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Effect of single-point sequence alterations on the aggregation
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Sequences of contemporary proteins are believed to have evolved through process

that optimized their overall fitness including their resistance to deleterious aggregation.
Biotechnological processing may expose therapeutic proteins to conditions that are much

more conducive to aggregation than those encountered in a cellular environment. An
important task of protein engineering is to identify alternative sequences that would

protect proteins when processed at high concentrations without altering their native

structure associated with specific biological function. Our computational studies exploit
parallel tempering simulations of coarse-grained model proteins to demonstrate that

isolated amino-acid residue substitutions can result in significant changes in the
aggregation resistance of the protein in a crowded environment while retaining protein

structure in isolation. A thermodynamic analysis of protein clusters subject to competing

processes of folding and association shows that moderate mutations can produce effects
similar to those caused by changes in system conditions, including temperature,

concentration, and solvent composition that affect the aggregation propensity.  The range
of conditions where a protein can resist aggregation can therefore be tuned by sequence

alterations although the protein generally may retain its generic ability for aggregation.

*dnb@berkeley.edu
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I. INTRODUCTION

Abnormal protein aggregation, resulting in insoluble, biologically inactive agglomerates,

represents a serious problem in production, formulation, processing and storage of protein

drugs1. In vivo, the occurrence of ordered fibrillar aggregates is associated with several

debilitating diseases including Alzheimer’s and Parkinson’s disease, Bovine Spongiform

Encephalopathy (BSE) (mad cow disease), Creutzfeldt-Jacob’s disease, and amyotrophic lateral

sclerosis (ALS)2. Biotechnological concerns and efforts toward prevention or cure of

neurodegenerative diseases continue to motivate extensive experimental and computational

research aimed at identifying system properties that can be tuneded to suppress or control

aggregation. These properties include solvent composition3, presence of molecular chaperones or

aggregation inhibitors4, as well as mutations5 affecting protein ability to aggregate6,7. Two classes

of mutations are of potential interest. In biotechnology and biomedical research, emphasis is on

minimally intrusive substitutions that can prevent or slow aggregation while preserving the

function of the protein. In materials science, on the other hand, there is emerging interest in

designing novel nanomaterials comprising, or templated by, fibrillar protein aggregates8-11.

Laboratory screening of a large number of protein variants is, however, very expensive and time

consuming. Computer-assisted screening of potential mutations may significantly reduce the

number of experimental sequences to be examined.

While state-of-the-art modeling techniques do not suffice for full-atom simulations of

multi-chain protein systems on a practically relevant time scale, coarse-grained protein models

have provided useful insights into aggregation mechanisms and can suggest guidelines to control

the aggregation propensity of a protein12-38. Studies of aggregating proteins with Go residue

potentials highlighted strong correlations between binding states of adjacent protein residues23.
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According to this previous work, a change in the binding affinity of a selected residue can

noticeably modulate the probabilities of intra-molecular and inter-protein bonds involving

neighboring residues, with the effect propagating several residue lengths along the chain contour

in both directions23. In accord with experimental observations, complemented by single-chain

modeling16, restricted mutations in the protein sequence should therefore be able to cause a

pronounced effect on both protein folding and its aggregation propensity.

To test these ideas by probing concrete sequence substitutions, however, requires models

extending beyond the Go representation wherein the monomers lack association with specific

amino-acid residues. In the present work, we exploit a variation39 of the Miyazawa-Jernigan (MJ)

interaction matrix originally derived40 from a statistical analysis of contact residue-residue

probabilities in a large number of protein structures available in the Protein Data Bank. A two-

parameter modification of the Miyazawa-Jernigan matrix proposed by Leonhard et al. yields an

improved protein-like behavior of model polypeptides through a systematic renormalization of

residue-solvent interactions39,41,42. In particular, the proposed optimization, applicable to a broad

spectrum of studied sequences, improves protein folding rates, folding cooperativities, and

aggregation resistance, bringing the behavior of model proteins closer to that typically observed

in experimental systems39.

We consider a 64-residue sequence, previously optimized with respect to folding in

isolation, and modifications introduced through single-point changes in the protein’s primary

structure. Amino-acid residue substitutions, expected to produce significant changes in

aggregation propensity are chosen based on residue contact maps and calculated correlations

between the residue binding state and the overall proximity to protein native structure. A detailed

description of our criteria for rational selection of attempted mutations is given in Section III.1.
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Only mutations that preserve the original native structure are considered. Single residue

substitutions that have a relatively small effect on the protein in isolation are found to strongly

enhance aggregation at moderate concentrations. Because we sample only sequences with

identical folded conformations, it is obvious that sequence engineering may produce notable

improvements in aggregation resistance when the starting primary structure is not optimized;

such improvement can be achieved without compromising the function of the protein in question.

In view of highly specific recognition mechanisms implicated in protein folding as opposed to

relatively less selective inter-protein binding, the observed strong effect of mutations on the

competition between folding and association can be predominantly attributed to subtle

stabilization or destabilization of the protein native state. This view is supported by the results of

a thermodynamic analysis of multiple-chain folding landscapes for the original sequence and its

variants presented below.

II. MODEL AND METHODS

II.1 Model

To reduce the considerable computational costs of multi-chain protein simulations, we

describe the aqueous protein solution using a lattice-model with renormalized39 Mijazawa-

Jernigan residue-residue interactions.  This representation secures the essential resolution of the

amino-acid alphabet, and is sufficiently efficient to produce qualitatively meaningful insights

within an accessible simulation time39,41,42. Protein molecules are described as self-avoiding

amino-acid residue chains with isotropic inter-residue potentials extracted from a statistical

analysis of known protein structures collected in the Brookhaven Protein Data Bank. Presuming

strong screening of coulombic interactions43-45, the quasi-chemical model used in the derivation
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of the MJ potential limits the interactions between the beads to pairs occupying neighboring

lattice sites. According to Leonhard and coauthors39, the performance of the MJ model can be

improved by a two-parameter renormalization of  pair potentials. The proposed modification,

originally formulated within the context of the Ising model with explicit solute-solute (ij), solute-

solvent (i0), and solvent-solvent (00) interactions39,41,42, considers only changes in solute-solvent

(i0) terms. As we have shown recently33, these changes can be incorporated into the equivalent

implicit model that absorbs all solvent effects into effective (solvent-averaged) solute-solute

potentials. This procedure replaces the original MacMillan-Mayer potentials eij among amino-

acid residues i and j (collected in Table V of Miyazawa and Jernigan40) by the renormalized

interactions νij given by:
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Here, 0 ≤ Cs ≤ 1, and ϖ  are the two adjustable model parameters affecting the residue

selectivity and nonspecific attraction, respectively39. The summation over i is performed over

all twenty amino-acid residue types. The choice Cs =1 and 
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∑  represents a baseline shift of effective potentials for all

residue pairs. A detailed analysis is available elsewhere 33,39,41,42.
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In  our  present calculation, we consider the 64-mer sequence

KEKSTAGRVASGVLDSVACGVLGDIDTLQGSPIAKLKTFYGNKFNDVEASQAHMIPNYTLPE

41,42 or its variations obtained by single-residue substitutions. We use the following values of

the two adjustable parameters, Cs =0.2 and  ϖ = 0.16  because they were shown41,42  to optimize

the observed protein-like behavior of the selected model polypeptide.  The lowest temperature

we use, T=T0, is set to 0.375, which corresponds to 0.858 Tm, where Tm is the melting (thermal

unfolding) temperature of the isolated protein. Our implicit solvent simulations give melting

temperature Tm=0.437, in good agreement with Tm=0.43 obtained using the explicit-solvent

model39.  Fig. 1 of ref.33 compares residue hydrophobicities (or hydrophilicities) in the rescaled

model quantified in terms of pair potentials between identical residues,   vii
(r

ii
= a) . In analogy

with our previous work19,23,33, we express the energy function of M interacting chains, each

containing N monomer units as a sum of intra-molecular interactions, Vm, and inter-molecular

interactions, Vmn:
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Above, lattice step  a equals the monomer length, and ri,m is the position of the i-th bead of

chain m. Therefore, the 3(MN-1) dimensional vector rMN completely describes the configuration

of the system.
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II.2 Simulation

Folding behavior of individual chains is considered using canonical (N,V,T) Monte

Carlo simulations. Protein concentration, measured in terms of volume fraction φv=NM/L3, is

controlled through number, M, and length, N, of the chain, and the size of the simulation box.

Boundary effects are taken into account through minimum-image periodic conditions46.

Simulation moves47 include displacements end beads, corner flips, and crankshaft moves of

bead pairs located at the bottom of a U turn. Further, we allow slithering-snake reptation

moves48 and translations of chains or groups of chains. Details of our (N,V,T) simulation are

given in ref.19.

To generate multi-temperature results needed in the weighted histogram analysis (see

below), and to mitigate local trapping on the rugged free energy landscape of aggregating

proteins, some of the single-chain and all multi-chain simulations were performed using the

parallel tempering technique described earlier23. This technique facilitates barrier crossings by

sampling several replicas of a given model system at slightly different temperatures. During

simulation, swaps between adjacent temperature levels are attempted periodically with

probabilities that preserve canonical (Boltzmann) statistics. For systems trapped in local

minima, escape is facilitated during the time spent at an elevated temperature. In our

simulations, temperature swaps were attempted after each cycle of MN attempted

displacements (pass). The attempted swap of systems i and j between temperatures Tm and Tn,

was accepted with the probability49:
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Based on empirical considerations23, we typically used six replicas at (reduced) temperature

levels ranging from 1 to 1.3 and swapping acceptances between 10-30%. Similar acceptances

have been reported in recent replica simulations of peptide aggregation in a continuum

representation50. In our reduced units, temperature is expressed in units T0, energy in units kBT0

, and distance in lattice step length, a.

II.3 Weighted Histogram Analysis

The Weighted Histogram Analysis Method (WHAM)51 was used to analyze simulation

data. WHAM minimizes the error in the density-of-states function and facilitates calculation of

free-energy surfaces.  In each simulation, six quantities were monitored: the total system

potential energy V, the total number of intra-protein contacts Nintra, the total number of inter-

protein contacts Ninter, the contribution to the overall potential from interactions between beads on

the same chain Vintra, the contribution to the overall potential from interactions between beads on

different chains Vinter, and the average radius of gyration Rg
2. For the remainder of the report Rg

2,

is referred to as Rg.

Calculating the density-of-states function (Ω) for six quantities is computationally

impractical. Thus, it was necessary to calculate several Ω , each a function of different

thermodynamic parameters. A generic description of Ω is
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where ξ1 and ξ2 are any of the parameters mentioned above, Nk is the number of occurrences for

samples with (V, ξ1,  ξ2), fj is the free energy of simulation j, β is 1/kbT, k is the number of

simulations, and nj is the number of samples from simulation j. Free energies were calculated by

solving the following two equations self-consistently

where Pβ is the probability of observing a state with (V, ξ1, ξ2). Thermodynamic averages are

then calculated from
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using ξ1  as an example. Free energies are given by

  
F(ξ

1
,ξ

2
) == −k

b
T ln Pβ (ξ

1
,ξ

2
){ }

  

exp(− f
k
) = Pβ k

(V ,ξ
1
,ξ

2
)

V ,ξ1 ,ξ2

∑ (6)

  

Pβ (V ,ξ
1
,ξ

2
) =

N
i
(V ,ξ

1
,ξ

2
)exp(−βV )

i =1

k

∑

n
j
exp(− f

j
− β

j
V )

j =1

k

∑
(5)



10

.                 (8)

III. RESULTS AND DISCUSSION

III.1 Sequence selection

Below we present a comparison between the folding and aggregation behavior of three

sequences: the ‘wild type’ sequence (WT) characterized in our earlier studies, and two variations

obtained by a single amino-acid substitution on the WT sequence. The original (WT) sequence

(specified above) has been designed41,42 using a sequence-annealing procedure described

earlier39, and the substitutions were chosen subject to the condition that they preserve the original

native-state conformation. Operating under this constraint, the balance between the folded and

aggregated states can be adjusted by residue substitutions that affect the stability of the native

state, the aggregates, or both. Thermodynamics of aggregated states is not as sequence-sensitive

as that of the native structure. A major effect of the substitutions on the competition between

folding and aggregation is therefore associated with changes in the stability of the native

conformation. Targeting residues whose bonding states are most strongly correlated with the

proximity to the native state maximizes this effect. For every residue, the magnitude of this

correlation can be quantified in terms of function C(i)

    

� 

C(i) =< h(i) h( j) > − < h(i) ><
j ≠ i

∑ h( j) >
i≠ j
∑                     (9)

Following the formalism introduced elsewhere23, we define the residue bonding state, h(i), as the

fraction of realized native inter-residue bonds involving the specified residue i. Fig. 1 compares

correlation functions C(i) for all 64 residues in the WT sequence at T=1.0. The three-dimensional
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structure of the WT native state is illustrated in Fig. 1 of ref.34. Because of their high

coordination, the bonding states of eight core residues (i = 22, 25, 28, 33, 36, 39, 54 and 55)

Fig. 1 Relative magnitudes of the correlation C(i) between the bonding state of residue i, h(i),

with the proximity to the folded state measured by the order parameter nn .

feature strongest correlations with the overall proximity to the native state. Among those,

residues 54, 55 and 36 are also most likely to participate in inter-protein contacts in aggregated

states (c.f. Table 2 of ref.34). Using the contact maps for the WT sequence determined in the

preceding work33, we choose two of the eight possible sites, 36 and 54, as representatives of two

very different local topologies. Residue 36 sits in the middle of the 11-residue string (31-41)

bound anti-parallel to the string of residues 20-30 (the longest anti-parallel segments), and is

coordinated only by relatively close contour neighbors. Residues 54 and 55, on the other hand,

are coordinated by residues distant on the chain contour. Of these two residues, methionine (M)

residue 54 is chosen as the second site of attempted mutation because, within a given model, its
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interactions are closer to those of the leucine residue at the other mutation point, 36. Such a

choice makes it easier to relate eventual differences in the effects of substitutions to local

topologies around targeted residues. Because both M  and L are strongly hydrophobic,

substitutions by polar residues prove disruptive to the protein native structure. Substitutions with

a residue of intermediate hydrophobicity, like threonine, T, however, result only in a mild

destabilization of the native state while its structure remains identical to that of the original (WT)

sequence. Substitutions L36T and M54T were therefore selected for comparison of model protein

aggregation behavior with that of the unperturbed sequence.

III.2 Comparison of native-state stabilities for isolated chains with the original and

modified sequences

In a lattice-model representation, a useful measure of the proximity to the folded state of

a model protein is the number of native contacts, nn. For a fully folded 64-mer protein with given

protein sequence, nn =81. In Fig. 2 we compare probability distributions P(nn) for the three

considered sequences. The function -kBT ln P(nn) represents a measure of the potential of mean

force associated with given value of nn, i.e. the free energy of the protein subject to a constrained

number of native contacts, nn. The temperature T=T0 corresponds to approximately 0.86 Tm,

where Tm is the melting temperature for the WT sequence, i.e. Tm=1.16 T0.  Melting temperatures

for the two mutants are about 10% lower, ~1.045 and 1.025

� 

± 0.02 T0 for sequences L36T and

M54T, respectively. While both mutant sequences are somewhat destabilized in comparison to

the WT sequence, all three sequences are characterized by similar probability distributions for

the number of native contacts with the most probable states lying within the near-folded basin

with nn=75

� 

± 4. At T=T0, all three sequences have significant native state populations and are
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Fig. 2 Probabilities of states with nn native contacts for the WT protein (black solid) and mutants

L36T (red) and M54T (blue dashed).

therefore regarded as model representatives of a family of proteins capable of performing the

same biological function. As shown below, however, the relatively small stability differences can

translate to quite different behaviors under the influence of additional destabilizing factors such

as an elevated temperature or increased protein concentration leading to competition between

folding and aggregation. Similar comments have been made in the context of single-chain

simulations of the aggregation-prone E22Q mutant of the 10-35 segment of the Alzheimer’s β-

amyloid peptide whose structural fluctuations are noticeably stronger than those for the WT

sequence16. Further, experiments probing the aggregation of protein G and several of its mutants
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showed that their ability to form amyloid fibrils under destabilizing conditions was strongly

correlated with their individual stabilities under such conditions52.

Fig. 3 Free-energy landscapes of 4-chain WT protein systems at packing fractions φv=6, 15, 26

and 50%. Structures are characterized in terms of two order parameters: the number of native and

inter-protein contacts per chain, nn and ni, respectively.
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III.3 Structural behavior at elevated protein concentration

In previous work, we demonstrated that the folding landscape of a protein undergoes

significant changes when surrounded by adjacent proteins33,34. An example of such changes is

presented in Fig. 3 showing free-energy landscapes of a system of four WT protein chains at

volume fractions φv=6, 15, 26 and 50%. The order parameters used to describe both the degrees

of folding and inter-protein association are the number of native bonds per chain, 0

� 

≤  nn 

� 

≤81, and

the number of inter-protein contacts per chain, ni. Free-energy wells on the (nn, ni) plane

correspond to highly populated states that contribute most to the overall solution behavior. In the

relatively dilute system, φv=6%, the low free-energy region comprises nearly folded structures

with few inter-protein contacts. The two adjacent minima correspond to comparably stable states

with slightly different numbers of inter-protein bonds. Aggregated states with low nn and high ni

are not favored at this concentration. As the concentration rises, the positions of the free-energy

minima shift to misfolded (low nn), strongly associated states with many inter-protein contacts

(high ni). A snapshot showing a typical aggregate of misfolded chains is given in Fig. 4. Despite

some inter-protein bonding and concomitant destabilization of the folded states, the dilute system

may be viewed as one where protein molecules retain the biological function associated with the

native form.

Temporal fluctuations in the fraction of realized native bonds for the dilute WT system

are illustrated in the top two graphs in Fig. 5. Here, the number of attempted simulation moves

(in passes) is used as the time variable to enable a qualitative comparison between the different

sequences. The graph on the left side illustrates the folding process in a run where the initial state

in the simulation corresponds to random, unfolded conformation of all four 64-mer chains in the

system. Once folded, the system undergoes short-lived structural fluctuations but consistently
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Fig. 4 A snapshot of an aggregate comprising four model protein chains at protein volume

fraction φv=15%.

returns to the folded state; no long-lived unfolded structures are observed when starting from the

folded conformation.

While the two mutants resemble the WT protein in isolation (Fig. 2), their behavior

becomes markedly different in multi-chain cases, even at a packing fraction as low as φv~7%,

used in the examples in Fig. 5. The second and third pairs of graphs in Fig. 5 correspond to four-

chain mutant L36T and M54T systems, respectively. The left side shows trajectories originated

from unfolded random states. The chains never refold regardless of the time of simulation. The

graphs on the right side describe the time dependence of the structures of initially folded multi-

chain mutant systems. While pre-folded systems exhibit certain resistance against aggregation,

they eventually unfold and never return to the predominantly folded state. As shown in previous

studies, 19,23,32,33, the drop in the number of native contacts upon aggregation is accompanied by
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Fig. 5 Simulation-time dependence of the fraction of native bonds in a 7 volume % solution of

WT protein (top row) or its mutants L36T (2nd row) and M54T (3rd row). Graphs on the left are

initiated in unfolded state and those on the right start from a pre-folded configuration.

simultaneous increase in the number of inter-chain bonds such that the energy of stable

aggregates remains close to that of isolated native proteins. The above behavior was reproduced

consistently in many additional runs (not shown), clearly confirming that, under appropriate

conditions, the competition between refolding and aggregation can be strongly influenced even

by single-point mutations. Although performed on a simplified model, our calculations suggest

possibilities for elucidation of mutation effects in hereditary diseases involving protein

aggregation. Similarly, they provide a context for computer-assisted protein engineering leading

to protein drugs with improved aggregation resistance while maintaining desired structure and

biological activity.
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III.4 Thermodynamic characterization of sequence effects in associating systems

While the ability to aggregate is considered a generic feature of proteins5,9,10,53,54, the

substitutions discussed here merely modulate the aggregation propensity at the specified

conditions. In what follows, we present results of a thermodynamic analysis, which shows that

the effects of (moderate) residue substitutions may be comparable to those of changing external

variables like temperature or protein concentration. For this purpose, we rely on a minimalist

system subject to competition between protein folding and association: we consider a two-chain

64-mer system of WT or mutant proteins in a simulation cell of size L=12, φv~7%. Here, the

term association is preferred over aggregation as we consider relatively small protein clusters.

Ref.33 provides a thorough analysis of single and multi-chain WT systems. Fig. 6 shows the

temperature dependencies of the system heat capacity, Cv, (Fig. 6a) and the two characteristic

order parameters that measure the extents of folding and association, the numbers of native and

inter-protein contacts, nn (Fig. 6b) and ni (Fig. 6c). The peak in the heat capacity is associated

with the breakup of native bonds as the protein unfolds. In multi-chain systems, the melting

transition also involves the formation of new inter-protein bonds. The trade-off between native

and inter-chain bonds facilitates unfolding of the WT protein at appreciable concentration. As a

result, the melting point Tm shifts from 1.16 in isolation to 1.12 in the two-chain system. The

melting points in mutant systems are lower than those for the WT both in isolation and at finite

concentration. However, transition temperatures Tm in the two chain systems, ~1.07 for L36T and

1.03 for the M54T sequences, are close to and even slightly above the respective Tm ~1.045 and

1.025 for the same sequences in isolation. The presence of inter-chain bonds, therefore, reduces

the differences between stabilities of compact states in the WT and the mutant systems. This



19

  Fig. 6a   

0

200

400

600

800

1000

1200

1 1.1 1.2 1.3

T

C
v

WT
L36T
M54T

Fig. 6b   

0

20

40

60

80

1 1.1 1.2 1.3

T

N
n
at

WT
L36T
M54T

Fig. 6c   

0

5

10

15

20

1 1.1 1.2 1.3

T

N
in

te
r

WT
L36T
M54T



20

Fig. 6 Temperature dependencies of the heat capacity (a), and the numbers of native (b) and

inter-protein contacts (c) in a two-chain system containing the WT protein or its one-point

mutants L36T and M54T at the packing fraction φv~7%.

shows that, in the present examples, inter-protein interactions are less specific than the native

ones, as the interactions with neighboring chains make up for some of the energetic disadvantage

of the native state of the mutant relative to the WT protein.

Fig. 7 shows three-dimensional free-energy landscapes for the WT sequence (top row), mutant

L36T (2nd row), and mutant M54T (3rd row) at two reduced temperatures, T=1.0 (left), and

T=1.075 (right). Both temperatures are below the melting point Tm of the WT protein. The higher

of the two trial temperatures, T=1.075, however, slightly exceeds the melting temperatures of the

mutants. At T=1.0, the landscape of the WT protein in the two-chain system retains the funnel-

like shape conducive to folding. Performing the single-point mutations introduces auxiliary free-

energy minima corresponding to misfolded conformations. These structures are stabilized by

multiple inter-chain bonds. Our data for a two-chain associate illustrate an onset of the

concentration-induced transition to the aggregated form observed in the four-chain mutant

systems, as illustrated in Fig. 5. As the temperature rises to 1.075, the misfolded associated

structures gradually take over in mutant systems. At this temperature, the WT free-energy

landscape also begins developing a local minimum corresponding to misfolded associates similar

to the mutant L36T landscape at the lower temperature T=1.0. The two-chain L36T system at

T=1.0 is almost as far from the system’s melting temperature as is the WT two-chain system at
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Fig. 7 Free energy landscapes of two-chain WT (top row), mutant L36T (2nd row) and

M54T (3rd row) systems at temperatures T=1.0 (left) and T=1.075 (right) at volume fraction ~7%.
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T=1.077.  Based on the temperature dependencies shown in Figures 6b and 6c, the free-energy

landscapes of the WT and the mutants respond to an increase in the temperature in an analogous

manner, albeit at different transition temperatures, Tm.  The shift in Tm is somewhat bigger with

the mutant M54T than that for the L36T case. It appears commensurate to the difference between

the stabilities of the native states associated with the three different sequences (see e.g. Fig. 2).

The generality of our observations is limited by a small number of trial sequences;

further, our findings are based on studies of small, disordered oligomers that can be regarded as

precursors of large and more orderly aggregates. Nevertheless, the above examples lend support

to the notion that appropriate sequence substitutions can modulate the thermodynamics of

folding and association in a manner analogous to a change in external conditions. This is to say

that we can use subtle mutations to shift the coexistence lines in a multi-dimensional phase

diagram of a protein solution without modifying the phase behavior qualitatively. While only

temperature and concentration have been used as control system variables in the present

calculations, generalizations of this notion may apply to other properties such as the change in

solvent composition, including the addition of denaturant. This is to say that, because of strong

correlations between the binding states of the specified monomer and the proximity to the folded

state of the protein as a whole23, strengthening or weakening the bonds of a selected residue can

have an effect similar to modulating the overall strength of intra-protein bonds for the whole

chain.

Our observations can be extrapolated to multi-chain disordered oligomers. Less can be

said about the effect of sequence alterations on the transition to ordered multi-chain aggregates

such as those observed in amyloid fibrils. These structures are held together primarily by

nonspecific (hydrogen bond) interactions among backbone groups augmented by attraction
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between hydrophobic side chains. Substitutions we choose here weaken inter-chain hydrophobic

forces and are not likely to stabilize the aggregated form. Their effect on the competition

between the native and aggregated states can therefore be attributed to reduced stability of native

monomers. Mutation effects analogous to those observed with low oligomers can also be

expected in systems comprising higher and more ordered aggregates. Recent discontinuous

molecular dynamics studies have shown that stable ordered fibrillar structures eventually replace

amorphous aggregates when grown beyond the critical nucleus size typically comprising about

102 or more peptide chains28. In view of computational costs, such calculations have so far been

performed only for systems of relatively short oligopeptides whose unfavorable surface-to-

volume ratio does not support stable native structures representative of folded proteins. In future

work, we plan to exploit the axial periodicity of ordered fibrillar phases to model large ordered

aggregates by means of periodic boundary conditions. Within a two-box system open to

monomer transfer analogous to the Gibbs ensemble simulation46, this type of calculation is

expected to enable a thermodynamic characterization for the competition between the two stable

phases (the native state and ordered aggregates), complementing the studies of oligomeric

intermediates described in the present work.

IV. CONCLUDING REMARKS

Most proteins can exist both in stable folded states and as aggregates, with the prevailing

form determined by external conditions. Simple model systems presented here provide examples

where single-point sequence alterations can shift the coexistence boundary between the different

regimes without affecting the native-state conformation of the protein. This way, they suggest

the possibility of modulating protein-aggregation propensity when external conditions are
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imposed by system requirements, e.g. in living cellular environments or in the processing and

storage of protein drugs. Without ruling out the possibility of more specific mechanisms, which

could be captured using a molecular-level description of associating proteins, our coarse-grained

calculations suggest that adequate effects can generally be obtained by moderate sequence

substitutions leading to mild destabilization or stabilization of the protein native state. While the

former cases can be associated with the genetic propensity to certain protein-aggregation

diseases, the latter provide a basis for envisaged engineering of comparatively aggregation-

resistant proteins. With expected development of more realistic, yet computationally tractable

protein models, molecular simulations hold promise to become an important tool in computer-

assisted design of novel proteins with optimized aggregation behavior, leading to improved

refolding yield of inclusion bodies, or to enhanced and controlled aggregates that serve as

nanomaterials.
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