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Abstract

Social distancing, an essential public health measure to
limit the spread of contagious diseases, has gained signif-
icant attention since the outbreak of the COVID-19 pan-
demic. In this work, the problem of visual social distanc-
ing compliance assessment in busy public areas, with wide
field-of-view cameras, is considered. A dataset of crowd
scenes with people annotations under a bird’s eye view
(BEV) and ground truth for metric distances is introduced,
and several measures for the evaluation of social distance
detection systems are proposed. A multi-branch network,
BEV-Net, is proposed to localize individuals in world coor-
dinates and identify high-risk regions where social distanc-
ing is violated. BEV-Net combines detection of head and
feet locations, camera pose estimation, a differentiable ho-
mography module to map image into BEV coordinates, and
geometric reasoning to produce a BEV map of the people
locations in the scene. Experiments on complex crowded
scenes demonstrate the power of the approach and show
superior performance over baselines derived from methods
in the literature. Applications of interest for public health
decision makers are finally discussed. Datasets, code and
pretrained models are publicly available at GitHub1.

1. Introduction
Social distancing, the strategy of maintaining a safe dis-

tance between people in public spaces, has been shown to
be an effective measure against the transmission of conta-
gious pathogens, including influenza virus and coronavirus
[57, 7, 23]. However, the monitoring of social distancing
by human observers is neither practical in many settings nor
scalable. This has motivated an interest in methods to detect
and count social distancing violations automatically. While

1https://github.com/daizhirui/BEVNet
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Figure 1: Set of tasks proposed for social distancing compliance
assessment. Given an input image, models are expected to jointly
predict camera geometry (top left), bird’s eye view heatmap of
person locations (bottom left), local risk map highlighting areas
with high probability of infection (right), as well as individual and
global risk level for the entire scene (annotated over the risk map).

non-vision-based methods are available 2, they typically re-
quire users to install certain applications on their mobile de-
vices, and are limited in precision of distance estimates.

Computer vision offers a viable alternative for the col-
lection of social distance measurements. In particular, it
has several advantages for the monitoring of public spaces.
First, it can leverage surveillance cameras that are already
available in many public locations. No expensive infrastruc-
ture changes are required.

Second, anonymization of visual data is straightforward
by removing all facial identities, as the system has no access
to other sensitive information of pedestrians. This makes it
much more privacy preserving than the monitoring of mo-
bile devices, or similar approaches. On the other hand,

2The DP-3T contact tracing protocol [59], for example, estimates dis-
tances using Bluetooth signal on smartphones.
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it can produce complete statistics of social distancing vi-
olations, as there is no prerequisite on the population (e.g.
smartphone with Bluetooth enabled). While not suited for
contact-tracing, these statistics can be very useful to deci-
sion makers, e.g. to enable the implementation of highly
localized “lock-downs,” time-varying control of pedestrian
access to certain areas, etc.

Computer vision has a long history of sensing humans in
images. Object detection [14, 17, 16, 52, 37] and instance
segmentation [8, 21, 35] recognize and localize objects by
bounding boxes or pixel-wise masks. While effective for
close objects and sparsely populated scenes [12, 39], de-
tection quality degrades substantially for far cameras and
busy spaces, involving significant degrees of occlusion. In
fact, on such scenes, it is even impossible to collect accurate
bounding box annotations. Social distancing measuring is
more closely related to crowd-counting methods [66, 5, 42],
which are trained to produce a heatmap that highlights the
head location of every person in the scene. However, be-
cause these methods don’t explicitly reason about scene ge-
ometry, they are unsuitable to estimate distances between
individuals. Furthermore, head locations are not ideal for
estimating scene distances, since heads do not lie on a
shared plane in 3D, due to people height variation. Much
more accurate distance estimates can usually be obtained by
reconstructing the scene ground plane and measuring feet
distances. This, however, presents additional challenges,
due to occlusion.

In this work, we consider the problem of social distanc-
ing compliance assessment (SDCA), which aims to measure
the distances between individuals in a scene and detect vio-
lations of social distancing thresholds. Based on the above
observations, we argue that SDCA requires a geometry-
aware approach, where the relevant extrinsic parameters of
the camera are estimated and used to generate a bird’s eye
view (BEV) map of people locations, as illustrated in Fig-
ure 1. We propose a novel benchmark for SDCA, CityUHK-
X-BEV, which repurposes the CityUHK-X dataset [28] to
the SDCA problem, by adding ground-plane annotations.
Specifically, for each head location in the dataset, the corre-
sponding feet position is annotated, and mapped to the BEV,
using the known intrinsic and extrinsic camera parameters.
A novel set of evaluation criteria is introduced, each focus-
ing on a different aspect of the task: Localization metric that
measures the accuracy in detecting real-world locations of
people in the ground plane; local risk metric that evaluates
the capability to discover regions with high chance of infec-
tion; global risk metric that predicts the overall risk level
of captured scene. Figure 1 shows examples of these tasks.
Unlike many vision problems that localize object in the im-
age plane, these geometry-aware criteria directly evaluate
the capacity of models to make predictions in the 3D ground
plane, leading to outputs that are much more informative for

real-world applications that require metric information.
A multi-branch convolutional architecture, BEV-Net, is

then proposed to solve the SDCA task. BEV-Net follows an
encode-decoder structure, using a projective transformation
module to convert convolutional feature maps from image
view to BEV. The decoder is implemented with a pose re-
gression branch that estimates camera parameters and three
separate branches to predict feet, head and BEV heatmaps.
These branches are trained with individual losses, in a
multi-task manner. To compensate for the height variations
in the crowd, a group transformation module with spatial
self-attention is used to group people by head height and in-
dependently align the feet and head feature maps of the re-
sulting groups. Experiments show that the BEV-Net outper-
forms all DET and CC baselines under all proposed SDCA
evaluation metrics. It is further shown, through ablation ex-
periments, that both head and feet annotations are essential
to achieve the best prediction quality.

A number of applications of potential interest for pub-
lic health decision makers are then illustrated. These range
from the characterization of risks for a single image, as il-
lustrated in Figure 1, to global measures of scene risk, in-
tegrated over image datsets, as shown in Figures 7 and 8.
The latter can be used to identify events of unusually large
risk or inform the deployment of risk mitigation measures,
such as the introduction of obstacles in the scene to modify
walking patterns and other crowd behaviors.

The paper makes four major contributions: First, we in-
troduce the idea of using computer vision for joint geomet-
ric reasoning and social distancing compliance assessment
on public spaces. Second, a novel benchmark for SDCA in
crowd scenes, CityUHK-X-BEV, is introduced with person-
level annotations in bird’s eye view. Third, a multi-branch
convolutional network, BEV-Net, is proposed and shown
to achieve best SDCA results by learning to perform both
heatmap prediction and geometric reasoning. Finally, we
show promising results for several potential applications of
the SDCA framework in the public health domain.

2. Related Work
Object detection (DET). Object detection methods recog-
nize and localize multiple classes of objects with bounding
boxes. While early algorithms relied on hand-crafted visual
features [44, 9], the introduction of CNN-based detectors
[17, 16, 52, 4, 51, 38] trained on large-scale image databases
[10, 39] has enabled dramatic performance gains.

Existing approaches to SDCA have mostly relied on pre-
trained DET models, making few technical advances to
their architectures. [13] proposed to detect social distanc-
ing violations by regressing head and feet locations from
the bounding box of each detected person. While effective
for sparsely populated environments, such an approach does
not scale to busy spaces and distant cameras with a large
field of view, as is usually the case of large public spaces.
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In addition, [13] requires external homography calculation
based on markers manually placed in the scene. By contrast,
the proposed BEV-Net automatically estimates camera ge-
ometry and is able to estimate social distances for crowded
environments and wide field of view cameras.
Crowd counting (CC). Crowd counting focuses on count-
ing the number of people in an image. State-of-the-art
methods either learn to regress head counts from the image
data directly [46], or predict a people density map which is
then integrated to obtain the people count [66, 56, 5, 36, 40].
Crowd scene datasets tend to be collected in public spaces
and focus on busy scenes [63, 25, 60, 28], where the estima-
tion of head locations is difficult due to small people sizes
and significant occlusion. These are the scenes that we em-
phasize in this work, where we augment a popular crowd
counting dataset with rich annotations required for SDCA.

Most CC methods are trained to produce density maps
in the camera view, a simpler problem than the proposed
combination of SDCA tasks. An exception is WACC [64],
which learns to predict ground-plane heatmap directly. The
BEV-Net differs from this work in three main aspects: First,
WACC requires inputs from multiple cameras, while BEV-
Net is designed to work with a single camera view. Sec-
ond, WACC is supervised by head annotations only, lead-
ing to inaccurate ground-plane locations due to varying
head heights; BEV-Net addresses this by producing feet
annotations that, unlike heads, lie on the common ground
plane. Third, WACC assumes known geometry for all cam-
era views, while BEV-Net jointly learns to predict extrinsic
camera parameters.
Geometry in computer vision. The scene geometry re-
covery is a classical problem in computer vision [20]. This
can be decomposed into the estimation of camera parame-
ters and scene geometry, i.e., depth variability in different
parts of the scene. Since the introduction of deep learning,
both components have been estimated by neural networks,
typically by using two dedicated branches that are trained
jointly, in an end-to-end manner [32, 67, 18, 27]. The scene
reconstruction required by SDCA amounts to recovering the
ground plane and 3D feet locations of all individuals. This
is not trivial because feet locations are frequently occluded
in the camera view. BEV-Net addresses this by leverag-
ing head locations and the regularizing geometric constraint
that a standing person’s head and feet are co-located in BEV.
Social behavior analysis. Computer vision methods have
been applied to modeling human behavior in public spaces.
One line of work achieves this through the task of trajectory
prediction [34, 49, 29, 1, 19], which requires generating
plausible motion paths for pedestrians in the image plane.
Early work used physics models such as Social Force [22]
to account for interaction between humans [47, 50, 62, 53];
more recently, neural network modules were used to capture
such dependencies between agents, e.g. with recurrent net-
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Figure 2: Homography between BEV, IV, and world coordinates.
(a) BEV map with person location (uB , vB); (b) world model
with camera at height h, pitch angle θ and person at position (x, y)
on the ground plane; (c) image captured by camera with feet de-
tected at pixel location (uI , vI). Coordinates are converted across
views through homography matrices WTB and IHW ; gray area
denotes region of interest.

works [1, 3, 55] or graph convolutional networks [48, 58].
Other tasks for social behavior modeling have also been
explored, including early action detection [54, 30, 45] and
group activity recognition [6, 33, 24]. All of the above tasks
require temporal modeling on video data and semantic un-
derstanding of human activities; this work instead focuses
on sensing the spatial locations of people, which can be ef-
ficiently recovered from individual image frames.

3. Social Distancing Compliance Assessment
To the best of our knowledge, no prior work has at-

tempted to evaluate the quality of visual SDCA in busy pub-
lic spaces and large field-of-view scenes. In this section, we
propose a new dataset for this task.
3.1. Motivation

A dataset for SDCA should satisfy various requirements.
First, it should contain a wide range of scenes with varying
people densities. Second, it should include ground-truth lo-
cations for the people in the scene, either in 3D world co-
ordinates or in the form of a BEV heatmap. Optionally,
it could provide ground-truth for the intrinsic and extrinsic
camera parameters, allowing direct camera pose supervi-
sion during training and facilitating the recovery of ground
plane and homography between camera view and BEV.

DET datasets [11, 39, 65] are not suitable for SDCA
since the number of people per image tends to be low. CC
datasets are more relevant, as they contain abundant exam-
ples of people gathering in clusters—often within 1 to 2 me-
ters, the range of droplet transmission [61, 15, 31]—and the
scene/camera configurations are most suitable for monitor-
ing social distances in public spaces. However, geometric
meta-information is unavailable in most CC datasets.

CityUHK-X [28] is an exception, providing extrinsic
camera parameters, including height and pitch angle, which
make it a potential SDCA benchmark. Nevertheless, it has
limitations. Like other CC datasets, it only provides image
annotations for each head in the scene. Even with known
camera parameters, image head locations aren’t enough to
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Figure 3: Example ground-truth heatmaps overlaid on the input
image. Left: IV maps, with heads in green and feet in red. Re-
gion of interest is bounded by a red perspective box. Right: BEV
location map. Centers and bottom centers of heatmaps are aligned.

recover locations in world coordinates, as each individual’s
height is variable and unknown. Hence, additional annota-
tions are needed for the feet locations of each person in the
image, as well as head-feet correspondences.
3.2. Annotation

The Amazon MTurk platform was used to collect feet
annotations for CityUHK-X with correspondences between
feet and heads. Given a crop of the scene image with an-
notated head location, MTurk workers were asked to an-
notate the center point between both feet, and to verify if
the feet were clearly visible (feet location is precise) or oc-
cluded (feet location is estimated). 87,746 feet locations
were annotated in the 2,982 scene images in CityUHK-
X. Among them, 63,669 (72.6%) were clearly visible and
24,077 (27.4%) occluded. Detailed description of the anno-
tation procedure can be found in the supplemental.
3.3. Ground-truth Generation

As illustrated in Figure 3, ground-truth is provided in the
form of three density maps: feet and head maps in image
view (IV maps), and person location map in BEV coordi-
nates (BEV map).
Image view maps. Following [66], the ground-truth head
and feet locations in image view are represented with
heatmaps Mhead and Mfeet composed by mixture of Gaus-
sians. Each Gaussian from the head (feet) heatmap is cen-
tered at the annotated head (feet) location of a person in the
image, with a fixed standard deviation σ = 5 pixels.
Bird’s eye view map. Given the image coordinates of anno-
tated keypoints and camera geometry, the BEV map MBEV
is generated using a homography. This is achieved by pro-
jecting the keypoints to world coordinates, choosing a suit-
able region of interest within the ground plane, then resam-
pling into a fixed-size BEV heatmap, as illustrated in Fig-
ure 2. First, the world coordinate frame is defined by set-
ting the ground plane to z = 0 and the camera sensor to
(0, 0, h), where h denotes camera height above ground. The
camera’s yaw angle is zero in this setting. Further assum-
ing that the camera has pitch angle θ, and zero roll (the roll
angle could be zero by transforming the input image prop-
erly), the transformation between world coordinates (x, y)
in the ground plane and image coordinates (uI , vI) is then
given by the homography (derivations in supplemental)[

uI vI 1
]⊤

= IHW

[
x y 1

]⊤
, (1)

where IHW is constructed as a function of h, θ and intrinsic
camera parameters such as focal lengths (fu, fv).

Second, to define a proper region of interest (RoI) on
the ground plane, we require that the center (uB

c , v
B
c ) of

BEV map be projected to the image center (uI
c , v

I
c ), and

the bottom-center pixel in BEV be aligned with the bottom-
center image pixel, as indicated in 3. The scale factor s,
measuring distance in meters spanned per BEV pixel, is
then given by

s = 2(xc − xbc)/H = h/
[
β(vIcα+ fvβ)

]
(2)

where H is the height of the BEV map. The transformation
from BEV map coordinates (uB , vB) to world coordinates
in the ground plane is then given by the homography[

x y 1
]⊤

= WTB

[
uB vB 1

]⊤
, (3)

where WTB is constructed to align the BEV map with im-
age center, and rescale to s meters per BEV pixel. Finally,
the homography between image and BEV map coordinates
is obtained by combining (1) and (3) into[

uI vI 1
]⊤

= IHB

[
uB vB 1

]⊤
, (4)

where
IHB = IHW WTB . (5)

Given a set of feet locations {qj}dj=1 in image I , the
corresponding locations in BEV coordinates are given by
{IHB

−1qj}dj=1. Similar to the IV maps, the BEV map
MBEV is generated using a Gaussian kernel with σ = 5 px.
Example heatmaps are shown in figure 3.

3.4. Evaluation protocol
We propose two types of criteria for evaluating the qual-

ity of predicted BEV heatmaps for SDCA.
Localization error. Models are required to identify BEV
locations in real-world distance units (e.g. meters or feet),
for all individuals in the scene. Given a set of predicted
locations X̂ = {x̂i}Mi=1 and a set of ground-truth locations
X = {xi}Ni=1, the Chamfer distance [2]

D(X̂,X) = 1

M

M∑
i=1

min
j

∥x̂i − xj∥+
1

N

N∑
j=1

min
i

∥x̂i − xj∥

(6)
is used to evaluate localization error in terms of real-world
distances. Predicted locations X̂ are determined from the
BEV heatmap, using non-maximum suppression of size
5 × 5 pixels, followed by pixel-wise thresholding at the
heatmap value 10−3. The non-zero entries of the post-
processed BEV map are then extracted and converted to
world coordinates using (3). We also evaluate the normal-
ized chamfer distance Dn(X̂,X) = D(X̂,X)

2d0
, which mea-

sures the localization error as a percent of the safe distance
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threshold. A minimum safe distance of d0 = 1.5m is used,
but can be adjusted per public health guidelines.
Risk estimation error. Models are expected to measure
compliance with social distancing by estimating risk levels
in the scene, either locally or globally. Local risk levels
are represented as a heatmap R on the ground plane, with
greater values indicating locations with higher risk of in-
fection. Risk is estimated from the BEV localization map
MBEV of sect. 3.3 by applying a scale-adaptive kernel K
determined by a chosen infection risk model.

R(u, v) = MBEV(u, v) ∗K (u, v) . (7)

When the infection risk is defined as simply the number of
people within the safe distance to a person, K is a disk-
shaped kernel of radius r = d0/s, where s is the scale pa-
rameter of equation 2. Therefore, R(u, v) represents the
count of people within radius r of location (u, v). Eval-
uating the accuracy of the risk map by comparing pixel-
wise values can be sensitive to overcrowded areas and fail
to capture borderline cases. Instead, we pose local risk es-
timation as a segmentation problem: For a given image,
the network outputs a binary mask by thresholding the risk
heatmap, with positive regions indicating areas where trans-
mission is likely to occur; the prediction quality is evaluated
by intersection-over-union (IoU) w.r.t. ground-truth mask.

Global risk levels are defined by counting occurrences of
social distancing violation—the total number of people that
fail to maintain a minimum distance d0 from one another—
and normalizing by the area covered by the BEV map. This
is estimated by multiplying the BEV heatmap with the bi-
nary risk mask, then integrating over the space

Rg(r0) =
1

s2HW

∑
u,v

R(u,v)≥r0

MBEV(u, v) (8)

where r0 is a threshold on the acceptable risk level. Risk
above r0 is considered unsafe, indicating the possibilty of
infection due to violation of social distancing recommenda-
tions. Global risk error is measured by mean squared error
(MSE) between estimated and ground-truth risks.

Figure 1 shows sample outputs for the tasks described
above. The BEV heatmap MBEV relies on accurate detec-
tion of each individual, while local and global risk estimates
are more robust to minor localization errors, as the influence
of each person is spread out in the ground plane.This diverse
set of criteria assures that model outputs perform well with
respect to both metrics of interest for computer vision (lo-
calization) and public health practitioners (risk levels).

4. BEV-Net
In this section we present BEV-Net, a unified framework

for the solution of crowd counting, camera pose estimation
and social distancing compliance assessment.

4.1. Multi-branch Encoder-Decoder
The design of BEV-Net is based on the encoder-decoder

architecture commonly used in CC models [5, 42]. How-
ever, we have found that directly training an encoder-
decoder to generate BEV heatmaps leads to poor results,
since a fully convolutional architecture has difficulty mod-
elling the large and non-uniform displacements that exist
between a pixel location in the input image and the corre-
sponding location in the BEV map.

BEV-Net addresses this problem through the multi-
branch architecture of figure 4. The head and feet branches
are trained to predict heatmaps for head and feet in the im-
age view (IV), respectively. Standard convolutional encoder
and decoder layers suffice to implement these branches,
as the input image and the IV heatmaps are aligned. For
SDCA, these heatmaps are not of interest per se, since they
contain no metric information. However, the addition of the
two branches enables supervision for head and feat loca-
tions, which is critical to let the network select which image
features to pay attention to. In this sense, they can be seen
as a top-down attention mechanism.

All metric information is recovered by the central BEV
branch. This branch has two stages. The first is a pose re-
gression network that runs in parallel with head and feet
branches, enabling geometric reasoning by learning to pre-
dict the height h and pitch angle θ of the camera. This is im-
plemented with a CNN feature extractor, followed by layers
of MLP, and supervised by a pose-estimation loss. The sec-
ond stage uses the camera parameters to rectify the IV head
and feet feature maps, denoted FIV, head and FIV, feet, into
BEV coordinates. Given the predicted camera pose (ĥ, θ̂),
the IV feature maps are first aligned in BEV space through
projective transformation Thead and Tfeet (details in section
4.2 and 4.3). This produces a pair of feature maps FBEV, head
and FBEV, feet in BEV, which are then concatenated along
channel dimension and fed to the BEV decoder, eventually
producing the predicted BEV map.
4.2. BEV-Transform: Feature-level Homography

The projective transformation between IV and BEV (see
figure 3) creates a spatially varying displacement between
IV and BEV feature map locations. This makes it difficult
to predict the BEV map from the IV feature maps, since
the convolution operation is not naturally suited to model
spatially varying displacements. Inspired by [26], we ad-
dress this problem by designing a differentiable BEV Ho-
mography transformation module based on (4), called BEV-
Transform, to perform feature-level homography mapping.

Given the predicted camera pose (ĥ, θ̂), for a plane
at height h0, BEV-Transform calculates the homography
transformation ˆ

IHB = H(ĥ − h0, θ̂) that maps BEV map
grid GB into the IV map sample grid GI :[

uI vI 1
]⊤

= ˆ
IHB

[
uB vB 1

]⊤
, (9)
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Figure 4: The BEV-Net architecture is a multi-branch model that
jointly performs geometric reasoning (pose branch), image-view
keypoint localization (head & feet branch), and bird’s eye view
person localization (BEV branch).

where (uB , vB) and (uI , vI) are coordinates in GB and
GI respectively. Note that h0 is different for head and feet
planes. Hence, two matrices ( ˆ

IHB)i, i ∈ {head, feet} are
needed to transform the feature maps of head and feet, re-
spectively, in order to align them in BEV. In practice, more
matrices are used as revealed in Section 4.3.

Given these matrices, (9) is then used to transform the
feature maps from image to BEV coordinates, using

(FBEV,i)uB ,vB = (FIV,i)uI ,vI , i ∈ {head, feet} (10)

As in [26], this is implemented with a differentiable bi-
linear interpolation layer. It should be noted that when fea-
ture maps are internally resized by the network, the coordi-
nates (uI

c , v
I
c ) of image center and focal lengths (fu, fv) are

scaled proportionally to match the map size.
4.3. Group BEV-Transform with Spatial Attention

The determination of feet and head plane heights has dif-
ferent complexity. For feet, the height is determined triv-
ially as h0 = 0. For heads, however, since people’s heights
are different, the head annotations are not in the same hor-
izontal plane in the world frame. One possibility would be
to simply ignore head locations. However, the co-location
of the vertical projections of head and feet is a strong regu-
larization constraint for camera pose estimation.

To take advantage of this, BEV-Net relies on a set of head
planes that quantify the range of person heights. To cover
both adult and child heights, planes are placed at heights
1.1m, 1.2m, ..., 1.8m from the ground. People in differ-
ent regions of the image are then automatically assigned to
different height planes by a self-attention mechanism, as il-
lustrated in figure 5. The IV head feature maps (FIV)head

Figure 5: Architecture of Grouping BEV transform modules and
spatial attention mechanism

are first mapped by the homographies ( ˆ
IHB)head,i, i ∈

{1, . . . , 8}, associated with the different head heights, into
a set of BEV head feature maps {(FBEV)head,i}. An at-
tention branch consist of three convolutional layers is then
used to compute a weight map Wi per BEV head feature
map. The set of weight maps {Wi} are then normalized
by a 2D softmax layer, notated as {W̃i}. The resulting
spatially varying weighted combination of the feature maps∑8

i=1(FBEV)head,i ∗ W̃i is finally used as the BEV head
feature map (FBEV)head.
4.4. Multi-task Loss

As shown in figure 4, BEV-Net is trained with four loss
functions. The loss functions for the head, feet and BEV
branches are all MSE losses:

Li = MSE(M̂i,mMi) + αMSE(g(
M̂i

m
), g(Mi)) (11)

where α = 1.25×10−6, i ∈ {head, feet, BEV}, g(A) =∑
u,v Au,v gives the global people counting. We amplify

ground-truth heatmaps by a factor of m = 100 for bet-
ter convergence, following practices in [66]. The pose loss
combines two MSE losses, for camera height and pitch an-
gle:

Lpose = λangle(θ̂ − θ)2 + λheight(ĥ− h)2 (12)

where λangle and λheight are the weight factors. The final loss
is a weighted sum of the above four loss functions,

L = λBEVLBEV + λheadLhead + λfeetLfeet + Lpose (13)

The loss weights are set to λheight = 0.02, λangle = 2.0,
λhead = λfeet = 1.0, and λBEV = 8.0 in all experiments.

5. Experiments
In this section we present experimental evaluations of

SDCA on the CityUHK-X-BEV dataset.
5.1. Experimental setup
Training procedure. The head, feet and pose branches
are pretrained for 50 epochs before training the BEV-Net
model. All the training process uses AdamW [43] with
learning rate lr = 0.0008 exponentially decreasing by fac-
tor 0.98 per epoch. A batch size of 8 and a train-validation
split of 4:1 was used in all experiments. After pre-training,
the BEV-Net is trained end-to-end. The BEV branch is first
trained for 5 epochs with frozen pre-trained branches. All
branches are then unfrozen step by step and jointly trained
for 195 epochs.
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Type Architecture Pretrain
BEV Heatmap
MSE ×10−7 ↓

Localization
Chamfer D × 1m / Dn% ↓

Local risk map
IoU% ↑

Global risk
MSE ×10−4 ↓

DET
Mask R-CNN [21] †

COCO [39] 3.89 2.26 / 75.3 46.63 43.35
Faster R-CNN [52] 2.71 1.53 / 51.0 67.01 9.91
CSP [41] † CityPersons [65] 4.21 4.57 / 152.3 28.75 62.26

CC

CSRNet [36] NWPU-Crowd [60] 4.03 5.49 / 183.0 26.80 57.72
DSSINet [40] ShanghaiTech B [66] 4.94 3.95 / 131.7 29.71 51.01
IV-Net (Head) CityUHK-X [28] 5.36 3.90 / 130.0 30.01 40.19
IV-Net (Feet) 8.25 3.65 / 121.7 22.41 9.03
CC oracle — 5.61 3.51 / 117.0 30.17 48.13

SDCA

BEV-Net (Ours)

CityUHK-X-BEV

1.34 1.25 / 41.7 71.25 6.24
- Feet only 1.38 1.26 / 42.0 68.12 7.62
- Head only 2.03 1.32 / 44.0 67.43 8.95
- No group transf. 1.36 1.24 / 41.3 69.65 7.08

Table 1: SDCA performance, tested on CityUHK-X-BEV. Under BEV-Net: “Head/feet only” removes feet/head branch from model (fig. 4);
“No group transf.” uses a plain head branch w/o group transforms (sect. 4.3). CC oracle uses ground-truth head heatmap and camera pose.
† denotes model evaluated without fine-tuning.
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Figure 6: BEV localization & risk heatmaps from different models. Both maps are back-projected to image space for visualization.

Comparisons. We compare BEV-Net to two types of base-
lines. A Detection-based approach (DET) utilizes a person
detector combined with the pretrained pose branch used by
BEV-Net. The bottom center of each bounding box is used
as the feet location qj

i . These locations are then converted
to world coordinates in BEV using IHB

−1qj
i with projec-

tion matrix IHB estimated from the predicted camera pose
(see section 3.3). We use pretrained CSPNet [41], Mask
R-CNN [21] and Faster R-CNN [52]. The Faster R-CNN
is finetuned on pseudo ground-truth bounding boxes gener-
ated from head/feet locations with aspect ratio 1/(3 cos θ).

A Counting-based approach (CC) uses standard crowd-
counting networks to generate IV head heatmaps, which
we project to BEV using the BEV-Transform and the same
pose branch used in DET methods. We use four networks:
finetuned CSRNet [41] and DSSINet [40]; and our IV-Net,
which is the head/feet branch in BEV-Net. The vertical
displacement between head locations and the ground plane
is compensated for by subtracting an average pedestrian
height used in [28]—1.75 meters—from the predicted cam-
era height. To explore the upper bound of counting-based
methods for SDCA, we introduce a CC oracle which uses
the ground-truth camera pose parameters and head maps.

Various ablations of the proposed BEV-Net are also eval-
uated. To study the effect of feet and head branches, we re-
move each of them from the architecture, leading to “Head
only” and “Feet only” variants. We further ablate the head
branch by replacing its group BEV-Transform module with

a naive BEV homography (“No group transf.”).

5.2. Quantitative results
Model performance. Table 1 summarizes the perfor-
mance of all methods in terms of the evaluation metrics
of Section 3.4. The BEV-Net outperforms all detection-
and crowd counting-based methods by a significant mar-
gin. Among different evaluation criteria, local and global
risk estimates,and normalized Chamfer distance showed the
most significant difference between models: BEV-Net ob-
tains over 25% higher IoU in local risk prediction, 7× lower
error in global risk, and a 20% reduction in normalized
Chamfer Distance. While detection methods like Faster R-
CNN can achieve relatively good localization performance
with tight bounding boxes after finetuning, their risk es-
timates remain unreliable due to low recall from missed
pedestrians. CC networks like DSSINet suffer from poor
ground-plane localization, which hurts their SDCA perfor-
mance in all criteria. Notably, even CC oracle with ground-
truth head locations and camera pose or the IV-Net that pre-
dicts feet heatmap fails to meet the accuracy of the BEV-
Net due to poor localization performance or feet occlusion.
This performance gap indicates that ground-plane model-
ing is essential for SDCA tasks, which cannot be effectively
addressed by conventional detection or crowd counting ap-
proaches that operate solely in camera view.
Ablation study. Also reported in Table 1 are ablated vari-
ants of BEV-Net. First, both “Head only” and ”Feet only”
models performed worse than the multi-branch BEV-Net.
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Figure 7: Top: Example scenes of different global risk level. Bot-
tom: Histogram of individual and scene risks in test set.

This suggests that both feet and head locations are impor-
tant for SDCA, which is intuitive: Head locations do not
lie on a shared 2D plane due to height variations among
the crowd, making it challenging to estimate real-world dis-
tances; feet locations lie on the ground plane, but are often
occluded in the camera view. Among the two, feet model-
ing is most effective. The “Head only” model struggles to
produce accurate BEV maps and localization results. This
is likely to be the case for all but very crowded scenes, with
large amounts of feet occlusion. Second, the group BEV-
Transform module of section 4.3 enabled considerable gain
over the vanilla implementation (“No group transf.”) under
IoU of local risk prediction and global risk error. This con-
firms that modeling height variations within the population
is beneficial for transforming image coordinates into BEV
with high precision.

5.3. Qualitative results

We next evaluate the visual quality of the BEV-Net re-
sults, and discuss its possible applications.
BEV heatmaps. Figure 6 compares BEV heatmaps and risk
maps predicted by different methods. Mask R-CNN [21],
Faster R-CNN [52] and CSPNet [41] suffer from low recall
of people detection, such that the risk maps fail to iden-
tify all regions with high risk of infection. CSRNet [36]
and DSSINet [40] can capture more risky areas, but are un-
able to predict the risk level correctly due to the ambiguity
in head heights. BEV-Net produces the closest localization
and risk heatmaps to ground-truth. Note how it accurately
predicts the risk “hot-spots” inside clusters of people.
Risk-based retrieval. The multi-modal outputs from BEV-
Net enable retrieval of images, individuals and clusters with
highest risk of infection. Figure 7 shows the distribution of
individual and scene risks in the dataset and examples of
events of different risk level. Individual risk is measured by
the local risk level at the ground-plane location of each per-
son. The graph shows that only 30% of detected individuals
are in compliance with the social distancing rule which pre-
vents two or more people from gathering together (i.e. risk
≥ 2). Under a less restrictive rule that relaxes the threshold

(a) (b) (c)

(d) (e) (f)

Figure 8: Mean risk map for test scenes, showing that people tend
to gather at escalator entrances, near pedestrian crossings, vendor
stalls, etc. Some results merit further investigation, e.g. why peo-
ple prefer to use the gates near the two ends in (f).

to five people, the compliance rises to 72%. We believe this
type of analytics is of interest for public health experts, e.g
to estimate transmission factors in real world scenes. Simi-
larly, the global risk measure can be used to detect events of
high risk, where viral transmission is most likely to occur.
Scene risk analysis. While we have so far focused on im-
age measurements, BEV-Net can also be used to estimate
intrinsic risk profiles of scenes. Figure 8 shows the average
risk map, over the test set, of several scenes. It can be ob-
served that high-risk areas coincide with entrances, corners,
passages or escalators. These risk maps could be used by
public health decision makers to identify potential infection
hot-spots and place obstacles or warning signs in the scene
to mitigate infection risks.

6. Conclusion
In this work, we have introduced the problem of social

distancing compliance assessment on busy public spaces,
from wide field-of-view cameras, without the need for man-
ual camera calibration or introduction of scene markers.
A novel benchmark was proposed for this problem, where
models are evaluated on their capability to localize people in
the ground plane through geometric reasoning, and to iden-
tify regions where social distancing is violated. A multi-
branch architecture, BEV-Net, was then presented, which
fuses information from head and feet annotations to gener-
ate a BEV reconstruction of pedestrian locations. Experi-
ments have shown that BEV-Net exceeds baseline methods
under all evaluation metrics. Several applications of interest
for public health decision makers have also been discussed.
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