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Abstract

Unsupervised estimation of latent variable models is a fundamental problem central to nu-
merous applications of machine learning and statistics. This work presents a principled approach
for estimating broad classes of such models, including probabilistic topic models and latent linear
Bayesian networks, using only second-order observed moments. The sufficient conditions for iden-
tifiability of these models are primarily based on weak expansion constraints on the topic-word
matrix, for topic models, and on the directed acyclic graph, for Bayesian networks. Because no
assumptions are made on the distribution among the latent variables, the approach can handle
arbitrary correlations among the topics or latent factors. In addition, a tractable learning method
via `1 optimization is proposed and studied in numerical experiments.

1 Introduction

It is widely recognized that incorporating latent or hidden variables is a crucial aspect of modeling.
Latent variables can provide a succinct representation of the observed data through dimensionality
reduction; the possibly many observed variables are summarized by fewer hidden effects. Further,
they are central to predicting causal relationships and interpreting the hidden effects as unobservable
concepts. For instance in sociology, human behavior is affected by abstract notions such as social
attitudes, beliefs, goals and plans. As another example, medical knowledge is organized into casual
hierarchies of invading organisms, physical disorders, pathological states and symptoms, and only
the symptoms are observed.

In addition to incorporating latent variables, it is also important to model the complex depen-
dencies among the variables. A popular class of models for incorporating such dependencies are the
Bayesian networks, also known as belief networks. They incorporate a set of causal and conditional
independence relationships through directed acyclic graphs (DAG) [49]. They have widespread ap-
plicability in artificial intelligence [19, 25, 41, 42], in the social sciences [13, 18, 40, 50, 51, 64], and as
structural equation models in economics [12,18,33,51,60,65].
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An important statistical task is to learn such latent Bayesian networks from observed data. This
involves discovery of the hidden variables, structure estimation (of the DAG) and estimation of the
model parameters. Typically, in the presence of hidden variables, the learning task suffers from
identifiability issues since there may be many models which can explain the observed data. In order
to overcome indeterminacy issues, one must restrict the set of possible models. We establish novel
criteria for identifiability of latent DAG models using only low order observed moments (second/third
moments). We introduce a graphical constraint which we refer to as the expansion property on the
DAG. Roughly speaking, expansion property states that every subset of hidden nodes has “enough”
number of outgoing edges in the DAG, so they have a noticeable influence on the observed nodes,
and thus on the samples drawn from the joint distribution of the observed nodes. This notion implies
new identifiability and learning results for DAG structures.

Another class of popular latent variable models are the probabilistic topic models [17]. In topic
models, the latent variables correspond to the topics in a document which generate the (observed)
words. Perhaps, the most widely employed topic model is the latent Dirichlet allocation (LDA) [16],
which posits that the hidden topics are drawn from a Dirichlet distribution. Recent approaches
have established that the LDA model can be learned efficiently using low-order (second and third)
moments, using spectral techniques [4, 5]. The LDA model, however, cannot incorporate arbitrary
correlations1 among the latent topics, and various correlated topic models have demonstrated superior
empirical performance, e.g. [15, 45], compared to LDA. However, learning correlated topic models
is challenging, and further constraints need to be imposed to establish identifiability and provable
learning.

A typical (exchangeable) topic model is parameterized by the topic-word matrix, i.e., the condi-
tional distributions of the words given the topics, and the latent topic distribution, which determines
the mixture of topics in a document. In this paper, we allow for arbitrary (non-degenerate) latent
topic distributions, but impose expansion constraints on the topic-word matrix. In other words, the
word support of different topics are not “too similar”, which is a reasonable assumption. Thus, we
establish expansion as an unifying criterion for guaranteed learning of both latent Bayesian networks
and topic models.

1.1 Summary of contributions

We establish identifiability for different classes of topic models and latent Bayesian networks, and
more generally, for linear latent models, and also propose efficient algorithms for the learning task.

1.1.1 Learning Topic Models

Learning under expansion conditions. We adopt a moment-based approach to learning topic
models, and specifically, employ second-order observed moments, which can be efficiently estimated
using a small number of samples. We establish identifiability of the topic models for arbitrary (non-
degenerate) topic mixture distributions, under assumptions on the topic-word matrix. The support
of the topic-word matrix is a bipartite graph which relates the topics to words. We impose a weak

1LDA models incorporate only “weak” correlations among topics, since the Dirichlet distribution can be expressed
as the set of independently distributed Gamma random variables, normalized by their sum: if yi ∼ Γ(αi, 1), we have
( y1∑

i yi
, y2∑

i yi
, . . .) ∼ Dir(α).
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(additive) expansion constraint on this bipartite graph. Specifically, let A ∈ Rn×k denote the topic-
word matrix, and for any subset of topics S ⊂ [k] (i.e., a subset of columns of A), let N(S) denote
the set of neighboring words, i.e., the set of words, the topics in S are supported on. We require
that

|N(S)| ≥ |S|+ dmax, (1)

where dmax is the maximum degree for any topic. Intuitively, our expansion property states that
every subset of topics generates sufficient number of words. We establish that under the above
expansion condition in (1), for generic2 parameters (for non-zero entries of A), the columns of A are
the sparsest vectors in the column span, and are therefore, identifiable.

In contrast, note that for all subsets of topics S ⊂ [k], the condition |N(S)| ≥ |S|, is necessary for
non-degeneracy of A, and therefore, for identifiability of the topic model from second order observed
moments. This implies that our sufficient condition in (1) is close to the necessary condition for
identifiability of sparse models, where the maximum degree of any topic dmax is small. Thus, we
prove identifiability of topic models under nearly tight expansion conditions on the topic-word matrix.
Since the columns of A are the sparsest vectors in the column span under (1), this also implies recovery
of A through exhaustive search. In addition, we establish that the topic-word matrix can be learned
efficiently through `1 optimization, under some (stronger) conditions on the non-zero entries of the
topic-word matrix, in addition to the expansion condition in (1). We call our algorithm TWMLearn
as it learns the topic-word matrix.

Bayesian networks to model topic mixtures. The above framework does not impose any
parametric assumption on the distribution of the topic mixture h (other than non-degeneracy), and
employs second-order observed moments to learn the topic-word matrix A and the second-order
moments of h. If h obeys a multivariate Gaussian distribution, then this completely characterizes
the topic model. However, for general topic mixtures, this is not sufficient to characterize the
distribution of h, and further assumptions need to be imposed. A natural framework for modeling
topic dependencies is via Bayesian networks [43]. Moreover, incorporating Bayesian networks for
topic modeling also leads to efficient approximate inference through belief propagation and their
variants [63], which have shown good empirical performance on sparse graphs.

We consider the case where the latent topics can be modeled by a linear Bayesian network,
and establish that such networks can be learned efficiently using second and third order observed
moments through a combination of `1 optimization and spectral techniques. The proposed algorithm
is called TMLearn as it learns (correlated) topic models.

1.1.2 Learning (Single-View) Latent Linear Bayesian Networks

The above techniques for learning topic models are also applicable for learning latent linear models,
which includes linear Bayesian networks discussed in the introduction. This is because our method
relies on the presence of a linear map from hidden to observed variables. In case of the topic
models, the topic-word matrix represents the linear map, while for linear Bayesian networks, the
(weighted) DAG from hidden to observed variables is the linear map. Linear latent models are
prevalent in a number of applications such as blind deconvolution of sound and images [44]. The
popular independent component analysis (ICA) [37] is a special case of our framework, where the

2The precise definition for parameter genericity is given in Condition 3.
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(a) Hierarchical topic model

Topics

h(1) h(2) h(3)

x(1)x(2)x(3) x(4) x(5) x(6) x(7) x(8)

A

Words in the vocabulary

(b) Bayesian networks to model topic mixtures

Figure 1: Illustrations of hierarchical topic models and Bayesian networks for topic mixtures. Words
and topics are respectively shown by shaded and white circles. Under the expansion property for the
graph, we prove identifiability of these models from low order moments of the words.

sources (i.e., the hidden variables) are assumed to be independent. In contrast, we allow for general
latent distributions, and impose expansion conditions on the linear map from hidden to observed
variables.

One key difference between topic models and other linear models (including linear Bayesian
networks) is that topic models are multi-view (i.e., have multiple words in the same document), while,
for general linear models, multiple views may not be available. We require additional assumptions
to provide recovery in the single-view setting. We prove recovery under certain rank conditions: we
require that n ≥ 3k, where n is the dimension of the observed random vector and k, the dimension
of the latent vector, and the existence of a partition into three sets each with full column rank.
Under these conditions, we propose simple matrix decomposition techniques to first “de-noise” the
observed moments. These denoised moments are of the same form as the moments obtained from a
topic model and thus, the techniques described for learning topic models can be applied on denoised
moments. Thus, we provide a general framework for guaranteed learning of linear latent models
under expansion conditions.

Hierarchical topic models. An important application of these techniques is in learning hierarchical
linear models, where the developed method can be applied recursively, and the estimated second
order moment of each layer can be employed to further learn the deeper layers. See Fig. 1(a) for an
illustration.

Examples of graphs which can be learned. It is useful to consider some concrete examples
which satisfy the expansion property in (1):

Full d-regular trees. These are tree structures in which every node other than the leaves has d
children. These are included in the ensemble of hierarchical models. We see that for d ≥ 2, the
model satisfies the expansion condition (1), but require d ≥ 3 to satisfy the rank condition. See
Fig. 2(a) for an illustration of a full ternary tree with latent variables.
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(a) Full ternary tree (b) Caterpillar tree

Figure 2: Illustration of full ternary tree and caterpillar tree. Concrete examples of correlated topic
models than can be learned using low order moments. Words and topics are respectively shown by
shaded and white circles.

Caterpillar trees. These are tree structures in which all the leaves are within distance one of a central
path. See Fig. 2(b) for an illustration. These structures have effective depth one. Let dmax and dmin

respectively denote the maximum and the minimum number of leaves connected to a fixed node on
the central path. It is immediate to see that if dmin ≥ dmax/2 + 1, the structure has the expansion
property in (1).

Random bipartite graphs. Consider bipartite graphs with hidden nodes in one part and observed
nodes in the other part. Each edge (between the two parts) is included in the graph with probability
θ, independent from every other edge. It is easy to see that, for any set S ⊆ [k], the expected number
of its neighbors is : E|N(S)| = n(1− (1− θ)|S|). Also, the expected degree of the hidden nodes is θn.
Now, by applying a Chernoff bound, one can show that these graphs have the expansion property
with high probability, if 1−

√
1− 2k/n < θ < 1/2, i.e., with probability converging to one as n→∞.

1.2 Our techniques

Our proof techniques rely on ideas and tools developed in dictionary learning, spectral techniques,
and matrix decomposition. We briefly explain our techniques and their relationships to these areas.

Dictionary learning and `1 optimization. We cast the topic models as linear exchangeable
multiview models in Section 2.2 and demonstrate that the second order (cross) moment between any
two words xi, xj satisfies

E[xix
>
j ] = E[E[xix

>
j |h]] = AE[hh>]A>, ∀ i 6= j, (2)

where A ∈ Rn×k in the topic-word matrix, n is the vocabulary size, k is the number of topics, and
h is the topic mixture. Thus, the problem of learning topic models using second order moments
reduces to finding matrix A, given AE[hh>]A>.

Indeed, further conditions need to be imposed for identifiability of A from AE[hh>]A>. A natural
non-degeneracy constraint is that the correlation matrix of the hidden topics E[hh>] be full rank,
so that Col(A) = Col(AE[hh>]A>), where Col(·) denotes the column span. Under the expansion
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condition in (1), for generic parameters, we establish that the columns of A are the sparsest vectors in
Col(A), and are thus identifiable. To prove this claim, we leverage ideas from the work of Spielman et.
al. [59], where the problem of sparsely used dictionaries is considered under probabilistic assumptions.
In addition, we develop novel techniques to establish non-probabilistic counterpart of the result
of [59]. A key ingredient in our proof is establishing that submatrices of the topic-word matrix,
corresponding to any subset of columns and their neighboring rows, satisfy a certain null-space
property under generic parameters and expansion condition in (1).

The above identifiability result implies recovery of the topic-word matrix A through exhaustive
search for sparse vectors in Col(A). Instead, we propose an efficient method to recover the columns
of A through `1 optimization. We prove that `1 method recovers the matrix A, under the expansion
condition in (1), and some additional conditions on the non-zero entries of A.

Spectral techniques for learning latent Bayesian networks. When the topic distribution
is modeled via a linear Bayesian network, we exploit additional structure in the observed moments
to learn the relationships among the topics, in addition to the topic-word matrix. Specifically, we
assume that the topic variables obey the following linear equations:

h(j) =
∑
`∈PAj

λj`h(`) + η(j), for j ∈ [k], (3)

where PAj denotes the parents of node j in the directed acyclic graph (DAG) corresponding to the
Bayesian network. Here, we assume that the noise variables η(j) are non-Gaussian (e.g., they have
non-zero third moment or excess kurtosis), and are independent. We employ the `1 optimization
framework discussed in the previous paragraph, and in addition, leverage the spectral methods of [4]
for learning using second and third observed moments.

We first establish that the model in (3) reduces to independent component analysis (ICA), where
the latent variables are independent components, and this problem can be solved via spectral ap-
proaches (e.g., [4]). Specifically, denote Λ = [λi,j ], where λi,j denotes the dependencies between
different hidden topics in (3). Solving for the hidden topics hj , we have h = (I − Λ)−1η, where
η := (η(1), . . . , η(k)) denotes the independent noise variables in (3). Thus, the latent Bayesian
network in (3) reduces to an ICA model, where η := (η(1), . . . , η(k)) are the independent latent
components, and the linear map from hidden to the observed variables is given by A(I−Λ)−1, where
A is the original topic-word matrix. We then apply spectral techniques from [4], termed as excess
correlation analysis (ECA), to learn A(I − Λ)−1 from the second and third order moments of the
observed variables. ECA is based on two singular value decompositions: the first SVD whitens the
data (using second moment) and the second SVD uses the third moment to find directions which
exhibit information that is not captured by the second moment. Finally, in order to recover A from
A(I−Λ)−1, we exploit the expansion property in (1), and extract A as described previously through
`1 optimization. The high-level idea is depicted in Fig. 3.

Matrix decomposition into diagonal and low-rank parts for general linear models. Our
framework for learning topic models casts them as linear multiview models, where the words represent
the multiple views of the hidden topic mixture h, and the conditional expectation of each word given
the topic mixture h is a linear map of h. We extend our results for learning general linear models,
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x(1) x(2) x(3) x(4)x(5) x(6)x(7)x(8) x(9)

h(1) h(2) h(3)

x(1) x(2) x(3) x(4) x(5) x(6)x(7)x(8) x(9)

η(1) η(2) η(3)

ECA Learn

A(I − Λ)−1

Expansion
property Extract

A and Λ

Figure 3: The high-level idea of the technique used for learning latent Bayesian networks. In the
leftmost graph (original DAG) the hidden nodes depend on each other through the matrix Λ and
the observed variables depend on the hidden nodes through the coefficient matrix A. We consider
an equivalent DAG with new independent latent variables ηj (these are in fact the noise terms at
the hidden nodes in the previous model). Here, the observed variables depend on the hidden ones
through the matrix A(I −Λ)−1. Applying ECA method, we learn this matrix from the (second and
third order) observed moments. Finally, using the expansion property of the connectivity structure
between the hidden part and the observed part, we extract A and Λ from A(I − Λ)−1.

where such multiple views may not be available. Specifically, we consider

x(i) =
∑
j∈PAi

aijh(j) + ε(i), for i ∈ [n] , (4)

where {ε(i)}i∈[n] are uncorrelated and are independent from the hidden variables {h(j)}j∈[k]. In this
case, the second order moments Σ := E[xx>] satisfies

Σ = AE[hh>]A> + E[εε>],

and has another noise component E[εε>], when compared to the second-order (cross) moment for
topic models in (2). Note that the rank of AE[hh>]A> is k (under non-degeneracy conditions), where
k is the number of topics. Thus, when k is sufficiently small compared to n, we can view Σ as the sum
of a low-rank matrix and a diagonal one. We prove that under the rank condition that3 n ≥ 3k (and
the existence of a partition of three sets of columns of A such that each set has full column rank),
E[xx>] can be decomposed into its low-rank component AE[hh>]A> and its diagonal component
E[εε>]. Thus, we employ matrix decomposition techniques to “de-noise” the second order moment
and recover AE[hh>]A> from Σ. From here on, we can apply the techniques described previously
to recover A through `1 optimization. Thus, we develop novel techniques for learning general latent
linear models under expansion conditions.

Our presentation focuses on using exact (population) observed moments to emphasize the cor-
rectness of the methodology. However, “plug-in” moment estimates can be used with sampled data.
To partially address the statistical efficiency of our method, note that higher-order empirical mo-
ments generally have higher variance than lower-order empirical moments, and therefore are more

3It should be noted that other matrix decomposition methods have been considered previously [22, 36, 56]. Using
these techniques, we can relax Condition 5 to k ≤ n/2, but only by imposing stronger incoherence conditions on the
low-rank component.
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difficult to reliably estimate. Our techniques only involve low-order moments (up to third order).
A precise analysis of sample complexity involves standard techniques for dealing with sums of i.i.d.
random matrices and tensors as in [4] and is left for future study. See Section 6 for the performance
of our proposed algorithms under finite number of samples.

1.3 Related work

Probabilistic topic models have received widespread attention in recent years; see [17] for an overview.
However, till recently, most learning approaches do not have provable guarantees, and in practice
Gibbs sampling or variational Bayes methods are used. Below, we provide an overview of learning
approaches with theoretical guarantees.

Learning topic models through moment-based approaches. A series of recent works aim to
learn topic models using low order moments (second and third) under parametric assumptions on
the topic distribution, e.g. single-topic model [6] (each document consists of a single topic), latent
Dirichlet allocation (LDA) [4], independent components analysis (ICA) [37] (the different components
of h, i.e., hi are independent), and so on; see [5] for an overview. A general framework based on tensor
decomposition is given in [5] for a wide range of latent variable models, including LDA and single
topic models, Gaussian mixtures, hidden Markov models (HMM), and so on. These approaches do
not impose any constraints on the topic-word matrix A (other than non-degeneracy). In contrast, in
this paper, we impose constraints on A, and allow for any general topic distribution. Furthermore,
we specialize the results to parametric settings where the topic distribution is a Bayesian network,
and for this sub-class, we use ideas from the method of moments (in particular, the excess correlation
method (ECA) of [4]) in conjunction with ideas from sparse dictionary learning.

Learning topic models through non-negative matrix factorization. Another series of recent
works by Arora et. al. [9,10] employ a similar philosophy as this paper: they allow for general topic
distributions, while constraining the topic-word matrix A. They employ approaches based on non-
negative matrix factorization (NMF), and exploit the fact that A is non-negative (recall that A
corresponds to conditional distributions). The approach and the assumptions are quite different
from this work. They establish guaranteed learning under the assumption that every topic has an
anchor word, i.e. the word is uniquely generated from the topic, and does not occur under any
other topic (with reasonable probability). Note that the presence of anchor words implies expansion
constraint: |N(S)| ≥ |S| for all subsets S of topics, where N(S) is the set of neighboring words for
topics in S. In contrast, our requirement for guaranteed learning is |N(S)| ≥ |S| + dmax, where
dmax is the maximum degree of any topic. Thus our requirement is comparable to |N(S)| ≥ |S|,
when dmax is small, and our approach does not require presence of anchor word. Additionally, our
approach does not assume that the topic-word matrix A is positive, which makes it applicable for
more general linear models, e.g. when the variables are not discrete and matrix A corresponds to
a general mixing matrix (note that for discrete variables, A corresponds to conditional distribution
and is thus non-negative).

Dictionary learning. As discussed in Section 1.2, we use some of the the ideas developed in the
context of sparsely used dictionary learning problem. The problem setup there is that one is given a
matrix X and is asked to find a pair of matrices A and M so that ‖X −AM‖ is small and also M is
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sparse. Here, A is considered as the dictionary being used. Spielman et. al [59] study this problem
assuming that A is a full rank square matrix and the observation X is noiseless, i.e., X = AM . In
this scenario, the problem can be viewed as learning a matrix X from its row space knowing that
X enjoys some sparsity structure. Stating the problem this way clearly describes the relation to our
work, as we also need to recover the topic-word matrix A from its second-order moments AE[hh>]A>,
as explained in Section 1.2.

The results of [59] are obtained assuming that the entries of M are drawn i.i.d. from a Bernoulli-
Gaussian distribution. The idea is then to seek the rows of X sequentially, by looking for the sparse
vectors in Row(Y ). Leveraging similar ideas, we obtain non-probabilistic counterpart of the results,
i.e., without assuming any parametric distribution on the topic-word matrix. These conditions
turn out to be intuitive expansion conditions on the support of the topic-word matrix, assuming
generic parameters. Our technical arguments to arrive at these results are different than the ones
employed in [59], since we do not assume any parametric distribution, and its application to learning
topic models is novel. Moreover, in fact, it can be shown that the considered probabilistic models
considered our [59], satisfy the expansion property (1) almost surely, and are thus, special cases
under our framework. Variants of the sparse dictionary learning problem of [59] have also been
proposed [32, 66]. For a detailed discussion on other works dealing with dictionary learning, refer
to [59].

Linear structural equations. In general, structural equation modeling (SEM) is defined by a
collection of equations zi = fi(zPAi , εi), where zi’s are the variables associated to the nodes. Recently,
there has been some progress on the identifiability problem of SEMs in the fully observed linear
models [35, 52, 53, 57]. More specifically, it has been shown that for linear functions fi and non-
Gaussian noise, the underlying graph G is identifiable [57]. Moreover, if one restricts the functions to
be additive in the noise term and excludes the linear Gaussian case (as well as a few other pathological
function-noise combinations), the graph structure G is identifiable [35,53]. Peters et. al. [52] consider
Gaussian SEMs with linear functions, and the normally distributed noise variables with the same
variances and show that the graph structure G and the functions are identifiable. However, none
of these works deal with latent variables, or address the issue of efficiently learning the models. In
contrast, our work here can be viewed as a contribution to the problem of identifiability and learning
of linear SEMs with latent variables.

Learning Bayesian networks and undirected graphical models. The problem of iden-
tifiability and learning graphical models from distributions has been the object of intensive inves-
tigation in the past years and has been studied in different research communities. This problem
has proved important in a vast number of applications, such as computational biology [29, 55], eco-
nomics [12, 18, 33, 65], sociology [13, 18, 40, 64], and computer vision [25, 42]. The learning task has
two main ingredients: structure learning and parameter estimation.

Structure estimation of probabilistic graphical models has been extensively studied in the re-
cent years. It is well known that maximum likelihood estimation in fully observed tree models is
tractable [26]. However, for general models, maximum likelihood structure learning is NP-hard even
when there are no hidden variables. The main approaches for structure estimation are score-based
methods, local tests and convex relaxation methods. Score-based methods such as [23] find the graph
structure by optimizing a score (e.g., Bayesian Independence Criterion) in a greedy manner. Local
test approaches attempt to build the graph based on local statistical tests on the samples, both for
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h

x1 x2 · · · x`

Figure 4: Exchangeable topic model with topic mixture h and xi represents i-th word in the docu-
ment.

directed and undirected graphical models [1,7,20,34,38,61]. Convex relaxation approaches have also
been considered for structure estimation (e.g., [46, 54]).

In the presence of latent variables, structure learning becomes more challenging. A popular class
of latent variable models are latent trees, for which efficient algorithms have been developed [3,24,27,
30]. Recently, approaches have been proposed for learning (undirected) latent graphical models with
long cycles in certain parameter regimes [8]. In [21], latent Gaussian graphical models are estimated
using convex relaxation approaches. The authors in [58] study linear latent DAG models and propose
methods to (1) find clusters of observed nodes that are separated by a single latent common cause;
and (2) find features of the Markov Equivalence class of causal models for the latent variables. Their
model allows for undirected edges between the observed nodes. In [2], equivalence class of DAG
models is characterized when there are latent variables. However, the focus is on constructing an
equivalence class of DAG models, given a member of the class. In contrast, we focus on developing
efficient learning methods for latent Bayesian networks based on spectral techniques in conjunction
with `1 optimization.

2 Model and sufficient conditions for identifiability

Notation. We write ‖v‖p for the standard `p norm of a vector v. Specifically, ‖v‖0 denotes the
number of non-zero entries in v. Also, ‖M‖p refers to the induced operator norm on a matrix M .
For a matrix M and set of indices I, J , we let MI denote the submatrix containing just the rows
in I and MI,J denote the submatrix formed by the rows in I and columns in J . For a vector v,
supp(v) represents the positions of non-zero entries of v. We use ei to refer to the i-th standard basis
element, e.g., e1 = (1, 0, . . . , 0). For a matrix M we let Row(M) (similarly Col(M)) denote the span
of its rows (columns). For a set S, |S| is its cardinality. We use the notation [n] to denote the set
{1, . . . , n}. For a vector v, diag(v) is a diagonal matrix with the elements of v on the diagonal. For
a matrix M , diag(M) is a diagonal matrix with the same diagonal as M . Throughout ⊗ denotes the
tensor product.

2.1 Overview of topic models

Consider the bag-of-words model for documents in which the sequence of observed words x1, x2, . . . , x`
in the document are exchangeable, i.e., the joint probability distribution is invariant to permutation
of the indices. The well-known De Finetti’s theorem [11] implies that such exchangeable models
can be viewed as mixture models in which there is a latent variable h such that x1, x2, . . . , x` are
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conditionally i.i.d. given h and the conditional distributions are identical at all the nodes. See Fig.4
for an illustration.

In the context of document modeling, the latent variable h can be interpreted as a distribution
over the topics occurring in a document. If the total number of topics is k, then h can be viewed
as a distribution over the simplex ∆k−1. The word generation process is thus a hierarchical process:
for each document, a realization of h is drawn and it represents the proportion of topics in the
documents, and for each word, first a topic is drawn from the topic mixture, and then the word is
drawn given the topic.

Let A = [aij ] ∈ Rn×k denote the topic-word matrix, where ai,j denotes the conditional probability
of word i occurring given that the topic j was drawn. It is convenient to represent the words in the
document by n-dimensional random vectors x1, x2, . . . , x` ∈ Rn. Specifically, we set

xt = ei if and only if the t-th word in the document is i, t ∈ [`],

where e1, e2, . . . en is the standard coordinate basis for Rn.
The above encoding allows for a convenient representation of topic models as linear models:

E[xi|h] = Ah, ∀ i ∈ [l],

and moreover the second order cross-moments (between two different words) have a simple form:

E[xix
>
j ] = E[E[xix

>
j |h]] = AE[hh>]A>, ∀ i 6= j. (5)

Thus, the above representation allows us to view topic models as linear models. Moreover, it allows us
to incorporate other linear models, i.e. when xi are not basis vectors. For instance, the independent
components model is a popular framework, and can be viewed as a set of linear structural equations
with latent variables. See Section 5 for a detailed discussion.

Thus, the learning task using second-order (exact) moments in (5) reduces to recovering A from
AE[hh>]A>, or equivalently AE[hh>]1/2.

2.2 Sufficient conditions for identifiability

We first start with some natural non-degeneracy conditions.

Condition 1 (Non-degeneracy). The topic-word matrix A := [ai,j ] ∈ Rn×k has full column rank and
the hidden variables are linearly independent, i.e., with probability one, if

∑
i∈[k] αih(i) = 0, then

αi = 0, for all i ∈ [k].

We note that without such non-degeneracy assumptions, there is no hope of distinguishing dif-
ferent hidden nodes.

We now describe sufficient conditions under which the topic model becomes identifiable using
second order observed moments. Given word observations x1, x2, . . ., note that we can only hope to
identify the columns of topic-word matrix A up to permutation because the model is unchanged if
one permutes the hidden variable h and the columns of A correspondingly. Moreover, the scale of
each column of A is also not identifiable. To see this, observe that Eq. (5) is unaltered if we both
rescale all the coefficients {aij}i∈[n] and appropriately rescale the variable h(j). Without further
assumptions, we can only hope to recover a certain canonical form of A, defined as follows:
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Definition 2.1. We say A is in a canonical form if all of its columns have unit norm. In particular,
the transformation A← Adiag(‖A[n],1‖−1, ‖A[n],2‖−1, . . . , ‖A[n],k‖−1) and the corresponding rescaling
of h place A in canonical form and the distribution over xi, i ∈ [n], is unchanged.

Furthermore, observe that the canonical A is only specified up to sign of each column since any
sign change of column i does not alter its norm.

Thus, under the above non-degeneracy and scaling conditions, the task of recovering A from
second-order (exact) moments in (5) reduces to recovering A from Col(A). Recall that our criterion
for identifiability is that the sparsest vectors in the Col(A) correspond to the columns of A. We now
provide sufficient conditions for this to occur, in terms of structural conditions on the support of A,
and parameter conditions on the non-zero entries of A.

For structural conditions on the topic-word matrix A, we proceed by defining the expansion
property of a graph which plays a key role in establishing our identifiability results.

Condition 2 (Graph expansion). Let H(Vhid,Vobs) denote the bipartite graph formed by the support
of A: H(i, j) = 1 when ai,j 6= 0, and 0 otherwise, and Vhid := [k], Vobs := [n]. We assume that the
H satisfies the following expansion property:

|N(S)| ≥ |S|+ dmax, ∀S ⊂ [k], |S| ≥ 2, (6)

where N(S) := {i ∈ V2 : (j, i) ∈ E for some j ∈ S} is the set of the neighbors of S and dmax is the
maximum degree of nodes in Vhid.

Note that the condition |N(S)| ≥ |S|, for all subsets of hidden nodes S ⊂ [k], is necessary for
the matrix A to be full column rank. We observe that the above sufficient condition in (6) has
an additional degree term dmax, and is thus close to the necessary condition when dmax is small.
Moreover, the above condition in (6) is only a weak additive expansion, in contrast to multiplicative
expansion, which is typically required for various properties to hold, e.g. [14].

The last condition is a generic assumption on the entries of matrix A. We first define the
parameter genericity property for a matrix.

Condition 3 (Parameter genericity). We assume that the topic-word matrix A has the following
parameter genericity property: for any v ∈ Rk with ‖v‖0 ≥ 2, the following holds true.

‖Av‖0 > |NA(supp(v))| − | supp(v)|, (7)

where for a set S ⊆ [k], NA(S) := {i ∈ [n] : Aij 6= 0 for some j ∈ S}.

This is a mild generic condition. More specifically if the entries of any arbitrary fixed matrix M
are perturbed independently, then it satisfies the above generic property with probability one.

Remark 2.2. Fix any matrix M ∈ Rn×k. Let Z ∈ Rn×k be a random matrix such that {Zij : Mij 6=
0} are independent random variables, and Zij ≡ 0 whenever Mij = 0. Assume each variable is drawn
from a distribution with uncountable support. Then

P(M + Z does not satisfy Condition 3) = 0. (8)

Remark 2.2 is proved in Appendix B.
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3 Identifiability result and Algorithm

In this section, we state our identifiability results and algorithms for learning the topic models under
expansion conditions.

Theorem 3.1 (Identifiability of the Topic-Word Matrix). Let Pairs := E[x1 ⊗ x2] be the pairwise
correlation of the words. For the model described in Section 2.2 (Conditions 1, 2, 3), all columns of
A are identifiable from Pairs.

Theorem 3.1 is proved in Section A.1. As shown in the proof, columns of A are in fact the
sparsest vectors in the space Col(AE[hh>]A>). This result already implies identifiability of A via an
exhaustive search, which is an interesting result in its own right. The following theorem provides some
conditions under which the columns of A can be identified by solving a set of convex optimization
problems. Before stating the theorem, we need to establish some notations.

For i ∈ [n], we define Ni := {j ∈ [k] : Aij 6= 0} and N2
i := {l ∈ [n] : Alj 6= 0 for some j ∈ Ni}.

Similarly, for j ∈ [k], define Nj := {i ∈ [n] : Aij 6= 0} and N2
j := {l ∈ [k] : Ail 6= 0 for some i ∈ Nj}.

Thus, for a node i (either a topic or a word), Ni is the set of its neighbors and N2
i represents the set

of nodes with distance exactly two from i. Therefore, if i is a word node, N2
i is the set of its siblings

and if i is a topic word, N2
i is the set of topics with a common child. We further use superscript c to

denote the set complement.

Theorem 3.2 (Recovery of the Topic-Word Matrix through `1-minimzation). Suppose that in each
row of A, there is a gap between the maximum and the second maximum absolute values. For i ∈ [n],
let πi be a permutation such that |ai,πi(1)| ≥ |ai,πi(2)| ≥ · · · ≥ |ai,πi(k)|, and |ai,πi(2)|/|ai,πi(1)| ≤ 1− γi,
for some γi > 0. Further suppose that [k] ⊆ {π1(1), . . . , πn(1)}. In words, each column contains at
least one entry that has the maximum absolute value in its row. If the following conditions hold true
for i ∈ [n], then TWMLearn returns the columns of A in canonical form.

(i) ‖A(N2
i )
c,(Ni)c

v‖1 > ‖AN2
i ,(Ni)

c v‖1 for all non-zero vectors v ∈ R|(Ni)c|.

(ii) ‖A(Nj)c,Ni\j v‖1 > ‖ANj ,Ni\j v‖1 + (1 − γ)‖ANj ,j‖1‖v‖1 for all j ∈ Ni and all non-zero vectors

v ∈ R|Ni|−1.

Theorem 3.2 is proved in Section A.2. TWMLearn is essentially the ER-SpUD presented in [59]
for exact recovery of sparsely-used dictionaries, but the technical result and application in Theo-
rem 3.2 are novel.

TWMLearn involves solving n optimization problems and as the number of words becomes
large, this requires a fast method to solve `1 minimization. Traditionally, the `1 minimization can
be formulated as a linear programming (LP) problem. In particular, each of the `1 minimizations in
TWMLearn can be written as an LP with 2(n−1) inequality constraints and one equality constraint.
However, the computational complexity of such a general-purpose formulation is often too high for
large scale applications. Alternatively, one can use approximate methods which are significantly
faster. There are several relevant algorithms with this theme, such as gradient projection [31, 39],
iterative shrinkage-thresholding [28], and proximal gradient (Nestrov’s method) [47,48].
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TWMLearn: Learning the topic-word matrix form pairwise correlations (Pairs).

Input: Pairwise correlation of the words (Pairs).
Output: Columns of A up to permutation.

1: for each i ∈ [n] do
2: Solve the optimization problem4

min
w
‖Pairs1/2w‖1 subject to (e>i Pairs1/2)w = 1.

3: Set si = Pairs1/2w, and let S = {s1, . . . , sn}.
4: for each j = 1, . . . , k do
5: repeat
6: Let vj be an arbitrary element in S.
7: Set S = S\{vj}.
8: until rank([v1| · · · |vj ]) = j

9: return Â =
[
v1
‖v1‖

∣∣∣ · · · ∣∣∣ vk‖vk‖].

4 Bayesian networks for modeling topic distributions

According to Theorem 3.1, we can learn the topic-word matrix A without any assumption on the
dependence relationships among the hidden topics. (We only need the non-degeneracy assump-
tion discussed in Condition 1 which requires the hidden variables to be linearly independent with
probability one.)

Bayesian networks provide a natural framework for modeling topic dependencies, and we employ
them here for modeling topic distributions. For these families, we prove identifiability and learning
of the entire model, including the topic relationships and the topic-word matrix.

Bayesian networks, also known as belief networks, incorporate a set of causal and conditional
independence through directed acyclic graphs (DAG) [49]. They have widespread applicability in
artificial intelligence [19, 25, 41, 42], in the social sciences [13, 18, 40, 50, 51, 64], and as structural
equation models in economics [12,18,33,51,60,65].

We define a DAG model as a pair (G,Pθ), where Pθ is a joint probability distribution, parame-
terized by θ, on k variables h := (h(1), . . . , h(k)) that is Markov with respect to a DAG G = (H, E)
with H = {1, . . . , k} [43]. More specifically, the joint probability Pθ(h) factors as

Pθ(h) =
k∏
i=1

Pθ(h(i)|hPAi), (9)

where PAi := {j ∈ V : (j, i) ∈ E} denotes the set of parents of node i in G.
We consider a subclass of DAG models for the topics in which the topics obey the linear relations

h(j) =
∑
`∈PAj

λj`h(`) + η(j) , for j ∈ [k] , (10)

where η(j) represents the noise variable at topic j. We further assume that the noise variables η(j)
are independent.
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Let Λ ∈ Rk×k be the matrix with λij at the (i, j) entry if j ∈ PAi and zero everywhere else.
Without loss of generality, we assume that hidden (topic) variables h(j), the observed (word) variables
x(i) and the noise terms ε(i), η(j) are all zero mean. We also denote the variances of ε(i) and η(j)
by σ2ε(i) and σ2η(j), respectively. Let µε(i) and µη(j) respectively denote the third moment of ε(i) and

η(j), i.e., µε(i) := E[ε(i)3] and µη(j) := E[η(j)3]. Define the skewness of η(j) as:

γη(j) :=
µη(j)

σ3η(j)
. (11)

Finally, define the following moments of the observed variables:

Pairs := E[x1 ⊗ x2],
Triples := E[x1 ⊗ x2 ⊗ x3] .

(12)

It is convenient to consider the projection of Triples to a matrix as follows:

Triples(ζ) := E[x1 ⊗ x2 〈ζ, x3〉] ,

where 〈·, ·〉 denotes the standard inner product.

Theorem 4.1. Consider a DAG model which satisfies the model conditions described in Section 2.2
and the hidden variables are related through linear equations (10). If the noise variables η(j) are
independent and have non-zero skewness for j ∈ [k], then the DAG model is identifiable from Pairs
and Triples(ζ), for an appropriate choice of ζ. Furthermore, under the assumptions of Theorem 3.2,
TMLearn returns matrices A and Λ up to a permutation of hidden nodes.

Theorem 4.1 is proven in Section A.3.
Notice that the only limitations on the noise variables η(j) are that they are independent5, and

have non-zero skewness. Some common examples of non-zero skewness distributions are exponential,
chi-squared and Poisson. Note that different topics may have different noise distributions.

Remark 4.2 (Special Cases). A special case of the above result is when the DAG is empty, i.e.
Λ = 0, and the topics h(1), . . . , h(k) are independent. This is popularly known as the independent
components model (ICA), and similar spectral techniques have been proposed before for learning
ICA [37]. Similarly, the ECA approach proposed above is also applicable for learning latent Dirichlet
allocation (LDA), using suitably adjusted second and third order moments [4]. Note that for these
special cases, we do not need to impose any constraints on the topic-word matrix A (other than
non-degeneracy), since we can directly learn A and the topic distribution through ECA.

Another immediate application of the technique used in the proof of Theorem 4.1 is in learning
fully-observed linear Bayesian networks.

Remark 4.3 (Learning fully-observed BN’s). Consider an arbitrary fully-observed linear DAG:

x(i) =
∑
j∈PAi

λijx(j) + η(i), for i ∈ [n], (13)

and suppose that the noise variables η(i) have non-zero skewness. Then, applying the same argument
as in the proof of Theorem 4.1, we can learn the matrix (I − Λ)−1 (and hence Λ) from the second
and third order moments (We have A = I here).
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TMLearn: Learning topic models with correlated topics.

Input: Observable moments Pairs and Triples as defined in Eq. (12).
Output: Columns of A, matrix Λ (in a topological ordering).

1: Part 1: ECA.
2: Find a matrix U ∈ Rn×k such that Col(U) = Col(Pairs).
3: Find V ∈ Rk×k such that V >(U>PairsU)V = Ik×k. Set W = UV .
4: Let θ ∈ Rk be chosen uniformly at random over the unit sphere.
5: Let Ω be the set of (left) singular vectors, with unique singular values, of W>Triples(Wθ)W .
6: Let S ∈ Rn×k be a matrix with columns {(W+)>ω : ω ∈ Ω}, where W+ = (W>W )−1W>.
7: Part 2: Finding A and Λ.
8: Let Â = TWMLearn(Pairs).
9: Let B̂ be a left inverse of Â. Let C = B̂S.

10: Reorder the rows and columns of C to make it lower triangular. Call it C̃.
11: return Columns of Â and Λ̂ = I − diag(C̃) C̃−1.

For sake of simplicity, TMLearn is presented using the ECA method, which uses a single random
direction θ and obtaining singular vectors of W>Triples(Wθ)W . A more robust alternative to this,
as described in [5], is to use the following power iteration to obtain the singular vectors {v1, . . . , vk};
we use this variant in the simulations described in Section 6.

{v1, . . . , vk} ← random orthonormal basis for Rk. Re-
peat:

1. For i = 1, 2, . . . , k :

• vi ←W>Triples(Wvi)Wvi.

2. Orthonormalize {v1, . . . , vk}.

In principle, we can extend the above framework, combining spectral and `1 approaches, for
learning other models on h. For instance, when the third order moments of h are sufficient statistics
(e.g. when h is a graphical model with treewidth two), it suffices to learn the third order moments
of h, i.e. E[h⊗ h⊗ h], where ⊗ denotes the outer product of vectors. This can be accomplished as
follows: first employ `1 based approach to learn the topic-word matrix A, then consider the third
order observed moments tensor T := E[x1 ⊗ x2 ⊗ x3]. We have that

T (A†, A†, A†) = E[h⊗ h⊗ h],

where T (A†, A†, A†) denotes the multi-linear map of T under A†. For details on multi-linear trans-
formation of tensors, see [5].

4.1 Learning using second-order moments

In Theorem 4.1, we prove identifiability and learning of hidden DAGs from second and third order
observed moments. A natural question is what can be done if only the second order moment is

5We only require pairwise and triple-wise independence.
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provided. The following remark states that if an oracle gives a topological ordering of the DAG
structure then the model can be learned only through the second order moment and there is no need
to the third order moment.

Remark 4.4. A topological ordering of a DAG is a labeling of the nodes such that, for every directed
edge (j, i), we have j < i. It is a well known result in graph theory that a directed graph is a DAG
if and only if it admits a topological ordering. Now, consider a DAG model with a full column rank
coefficient matrix A between the observed and hidden nodes. Further, suppose that an oracle provides
us with a topological ordering of the induced DAG on the hidden nodes, i.e., for any labeling of the
hidden nodes the oracle returns a permutation of the labels which is faithful to a topological ordering
of the DAG. Then, the DAG model (matrices A and Λ) are identifiable from only the second order
moment Pairs.

Remark 4.4 is proved in Appendix D.

5 Extension to general linear (single view) models

We have so far described a framework for identifiability and learning of topic models under expansion
conditions. In fact, the developed framework holds for any linear multi-view model. Recall that
if x1, x2, . . . are the words in the document, and h is the topic mixture variable, we have linearity
E[x|h] = Ah, and multiple (exchangeable and non-degenerate) views corresponding to different words
in the document. In particular, the cross-moments between two different words x1 and x2, given h,
is E[x1x

>
2 |h] = Ahh>A>.

We now extend the results to a general framework where, unlike topic models, only a single
observed view is available, and further assumptions are needed to learn in this setting.

Consider an observed random vector x ∈ Rn and a hidden random vector h ∈ Rk. Let G =
(Vobs ∪ Vhid, E) denote the bipartite graph with observed nodes Vobs = {x(1), . . . , x(n)} and hidden
nodes Vhid = {h(1), . . . , h(k)}. Let ε(i) be the noise variable associated with x(i), for i = 1, . . . , n
and denote the variance of ε(i) by σ2ε(i) > 0. Throughout we use the notation h := (h(1), . . . , h(k)),

x := (x(1), . . . , x(n)) and ε := (ε(1), . . . , ε(n)). The noise terms ε are assumed to be pairwise
uncorrelated. The class of models considered are specified by the following assumptions.

Condition 4 (Linear model). The observed and hidden variables obey the model6

x(i) =
∑
j∈PAi

aijh(j) + ε(i), for i ∈ [n] , (14)

where {ε(i)}i∈[n] are pairwise uncorrelated and are independent from {h(j)}j∈[k]. Furthermore, the

matrix A := [ai,j ] ∈ Rn×k has full column rank and the hidden variables are linearly independent,
i.e., with probability one, if

∑
i∈[k] αih(i) = 0, then αi = 0, for all i ∈ [k].

Notice that the structure of G is defined by the non-zero coefficients in Eq. (14). Therefore, there
is no edge among the observed nodes. We define A ∈ Rn×k by letting the (i, j) entry be aij if j ∈ PAi
and zero otherwise. We refer to matrix A as the coefficient matrix.

6Without loss of generality, assume that x(i), ε(i), h(j) are all zero mean.
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The above setting is prevalent in a number of applications such as the blind deconvolution of
sound and images [44]. The independent component analysis (ICA) is a special case of the above
setting, where the sources hi are assumed to be independent. In contrast, in our setting, we allow for
arbitrary distribution on h, and assume expansion (and rank) conditions on the coefficient matrix
A.

Recall that in case of the topic models, A corresponds to the topic-word matrix. Moreover, in
the topic model setting, no assumption is made on the noise variables ε, since the presence of cross-
moments (between different words) enables us to remove the dependence on ε. However, in the single
view case the second order observed moment Σ := E[xx>] is given by

Σ = AE[hh>]A> + E[εε>] .

We now discuss a rank condition on the coefficient matrix A, which allows us to remove the noise
term E[εε>] from the second order moment Σ.

Condition 5 (Rank condition). There exists a fixed partition P of [n] such that |P| = 3, and AI
has full column rank for all I ∈ P.

Since rank(AI) = k, for I ∈ P, we have as a consequence n ≥ |P| k = 3k. Therefore, it essentially
states that the number of hidden nodes should be at most one third of the observed ones. In most
applications, we are looking for a few number of hidden effects that can represent the statistical
dependence relationships among the observed nodes. Thus the rank condition is reasonable in these
cases.

5.1 Matrix decomposition method for denoising

We now show that under the rank assumption in Condition 5, we can extract the noise terms ε from
the observed moments through a matrix decomposition method.

Find a partition P of [n], such that |P| = 3, and rank(ΣI,J) = k for all distinct I, J ∈ P. (Note
that rank(ΣI,J) = rank(AIE[hh>]A>J ) and by rank condition, there exists such a partition P). We
now show that the matrix decomposition procedure DLD(Σ,P) returns AE[hh>]A> and the diagonal
matrix E[εε>].

Lemma 5.1. Let C = AB> +D, with A,B ∈ Rn×k and D ∈ Rn×n a diagonal matrix. Suppose that
for a fixed partition P of [n], with |P| = 3, all the submatrices AI and BI have full column rank k,
for all I ∈ P. Then, DLD(C) returns AB> and D.

The proof of Lemma 5.1 is deferred to Appendix E.

5.1.1 Remark on finding the partition P

The rank condition for matrix A in Condition 5 ensures the existence of a partition P of [n], such
that, |P| = 3 and AI ∈ Rn×k has full column rank for all I ∈ P. However, we are not provided
with such a partition. We now show that under an incoherence assumption about A, a random
partitioning of its rows into three groups has the desired property, with fixed positive probability.
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DLD: Decomposition of a matrix into its low-rank and diagonal parts.

Input: Matrix C = AB> +D, with A,B ∈ Rn×k, D ∈ Rn×n diagonal, and partition P of [n].
Output: Diagonal part D and low-rank part L = AB>.

1: for each I ∈ P do
2: Choose distinct J,K ∈ P\{I}.
3: Let UI ∈ R|I|×k be the matrix of left singular vectors of CI,J .
4: Let VJ ∈ R|J |×k be the matrix of right singular vectors of CI,J .
5: Let UK ∈ R|K|×k be the matrix of left singular vectors of CK,J .
6: Set AIB

>
I = CI,JVJ(U>KCK,JVJ)−1U>KCK,I .

7: Set DI,I = CI,I −AIB>I .
8: return D and L = C −D.

Definition 5.2. Let A = USV > be a thin singular value decomposition of A, where U ∈ Rn×khas
orthonormal columns, S = diag(σ1(A), . . . , σk(A)), and V ∈ Rk×k is orthogonal. Define the incoher-
ence number of A as:

cA := max
j∈[n]

{
n

k
‖U>ej‖22

}
. (15)

Lemma 5.3. Fix ` ∈ [n], and consider ` random submatrices A1, A2, . . . , A` of A obtained by the
following process: for each row of A, independently choose one of the ` submatrices uniformly at
random, and put the row in that submatrix. Fix δ ∈ (0, 1). Then,

P
{
σk(Av) ≥ σk(A)/(2

√
`),∀v ∈ [`]

}
≥ 1− δ, (16)

provided that cA ≤ 9
32 ·

n
k` ln k`

δ

.

Lemma 5.3 is proved in Appendix F. Using this lemma with ` = 3, we obtain the following. For
A ∈ Rn×k with full column rank and a random partitioning P of its rows into three groups, all the
submatrices AI , I ∈ P are full rank with probability at least 1− δ, provided that

cA ≤
3

32
· n

k ln 3k
δ

. (17)

Thus, we have a procedure for denoising (i.e. recovering the noise terms ε) through random
partitioning and matrix decomposition under appropriate rank condition. The coefficient matrix
A can now be extracted from the denoised moments through the procedures listed in the previous
sections, under expansion condition 2 and generic parameters condition 3 for the coefficient matrix
A.

5.2 Application: learning hierarchical models

In the previous section, we developed a general framework for learning linear models with hidden
variables.

We now apply the above results for learning hierarchical models, which consist of many layers of
hidden variables. We first formally define hierarchical linear models.
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Definition 5.4. A hierarchical linear model is a model with the following graph structure. The nodes
of the graph can be partitioned into levels L1, . . . , Lm such that there is no edge between the nodes
within one level and all the edges are between nodes in adjacent levels, (Li, Li+1) for i ∈ [m − 1].
Furthermore, the edges are directed from Li to Li+1. The nodes in level Lm correspond to the observed
nodes and other levels contain the hidden nodes.

The next theorem concerns identifiability of linear hierarchical models. More specifically, consider
a hierarchical model and let Gi be the induced graph with nodes Li ∪ Li+1 and suppose that the
induced model between levels Li and Li+1 satisfies the model conditions described in Section 2.2
with coefficient matrix Ai, for i ∈ [m − 1]: Ai has the rank condition (Condition 5) and parameter
genericity property (Condition 3), and (bipartite) graph Gi has the expansion property (Condition 2).

Theorem 5.5. Consider a hierarchical model with levels L1, . . . , Lm and suppose that the induced
model between levels Li and Li+1 satisfies the model conditions described in Section 2.2 with coefficient
matrix Ai, for i ∈ [m − 1]. Then all columns of Ai are identifiable for i ∈ [m − 1] from the second
order observed moment, i.e., Σ = E[xx>]. Therefore, the entire model is identifiable up to permuting
the nodes within each level.

Theorem 5.5 is proved in Section A.4.

Remark 5.6. By the definition of a hierarchical model, the hidden nodes in level L1 are independent.
Now consider the case that the nodes in L1 have arbitrary dependence relationships. By using the
same argument as in the proof of Theorem 5.5, we can still learn all the coefficient matrices Ai and
the second order moment of the variables in layer L1.

6 Numerical experiments

In the previous sections, we proposed algorithms for learning topic models (multi-view), and general
linear single view models. Our algorithms rely on low order (second and third order) moments of the
observed variables. In presenting the results and the proofs we assumed that exact observed moments
are available to emphasize the validity of the method. In general, these moments should be estimated
from sampled data. This brings up the question of sample complexity, namely given a model G, how
many samples are required to estimate the model parameters with precision δ. We expect graceful
sample complexity for the proposed algorithms as the low order moments can be reliably estimated
from data. In this section, we consider two concrete examples of the single view linear models, and
validate the performance of the proposed algorithms under finite number of samples.

The first example is a hierarchical model where we require the coefficient matrices between ad-
jacent layers to be full rank. The second example is an illustration of a model in which the relations
among the hidden nodes are described by a (general) DAG, and we require the coefficient matrix to
be full rank.

Example 1. We validate our method on the following configuration.

• Graph structure: We consider a hierarchical model with three levels, L1, L2 and L3. Levels L1

and L2 contain the hidden nodes with n1 = |L1| = 5, n2 = |L2| = 30 and level L3 contains
the observed nodes with n3 = |L3| = 180. Coefficient matrices A1 ∈ Rn2×n1 and A2 ∈ Rn3×n2 ,
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respectively representing the linear relationships among the levels L1, L2 and the levels L2, L3,
are constructed according to a Bernoulli-Gaussian model. More specifically, A1 = B�G, where
B ∈ Rn2×n1 is an i.i.d. Bernoulli(p) matrix, and G ∈ Rn2×n1 has i.i.d. standard normal entries.
Further, � indicates the entrywise product. In our experiment, we choose p = 0.3 to make the
model satisfy the expansion property. Also recall that Theorem 3.2 assumes a positive gap γi
between the maximum and the second maximum absolute values in the ith row, for i ∈ [n].
For the sake of simplicity, we consider the same gap γ for all the rows. More specifically, in
each row of A1 we change the entry with the maximum absolute value to ensure gap γ while
keeping the sign of this entry unchanged. As we will see, γ has an important effect on sample
complexity of the algorithm. A very small γ leads to a poor sample complexity and increasing
γ improves the sample complexity of the algorithm. Similar model is used to generate A2.

• Noise variables: For each noise variable, its variance is selected uniformly at random from the
interval [0.5, 1] and its distribution is chosen from a family of four distributions including (a)
exponential; (b) poisson; (c) chi-squared; (d) gaussian. More specifically, for given variance σ2,
it is distributed as either Exp(σ−1), Poisson(σ2), (σ/

√
2)χ1, or N(0, σ2) equally likely, where χ1

denotes the chi-squared distribution with one degree of freedom.

In experiments we employed a slight variant of TWMLearn to make it more robust to finite
sample errors. This is essentially the same variant of ER-SpUD used in [59] (see ER-SpUD (proj)).
For self-containedness, we present its details in Appendix G.

Following Lemma 5.3, we find partition P (the input of DLD) by randomly partitioning the
rows of the corresponding coefficient matrix into three groups. With exact observed moments, any
such partition leads to the decomposition of the corresponding matrix into its low rank and diagonal
parts, with a fixed positive probability. However, with empirical moments, different partitions lead
to different errors in estimating the coefficients. In experiments, we run DLD with 100 different
partitions. Due to finite sample error, the retuned matrix D for each run is not necessarily a diagonal
matrix. We compute the ratio of off-diagonal entries for each retuned D, i.e.,

∑
i 6=j |Dij |/

∑
i,j |Dij |

and choose the partition P which leads to the minimum off-diagonal ratio.
We run TWMLearn with empirical covariance Σ̂ to first learn A1 and then A2 as described

in the proof of Theorem 5.5. More specifically, using nsmp independent realizations of the observed
variables x(1), . . . , x(nsmp) ∈ Rn3 , with x(i) representing the values of the observed nodes in the i-th
realization, we let

m =
1

nsmp

nsmp∑
i=1

x(i) , Σ̂ =
1

nsmp

nsmp∑
i=1

(x(i) −m)(x(i) −m)> .

• Measure of performance and the results: Recall that coefficient matrices can be only specified
up to permutation and scaling of their columns. In order to measure the algorithm performance
on estimating a coefficient matrix A ∈ Rn×m, we define the following distance between A and the
estimation Â returned by the algorithm.

dist(A, Â) =
1

‖A‖2F

m∑
i=1

min
j∈[m],ν

‖Aei − νÂej‖2

=
1

‖A‖2F

m∑
i=1

min
j∈[m]

‖Aei − (e>i A
>Âej)Âej‖2 .

21



Here, the minimization over j ∈ [m] is to remove the permutation ambiguity and the minimization
over ν is to remove the scaling ambiguity. Further, since TWMLearn returns the matrix in its
canonical form, we have ‖Âej‖ = 1 and the optimal ν is given by ν = (e>i A

>Âej).
The support of coefficient matrix A corresponds to the edges in the corresponding graph and is

of particular interest. We define precision and recall in characterizing the support of A as follows:

precision(A, Â) =
|{(i, j) : Aij 6= 0, Âij 6= 0}|
|{(i, j) : Âij 6= 0}|

, recall (A, Â) =
|{(i, j) : Aij 6= 0, Âij 6= 0}|
|{(i, j) : Aij 6= 0}|

.

In words, precision is the fraction of retrieved edges that are truly an edge and recall is the fraction
of true edges that are retrieved.

We summarize the results in Table 1 for different values of γ and nsmp.

(a) γ = 0.3

nsmp 25,000 50,000 100,000 200,000 400,000

dist(A1, Â1) 0.9283 0.8029 0.7656 0.6939 0.4813

precision(A1, Â1) 0.3120 0.3228 0.3231 0.3325 0.3333

recall(A1, Â1) 0.8478 0.8913 0.9130 0.9130 0.9130

dist(A2, Â2) 0.2674 0.1516 0.1466 0.1299 0.0943

precision(A2, Â2) 0.3355 0.3402 0.3497 0.3530 0.3566

recall(A2, Â2) 0.9389 0.9518 0.9526 0.9599 0.9697

(b) γ = 0.5

nsmp 25,000 50,000 100,000 200,000 400,000

dist(A1, Â1) 0.5942 0.4016 0.3205 0.1187 0.0661

precision(A1, Â1) 0.3462 0.3462 0.3538 0.3615 0.3769

recall(A1, Â1) 0.8824 0.8824 0.9020 0.9216 0.9608

dist(A2, Â2) 0.0731 0.0338 0.0157 0.0084 0.0048

precision(A2, Â2) 0.3437 0.3497 0.3552 0.3558 0.3581

recall(A2, Â2) 0.9477 0.9641 0.9793 0.9811 0.9872

Table 1: Example 1. Hierarchical (single-view) model with level sizes n1 = 5, n2 = 30, n3 = 180, and
1694 number of edges.

.

The scatterplots in Fig. 5 depict the points (Â1,ij , A1,ij) and (Â2,ij , A2,ij) for different values of
nsmp and γ = 0.5. As the number of samples increases, the observed moments are estimated more
accurately and the scatter points concentrate around the line with slope one. Further, for each value
of nsmp, the error in estimating A1 is larger than the error in estimating A2. The reason is that we
first apply TWMLearn(proj) to estimate the coefficient matrix A2, and then use this estimation
to learn the coefficient matrix A1. In other words the induced model between the observed nodes
(level L3) and the hidden nodes (level L2) is estimated more accurately than the induced model
among the hidden nodes (levels L1, L2).
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Â2,ij

(a) nsmp = 25000

−0.5 0 0.5

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−0.5 0 0.5
−0.6

−0.4

−0.2

0

0.2

0.4

A1,ij
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Figure 5: Scatterplots for Learning the hierarchical model in Example 1, using different values of
nsmp and γ = 0.5.

Example 2. Our next example is a model in which the relationships among the hidden nodes
are represented by a DAG model. The model contains k = 25 hidden nodes and n = 150 observed
nodes. The linear relationships among the hidden nodes are described by a lower triangular coefficient
matrix Λ ∈ Rk×k, which is chosen according to a Bernoulli-Gaussian model: The entries in the lower
triangular part are non-zero with probability p = 0.3 and the values of the non-zero entries are chosen
independently from standard normal distribution. The coefficient matrix A ∈ Rn×k, describing the
relationships between the hidden nodes and the observed nodes, is constructed as per Bernoulli-
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(a) γ = 0.3

nsmp 200,000 300,000 400,000 500,000

dist(Λ, Λ̂) 0.7933 0.4627 0.3894 0.1778

precision(Λ, Λ̂) 0.1168 0.1168 0.1168 0.1168

recall(Λ, Λ̂) 1 1 1 1

dist(A, Â) 0.2818 0.2584 0.1894 0.0809

precision(A, Â) 0.2979 0.3248 0.3263 0.3337

recall(A, Â) 0.9391 0.9446 0.9492 0.9705

(b) γ = 0.5

nsmp 200,000 300,000 400,000 500,000

dist(Λ, Λ̂) 0.4597 0.1820 0.0832 0.0492

precision(Λ, Λ̂) 0.1168 0.1168 0.1168 0.1168

recall(Λ, Λ̂) 1 1 1 1

dist(A, Â) 0.1777 0.0757 0.0478 0.0330

precision(A, Â) 0.3283 0.3302 0.3333 0.3352

recall(A, Â) 0.9548 0.9603 0.9695 0.9751

Table 2: Example 2. Bayesian network (single-view) model with k = 25 hidden nodes, n = 150
observed nodes, and 1177 number of edges.

.

Gaussian model in the previous experiment with p = 0.3, and then ensured to have gap γ between
the maximum and the second maximum absolute values in each row.

Similar to the previous experiment, the noise variables have variances chosen uniformly at random
from [0.5, 1]. Their distributions are chosen uniformly at random from a family of three distributions
with non-zero skewness, namely (a) exponential; (b) poisson; (c) chi-squared.

In simulations, we used the power iteration to implement the ECA part as described in Section 4.
The results are summarized in Table 2. The scatterplots in Fig. 6 contains the points (Λ̂ij ,Λij)

and (Âij , Aij) for different values of nsmp and γ = 0.5.
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A Proof of the theorems

A.1 Proof of Theorem 3.1

Observe that

Pairs = E[x1 ⊗ x2] = E[E[x1 ⊗ x2|h]] = AE[hh>]A>. (18)

Since the hidden variables are linearly independent, E[hh>]is full rank. Otherwise, v>E[hh>]v = 0
for some non-zero vector v. This implies that E[‖h>v‖2] = 0 and so h>v = 0 which leads to a
contradiction.
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Given that E[hh>] and A have full column rank, we have Col(A) = Col(AE[hh>]A>). Let
{u1, . . . , uk} be any basis of Col(AE[hh>]A>) containing vectors with k smallest `0 norm. Since all
the columns of A have at most dmax non-zero entries, we have maxi∈[k] ‖ui‖0 ≤ dmax, by choice of
vectors ui. Next we show that due to the graph expansion property (Condition 2) and the parameter
genericity property (Condition 3), vectors ui are (scaled) columns of A. Observe that any vector ui
can be represented by a linear combination of columns of A, say ui = Av. If ‖v‖0 ≥ 2, then

‖ui‖0 = ‖Av‖0 > |NA(supp(v))| − | supp(v)| ≥ dmax,

where the first inequality follows from parameter genericity property and the second one follows
from the expansion property. This leads to a contradiction. Therefore, ‖v‖0 = 1, and ui is scaled
multiple of a column of A. Since {u1, . . . , uk} are linearly independent, different ui’s correspond to
different columns of A and therefore columns of A, in a canonical form (up to sign), are given by
{u1/‖u1‖, . . . , uk/‖uk‖}.

A.2 Proof of Theorem 3.2

Recall that Pairs = AE[hh>]A>. Using following lemma (with L = Pairs1/2) shows that vectors si,
returned by the first loop (steps (1)− (3)), are scaled multiples of the columns of A.

Lemma A.1. Let A ∈ Rn×k be a given matrix with rank k, and let L ∈ Rn×k be such that L = AM ,
for an invertible M ∈ Rk×k. (Equivalently Col(A) = Col(L)). Fix i ∈ [n] and consider the following
optimization problem:

min
w

‖Lw‖1 subject to (e>i L)w = 1. (19)

Under the following conditions, si = Lw is a scaling of the πi(1)-th column of A. (Recall that πi(1)
is the index of the entry with maximum absolute value in the i-th row of A).

(i) ‖A(N2
i )
c,(Ni)c

v‖1 > ‖AN2
i ,(Ni)

c v‖1 for all non-zero vectors v ∈ R|(Ni)c|.

(ii) ‖A(Nj)c,Ni\j v‖1 > ‖ANj ,Ni\j v‖1 + (1 − γ)‖ANj ,j‖1‖v‖1 for all j ∈ Ni and all non-zero vectors

v ∈ R|Ni|−1.

Proof (Lemma A.1). Consider the following equivalent formulation of Problem (19) obtained by the
change of variables z = Mw, b> = (e>i L)M−1:

min
z

‖Az‖1 subject to b>z = 1. (20)

Observe that b> is the i-th row of A. Denote the solution to Problem (20) by z∗. We aim to prove
that z∗ is supported on {πi(1)}. We prove the desired result in two steps:

Claim A.2. Under Condition (i), we have supp(z∗) ⊆ supp(b).

Claim A.3. Under Condition (i)− (ii), we have supp(z∗) = {πi(1)}.
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Proof (Claim A.2). Notice that b> = e>i A, and so supp(b) = Ni. Define z0 ∈ Rk by z0(j) := z∗(j)
for all j ∈ supp(b), and z0(j) := 0 for all j /∈ supp(b). Also, let z1 := z∗ − z0. Therefore, z0 is also a
feasible solution to Problem (20), since b>z0 = b>z∗.

If z1 6= 0, then

‖Az∗‖1 = ‖AN2
i ,[k]

z∗‖1 + ‖A(N2
i )
c,[k] z∗‖1

= ‖AN2
i ,[k]

(z0 + z1)‖1 + ‖A(N2
i )
c,[k] z1‖1

≥ ‖AN2
i ,[k]

z0‖1 − ‖AN2
i ,[k]

z1‖1 + ‖A(N2
i )
c,[k] z1‖1

= ‖Az0‖1 − ‖AN2
i ,[k]

z1‖1 + ‖A(N2
i )
c,[k] z1‖1

> ‖Az0‖1,

where the last inequality follows from Condition (i) and the fact supp(z1) ⊆ (Ni)
c. Therefore, z0 is a

feasible solution with smaller objective value, which contradicts the optimality of z∗. Therefore we
conclude that z1 = 0, and hence supp(z∗) ⊆ supp(b).

Proof (Claim A.3). By Claim A.2, supp(z∗) ⊆ supp(b) = Ni. To lighten the notation, let j = πi(1),
and define z0 := (e>j z∗)ej and z1 := z∗ − z0. Suppose for sake of contradiction that z1 6= 0. Since
b>z∗ = 1, we have z0 = ((1− b>z1)/bj) ej . Therefore (using the triangle inequality twice),

‖Az∗‖1 = ‖ANj ,[k]z∗‖1 + ‖A(Nj)c,[k]z∗‖1
= ‖ANj ,[k](z0 + z1)‖1 + ‖A(Nj)c,[k]z1‖1
≥ ‖ANj ,[k]z0‖1 − ‖ANj ,[k]z1‖1 + ‖A(Nj)c,[k]z1‖1
= ‖ANj ,[k]((1− b

>z1)/bj) ej‖1 − ‖ANj ,[k]z1‖1 + ‖A(Nj)c,[k]z1‖1
≥ (1/|bj)‖ANj ,[k]ej‖1 − |b

>z1/bj |‖ANj ,[k]ej‖1 − ‖ANj ,[k]z1‖1 + ‖A(Nj)c,[k]z1‖1.

Since z1(j) = 0, we have |b>z1| ≤ |b|πi(2)‖z‖1 by Hölder’s inequality, and therefore,

|b>z1|
|bj |

≤
|b|πi(2)‖z1‖1
|b|j

≤ (1− γi)‖z1‖1.

Moreover, by Condition (ii) and the fact supp(z1) ⊆ Ni \ j,

‖ANcj ,[k]
z1‖1 > ‖ANj ,[k]z1‖1 + (1− γi)‖ANj ,j‖1‖z1‖1.

Putting the last three displayed inequalities together gives

‖Az∗‖1 > (1/|bj |)‖ANj ,[k]ej‖1 = ‖A(ej/bj)‖1 .

Since ej/bj is a feasible solution, the above strict inequality contradicts the optimality of z∗. Therefore
we conclude that z1 = 0, and z∗ = z0 = ej/bj .

Notice that si = Lw = AMw = Az∗ and since supp(z∗) = {πi(1)}, si is a scaled multiple of the
πi(1)-th column of A. This completes the proof of Lemma A.1.
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Now, we are ready to prove the theorem.
Given that Conditions (i) − (ii) hold for all i ∈ [n], using Lemma A.1, the set S = {s1, . . . , sn}

consists of scaled multiples of the columns of A. Moreover, since [k] ⊆ {π1(1), . . . , πn(1)}, S contains
at least one scaled multiple of each column of A. In the second loop (steps (4) − (8)), we choose
a linearly independent set {v1, . . . , vk} ⊆ S. These are the (scaled multiples of the) columns of A.
Hence, letting Â = [ v1

‖v1‖ | · · · |
vk
‖vk‖ ], there exists a permutation matrix Π, such that ÂΠ gives A in its

canonical form (up to sign of each column).

A.3 Proof of Theorem 4.1

Let η := (η(1), . . . , η(k)) and ε := (ε(1), . . . , ε(n)). Using the model description, we have

Pairs = AE[hh>]A> = A(I − Λ)−1E[ηη>](I − Λ)−>A> . (21)

Define M := A(I − Λ)−1 ∈ Rn×k. Then

Pairs = ME[ηη>]M> = M diag(σ2η(1), . . . , σ
2
η(k))M

> . (22)

Since A has full column rank, U>PairsU ∈ Rk×k also has full rank; hence, the whitening step
(Part 1 in TMLearn) is possible. We have

I = W>PairsW = W>M diag(σ2η(1), . . . , σ
2
η(k))M

>W.

Therefore, the matrix N := W>M diag(ση(1), . . . , ση(k)) ∈ Rk×k is an orthogonal matrix.

Lemma A.4. We have

Triples(ζ) = M diag(µη(1), . . . , µη(k)) diag(M>ζ)M>. (23)

Lemma A.4 is proved in Appendix C.
Now, observe that

W>Triples(Wθ)W =

W>M diag(µη(1), . . . , µη(k)) diag(M>Wθ)M>W =

N diag(ση(1), . . . , ση(k))
−1 diag(µη(1), . . . , µη(k)) diag(M>Wθ) diag(ση(1), . . . , ση(k))

−1N>
(24)

Since N is an orthogonal matrix, the above is an SVD of W>Triples(Wθ)W , and N1, . . . , Nk are
singular vectors, where Ni denotes the i-th column of N . Note that Ni = ση(i)W

>Mi for i ∈ [k].
A key observation is that an SVD uniquely determines all singular vectors (up to sign) which

have distinct singular values. Following a similar approach to [4], we sample θ uniformly at random
over the sphere in Rk to ensure that all the singular values of W>Triples(Wθ)W are distinct. Define

D := diag(ση(1), . . . , ση(k))
−1 diag(µη(1), . . . , µη(k)) diag(M>Wθ) diag(ση(1), . . . , ση(k))

−1. (25)

Note that the diagonal of the matrix D is the following vector:

diag(ση(1), . . . , ση(k))
−1 diag(µη(1), . . . , µη(k)) diag(ση(1), . . . , ση(k))

−1M>Wθ

= diag(ση(1), . . . , ση(k))
−1 diag(µη(1), . . . , µη(k)) diag(ση(1), . . . , ση(k))

−2N>θ.
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Since θ is sampled uniformly over the sphere, and N is a rotation matrix, the distribution of
N>θ is also uniform over the sphere. Consequently, all the singular values of W>Triples(Wθ)W are
non-zero and distinct. Therefore, the set Ω (in step (5) of the algorithm) is given by

Ω = {ση(i)W>Mi}ki=1.

The columns of matrix S, defined in step (6) of the algorithm, are then

{(W+)>ω : ω ∈ Ω} = {W (W>W )−1ση(i)W
>Mi}ki=1

= {W (W>W )−1W>ση(i)Mi}ki=1 = {ση(i)Mi}ki=1,

where the last step holds since W (W>W )−1W> is a projection and Range(W ) = Range(U) =
Range(Pairs) = Range(M). Hence, there exists permutation Π1, such that

S = M diag(ση(1), . . . , ση(k))Π1 = A(I − Λ)−1 diag(ση(1), . . . , ση(k))Π1.

Note that Col(S) = Col(A). As demonstrated in the proof of Theorem 3.1, we can identify all the
columns of A, as A satisfies the graph expansion and the parameter genericity property. Moreover,
under the assumptions of Theorem 3.2, TWMLearn(Pairs) returns all columns of A. Therefore, we
can recover Â = AΠ2, for a permutation matrix Π2 ∈ Rk×k. Let B̂ be a left inverse of Â. Then

C := B̂S = B̂A(I − Λ)−1 diag(ση(1), . . . , ση(k))Π1 = Π−12 (I − Λ)−1 diag(ση(1), . . . , ση(k))Π1.

Consider a topological ordering of the induced DAG on the hidden nodes. In such an ordering, for
every directed edge (j, i), we have j < i. Hence, Λ would be a lower triangular matrix in a topological
ordering. We proceed by reordering the rows and the columns of C to get a lower triangular matrix.
This may be done in many different ways but we show that all possible permutations that make
C lower triangular correspond to different topological orderings of the same DAG. Therefore, we
can choose any such permuted version of C, call it C̃. Then there exists a topological ordering with
corresponding matrix Λ, such that, (I−Λ)−1 diag(ση(1), . . . , ση(k)) = C̃ and thus Λ = I−diag(C̃)C̃−1.

Let R1 denote the set of rows in C with exactly one non-zero entry. In any lower triangular version
of C, the rows in R1 should appear on top. Furthermore, their non-zero entries should appear in
the first R1 columns. Note that rows in R1 correspond to hidden nodes with no parent. Obviously,
any ordering of them with labels 1, . . . , |R1| is faithful to topological orderings. Now, we can remove
these nodes from the DAG (equivalently eliminate the R1 columns and rows from C) and repeat the
same argument. Therefore, different permuted versions of C which are lower triangular correspond
to different topological orderings of the DAG. This completes the proof.

A.4 Proof of Theorem 5.5

We identify the matrices Ai (up to permutation of their columns) in a sequential manner. Let hLi
denote the vector formed by the hidden variables in level Li, for i ∈ [m − 1]. Also, let εLi be the
noise vector formed by the noise variables associated to the hidden nodes in level Li, for i ∈ [m− 1].
Write

Σ = Am−1E[hLm−1h
>
Lm−1

]A>m−1 + E[εLm−1ε
>
Lm−1

]. (26)
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Applying Lemma 5.1, we can decompose Σ into its low-rank and diagonal parts. Therefore we
have access to Am−1E[hLm−1h

>
Lm−1

]A>m−1.
By a similar argument used in the proof of Theorem 3.1, we can identify the columns of Am−1.

Equivalently, we recover Âm−1 = Am−1Πm−1 for some permutation matrix Πm−1. Let B̂m−1 be a
left inverse of Âm−1. Now, notice that

B̂m−1Am−1E[hLm−1h
>
Lm−1

]A>m−1B̂
>
m−1 = Π−1m−1E[hLm−1h

>
Lm−1

]Π−>m−1. (27)

In words, we can recover the second order moment of the hidden variables in level Lm−1, up to
a permutation of the nodes within this level. Using the same technique sequentially, we can recover
all the columns of Ai for i ∈ [m − 1] and thus the entire model is identifiable up to permutation of
hidden nodes within each level.

B Proof of Remark 2.2

Let M̃ := M + Z. We first establish some definitions.

Definition B.1. We call a vector fully dense if all of its entries are non-zero.

Definition B.2. We say a matrix has the Null Space Property (NSP) if its null space does not
contain any fully dense vector.

Claim B.3. Fix any S ⊆ [k] with |S| ≥ 2, and set R := NM (S). Let C̃ be a |S| × |S| submatrix of
M̃R,S. Then Pr(C̃ has the NSP) = 1.

Now, we are ready to prove Remark 2.2.

Proof (Remark 2.2). It follows from Claim B.3 that, with probability one, the following event holds:
for every S ⊆ [k] with |S| ≥ 2, and every |S| × |S| submatrix C̃ of M̃R,S , C̃ has the NSP. Henceforth
condition on this event.

Now fix v ∈ Rk with ‖v‖0 ≥ 2. Let S := supp(v), R := NM (S) and B := M̃R,S . Furthermore,
let u ∈ (R \ {0})|S| be the restriction of vector v to S; observe that u is fully dense. It is clear that
‖M̃v‖0 = ‖Bu‖0, so we need to show that

‖Bu‖0 > |R| − |S|. (28)

Suppose for sake of contradiction that Bu has at most |R| − |S| non-zero entries. Then there is
a subset of |S| entries on which Bu is zero. This corresponds to a |S| × |S| submatrix of B which
contains u in its null space, which means that this submatrix does not have the NSP—a contradiction.
Therefore we conclude that Bu must have more than |R| − |S| non-zero entries.

Proof (Claim B.3). Let s = |S| and let C̃ = [c̃1|c̃2| · · · |c̃s]>, where c̃>i is the i-th row of C̃. Also,
let C := [c1|c2| · · · |cs]> and W := [w1|w2| · · · |ws]> be the corresponding submatrices of M and Z,
respectively. For each i ∈ [s], denote by Ni the null space of the matrix C̃i = [c̃1|c̃2| · · · |c̃i]>. Finally
let N0 = Rs. Then, N0 ⊇ N1 ⊇ · · · ⊇ Ns. We need to show that, with probability one, Ns does not
contain any fully dense vector.
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If one of Ni does not contain any full dense vector then we are done. Suppose that Ni contains
some fully dense vector v. Since C is a submatrix of MR,S , every row c>i+1 of C contains at least one
non-zero entry. Therefore

v>c̃i+1 =
∑
j∈[s]

v(j)c̃i+1(j)

=
∑

j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j))

where {wi+1(j) : j ∈ [s] s.t. ci+1(j) 6= 0} are independent random variables (from Z). Moreover,
they are of c̃1, . . . , c̃i and thus of v. By assumption on the distribution of the wi+1(j),

P

[
v ∈ Ni+1

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= P

[ ∑
j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j)) = 0

∣∣∣∣c̃1, c̃2, . . . , c̃i
]

= 0. (29)

Consequently,

P

[
dim(Ni+1) < dim(Ni)

∣∣∣∣c̃1, c̃2, . . . , c̃i] = 1 (30)

for all i = 0, . . . , s− 1. As a result, with probability one, dim(Ns) = 0.

C Proof of Lemma A.4

Triples(ζ) = E[x1x
>
2 〈ζ, x3〉] = E[E[x1x

>
2 〈ζ, x3〉|h]]

= E[E[x1|h]E[x2|h]>〈ζ,E[x3|h]〉]
= E[Ahh>A>〈ζ,Ah〉]
= E[Mηη>M>〈ζ,Mη〉]
= ME[ηη>〈η,M>ζ〉]M>.

(31)

The proof is completed by showing that for any deterministic vector v ∈ Rk, and any random
vector z = (z(1), . . . , z(k)) with zero mean independent entries, we have

E[zz>〈z, v〉] = diag(v) diag(µz(1), . . . , µz(n)). (32)

We compute the diagonal and off-diagonal entries separately.

E[z(i)z(i)〈v, z〉] = v(i)E[z(i)3] +
∑
k 6=i

v(k)σ2z(i)E[z(k)] = v(i)µz(i). (33)

For j 6= i

E[z(i)z(j)〈v, z〉] = E[z(i)z(j)
∑
k

v(k)z(k)]

= v(i)σ2z(i)E[z(j)] + v(j)σ2z(j)E[z(i)] +
∑
k 6=i,j

v(k)E[z(i)]E[z(j)]E[z(k)] = 0.
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D Proof of Remark 4.4

Write

Pairs = AE[hh>]A> . (34)

By Theorem 3.1, we can identify the columns of A, i.e., we can recover Â = AΠ1 for some
permutation matrix Π1. Let B̂ ∈ Rk×n be a left inverse of Â. Then,

B̂AE[hh>]A>B̂> = Π−11 E[hh>]Π−>1 . (35)

Therefore, we have the second order moment of the hidden nodes (in some ordering of the nodes).
Now consider k hidden nodes corresponding to the row (and columns of ) Π−11 E[hh>]Π−>1 . Label
these nodes with 1, . . . , k. Using the oracle we can find a permutation π2 which puts the hidden
nodes in a topological ordering. Let Π2 be the corresponding permutation matrix to π2. Then
P̃airs := Π2Π

−1
1 E[hh>]Π−>1 Π>2 is the second order moment of the hidden nodes in some topological

ordering. By definition of a topological ordering, it is immediate to see that the coefficient matrix Λ
is lower triangular in a topological ordering of the hidden nodes. Therefore, we can write

P̃airs = (I − Λ)−1E[ηη>](I − Λ)−>, (36)

where η is the vector formed by the noise variables η(i) (in the corresponding topological ordering)
and Λ ∈ Rk×k is a lower triangular matrix with all diagonal entries equal to zero. Therefore,

P̃airs
1/2

= (I − Λ)−1 diag(ση(1), . . . , ση(k))Q, (37)

for some rotation Q ∈ Rk×k. Notice that L := (I − Λ)−1 diag(ση(1), . . . , ση(k)) is a lower triangular
matrix with diagonal entries ση(1), . . . , ση(k) which are all positive. Hence, using the LQ decomposi-

tion of P̃airs
1/2

, we can recover L. (Recall that the LQ factorization is unique if we require that the
diagonal entries of the lower triangular part are positive).

Finally, diag(L) = diag((I − Λ)−1) diag(ση(1), . . . , ση(k)) = diag(ση(1), . . . , ση(k)). Therefore, Λ =
I − diag(L)L−1. The result follows.

E Proof of Lemma 5.1

For each I ∈ P, let UI , VI ∈ R|I|×k be any matrices such that U>I AI and V >I B are invertible. Then
for any distinct I, J,K ∈ P,

AIB
>
I = AI(B

>
J VJ)(B>J VJ)−1(U>KAK)−1(U>KAK)B>I

= AIB
>
J VJ(U>KAKB

>
J VJ)−1U>KAKB

>
I . (38)

Notice that for any distinct I, J ∈ P, CI,J = AIB
>
J . Since AI and BJ have rank k, so does CI,J .

Let UI ∈ R|I|×k and VJ ∈ R|J |×k be respectively the matrices of left and right singular vectors of
CI,J (corresponding to non-zero singular values). Since UI and AI have the same range, it follows
that U>I AI is invertible. Similarly V >J BJ is invertible. Using identity (38), we obtain

AIB
>
I = CI,JVJ(U>KPairsK,JVJ)−1U>KCK,I , (39)

for any distinct I, J,K ∈ P. Therefore D can be determined as DI,I = CI,I − AIB>I for I ∈ P and
L = AB> is subsequently determined as L = C −D.
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F Proof of Lemma 5.3

Let A = USV > be a thin singular value decomposition of A, where U ∈ Rn×k has orthonormal
columns, S = diag(σ1(A), . . . , σk(A)), and V ∈ Rk×k is an orthogonal matrix. Fix a partition index
v ∈ [`]. Let z1, z2, . . . , zn ∈ {0, 1} be independent indicator random variables such that zi = 1 iff row
i of A is included in Av. Note that

A>vAv = A> diag(z1, z2, . . . , zn)A

=
n∑
i=1

ziA
>eie

>
i A = V S(

n∑
i=1

ziU
>eie

>
i U)SV >.

(40)

Therefore

σk(Av)
2 = λmin(A>vAv) ≥ λmin(S)2 · λmin(

n∑
i=1

ziU
>eie

>
i U) = σk(A)2 · λmin(

n∑
i=1

Xi), (41)

where Xi := ziU
>eie

>
i U ∈ Rk×k. Notice that 0 � Xi and

λmax(Xi) ≤ ‖U>ei‖22 ≤
k

n
cA. (42)

Moreover,

n∑
i=1

EXi =

n∑
i=1

P(zi = 1)U>eie
>
i U =

1

`
U>U =

1

`
I. (43)

By Lemma F.1,

P
{
λmin(

d∑
i=1

Xi) ≤
1

4`

}
≤ k · e−(3/4)2/(2`cAk/n) ≤ δ/`, (44)

where the last inequality follows from the assumption on cA. Therefore by Eq. (41), σk(Av) ≥
σk(A)/(2

√
`), with probability at least 1− δ/`. A union bound over all v ∈ [`] completes the proof.

Lemma F.1 (Matrix Chernoff bound [62]). Consider a finite sequence {Xi} of independent and
symmetric k × k random matrices such that 0 � Xi and λmax(Xi) ≤ r almost surely. Define
µmin := λmin(

∑
i EXi). For any ε ∈ [0, 1], we have

P
{
λmin

(∑
i

Xi

)
≤ (1− ε)µmin

}
≤ k · e−ε2µmin/(2r). (45)
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G TWMLearn(proj)

Below is the slight variant of TWMLearn used in numerical experiments.

TWMLearn(proj): Learning the topic-word matrix from pairwise correlations, using iterative
projections.

Input: Second order moment of the observed variables (Pairs).
Output: Columns of A up to permutation.

1: Find a partition P of [n] such that |P| = 3 and rank(PairsI,J) = k for distinct I, J ∈ P.
2: Let L be the low-rank part returned by DLD(Pairs,P).
3: Set S = {0} ⊂ Rn.
4: for each i ∈ [k] do
5: for each j ∈ [n] do
6: Solve the optimization problem

min
w
‖L1/2w‖1 subject to (e>j L

1/2)PS⊥w = 1.

Denote the solution by wij .
7: Set wi = arg minwi1,...,win ‖L1/2w‖0, breaking ties arbitrarily.
8: S = S ∪ {wi}.

9: return
{

L1/2wi
‖L1/2wi‖

}k
i=1

.
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