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NEW RESEARCH
Electrophysiological and Clinical Predictors of
Methylphenidate, Guanfacine, and Combined
Treatment Outcomes in Children With
Attention-Deficit/Hyperactivity Disorder
Giorgia Michelini, PhD , Agatha Lenartowicz, PhD , Juan Diego Vera, MS,
Robert M. Bilder, PhD , James J. McGough, MD , James T. McCracken, MD ,
Sandra K. Loo, PhD

Objective: The combination of d-methylphenidate and guanfacine (an a-2A agonist) has emerged as a potential alternative to either monotherapy in
children with attention-deficit/hyperactivity disorder (ADHD), but it is unclear what predicts response to these treatments. This study is the first to
investigate pretreatment clinical and electroencephalography (EEG) profiles as predictors of treatment outcome in children randomized to these different
medications.

Method: A total of 181 children with ADHD (aged 7-14 years; 123 boys) completed an 8-week randomized, double-blind, comparative study with d-
methylphenidate, guanfacine, or combined treatments. Pretreatment assessments included ratings on ADHD, anxiety, and oppositional behavior. EEG
activity from cortical sources localized within midfrontal and midoccipital regions was measured during a spatial working memory task with encoding,
maintenance, and retrieval phases. Analyses tested whether pretreatment clinical and EEG measures predicted treatment-related change in ADHD
severity.

Results: Higher pretreatment hyperactivity-impulsivity and oppositional symptoms and lower anxiety predicted greater ADHD improvements across
all medication groups. Pretreatment event-related midfrontal beta power predicted treatment outcome with combined and monotherapy treatments,
albeit in different directions. Weaker beta modulations predicted improvements with combined treatment, whereas stronger modulation during
encoding and retrieval predicted improvements with d-methylphenidate and guanfacine, respectively. A multivariate model including EEG and clinical
measures explained twice as much variance in ADHD improvement with guanfacine and combined treatment (R2¼ 0.34-0.41) as clinical measures
alone (R2 ¼ 0.14-.21).

Conclusion: We identified treatment-specific and shared predictors of response to different pharmacotherapies in children with ADHD. If replicated,
these findings would suggest that aggregating information from clinical and brain measures may aid personalized treatment decisions in ADHD.

Clinical trial registration information: Single Versus Combination Medication Treatment for Children With Attention Deficit Hyperactivity
Disorder; https://clinicaltrials.gov; NCT00429273

Diversity & Inclusion Statement: We worked to ensure sex and gender balance in the recruitment of human participants. We worked to ensure
race, ethnic, and/or other types of diversity in the recruitment of human participants. One or more of the authors of this paper self-identifies as a
member of one or more historically underrepresented racial and/or ethnic groups in science. We actively worked to promote sex and gender balance in
our author group. We actively worked to promote inclusion of historically underrepresented racial and/or ethnic groups in science in our author group.
While citing references scientifically relevant for this work, we also actively worked to promote sex and gender balance in our reference list.
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redicting which treatment will be most effective
for each individual patient remains one of the
greatest challenges in child (as well as adult) psy-
chiatry. This is a particularly acute problem for treating
disorders characterized by high clinical and etiological
he American Academy of Child & Adolescent Psychiatry
Number - / - 2022
heterogeneity, such as attention-deficit/hyperactivity disor-
der (ADHD). Psychostimulants are the first-line treatment
for ADHD and show acute medium-to-large effects at the
group level,1 but are ineffective or not tolerated inw30% of
patients.2,3 Nonstimulant medications (eg, guanfacine) may
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MICHELINI et al.
be a suitable alternative when stimulants are ineffective, but
typically show lower response rates3,4 and can produce sig-
nificant side effects (eg, somnolence in 50% of cases).5 In
some studies, combined stimulant and nonstimulant treat-
ment has shown superior efficacy compared to monotherapy,
for example in global response and inattentive symp-
toms,3,6,7 and has proved useful in stimulant-refractory
cases.8 However, combination therapy is not efficacious for
every child with ADHD3 and is more costly, suggesting that
careful consideration of individual benefits is required. This
wide variability in efficacy of various treatments means that it
may take considerable time before an effective treatment is
found through a trial-and-error process, with prolonged
negative impact on children. Identifying individual charac-
teristics that predict whether a child will show improvements
with a given ADHD medication would allow personalized
treatment decisions,9,10 which may substantially reduce the
time between diagnosis and beneficial treatment effects.

Previous efforts to predict treatment outcomes have
mostly focused on clinical predictors. Research shows that
higher pretreatment ADHD symptomatology is associated
with better psychostimulant treatment outcomes,11,12

although opposite13,14 or no15 effects have also been
observed. Evidence is also mixed with regard to comor-
bidities, with some studies reporting that low co-occurring
anxiety and oppositionality predict greater effectiveness of
psychostimulants13,14 and other data indicating no effects
on treatment outcomes.16,17 These inconsistencies may be
explained by methodological differences, the scarcity of
large rigorous treatment trials,16 and the high clinical het-
erogeneity within ADHD.18 Moreover, most studies have
investigated predictors of psychostimulant monotherapy
response and have not considered other treatments.

Besides clinical predictors, objective tests and bio-
markers informed by pathophysiological mechanisms may
help to predict what works best for each patient (ie, pre-
dictive biomarkers), as emphasized by personalized and
precision medicine approaches.9,10 Yet, only a few studies
consistent with these principles have been conducted in
child psychiatry.19 Efforts to identify predictive biomarkers
using electroencephalography (EEG), which is cost-
effective, noninvasive, and tolerant of participants’ move-
ment, may be particularly useful to facilitate future appli-
cations in clinical settings.20 The majority of available EEG
studies found that better psychostimulant treatment
outcome (ie, reduction in ADHD symptomatology) is
predicted by atypical EEG patterns that commonly distin-
guish children with ADHD from controls, for example
higher theta and lower beta resting-state power.21-24

Despite these promising findings, it remains unclear
which EEG measures predict improvements with other
2 www.jaacap.org
medications. Identifying EEGmeasures that predict response
to different treatments (ie, moderators) would be especially
useful for treatment stratification, which is a particularly
promising way to inform personalized treatment decisions in
psychiatry given its less stringent specificity and sensitivity
requirements.25 This is because a predictive biomarker
informing the choice between different established treat-
ments, as opposed to treatment vs no treatment, is more likely
to yield some benefit even if a suboptimal treatment is used.25

Another methodological limitation of prior EEG studies is
that they used measures from individual scalp electrodes that
reflect a mixture of scalp projections of activities from several
underlying sources across the cortex, thus providing limited
information on pathophysiological mechanisms.20 Modern
EEG signal-processing methods (ie, source-resolved EEG)
allow a more direct estimation of cortical activities, yielding
more precise spatial localization, improved signal-to-noise
ratio, and excellent reliability.20,26 These properties make
source-resolved EEG measures promising predictive bio-
markers to aid future treatment decisions.

The current study examined whether pretreatment
source-resolved EEG predictors, alone or combined with
clinical characteristics, could help predict improvements in
ADHD severity with different medications. We used data
from a large 8-week randomized, double-blind, comparative
trial of d-methylphenidate (DMPH), guanfacine (GUAN),
and their combination (COMB) in children with ADHD.
In previous analyses on this sample at baseline, EEG mea-
sures from midoccipital and midfrontal cortical regions
during a spatial working memory (WM) task were sensitive
to ADHD-control differences26,27 and to differential effects
of medications.28 Simultaneous EEG�functional magnetic
resonance imaging (fMRI) studies during WM tasks linked
these midoccipital EEG alterations with hypo-connectivity
between the fronto-parietal network and visual cortex29

and midfrontal EEG alterations with greater pre-stimulus
activity in anterior cingulate cortex (ACC) and default
model network.30 Here we build on these findings to
examine whether pretreatment EEG markers and clinical
ratings predict treatment-related ADHD improvement. We
focused on ADHD severity, oppositionality, and anxiety
measures as clinical predictors based on the aforementioned
literature13,14,16,17 and because oppositionality and anxiety
are the most commonly co-occurring symptoms in children
with ADHD.31 Based on studies on psychostimulants, we
hypothesized that greater alterations in midoccipital and
midfrontal activities and higher levels of ADHD, but lower
levels of anxiety and oppositional behaviors, would predict
improvements with DMPH. Specific hypotheses for GUAN
and COMB could not be formulated, as this is the first
study of predictors of outcome with these treatments. We
Journal of the American Academy of Child & Adolescent Psychiatry
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PREDICTORS OF ADHD MEDICATION RESPONSE
further hypothesized that EEG measures would predict
ADHD improvements over and above clinical measures.
METHOD
Sample
The sample consists of 207 children with ADHD aged 7 to
14 years who took part in the UCLA Translational
Research to Enhance Cognitive Control (TRECC) proj-
ect3,6,7 (ClinicalTrials.gov Identifier: NCT00429273).
Sources of recruitment were clinic referrals, radio and
newspaper advertisements, community organizations
(CHADD; www.chadd.org), local schools, and primary
care physicians. All parents and participants enrolled in the
study provided written informed permission and assent,
respectively, after receiving verbal and written explanations
of study requirements. All procedures were approved by
the University of California, Los Angeles Institutional
Review Board and overseen by a data safety and moni-
toring board.
Procedures
Male and female participants were included if they met
criteria for DSM-IV ADHD (any subtype) based on the
Kiddie-Schedule for Affective Disorders and Schizo-
phrenia—Present and Lifetime version32 and clinical
interview, and whether they had Clinical Global Impres-
sion—Severity (CGI-S) score of �4 for ADHD. Exclusion
criteria were as follows: lifetime history of any neurological
disorder, head injury resulting in concussion, autism,
chronic tic disorder, bipolar disorder or psychosis, medical
conditions contraindicating stimulant or a-agonist medi-
cation; current major depression or panic disorder; and
IQ < 80.33 Eligible participants were enrolled in an 8-week,
double-blind, randomized controlled trial (RCT) with 3
arms: (1) DMPH extended-release (5–20 mg/d; treated
from pretreatment to 4 weeks with placebo, and from week
4 to week 8 with DMPH); (2) GUAN (1–3 mg/d for 8
weeks); or (3) COMB, treated from pretreatment to week 4
with GUAN, and from week 4 to week 8 with both GUAN
and DMPH. Participants were titrated to the optimal
GUAN and/or DMPH dose based on clinical profiles and
side effects. All participants reached optimal doses for
GUAN and/or DMPH by week 7 and remained on the
following optimal mean daily doses during week 8: DMPH
doses were 16.0 (� 3.9) mg for DMPH-only and 15.1 (�
4.8) mg for COMB; GUAN doses were 2.2 (� 0.7) mg for
GUAN-only and 2.4 (� 0.6) mg for COMB. All partici-
pants were off medication for pretreatment assessments. Full
details are provided in Supplement 1, available online.
Journal of the American Academy of Child & Adolescent Psychiatry
Volume - / Number - / - 2022
Measures
Pretreatment Clinical Predictors. Pretreatment severity in
ADHD and oppositional symptoms was measured with the
parent-rated Strengths and Weaknesses of ADHD symp-
toms and Normal (SWAN) Behavior scales.34 The Multi-
dimensional Anxiety Scale for Children (MASC) scales35

was used to assess anxiety problems.
Pretreatment EEG Predictors. EEG data were collected
and processed following the approach in previous publica-
tions on the pretreatment data of this sample26,27 while
participants completed a spatial WM task. Trials began with
a fixation cross presented for 0.5 seconds, followed by 1, 3,
5, or 7 yellow dots presented for 2 seconds the locations of
which were to be remembered (encoding phase). The
number of dots is a manipulation of load, with greater load
expected to engage more WM. The screen then turned
blank for 3 seconds (maintenance phase). Upon presenta-
tion of a single dot (for up to 3 seconds), children indicated
with a button press (left or right arrow key) whether this
probe was in a location previously shown (match) or not
(nonmatch) (retrieval phase). Accuracy of >60% during a
training block was required to continue to the 2 testing
blocks, each containing 48 trials. Task performance vari-
ables included accuracy, mean reaction time (RT), and SD
of reaction time, as an index of intraindividual reaction time
variability (RTV) (Table S1, available online).

Full details regarding EEG processing and analysis are
provided in Supplement 2, available online. Briefly, after
standard pre-processing procedures, independent compo-
nent analysis decomposed the data from EEG electrodes
into source signals from independent components (ICs)
reflecting the activity of putative cortical generators. ICs
corresponding to cortical brain sources were localized
through source localization and grouped into functionally
common source clusters across participants.20,26 We focused
a priori on IC activities from sources localized to mid-
occipital and midfrontal regions (primary visual area and
dorsal ACC [dACC], respectively), following previous work
showing that these cortical sources are sensitive to
ADHD�control differences26,27 and to medication effects
in this sample.28 Event-related modulations of power were
computed by dividing post-stimulus power by a pre-
stimulus window and log-transforming it (10log10) to
decibel (dB) units. Averaging these values across trials allows
the examination of stimulus-related power increases and
decreases with respect to pre-stimulus activity. These values
were then averaged across theta (4-7 Hz), alpha (8-12 Hz),
and beta (13-25 Hz) ranges during encoding (0–2 seconds),
maintenance (2–5 seconds), and retrieval (5-6 seconds).
www.jaacap.org 3
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Event-related power modulations during encoding (espe-
cially decreases) are thought to reflect allocation of
attention-related resources to facilitate coordinated activity
between visual and WM memory storage systems.26,27,36

Power modulations during maintenance represent activity
to support maintenance of the encoded stimulus in WM,27

whereas modulations during retrieval index interaction be-
tween visual and WM systems (similar to encoding) com-
bined with motor response processes.27,36
Treatment Outcome. The ADHD Rating Scale IV
(ADHD-RS-IV)37 was completed at pretreatment and end-
of-treatment (week 8) by a clinician blinded to group
assignment, based on clinical interviews and parent and
teacher ratings. The difference between scores at the end-of-
treatment and pretreatment was used as the primary treat-
ment outcome, with higher difference scores reflecting
greater improvements. We used this dimensional measure of
improvement as the primary outcome, rather than a binary
definition of treatment response, to maximize power
because all 3 medication groups showed high response rates
based on standard thresholds,3 resulting in small nonre-
sponder groups. (Note: Two different measures of ADHD
symptoms are used as predictor [SWAN] and clinical
outcome [ADHD-RS] in this study. The clinician-rated
ADHD-RS was used as outcome for consistency with our
previous work reporting clinical outcomes in this RCT.3

The SWAN was used as a predictor because it was
completed by a different rater [parent] and because it was
developed to measure the full distribution of ADHD
symptoms.)
Statistical Analyses
To investigate predictors of ADHD-RS improvement, we
ran linear regression models with each pretreatment clinical,
EEG, and WM performance measure as independent vari-
ables to predict change in ADHD-RS. EEG and WM
performance measures were averaged across load to reduce
the number of predictors. A significant main effect indicated
predictors of change across treatments. Analyses were run
with an interaction term between predictor and medication
group, with significant interactions indicating that the
predictive effect significantly differed between treatments,
consistent with requirements to identify candidate predic-
tive biomarkers for future treatment stratification.38

Multivariate analyses evaluated the proportion of vari-
ance jointly explained by combining predictors that indi-
vidually showed main or interaction effects on change in
ADHD-RS. We examined models with clinical predictors
alone, EEG/performance predictors alone, and combining
4 www.jaacap.org
all clinical and EEG/performance. All models included age
as a covariate.

Models predicting treatment outcome were validated
using k-folds cross-validation in R, a statistical method to
evaluate predictive models by partitioning the original
dataset into k subsets of roughly equal size. Each model was
first trained in k-1 subsets and then tested on the remaining
subset. This was repeated k times with each subset used as a
test-dataset once. The average root mean squared error
(RMSE) and the RMSE SD were used to evaluate fit.

Analyses were restricted to participants who completed
the RCT. Missing data in EEG variables (eg, due to par-
ticipants not completing EEG assessments, technical issues,
or very noisy data) were imputed using model-based
imputation.39 Sensitivity analyses were performed only on
participants with complete data. For analyses testing indi-
vidual predictors, multiple testing was minimized by using a
hypothesis-driven approach restricting the number of
measures based on previous literature and using a conser-
vative significance threshold of p � .01. Effects between
p > .01 and p � .05 are presented as trend-level effects that
may provoke further research. Standardized b coefficients
(b) are reported to provide an indication of effect size. For
multivariate models, which were restricted to measures
showing effects in analyses of individual predictors, we used
a p < .05 threshold.
RESULTS
Participant Characteristics
The 8-week trial was completed by 181 (123 boys, mean
age ¼ 10.09 years, SD ¼ 2.10 years) of the 207 randomized
participants (Table 1). Participants in the 3 groups (61
COMB, 59 GUAN, 61 DMPH) showed no significant
differences on pretreatment demographic, clinical, EEG,
and WM performance measures (Table S2, available on-
line). EEG variables for participants who completed the
RCT but had noisy data and missing ICs in midoccipital
(n ¼ 47, 26%) or midfrontal (n ¼ 56, 31%) clusters were
imputed. There were no significant differences between
participants with imputed and complete data on socio-
demographic, clinical, or cognitive characteristics (Table S3,
available online).
Pretreatment Predictors of Treatment Outcome
Greater improvements in ADHD-RS across medication
groups were predicted by higher pretreatment hyperactivity-
impulsivity (b ¼ 0.21, 95% CI ¼ 0.01-0.39, p ¼ .02) and
oppositional behaviors (b ¼ �0.21; 95% CI ¼ 0.05-0.36,
p < .01). Lower anxiety also predicted greater ADHD
Journal of the American Academy of Child & Adolescent Psychiatry
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TABLE 1 Sample Characteristics by Treatment Group

GUAN (n ¼ 68) DMPH (n ¼ 69) COMB (n ¼ 70) F/c2 p
Age, y, mean (SD) 10.1 (2.1) 10.1 (2.0) 9.9 (2.2) 0.11 .89
Male sex, n (%) 45 (66.2) 46 (66.7) 51 (72.9) 1.67 .43
Race, n (%) 7.63 .47
White 51 (75.0) 51 (73.9) 41 (58.6)
African American 7 (10.3) 10 (14.5) 19 (27.1)
Asian/Pacific Islander 7 (10.3) 4 (5.8) 5 (7.1)
Other 3 (4.4) 4 (5.8) 5 (7.1)
Ethnicity, Hispanic, n (%) 16 (23.5) 10 (14.5) 18 (25.6) 1.50 .47
Full Scale IQ, mean (SD) 102.6 (14.2) 101.5 (13.3) 102.9 (13.0) 0.10 .90
ADHD subtype, n (%) 0.86 .93
Inattentive 28 (41) 33 (48) 31 (44)
Hyperactive-impulsive 1 (2) 2 (3) 2 (3)
Combined 38 (56) 32 (46) 35 (50)
ADHD-RS baseline, mean (SD) 36.8 (9.1) 35.6 (8.1) 35.6 (9.8) 0.37 .69
ADHD-RS week 8, mean (SD) 18.7 (11.2) 20.4 (8.1) 17.9 (9.8) 0.97 .38

Note: F statistics from analysis of variance are reported for continuous measures (age, Full Scale IQ, ADHD-RS scores); c2 values from c2 tests are
reported for the remaining categorical measures. ADHD-RS ¼ Attention Deficit Hyperactivity Disorder Rating Scale IV total score; COMB ¼ combined
treatment; DMPH ¼ d-methylphenidate; GUAN ¼ guanfacine; n ¼ number of participants.

PREDICTORS OF ADHD MEDICATION RESPONSE
improvement across treatments (separation/panic:
b ¼ �0.23, 95% CI ¼ �0.39 to �0.07, p < .01; harm
avoidance: b ¼ �0.17, 95% CI ¼ �0.33 to �0.00, p ¼
.05) (Figure 1). These effects did not differ across medica-
tions, as indicated by nonsignificant interactions (Table S4,
available online).

Differential treatment effects emerged for EEG measures
in midfrontal regions localized in the dACC. Event-related
beta power showed significant (p < .01) interactions with
medication group during encoding and retrieval, and a trend-
level (p ¼ .05) interaction during maintenance (Table S4,
available online). In the COMB group, greater ADHD-RS
improvement was predicted by higher beta power (ie, weaker
power decreases) during encoding (b¼ 0.30, 95%CI¼ 0.06-
0.44, p< .01), maintenance (b¼ 0.29, 95%CI¼ 0.03-0.54,
p ¼ .03), and retrieval (b ¼ 0.37, 95% CI ¼ 0.14-0.62, p <
.01) (Figure 1). An opposite pattern emerged in the GUAN
group during the retrieval phase, as lower beta power (ie,
stronger power decreases) predicted ADHD-RS improvement
(b¼�0.34, 95%CI¼�0.64 to�0.04, p¼ .03). The effects
in the GUAN group were not significant during encoding
(b ¼ �0.22, 95% CI ¼ �0.56 to 0.12, p ¼ .20) and main-
tenance (b ¼ 0.03, 95% CI ¼ �0.27 to 0.32, p ¼ .86). No
significant effects in these beta power measures emerged in the
DMPH group (encoding: b ¼ �0.14, 95% CI ¼ �0.40 to
0.11, p¼ .27; maintenance: b¼�0.08, 95%CI¼�0.31 to
0.16, p¼ .52; retrieval:b¼�0.06, 95%CI¼�0.30 to 0.17,
p¼ .60). Consistent with these significant interactions and the
Journal of the American Academy of Child & Adolescent Psychiatry
Volume - / Number - / - 2022
opposite direction in which beta power predicted ADHD
improvement in COMB vs GUAN groups, post hoc tests
showed that the predictive effect in the COMB group signif-
icantly differed from the effect in the GUAN and DMPH
groups during encoding and retrieval (Table S5, available on-
line). Other EEG measures and WM performance measures
did not predict ADHDimprovements acrossmedications or in
interactionwithmedication group (Table S4, available online).

To help the interpretation of predictor-by-treatment
interactions in analyses of continuous treatment outcome,
we ran follow-up logistic regressions testing whether mid-
frontal beta power predicted binary treatment response
(�30% ADHD-RS improvement) vs nonresponse.
Consistent with the analyses of continuous improvement,
the direction of the effects differed by group, as depicted in
Figure 2. In the COMB group, treatment response was
predicted by weaker power decreases during encoding (odds
ratio [OR] ¼ 13.34, 95% CI ¼ 2.28-135.99, p ¼ .01) and
retrieval (OR ¼ 7.75, 95% CI ¼ 1.84-45.18, p ¼ .01),
with no significant effect during maintenance (OR ¼ 1.97,
95% CI ¼ 0.59-7.79, p ¼ .29). Conversely, in the GUAN
group, treatment response was predicted, at trend level, by
stronger power decreases during retrieval (OR ¼ 0.19, 95%
CI ¼ 0.03-0.82, p ¼ .04), with nonsignificant effects
during encoding (OR ¼ 0.40, 95% CI ¼ 0.05-2.42, p ¼
.34) and maintenance (OR ¼ 1.26, 95% CI ¼ 0.32-4.69,
p ¼ .72). In the DMPH group, there were no effects of beta
power during maintenance (OR ¼ 0.43, 95% CI ¼ 0.14-
www.jaacap.org 5
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FIGURE 1 Pretreatment Predictors of Change in Attention-Deficit/Hyperactivity Disorder (ADHD) Severity Between
Pretreatment and End of Treatment

Treatment

COMB
DMPH
GUAN

Across 
treatment

-1 10
Standardized Beta

SWAN hyperac�vity

SWAN opposi�onality

MASC harm avoidance

MASC separa�on/panic

Midfrontal beta, 
encoding

Midfrontal beta, 
maintenance

Midfrontal beta, 
retrieval

Note: This graph shows predictors of significant (p � .01) or trend-level (p � .05) effects across treatments or interaction effects with treatment group. Higher scores of the
treatment outcome measure reflect greater improvement, so positive values of beta coefficients indicate that higher values of the parameter are associated with greater
improvement. Full results are presented in Table S1, available online. SWAN scores were reverse coded, such that higher scores represent higher ADHD severity. 95% CI
not including 0 indicate p < .05. COMB ¼ combined treatment group; DMPH ¼ d-methylphenidate monotherapy group; GUAN ¼ guanfacine monotherapy group;
MASC ¼ Multidimensional Anxiety Scale for Children scales; SWAN ¼ Strengths and Weaknesses of ADHD symptoms and Normal Behavior scales. Please note color
figures are available online.

MICHELINI et al.
1.28, p ¼ .14) and retrieval (OR ¼ 0.33, 95% CI ¼ 0.10-
0.99, p ¼ .06), but a significant effect emerged during
encoding (OR ¼ 0.04, 95% CI ¼ 0.01-0.26, p < .01),
indicating that stronger power decreases predicted treatment
response. Results of post hoc tests comparing predictive
effects across groups were similar to those examining
continuous outcomes (Table S5, available online, Figure 2).

Finally, we ran exploratory analyses to map the identified
beta power profiles onto heterogeneity in WM performance
at baseline. Higher beta (ie, weaker midfrontal power de-
creases) correlated with worse WM accuracy (encoding:
r ¼ �0.25, p < .01) and higher RTV (encoding: r ¼ 0.27,
maintenance: r ¼ 0.19, retrieval: r ¼ 0.16, all p < .05),
6 www.jaacap.org
suggesting that the EEG profiles predictive of clinical im-
provements with COMBwere related to cognitive markers of
executive dysfunction and attentional lapses in ADHD.
Multivariate Predictive Models
Because EEG predictors had different predictive effects
on treatment outcome in the 3 groups, we ran multi-
variate models for each medication group separately,
including age as a covariate in all models (Figure 3). In
the COMB group, a multivariate model including all
clinical measures individually predicting continuous
treatment outcome yielded R2 ¼ 0.21 (p ¼ .03). A
Journal of the American Academy of Child & Adolescent Psychiatry
Volume - / Number - / - 2022
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FIGURE 2 Bar Graphs Showing the Mean and Standard Error of Pretreatment Beta Power Measures Divided by Binary
Treatment Response (�30% ADHD-RS Improvement) in Each Treatment Group

Note: Asterisks refer to significant (**p � .01) or trend-level (*p < .05) predictive effects within each group based on results of logistic regressions. Black square brackets
and arrows reflect differences between responders and nonresponders within each treatment group. Gray square brackets and arrows reflect differences in the predictive
effects between treatment groups. ADHD-RS ¼ Attention Deficit Hyperactivity Disorder Rating Scale; COMB ¼ combined treatment group; DMPH ¼ d-methylphenidate
monotherapy group; GUAN ¼ guanfacine monotherapy group. Please note color figures are available online.

PREDICTORS OF ADHD MEDICATION RESPONSE
model including EEG measures that individually
predicted improvements with COMB (midfrontal beta
power during encoding, maintenance, and retrieval) yiel-
ded R2 ¼ 0.27 (p < .01). Combining clinical and EEG
Journal of the American Academy of Child & Adolescent Psychiatry
Volume - / Number - / - 2022
predictors in a multivariate model explained the greatest
proportion of variance in continuous ADHD improve-
ment (R2 ¼ 0.41, p < .01). In the GUAN group,
multivariate models aggregating EEG (midfrontal beta
www.jaacap.org 7
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FIGURE 3 Variance Explained (R2) in Multivariate Prediction
Models of Continuous Treatment Improvement in ADHD-RS
by Medication Group

Note: All models also included age as a covariate. Results for DMPH are not
shown, as there were no significant electroencephalographic predictors of contin-
uous change in ADHD severity with this treatment. ADHD-RS ¼ Attention Deficit
Hyperactivity Disorder Rating Scale IV total score; COMB ¼ combined treatment
group; DMPH ¼ d-methylphenidate monotherapy group; GUAN ¼ guanfacine
monotherapy group. Please note color figures are available online.
*p < .05; **p � .01.
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power during retrieval) and clinical predictors, as well as a
model with EEG alone, significantly predicted ADHD
improvement (respectively, R2 ¼ 0.34, p < .01; R2 ¼
0.24, p < .01). Conversely, a model including only
clinical predictors was not statistically significant (R2 ¼
0.14, p ¼ .18). For DMPH, we additionally tested a
multivariate model aggregating clinical predictors and beta
power during encoding, which predicted binary response.
None of the multivariate models were statistically signif-
icant (clinical: R2 ¼ 0.11, p ¼ .27; EEG: R2 ¼ 0.05,
p ¼ .23; clinical and EEG: R2 ¼ 0.12, p ¼ .32).
Cross-Validation and Sensitivity Analyses
Cross-validation analyses testing predictors of continuous
treatment outcome individually in the whole sample used
k ¼ 5 folds, balanced in terms of ADHD treatment, age,
and sex. A 3-fold cross-validation was used in multivariate
analyses run in each group separately. All models had
consistent fit across test data for every fold, indicating that
the identified clinical and EEG predictors showed good
validity within this sample (Table S6, available online).

Results of sensitivity analyses on participants with com-
plete data were largely consistent with results using imputed
data (Supplement 3, Tables S7 and S8, available online).
8 www.jaacap.org
DISCUSSION
The current study represents the first investigation of clin-
ical and EEG predictors of treatment outcome following
DMPH, GUAN, and COMB treatments in children with
ADHD. Event-related EEG beta activity from midfrontal
cortical sources in the dACC differentially predicted (ie,
moderated) improvements in ADHD severity with COMB
and monotherapies, pointing to distinct EEG profiles
associated with better clinical outcomes with each treat-
ment. Specifically, greater reductions in ADHD severity
were predicted by weaker beta power modulations across
task phases in children randomized to COMB, but by
stronger modulations during retrieval in children taking
GUAN. Stronger beta power modulation during encoding
further predicted binary treatment response in children
taking DMPH, although this effect was not significant in
analyses of continuous treatment outcome and thus war-
rants further research. Pretreatment hyperactivity-
impulsivity, oppositional behavior, and anxiety emerged as
clinical predictors across treatments, meaning that they
could not forecast better improvement with each specific
treatment. In children treated with COMB and GUAN,
aggregating EEG and clinical predictors in multivariate
analyses predicted ADHD improvements to a greater extent
than using clinical or EEG measures alone. The identified
EEG predictors in the beta band may represent promising
predictive biomarkers that could be used alongside clinical
information to aid treatment stratification and personalized
treatment decisions for children with ADHD.

Our study provides novel evidence that event-related
midfrontal beta power at pretreatment represents a moder-
ator of treatment outcome, differentially predicting treatment
improvement with COMB and monotherapies. Beta oscilla-
tions during cognitive tasks have been interpreted as a possible
neural mechanism of top-down�controlled processing,40 as
indicated by frontal event�related power decreases during
memory performance,41,42 attentional processing,40,43 and
preparation and execution of motor responses.40 Beta power
decreases have, in some contexts, been reported in tandemwith
alpha power decreases,36,40 which have similarly been impli-
cated in visual attention and top-down inhibition of task-
irrelevant brain functions.26,29 In individuals with ADHD,
weaker beta and alpha power decreases in comparison to those
in neurotypical controls have been found during WM and
cognitive control tasks,41,44 consistent with studies reporting
associations between weaker power modulations in these fre-
quencies and worse task performance.27,42 The current find-
ings extend this literature by showing that atypical beta
patterns implicated in top-down executive dysfunction are
predictive of response to different ADHDpharmacotherapies.
Journal of the American Academy of Child & Adolescent Psychiatry
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A clinical implication is that distinct groups of children
with ADHD may benefit to a different extent from the
treatments investigated in this study. Children displaying
attenuated midfrontal beta power modulations in the ACC,
which potentially represent a subpopulation of children
with ADHD showing broader top-down attentional im-
pairments during stimulus encoding/retrieval and WM
storage functions,18 may benefit from more intensive
treatment with combined stimulant and nonstimulant
medication. Conversely, children displaying attenuated
pretreatment beta power modulations may show worse
treatment outcome with GUAN alone, consistent with
previous findings in this sample that GUAN did not have
positive effects on cognitive functioning at the group
level.7,28 A possible explanation for this pattern may be
found in the functional role of the ACC, which, aside from
its role in the salience network supporting attention and
goal-directed behavior, is also a key region of cortico-limbic
circuitry. Specifically, both the dorsal and ventral ACC have
been involved in multiple emotional processes45 and in
pathological anxiety.46 Because GUAN has positive effects
on disorders characterized by emotional difficulties,5,47,48 it
is possible that children with ADHD displaying these ACC-
mediated emotional difficulties may show greater clinical
improvements with GUAN monotherapy. Future studies
are needed to further test this hypothesis and to confirm the
localization of this midfrontal component (eg, with simul-
taneous EEG and fMRI), which our EEG source modeling
localized within the dACC. Of note, whereas pretreatment
EEG power was associated with treatment outcome, WM
performance did not show significant predictive effects,
suggesting that the identified EEG profiles may be more
powerful predictors of treatment response than behavioral
performance indices. Taken together, our findings suggest
that midfrontal beta power during WM represents a brain
profile that may help to delineate distinct subpopulations of
children with ADHD who are likely to benefit from
different treatments, consistent with requirements for pre-
dictive biomarkers.38

Interestingly, previous studies showed that attenuated
frontal beta modulations during WM performance were not
ameliorated by stimulant monotherapy.41 Similarly, in
another publication on this sample,28 none of the midfrontal
EEG measures, including beta power, were sensitive to the
effect of DMPH, GUAN, or COMB; rather, significant
treatment effects, which were especially widespread in the
COMB group, were found in EEG measures from mid-
occipital regions.28 A possible explanation is that, whereas
midfrontal power emerged as a moderator of treatment
outcome (ie, candidate predictive biomarker), midoccipital
measures may reflect mediators potentially pointing to
Journal of the American Academy of Child & Adolescent Psychiatry
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mechanisms by which treatments achieved their effects (ie,
candidate monitoring biomarkers).49 This distinction be-
tween moderators and mediators of ADHD treatment
outcome mirrors previous theoretical accounts and empirical
evidence on developmental outcomes in children with
ADHD.31,50 For example, a prominent developmental
model posits a separation between neurocognitive processes
predicting developmental courses from neurocognitive pro-
cesses that parallel developmental changes in ADHD symp-
toms.50 Future studies examining the relationship between
different cortical regions in treatment trials, for example with
functional connectivity analyses, may provide further insights
into the neural moderators and mediators of treatment out-
comes in children with ADHD.

Unlike midfrontal EEG measures, which predicted
opposite effects with COMB and GUAN treatments, higher
levels of hyperactivity-impulsivity and oppositional symp-
toms and lower levels of anxiety predicted improvements in
ADHD severity across treatment, as indicated by nonsig-
nificant interactions with treatment group. Pretreatment
inattention did not predict treatment outcome, possibly
because of the restricted variance in this symptom dimen-
sion, as most participants had inattentive or combined
ADHD subtype (ie, 6-9 inattentive symptoms). These
findings on clinical predictions suggests that children
showing greater behavioral difficulties, coupled with low
anxiety, may be in greater need of treatment and more likely
to show some ADHD improvement irrespective of which
treatment they receive. However, these clinical characteris-
tics were nonspecific predictors of treatment outcome, and
may thus not be useful for forecasting which treatment
might work for a given child. Conversely, the differential
predictive effects that we observed for midfrontal EEG
power suggest that using brain biomarkers may add speci-
ficity in forecasting treatment outcome on an individual
basis. Our multivariate analyses are consistent with this
possibility, as a model aggregating the identified EEG pre-
dictors with clinical predictors roughly doubled the amount
of variance explained in treatment improvement relative to
using clinical measures alone. In contrast, multivariate
models including only clinical predictors explained a rela-
tively small proportion of variance and were not statistically
significant in the GUAN and DMPH groups, indicating
limited clinical utility for predicting treatment outcome.
Together, these findings provide novel proof-of-concept
evidence that considering objective brain biomarkers
alongside clinical characteristics may improve treatment
decision making for children with ADHD.

The current study has multiple limitations. First,
although this is one of the largest EEG studies of multiple
ADHD medications and we used a cross-validation
www.jaacap.org 9
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approach, our study did not include an independent vali-
dation sample, as no other study with similar assessments
and medication groups exists to date. Thus, our results,
especially those of the multivariate models, which may be
prone to overfitting, await replication in an independent
sample. Second, the current analyses examined predictors of
acute improvements over 8 weeks, and thus do not inform
predictors of long-term effects. Third, as is common in
medication trials, this sample comprises a selected group of
children with relatively few psychiatric comorbidities.
Future clinical trials in more diverse ADHD populations are
required to generalize these findings. Fourth, the limited
predictive effects in the DMPH group might be partly
because this group received 4 weeks of active treatments,
whereas the GUAN and COMB groups received 8 weeks of
treatments. However, all 3 groups reached optimal doses
before week 8 and showed clinically significant improve-
ments,3 in line with prior research showing maximal benefit
from GUAN and DMPH within 3 to 4 weeks.2,4 It is thus
unlikely that that this difference had an impact on our
findings, although replication will be required. Finally, as
our hypothesis-driven study focused a priori on clinical and
EEG markers suggested by previous literature,26,27 we
cannot rule out the possibility that treatment-related im-
provements may be further predicted by EEG and other
measures not included in this study.15,23,24 This is consis-
tent with our multivariate results, in which the majority of
the variance in treatment outcome remained unexplained
even in models combining clinical and EEG predictors.
Future studies should investigate whether EEG measures
from other cortical sources or functional connectivity
measures between sources predict treatment outcomes in
children with ADHD. Given these limitations, it is
important to note that our findings should not be used for
clinical purposes before a full replication with more strin-
gent statistical correction is carried out.

In conclusion, we report initial evidence that EEG
cortical source activity may predict clinical improvements in
response to combination treatment and monotherapy in
children with ADHD. The identified midfrontal EEG
profiles represent candidate brain biomarkers that, if repli-
cated in future studies, may be used alongside clinical
10 www.jaacap.org
measures to assist in personalized treatment decision making
for ADHD pharmacotherapy.
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