 ;∞) = PoA(W ,U∗

1) ≥ Eff(W ,U∗
1 ; 1) = 1− C/2,

since U∗
1 is a non-increasing utility design, which is shown in Theorem 2. We now show

PoA(W ,U∗
1) ≤ 1 − C/2. Consider the bent rule wb,C in Eq. (3.12) with b = 1 and a

utility rule u1 with u1(1) = 1 and u1(2) = (2− 2C)/(2−C). In Theorem 3, it was shown

that u1 is the utility rule that maximizes the one-round efficiency forW = {wb,C}. It can

be easily verified that u1 satisfies the assumptions of [43, Theorem 2] and we can derive

58

Guarantees in k - round walks Chapter 3

the price of anarchy as

PoA(wb,C, u1)
−1 = max1≤l≤j

{
wb,C(l)+ju1(j)−lu1(j+1)

wb,C(j)

}
.

Under j = 1 and l = 1, we have that PoA(wb,C, u1) ≤ 1 − C/2. Using the fact that

PoA(W ,U∗
1) ≤ PoA(wb,C, u1), we have the upper bound as well.

We show that Eff(W ,U∞; 1) ≤ 1 + (C−3)C
(2−C)e+C

in Lemma 3 and Eff(W ,U∞; 1) = 0 for

C = 1 in Lemma 4. These lemmas are stated below.

Lemma 3. Let the set W comprise of all submodular welfare rules w that have curvature

of at most C ∈ [0, 1]. Consider U∗
∞ to be the utility design that achieves the optimal

Eff∗(W ;∞). Then we have that

Eff(W ,U∗
∞; 1) ≤ 1 +

(C− 3)C

(2− C) e+ C
. (3.50)

Proof. From results in [42, Lemma 1 iii], the utility design that optimizes the price

of anarchy Upoa
.
= argmaxU PoA(W ,U) have non-increasing utility rules. Since these

utility rules are non-increasing, under Lemma 1, the resulting asymptotic efficiency

Eff(W ,Upoa,∞) = PoA(W ,Upoa) and thus Upoa ≡ U∗
∞ is the utility design that maximizes

the asymptotic efficiency.

To construct the upper bound in Eq. (3.50), we characterize the one-round efficiency

of the asymptotically optimal utility design against the bent welfare rule wb,C for b = 1.

We have that Eff(W ,U∗
∞; 1) ≤ Eff(w1,C, u∞; 1), where u∞ ≡ U∗

∞(w1,C). We can use the

linear program given in Thm 1 to characterize the one-round efficiency. Under only the

bent welfare rule, the constraint for a given z, y simplifies to

β · w1,C(y) ≥
y∑

i=1

u∞(i)− z min
1≤i≤y+1

u∞(i) + w1,C(z).

59

Guarantees in k - round walks Chapter 3

According to [42, Lemma 1], the asymptotically optimal utility rule u∞ for the bent

welfare rule is given by the following recursive equation

u∞(1) = 1,

u∞(j + 1) = max{ju∞(j)− ρw1,C(j) + 1, 1− C},

with ρ = (1−C/e)−1. Now we characterize the binding constraints for z. Since u∞(j) ≤ 1

for all j and u∞(j) ≥ w1,C(j) − w1,C(j − 1) for j ≥ 2, the binding constraint is when

z = 1. Coupled with the fact that u∞ is non-increasing, we can simplify the one-round

characterization as

Eff(w1,C, u∞; 1)−1 = max
y≥1

{
1 +

∑y
i=1 u

∞(i)− u∞(y + 1)

w1,C(y)

}
≥ (2− C)e+ C

(2− C)(e− C)
,

where the second inequality comes from only considering y = 2 and solving for u∞(j)

explicitly for j = 2 and j = 3. Taking the reciprocal on both sides and simplifying gives

the expression in Eq. (3.50).

Lemma 4. Let the set W comprise of all submodular welfare rules w that have curvature

of at most C = 1. Consider U∗
∞ to be the utility design that achieves the optimal

Eff∗(W ;∞). Then Eff(W ,U∗
∞; 1) = 0.

Proof. By definition, Eff(W ,U∗
∞; 1) ≥ 0 must be greater than zero. For the upper bound,

we construct a game G ∈ GW,U∗
∞ such that one-round walk efficiency is Eff(G; 1) = 0.

Consider a game G with n players as follows. We partition the resource set as R =⋃
1≤j≤n+1Rj. Every resource r ∈ R is endowed the local welfare rule wr = wb,C as

the bent welfare rule with curvature of C = 1 for some fixed b ≥ 1, as defined in Eq.

60

Guarantees in k - round walks Chapter 3

The corresponding utility rule is u∞ = U∗
∞(wb,C) is the following recursive expression

from [42, Lemma 1]9,

u∞(1) = 1

u∞(j + 1) =
1

b
[ju∞(j)− ρbmin{j, b}] + 1,

with ρb = (1 − bbe−b

b!
)−1. The number of resources in each set is |R1| = v and |Rj+1| ∼

v ·u∞(j) for 1 ≤ j ≤ n and for some v ≥ 0. If u∞(j) is not a whole number, we can scale

v up and round to get arbitrarily close to the correct ratio of resources. Agent i selects

R1 = abri and Ri+1 = aopti in each of its actions. It can be verified that abr is a joint

action that can result after a one round walk. Therefore, the efficiency is upper bounded

by

Eff(G; 1) ≤ W(abr)

W(aopt)
=

vb

v
∑

1≤i≤n u
∞(i)

.

Now we show that as we increase n, the series
∑

1≤i≤n u
∞(i) diverges, and the

efficiency can get arbitrarily bad as the number of agents increase. To construct the

closed form expression of u∞(j), we construct the following LTV state space system with

u∞(j) := x(t)

x(t+ 1) = A(t)x(t) + s(t) A(t) =
t

b

s(t) = 1− ρb

b
min(t, b)

Solving for the solution x(t) using the state transition matrix with the initial condition

9The recursive expression found in [42] is for the utility rule that maximizes the price of anarchy.
Since this utility rule is non-increasing, we can apply Lemma 2 to translate the results to∞-round walks.

61

Guarantees in k - round walks Chapter 3

x(1) = 1 results in the following expression

x(t) =
t∏

τ=1

τ

b
+

t−1∑
T=1

[(
1− ρb

b
min(t, b)

) t−1∏
τ=T+1

τ

b

]
=

t!

bt

(
1 +

t∑
T=1

bT

T !

(
1− ρb

b
min(t, b)

))

If t ≥ b, then

x(t) =
t!

bt

(
1− (eb − 1)(ρ− 1) +

∞∑
T=t+1

bT

T !

(
ρb − 1

)
+

b∑
T=1

bT

T !

ρb(b− T)

b

)
=

t!

bt

∞∑
T=t+1

bT

T !

(
ρb − 1

)
≥ (ρb − 1)

b

t+ 1

∼ O(
1

t
)

The first equality results from splitting the summation and the second equality will be

shown later. Since x(t) is on the order of 1
t
, the series

∑N
i=1 u

∞(i) diverges and the claim

is shown. Now we verify the equality

b∑
T=1

bT

T !

ρb(b− T)

b
= (eb − 1)(ρb − 1)− 1

b∑
T=1

bT (b− T)

bT !
=

1

ρb
(
ebρb − eb − ρb

)
b∑

T=1

bT

T !
−

b∑
T=1

bT−1

(T − 1)!
=
(
eb − 1− eb(1− bbe−b

b!
)
)

bb

b!
− 1 =

bb

b!
− 1

62

Guarantees in k - round walks Chapter 3

The last equality results from recognizing the terms on the left hand side as a telescoping

sum.

From the given Lemmas, we have shown the sum claims in Theorem 6.

We first observe that there are no gains in the asymptotic guarantees of the utility

design U∗
1 over the respective optimal guarantees for k = 1. Again, we see that there

are diminishing returns of running the k-round algorithm for more than one round.

Additionally, the transient guarantees of U∗
∞ are strictly less than Eff∗(W ; 1) as expected.

However, if the curvature C = 1 is maximal, we note that transient guarantees of U∗
∞

unexpectedly degrade to 0. Interestingly, optimizing for asymptotic performance does

not necessarily translate to good transient performance in our setting. Moreover, it may

even result in highly undesirable behavior in the transient in certain settings.

To clarify this stark trade-off between the transient and asymptotic guarantees,

we restrict attention to the class of set covering games [35] (see Example 1.A) and

characterize the exact Pareto optimal frontier. Set covering games are natural generalizations

of covering problems [35], and are characterized by the following welfare rule (with

curvature C = 1).

wsc(j) =

 1, for j ≥ 1

0, for j = 0

 . (3.51)

With this, we arrive at the following Pareto frontier characterization, depicted in Figure

3.8. Note that the end points of the trade-off curve matches the ones dictated in Theorem

6 for curvature C = 1 exactly.

Theorem 7. LetW = {wsc}, where wsc, defined in Eq. (3.51), is the set covering welfare

rule and U(wsc) = u is the corresponding distribution rule. If the efficiency of the limit

point of the k-round walk is Eff(wsc, u;∞) = Q ∈ [1
2
, 1 − 1

e
] 10, the maximum efficiency

10We will sometimes use abuse of notation Eff(wr, u; k) to mean Eff(W = {wr},U ; k) with U(wr) = u

63

Guarantees in k - round walks Chapter 3

maxu Eff(wsc, u; 1) achievable after k = 1 rounds is

[
∞∑
j=0

max

{
j!(1− 1−Q

Q

j∑
τ=1

1

τ !
), 0

}
+ 1

]−1

. (3.52)

Proof. To characterize the Pareto optimal frontier in Eq. (3.52), we first derive the

closed form solution for the one-round walk efficiency Eff(wsc, u; 1) specifically for the set

covering welfare rule wsc.

Lemma 5. Let W = {wsc}, where wsc is the set covering welfare rule defined in Eq.

(3.51), and U(wsc) = u be the corresponding utility rule. Then the one-round walk

efficiency guarantee is

Eff(wsc, u; 1) =

[∑
i∈N

u(i)−min
i∈N

u(i) + 1

]−1

. (3.53)

Proof. Examine the linear program in Corollary 1 with substituting the set covering

welfare defined in Eq. (3.51). Under the substitution, the constraint for a given z, y

simplifies to

β ≥
y∑

i=1

u(i)− z min
1≤i≤y+1

u(i) + min(1, z).

We have applied the fact wsc(j) = min(1, j) = 1 when j ≥ 1. Observe that the binding

constraint occurs when we limit y →∞ and set z = 1 (and not z = 0 since u(1) = 1, the

term 1 −minj u(j) ≥ 0). Under the binding constraint, Eff(wsc, u; 1) = β−1, where β−1

matches the given expression in Eq. (3.53).

To describe the trade-off, we now provide an explicit expression of Pareto optimal

utility rules, i.e., the utility rules u that satisfy either Eff(wsc, u; 1) ≥ Eff(wsc, u
′; 1) or

Eff(wsc, u;∞) ≥ Eff(wsc, u
′;∞) for all u′ ̸= u.

for a specific wr and ur.

64

Guarantees in k - round walks Chapter 3

Figure 3.7: The worst case game construction achieving the one-round walk guarantee
dictated by Lemma 5. The agents are represented by circles, each oval represents the
number of resources with the set covering welfare, and the black lines represent the
agent action selections. In this game, all the agents can either stack on the first
resource set or spread out.

Lemma 6. For a given X ≥ 0, a utility rule uX that satisfies Eff(wsc, u;∞) ≥ 1/(1+X)

while maximizing Eff(wsc, u; 1) is defined as in the following recursive formula:

uX (1) = 1

uX (j + 1) = max{juX (j)−X , 0}.
(3.54)

Proof. We only consider utility rules that are non-increasing. Under this assumption,

from Lemma 2, we have that Eff(wsc, u;∞) = PoA(wsc, u). According to Corollary 2

in [39], the price of anarchy for n agents can be written as

1

PoAn(wsc, u)
= 1 + max

1≤j≤n−1
{ju(j)− u(j + 1), (n− 1)u(n)}.

We define the following constant for each possible utility rule.

Xu = max
1≤j≤n−1

{ju(j)− u(j + 1), (n− 1)u(n)}. (3.55)

For u to be Pareto optimal, we claim that ju(j) − u(j + 1) = Xu must hold for all j.

Consider any other u′ with Xu = Xu′ . It follows that PoAn(wsc, u) = PoAn(wsc, u
′) =

1/(1 +Xu). By induction, we show that u(j) ≤ u′(j) for all j. The base case is satisfied,

65

Guarantees in k - round walks Chapter 3

as 1 = u(1) ≤ u′(1) = 1. Under the assumption u(j) ≤ u′(j), we also have that

ju(j)−Xu = u(j + 1) ≤ u′(j + 1) = ju′(j)−X j
u , (3.56)

where X j
u′ = ju′(j)− u′(j + 1) ≤ Xu′ by definition in Eq. (3.55), and so u(j) ≤ u′(j) for

all j. Therefore the summation
∑

i∈N u(i)−mini∈N u(i) in Eq. (3.53) is diminished when

u(i) ≤ u′(i) for all i and Eff(wsc, u; 1) ≥ Eff(wsc, u
′; 1), proving our claim. As u must

satisfy u(j) ≥ 0 for all j to be a valid utility rule, u(j+1) is set to be max{ju(j)−X , 0}.

Then we get the recursive definition for the maximal uX in Eq. (3.54) when we limit

n → ∞. Finally, we note that for infinite n, X < 1
e−1

is not achievable, as shown

in [35].

With the two previous lemmas, we can move to proving Theorem 7. We first characterize

a closed form expression of the maximal utility rule uX , which is given in Lemma 6. We

fix X so that Eff(wsc, u
X ;∞) = 1

X+1
= Q. To calculate the expression for uX for a given

X , a corresponding time varying, discrete time system to Eq. (3.54) is constructed as

follows.

x(t+ 1) = tx(t)−X ,

y(t) = max{x(t), 0},

x(1) = 1,

where y(t) ≡ uX (j) corresponds to the utility rule. Solving for the explicit solution for

66

Guarantees in k - round walks Chapter 3

y(t) using the state-transition matrix gives

y(1) = 1

y(t) = max
[t−1∏

ℓ=1

ℓ−X
(t−2∑

τ=1

t−1∏
ℓ=τ+1

ℓ
)
−X , 0

]
t > 1.

Simplifying the expression and substituting for uX (j) gives

uX (j) = max
[
(j − 1)!(1−X

j−1∑
τ=1

1

τ !

)
, 0
]

j ≥ 1.

Substituting the expression for the maximal uX into Eq. (3.53) gives the one round

efficiency. Notice that for X ≥ 1
e−1

, limj→∞ uX (j) = 0, and therefore minj u
X (j) = 0.

Shifting the variables j′ = j + 1, we get the statement in Eq. (3.52).

Figure 3.8: We depict the Pareto-optimal frontier of the one-round efficiency
Eff(wsc, u; 1) versus the asymptotic efficiency guarantees Eff(wsc, u;∞) that are
possible with regards to the class of set-covering games. We note that the severe
drop off in transient efficiency that results from optimizing the asymptotic efficiency.

67

Guarantees in k - round walks Chapter 3

Notably in Figure 3.8, we see a stark drop-off in transient efficiency when the asymptotic

efficiency is close to the optimal guarantee of 1− 1
e
. This extreme trade-off should prompt

a more careful interpretation of asymptotic results, especially in the setting of resource

allocation games.

3.7 Simulations

3.7.1 Comparison of One-Round Guarantees

In this section, we compare the efficiency guarantees of optimal utility design and the

common interest design in Figure 3.9. We do this by utilizing the results from Theorem

1 for a distribution of various welfare rules. Specifically, given a welfare rule w and

respective utility rule u defined only on a finite number of entries, an efficiency guarantee

Eff(G{w},{u}) can be derived from Theorem 1 through considering only a finite number of

constraints.

First, we randomly generate 5000 welfare rules w ∈ R15 defined for 15 entries. We

do this by fixing w(1) = 1 and sampling the difference w(j) − w(j − 1) uniformly from

[0, 1] for all 2 ≤ j ≤ 15 to recursively generate a normalized and monotone welfare rule.

For each welfare rule, we derive the efficiency guarantee of the common interest design

by running the linear program in Eq. (3.13), with H = maxi w̄(i)/i and the marginal

contribution utility rule. Additionally, for each welfare rule, 200 normalized utility rules

are randomly generated, where u(1) = 1 and u(j) is uniformly sampled from [0, 1] for

2 ≤ j ≤ 15, and the efficiency guarantees for each utility rule are derived. The maximum

calculated efficiency from this set is taken as a lower bound for the guarantees of the

optimal utility design. Accordingly, we generate a histogram of efficiency guarantees for

the common interest design and the optimal utility design, shown in Figure 3.9.

68

Guarantees in k - round walks Chapter 3

While the calculated efficiency results may not be tight for both the common interest

and optimal utility design, this simulation highlights the potential gains from considering

a non-oblivious design. As the mean guarantee of the common interest design is .28 and

the mean guarantee of the optimal utility design is .54, we see an improvement of 93%

in the mean efficiency guarantee. We remark that since the optimal utility design has

equivalent run-time as the common interest design, these gains are realizable just through

manipulating the local objectives for agents.

Figure 3.9: In this figure, we compare a histogram of efficiency results of the common
interest and optimal utility designs for a distribution of welfare rules. Each sample
corresponds to computing a lower bound on the efficiency guarantees for a given
welfare rule set W = {w} through utilizing the results in Theorem 1. We observe a
noticeable improvement in the efficiency guarantees from the common interest to the
optimal utility design.

69

Guarantees in k - round walks Chapter 3

3.7.2 Multiple Rounds

To illustrate the theoretical results, we examine the average performance over 5 rounds

of the k-round algorithm of three utility designs: the common interest utility design,

the utility design that optimizes the efficiency for k = 1, and the utility design that

optimizes the efficiency for k = ∞. The average performance is measured across 100

random instances of weapon-target assignment problems (see Example 1) with 20 agents

with a defense rate of pd = .5. In each simulated instance, we set the number of targets

that the agents can possibly defend to 30. The values vr for each target r are uniformly

selected from the unit interval [0, 1] and subsequently normalized by dividing by
∑

r∈R vr.

Each agent has 2 actions available, in addition to the empty allocation a∅. Each action

a is a consecutive selection of 2 resources chosen uniformly randomly from the resource

set R.

The resulting system welfare across 5 rounds for each utility design is highlighted

in Figure 3.10, where the distributions of the system welfare across the randomized

instances are depicted with a box and whisker plot. Note that the optimal allocation

may also not achieve a 100% detection rate. In Figure 3.10, we see that worst instance

of the optimal one-round performs better than the greedy and asymptotically optimal

utility designs when k = 1. This is supported in the worst-case analysis presented in this

chapter. Additionally, we note that the resulting efficiency plateaus quickly, with almost

no differences in efficiency after two rounds of best response - confirming that successive

rounds give diminishing returns in system performance. Interestingly, on average, the

differences in performance across utility designs is much more subtle.

70

Guarantees in k - round walks Chapter 3

Figure 3.10: We plot the average rate of defense in a randomly generated set
of weapon-target assignment problems with respect to three utility designs: the
one-round optimal, the common interest, and the asymptotically optimal utility
design. We see that in the short term, the one-round optimal design performs better
in the worst case than the common interest and the asymptotically optimal utility
designs.

71

Chapter 4

Greedy Algorithms in Limited

Information Settings

In this chapter, we investigate a multi-agent decision problem where agents aim to

coordinate and optimize a given system-level objective. While finding the globally

optimal solution may be intractable, the greedy algorithm is a classical and efficient

approach for obtaining good approximate solutions, particularly for submodular optimization

domains. The execution of the greedy algorithm requires agents to be ordered such that

each agent performs a local optimization based on the solutions provided by preceding

agents.

In settings with limited information, passing solutions from one agent to another can

be challenging, as direct communication may not be possible. Thus, the communication

time required for executing the greedy algorithm is heavily dependent on the order of

which the agents are arranged in. In this study, we characterize the relationship between

the communication complexity of running the greedy algorithm and agent ordering. We

see that the complexity is O(n) with the optimal ordering, but increases significantly

to O(n2) in the worst possible ordering. Inspired by these findings, we propose an

72

Greedy Algorithms in Limited Information Settings Chapter 4

algorithm that identifies an efficient ordering and executes the greedy algorithm in a

computationally efficient fashion. Our proposed method shows significant advantages

over existing approaches for distributed submodular maximization, offering both theoretical

insights and practical benefits. The results and discussion in this chapter is based on the

work presented in [45].

4.1 Introduction

Many real-world problems are well-modeled as multiagent decision problems. In

these scenarios, the set of n decision makers, or agents, coordinate to a joint decision

that maximizes some objective function. In general, finding the optimal decision set is

computationally intractable, even for a centralized authority. Therefore, there exist a

multitude of techniques for arriving at a joint decision, which may be an approximation

of the optimal. For instance, consensus algorithms offer a way for agents to converge as a

group toward a unified decision [46–48]. In other settings, a game-theoretic approach is

advantageous, where agents arrive at a joint decision which is some form of equilibrium

(e.g., Nash equilibrium [11], Wardrop equilibrium [49], Stackelberg equilibrium [50], etc.).

Another common approach to multiagent decision problems is a greedy algorithm

[51, 52]. A common theme among greedy algorithms is that at each iteration of the

algorithm, a myopic choice is made: simply pick the best immediate option, ignoring

the effect on future iterations of the algorithm. As with the other algorithms mentioned

above, greedy algorithms in general are not always guaranteed to find an optimal solution

to a given problem, however, they are often easy to implement, execute quickly, and in

some cases provide some degree of optimality.

This chapter focuses on the scenario where a greedy algorithm is used to solve a

multiagent decision problem. In this setting, a greedy algorithm is implemented by first

73

Greedy Algorithms in Limited Information Settings Chapter 4

ordering the agents. Then each agent sequentially makes its decision by choosing the

action that maximizes the objective function, based solely on the decisions of previous

agents in the sequence. An underlying element of the greedy algorithm is that the agents

are able to coordinate with each other via some network. In the best case, such a

network would allow for each agent to communicate with all other agents directly. In

many applications, however, this is not realistic; communication between agents i and j

must pass through other agents in the network. If i and j are on opposite ends of the

network, or if the network has highly-limited bandwidth, this communication may be

delayed. In light of this, two questions arise:

1. Given the structure of the communication network, how does the ordering of the

agents affect the time it takes to complete the greedy algorithm?

2. Can the agents coordinate among themselves to find the ordering that will cause

the greedy algorithm to complete as fast as possible?

We address the first question by showing, given a network structure, that the greedy

algorithm finishes in O(n2) time steps for the worst ordering and O(n) time steps for

the best ordering. We then address the second question by presenting a fully-distributed

algorithm whereby agents can find a near-optimal ordering while simultaneously running

the greedy algorithm.

Of particular import in this chapter are submodular maximization problems, which

are prevalent in modeling many applications, such as sensor placement [12], data summarization

[53, 54], robot path planning [55, 56], task allocation [57], inferring influence in a social

network [58], image segmentation [59], outbreak detection in networks [60], and leader

selection in multiagent systems [61]. A key feature that is shared among the objective

functions in these various domains is a property of diminishing returns. For example, in

outbreak detection, the added benefit of placing an outbreak sensor on a node in a network

74

Greedy Algorithms in Limited Information Settings Chapter 4

is valuable when there are few other sensors in the network, and less valuable when there

are already many other sensors present. Objectives that exhibit such properties are

submodular.

While such problems are NP-Hard in general, the property of submodularity can be

exploited to show that certain algorithms can achieve near-optimal results. The seminal

work in [38] shows that a centralized greedy algorithm can, in fact, provide a solution that

is guaranteed to be within 1/2 of the optimal solution. More sophisticated algorithms

have pushed this guarantee from 1/2 to 1 − 1/e ≈ 0.63 [62, 63]. Progress beyond this

approximation frontier is not possible for polynomial time algorithms as it was also shown

that no such algorithm can achieve higher guarantees than 1− 1/e, unless P = NP [64].

It will be shown that the greedy algorithm will complete in fewer time steps than existing

methods, while still maintaining 1/2-optimality in the resulting decision set.

4.2 Model and Preliminaries

Consider a distributed optimization problem with n agents I = {1, . . . , n}, where

each agent is endowed with a decision or action set Ai. We denote an action as ai ∈ Ai,

and a joint action profile as a ∈ A = A1 × · · ·An. We assume that each agent i has the

ability to “opt out” of participating in the decision process. This is modeled by having an

action a∅i ∈ Ai, so that when agent i chooses action a∅i , agent i is opting out. The quality

of each joint action profile is evaluated with a global objective function W(a) : A → R≥0

that a system designer seeks to maximize. In other words, the goal of the system designer

is to coordinate the agents to a joint action profile that satisfies

aopt ∈ argmax
a∈A

W(a). (4.1)

In general, solving the multi-agent decision problem in Eq. (4.1) is infeasible, due to

75

Greedy Algorithms in Limited Information Settings Chapter 4

computational, informational, communication constraints etc. Therefore, fast, distributed

algorithms are employed to compute good approximate solutions. The greedy algorithm

has cemented its place as a universal approach to arrive at approximate solutions in

many application domains. In this algorithm, the set of agents is ordered (for instance,

according to its index i) and then each agent sequentially solves the reduced optimization

problem

agri ∈ arg max
ai∈Ai

W(agr1 , . . . , a
gr
i−1, ai, a

∅
i+1, . . . , a

∅
n), (4.2)

where each agent i chooses the best action agri given that the previous agents in the

sequence have also played their best action and the successive agents in the sequence

have opted out. After each agent chooses according to Eq. (4.2), then the algorithm is

complete and the resulting set of decisions (agr1 , . . . , a
gr
n) comprises the joint decision set

agr. The process completes in n time steps, where a time step is comprised of an agent

making a decision and communicating that decision to future agents in the sequence.

However, the greedy algorithm makes a key assumption that agents have access to

the decisions of the previous agents. In purely distributed systems, this assumption

may be infeasible. There have been prior works that study the performance of the

greedy algorithm with relaxed informational assumptions, in that agent i only knows

the decisions of some strict subset of the previous agents S ⊂ {1, . . . , i − 1} [52, 65].

However, this work takes a different approach, where we assume that agents can make

up for their informational deficiencies through a communication infrastructure. We model

the communication constraints through an underlying graph structure G = (V , E), where

each vertex in V corresponds to an agent in I and each edge (i, j) ∈ E = V × V implies

that agents i and j can communicate with one another. The graph G is assumed to be

connected and undirected throughout this chapter, unless explicitly stated. The set of

agents that agent i can communicate with is agent i’s neighborhood Ni.

76

Greedy Algorithms in Limited Information Settings Chapter 4

The primary focus of this work is to examine the interplay between the communication

graph G and the order in which the greedy algorithm in Eq. (4.2) is solved under. For

a given graph G, the order π : V → I is defined by which label i given to each vertex v.

Therefore, given G, we would like the characterize the communication time guarantees

of the worst order and the best order. To analyze the spectrum of possible guarantees

with respect to different ordering methods, we define the following two quantities

Tmin(G) = min
π

T (G, π), (4.3)

Tmax(G) = max
π

T (G, π), (4.4)

where T (G, π) refers to the time it takes for the communication process to finish for a

given graph G and ordering π. We will use πbest and πworst to refer to the orderings that

are the solutions of Eq. (4.3) and Eq. (4.4) respectively. We remark that only in the full

information setting, where Gc is the complete graph, is the run-time for any order the

same, with Tmax(Gc) = Tmin(Gc) = n− 1.

We can describe the k-hop communication, in which an agent i’s greedy action agri is

passed along to agents outside of its neighborhood Ni, using the following graph-theoretic

notation. A walk on the graph G is a sequence of vertices γ = (v1, . . . , vm), in which each

successive pair (vj, vj+1) ∈ E for all 1 ≤ j < m. We denote the length of the walk as

|γ| being the number of vertices in the sequence. A spanning walk is a walk in which all

vertices in the graph are visited and a minimum spanning walk is a spanning walk with

shortest length. A path p is a walk in which all the vertices {vj}j≤m are all distinct. The

expression of T (G, π) is given as

T (G, π) =
n−1∑
i=1

(
min
pi→i+1

|pi→i+1| − 1
)
, (4.5)

77

Greedy Algorithms in Limited Information Settings Chapter 4

where pi→i+1 is a path on the graph from the vertex (labeled with) i to the vertex i+ 1.

This expression is motivated by a natural communication process, where initially agent

1 computes its greedy action agr1 at time 0. Then agent 1 communicates agr1 to agent 2

through a k-hop walk through the graph, where each hop is assumed to take 1 time step.

Then agent 2 computes agr2 given agr1 and passes both actions to agent 3 through another

k-hop walk. Continuing this process, agent n− 1 passes {agrj }j<n to agent n and agent n

computes agrn finishing the process. To isolate the run-time analysis with respect to only

the communication time, we also assume that agents can solve for their greedy action agri

arbitrarily fast.

4.3 Main Theoretical Results

4.3.1 Motivating Example

To make the communication process concrete, consider when the given communication

graph is a line graph as shown in Figure 4.1. In this graph scenario, agent 1 initially

computes its greedy response agr1 and passes the action it has played to agent 2 at t = 0.

Then at t = 1, agent 2 (knowing agr1) can compute agr2 and passes both agr1 and agr2 along

to agent 3. Continuing this to t = 5, agent 6 will have been passed the greedy actions

of all previous agents 1 through 5 and play its greedy action agr6 , completing the greedy

algorithm in Eq. (4.2). This will complete in T (G, π) = 5 time steps, which is the best

that one can hope for when implementing the greedy algorithm in a limited information

setting.

However, consider the following order in Figure 4.2. This situation can occur if the

order π is improperly picked by the system operator. Under this ordering, agent 2 can

only receive the greedy action of agent 1 through a 3-hop path through agents 6 and 4,

78

Greedy Algorithms in Limited Information Settings Chapter 4

Figure 4.1: Example of a line graph, where we have labeled the vertices according to
the best ordering πbest. In this example, the agents compute their greedy action and
pass it down the line.

since there is not a direct communication link between agent 1 and agent 2. Following

this logic, the greedy algorithm will complete at time T (G, π) = 3 + 5 + 4 + 3 + 2 = 17,

which can be seen to be significantly higher than the previous well chosen order.

Figure 4.2: Example of a line graph, but instead we consider the adversarial ordering
πworst in which the vertices are labeled intermittently. In this instance, the k-hop
communication path must bounce back and forth between agents to complete the
greedy algorithm.

Extending this argument to n agents, under a line graph, the greedy algorithm under

the best ordering πbest will complete in T (G, πbest) = n − 1 steps and under the worst

ordering πworst will complete in T (G, πworst) = ⌊n2/2⌋ − 1 steps, where ⌊a⌋ is the floor

function. Therefore, there may be a significant gap in the communication complexity that

results from choosing different orderings. We analyze the possible gap by characterizing

the quantities Tmax(G) and Tmin(G) in this chapter.

4.3.2 Communication Run-time Characterizations

We outline the main theorem of the chapter below, where the worst case communication

time over any graph structure is given for the best and worst orderings. The corresponding

graph structures and orders that attain the worst-case communication time are displayed

in Figure 4.2 and Figure 4.3.

79

Greedy Algorithms in Limited Information Settings Chapter 4

Figure 4.3: A 7 node stargraph with agent 2 in the center. We note that the
communication time T (G, π) on this graph using any ordering must be greater than
2 · 7− 4 = 10. For n ≥ 3 agents, the n-node star graph is the worst case graph for the
best ordering πbest.

Theorem 8. Let n ≥ 3 be the number of agents. The maximum communication time

required to complete the greedy algorithm in Eq. (4.2) for any undirected, connected

communication graph G with the best and worst orderings is equal to

max
G

Tmin(G) = 2n− 4 (4.6)

max
G

Tmax(G) =
⌊
n2/2

⌋
− 1, (4.7)

where Tmin(G) is defined in Eq. (4.3) and Tmax(G) is defined in Eq. (4.4) and ⌊a⌋ is the

largest integer that is below a.

Proof. We first show the equality in Eq. (4.6). For a given graph G and the optimal

ordering πbest, we claim that the communication time is equal to

Tmin(G) = |γmin|, (4.8)

where γmin is a minimum spanning walk of G. Note that for any given ordering π, the

80

Greedy Algorithms in Limited Information Settings Chapter 4

communication time for T (G, π) is given in Eq. (4.5). Let p∗i→i+1 be the shortest path

from i to i+1. The walk γcat = p∗1→2p
∗
2→3 . . . p

∗
n−1→n is defined as the concatenation of the

shortest paths from 1 to n with the duplicate vertices from p∗i→i+1 and p∗i+1→i+2 removed.

Then according to Eq. (4.5), we have that T (G, π) = |γcat|. We note that since π−1(i)

and π−1(i+ 1) are in p∗i→i+1, then γcat is a spanning walk and thus |γcat| ≥ |γmin|. Since

the ordering π was arbitrary and T (G, π) = |γcat|, we have that minπ T (G, π) ≥ |γmin|.

This expression actually holds with equality, as πbest can be taken as the order that the

vertices first appear in γmin, matching Eq. (4.8) and the claim is shown.

Notice that a spanning walk for the graph G1 = (V1, E1) is also a spanning walk for

the graph G2 = (V1, E1 ∪ {e}) with the added edge e. Then the length of the minimal

spanning walk |γ1
min| for G1 must be at least |γ2

min| for G2. Thus Tmin(G1) ≥ Tmin(G2), and

to calculate maxG Tmin(G), it is sufficient to restrict to the class of tree graphs, which is

the class of connected graphs with the least number of edges.

Consider any spanning walk γ on the tree graph GT = (VT , ET) starting at the vertex

v1 and ending at the vertex vn. Let EpT ⊂ ET be the set of edges that belong to the

unique path p between v1 and vn. We claim that γ must visit each edge e ∈ ET at least

once and every edge e ∈ ET \ EpT at least twice. If there exist an edge ê ∈ ET such that

ê /∈ γ, then since γ is a spanning walk, then the graph Ĝ = (VT , ET \ {ê}) must also be a

connected graph. But this is a contradiction, since GT is assumed to be a tree graph. If

an edge ē ∈ ET \ EpT is removed from GT , there must be two nonempty components, one

containing both v1 and vn and another containing neither. Thus if ē is only traversed

once in the walk, it must hop from v1 from the first component to the other component

once. However, the spanning walk γ cannot come back to the first component again,

contradicting our definition of vn and the claim is shown.

Therefore for a tree graph GT and any spanning walk γ, we have that |γ| ≥ 2|ET |−|EpT |.

Moreover there exists a spanning walk that has the length equal to |γ| = 2|ET | − |EpT | in
81

Greedy Algorithms in Limited Information Settings Chapter 4

which the vertices that are not along the path p from v1 to vn are reached through a cycle

that visits each edge not part of p twice. Thus, the length of the minimum spanning walk

can be written as the following optimization problem. Here, diam(GT) is the diameter of

the graph GT and ΓGT is the set of spanning walks.

|γmin| = min
γ∈ΓGT

|γ|

= 2|ET | −max
v1,vn
|EpT | = 2(n− 1)− diam(GT).

For a given tree graph GT with more than n ≥ 3 vertices, the diameter must be

greater than diam(GT) ≥ 2. Therefore, the length of the minimum spanning walk must

be less than 2n − 4 for any tree graph GT . Moreover, the star graph is the tree graph

with a graph diameter of 2, so maxG Tmin(G) = 2n− 4.

Now, we show the equality in Eq. (4.7). We claim that the connected, undirected

graph that attains maxG Tmax(G) is the line graph. We observe, similarly as before, that

if a path pi→i+1 exists from i to i+ 1 for the graph G1 = (V1, E1), then it must also exist

for the graph G2 = (V1, E1 ∪ {e}) with the added edge e for any 1 ≤ i ≤ n − 1. As the

run-time in Eq. (4.5) is defined by the shortest path from i to i+ 1, the run-time for G2

is lower bounded by T (G1, π) ≥ T (G2, π). Thus, we can assume that worst-case graph is

a tree graph without loss of generality. If GT is a tree graph, then the path pi→i+1 from

π−1(i) to π−1(i+ 1) is unique.

We now claim that for any tree graph GT for some ordering π, there exists an ordering

πL with the line graph that achieves at least the same run-time. If GT is a tree graph

that is not the line graph, there exists at least one vertex vc of GT with degree d ≥ 3.

Let {vj}1≤j≤d be the vertices in the neighborhood of vc. Also, let Tj ⊂ GT be the

corresponding tree component containing vj that results from removing the edge (vj, vc).

Let vdj ∈ Tj be the vertex farthest away from vj and dj be the distance from vj to vdj .

82

Greedy Algorithms in Limited Information Settings Chapter 4

Additionally let H = {(π−1(i), π−1(i+ 1))}i<n and

Hj = {(v, v′) ∈ H : v ∈ T1, v′ ∈ Tj or v ∈ Tj, v′ ∈ T1}.

We also denote that (v, vc) and (vc, v) are included in H1. Consider the modified graph

GJT , where the edge (vj=1, vc) is replaced with (vj=1, v
d
j=J) for some 1 < J ≤ d. Then the

communication time for the graph GJT is

T (GJT , π) =
∑

(v,v′)∈H

p
GJ
T

v,v′ =
∑
j≥1

∑
(v,v′)∈Hj

p
GJ
T

v,v′

≥
∑

(v,v′)∈H

pGT
v,v′ +

∑
j>1

∑
(v,v′)∈Hj

dJ − 2
∑

(v,v′)∈HJ

dJ

≥ T (G, π) for some J.

Here, p
GJ
T

v,v′ refers to the path from v to v′ in GJT . The first equality comes from rewriting

Eq. (4.5) using Hj. The last inequality comes from the fact that the degree d ≥ 3 and

that

max
J>1

{∑
j>1

∑
(v,v′)∈Hj

dJ − 2
∑

(v,v′)∈HJ

dJ

}
≥ 0.

By applying a similar argument inductively for every tree Tj for j ≤ d− 2 and for every

vertex vc with degree more than 3, we have the claim.

The worst ordering for the line graph and the corresponding guarantee of ⌊n2/2⌋ − 1

is given by the work in [66, Theorem 8]. We give a sketch of the proof for completeness.

Let vi be the i’th vertex in the line graph. Consider any ordering π. If π has any of

the following properties, then there must exist another ordering π′ that has a larger

communication time that results from swapping positions of some π(v) and π(v′).

1. For some 1 < i < n, either (π(v1), π(vi), π(vi+1)) or (π(vi), π(vi+1), π(vn)) is monotonic.

83

Greedy Algorithms in Limited Information Settings Chapter 4

2. For some i, j < n, there are two pairs (π(vi), π(vi+1)) and (π(vj), π(vj+1)) that are

separated by some threshold 1 ≤ ℓ ≤ n.

3. There is a triple (π(vi), π(vi+1), π(vi+2)) that is monotonic.

If an ordering π does not have any of the previous three properties, then it must have all

even indexed vertices {vi}i even below the threshold ⌊n/2⌋ and all odd indexed vertices

{vi}i odd above the threshold with the middle vertices corresponding to the endpoints 1

and n. An example of this configuration is shown in Figure 4.2. It can be seen that the

line graph with this configuration has a T (G, π) = ⌊n2/2⌋ − 1.

4.3.3 Distributed Orderings that are Near-Optimal

According to Theorem 8, there is a significant complexity gap between using the best

ordering πbest and worst ordering πworst for the communication time. However, finding

the best order πbest in general is not practical either due to computational restrictions

or lack of information about the graph. So we would like to be able compute orderings

that get as close to the run-time with πbest as possible in a feasible manner. Therefore

in this section, we construct an algorithm that can quickly compute a good ordering in

conjunction with executing the greedy algorithm. An outline of the proposed algorithm

is in Algorithm 2. The proposed design in essence computes a spanning walk on the

graph that is close to the length of the minimum spanning walk through a variant of a

depth-first search algorithm.

The distributed implementation of Algorithm 2 to compute an approximate solution

to Eq. (4.1) offers significant benefits over other distributed approaches. The communication

scheme is simple, which allows for linear-time guarantees. This also means that the

message complexity is low, where the bulk of the message is comprised of the previous

agent’s actions and the communication is robust to time delays. Lastly, since the base

84

Greedy Algorithms in Limited Information Settings Chapter 4

of Algorithm 2 is the greedy algorithm, we also inherit the corresponding performance

guarantees. To be able to run Algorithm 2, we assume that each agent (vertex) can store

and access the following variables.

� v.actions = ∅ is the set of greedy actions that v knows.

� v.order = ∅ is the index in I that v is labeled with.

� v.parent = ∅ is v’s parent in the depth first search.

� v.neighborhood is the neighborhood set of v.

We also assume that a seed vseed is given as the starting point of the Algorithm 2.

The communication time of Algorithm 2 is equivalent to the total number of calls to

message, where the vertex v messages either a vertex that hasn’t been visited or its

parent v.parent. We keep track of the communication time through the variable t. The

communication time guarantees of Algorithm 2 is given below.

Proposition 2. Let n be the number of agents and Talg(G, vseed) be the output of Algorithm

2 given a communication graph G and a seed vertex vseed ∈ V. The maximum communication

time for any undirected, connected G and seed vseed is

max
G,vseed

Talg(G, vseed) = 2n− 2 (4.9)

Proof. Consider an arbitrary graph G with n agents and a seed vertex vseed. Let ℓ be

the number of calls to message where a vertex v messages another unvisited vertex and

m be the number of calls to message where a vertex v messages its parent. It can be

seen that Algorithm 2 will eventually visit all the vertices in the graph, so ℓ must equal

n−1. Additionally, since vseed does not have a parent and Algorithm 2 terminates if vseed

does not send a message to an unvisited neighbor, m ≤ ℓ = n − 1. Therefore for any G
85

Greedy Algorithms in Limited Information Settings Chapter 4

and vseed the communication time is bounded above by Talg(G, vseed) = m + ℓ = 2n − 2.

Furthermore, it can be seen that for the star graph with n vertices, m = ℓ = n− 1, and

the equality in Eq. (4.9) is shown.

Thus the communication guarantees of Algorithm 2 is only off by a constant of 2 from

the optimal communication guarantee of 2n− 4 from the best ordering πbest. We remark

that this difference can be further reduced if the termination condition is changed from

‘v.parent is not empty’ to ‘v.order = n’, where n is the number of agents.

Algorithm 2 Distributed Near-Optimal Ordering

Require: graph G and a vertex vseed ∈ V
Output: time t
initialize the time t← 0
init(vseed, ∅, ∅, 1)
return t
procedure init(v, vpar, α, i)

label v as done
update v.order← i and v.parent← vpar
let v compute agri from Eq. (4.2) given actions α
update v.actions← α ∪ {agri }
message(v, v.actions)

end procedure
procedure message(v, α)

update v.actions← α
if exists w in v.neighborhood not labeled done then

increment t← t+ 1
init(w, v, α, |α|+1)

else if v.parent is not empty then
increment t← t+ 1
message(v.parent, α)

end if
end procedure

86

Greedy Algorithms in Limited Information Settings Chapter 4

4.3.4 Directed Communication Graphs

In this section, we consider the communication time guarantees with respect to the

more general class of connected, directed graphs using different orderings. Under the class

of undirected graphs, there is a significant gap in the communication time guarantees

for the best πbest and the worst πworst orderings. Not surprisingly, when we relax to

the optimization problem maxGdir
Tmax(Gdir) over the class of directed graphs, the worst

case guarantees also increase. However, when considering the optimization problem for

the best ordering over directed graphs maxGdir
Tmin(Gdir), we have that the worst case

guarantees are also of quadratic order. Therefore in directed graphs, the gap between

the performance guarantees under different orderings is relatively small.

Figure 4.4: Example of a directed cycle graph, where the vertices are labeled
adversarially with πworst. Here, the k-hop communication must cycle back to get
to the next agent.

For the graph example in Figure 4.4 using the worst ordering πworst, notice that to

get from i to i+1, every edge but one in the directed graph must be traversed, resulting

in a communication time of 5 × 5 for 6 agents. For the graph example in Figure 4.5

using any ordering π, the vertices labeled with 2, 3, and 4 must be traversed every time

to reach the vertices labeled with 5, 6, 7, 8 in order, starting from the vertex labeled 1.

Thus the communication time for the graph under the best ordering is 4×4 for 8 agents.

Extending these constructions to n agents, we arrive at the following lemma.

Proposition 3. Let n ≥ 3 be the number of agents. The maximum communication

time required to complete the greedy algorithm in Eq. (4.2) for any directed, connected

87

Greedy Algorithms in Limited Information Settings Chapter 4

Figure 4.5: Example of a directed graph that has the worst communication complexity
for the best ordering πbest. Here, the vertices in the latter half must cycle back to get
to the next labeled vertex.

communication graph Gdir with the best and worst ordering is

max
Gdir

Tmin(Gdir) =
⌊n
2

⌋
·
⌈n
2

⌉
, (4.10)

max
Gdir

Tmax(Gdir) = (n− 1)2, (4.11)

where ⌊a⌋ is largest integer smaller than a and ⌈a⌉ is the smallest integer larger than a.

Proof. First, extending the directed cycle graph Cn in Figure 4.4 to n agents with the

given worst case labeling πworst produces a lower bound

max
Gdir

Tmax(Gdir) ≥ T (Cn, πworst) = (n− 1)2.

The upper bound maxGdir
Tmax(Gdir) ≤ (n − 1)2 also holds, since for any graph G and

ordering π, the communication time must satisfy T (G, π) ≤
∑n−1

i=1 (n − 1) as the length

of any path in the graph cannot be greater than n− 1.

Now we show that maxGdir
Tmin(Gdir) ≥

⌊
n
2

⌋
·
⌈
n
2

⌉
by extending the graph construction,

denoted Dn, in Figure 4.5 to n agents. Formally, the edge set of Dn includes (vj, vj+1) for

88

Greedy Algorithms in Limited Information Settings Chapter 4

every 1 ≤ j ≤ ⌈n/2⌉ − 2 as well as the edges (v⌈n/2⌉−1, vj) and (vj, v1) for every ⌈n/2⌉ ≤

j ≤ n. We confirm that T (Dn, πbest) =
⌊
n
2

⌋
·
⌈
n
2

⌉
for the best order. Consider any ordering

π and without loss of generality, assume that π(vj) < π(vj+1) for all ⌈n/2⌉ ≤ j ≤ n. Thus

the communication time has to be lower bounded by

T (Dn, π) ≥
n−1∑

j≥⌈n/2⌉

min
pvj→vj+1

|pvj→vj+1
| − 1 ≥

⌊n
2

⌋
·
⌈n
2

⌉
,

as (vj, v1, v2, . . . , v⌈n/2⌉−1, vj+1) is the unique path pvj→vj+1
from vj to vj+1 with a length

of ⌈n/2⌉ + 1. Observe that the ordering π(vj) = j + 1 for 1 ≤ j ≤ n − 1 and π(vn) = 1

achieves this communication time and so the lower bound is indeed tight.

Now we show that for any given directed graph G, there exists an ordering π̂ in which

T (G, π̂) ≤
⌊
n
2

⌋
·
⌈
n
2

⌉
. Let plong = (v1, . . . , vl) be the longest path of the graph, where

l = |plong|. If l = n, then plong is a spanning walk on the graph and the ordering π(vj) = j

along the longest path results in a communication time of T (G, π̂) = n− 1 ≤
⌊
n
2

⌋
·
⌈
n
2

⌉
.

Otherwise, since G is assumed to be strongly connected there exists a vertex vJ in plong

that is adjacent to another vertex v̄ that is not in the path plong. We construct the

ordering π̂ as follows. The vertices in plong are labeled as π̂(vj) = j for j ≤ J and

π̂(vj) = n− l+ j for j > J . The vertex v̄ is labeled with π̂(v̄) = J + 1 and the labels for

the rest of the vertices in G can be arbitrarily selected from {J + 2, . . . , n− l + J}. The

resulting communication time along this order, using Eq. (4.9), is

T (G, π̂) =
n−1∑
i=1

(
min
pi→i+1

|pi→i+1| − 1
)

= (l − 1) +
n−l+J∑
i=J+1

(
min
pi→i+1

|pi→i+1| − 1
)
,

as the vertices π̂−1(i) and π̂−1(i + 1) are adjacent to each other if 1 ≤ i ≤ J or n − l +

89

Greedy Algorithms in Limited Information Settings Chapter 4

J + 1 ≤ i ≤ n − 1 according to the prescribed order π̂. For any i ∈ I, we observe that

minpi→i+1
|pi→i+1| ≤ l by definition of plong. Now we have the upper bound

T (G, π̂) ≤ (l − 1) + (n− l)(l − 1) ≤
⌊n
2

⌋
·
⌈n
2

⌉
,

where the expression achieves the maximum at l = ⌈n/2⌉+1. Thus, since G was arbitrary

chosen,

max
Gdir

Tmin(Gdir) = max
Gdir

T (G, π̂) ≤
⌊n
2

⌋
·
⌈n
2

⌉
,

and thus we have shown equality.

4.4 Applications in Submodular Settings

4.4.1 Simulations

We analyze our theoretical results for the communication time guarantees empirically

through a simulation, presented in Figure 4.6 and Figure 4.7. We use the model of Erdos-

Renyi networks [67], where each possible undirected pair of edges (i, j) has a probability

P ≤ 1 of existing, to generate a sample set of possible graph structures. For Figure 4.6, we

sample 200 instances of Erdos-Renyi networks with 6 nodes and a probability parameter

of P = .3. For each graph, we calculate the communication time for the greedy algorithm

using the best ordering πbest, the ordering given by Algorithm 2, and a randomly assigned

ordering. For Figure 4.7, we sample 300 instances of Erdos-Renyi networks with 40 nodes

and a probability parameter of P = .05. In Figure 4.7, we calculate the communication

time for only the ordering given by Algorithm 2 and a randomly assigned ordering.

We observe in Figure 4.6 that indeed the best ordering πbest achieves the lowest

distribution of communication times, centered closely to n = 6. The distribution of

90

Greedy Algorithms in Limited Information Settings Chapter 4

communication times of the ordering given in Algorithm 2 is noticeably close to the one

of πbest, with indeed no run-times over 2n = 12. The distribution of the communications

using random orderings does perform the worst with the largest spread. In Figure 4.7,

we compare communication times from the ordering from Algorithm 2 directly with the

random ordering, as computing the best ordering πbest is infeasible for large n. We see

the same trends in Figure 4.6 reflected in a more extreme fashion. The distribution of

communication times using the ordering of Algorithm 2 is still upper bounded by 2n = 80.

However, the distribution times of communication times using the random ordering is

now centered much higher with a larger spread as well. Therefore, we see significant

benefits from using the ordering from Algorithm 2 rather than the naive approach of

using random ordering.

4.4.2 Submodular Maximization

In this section, we discuss submodular maximization problems, which can be modeled

as multiagent decision problems. Consider a base set of elements E, and let ai ⊆ E,

Ai ⊆ 2E, and a∅i = ∅. The objective function takes the form W (a) = f (∪ai∈aai), where

f : 2E → R has the following properties for any A ⊆ B ⊆ E:

1. Submodular : f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) for all x ∈ E \B

2. Monotone: f(A) ≤ f(B)

3. Normalized : f(∅) = 0

In this setting, it has been shown that the greedy algorithm that is implemented in

Algorithm 2 guarantees that W (ã) ≥ (1/2)W (aopt), where ã is defined in Eq. (4.2).

91

Greedy Algorithms in Limited Information Settings Chapter 4

4.4.3 Comparison with Other Distributed Algorithms

As mentioned previously, much work has been done to develop other algorithms

to solve submodular maximization. For instance, [68] presents a similar distributed

algorithm, using a multilinear extension, and a distributed pipage rounding technique.

At each time step, each agent performs a calculation for each action based on a sample

of K actions drawn from a probability distribution. After T time steps, the performance

guarantee is (1 − 1/e)(1 − (2d(G)n + n/2 + 1)(n/T)) with probability at least 1 −

2nTe−K/(8T 2). Thus, for high T and K = O(T 2), there is a high probability that the

algorithm gives the 1 − 1/e guarantee. Using this information, the algorithm could

provide a 1/2 guarantee only for T ≥ 4.78(2d(G)n2 + n2/2 + 1), and only with high

probability when K = O(T 2).

The paper [69] describes a Jacobi-style algorithm, where at each time step agent i

creates a strategy profile, i.e., a probability distribution across each of its actions. Then,

it choosesK of those values to share with its neighbors to propagate through the network.

It was shown that the resulting decision set approaches being within 1/2 the optimal as

the number of iterations increases. It is only shown in the paper that the probability

of achieving the 1/2 guarantee is 1 − O(1/T) rather than an explicit time expectation.

However, the examples in the paper suggest that it may take T ≥ n2 or more time steps

to realize this.

In another example, [70] presents the Constraint-Distributed Continuous Greedy

(CDCG), a consensus-style algorithm, in which agent i shares an m-vector with all its

neighbors at each time step, where m is the number of actions available to i. It is shown

that the resulting decision set approaches being within 1 − 1/e of the optimal as the

number of iterations T increases. The error in the performance guarantee vanishes at a

rate of O(n5/2/T), and therefore, it may require T ≥ n5/2 time steps in order to reach an

92

Greedy Algorithms in Limited Information Settings Chapter 4

acceptable error.

In each of the three methods listed above, each time step requires each agent do

perform some calculation for each of its actions. The time requirement for each to reach

an acceptable solution is expected to be greater than 2n−2, which is the number of time

steps it takes to complete Algorithm 2. This suggests that there is a tradeoff between

performance guarantees and time complexity: Algorithm 2 achieves the 1/2 guarantee

quickly, but other algorithms converge to a solution within 1−1/e, but more slowly 1.

1Although we do not present a rigorous analysis here, we assert that Algorithm 2 also requires less
information exchange at each time step. This will be a topic of future work.

93

Greedy Algorithms in Limited Information Settings Chapter 4

Figure 4.6: We show the distribution over of communication times needed to complete
the greedy algorithm for 200 instances of random graphs generated by a Erdos-Renyi
process with respect to the random ordering, the best ordering πbest, and the
ordering from Algorithm 2. For the graph parameters n = 6 number of agents and
P = .3 probability of an edge existing, we see that πbest gives slightly lower average
communication times than the ordering from Algorithm 2, but both offer significant
improvements over the random ordering.

94

Greedy Algorithms in Limited Information Settings Chapter 4

Figure 4.7: We compare the communication times under the random ordering to
the times under the ordering algorithm proposed in Algorithm 2. For the graph
parameters n = 40 number of agents and P = .05 probability of an edge existing, we
see a marked decrease in the communication time from the random ordering to using
the proposed algorithm over a set of 300 randomly generated graphs.

95

Chapter 5

Nash equilibrium in Uncertain

Settings

In recent years, considerable research has focused on the development of distributed

protocols for controlling multi-agent systems. The scale and limited communication

bandwidth typical of these systems make centralized control infeasible. Due to strict

operating conditions, it is unlikely that each agent in a multi-agent system will possess

local information that accurately reflects the true state of the system. Despite this, much

of the existing literature assumes that agents have perfect knowledge of their environment.

This chapter aims to understand the impact of inconsistencies in agents’ local information

on the performance of multi-agent systems. Specifically, we approach the design of multi-

agent operations from a game-theoretic perspective, where individual agents are assigned

utilities that drive their local decision-making processes. We present a practical method

for designing utilities that optimize the efficiency of the collective behavior (i.e., the price

of anarchy) for certain classes of set covering games, assuming the extent of information

inconsistencies is known. In scenarios where the extent of these inconsistencies is unknown,

we find, perhaps counterintuitively, that underestimating the level of uncertainty leads

96

Nash equilibrium in Uncertain Settings Chapter 5

to a better price of anarchy compared to overestimating it. This chapter is based on the

work in [71].

5.1 Introduction

The fundamental challenge in the control of multi-agent systems arises from the

stringent requirements placed on their scalability, communication and privacy. As these

requirements cannot be satisfied by a centralized approach, we must use distributed

protocols where the agents act independently according to their local information. A

common approach for distributed design is to cast the global system objective as an

optimization problem where the aforementioned requirements are embedded as constraints

[72]. Then, through careful consideration of the problem’s structure, a distributed

algorithm is designed that gives good approximate solutions.

A commonly held assumption in the design of distributed protocols is that all the

agents either have perfect knowledge on the underlying problem setting or quickly obtain

it through communication (see, e.g., [73]). However, in practice, an agent’s knowledge on

the ground truth may be limited, especially in scenarios where accurate estimation of the

true state of the environment is difficult. This prompts the following line of questioning:

� How robust is the performance of a given distributed control algorithm to inconsistencies

in agents’ knowledge?

� Can distributed control algorithms be explicitly designed to be robust against inconsistencies

in agents’ knowledge?

In this chapter, we investigate these two questions from a game theoretic perspective.

Our main contribution is a general framework for evaluating the robustness of distributed

control algorithms in which the agents’ decision making is based on their own (possibly

97

Nash equilibrium in Uncertain Settings Chapter 5

inaccurate) knowledge of the problem parameters. Each agent acts in its own self interest,

maximizing its utility function according to its local knowledge of the underlying problem

setting. The system performance guarantees are measured under the well studied notion

of price of anarchy [74], defined as the ratio between the system welfare at the worst

system outcome and the system optimum. Here, the worst system outcome is defined as

the worst emergent allocation of agents (i.e., pure Nash equilibrium) with respect to the

worst possible disposition of the agents’ knowledge. We then apply our framework to the

class of set covering games [35] in the setting where each agent’s estimate of the problem

parameters lies within a bounded interval centered around the true system state.

The study of uncertainty among agents is not new in the field of game theory. In

fact, John Harsanyi’s seminal work on incomplete information games [75] was one of the

first significant contributions to this field. The incomplete information model has been

used to study multi-agent systems in a variety of contexts, including network games [76],

team decision making [77] and pursuit/evasion [78]. While this body of important work

is relevant to our problem setting, our analysis departs from the incomplete information

framework as, in our setting, agents do not possess probabilistic models of the system

state and have only limited knowledge on the other agents’ beliefs. Thus, the system

operator must account for the worst possible scenario when designing the distributed

protocols. The differences between the incomplete information framework and the framework

proposed in this chapter are roughly comparable to those between stochastic and robust

optimization.

The literature on “robust” formulations is much more restricted. In [79], the authors

consider how to generate a set of possible utility functions that are consistent with a

limited amount of information. A distribution-free analysis of incomplete information

games is considered in [80] through a proposed equilibrium concept. To the author’s

knowledge, the closest work is [81], where price of anarchy results are considered in

98

Nash equilibrium in Uncertain Settings Chapter 5

scenarios where the agents have biases in their perceived utilities. While similar in flavor,

this chapter studies utility design under a difference class of utility deviations that result

from limited information scenarios.

In this chapter, we propose a novel game theoretic framework for studying multi-agent

systems that does not impose the assumption that agents possess perfect knowledge of

the underlying problem setting. We apply our framework to the class of set covering

games [35] and study the performance of distributed control algorithms designed without

the perfect knowledge assumption in this setting.

5.2 Model and Preliminaries

For any p, q ∈ N with p < q, let [p] = {1, . . . , p} and [p, q] = {p, . . . , q}. Given

a set S, |S| represents its cardinality. We expand on the class of resource allocation

games [82] to model a general distributed scenario. A set of agents I = [n] must be

allocated to a set of resources R = {r1, . . . , rm}. Each agent i ∈ I is associated with a

set of permissible actions Ai ⊆ 2R and we denote the set of admissible joint allocations

by the tuple a = (a1, . . . , an) ∈ A = A1 × · · · × An. Each resource r ∈ R is associated

with a state yr and a welfare function Wr : [n] × Yr → R that measures the system

performance at that resource as a function of its aggregate utilization. In other words,

Wr(k; yr) is the system performance at resource r when there are k ∈ [n] users selecting

r and the local state of resource r is yr. Lastly, the system-level welfare is captured by

the function W : A × Y → R, where Y =
∏

r∈R Yr defines the set of possible system

states. In general, for a given allocation a ∈ A and system state y ∈ Y the system-level

welfare is of the form

W(a; y) =
∑
r∈R

Wr(|a|r; yr), (5.1)

99

Nash equilibrium in Uncertain Settings Chapter 5

where |a|r = |{i ∈ I s.t. r ∈ ai}| represents the number of agents selecting r in the

allocation a. Given a system state y ∈ Y, the goal of the multi-agent system is to

coordinate to the allocation that optimizes the system-level welfare

aopt ∈ argmax
a∈A

W(a; y). (5.2)

However, deriving the optimal allocation requires an infeasible amount of computational

resources and coordination. Therefore, we focus on arriving at approximate solutions

through a designed utility function Ui : A × Y → R and model the emergent collective

behavior by a pure Nash equilibrium, which we will henceforth refer to simply as an

equilibrium. Given the local knowledge yi ∈ Y of each agent i ∈ I, an equilibrium is

defined as an allocation ane ∈ A such that for any agent i ∈ I

Ui(a
ne
i , ane−i; yi) ≥ Ui(ai, a

ne
−i; yi), ∀ai ∈ Ai. (5.3)

It is important to highlight that an equilibrium may or may not exist for such situations,

particularly in cases where the agents do not evaluate their utility functions for the

same state, i.e., yi ̸= yj. Throughout this chapter, we will assume that equilibria exist

within the games under consideration. Nevertheless, our results extend to other solution

concepts that are guaranteed to exist such as coarse correlated equilibrium [83].

Throughout this chapter, we will focus on the scenario where there is a true system

state ytrue ∈ Y and each agent i ∈ I has its own knowledge of this state yi which

may or may not reflect the true state, i.e., yi need not equal ytrue. While the agents’

knowledge y = (y1, . . . , yn) ∈ Yn will invariably influence their local behavior and

resulting equilibria, we will measure the performance of the resulting equilibrium ane

according to the true state, i.e., W(ane; ytrue). Accordingly, our goal is to assess how

discrepancies in the agents’ knowledge impacts the quality of the resulting equilibria.

100

Nash equilibrium in Uncertain Settings Chapter 5

Furthermore, we investigate the optimal design of the utility functions in scenarios where

such discrepancies may exist.

To ground these questions moving forward, we consider an extension of the utility

functions considered in the framework of Distributed Welfare Games [82], where each

resource is associated with a utility generating function of the form Ur : [n] × Yr →

R. Here, the utility generating function defines the benefit associated with each agent

selecting resource r, and can depend on both (i) the number of agents selecting resource

r and (ii) the state of resource r. Given these utility generating functions {Ur}r∈R, the

utility of an agent i ∈ I in an allocation a ∈ A is separable and of the form

Ui(a; yi) =
∑
r∈ai

Ur(|a|r; yi,r). (5.4)

Note that each agent i ∈ I uses its own state values yi = {yi,r}r∈R to compute its utility

at each resource.

We measure the efficiency of the resulting equilibria through the well-studied price of

anarchy metric [74]. We begin by formally expressing a game by the tuple

G =
(
I,R,A,

{
Wr,Yr,Ur

}
r∈R, ytrue,

{
yi
}
i∈I

)
.

Note that this tuple includes all relevant information to define the game. We define the

price of anarchy of the game G by

PoA(G) :=
mina∈NE(G)W(a; ytrue)

maxa∈AW(a; ytrue)
≤ 1, (5.5)

where NE(G) ⊆ A denotes the set of equilibrium of the game G. We will often be

concerned with characterizing the price of anarchy for broader classes of games where

resources share common characteristics. To that end, let Zr =
{
Wr,Yr,Ur

}
define the

characteristics of a given resource r. Further, let Z denote a family of possible resource

101

Nash equilibrium in Uncertain Settings Chapter 5

characteristics. We define the family of games GZ as all games of the above form where{
Wr,Yr,Ur

}
∈ Z for each resource r ∈ R. The price of anarchy of the family of games

GZ is defined as

PoA(GZ) := inf
G∈GZ

PoA(G) ≤ 1. (5.6)

For brevity we do not explicitly highlight the number of agents in a class of games

as that is always assumed to be less than n. In order to express the informational

inconsistencies between the agents’ knowledge and the true state, we define the metric

ρd : GZ → R≥0 as

ρd(G) = max
i∈I

d(yGi ; y
G
true), (5.7)

where d : Y × Y → R≥0 is some distance measure such that d(y, y′) = 0 if and only

if y = y′. Observe that, under this notation, a perfect information scenario where all

agents know the true state corresponds with d(yGi ; y
G
true) = 0 for all i ∈ I and ρd(G) = 0.

Conversely, when the agents have limited knowledge on yGtrue, ρd(G) measures the extent

of the uncertainty where a higher ρd(G) indicates that the agent’s evaluation of the state

yGi is “further” from the true state yGtrue. Consolidating these limitations, the set of games

in which ρd(G) ≤ δ is denoted by GδZ .

In particular, we use the following distance measure for the rest of the chapter:

d(y; ytrue) = max
r∈R,k∈[n]

|Wr(k; yr)−Wr(k; ytrue,r)|
Wr(k; ytrue,r)

. (5.8)

Note that, for a given instance, this measure allows us to capture the level uncertainty

that agents have on the system welfare independently of the individual resources. For

context, we introduce the following application domains.

Example 4 (Forest Fire Detection). Consider the scenario detailed in [84] where a set

102

Nash equilibrium in Uncertain Settings Chapter 5

of unmanned aerial vehicles (UAVs) coordinate to cover a forest region to maximize the

detection of a forest fire - modeled as a covering game [35]. The UAVs are the agents in

the game and the resource set R correspond to a finite partition of the forest region that

the UAVs are tasked to cover. Each UAV carries a sensor with a limited sensing range

and must select a position to survey (with a corresponding sensing range) - this choice is

modeled by an action set Ai. The state yr of each resource r corresponds to the risk that

a forest fire might emerge in that resource. We wish to allocate the UAVs to maximize

W(a; {yr}r∈R) =
∑
r∈∪ai

yr, (5.9)

which must balance focusing on the high risk areas and covering as much of the forest

region as possible.

Example 5 (Weapon-Target Assignment). Consider the weapon-target assignment problem

described in [85] where a set of weapons I = {1, . . . , n} are assigned to a set of targets

T with the objective of maximizing the expected value of targets engaged. When

k ∈ {1, . . . , n} weapons engage a target t ∈ T , its expected value is vt ·[1−(1−pt)k] where

vt ≥ 0 is t’s associated value and pt ∈ [0, 1] is t’s probability of successful engagement.

Based on its range and specifications, each weapon i ∈ I can only engage particular

subsets of the targets corresponding with the actions ai ∈ Ai ⊆ 2T . Accordingly, under

an allocation of weapons a = (a1, . . . , an), the operator’s welfare is measured as

W(a; {(vt, pt)}t∈T) =
∑
t∈T

vt ·
[
1− (1− pt)

|a|t
]
. (5.10)

Observe that this scenario can be modeled as a resource allocation game where each

weapon is an agent, each target is a resource and each target t has state yt = (vt, pt).

Though a resource characteristic is a triplet Zr =
{
Wr,Yr,Ur

}
, in many cases only

103

Nash equilibrium in Uncertain Settings Chapter 5

Wr and Yr are inherited from the problem setting, while the utility generating rule Ur

is designed. Accordingly, we will often think of the utility generating function at each

resource as being derived from {Wr,Yr}, i.e., Ur = Π(Wr,Yr) where Π is the utility

mechanism. Let the set Z(Π) = {Wr,Yr,Π(Wr,Yr)}r∈R.

The main focus of this chapter is on determining the utility mechanism that maximizes

the price of anarchy, i.e.,

Πopt = argmax
Π

PoA(GδZ(Π)). (5.11)

Accordingly, one may wish to understand how the achievable performance guarantees are

affected by the amount of uncertainty δ ≥ 0. In scenarios where the system designer does

not know the true value of δ, one may additionally seek to characterize the degradation

in performance guarantees for estimates on δ of varying levels of accuracy. In the

forthcoming sections, we provide preliminary results along these lines of questioning.

5.3 Characterization of PoA

Having defined our general model for limited information scenarios, in this section, we

concentrate on a specific class of resource characteristics. Doing so allows us to formulate

the optimization problem in (5.11) as a linear program by leveraging recent results in [86].

Let Zw,u correspond to a set of resource characteristics,1

Yr = R≥0 (5.12)

Wr(|a|r; yr) = yr · w(|a|r) (5.13)

Ur(|a|r; y′r) = y′r · u(|a|r) (5.14)

1The results in this section can be extended to settings where Wr and Ur are linear combinations
over a set of basis functions pair {wj , uj}, j = 1, . . . , L, following the results in [83]. We state our results
for only one basis function pair {w, u} (i.e., L = 1) for ease of presentation.

104

Nash equilibrium in Uncertain Settings Chapter 5

respectively, where yr, y
′
r ∈ Yr and w : [n]→ R>0 and u : {1, . . . , n} → R are fixed across

all resources r ∈ R. We assume that w(0) = u(0) = 0 and w(1) = u(1) = 1 to normalize

the welfare W and utility Ui functions. With abuse of notation, we use the denotation

Gw,u to refer to the family of games GZw,u . In this model, yr corresponds to a measure

of value of the resource r. Additionally, when a set of agents cover a certain resource r,

w and u correspond to the resource agnostic measure of the added system welfare and

agent utility, respectively. In this setting, the distance measure in (5.8) can be rewritten

as

d(y; ytrue) = max
r∈R,k∈[n]

|yr · w(k)− ytrue,r · w(k)|
ytrue,r · w(k)

= max
r∈R

|yr − ytrue,r|
ytrue,r

,

directly encoding the relative uncertainty of y from ytrue. In other words, given a

maximum uncertainty 0 ≤ δ ≤ 1, the state yr must be in the continuous interval

[(1 − δ)ytrue,r, (1 + δ)ytrue,r] for all r.2 In the forthcoming results, we will also use the

parameter

Bδ =
1 + δ

1− δ

to state certain equations more concisely.The following theorem presents a tractable linear

program for computing the price of anarchy:

Theorem 9. Consider a class of resource allocation games with Zw,u for a given w and

u. Additionally, let δ ∈ [0, 1) denote the limitations of the agents’ knowledge. It holds

2Note that we only consider the domain δ ∈ [0, 1), since if δ ≥ 1, the player valuation yir can be
arbitrarily close to 0 for any ytrue,r

105

Nash equilibrium in Uncertain Settings Chapter 5

that PoA(Gδw,u) = 1/V ∗ where V ∗ is the optimal value of the following linear program:

V ∗ = max
{θ(a,x,b)}a,x,b

∑
a,x,b

w(b+ x)θ(a, x, b) s.t.

∑
a,x,b

[
Bδau(a+ x)− bu(a+ x+ 1)

]
θ(a, x, b) ≥ 0

∑
a,x,b

w(a+ x)θ(a, x, b) = 1

θ(a, x, b) ≥ 0 ∀a, x, b

(5.15)

where a, x, b ∈ N such that 1 ≤ a+ x+ b ≤ n.

Proof. First, we show that PoA(Gδw,u) is lower bounded by 1/V ∗. Consider the reduced

family of games Gδ,2w,u ⊂ Gδw,u where all the agents have only two actions; Ai = {anei , aopti }.

In this reduced game, ane corresponds to a Nash equilibrium and aopt corresponds to the

action that maximizes the welfare. Note that PoA(Gδw,u) = PoA(Gδ,2w,u) and that for any

game G ∈ Gδw,u, uniformly scaling the values yr such that W(ane) =
∑

r∈R yrw(|aner |) = 1

does not affect the price of anarchy. It follows that PoA(Gδw,u) = 1/W ∗ where

W ∗ = max
G∈Gδ,2

w,u

W(aopt)

s.t. Ui(a
ne; δ) ≥ Ui(a

opt
i , ane−i; δ), ∀i ∈ I

W(ane) = 1.

(5.16)

Observe that, as written, the above linear program is intractable as there are infinitely

many games in Gδ,2w,u. To reduce the complexity, we define a game parameterization based

106

Nash equilibrium in Uncertain Settings Chapter 5

on n partitions of the set of resources, defined as follows for each agent i ∈ I:

Ranei
= {r ∈ R : r ∈ anei \ a

opt
i },

Raopti
= {r ∈ R : r ∈ aopti \ anei },

Raopti ∩anei
= {r ∈ R : r ∈ aopti ∩ anei },

Ra∅i
= {r ∈ R : r /∈ aopti ∪ anei }.

Now consider an arbitrary game G ∈ Gδ,2w,u with resources R, agent valuations yi for

each agent i and true resource values ytrue. We can rewrite the Nash constraint in (5.16)

for each agent i ∈ I as

∑
r∈anei

yir · u(|aner |) ≥
∑

r∈aopti

yir · u(|(a
opt
i , ane−i)r|).

Under the partition defined for each agent i, we observe that the Nash condition can be

rewritten as

∑
r∈Rane

i

yir · u(|aner |) +
∑

r∈R
a
opt
i

∩ane
i

yir · u(|aner |)

≥
∑

r∈R
a
opt
i

yir · u(|(a
opt
i , ane−i)r|)

+
∑

r∈R
a
opt
i

∩ane
i

yir · u(|(a
opt
i , ane−i)r|).

Canceling the terms in Raopti ∩anei
, we get

∑
r∈Rane

i

yir · u(|aner |) ≥
∑

r∈R
a
opt
i

yir · u(|(a
opt
i , ane−i)r|).

107

Nash equilibrium in Uncertain Settings Chapter 5

Note that, for any resource r ∈ R, it must hold that yir ∈ [(1 − δ)ytrue,r, (1 + δ)ytrue,r].

Considering the Nash condition as written above, observe that the tightest constraint

arises when yir = (1+δ)ytrue,r for all r ∈ Ranei
, yir = (1−δ)ytrue,r for all r ∈ Raopti

and yir =

ytrue,r for all other resources. This is the situation where agents overvalue the resources

in their equilibrium actions and undervalue the resources in their optimal actions. Thus,

we can consider this situation without loss of generality. For each resource r ∈ R, we

define the triplet (ar, xr, br) ∈ N3 as ar = |{i ∈ I : r ∈ Ranei
}|, br = |{i ∈ I : r ∈ Raopti

}|,

and xr = |{i ∈ I : r ∈ Raopti ∩anei
}| where 1 ≤ ar + xr + br ≤ n must hold. Further, we

define the map θ : N3 → R such that θ(a, x, b) is equal to the sum over true values ytrue,r

for all resources with ar = a, xr = x and br = b, for all a, x, b ∈ N with 1 ≤ a+x+ b ≤ n.

Under this notation, the following expressions hold:

W(aopt) =
∑
a,x,b

w(b+ x)θ(a, x, b),

W(ane) =
∑
a,x,b

w(a+ x)θ(a, x, b).

We showed above that the tightest Nash condition arises when agents overvalue the

resources that they select in their equilibrium actions and undervalue resources in their

optimal actions. Under our parameterization, the sum over agents’ utilities in this

“tightest” scenario are as follows:

n∑
i=1

Ui(a
ne; δ) =

∑
a,x,b

[(1 + δ)a+ x]u(a+ x)θ(a, x, b),

n∑
i=1

Ui(a
opt
i , ane−i; δ) =

∑
a,x,b

(1− δ)bu(a+ x+ 1)θ(a, x, b)

+
∑
a,x,b

xu(a+ x)θ(a, x, b).

108

Nash equilibrium in Uncertain Settings Chapter 5

Observe that if the equilibrium condition in (5.16) holds then the sum over agents’ utilities

at equilibrium must be greater than or equal to the sum over each of their utilities after

they unilaterally deviate. The converse, however, need not hold in general. Thus, the

linear program (5.15) in the claim represents a relaxation of the linear program (5.16).

Let V ∗ andW ∗ be the optimal values of linear programs (5.15) and (5.16), respectively.

According to the proof thus far, we can only say that V ∗ ≥ W ∗ since V ∗ is the optimal

value of a relaxed linear program, which means that PoA(Gδw,u) ≥ 1/V ∗. To show that

PoA(Gδw,u) ≤ 1/V ∗ also holds, one can follow the approach outlined in [86].

Following the reasoning detailed in [86], we can also define a linear program that

computes the optimal utility design for the class of resource allocation games. Interestingly,

we can directly import the techniques in [86] to achieve quite strong answers to questions

about utility designs in limited information settings. For a given uncertainty δ and

welfare characteristic w, we refer to the optimal utility mechanism as uopt
δ .

Corollary 2. Consider the class of resource allocation games Gδw,u with n number of

agents for a given w ∈ Rn
>0. Additionally, let δ ∈ [0, 1) denote the uncertainty. The

utility mechanism uopt
δ that maximizes the price of anarchy is given as

(uopt
δ , µ∗) ∈ argmin

u∈Rn, µ∈R
µ s.t.

w(b+ x)− µw(a+ x) +Bδau(a+ x)− bu(a+ x+ 1) ≤ 0

for all a, x, b ∈ N with 1 ≤ a+ x+ b ≤ n

u(1) = 1

with PoA(Gδ
w,uopt

δ

) = 1
µ∗ .

In a realistic scenario, the system operator may not know the extent of the informational

inconsistencies among the agents (i.e., the precise value of δ). In this case, what can be

109

Nash equilibrium in Uncertain Settings Chapter 5

Figure 5.1: The price of anarchy is plotted for the optimal designs for various
uncertainties δ under 30 randomly chosen welfare characteristics w and given
δtrue = 0.3 (indicated by the dotted line). Spanning all possible δ, it can be
verified that indeed uoptδtrue

designed for δtrue = .3 performs optimally. However, more

surprisingly, the degradation of performance (when uoptδ is designed for δ ̸= .3) as we
move away from δtrue is slower on the left than on the right of δ = 0.3. Nonintuitively,
this suggests that by underestimating the value of δtrue we can achieve higher price of
anarchy than overestimating it.

shown about the performance guarantees that a utility uopt
δ – designed according to an

assumed uncertainty δ – achieves under a realized uncertainty δtrue ̸= δ? In other words, if

there is a mismatch between the operator’s assumed δ and the realized δ, is there any loss

of performance? In these situations, the following figure shows the quite surprising fact

that underestimating the δ actually gives better performance guarantees. In Figure 5.1,

we randomly generated 30 different welfare characteristics w, in which w(j) is concave

and non-decreasing in j. We assume that δtrue = .3 and the game has n = 10 players.

For a given w, we computed the optimal utility design uopt
δ = argmaxu PoA(Gδw,u) for

each δ from δ = 0 to 1. Then we plot the price of anarchy PoA(Gδtrue
w,uopt

δ

) for each design.

We see the performance degrades slower to the left of δtrue than to the right. In the next

section, we formally capture this trend in the well-studied class of set covering games.

110

Nash equilibrium in Uncertain Settings Chapter 5

5.4 Set Covering Results

In this section, we restrict our analysis to set covering games, where the system welfare

is the value of the resources covered, i.e. wsc(k) = 1 for k ≥ 1. Set covering games [35]

are well studied and known to model a wide variety of practical applications, one of which

is detailed in Example 4. We obtain an explicit characterization of the optimal utility

design uopt
δ for the class of set covering games and formally demonstrate the phenomenon

observed in Figure 5.1 for this class of games.

To characterize the optimal utility design, we first outline the following Proposition

to characterize the price of anarchy in set covering games with uncertainty.

Proposition 4. For given utility u, uncertainty 0 ≤ δ ≤ 1, and number of agents n ≥ 1,

the price of anarchy for the class of set covering games Gδwsc,u is

PoA−1(Gδwsc,u) = max
j∈[1,n−1]

{max{Bδ(j + 1)u(j + 1),

Bδju(j + 1) + 1, Bδju(j)− u(j + 1) + 1}}

Proof. This proof is inspired by Theorem 3 in [43] with added consideration for the

informational inconsistencies between the agents, and is included for completeness. First,

we write the Lagrange dual of the linear program (5.15), i.e., PoA(Gδwsc,u) = 1/µ∗ where

µ∗ = min
λ≥0, µ∈R

µ s.t.

µw(a+ x) ≥ w(b+ x) + λ
[
Bδau(a+ x)− bu(a+ x+ 1)

]
,

∀a, x, b ∈ N s.t. 1 ≤ a+ x+ b ≤ n.

The rest of the proof involves removing redundant constraints to obtain a closed form

expression of the price of anarchy. We first consider the constraints that arise from

111

Nash equilibrium in Uncertain Settings Chapter 5

a = x = 0 and b ≥ 1. By definition, w(k) = 1 if k ≥ 1 and 0 otherwise, giving the

constraint λ ≥ maxb∈[n]
1
b
= 1. Considering the set of constraints that arise from b, x = 0

and a ≥ 1 gives µ ≥ λBδau(a) for a ∈ [n]. Now evaluating the set of constraints that

arise from x = 0, a, b ≥ 1 gives

µ ≥ max
a+b∈[2,n]

1 + λ
[
Bδau(a)− bu(a+ 1)

]
≥ max

a∈[1,n−1]
1 + λ

[
Bδau(a)− u(a+ 1)

]
,

which holds since b = 1 is the most binding constraint. When we consider the constraints

that arise from a, x, b ≥ 1, the resulting set of constraints can be written as

µ ≥ max
a+b+x∈[3,n]

1 + λ
[
Bδau(a+ x)− bu(a+ x+ 1)

]
≥ max

a+x∈[2,n]
1 + λBδau(a+ x)

≥ max
a∈[1,n−1]

1 + λBδau(a+ 1),

where b = 0 and x = 1 is the most binding constraint. Setting b = 0 is binding since it

removes the negative term −bu(a+ x+1) from the expression. Setting x = 1 is binding,

since for any pair {a, x} ∈ [2, n], there is another pair {a+x−1, 1} that results in stricter

constraint. With the nonbinding constraints removed, the program reduces to

min
λ≥1, µ∈R

µ s.t.

µ ≥ λBδau(a) a ∈ [n]

µ ≥ 1 + λ
[
Bδau(a)− u(a+ 1)

]
] a ∈ [n− 1]

µ ≥ 1 + λBδau(a+ 1) a ∈ [n− 1]

112

Nash equilibrium in Uncertain Settings Chapter 5

The optimal dual variables have λ = 1, which comes from the tightest constraints. If we

assume a = 1, this results in the set of constraints

µ ≥ Bδ1u(1) = Bδ

µ ≥ 1 +Bδ1u(1)− u(2) = Bδ + (1− u(2))

µ ≥ 1 +Bδ1u(2) = 1 +Bδu(2).

We can see the first constraint is always redundant, no matter if u(2) ≥ 1 or u(2) ≤ 1.

The expression in the claim follows after removing the last nonbinding constraint and

shifting the index from a to a+ 1 for the first set of constraints.

Theorem 10. For a given δ the optimal utility design uopt
δ for the class of set covering

games is

uopt
δ (j) =

∞∑
k=j

(j − 1)!

Bk−j+1
δ (e

1
B − 1)k!

(5.17)

and has corresponding price of anarchy

PoA(Gδ
wsc,u

opt
δ
) = 1− e

− 1
Bδ .

Proof. First we show that the price of anarchy is lower bounded by the proposed formula

with the corresponding proposed f . We assume that the number of agents is n. From

Proposition 4, we have that

PoA−1(Gδwsc,u) ≤ X for any X s.t.

X ≥ Bδ(n− 1)u(n) + 1,

X ≥ Bδju(j)− u(j + 1) + 1 j ∈ [1, n− 1]

113

Nash equilibrium in Uncertain Settings Chapter 5

where we removed the first set of constraints, and all but the last one of the second

constraints. An optimal utility design satisfies the set of inequalities with equality as

follows

X = Bδ(n− 1)uopt
δ (n) + 1 (5.18)

X = Bδju
opt
δ (j)− uopt

δ (j + 1) + 1 j ∈ [1, n− 1]. (5.19)

We can reformulate this system of equations as a recursive formula to generate the optimal

utility design uopt
δ as follows

uopt
δ (n) = 1 (5.20)

uopt
δ (j) =

uopt
δ (j + 1)

Bδj
+

1

j
uopt
δ (n)(n− 1). (5.21)

Iterating through this recursive equation and normalizing so that uopt
δ (1) = 1 gives

uoptδ (j) =
Bj−1

δ (j − 1)!(1
Bn

δ (n−1)(n−1)! +
∑n−1

k=j
B−k

δ
k!)

1
Bn

δ (n−1)(n−1)! +
∑n−1

k=1
B−k

δ
k!

, (5.22)

with a corresponding price of anarchy expression of

PoA(Gδ
wsc,u

opt
δ
) ≥ 1− 1

1
Bn

δ (n−1)(n−1)!
+
∑n−1

k=0

B−k
δ

k!

.

Taking the limit as n→∞ and using the identity
∑∞

k=0

B−k
δ

k!
= e

1
Bδ , we observe that

uopt
δ corresponds to the expression in (5.17) and PoA(Gδ

wsc,u
opt
δ

) ≥ 1− e
− 1

Bδ .

For the upper bound, we construct an n agent worst case set covering game G∗

inspired by [35]. All agents have two actions with Ai = {anei , aopti }, coinciding with their

equilibrium and optimal actions. To state the allocations of ane and aopt concisely, we

114

Nash equilibrium in Uncertain Settings Chapter 5

specify each resource with unique label ℓ : R → 2n as follows. First we partition the

resources into n + 1 groups, {R0, . . . ,Rn}. The true value of each resource r ∈ Rk is

ytrue,r = (Bδ)
k. There is one resource r0 ∈ R0 with ℓ(r0) = {1}. For k ≥ 1, the set of

labels of the resources in Rk is exactly the set [2, n]×n−1Pk−1, i.e., the set of permutations

without {1} as the first element. Therefore, there are (n−1) (n−1)!
(n−k)!

inRk. For any resource

r ∈ Rk with k ≥ 1, the last element of the label ℓ(r) denotes which agent selects the

resource r in aopt and {j ∈ I : j /∈ ℓ(r)} denotes the set of agents that select the resource

r in ane. For the resource r0 ∈ R0, agent 1 selects it in aopt, and every agent selects it in

ane. For example, if the label for the resource r is ℓ(r) = {2, 3} for a game with 4 agents,

then it must be that r ∈ Rk with ytrue,r = (Bδ)
2. Furthermore, agent 3 selects r in aopt,

while agents 1 and 4 select r in ane.

For any resource r ∈ Rk in G∗, n − k agents select r in ane. Furthermore, for any

agent i ≥ 2 and k ≤ n, the number of resources inRk that are selected in aopti (denoted as

|Ropt
i,k |) and the number of resources in Rk−1 that are selected in anei (denoted as |Rne

i,k−1|)

are equal. For agent 1 and k ≥ 2, it holds that |Ropt
1,k | = |Rne

1,k−1|. However, it is important

to note that for agent 1, |Ropt
1,1 | = 0 while |Ropt

1,0 | = |Rne
1,0| = 1.

The agent valuations yi,r for the resources in G∗ are as follows for a fixed δ uncertainty.

If r ∈ anei , then agent i overvalues it to the extreme where yi,r = (1 + δ)ytrue,r and if

r ∈ aopti , then agent i undervalues it to the extreme, where yi,r = (1− δ)ytrue,r. The only

exception to this is for agent 1 and the resource r0 ∈ R0 where yi,r0 = ytrue,r0 since it is

selected in both the optimal and equilibrium allocations by agent 1.

Now we can verify ane is indeed an equilibrium allocation. For any agent i ∈ I, we

115

Nash equilibrium in Uncertain Settings Chapter 5

have

Ui(a
ne; yi) =

n∑
k=0

∑
r∈Rne

i,k

yiru(n− k)

=
n∑

k=0

∑
r∈Rne

i,k

(1 + δ)ytrue,ru(n− k)

=
n∑

k=0

|Rne
i,k|(1 + δ)(Bδ)

ku(n− k)

=
n∑

k=0

|Ropt
i,k+1|(1− δ)(Bδ)

k+1u(n−(k+1)+1)

=
n∑

k=0

|Ropt
i,k |(1− δ)ytrue,ru(n− k + 1)

= Ui(a
opt
i , ane−i; yi),

where we take advantage of the fact that no resources in Rn are selected in ane (i.e.,

|Rne
i,n| = 0) in the fourth equality and that no agents i ≥ 1 select the resource r0 ∈ R0

in their optimal allocation (i.e., |Ropt
i,0 | = 0) for the fifth equality. We can use a similar

argument for agent 1 with additional care taken for the resources in R0 and R1. Its

important to note that under any utility design u, the action ane is still an equilibrium

and the allocations ane and aopt do not change.

Under allocation ane in G∗, all resources in Rk for k ≤ n− 1 are covered while, under

the optimal allocation, all resources are covered. We can explicitly write the welfare at

both allocations as

W (ane) =
∑
r∈R

ytrue,rw(|aner |) = 1 +

n−1∑
k=1

(n− 1)
Bk

δ (n− 1)!

(n− k)!

W (aopt) =
∑
r∈R

ytrue,rw(|aoptr |) = 1 +
n∑

k=1

(n− 1)
Bk

δ (n− 1)!

(n− k)!

116

Nash equilibrium in Uncertain Settings Chapter 5

Therefore, a lower bound on the price of anarchy is

PoA(G∗) ≥ W (ane)

W (aopt)
= 1− 1

1
Bn

δ (n−1)(n−1)!
+
∑n−1

k=0

B−k
δ

k!

.

Earlier, we showed that PoA(Gδwsc,u) ≤ PoA(G∗) for any utility design. We just showed

that PoA(Gδ
wsc,u

opt
δ

) ≥ PoA(G∗). It follows that the utility uopt
δ defined in (5.22) is optimal.

Furthermore, taking the limit as n→∞ gives PoA(Gδ
wsc,u

opt
δ

) ≤ PoA(G∗) = 1−e
− 1

Bδ .

Now that we have characterized the optimal utility design for set covering games, we

can arrive at a closed form expression for the guarantees when there is a mismatch in

uncertainty between the system operator and the realized uncertainty.

Proposition 5. Let uopt
δ be the optimal utility design for 0 ≤ δ ≤ 1 as in (5.17) and

0 ≤ δtrue ≤ 1 be the realized uncertainty. The price of anarchy is PoA(Gδtrue
wsc,u

opt
δ

) = V −1

V =


(BδtrueB

−1
δ − 1)uopt

δ (2)+

BδtrueB
−1
δ (C − 1) + 1 if δ ≤ δtrue,

BδtrueB
−1
δtrue

(C − 1) + 1 if δ ≥ δtrue,

(5.23)

where C = (e
1
Bδ − 1)−1.

Proof. We first assume there are n agents and note that as δ → 1, the recursive formula

in (5.20) and (5.21) for the optimal utility design, normalized to uopt
δ (1) = 1, gives

uopt
δ (j) = 1

j
for j = 1, . . . , n − 1 and uopt

δ (n) = 1
n−1

. Additionally, observe that as δ

increases, uopt
δ (j) increases for any j, since the recursive formula in (5.21) produces a

slower increasing sequence for a higher δ, so normalizing to uopt
δ (1) = 1 gives a larger

uopt
δ (j). Thus uopt

δ (j) ≤ 1
j
for j = 1, . . . , n − 1 for any δ. Note that based on the

recursive formula in (5.21), uopt
δ (j) is decreasing in j for any δ. By Proposition 4, the

117

Nash equilibrium in Uncertain Settings Chapter 5

PoA(Gδtrue
wsc,u

opt
δ

)−1 = X where X is the lowest value satisfying

X ≥ Bδtrue(j + 1)uoptδ (j + 1) j ∈ [1, n− 1] (5.24)

X ≥ Bδtrueju
opt
δ (j + 1) + 1 j ∈ [1, n− 1] (5.25)

X ≥ Bδtrueju
opt
δ (j)− uoptδ (j + 1) + 1 j ∈ [1, n− 1] (5.26)

Now the redundant inequalities are eliminated to derive a closed form expression. For

the inequalities in (5.24), we have that

Bδtrue(j + 1)uoptδ (j + 1) ≤ Bδtrue

≤ Bδtrue − uoptδ (2) + 1 j ∈ [1, n− 2],

where the first inequality comes from uopt
δ (j + 1) ≤ 1/(j + 1) and the second inequality

comes from uopt
δ (2) ≤ uopt

δ (1) = 1. Note that putting j = 1 in the last set of inequalities

(5.26) gives the last term. For j = n− 1,

Bδtruenu
opt
δ (n) = Bδtrue(n− 1)uopt

δ (n) +Bδtrueu
opt
δ (n)

≤ Bδtrue(n− 1)uopt
δ (n) + 1

≤ BδtrueB
−1
δ (C − 1) + 1, (5.27)

where the first inequality comes from the fact that Bδtrueu
opt
δ (n) ≤ n for a high enough

n and the second inequality comes from the substitution C − 1 = Bδ(n− 1)uopt
δ (n) from

Equation (5.18). Note that this corresponds to putting j = n − 1 in the second set of

inequalities (5.25). Therefore, we have shown the first set of inequalities is redundant.

118

Nash equilibrium in Uncertain Settings Chapter 5

For the inequalities in (5.25), we have that for j ∈ [1, n− 2],

Bδtrueju
opt
δ (j + 1) + 1 = Bδtrue(j + 1)uopt

δ (j + 1)

−Bδtrueu
opt
δ (j + 1) + 1

≤ Bδtrue(j + 1)uopt
δ (j + 1)

− uopt
δ (j + 2) + 1,

where the first inequality comes from the fact that Bδtrueu
opt
δ (j+1) ≥ 1 ·uopt

δ (j+2). Note

that this expression matches the inequalities in (5.26) for j ∈ [1, n− 2] and therefore are

redundant.

We can also reduce the inequalities in (5.26):

Bδtrueju
opt
δ (j)− uopt

δ (j + 1) + 1 =

(BδtrueB
−1
δ − 1)uopt

δ (j + 1) + (BδtrueB
−1
δ)(C − 1) + 1

where C = PoA(Gδ
wsc,u

opt
δ

)−1. The equality comes from the recursive formula in (5.19)

with substitution Bδju
opt
δ (j) = uopt

δ (j + 1) + C − 1. If δ ≤ δtrue, then BδtrueB
−1
δ − 1 ≥ 0

and the binding constraint comes from taking j = 1,

(BδtrueB
−1
δ − 1)uopt

δ (2) + (BδtrueB
−1
δ)(C − 1) + 1.

Conversely if δ ≥ δtrue, the binding constraint comes from j = n− 1,

(BδtrueB
−1
δ − 1)uopt

δ (n) + (BδtrueB
−1
δ)(C − 1) + 1

≤ BδtrueB
−1
δ (C − 1) + 1,

119

Nash equilibrium in Uncertain Settings Chapter 5

Figure 5.2: We plot the price of anarchy achieved by the utility rules designed for
δ ∈ [0, 1] within three classes of set covering games corresponding with δtrue = 0.2 (in
blue), δtrue = 0.3 (in red), and δtrue = 0.4 (in green). The explicit expression for such
curves is provided in (5.23). Observe that underestimating the true level of uncertainty
in the class of games gives better price of anarchy guarantees than overestimating it,
a trend that we previously noted from the simulation results in Figure 5.1.

where the inequality comes from (BδtrueB
−1
δ − 1) ≤ 0 for δ ≥ δtrue. Note that this

constraint is subsumed by the one in (5.27).

Finally, the resulting set of inequalities is

X ≥ BδtrueB
−1
δtrue

(C − 1) + 1

X ≥ (BδtrueB
−1
δ − 1)uopt

δ (2) + (BδtrueB
−1
δ)(C − 1) + 1.

We showed that the first constraint is strictest if δ ≥ δtrue and that the second constraint

is strictest when δ < δtrue. Taking n → ∞, we have from Theorem 10 that C − 1 =

PoA(Gδ
wsc,u

opt
δ

)−1 − 1 = (1− e
− 1

Bδ)−1 − 1 = (e
1
Bδ − 1)−1.

In the context of set covering games with uncertainty in the state of the resources,

we have formally shown the surprising fact that underestimating these values actually

has better performance guarantees than overestimating.

120

Chapter 6

Nonconvergent Learning Dynamics

Understanding emergent behavior of multi-agent systems is important for various distribution

applications, and game theory has been identified as a useful framework for this purpose.

The core of game-theoretic analysis is through representing agents as players in a game,

which enables prediction of emergent behavior through Nash equilibria. This methodology

offers a valuable perspective, where system behavior can be characterized by assuming

that self-interested decision-making processes lead to Nash equilibrium without identifying

those decision-making processes explicitly. This approach has found applications across

diverse domains, such as sensor coverage, traffic networks, auctions, and network coordination.

However, guarantees of existence in Nash equilibrium is not universal across problem

settings, prompting an exploration into alternative equilibria.

In this chapter, we will instead focus on sink equilibria, which are defined as the

attractors of decision-making processes where Nash equilibrium may not be naturally

defined. By classifying system outcomes through a global objective function, we can

analyze the resulting approximation guarantees that sink equilibria have for a given game.

Our main result in this chapter is an approximation guarantee on the sink equilibria

through defining an introduced metric of misalignment, which captures how uniform

121

Nonconvergent Learning Dynamics Chapter 6

agents are in their self-interested decision making. Overall, sink equilibria are naturally

occurring in many multi-agent contexts, and we display our results on their quality with

respect to two practical problem settings. The results and discussion in this chapter is

based on the work presented in [87].

6.1 Introduction

In this chapter, we specifically consider a game theoretic approach, where the emergent

properties of the multi-agent system are studied using tools from game theory. The main

idea of this approach is to model agents as self-interested decision makers, where each

agent’s preference over the collective system outcome is designated through a utility

function. The agents are then presumed to undergo a best (or better) response process,

where each agent updates their decision in a self-interested manner to maximize their

individual utility. The emergent system outcomes from this process are traditionally

expected to be Nash equilibrium, which can be expressed as the limit points of the

best response process. Thus, many previous works study the emergent system behavior

through characterizing properties of the Nash equilibrium; this has been done in many

different contexts, such as traffic systems, power networks, etc. [88, 89].

But is it reasonable to expect agents to converge to Nash equilibria from

best response processes? In the class of potential games [90] and variants [91], best

response processes are indeed guaranteed to converge to Nash equilibria [92]. In potential

games, agents are fully cooperative, and self-interested decisions made by agents always

lead to improvements in a given global objective. However, a variety of natural multi-

agent settings fall outside of this class. The system may display competitive interactions;

for e.g., business firms may have competing economic interests. In social systems, agents’

may be inherently misaligned in their preferences; for e.g., drivers may have different

122

Nonconvergent Learning Dynamics Chapter 6

sensitivities to tolls. Even for multi-agent systems that are fully engineered, there are

operational concerns such as prediction errors or informational privacy that must be

accounted for. All of these scenarios do not exhibit a potential game structure, and thus

guarantees of convergence to Nash equilibria can not be established. We describe two

examples of this kind in Example 6 and 7. In these instances, can the emergent

system outcomes still be characterized, where either Nash equilibrium do not

exist or best response processes does not converge to Nash equilibria? This is

the main focus of the chapter.

We utilize sink equilibria in [22] as an alternate solution concept 1 to address this,

which are specified as the attractors of the best response process. By definition, sink

equilibria are well defined and have guarantees of convergence for any given game. Thus,

we analyze the behavior of sink equilibria in this chapter. Specifically, we assume that

system outcomes are evaluated through a given global objective function. The utility

function of each agent may not be aligned with this global objective. In these settings,

we can characterize performance guarantees of the induced sink equilibria with respect

to the global objective.

To the author’s knowledge, a general approach to studying performance guarantees

of sink equilibrium has not been done previously. While sink equilibria have not been

studied in as much detail as Nash equilibria, we still highlight an pertinent selection of

past literature on sink equilibria. The seminal work in [22] first established the concept

of sink equilibria in a game-theoretic context, as well as provide negative results of sink

equilibria in valid utility games. Positive results on sink equilibria behavior were shown

in [94], where it was seen that sink equilibria perform much better than mixed Nash

1A popular alternative to Nash equilibria are coarse correlated equilibria which have existence and
convergence guarantees [93]. However, these dynamics requires full knowledge of the history of decisions
of all of the agents. Additionally, only empirical distribution of play is guaranteed to the converge to
coarse correlated equilibria, which may not correspond to the actualized decisions made by the agents.

123

Nonconvergent Learning Dynamics Chapter 6

equilibria. Analysis of sink equilibria under the name of curb sets was done in [95].

Several complexity results of sink equilibria were introduced in [96]. Sink equilibria were

extended in continuous domains in [24]. Recently, design of sink equilibria selection

algorithms was done in [97]. While the literature on sink equilibrium is sparse, they

naturally emerge when agent utility functions are not aligned perfectly.

6.2 Model and Preliminaries

Consider a general multi-agent scenario with n agents I = {1, . . . , n}, where each

agent is endowed with a finite decision or action set Ai. We denote an action as ai ∈ Ai,

and a joint action profile as a ∈ A = A1 × · · · × An. The quality of each joint action

profile is evaluated with a global objective function W : A → R≥0 that characterizes the

total system welfare. In other words, the optimal joint decision of the system is described

as

aopt ∈ argmax
a∈A

W(a). (6.1)

We assume that solving the decision problem in Eq. (6.1) cannot be done in a centralized

fashion, due to computational, informational, administrative, or communication concerns.

Therefore, we assume that each agent selects their decisions in a distributed manner. We

assume that each agent i is endowed with a utility function Ui : A → R to classify their

preferences over their decision set, resulting in the game tuple G ≜ (I,A,W, {Ui}i∈I).

Moreover, we assume the utility function Ui depends on the welfare function W, either

naturally or by design. In particular, consider a completely cooperative scenario, where

the agents exhibit the common interest utility design. Here, the utility functions are

124

Nonconvergent Learning Dynamics Chapter 6

completely aligned with the global objective W 2, where

Ui(a) ≡W(a) for all a ∈ A and i ∈ I. (6.2)

Under the common interest utility, the emergent joint decisions coincide with the set of

Nash equilibrium NE of the game. A joint action ane is considered a Nash equilibrium if

the following inequality holds

Ui(a
ne) ≥ Ui(ai, a

ne
−i) for all a ∈ A and i ∈ I, (6.3)

where a−i = (a1, . . . , ai−1, ai+1, . . . , an) corresponds to the joint action without the decision

of agent i. In completely cooperative settings, where they are guaranteed to exist, we

can then quantify the emergent behavior through the qualities of the possible resulting

Nash equilibrium. This is done through the metric of price of anarchy which is defined

as

PoA(G) =
minane∈NEW(ane)

maxa∈A W(a)
, (6.4)

where we take the worst case ratio of the welfare of Nash equilibria over the optimal

welfare. Price of anarchy is a well-studied metric, with many results on its characterization

in the literature [43, 44, 88]. Thus a standardized approach can be implemented to

characterize system behavior in completely cooperative scenarios.

However, due to operational or design constraints, assuming a common interest utility

design may not be feasible (see Examples 6 and 7). Throughout the paper, we then allow

Ui(a) ̸= W(a) to be misaligned, and focus our attention to sink equilibrium as our

standard solution concept. To define sink equilibrium, we first outline the best response

2We can relax this constraint to consider utility functions that are preference equivalent to the welfare
function, where the ordering of preferences over joint actions is maintained. This is indeed the case for
potential and weighted-potential games.

125

Nonconvergent Learning Dynamics Chapter 6

process. Under this process, the best decision set for agent i assuming all other agents’

decisions are fixed is known as the best response set, that is,

Bri(a) = arg max
āi∈Ai

Ui(āi, a−i). (6.5)

Then for every step, a randomly selected agent picks an action from its best response set

uniformly. This induces the following Markovian dynamics on the set of joint actions,

describing the best response process, as

Pr(ã|a) =


1

n·|Bri(a)| if ã ∈ (Bri(a), a−i) for some i ∈ I

0 otherwise,

(6.6)

where Pr(ã|a) represents the probability of reaching the joint action ã from a in the

Markov chain. Note that there is an equal chance for each player i to perform a best

response at each time step. We refer to a probability distribution over the joint action set

as σ ∈ ∆A, where pσ(a) denotes the probability of sampling a under σ. We also say that

an action a ∈ supp(σ) ⊆ A is in the support of σ if the probability pσ(a) > 0 is strictly

positive. Furthermore, we say that σ is a stationary distribution of the Markov chain if

the equality pσ(a) = Eā∼σ[Pr(ã|ā) · pσ(ā)]a for all a ∈ A holds. We also specify the sink

strongly connected components of the Markov chain defined in Eq. (6.6). A set S ⊆ A is

a sink strongly connected component if there is exists a path of positive probability from

a to ā under (6.6) for any a, ā ∈ S and there are no transitions from S to outside of S.

Formally, if a, ā ∈ S, then there exists a sequence a0, a1, . . . , am where Pr(aj+1|aj) > 0 for

all j with a0 = a and am = ā. Additionally, if a ∈ S and ā /∈ S, then no such sequence

exists.

Definition 4. A probability distribution σ ∈ ∆A is a sink equilibrium of the game G if

126

Nonconvergent Learning Dynamics Chapter 6

σ is a stationary distribution of the Markov chain in Eq. (6.6) and if supp(σ) = S is a

sink strongly connected component.

In other words, sink equilibria are defined as the attractors of the best response

process. Given a game G, we characterize the behavior of the sink equilibria in a similar

manner to Eq. (6.4) through the metric of price of sinking [22] as

PoSE(G) = min
σ∈SE

Ea∼σ[W(a)]/W(aopt), (6.7)

where SE denotes the total set of sink equilibrium of the game G. We note that under

a common interest utility design, the set of Nash equilibrium NE ≃ SE is equivalent to

the set of sink equilibrium.

We now examine the sink equilibria on two illustrative examples in which they

naturally emerge. In these examples, we derive guarantees on the sink equilibria. The

examples are as follows.

Example 6 (Ecological Monitoring). Ecological monitoring is necessary to understand

the well-being of inhabited populations as well as track health of overall ecology. While

this can be handled by field ecologists, autonomous agents can supplement or even act as

substitutes to gather important ecological data - as was done by the authors in [98]. In

this scenario, a high level control objective of the agents is to understand how to orient

themselves to monitor the region of interest as best as possible. We can model this as a

covering problem [99]. In this way, let R = {r1, . . . , rm} define the region monitored by

n agents, where we have finitely partitioned the region into possibly arbitrary segments.

For each segment r, the importance of monitoring that segment can be associated with

a value vr ∈ R≥0 which defines the intrinsic quality of data that can be collected in that

segment. This can be affected by the number or magnitude of populations in the segment,

relevant climactic conditions, etc. These parameters are never known before hand, and

127

Nonconvergent Learning Dynamics Chapter 6

thus must be estimated by the agents in the field. Thus each agent has its noisy estimate

of the value vir which we assume is drawn from a normal distribution N [vr + c, (d · vr)2]

with bias c and variance (d·vr)2. Each agent can decide which subset of region to monitor

(i.e. ai ⊂ R), which depend on its sensor and motor capabilities. Thus, collectively, the

goal of the agents is to monitor the most and highest valued portions, as captured by the

welfare function below.

W(a) =
∑

r∈∪iai

vr (6.8)

The objective that each agent witnesses, however is based on their estimate, or that their

utility is Ui(a) =
∑

r∈∪iai
vir, which is potentially different for each agent. Thus, when

running a best response algorithm, the agents converge to a sink equilibrium which may

not be a Nash equilibrium. We derive a guarantee on price of sinking in Proposition 6.

Proposition 6. Consider the problem defined above. The expected price of sinking is

lower bounded by the following expression

E[PoSE(G)] ≥ max(
1− 4nβΦ

2
, 0), (6.9)

where Φ is the normal cumulative distribution function and βΦ is defined as

βΦ = |R|

(
d

√
2

π
e−

c2

2d2 + c(1− 2Φ(−c/d))

)
. (6.10)

Example 7 (Radio Signalling). Consider the situation in which n agents have to communicate

to each other through k communication channels, as seen in [100]. However, when

more than one agent selects a channel to communicate under, the signals experience

interference. This can captured by the parameter wij ≥ 0, which dictates the interference

between agent i and agent j. The system as a whole, would like to minimize the total

interference experienced between all the agents. In turn, the system welfare can be

128

Nonconvergent Learning Dynamics Chapter 6

defined as

W(a) =
∑
i

∑
j:aj ̸=ai

wij, (6.11)

where ai ∈ {1, . . . k} is the channel that agent i decides to transmit their messages on.

However, these interference parameters may not be known to the agents and have to be

estimated. For simplicity, we can assume that the agents have a margin of error of α

or that agent i’s estimate is wi
ij ∈ [α · wij, α

−1 · wij]. Again, when agents run a best

response algorithm, they are not guaranteed to converge to a Nash equilibrium due to

the informational constraints. Then we can characterize the guarantee on the price of

sinking in Proposition 7.

Proposition 7. Consider the problem defined above with two channels (k = 1). The

price of sinking is lower bounded by the following expression

PoSE(G) ≥ 1

3α2 + (1− α2)n
. (6.12)

6.3 Main Results

The main results of this paper are on providing lower bounds for the price of sinking

for a given game. To do this, we first recall the notion of smoothness [101] as a useful

analysis tool for the price of anarchy. In this paper, we use a relaxed version of smoothness

to classify a given game. We say that a game is (λ, µ)-smooth if, for a fixed µ ≥ λ ≥ 0,

we have that ∑
i∈I

(
Ui(a)− Ui(a

opt
i , a−i)

)
≤ µW(a)− λW(aopt) (6.13)

for all actions a ∈ A. Given these parameters, the efficiency of Nash equilibria for a

given game can easily be determined. This is described in Proposition 8, where a proof

is included for completeness.

129

Nonconvergent Learning Dynamics Chapter 6

Proposition 8. Let G be a (λ, µ)-smooth game. Then the price of anarchy is lower

bounded by PoA(G) ≥ λ
µ
.

Proof. From applying the definition of Nash equilibrium repeatedly for all i ∈ I with

respect to the deviation aopt, we have the following inequality

∑
i

(
Ui(a

ne)− Ui(a
opt
i , ane−i)

)
≥ 0.

Notice that now we can directly substitute the inequality in Eq. (6.13) to get that

µW(ane)− λW(aopt) ≥ 0.

Since ane is any arbitrary Nash equilibrium, we can rearrange the above equation to get

that PoA(G) ≥ λ
µ
to show the claim.

We note that there always exist some λ and µ such that the game is (λ, µ)-smooth,

as λ → 0 and µ → ∞ will always satisfy the inequality in Eq. (6.13). The main

analytical benefit of smoothness analysis is that instead of searching across the set of

Nash equilibrium directly, we can instead characterize the price of anarchy through a bi-

variable optimization problem (over λ and µ). This can be done in various game-theoretic

contexts [101]. The optimization problem is written formally below.

Corollary 3. The price of anarchy for a given game G is lower bounded by

PoA(G) ≥ sup
µ≥λ≥0

{λ
µ
: G is (λ, µ)− smooth}.

However, unlike Nash equilibria, when applying the smoothness inequality directly

to the analysis of sink equilibria, it is not possible to get non-trivial guarantees. For

130

Nonconvergent Learning Dynamics Chapter 6

all valid smoothness parameters, it is possible to construct a corresponding game with

trivial performance guarantees on sink equilibria, as stated below.

Proposition 9. For every µ > λ ≥ 0, there exists a (λ, µ)-smooth game G with a unique

sink equilibrium such that the price of sinking is PoSE(G) = 0.

Proof. Let µ > λ ≥ 0. Consider the following game G with two agents with the action

sets A1 = {e1, e2, e3} and A2 = {f1, f2, f3}. We define the welfare values W(a) for each

joint action through Table 6.1 below. Similarly, we can define the utility values Ui(a) for

f1 f2 f3
e1 1 (λ+ ε)/µ 0
e2 (λ+ ε)/µ 0 0
e3 0 0 0

Table 6.1: Welfare W(a) for each joint action a = (ei, fj).

each joint action and for each agent in Table 6.2.

f1 f2 f3
e1 (0, 0) (0, ε) (0,−ε)
e2 (ε, 0) (λ,−2λ) (−2λ, λ)
e3 (−ε, 0) (−2λ, λ) (λ,−2λ)

Table 6.2: Welfare (U1(a),U2(a)) for each joint action a.

We can choose ε = (µ− λ)/2 > 0 such that the optimal joint action is aopt = (e1, f1)

with an optimal welfare of W(aopt) = 1. Under the best response dynamics, observe that

the set {(e2, f2), (e3, f2), (e2, f3), (e3, f3)} is the unique strongly connected component. It

can be verified that each joint action a satisfies the smoothness condition in Eq. (6.13).

Since the welfare of each action in the unique strongly connected component is 0, the

price of sinking can be upper bounded by PoSE(G) = Ea∈σ[W(a)] ≤
∑

a∈supp(σ) W(a) = 0

for the unique sink equilibrium σ.

This negative result is similar in spirit to the one presented in [22, Lemma 3.2].

However, we emphasize that the inferior guarantees are more indicative of inefficacy of

131

Nonconvergent Learning Dynamics Chapter 6

a direct approach rather than the intrinsic behavior of sink equilibria. This sentiment

is also reflected in [94], where in certain game settings, it is shown that the quality of

sink equilibria is arbitrarily better than the quality of any mixed equilibria. In fact, if

we consider games with added structure, we can arrive at nontrivial guarantees on sink

equilibria.

Therefore, we consider games in which the deviation from the common interest utility

Ui(a) ̸= W(a) is bounded. We encapsulate the extent of the deviation through the

constant β ∈ [0, 1], where β = 0 signifies no deviation from the common interest utility

and β = 1 signifies the maximum deviation. We define this formally below 3.

Definition 5. A game G is considered to be β-arithmetically misaligned if

|Ui(a)−W(a)| ≤ βW(a), (6.14)

or β-geometrically misaligned if

1− β ≤ Ui(a)

W(a)
≤ 1

1− β
, (6.15)

is satisfied for all actions a ∈ A and agents i ∈ I.

We note that when β = 0, under the common interest utility, the sink equilibria

are equivalent to the Nash equilibria and inherit the price of anarchy guarantees coming

from smoothness analysis. Likewise, we will see that the sink equilibria in near-common

interest games with β close to 0 inherit similar guarantees dictated by the common

interest utility. This observation is also reflected in a different context in [102]. In this

vein, let λc and µc be the parameters that satisfy the smoothness inequality in Eq. (6.13)

3We can generalize the results to instead consider alignment to a potential function. In this way, β
characterizes the closeness of the game to a potential game. Near-potential games have been studied
in [23].

132

Nonconvergent Learning Dynamics Chapter 6

for the common interest utility

∑
i∈I

(
W(a)−W(aopti , a−i)

)
≤ µcW(a)− λcW(aopt), (6.16)

where we have substituted Ui(a) ≡W(a). With this, we can state the main result of the

paper.

Theorem 11. Let G be a game such that the best response Bri(a) is always singular

valued. Let λc and µc satisfy Eq. (6.16) for all a ∈ A. If the game is β-arithmetically

misaligned, as in Eq. (6.14), then the price of sinking satisfies

PoSE(G) ≥ max(
λc − 4βn

µc

, 0). (6.17)

If the game is β-geometrically misaligned, as in Eq. (6.15), then the price of sinking

satisfies

PoSE(G) ≥ λc

(1− β)2µc + (1− (1− β)2)n
. (6.18)

Proof. First, we introduce the following lemma to characterize the sink equilibria in an

alternative fashion.

Lemma 7. Let G be a game such that Bri(a) is always singular valued and let σ ∈ SE

be any sink equilibrium of the game. For any function g : A → R, the following equality

must hold

Ea∼σ[
∑
i∈I

g(a)− g(Bri(a), a−i)] = 0. (6.19)

Proof. Let σ be a sink equilibrium of the game G. Since the sink equilibrium is a

stationary distribution under the dynamics outlined in Eq. (6.6), we have that pσ(a) =

133

Nonconvergent Learning Dynamics Chapter 6

∑
ā∈A Pr(a|ā)pσ(ā). Under this statement, we have the series of equalities below

n
∑
a

pσ(a)g(a) = n
∑
a

∑
ā

Pr(a|ā)pσ(ā)g(a)

Ea∼σ[
∑
i∈I

g(a)] = Eā∼σ[n
∑
a

Pr(a|ā)g(a)]

= Ea∼σ[
∑
i∈I

g(Bri(a), a−i)],

where we change the the naming convention from ā to a in the last line. Rearranging

the terms and using linearity of expectation gives us the claim.

Proof of Arithmetic. For ease of notation, let abri = (Bri(a), a−i). We can apply Lemma

7 with respect to the welfare function W to get

Ea∼σ[
∑
i∈I

W(a)−W(abri)] = 0. (6.20)

Since we assume the game is β-arithmetically misaligned, we have that Ui(a) ≥ (1−

β)W(a) ≥W(a)− βW(aopt). Likewise, we can also bound Ui(a
br
i) ≤W(abri) + βW(aopt).

We can substitute these two inequalities in Eq. (6.20) to get

W(a)−W(abri) ≤ Ui(a)− Ui(a
br
i) + 2βW(aopt) (6.21)

We can apply this inequality to Eq. (6.20) for

Ea∼σ[2βnW(aopt) +
∑
i∈I

Ui(a)− Ui(a
br
i)] ≥ 0.

Further, observe that since Ui(a
br
i) ≥ Ui(a

opt
i , a−i) from the definition of a best response,

we can replace Ui(a
br
i) Ui(a

opt
i , a−i). We can utilize the β-misalignment and substitute

134

Nonconvergent Learning Dynamics Chapter 6

for the utility functions using Eq. (6.21) to arrive at

Ea∼σ[4βnW(aopt) +
∑
i∈I

W(a)−W(aopti , a−i)] ≥ 0.

Applying the definition of λc and µc as in Eq. (6.16) results in the final inequality.

Ea∼σ[4βnW(aopt) + µcW(a)− λcW(aopt)] ≥ 0.

Notice that the above inequality holds for any arbitrary sink equilibrium σ. Thus

rearranging terms and using linearity of expectation gives us the price of sinking guarantee

in Eq. (6.17).

Proof of Geometric. We can apply Lemma 7 with respect to the welfare function W to get

Eq. (6.20). For ease of notation, let β̄ = 1− β. We can successively apply the geometric

misalignment property in Eq. (6.15), as well as using the fact that Ui(a
br
i) ≥ Ui(a

opt
i , a−i),

to arrive at the following set of inequalities.

W (abri) ≥ β̄Ui(a
br
i) ≥ β̄Ui(a

opt
i , a−i) ≥ β̄2W(aopti , a−i)

Substituting these inequalities back into Eq. (6.20) gives

Ea∼σ[
∑
i

W(a)− β̄2W(aopti , a−i)] ≥ 0.

Now we can substitute the definitions of λc and µc in Eq. (6.16) to a portion of the terms

and simplify to get

Ea∼σ[n(1− β̄2)W(a) + β̄2
(
µcW(a)− λcW(aopt)

)
] ≥ 0.

135

Nonconvergent Learning Dynamics Chapter 6

Notice that the above inequality holds for any arbitrary sink equilibrium σ. Thus

rearranging terms and using linearity of expectation gives us the price of sinking guarantee

in Eq. (6.18).

Thus we have shown the bounds for both geometric and arithmetic misalignment

cases.

We see that when the utility functions are close to the common interest utility design

with β ∼ 0, the price of sinking guarantees match the guarantees for the common interest

utility. We note that while our approach allows us to get nontrivial guarantees on the

sink equilibria, we still suffer from the degradation of the guarantee as the number of

agents n → ∞ increases arbitrarily. However, we assume worst case deviations (see

W(abri) ≥ β̄2W(aopti , a−i) in the proof of the geometric misalignment) for all actions in

the game, which is not true for most natural games and produces a conservative bound.

Thus the focus of future work will be to address this concern to get tighter guarantees.

We can also get alternative guarantees if we consider sink induced by better responses.

This is discussed in the next section.

6.4 Better Response Sink Equilibrium

In this section we consider sink equilibria that are induced by a better (rather than

best) response process. In contrast to the best response set in Eq. (6.5), we consider the

better response set defined as

bri(ā) = {ai ∈ Ai : Ui(ai, ā−i) ≥ Ui(ā)} (6.22)

136

Nonconvergent Learning Dynamics Chapter 6

for a given agent i. The better response process is then defined by a random walk, similar

to Eq. (6.6) as

Pr(ã|a) =


1

n·|bri(a)| if ã ∈ (bri(a), a−i) for some i ∈ I

0 otherwise.

(6.23)

The sink equilibria are similarly defined for these dynamics. If we consider sink equilibria

that are induced by better responses, it is possible to get positive guarantees on the

behavior of sink equilibrium. More specifically, we show that there always exists a joint

action in the support of the sink equilibria that has similar guarantees to the Nash

equilibria.

Proposition 10. Let G be (λ, µ)-smooth. Every sink equilibrium in G induced by better

responses contains a joint action ã ∈ supp(σ) in its support such that W(ã) ≥ λ
µ
W(aopt).

Proof of Proposition 10. We show that W(a) ≥ λ
µ
W(aopt) for some a ∈ supp(σ) in the

sink induced by better responses. We first claim that for any sink σ, there exists a joint

action a ∈ supp(σ) such that for all i ∈ I,

Ui(a)− Ui(a
opt
i , a−i) ≥ 0. (6.24)

Consider an arbitrary action a ∈ supp(σ) in which the condition does not hold true.

Let i be the smallest number such that a does not satisfy Eq. (6.24) for agent i. Then

the action â = (aopti , a−i) is a better response to a and therefore â ∈ supp(σ) is in the

support of σ as well. Note that â also satisfies Eq. (6.24) for agent i. By induction, we

can then derive an action a∗ ∈ supp(σ) such that Eq. (6.24) is satisfied for all i. By the

137

Nonconvergent Learning Dynamics Chapter 6

smoothness inequality in Eq. (6.13), we have that

µW(a∗)− λW(aopt) ≥
∑
i

Ui(a
∗)− Ui(a

opt
i , a∗−i) ≥ 0.

Therefore for some a∗ ∈ supp(σ), the efficiency is lower bounded by W(a∗) ≥ λ
µ
W(aopt).

6.5 Appendix

We outline some extra proofs of Proposition 6 and Proposition 7.

Lemma 8. Consider the problem defined in Example 6. The welfare function in Eq.

(6.8) is β-arithmetically misaligned, with an expected misalignment of

E[β] ≤ |R|

(
d

√
2

π
e−

c2

2d2 + c(1− 2Φ(−c/d))

)
, (6.25)

where Φ is the normal cumulative distribution function.

Proof. We derive a bound for |Ui(a)−W(a)|
W(a)

based on the parameters given in Example 6.

From the equations defining the utility and welfare,

|Ui(a)−W(a)|
W(a)

=

∣∣∑
r∈∪iai

vir −
∑

r∈∪iai
vr
∣∣∑

r∈∪iai
vr

≤
∑

r |vir − vr|∑
r vr

,

where we use triangle inequality and ∪iai ⊆ R to get the inequality on the right hand

side. Observe that
∑

i xi∑
i yi
≤
∑

i
xi

yi
. This fact coupled with linearity of expectation and

138

Nonconvergent Learning Dynamics Chapter 6

vr ≥ 0 gives the inequality

E
[
|Ui(a)−W(a)|

W(a)

]
≤
∑
r

E
[
|v

i
r − vr
vr
|
]
.

We assume that vir ∼ N [vr + c, (d · vr)2] is drawn from a normal distribution. Thus the

expectation E
[
|v

i
r−vr
vr
|
]
= E[Nf (c, d

2)], where Nf is a folded normal distribution with

mean c and variance d2. This holds true for any r ∈ R, so using the equality

E
[
|v

i
r − vr
vr
|
]
=

(
d

√
2

π
e−

c2

2d2 + c(1− 2Φ(−c/d))

)

results in the bound given in Eq. (6.25).

Proof of Proposition 6. We remark that the covering problem in Example 6 is a submodular

game [43]. Under the common interest utility, the constants λc = 1 and µc = 2 satisfy

the inequality in Eq. (6.16) for submodular games [101, Example 2.6]. We can directly

apply the guarantee given in Eq. (6.17) for the arithmetic misalignment for

E[PoSE(G)] ≥ E[max(
λc − 4nβ

µc

, 0)]

≥ max(
λc − 4nE[β]

µc

, 0),

applying Jensen’s inequality. Note that E[β] is given in Eq. (6.25) and substituting

λc = 1 and µc = 2 gives the lower bound.

Lemma 9. Consider the problem defined in Example 7 with wi
ij/wij ∈ [α, α−1] for all

interference weight estimates. The welfare function in Eq. (6.11) is (1−α)-geometrically

misaligned.

Proof of Lemma 9. We derive a bound for Ui(a)
W(a)

based on the parameters given in Example

139

Nonconvergent Learning Dynamics Chapter 6

6. First, we verify the identity

min
i

xi

yi
≤
∑

i xi∑
i yi
≤ max

i

xi

yi
.

Let m = mini
xi

yi
and M = maxi

xi

yi
. Then m

∑
i yi ≤

∑
i xi ≤ M

∑
i yi and the identity

hold true by dividing all sides by
∑

i yi. Now we can use this identity to show that

α ≤ min
i,j

wi
ij

wij

≤ Ui(a)

W(a)
=

∑
i

∑
j:kj ̸=ki

wi
ij∑

i

∑
j:kj ̸=ki

wij

≤ max
i,j

wi
ij

wij

≤ α−1,

from the assumption that wi
ij ∈ [α ·wij, α

−1 ·wij]. Thus, we see that game is geometrically

misaligned with β = 1− α.

Proof of Proposition 6. We claim that λc = 1 and µc = 3 are valid constants that satisfy

Eq. (6.16) when k = 1. Under the claim, subbing λc and µc in Eq. (6.18) for geometric

misalignment with β = (1− α) gives the final expression in Eq. (6.12).

Now we show the claim. The action set for agent i can be defined as Ai = {1, 2},

depending on which channel agent i chooses. Let â be an arbitrary joint action and aopt

be the joint action that maximizes the welfare. We partition the agent set I with the

following subsets

D = {i ∈ I : âi = 1 and aopti = 2},

O = {i ∈ I : âi = 2 and aopti = 1},

B = {i ∈ I : âi = 1 and aopti = 1},

N = {i ∈ I : âi = 2 and aopti = 2}.

140

Nonconvergent Learning Dynamics Chapter 6

Additionally, for ease of notation, given subsets S1, S2 ⊂ I, we can define w(S1, S2) =∑
i∈S1

∑
j∈S2

wij +wji. Under these definitions, we have that the welfare function can be

written as

W(â) =
∑
i

∑
j:âi ̸=âj

wij

= w(B,N) + w(D,N) + w(O,B) + w(O,D).

Similarly, it can be verified that W(aopt) = w(B,N) + w(O,N) + w(D,B) + w(D,O).

Next, we rewrite the sum of deviations as

∑
i∈I

W(a)−W(aopti , â−i) =

w(D,N) + w(O,B) + 2w(O,D)−

w(D,D)− w(O,O)− w(D,B)− w(O,N).

From these definitions, we have the following set of inequalities,

W(aopt) +
∑
i∈I

W(a)−W(aopti , a−i) ≤

3w(B,O) + w(B,N) + w(D,N)+

w(O,B)− w(D,D)− w(O,O) ≤

3w(B,O) + 3w(B,N) + 3w(D,N) + 3w(O,B) ≤ 3W(â).

Since â was chosen arbitrarily, we see that Eq. (6.16) is satisfied for λc = 1 and µc = 3

for all joint actions.

141

Part II

Industrial Refrigeration

142

Chapter 7

Load Shifting in Compressor

Sequencing

The widespread and significant energy demands of industrial refrigeration have spurred

numerous research efforts aimed at exploring various control strategies to reduce energy

consumption. In this chapter, we focus on the idea of compressor sequencing, which

entails selected the most efficient operational states for the compressors while meeting the

required refrigeration load. We will introduce the industrial refrigeration setting and then

iterate through two different sequencing problems: static and dynamic. Additionally, we

introduce load shifting to address the compressor sequencing problem, which involves

pre-cooling to allow for more operationally efficient compressor states.

Our analysis utilizes real-world sensor data from an industrial refrigeration facility

operated by Butterball LLC® in Huntsville, AZ. The findings reveal that, in the absence

of load shifting, even optimally sequenced compressors frequently operate inefficiently due

to running at intermediate capacity levels. However, by incorporating load shifting, we

identify a potential energy savings of up to 20% compared to the optimal compressor

sequencing alone. This demonstrates the significant impact of load shifting on improving

143

Load Shifting in Compressor Sequencing Chapter 7

energy efficiency in industrial refrigeration systems. This chapter is based on the work

in [103].

7.1 Preliminaries on Industrial Refrigeration

Industrial refrigeration systems are present in a multitude of sectors, not limited

to food processing, plastics, electronics, and chemical processing [5–7]. Altogether,

industrial refrigeration accounts for approximately 8.4% of total energy usage in the U.S

[104]. As such, there are tremendous energy saving opportunities available in industrial

refrigeration, not only through updating hardware components, but also increasing the

sophistication of the implemented control algorithms. Algorithmic improvements are

potentially more enticing, as they can realize significant energy savings with minimal

capital expenditures to retrofit the system.

The four central components of a prototypical refrigeration system include the evaporators,

compressors, condensers, and the expansion valve, with interconnections as illustrated

in Figure 7.1. We study a common industrial refrigeration process, where ammonia

refrigerant is circulated in a closed loop in a vapor compression cycle to move heat

against the thermal gradient of the system. Informally, the main thermodynamic steps

in an ideal vapor compression cycle are summarized as follows1:

(1 → 2) The refrigerant vapor flows through a compressor, where it is compressed

from a low pressure, referred to as suction pressure, to a high pressure, referred to as

discharge pressure. A consequence of this compression is an increase in the temperature

of the refrigerant vapor, which now takes the form of a super-heated vapor.

(2 → 3) The refrigerant super-heated vapor is then fed to the condenser, where

1The actualized refrigeration process deviates from this idealization considerably, but we simplify for
the purpose of presentation.

144

Load Shifting in Compressor Sequencing Chapter 7

constant pressure heat rejection occurs, and heat is released to the ambient environment,

resulting in condensation of the ammonia. A consequence of this heat rejection is that

the refrigerant transitions from a super-heated vapor to a saturated liquid.

(3 → 4) The refrigerant is then expanded adiabatically across an expansion valve,

reducing the temperature and pressure and resulting in a vapor-liquid mixture.

(4→ 1) Cooled refrigerant liquid flows through the evaporator, where heat absorption

from the system via evaporation of the refrigerant occurs, and super-heated vapor is fed

back to the compressor, completing the cycle.

Figure 7.1: A simplified diagram of the refrigeration components are depicted showing
the flow of ammonia through the vapor compression process.

145

Load Shifting in Compressor Sequencing Chapter 7

We direct the interested reader to [7] for a comprehensive review of refrigeration

systems. The configuration of the whole refrigeration system can have significant impacts

on the cost of operation: this can either be measured through total power, electric cost,

carbon emissions, etc. Infrastructural retrofits of the refrigeration system, including

changing the choice of refrigerant, hardware specifications of components, or general

system layout, can be typically costly to implement. Accordingly, a more viable way to

reduce costs is to strategically adjust the control policies of the refrigeration components

to meet the required heat extraction while minimizing the operational cost. For example,

thermal load shifting has received significant attention as a methodology to preemptively

cool a facility in order to take financial advantage of dynamic energy cost-rate structures

[105–111]. Additionally, another approach is set point optimization, where the set points

for suction and discharge pressure are dynamically adjusted to drive the refrigeration

system towards an energy optimal operating state while maintaining the desired achievable

cooling demands [112–114]. For these domains, standard control and optimization techniques,

such as model predictive control and set-point tracking, can be implemented for attaining

favorable control strategies.

Figure 7.2: This figure highlights the cumulative distribution functions for the slide
valve position for four compressors operating at the Butterball facility during the
month of June, 2023. Here, the slide valve position is associated with compressor
capacity, where 100% means that the compressor is running at full capacity. We also
highlight the percentages in which each compressor is operating at full capacity (where
the slide valve sensor is measured above 99%) or trim as well as the percentage of time
the compressor is turned on and off. Note that the compressors are often operating
in trim, suggesting that there are potential opportunities to save energy by operating
the compressors at full capacity more often.

146

Load Shifting in Compressor Sequencing Chapter 7

While most of the existing control approaches for energy optimization focus on the

evaporators, e.g., thermal load shifting, it is important to highlight that the compressors

represent the dominant energy expenditure (around 85%) in most refrigeration systems.

For example, at an industrial refrigeration site of Butterball (a large poultry processing

facility) during the month of June 2023, 40% of total energy usage is attributed to

the compressors, 5% is attributed to the rest of the refrigeration process, and 55%

is attributed to the non-refrigeration components of the facility. It is widely known

that compressors are operated most efficiently when running at full capacity [115, 116];

however, the typical control objective for the compressors is suction pressure stabilization.

In this way, the operational state of the compressors is directly dependent on the state

of the evaporators and this can ultimately lead to the compressors operating in an

inefficient manner, i.e., at partial capacity. Figure 7.2 confirms this phenomena, directly

highlighting the cumulative distribution functions for the slide valve position of the four

compressors operating at the Butterball facility during this time period.2 Here, the slide

valve position can be viewed in the same light as capacity, where 100% means that the

compressor is running at full capacity. Note that the slide valve positions are often

significantly below 100%, suggesting that there are potential energy saving opportunities

in algorithmic improvements for compressor scheduling and control.

We will shift the control focus from the evaporators directly to the compressors, where

the goal is to optimize the operational state of the compressors to serve the required

refrigeration load. We formalize this optimization problem as the compressor sequencing

problem [115]. We begin by characterizing the optimal solution to the static compressor

sequencing problem, which focuses on satisfying a given refrigeration load at a single

2This data was acquired through direct partnership with CrossnoKaye (see crossnokaye.com), which
focuses on the derivation and implementation of intelligent control systems for industrial refrigeration
systems in the cold food and beverage domain. CrossnoKaye has been monitoring and controlling the
refrigeration system at the Butterball facility since April 2023

147

crossnokaye.com

Load Shifting in Compressor Sequencing Chapter 7

Figure 7.3: Approximate power breakdown for a Butterball facility at Huntsville.

time instance. We show that the optimal solution can actually be derived via a simple

water-filling algorithm. However, the water filling algorithm must be executed with the

correct compressor sequence which can be highly dependent on the refrigeration load,

posing implementation and computational hurdles.

Given these limitations, we shift focus to the dynamic compressor sequencing problem.

Here, we are provided with a given time-dependent profile of the refrigeration load that

we need to serve over a given horizon. See forthcoming Figure 7.5 as an illustration of a

typical refrigeration load over a month long horizon at the Butterball facility. Unlike the

static problem, this dynamic formulation gives us the flexibility to exploit load shifting,

where one preemptively cools the facility, so that the compressors can operate in a more

efficient fashion, i.e., more often at full capacity. Not only does load shifting provide

substantial potential for energy savings, interestingly, the resulting optimal solution is

again a simple water filling algorithm with an order that is fixed and can be easily

computed. Hence with load shifting, the optimal compressor sequencing becomes more

amenable to real world implementations.

In order to practically assess the energy saving opportunities associated with compressor

sequencing, we implement a numerical case study on the Butterball facility in Section

148

Load Shifting in Compressor Sequencing Chapter 7

7.1. Using collected time-series data on compressor configurations and refrigeration load

estimates, our initial results suggest that the potential energy savings could be significant,

with upwards of 20% reduction in total energy expenditure when comparing optimal

compressor sequencing with load shifting to optimal compressor sequencing without load

shifting. Furthermore, this chapter provides a number of supporting results characterizing

properties of the optimal and near-optimal online load shifting algorithms.

While this chapter introduces load shifting as a novel approach to the compressor

sequencing problem, practical implementation requires careful consideration. Adjusting

compressor capacities haphazardly can lead to system instability, but a potential implementation

strategy is to have the evaporators directly respond to changes in compressor optimization.

Nevertheless, this chapter primarily focuses on assessing the potential benefits of load

shifting, leaving the development of practical control strategies for future investigation.

7.2 Mathematical Model

In this chapter, we formalize the control problem for optimal compressor sequencing.

Here, the operational state of the compressors (e.g. the on/off status as well as the

slide valve position) is chosen such that the thermal demands are met with the least

cost, which we measure in terms of energy usage. We discuss potential opportunities for

algorithmic improvements in this chapter.

Many large scale refrigeration systems employ algorithms for intelligently choosing the

operational state of the compressors. In refrigeration systems with multiple compressors,

one must decide the operational state of these compressors that is necessary to service

the underlying refrigeration load. More formally, let C denote a finite set of compressors

(for Butterball, C = {C1, C2, C3, C4}), where each compressor c ∈ C is associated with a

minimum and maximum heat capacity, q−c and q+c respectively, as well as a power-heat

149

Load Shifting in Compressor Sequencing Chapter 7

curve Pc : Qc → R≥0 where Qc = 0 ∪ [q−c , q
+
c] designates the viable refrigeration loads

on compressor c, with 0 indicating the compressor is turned off. Here, Pc(qc) ≥ 0 is the

power required to serve heating load qc ∈ Qc through compressor c. We assume that

Pc(0) = 0 and Pc is concave and increasing over the interval [q−c , q
+
c], which implies that

compressors operate more efficiently at higher capacities. Specifically for the compressors

in operation at Butterball, we assume an affine structure for the power-heat curves, where

for any compressor c ∈ C and thermal load qc ∈ [q−c , q
+
c] we have

Pc(qc) = Pc(q
−
c) +

(
qc − q−c
q+c − q−c

)(
Pc(q

+
c)− Pc(q

−
c)
)
.

We validate the affine models for the power-heat curves against collected data on

estimated refrigeration load and compressor power, which is shown in Figure 7.4. The

extreme points of these power-heat curves is summarized in Table 7.1. Note that for

Compressor C1 C2 C3 C4

Model Screw Screw Screw Screw

q−c (kW) 220 239 165 284
q+c (kW) 3000 2126 1760 2351

P (q−c) (kW) 124 173 142 181
P (q+c) (kW) 262 427 356 494

Table 7.1: Compressor Characteristics

simplicity, we removed the dependence on slide valve position to provide a direct relationship

between thermal load and power.

The problem of compressor sequencing centers on the goal of meeting the incoming

refrigeration load, which we denote by qin ∈ R≥0, with the least possible energy expenditure.

More formally, the goal is to identify compressor loads {qc}c∈C that satisfy the incoming

refrigeration load, i.e.,
∑

c∈C qc ≥ qin, and minimize the total work expenditure as

measured by the total power usage by the compressors, i.e.,
∑

c∈C Pc(qc). We denote

this compressor assignment by the policy π : R≥0 →
∏

c∈C Qc, where π(qin) = {qc}c∈C
150

Load Shifting in Compressor Sequencing Chapter 7

Figure 7.4: For each of the compressors, the estimated power and heat capacity for
each minute in the month of June was recorded for a Butterball facility. We depict
the resulting spread in the given figure and notice a fairly affine relationship, which
we denote in red. This is also supported from manufacturing simulation software for
the compressors.

designates the refrigeration loads for each compressor c ∈ C. The cost of a policy π

for a given qin is defined by Jπ(q
in) =

∑
c∈C Pc(πc(q

in)). We will henceforth remove

the dependence on the compressor set, i.e., denote {·}c∈C as merely {·}, for notational

simplicity.

7.3 Results on Compressor Sequencing

7.3.1 Fixed Order Compressor Sequencing

The industrial standard for compressor operation is to meet a given refrigeration

load qin through a water filling algorithm with a pre-determined order of compressors

C. For ease of presentation, let the set of compressors C = {c1, c2, . . . , cm} naturally

denote the order of the compressors, i.e., c1 first, c2 second, etc. Then the operation

of the compressors according to this policy, represented by πFO, is given by Algorithm

3. We will denote the fixed order policy as πFO(qin;O), where O describes a specific

ordering of the compressor set C. Note that Algorithm 3 returns a thermal load profile

{qc} that is guaranteed to satisfy the inequality
∑

c∈C qc ≥ qin provided that we assume

that minc q
−
c ≤ qin ≤

∑
c∈C q

+
c . When qc = q+c , we say that the compressor is operating at

full capacity. Alternatively, when q+c > qc ≥ q−c , we say that the compressor is operating

151

Load Shifting in Compressor Sequencing Chapter 7

Algorithm 3 Water Filling Algorithm

Require: O, qin, qtot ← 0, qc ← 0 for all c ∈ C
for c in O do

if qin > qtot then
qc ← q+c
qtot ← qtot + q+c

end if
end for
for c in reverse(O) do

if qin ≤ qtot and qc ̸= 0 then
d← min{q+c − q−c , q

tot − qin}
qc ← qc − d
qtot ← qtot − d

end if
end for
return {qc}c∈C

in trim. The central tuning parameter of the policy πFO(qin;O) is the order O that the

water filling algorithm is run under. There may be significant differences in energy usage

for different orders, especially if compressors vary in the efficiency.

7.3.2 Optimal Compressor Sequencing

While the standard water-filling algorithms provide a straightforward approach to

compressor sequencing, moving away from a fixed order scheme may lead to more efficient

compressor operation. Hence, we consider the problem of optimal compressor sequencing

in this chapter, where the goal is to determine the compressor state that meets the

refrigeration load with the least possible energy expenditure. More formally, the operation

of the compressors would be determined by the solution of the following non-convex

optimization problem.

J∗(qin) = min
qc∈Qc

∑
c∈C

Pc(qc)

s.t.
∑
c∈C

qc ≥ qin
(7.1)

152

Load Shifting in Compressor Sequencing Chapter 7

The following proposition characterizes the structure of optimal solution to the compressor

sequencing problem in Eq. (7.1). In fact, regardless of the refrigeration load qin, the

optimal compressor state can be realized by a water-filling algorithm with a specific

order that depends on qin.

Proposition 11. Let qin be the incoming refrigeration load. The optimal compressor

state, as given by the solution of Eq. (7.1), can be realized by the water filling algorithm

given in Algorithm 3 with a specific order O that depends on qin.

Proof. To show this statement, we show equivalently that for all the compressors, only one

compressor c ∈ C has q+c > q∗c > q−c in the optimal solution to Eq. (7.1). Note that if this

is true, the optimal order O coincides to when the compressors are ordered decreasing in

their capacities {q∗c}. Given this order, Algorithm 3 will produce the equivalent capacity

{qalgc } = {q∗c} that match the optimal solution.

We show the claim that at most one q∗c /∈ {q−c , q+c , 0} is not at the endpoints through

contradiction. Let i and j be the compressors at partial capacity in the optimal solution.

Notice that the function Pi(qi+ d)+Pj(qj − d) is a concave function of d, by assumption

of concavity of Pi and Pj and preservation of concavity under affine transformations. For

any feasible d, note that the constraint in Eq. (7.1) is always satisfied if we change qi to

qi + d and qj to qj − d. Additionally, since Pi(qi + d) +Pj(qj − d) is concave, the optimal

value for d must occur at either endpoints of the feasible interval. Thus in the optimal

solution, qi or qj must be either at q−c or q+c or 0, ensuing in contradiction.

This structural result demonstrates that the optimal control algorithm for compressor

sequencing could be realized from the perspective of a partitioning process where the

admissible refrigeration loads are partitioned into various regions, and each region is

associated with a distinct ordering. However, this approach to compressor sequencing

has significant problems from both a computation and implementation perspective. First,

153

Load Shifting in Compressor Sequencing Chapter 7

solving the optimization problem in Eq. (7.1) represents a mixed integer optimization

that grows exponentially in complexity in the size of the compressor set C. Furthermore,

the optimal order can change drastically as a function of the refrigeration load. This

means that the state of the compressors could shift wildly during operation, which may

be infeasible due to delays in changing compressor capacities and causing unnecessary

variability in compressor operation. Thus, we look to load shifting as a medium to smooth

out the compressor sequencing problem - we discuss this next.

7.3.3 Optimal Compressor Sequencing with Load Shifting

Load shifting is common practice in refrigeration systems for reducing operational

costs. Load shifting involves the process of preemptively cooling a facility, thereby using

the product within the facility as a thermal battery to save on future cooling demands.

Accordingly, for this setting we will think about cooling needs over a given discrete

horizon [0, 1, . . . , T] where the refrigeration load at each stage k is given by qin(k) and

qin = {qin(k)}0≤k≤T. Here, we will assume that there is complete knowledge of the

refrigeration load over the horizon at the initial stage k = 0. This assumption will allow

us to hypothetically assess the potential opportunities associated with load shifting for

compressor sequencing on realistic refrigeration load profiles as provided in forthcoming

Figure 7.5, which highlights the refrigeration load over the month of June, 2023.

The goal of optimal compressor sequencing is to establish a new shifted thermal

load demand trajectory qsh = {qsh(0), . . . ,qsh(T)} and dynamic compressor states qc =

{qc(0), . . . ,qc(T)}} that minimize the cumulative energy expenditure. Here, we require

the shifted load demand trajectory satisfies

τ∑
k=0

qsh(k) ≥
τ∑

k=0

qin(k), ∀τ ∈ [0, T],

154

Load Shifting in Compressor Sequencing Chapter 7

where the provided cooling exceeds the refrigeration load required for any horizon [0, τ]

with τ ∈ {0, . . . , T}. Accordingly, our new optimization takes on the following form:

J∗(qin) = min
qsh,{qc}

1

T

T∑
k=0

∑
c∈C

Pc(qc(k))

s.t. qc(k) ∈ Qc for all c ∈ C, k ∈ [0, T],

τ∑
k=0

qsh(k) ≥
τ∑

k=0

qin(k) for all τ ∈ [0, T],

∑
c∈C

qc(k) ≥ qsh(k) for all k ∈ [0, T].

(7.2)

This optimization has two sets of decision variables: the shifted thermal load trajectory

qsh and the dynamic compressor loads {qc}. The first constraint ensures that the

compressors loads are viable for every stage k. The second constraint dictates that

that the shifted load trajectory qsh needs to deliver at least as much cooling as any

nominal thermal profile qin for any horizon τ ∈ [0, T]. The last constraint ensures that

the total compressor load needs to match the shifted thermal load qsh at each stage k.

The optimization problem in Eq. (7.2) is determined through {qc} and qsh, whereas the

static compressor sequencing problem in Eq. (7.1) fixes qsh(k) = qin(k) for all k. While

this results in a seemingly more complex optimization problem, the following proposition

demonstrates that the optimal solution is actually attained by a fixed order water-filling

algorithm.

Proposition 12. Let qin be the dynamic refrigeration load. Furthermore, consider a set

of compressors C = {c1, . . . , cm} that are ordered in terms of increasing marginal costs of

cooling at full capacity, i.e., if compressor i comes before compressor j in the order Osh,

we have that

q+i
Pi(q

+
i)
≤

q+j
Pj(q

+
j)

. (7.3)

155

Load Shifting in Compressor Sequencing Chapter 7

Then the following optimization problem yields the same optimal cost in Eq. (7.2) when

T →∞:

J∗(qin) = min
qsh

1

T

T∑
k=0

∑
c∈C

Pc(qc(k))

s.t. qc(k) = πFO
c (qsh(k)) for all c ∈ C, k ∈ [0, T],

τ∑
k=0

qsh(k) ≥
τ∑

k=0

qin(k), for all τ ∈ [0, T]

(7.4)

where πFO
c (·) comes from the water filling algorithm in Algorithm 3 with the above ordering

Osh.

Proof. Let q̂sh, {q̂c} be the optimal solution for Eq. (7.2). As Pc is monotonic, we note

that
∑

c∈C q̂c(k) = q̂sh(k) must be hold with equality for all k in the optimal solution.

Then, for a given q̂sh(k), the optimal compressor loads {q̂c(k)} can be given through the

water filling algorithm in Algorithm 3 for each k for some order O(k). This can be shown

with arguments similar to the proof of Proposition 11.

Now we show that O(k) = Osh for all k. Let i and j be compressors such that i

comes before j in Osh but j comes before i in O(k). We claim that this is only possible

a finite number of times. If not, there are an infinite number of times where q̂i(k) = 0,

but q̂j(k) > 0. However, there exist a load shift and time points {kℓ}1≤ℓ≤N time steps

in which qi(kℓ) → q ≤ q+i for 1 ≤ ℓ ≤ M < N and qj(kℓ) → 0 for M < ℓ ≤ N which

produces a more efficient solution, since the marginal cost of cooling for compressor i

is less than compressor j. Thus the water filling algorithm with order Osh recovers an

optimal solution to Eq. (7.2) when T →∞.

From Proposition 12, we see that a simple fixed order water-filling algorithm achieves

the optimal solution to Eq. (7.2) given the correct shifted load qsh. We can also evaluate

the potential cost benefits between compressor sequencing with and without load shifting.

We characterize the greatest possible difference in cost in the next proposition. For

156

Load Shifting in Compressor Sequencing Chapter 7

notational ease, we define the ratios Rmax = maxc Pc(q
−
c)/q

−
c and Rmin = minc Pc(q

+
c)/q

+
c .

Proposition 13. For a given dynamic refrigeration load qin, let Jcs(qin) be the trajectory

cost in Eq. (7.2) associated with compressor sequencing without load shifting and let

J∗(qin) be the optimal trajectory cost with load shifting with T → ∞. The fractional

difference between the costs is upper and lower bounded by

0 ≤ Jcs(qin)− J∗(qin)

J∗(qin)
≤ Rmax −Rmin

Rmin

(7.5)

Proof. We first note that in Eq. (7.2), we recover the optimization without load shifting

(or Eq. (7.1)) if we impose the constraint qsh = qin directly. Therefore, we have that

J∗(qin) ≤ Jcs(qin) necessarily, and the ratio is always non-negative. We first show the

upper bound when considering one compressor; the ratios simplify to Rmin = Pc(q
−
c)/q

−
c

and Rmax = Pc(q
+
c)/q

+
c . Consider two thermal load profiles q1 and q2 of length T ≫ 0,

where q1(k) = q−c for T − round(D · q+c) ≤ k < T and 0 elsewhere and q2(k) = q+c for

0 ≤ k < round(D · q−c) and 0 elsewhere. We choose D and T large enough that
∑

k q
1(k)

is approximately equal to
∑

k q
2(k) and round(D · q−c) < T − round(D · q+c). By our

definitions, q2 is a load shifted version of q1, in that it satisfies
∑τ

k=0 q
2(k) ≥

∑τ
k=0 q

1(k)

for all τ ∈ [0, T]. Thus without load shifting for q1, the power usage is approximately

Pc(q
−
c)×D · q+c and with load shifting to q2, the power usage is approximately Pc(q

+
c)×

D · q−c . Thus the ratio of power use matches the upper bound (Rmax − Rmin)/Rmin. It

can be easily verified that this example attains the worst case ratio via convexity of Pc.

Extension to multiple compressors follows an analogous argument. A similar construction

can be assembled, where in q2, the most efficient compressor satisfies the required load

at full capacity and in q1, the least efficient compressor satisfies the required load at the

minimum capacity.

157

Load Shifting in Compressor Sequencing Chapter 7

Proposition 13 provides a possible range of energy savings when utilizing load shifting.

By the worst-case constructions of qin, we see that if the profile qin fluctuates significantly,

implementing load shifting can generate the most energy savings; however, if qin is

relatively constant, the energy savings may be less. For the compressors operating in

Butterball, the fractional difference is between 0 ≤ Jcs(qin)−J∗(qin)
J∗(qin)

≤ 8.85, suggesting

significant energy savings through load shifting. We validate this in the next discussion.

Algorithm 4 Online Load-Shifting Algorithm

Require: qin, (k, qk, qtot)← (0, 0, 0), qc ← 0 for all c ∈ C
for k ≤ T do

qk ← qk + qin(k)
qtot ← max{qk,mean(qin)}
for c in Osh do

if qtot > 0 then
qc ← q+c
qtot ← qtot − q+c
qk ← qk − q+c

end if
end for
k ← k + 1

end for

7.3.4 Online Compressor Sequencing with Load Shifting

While our results clearly highlights the potential opportunities of compressor sequencing

with load shifting, there are still several practical concerns before a stable implementation

can be employed onto a real refrigeration facility. One important issue is that a future

trajectory of refrigeration load qin is usually not fully known. While the general daily

trends for refrigeration load are relatively predictable, (for e.g., see that the curve in

Figure 7.5 is rather periodic) estimating the exact future refrigeration load may be

hindered by uncertainties in weather, product load, and other disturbances. Thus, in this

chapter, we introduce an online version of a compressor sequencing algorithm with load

158

Load Shifting in Compressor Sequencing Chapter 7

Figure 7.5: Over a month, we display the estimated refrigeration load serviced by the
compressors, where each data point is associated with every minute in June 2023. In
this figure, we also apply an average filter of 20 min. to smooth out the data. Data
points for refrigeration load were calculated through estimates of compressor power
and COP through sensor readings for each time point.

shifting, where at each time step, we only assume knowledge of the current refrigeration

load and the total time-average of the refrigeration load.

This simple, online compressor sequencing algorithm is given in Algorithm 4. In this

online algorithm, the compressors service either the time-average refrigeration load or

the current required refrigeration load at full capacity. In this fashion, the constraints in

Eq. (7.2) are satisfied with a certain degree of pre-cooling. We will see that this simple

implementation achieves similar energy savings to the optimal compressor sequencing

with load shifting in the provided simulations.

7.4 Simulations

In this chapter, we evaluate the potential energy savings possible through compressor

sequencing and load shifting on a case study of the Butterball facility. Here, we use the

predicted refrigeration load profile from the Butterball facility during the month of June

2023, depicted in Figure 7.5, to serve as a prototypical example for our case study. This

profile was estimated using direct measurements of power usage of the compressors, as

well derived coefficient of performance or COP (sometimes CP or CoP) of the refrigeration

system, which is defined as the ratio of useful cooling to work done by the compressors.

159

Load Shifting in Compressor Sequencing Chapter 7

We observe that the thermal profile is relatively cyclic, where the peaks correspond

to working hours during the work week (when new product requiring cooling typically

enters during standard operating hours), and the lower plateaus represent weekends

(representing off hours of the facility).

In the Butterball facility, all compressors in operation are screw compressors, which

use a screw thread to trap and compress a volume of gas. For screw compressors, the

main control parameter to modulate the capacity is a continuous slide valve control.3

Increasing the slide valve will expose more of the screw thread, increasing the volume

of gas to be compressed and increases the capacity of the compressor. As highlighted

previously, compressors operate at their highest efficiency when running at full capacity.

The slide valve being at the minimum position corresponds to the minimum heat capacity

q−c (and similarly for q+c) for compressor c.

Methodology Average Power
Worst Fixed Order 856.7 kW
Best Fixed Order 562.3 kW

Compressor Sequencing (C.S) 551.0 kW
Online C.S with Load Shifting 444.3 kW

C.S with Load Shifting 443.5 kW

Table 7.2: Cost of Algorithms

The main energy savings studied in this chapter is summarized in Table 7.2. First,

we examine the average power usage when using a standard water-filling approach with

a fixed order. We see significant energy savings if a good fixed compressor order is

utilized over a bad compressor order; thus, compressor order has substantial effects

on energy usage. When using optimal compressor sequencing without load shifting,

surprisingly, we see the possible energy savings are only up to 2%, as compared to the

3It is also sometimes possible to modulate the capacity of a screw compressor through speed control
with a variable speed drive. While we do not explicitly consider this method, our analysis extends to
this scenario as well.

160

Load Shifting in Compressor Sequencing Chapter 7

best fixed order algorithm. However, when utilizing compressor sequencing with load

shifting, we see the energy savings jump to 20% when compared to the best fixed order

algorithm. Furthermore, we that the online compressor sequencing algorithm achieves a

similar energy cost to optimal compressor sequencing with load shifting, suggesting the

viability of online extensions. Thus, we validate load shifting as a viable mechanism for

garnering energy savings with regards to compressor sequencing. In future work, we will

extend these results to construct realizable control algorithms to offer actualized energy

savings.

161

Chapter 8

Inventory Control and Peak Pricing

The extensive deployment of industrial refrigeration systems across various sectors substantially

contributes to global energy consumption, underscoring significant opportunities for

energy conservation through advanced control designs. This chapter concentrates on

developing control algorithms for industrial refrigeration systems that aim to minimize

operational costs while ensuring efficient heat extraction. Leveraging concepts from

inventory control, we analyze the structure of optimal control policies and examine the

influence of different energy cost-rate structures, including time-of-use (TOU) pricing

and peak pricing.

Our findings reveal that classical threshold policies are optimal under TOU pricing

schemes. However, the introduction of peak pricing disrupts their optimality, highlighting

the necessity for meticulously designed control strategies when facing substantial peak

costs. We present both theoretical results and simulation studies to illustrate this

phenomenon, providing valuable insights for enhancing the efficiency of industrial refrigeration

management. This chapter is based on the work in [117].

162

Inventory Control and Peak Pricing Chapter 8

8.1 Introduction to Peak Pricing

Industrial refrigeration systems are widely utilized across diverse sectors, not limited

to plastics manufacturing, chemical processing, food storage, and electronics production

[6,7,118,119]. Collectively, industrial refrigeration contributes to approximately 8.4% of

total energy consumption in the United States [104]. Consequently, there exist significant

opportunities for energy conservation within industrial refrigeration. These opportunities

extend beyond hardware upgrades to include enhancements in the control algorithms

implemented in these systems. Improvement in the algorithm design can potentially

be more appealing, as they can yield substantial energy savings with minimal capital

investment required for system retrofitting.

The intention behind improvements in algorithm design is to strategically adjust

the control strategies of the components within the industrial refrigeration process to

achieve the necessary heat extraction while minimizing operation costs. These costs

can be measured through total power, electric costs, carbon emissions, or other relevant

metrics. For example, the set points or steady state configurations of the components can

be optimized to raise the energy efficiency [112–114,120]. Furthermore, model predictive

control or trajectory optimization can be utilized to dynamically optimize the energy

efficiency of the refrigeration cycle over a time horizon [121–123]. Another approach

that has garnered significant attention is thermal load shifting, where refrigeration loads

are dynamically managed to leverage variable energy cost-rate structures [105,108–111].

While these results are quite encouraging in conventional cost structures, there remains a

need to characterize the qualitative behavior of optimal control policies when considering

more varied cost structures.

There exist many different energy cost-rate structures that may depend on various

factors. Fixed rate pricing, the most traditional rate structure, involves charging a flat

163

Inventory Control and Peak Pricing Chapter 8

rate per unit of energy consumed, irrespective of external conditions. In contrast, time-

of-use (TOU) pricing varies the per-unit rate based on the time or season. Typically,

this results in higher energy costs during peak demand periods and lower energy costs

during off-peak periods. In this setup, there may be significant economic benefit for the

operator to shift their energy usage to off-peak hours. Deciding on how to shift is exactly

the focus of the thermal load shifting literature. To further regulate energy usage, peak

pricing can also be introduced, where the cost is dependent on the maximum power

usage of the system over a time period and spikes in energy consumption are highly

disincentived. In many industrial refrigeration systems, peak pricing may comprise of a

large portion of the energy costs. In this chapter, we focus on when both peak pricing

and TOU costs are present and quantify the impact on optimizing the scheduling of

refrigeration loads.

Figure 8.1: We depict a prototypical power consumption profile over different pricing regions.

Case Study. We introduce an example of a rate structure that a refrigeration facility

may be charged with for its energy consumption.1 The time-of-use costs are dependent

1This data was obtained through a direct collaboration with CrossnoKaye (see crossnokaye.com), a

164

crossnokaye.com

Inventory Control and Peak Pricing Chapter 8

on time of day, where the cost rates vary between three time windows: on-peak hours

(4:00PM - 9:00PM), mid-peak hours (9:00PM - 8:00AM), and off-peak hours (8:00AM

- 4:00PM). Typically, energy-costs are higher in on-peak hours and lower in off-peak

hours. Additionally, the facility can incur additional peak costs: a peak charge over the

maximum energy consumption over a month and a peak charge over the month for each

of the specific time windows (on, mid, off). We display a possible demand profile under

this cost structure in Figure 8.1.

Designing control policies using optimization methods that account for peak pricing,

though not as common as TOU pricing, has been studied previously [124–126]. However,

the primary objective of this chapter is to theoretically evaluate how peak pricing influences

the qualitative structure of the optimal control policies. We approach this through

uniquely adopting the perspective of inventory control. Inventory control [127, 128] is

a classical branch of multi-stage decision problems that explores purchasing policies of

inventory to ensure optimal warehouse stock levels. When energy rates solely consist

of time-of-use (TOU) costs, classical findings from inventory control suggest that the

optimal control algorithms should adopt a threshold approach: when the facility’s temperature

exceeds a specified threshold, the refrigeration load is increased to return the facility to

a desired buffer temperature. Threshold policies are commonly implemented in practice

for industrial refrigeration; we verify its optimality under TOU costs in Proposition 14.

However, the introduction of peak pricing disrupts the optimality of threshold policies.

In fact, in Proposition 16, we characterize the structure of the optimal control policy

under peak pricing; we see that the optimality of simple threshold policies is lost in these

settings. We also verify our findings through simulation in Chapter 8.4. Our results

suggests that designing control policies should be done carefully if significant peak costs

company that focuses in integrating control systems for industrial refrigeration systems within the cold
food and beverage sector.

165

Inventory Control and Peak Pricing Chapter 8

are present.

8.2 Mathematical Model

In this chapter, we aim to devise scheduling strategies for refrigeration systems that

strike a balance between minimizing overall costs and adequately meeting the necessary

cooling demands of the facility. Additionally, we investigate the impact of peak pricing, a

common energy pricing mechanism involving charging based on the maximum energy

consumption over a specific period. While such pricing mechanisms are commonly

employed, strategies that directly account for these costs are not as well explored.

Therefore we leverage concepts from inventory control to analyze how peak pricing

influences the optimal scheduling policies.

To focus on this, we simplify the operational process of the industrial refrigeration,

and solely focus on the relationship between the total cooling and energy expenditures of

the refrigeration process. The primary system state is the facility temperature, denoted as

xt ∈ R for a given time t ∈ {1, . . . , T}. Here, T represents the length of the horizon under

consideration. Using a first-order model of specific heat2, we can succinctly describe the

dynamics of the facility’s temperature as follows:

xt+1 = xt − ut + qt, (8.1)

where ut ≥ 0 represents the heat removed from the facility via the refrigeration system

and qt represents the heat influx from the surrounding environment. We assume that

over the horizon, the incoming heat qt ≥ 0 is a non-negative random variable that is

drawn from a known distribution Qt that may be time varying. As an illustration, we

2According to the specific heat equation, xt+1−xt = CfQnet, where Qnet is the net heat transfer and
Cf is the heat capacity. For simplicity of notation, we assume that Cf = 1 for the manuscript.

166

Inventory Control and Peak Pricing Chapter 8

present a scatter plot of possible heat demands over a day3 in Figure 8.2.

Figure 8.2: We present distributions and respective averages of Qt over the horizon
of a day for a particular refrigeration facility.

The control task of the refrigeration system is to generate a sequence of refrigeration

loads u ≡ u1, . . . ,uT that minimizes the overall system cost, dependent on power

consumption, while providing the necessary heat extraction. For a food storage facility,

the required refrigeration comes in the form of a temperature constraint xt ≤ 0, where we

would like to maintain temperatures to be below freezing. We capture both the energy

costs and temperature constraint violations in the following stage cost,

ct(xt, ut) = ot(ut) + Eqt [ht(xt+1)] . (8.2)

Here, ot : R≥0 → R≥0 describes the cost associated with running the refrigeration at a

load of ut and ht : R → R≥0 represents the penalty costs for set-point deviations from

3Over June 2023, power and coefficient of power (COP) estimates were collected from a refrigeration
site of Butterball LLC ® to estimate the incoming refrigeration loads.

167

Inventory Control and Peak Pricing Chapter 8

Figure 8.3: We display the power-heat curves of different compressor types as taken
from []. We see that for compressors without variable frequency drives (VFDs), the
power draw and the respective thermal capacity share an affine relationship.

the desired temperature xt = 0. For each t, we assume that ht is continuous, convex, and

has a minimum at 0, i.e. our desired temperature set point. If x > 0 is positive, ht(x)

represents the penalty cost for temperature constraint violations. If x < 0 is negative,

then ht(x) represents the cost of excessive cooling which may lead to system inefficiencies.

An example of a reasonable penalty function is

ht(x) =


bt · x2 if x ≥ 0

dt · x2 if x < 0.

(8.3)

with bt ≫ dt for each t. Since the energy costs are proportional to the total power

consumption of the refrigeration system, we assume an affine structure for the energy

168

Inventory Control and Peak Pricing Chapter 8

costs with respect to a given refrigeration load, written as

ot(ut) =


K + at · ut if ut > 0

0 if ut = 0,

(8.4)

where K represents the setup cost of having the refrigeration system in operation and

at determines the per-unit cost for refrigeration capacity at time t. The per-unit cost

at may depend heavily on t, representing a potential time-of-use cost structure. This

cost model is reflected in the power-heat curves of the compressors, which represent the

majority (∼ 90%) of the energy consumption of the refrigeration process, as shown in

Figure 8.3.

The cost for peak pricing is reflected in the maximum refrigeration load over the

horizon. More formally, the peak price can be written as P ·max{ut for t ≤ T}, where

P ≥ 0 is the scaling factor associated with the peak costs. To represent peak cost as a

terminal cost, we can introduce an auxiliary state variable y ∈ R≥0 with dynamics

yt+1 = max{yt, ut}. (8.5)

We note that while the structure of problem without peak pricing is classical in the

inventory control literature (for this, see [129–131] for similar results with regards to

convex, piecewise affine ot), the addition of peak pricing is a novel consideration. While

not as studied, peak pricing is extremely significant to the cost structures for industrial

processes.

Consolidating the stage and terminal costs, the total cost of refrigeration process

169

Inventory Control and Peak Pricing Chapter 8

under the sequence of loads u with a given peak y is

J(x, y,u) = E

[
T∑
t=1

ct(xt, ut)

]
+ P max

{
y, {u}t≤T

}
, (8.6)

where xt follows from the respective state transition probabilities from the initial state

x1 = x and the expectation is taken over the possible incoming heat qt ∼ Qt. The

optimal total cost can be written recursively via the Bellman equation,

Vt(x, y) = min
u≥0

{
ct(x, u) + Eqt

[
Vt+1(x

+ + qt, y
+)
]}

, (8.7)

VT+1(x, y) = P · y. (8.8)

VT+1 represents the terminal cost of the dynamic program. We use x+ = x − u and

y+ = max{y, u} to denote the successor states for simplicity of notation. The optimal

loads can be written in feedback form with a policy function π∗
t : R×R≥0 → R≥0 as the

argument to the previous optimization formulation:

π∗
t (x, y) ∈ argmin

u≥0

{
ct(x, u) + Eqt

[
Vt+1(x

+, y+)
]}

. (8.9)

The main concern of this chapter is on characterizing the structure of these optimal

policies with respect to peak pricing. We do this through analytical characterizations in

Section 8.3 and through simulations in Section 8.4.

8.3 Results on Compressor Scheduling

We first characterize the structure of optimal refrigeration policies with no peak

pricing costs, i.e. when P = 0 in Eq. (8.6), where there are only TOU costs present. In

this case, our models align with the standard ones present in inventory control, and we can

170

Inventory Control and Peak Pricing Chapter 8

directly invoke classical results to get the structure of the optimal policies. Interestingly,

the optimal policies simplify to a threshold strategy.

Proposition 14 ([132]). Consider the industrial refrigeration problem with a total cost

in Eq. (8.6) with no peak cost (P = 0). The optimal policy π∗
t is a threshold policy of the

form

π∗
t (x, y) =


x− St if x > st,

0 if x ≤ st,

(8.10)

for some st ≥ St ∈ R for every t ≤ T .

Proof. We can directly use classical results in inventory control with sign changes (for

e.g., see [132], [128, Chapter 2.6], or [133, Chapter 4]) to show the claim.

From the above proposition, we see that the optimal structure comes in the form of

a simple threshold policy, where the refrigeration system is turned off if the facility is

below a certain buffer temperature st but if turned on, sets the facility to a lower buffer

temperature St. We remark that if there is no setup costs, or that K = 0 in Eq. (8.6),

the two buffer temperatures align, with st = St.

Threshold policies are commonly implemented in industrial refrigeration to schedule

refrigeration loads. While we have shown that these threshold policies are optimal

without peak pricing, computing closed form solutions for st and St is not possible

in general. However, these buffer temperatures can be derived through data-driven

strategies to produce well-performing threshold parameters. We do this in Section 8.4.

When peak pricing is introduced to the total cost, however, we will see that the

optimal policies stop corresponding to threshold policies. In fact, for simple models of

refrigeration, we see that the optimal policies can become quite complicated in the next

example.

171

Inventory Control and Peak Pricing Chapter 8

Example 8 (Peak Pricing). Consider a toy refrigeration scenario, where there is external

heat input qt ≡ 0 for all t. Let the temperature penalty function be ht(x) = b|x| for all

t ≤ T . We set the parameters P ≥ b ≥ a = 1 for the peak, penalty and refrigeration

costs, and fix the setup cost to K = 0 to frame the problem naturally. Even within this

basic model, the optimal policy can be surprisingly intricate.

To see this, we solve for the value function explicitly in Eq. (8.7) via the backwards

recursion. Under the model assumptions, the value function VT at time T can be simply

expressed as

VT (x, y) = min
u≥0

{
u+ b|x− u|+ P max{y, u}

}
.

From the value function, there are three regimes to describe the optimal policy. These

three regimes are depicted in Figure 8.4, where the optimal policy is explicitly characterized

below.

π∗
T (x, y) =


0 if x ≤ 0,

x if 0 ≤ x ≤ y,

y if x ≥ y.

The optimal policy across one time step is a threshold policy with a cap at u = y due

to the peak cost. However, adding another step in the backwards recursion complicates

the optimal policy π∗
T−1. For the next step in the value recursion, we have that

VT−1(x, y) = min
u≥0

{
u+ b|x− u|+ VT (x

+, y+)
}
,

where the value function VT can be described in closed form via the characterization of

172

Inventory Control and Peak Pricing Chapter 8

Figure 8.4: We depict the possible optimal inputs for each of the three regimes,
dependent on x. Note that since P ≥ b, the optimal u∗ must live between [0, y], as
delineated by the orange markers.

the optimal policy π∗
T as

VT (x, y) =


Py − bx if x ≤ 0,

Py + x if 0 ≤ x ≤ y,

(P + 1− b)y + bx if x ≥ y.

With the expression of the value function VT , we can describe the optimal policy for a

horizon of 2. Since VT is piecewise-affine, the optimal inputs must occur at the boundary

conditions, where u = 0 or u = x/2 or u = y or u = x. According to this, we can solve

173

Inventory Control and Peak Pricing Chapter 8

for the optimal policy algebraically to be

π∗
T−1(x, y) =



0 if x ≤ 0,

x if 0 ≤ x ≤ y,

y if y ≤ x ≤ 2y or

if 2y ≤ x and

(P + 2− 3b)y ≤ (P
2
− 3b

2
+ 1)x,

x
2

otherwise.

As we can see, even with a horizon of two steps, the optimal policy differs greatly

from the original threshold policy in Eq. (8.10).

While generating closed form expressions for optimal policies are hard to do in general

(as seen in Example 8), if we limit to a horizon of 1, we have that a modified threshold

policy depicted in Figure 8.5 is optimal. We characterize the structure in the following

Proposition.

Figure 8.5: We depict the modified policy.

174

Inventory Control and Peak Pricing Chapter 8

Proposition 15. Consider the industrial refrigeration problem with a total cost in Eq.

(8.6) with a horizon T = 1 with no set up cost (K = 0 in Eq. (8.4)). The optimal policy

π∗
1 is characterized by

π∗
1(x, y) =



x− Ŝ if x ≥ Ŝ + y,

y if x ∈ [S + y, Ŝ + y],

x− S if x ∈ [S, S + y],

0 if x ≤ S.

(8.11)

for some s ≥ S ∈ R≥0 and Ŝ ≥ S ∈ R≥0.

Proof. First, we express the value function V1 as below

V1(x, y) = min
u>0

{
f(x+) + Py+

}
+ ax,

with f(z) ≜ E[ht(z+qt)]−az being a convex scalar function. Let S be the minimum of f .

Note that if x < S, then by convexity of f(z), the optimal input is u = 0. Additionally, if

S ≤ x ≤ S+ y, the optimal input is u = x−S. Now let Ŝ be such that the subderivative

∂f/∂z|z=Ŝ ∋ P . Since f is convex, the minimum is defined by the first order condition on

the subderivative −∂f/∂z|x−u+P ∋ 0. This gives the first two conditions of the optimal

policy.

While we can compute the optimal one-step policy in closed form, this is not true in

general, as shown in Example 8. However, as shown in the next Proposition, we can still

derive a qualitative threshold-like characterization of the optimal policy in general. We

depict the optimal policy pictorially in Figure 8.6.

Proposition 16. Consider the industrial refrigeration problem with a total cost in Eq.

175

Inventory Control and Peak Pricing Chapter 8

(8.6) with no set up cost (K = 0 in Eq. (8.4)). The optimal policy π∗
t is characterized by

π∗
t (x, y) ∈


[y, z∗t] if gt(y) + y ≤ x,

{x− gt(y)} if x− y ≤ gt(y) ≤ x,

{0} if x ≤ gt(y),

(8.12)

where gt(y) : R≥0 → R and z∗ is such that x = gt(z
∗
t) + z∗t .

Proof. By assumption, we have that K = 0 in Eq. (8.6). First we show that for every

t, Vt is non-decreasing in y via backwards induction. For the base case, VT+1(x, y) = Py

is non-decreasing in y, as P > 0. From Eq. (8.7), we have that Vt+1(x
+, y+) is

a composition of non-decreasing functions in y by the induction assumption. Since

monotonicity is preserved under expectations and infimum projections, the iterate Vt

is thus non-decreasing in y as well, and we have the claim.

Now we show that Vt is convex for every t. Similarly as before, we show this via

backwards induction. For the base case, VT+1(x, y) = Py is affine in y and thus convex.

For the inductive case, we have that ct is convex in x and u. Additionally, Vt+1 is convex

by the induction assumption. Moreover, since x+ is affine in x and u; y+ is convex in y

and u; and Vt+1 is non-decreasing in y, Vt+1(x
+, y+) is a convex function of x, y, and u.

Since convexity is preserved under expectation, Vt(x, y) can be concisely expressed as

Vt(x, y) = min
u≥0

ft(x
+, y+) + ax (8.13)

where ft(x, y) = Eqt [ht(x + qt) + Vt+1(x + qt, y)] − ax is a convex function. Since {u ∈

R : u ≥ 0} is convex, convexity is preserved under the minimization, and thus Vt(x, y) is

a convex function. Thus the claim is shown.

Now we describe the optimal policy πt(x, y). Note that we can describe the optimal

176

Inventory Control and Peak Pricing Chapter 8

policy as

πt(x, y) = argmin
u≥0

{
ft(x

+, y+)
}
+ ax.

where ft(x, y) is defined as in Eq. (8.13). For each y, define the function gt(y) to be

gt(y) = max
{
argmin

x
ft(x, y)

}
. (8.14)

We describe the three cases for the optimal policy as shown in Figure 8.6 and Eq.

(8.12). If x ≤ gt(y), then observe that ft(x
+, y+) ≥ ft(x

+, y), since Vt+1 is non-decreasing

in y. Additionally, as ft is convex, and x ≤ gt(y), we have that ft(x
+, y) ≥ ft(x, y) for

all u ≥ 0, and thus π∗
t (x, y) = 0 when x ≤ gt(y). Likewise, if x− y ≤ gt(y) ≤ x we have

that ft(x
+, y+) ≥ ft(x

+, y) ≥ ft(gt(y), y) for all u ≥ 0, and thus πt(x, y) = x− gt(y).

For the third condition gt(y) + y ≤ x, we first note that for u = y generates a cost of

ft(x−y, y) ≤ ft(x−u, y) for any u ≤ y. Thus the optimal policy must satisfy π∗(x, y) ≥ y.

Moreover, let u = z∗ be the input in which (x+, y+) intersects the curve x = gt(y). Note

that f(x+, y+) ≥ f(x+, z∗) ≥ f(gt(z
∗), z∗) for any u ≥ z∗, since f is non-decreasing in y

and f is convex. Thus the optimal policy must satisfy π∗(x, y) ≤ z∗.

Remark 9. From Proposition 16, we note that if gt(y) + y ≤ x, the optimal control

action u may lie anywhere in the interval [y, z∗t]. Where on this interval depends non-

trivially on the relative peak cost P and the specific holding cost ht and the current

time t. However, we maintain a threshold-like policy structure, where below a buffer

temperature gt(y) (dependent on the current peak), the optimal decision is to turn off

the refrigeration system.

Example 9. The optimal policy π∗(x, y) in Eq. (8.12) may incur non-intuitive dependencies

on the current peak value y; we outline a simplified scenario that outlines this phenomena.

Consider a horizon of T = 2, where the starting temperature is x1 = −2 and the incoming

177

Inventory Control and Peak Pricing Chapter 8

Figure 8.6: We depict the possible optimal inputs for each of the three regimes
corresponding to Eq. (8.12), given the curve gt(y).

heat is qt = 2 for all t. Let there be no per-unit cost (a = 0) and setup cost (K = 0).

Furthermore, we set the peak costs to P ≫ 1 and the temperature penalty function to

be

ht(x) =


bx if x ≥ 0

−x if x < 0,

where b≫ 1. We compare two scenarios: where the current peak is y = 1 and the current

peak is y = 2. In the first case (y = 1), observe that the optimal control sequence is

u∗
1 = 1 and u∗

2 = 1 to not incur any temperature violation costs. However, when y = 2,

the optimal control sequence is u∗
1 = 0 and u∗

2 = 2. As such, the optimal policy π1(x, y)

actually increases with the current peak y, counter to intuition that increasing that the

peak should introduce more conservatism to the optimal policy.

178

Inventory Control and Peak Pricing Chapter 8

8.4 Simulations

In this section, we evaluate the performance of different policy designs through a

case scenario based on the thermal data (also represented in Figure 8.2) acquired from a

refrigeration facility owned by Butterball LLC®. We depict the possible incoming heat

distributions during the on and off peak hours in Figure 8.7.

Figure 8.7: Incoming heat distributions of on and off peak time periods.

The specifics used in the case study are outlined as follows. We evaluate the total

cost as according to Eq. (8.6), where each time step t approximately corresponds to

a 12-hour time window and the trajectory cost is evaluated over horizon of a month.

If the time t corresponds to the on-peak, then the incoming heat distribution Qt is

exactly the one depicted in Figure 8.7 (and respectively for the off-peak time periods).

We additionally normalize the incoming heat values to Megawatts to prevent numerical

issues. We assume that the starting temperature and starting peak value are both 0. We

use the temperature violation cost of the form in Eq. (8.3) with bt = 20 and dt = 1.

We additionally set the respective coefficients for peak costs to P = 30, setup costs to

K = 0, and per-unit costs to a = 1 to reasonably model a possible refrigeration scenario.

179

Methodology Total Cost

Static Threshold Policy 36.1
Dynamic Threshold Policy 26.7
Modified Threshold Policy 30.7

Dynamic Modified Threshold Policy 25.5

Table 8.1: Cost of Algorithms

Under this example setup, we evaluate the performance of different types of threshold

policies according to the total cost in Eq. (8.6). We first examine the performance of

the threshold policy in Eq. (8.10), where st = St is not time varying. Additionally,

we examine the dynamic version, where st is allowed to depend on if t corresponds to

an on-peak or off-peak period. We also examine the performance of the policies stated

in Proposition 14 for time-dependent and time-independent values as well. For these

policies, we optimize for the coefficients through a Monte Carlo search. The performance

of these algorithms are depicted in Table 8.1.

180

Bibliography

[1] J. J. Downs and E. F. Vogel, A plant-wide industrial process control problem,
Computers & chemical engineering 17 (1993), no. 3 245–255.

[2] M. G. Bell, Y. Iida, et. al., Transportation network analysis, .

[3] T. Le, H. L. Vu, N. Walton, S. P. Hoogendoorn, P. Kovács, and R. N. Queija,
Utility optimization framework for a distributed traffic control of urban road
networks, Transportation Research Part B: Methodological 105 (2017) 539–558.

[4] K. Wang, Z. Ouyang, R. Krishnan, L. Shu, and L. He, A game theory-based
energy management system using price elasticity for smart grids, IEEE
Transactions on Industrial Informatics 11 (2015), no. 6 1607–1616.

[5] Z. Sun et. al., Comprehensive performance analysis of cascade refrigeration
system with two-stage compression for industrial refrigeration, Case Studies in
Thermal Engineering 39 (2022) 102400.

[6] F. Fabrega, J. Rossi, and J. d’Angelo, Exergetic analysis of the refrigeration
system in ethylene and propylene production process, Energy 35 (2010), no. 3
1224–1231.

[7] W. F. Stoecker, Industrial refrigeration handbook. McGraw-Hill Education, 1998.

[8] M. Leng and M. Parlar, Game theoretic applications in supply chain management:
a review, INFOR: Information Systems and Operational Research 43 (2005), no. 3
187–220.

[9] C. Papadimitriou and G. Piliouras, From nash equilibria to chain recurrent sets:
An algorithmic solution concept for game theory, Entropy 20 (2018), no. 10 782.

[10] J. He, Y. Li, H. Li, H. Tong, Z. Yuan, X. Yang, and W. Huang, Application of
game theory in integrated energy system systems: a review, Ieee Access 8 (2020)
93380–93397.

[11] J. F. Nash et. al., Equilibrium points in n-person games, Proceedings of the
national academy of sciences 36 (1950), no. 1 48–49.

181

[12] A. Krause, A. Singh, and C. Guestrin, Near-optimal sensor placements in
Gaussian processes: Theory, efficient algorithms and empirical studies, Journal of
Machine Learning Research 9 (2008) 235–284.

[13] M. Stoica and M. Schindehutte, Understanding adaptation in small firms: Links
to culture and performance, Journal of Developmental Entrepreneurship 4 (1999),
no. 1 1.

[14] S. Ieong, R. McGrew, E. Nudelman, Y. Shoham, and Q. Sun, Fast and compact:
A simple class of congestion games, in Proceedings of the 20th national conference
on Artificial intelligence-Volume 2, pp. 489–494, 2005.

[15] P. Avila and C. Mullon, Evolutionary game theory and the adaptive dynamics
approach: adaptation where individuals interact, Philosophical Transactions of the
Royal Society B 378 (2023), no. 1876 20210502.

[16] J. R. Marden and J. S. Shamma, Revisiting log-linear learning: Asynchrony,
completeness and payoff-based implementation, Games and Economic Behavior 75
(2012), no. 2 788–808.

[17] C. Daskalakis, M. Fishelson, and N. Golowich, Near-optimal no-regret learning in
general games, Advances in Neural Information Processing Systems 34 (2021)
27604–27616.

[18] L. S. Shapley et. al., A value for n-person games, Princeton University Press
Princeton (1953).

[19] R. Konda, R. Chandan, D. Grimsman, and J. R. Marden, Balancing asymptotic
and transient efficiency guarantees in set covering games, in 2022 American
Control Conference, IEEE, 2022.

[20] R. Konda, R. Chandan, D. Grimsman, and J. R. Marden, Optimal utility design
of greedy algorithms in resource allocation games, IEEE Transactions on
Automatic Control (2024).

[21] A. Fabrikant, C. Papadimitriou, and K. Talwar, The complexity of pure nash
equilibria, in Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pp. 604–612, 2004.

[22] M. Goemans, V. Mirrokni, and A. Vetta, Sink equilibria and convergence, in 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’05),
pp. 142–151, IEEE, 2005.

[23] O. Candogan, I. Menache, A. Ozdaglar, and P. A. Parrilo, Flows and
decompositions of games: Harmonic and potential games, Mathematics of
Operations Research 36 (2011), no. 3 474–503.

182

[24] C. Papadimitriou and G. Piliouras, Game dynamics as the meaning of a game,
ACM SIGecom Exchanges 16 (2019), no. 2 53–63.

[25] G. Christodoulou, V. S. Mirrokni, and A. Sidiropoulos, Convergence and
approximation in potential games, in Annual Symposium on Theoretical Aspects of
Computer Science, pp. 349–360, Springer, 2006.

[26] V. Bilò, A. Fanelli, M. Flammini, and L. Moscardelli, Performances of one-round
walks in linear congestion games, in International Symposium on Algorithmic
Game Theory, pp. 311–322, Springer, 2009.

[27] A. Fanelli, M. Flammini, and L. Moscardelli, The speed of convergence in
congestion games under best-response dynamics, in International Colloquium on
Automata, Languages, and Programming, pp. 796–807, Springer, 2008.

[28] V. Bilo, A unifying tool for bounding the quality of non-cooperative solutions in
weighted congestion games, Theory of Computing Systems 62 (2018), no. 5
1288–1317.

[29] V. S. Mirrokni and A. Vetta, Convergence issues in competitive games, in
Approximation, randomization, and combinatorial optimization. algorithms and
techniques, pp. 183–194. Springer, 2004.

[30] S. Suri, C. D. Tóth, and Y. Zhou, Selfish load balancing and atomic congestion
games, Algorithmica 47 (2007), no. 1 79–96.

[31] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos, and
L. Moscardelli, Tight bounds for selfish and greedy load balancing, in International
Colloquium on Automata, Languages, and Programming, pp. 311–322, Springer,
2006.

[32] J. R. Marden and A. Wierman, Distributed welfare games, Operations Research
61 (2013), no. 1 155–168.

[33] A. Krause and D. Golovin, Submodular function maximization., Tractability 3
(2014) 71–104.

[34] A. S. Manne, A target-assignment problem, Operations research 6 (1958), no. 3
346–351.

[35] M. Gairing, Covering games: Approximation through non-cooperation, in
International Workshop on Internet and Network Economics, pp. 184–195,
Springer, 2009.

[36] J. R. Marden and M. Effros, The price of selfishness in network coding, IEEE
Transactions on Information Theory 58 (2012), no. 4 2349–2361.

183

[37] M. Narasimhan, N. Jojic, and J. A. Bilmes, Q-clustering, Advances in Neural
Information Processing Systems 18 (2005).

[38] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, An analysis of approximations
for maximizing submodular set functions—i, Mathematical programming 14
(1978), no. 1 265–294.

[39] D. Paccagnan, R. Chandan, and J. R. Marden, Utility design for distributed
resource allocation—part i: Characterizing and optimizing the exact price of
anarchy, IEEE Transactions on Automatic Control 65 (2019), no. 11 4616–4631.

[40] A. Vetta, Nash equilibria in competitive societies, with applications to facility
location, traffic routing and auctions, in The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings., pp. 416–425, IEEE, 2002.

[41] M. Conforti and G. Cornuéjols, Submodular set functions, matroids and the greedy
algorithm: tight worst-case bounds and some generalizations of the rado-edmonds
theorem, Discrete applied mathematics 7 (1984), no. 3 251–274.

[42] R. Chandan, D. Paccagnan, and J. R. Marden, Tractable mechanisms for
computing near-optimal utility functions, arXiv preprint arXiv:2102.04542 (2021).

[43] D. Paccagnan and J. R. Marden, Utility design for distributed resource
allocation–part ii: Applications to submodular, covering, and supermodular
problems, IEEE Transactions on Automatic Control (2021).

[44] T. Roughgarden, Intrinsic robustness of the price of anarchy, in Proceedings of the
forty-first annual ACM symposium on Theory of computing, pp. 513–522, 2009.

[45] R. Konda, D. Grimsman, and J. Marden, Execution order matters in greedy
algorithms with limited information, arXiv preprint arXiv:2111.09154 (2021).

[46] G. T. Nguyen and K. Kim, A survey about consensus algorithms used in
Blockchain, Journal of Information Processing Systems 14 (2018), no. 1 101–128.

[47] S. Kar and J. M. Moura, Distributed consensus algorithms in sensor networks:
Quantized data and random link failures, IEEE Transactions on Signal Processing
58 (2010), no. 3 PART 1 1383–1400, [arXiv:0712.1609].

[48] D. Ongaro and J. Ousterhout, In search of an understandable consensus
algorithm, Proceedings of the 2014 USENIX Annual Technical Conference,
USENIX ATC 2014 (2019) 305–319.

[49] J. G. Wardrop, Road paper. some theoretical aspects of road traffic research.,
Proceedings of the institution of civil engineers 1 (1952), no. 3 325–362.

184

http://xxx.lanl.gov/abs/0712.1609

[50] H. Von Stackelberg, Market structure and equilibrium. Springer Science &
Business Media, 2010.

[51] B. Marzouki, O. Belkahla Driss, and K. Ghédira, Multi Agent model based on
Chemical Reaction Optimization with Greedy algorithm for Flexible Job shop
Scheduling Problem, Procedia Computer Science 112 (2017) 81–90.

[52] B. Gharesifard and S. L. Smith, On distributed submodular maximization with
limited information, American Control Conference 2016-July (2016) 1048–1053.

[53] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause, Streaming
submodular maximization: Massive data summarization on the fly, in ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 671–680, 2014.

[54] H. Lin and J. Bilmes, A class of submodular functions for document
summarization, in Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, vol. 1, pp. 510–520, 2011.

[55] A. Singh, W. Kaiser, M. Batalin, A. Krause, and C. Guestrin, Efficient planning
of informative paths for multiple robots, in International Joint Conference on
Artificial Intelligence, pp. 2204–2211, 2007.

[56] M. Corah and N. Michael, Distributed matroid-constrained submodular
maximization for multi-robot exploration: theory and practice, Autonomous
Robots 43 (2019), no. 2 485–501.

[57] G. Arslan, J. R. Marden, and J. S. Shamma, Autonomous vehicle-target
assignment: a game-theoretical formulation, Journal of Dynamic Systems,
Measurement and Control, Transactions of the ASME 129 (2007), no. 5 584–596.

[58] M. Gomez-Rodriguez, J. Leskovec, and A. Krause, Inferring networks of diffusion
and influence, ACM Transactions on Knowledge Discovery from Data 5 (2012),
no. 4.

[59] G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade, Distributed cosegmentation via
submodular optimization on anisotropic diffusion, Proceedings of the IEEE
International Conference on Computer Vision (2011) 169–176.

[60] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Vanbriesen, and N. Glance,
Cost-effective outbreak detection in networks, in ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 420–429, 2007.

[61] A. Clark and R. Poovendran, A submodular optimization framework for leader
selection in linear multi-agent systems, in IEEE Conference on Decision and
Control, pp. 3614–3621, IEEE, 2011.

185

[62] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, Maximizing a monotone
submodular function subject to a matroid constraint, SIAM Journal on Computing
40 (2011), no. 6 1740–1766, [9780201398298].

[63] Y. Filmus and J. Ward, The power of local search: maximum coverage over a
matroid, in Symposium on Theoretical Aspects of Computer Science, pp. 601–612,
LIPIcs, 2012.

[64] U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM 45
(1998), no. 4 634–652.

[65] D. Grimsman, M. S. Ali, J. P. Hespanha, and J. R. Marden, Impact of
information in greedy submodular maximization, in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pp. 2900–2905, IEEE, 2017.

[66] L. Bulteau, S. Giraudo, and S. Vialette, Disorders and Permutations, in 32nd
Annual Symposium on Combinatorial Pattern Matching (CPM 2021)
(P. Gawrychowski and T. Starikovskaya, eds.), vol. 191 of Leibniz International
Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 11:1–11:15,
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[67] P. Erdos, A. Rényi, et. al., On the evolution of random graphs, Publ. Math. Inst.
Hung. Acad. Sci 5 (1960), no. 1 17–60.

[68] N. Rezazadeh and S. S. Kia, A sub-modular receding horizon solution for mobile
multi-agent persistent monitoring, Automatica 127 (2021) 109460.

[69] B. Du, K. Qian, C. Claudel, and D. Sun, Jacobi-style iteration for distributed
submodular maximization, arXiv preprint arXiv:2010.14082 (2020).

[70] A. Robey, A. Adibi, B. Schlotfeldt, G. J. Pappas, and H. Hassani, Optimal
algorithms for submodular maximization with distributed constraints, arXiv xxx
(2019) 1–20, [arXiv:1909.1367].

[71] R. Konda, R. Chandan, and J. R. Marden, Mission level uncertainty in
multi-agent resource allocation, in 2021 60th IEEE Conference on Decision and
Control (CDC), pp. 4521–4526, IEEE, 2021.

[72] A. Nedić and A. Olshevsky, Distributed optimization over time-varying directed
graphs, IEEE Transactions on Automatic Control 60 (2014), no. 3 601–615.

[73] N. Li and J. R. Marden, Designing games for distributed optimization with a time
varying communication graph, in 2012 IEEE 51st IEEE Conference on Decision
and Control (CDC), pp. 7764–7769, IEEE, 2012.

186

http://xxx.lanl.gov/abs/9780201398298
http://xxx.lanl.gov/abs/1909.1367

[74] E. Koutsoupias and C. Papadimitriou, Worst-case equilibria, in Annual
Symposium on Theoretical Aspects of Computer Science, pp. 404–413, Springer,
1999.

[75] J. C. Harsanyi, Games with incomplete information played by “bayesian” players,
i–iii part i. the basic model, Management science 14 (1967), no. 3 159–182.

[76] Y. E. Sagduyu, R. A. Berry, and A. Ephremides, Jamming games in wireless
networks with incomplete information, IEEE Communications Magazine 49
(2011), no. 8 112–118.

[77] E. Billard and S. Lakshmivarahan, Learning in multilevel games with incomplete
information. i, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 29 (1999), no. 3 329–339.

[78] A. Antoniades, H. J. Kim, and S. Sastry, Pursuit-evasion strategies for teams of
multiple agents with incomplete information, in 42nd IEEE International
Conference on Decision and Control (IEEE Cat. No. 03CH37475), vol. 1,
pp. 756–761, IEEE, 2003.

[79] M. Weber, A method of multiattribute decision making with incomplete
information, Management Science 31 (1985), no. 11 1365–1371.

[80] M. Aghassi and D. Bertsimas, Robust game theory, Mathematical Programming
107 (2006), no. 1-2 231–273.

[81] R. Meir and D. Parkes, Playing the wrong game: Smoothness bounds for
congestion games with behavioral biases, ACM SIGMETRICS Performance
Evaluation Review 43 (2015), no. 3 67–70.

[82] J. R. Marden and A. Wierman, Distributed welfare games, Operations Research
(2008) 1–25.

[83] R. Chandan, D. Paccagnan, and J. R. Marden, When smoothness is not enough:
toward exact quantification and optimization of the price-of-anarchy, in 2019
IEEE 58th Conference on Decision and Control (CDC), pp. 4041–4046, IEEE,
2019.

[84] M. Hefeeda and M. Bagheri, Forest fire modeling and early detection using wireless
sensor networks., Ad Hoc Sens. Wirel. Networks 7 (2009), no. 3-4 169–224.

[85] R. A. Murphey, Target-based weapon target assignment problems, in Nonlinear
assignment problems, pp. 39–53. Springer, 2000.

[86] D. Paccagnan, R. Chandan, and J. R. Marden, Distributed resource allocation
through utility design-part i: optimizing the performance certificates via the price
of anarchy, arXiv preprint arXiv:1807.01333 (2018).

187

[87] R. Konda, R. Chandan, and J. R. Marden, Quality of non-convergent best
response processes in multi-agent systems through sink equilibria, in 2023 62nd
IEEE Conference on Decision and Control (CDC), pp. 6996–7001, IEEE, 2023.

[88] T. Roughgarden, Selfish routing and the price of anarchy. MIT press, 2005.

[89] I. Atzeni, L. G. Ordóñez, G. Scutari, D. P. Palomar, and J. R. Fonollosa,
Noncooperative and cooperative optimization of distributed energy generation and
storage in the demand-side of the smart grid, IEEE transactions on signal
processing 61 (2013), no. 10 2454–2472.

[90] D. Monderer and L. S. Shapley, Potential games, Games and economic behavior
14 (1996), no. 1 124–143.

[91] J. R. Marden, G. Arslan, and J. S. Shamma, Regret based dynamics: convergence
in weakly acyclic games, in Proceedings of the 6th international joint conference
on Autonomous agents and multiagent systems, (New York, NY, USA), pp. 1–8,
Association for Computing Machinery, 2007.

[92] B. Swenson, R. Murray, and S. Kar, On best-response dynamics in potential
games, SIAM Journal on Control and Optimization 56 (2018), no. 4 2734–2767.

[93] S. Hart and A. Mas-Colell, A simple adaptive procedure leading to correlated
equilibrium, Econometrica 68 (2000), no. 5 1127–1150.

[94] R. D. Kleinberg, K. Ligett, G. Piliouras, and É. Tardos, Beyond the nash
equilibrium barrier., in ICS, pp. 125–140, 2011.

[95] K. Basu and J. W. Weibull, Strategy subsets closed under rational behavior,
Economics Letters 36 (1991), no. 2 141–146.

[96] A. Fabrikant and C. H. Papadimitriou, The complexity of game dynamics: Bgp
oscillations, sink equilibria, and beyond., in SODA, vol. 8, (USA), pp. 844–853,
Citeseer, Society for Industrial and Applied Mathematics, 2008.

[97] R. Yan, X. Duan, Z. Shi, Y. Zhong, J. R. Marden, and F. Bullo, Policy evaluation
and seeking for multi-agent reinforcement learning via best response, IEEE
Transactions on Automatic Control 67 (2021), no. 4 1898–1913.

[98] G. Notomista, Y. Emam, and M. Egerstedt, The slothbot: A novel design for a
wire-traversing robot, IEEE Robotics and Automation Letters 4 (2019), no. 2
1993–1998.

[99] V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of
operations research 4 (1979), no. 3 233–235.

188

[100] L. Gourves and J. Monnot, On strong equilibria in the max cut game, in
International Workshop on Internet and Network Economics, pp. 608–615,
Springer, 2009.

[101] T. Roughgarden, The price of anarchy in games of incomplete information, ACM
Transactions on Economics and Computation (TEAC) 3 (2015), no. 1 1–20.

[102] O. Candogan, A. Ozdaglar, and P. A. Parrilo, Dynamics in near-potential games,
Games and Economic Behavior 82 (2013) 66–90.

[103] R. Konda, V. Chandan, J. Crossno, B. Pollard, D. Walsh, R. Bohonek, and J. R.
Marden, Utilizing load shifting for optimal compressor sequencing in industrial
refrigeration, arXiv preprint arXiv:2403.07831 (2024).

[104] Manufacturing energy consumption survey, tech. rep., US Energy Information
Administration, 2018.

[105] Y. Sun, S. Wang, F. Xiao, and D. Gao, Peak load shifting control using different
cold thermal energy storage facilities in commercial buildings: A review, Energy
conversion and management 71 (2013) 101–114.

[106] J. E. Braun, Load control using building thermal mass, J. Sol. Energy Eng. 125
(2003), no. 3 292–301.

[107] A. Afram and F. Janabi-Sharifi, Theory and applications of hvac control
systems–a review of model predictive control (mpc), Building and Environment 72
(2014) 343–355.

[108] Y. Yao and D. K. Shekhar, State of the art review on model predictive control
(mpc) in heating ventilation and air-conditioning (hvac) field, Building and
Environment 200 (2021) 107952.

[109] R. Pattison, C. Touretzky, T. Johansson, I. Harjunkoski, and M. Baldea, Optimal
process operations in fast-changing electricity markets: framework for scheduling
with low-order dynamic models and an air separation application, Industrial &
Engineering Chemistry Research 55 (2016) 4562–4584.

[110] R. Pattison, C. Touretzky, I. Harjunkoski, and M. Baldea, Moving horizon
closed-loop production scheduling using dynamic process models, AIChE Journal
63 (2017) 639–651.

[111] A. Vishwanath, V. Chandan, and K. Saurav, An iot-based data driven precooling
solution for electricity cost savings in commercial buildings, IEEE Internet of
Things Journal 6 (2019), no. 5 7337–7347.

189

[112] L. S. Larsen, C. Thybo, J. Stoustrup, and H. Rasmussen, Control methods
utilizing energy optimizing schemes in refrigeration systems, in 2003 European
Control Conference (ECC), pp. 1973–1977, IEEE, 2003.

[113] K. A. Manske, Performance optimization of industrial refrigeration systems, .

[114] L. F. S. Larsen, Model based control of refrigeration systems. Department of
Control Engineering, Aalborg University, 2006.

[115] D. T. Reindl et. al., Sequencing & control of compressors, ASHRAE Journal 55
(2013), no. 11 14.

[116] K. Manske, D. Reindl, and S. Klein, Evaporative condenser control in industrial
refrigeration systems, International journal of refrigeration 24 (2001), no. 7
676–691.

[117] R. Konda, J. Prescott, V. Chandan, J. Crossno, B. Pollard, D. Walsh,
R. Bohonek, and J. R. Marden, Efficient industrial refrigeration scheduling with
peak pricing, arXiv preprint arXiv:2405.20433 (2024).

[118] I. Dincer, Refrigeration systems and applications. John Wiley & Sons, 2017.

[119] S. Tassou, J. S. Lewis, Y. Ge, A. Hadawey, and I. Chaer, A review of emerging
technologies for food refrigeration applications, Applied Thermal Engineering 30
(2010), no. 4 263–276.

[120] L. Zhao, W. Cai, X. Ding, and W. Chang, Model-based optimization for vapor
compression refrigeration cycle, Energy 55 (2013) 392–402.

[121] T. G. Hovgaard, S. Boyd, L. F. Larsen, and J. B. Jorgensen, Nonconvex model
predictive control for commercial refrigeration, International Journal of Control
86 (2013), no. 8 1349–1366.

[122] X.-H. Yin and S.-Y. Li, Model predictive control for vapor compression cycle of
refrigeration process, International Journal of Automation and Computing 15
(2018), no. 6 707–715.

[123] S. E. Shafiei, J. Stoustrup, and H. Rasmussen, Model predictive control for flexible
power consumption of large-scale refrigeration systems, in 2014 American Control
Conference, pp. 412–417, IEEE, 2014.

[124] M. J. Risbeck and J. B. Rawlings, Economic model predictive control for
time-varying cost and peak demand charge optimization, IEEE Transactions on
Automatic Control 65 (2019), no. 7 2957–2968.

190

[125] Y. Mo, Q. Lin, M. Chen, and S.-Z. J. Qin, Optimal online algorithms for
peak-demand reduction maximization with energy storage, in Proceedings of the
twelfth ACM international conference on future energy systems, pp. 73–83, 2021.

[126] F. Oldewurtel, A. Ulbig, A. Parisio, G. Andersson, and M. Morari, Reducing peak
electricity demand in building climate control using real-time pricing and model
predictive control, in 49th IEEE conference on decision and control (CDC),
pp. 1927–1932, IEEE, 2010.

[127] S. Axsäter, Inventory control, vol. 225. Springer, 2015.

[128] B. Liu and A. O. Esogbue, Decision criteria and optimal inventory processes,
vol. 20. Springer Science & Business Media, 2012.

[129] E. L. Porteus, Stochastic inventory theory, Handbooks in operations research and
management science 2 (1990) 605–652.

[130] Y. Lu and M. Song, Inventory control with a fixed cost and a piecewise linear
convex cost, Production and Operations Management 23 (2014), no. 11 1966–1984.

[131] M. J. Sobel, Making short-run changes in production when the employment level
is fixed, Operations Research 18 (1970), no. 1 35–51.

[132] H. Scarf, K. Arrow, S. Karlin, and P. Suppes, The optimality of (s, s) policies in
the dynamic inventory problem, Optimal pricing, inflation, and the cost of price
adjustment (1960) 49–56.

[133] J.-S. J. Song, Research handbook on inventory management. Edward Elgar
Publishing, 2023.

191

	Curriculum Vitae
	Abstract
	Introduction
	Introduction to Utility Designs in Multi-Agent Systems
	Introduction to Industrial Refrigeration

	Part I Utility Design in Multi-Agent Systems
	Game Dynamics
	Strategic Form Games
	Learning Dynamics and Decision Algorithms

	Guarantees in k - round walks
	Introduction
	Model and Preliminaries
	One Round Walks
	Finite Walks
	Asymptotic Walks
	Tradeoffs
	Simulations

	Greedy Algorithms in Limited Information Settings
	Introduction
	Model and Preliminaries
	Main Theoretical Results
	Applications in Submodular Settings

	Nash equilibrium in Uncertain Settings
	Introduction
	Model and Preliminaries
	Characterization of PoA
	Set Covering Results

	Nonconvergent Learning Dynamics
	Introduction
	Model and Preliminaries
	Main Results
	Better Response Sink Equilibrium
	Appendix

	Part II Industrial Refrigeration
	Load Shifting in Compressor Sequencing
	Preliminaries on Industrial Refrigeration
	Mathematical Model
	Results on Compressor Sequencing
	Simulations

	Inventory Control and Peak Pricing
	Introduction to Peak Pricing
	Mathematical Model
	Results on Compressor Scheduling
	Simulations

	Bibliography

