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Executive Summary

Commercial on-vehicle implementation of Earth-referenced positioning at submeter accuracy with 99% probability would
require widely and reliably available differential corrections; however, such corrections delivered on a nationwide or global
scale via satellite systems will incur latency between their time-of-applicability and their time-of-reception at the vehicle.

This report summarizes the conclusions of the first phase of work performed by University of California, Riverside (UCR).
There were two main goals for this one-year effort.

1) To investigate the sensitivity of differential Global Navigation Satellite System (DGNSS) corrections and position
estimation accuracy to communication latency.

2) To investigate the feasibility of achieving meter-level positioning accuracy at least 95% of epochs.
The first phase of this project was designed to study stationary receivers, to clearly define, demonstrate, and address the
challenging issues. In this study, all algorithms use identical data sets (i.e., measurements and corrections); therefore, the study
compares the performance of different algorithms using the same data.

Two conference articles resulted from the first phase of the project [1], [2]. Article [1] considers both latency effects and
positioning accuracy using Kalman filtering methods. Article [2] considers position estimation accuracy in the presence of
outliers both by Kalman filtering and by risk-averse performance-specified state estimation (See Appendix C). This report
combines the results of both papers.

The first conclusion is that GNSS corrections can be designed such that position estimation accuracy is robust to correction
latency up to 600 seconds. This is demonstrated via experiments that are described in Section VI. The method of GNSS
correction calculation is described in Section IV with results of example computations in Appendix A.

The second conclusion is that meter-level horizontal position accuracy is achievable in excess of 99% of the samples when
a sufficient number of satellites are observable with appropriate geometry, both pseudorange and Doppler measurements are
used, and outlier measurements are suitably accommodated. Since DGNSS is designed to remove the effects of common mode
errors, this study pays special attention to accommodation of the non-common mode errors. A main issue is accommodating
multipath. The importance of the Doppler measurement for addressing multipath is motivated in Section V-B and demonstrated
in Fig. 4. Experimental demonstration results are included in Sections VI and VII.

Many applications, including connected and autonomous vehicles, would benefit from navigation technologies reliably
achieving sub-meter position accuracy with high reliability for a moving receiver. The second phase of this project will
study the feasibility of achieving the position accuracy specification for a moving receiver combined with a commercial grade
inertial measurement unit. The results herein used a local base station approach. National or global implementations would
be more efficient using networks of base stations working collaboratively to estimate parameters usable by user receivers to
reconstruct corrections. Such methods are the focus of phase three of the study.

This study focuses on single frequency, single constellation results. The availablility of multiple constellations and multiple
frequencies per constellations will facilitate compensation of ionospheric error, accommodation of outliers, and accommodation
of multipath while still having a set of satellites with appropriate geometry to reliably achieve the performance specification.
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I. INTRODUCTION

A new generation of applications (e.g., autonomous vehi-
cles, connected vehicles, and driver’s assistance applications
[3], [4]) are placing much stricter accuracy and reliability
specifications on navigation systems than was required for
the previous generation of personal navigation devices. Over
the last several decades, Global Navigation Satellite Systems
(GNSS) have become dominant for personal and vehicular
navigation. Standard GNSS accuracy of about 10 m [5], [6]
has typically been sufficient.

The FHWA, state DOTs, and auto manufacturers are in-
vestigating connected and autonomous highway vehicle ap-
plications which will benefit from real-time, ECEF position
estimates accurate to sub-meter level at 99% probability. Pi-
lot projects are ongoing in at least three locations [7]–[9].
The objectives include improving roadway network safety and
throughput, while decreasing emissions impact.

Commonly cited position accuracy levels derived from dif-
ferential GNSS (DGNSS) are 1-3 meters [10]. The lower end
of this range approaches the sub-meter specification, if this
accuracy can be achieved with sufficient reliability and if it is
not sensitive to DGNSS correction communication latencies.

Navigation systems achieving these accuracy and reliability
specifications have not yet been demonstrated. For a national
scale of implementation, topics of interest include: communi-
cation physical layers, network design for real-time applica-
tions, position error sensitivity to communication latency, and
estimation algorithms to achieve the accuracy specification.

This technical report studies position estimation accuracy
as a function of communication latency. It discusses model-
ing and estimation algorithm choices as they affect position-
ing algorithm performance. Section III presents notation and
background related to the measurement and models. Section
IV presents the differential correction latency compensation
approach that is used herein. Section V discusses the state-
space model used by the state estimation algorithms. It also in-
cludes a simplified example designed to motivate the use of the
Doppler measurement to improve the ability to discriminate
and accommodate multipath errors. The approach augments
one multipath state per satellite. The results show that using
the Doppler measurement significantly enhances the degree-
of-observability. Section VI presents experimental results that
demonstrate meter-level positioning performance that is robust
to correction latency. Section VII presents experimental results
studying the effect of outliers on different state estimation
algorithms.

The results discussed herein were first reported in [1], [2].

II. RELATED WORK

Vehicle positioning by DGNSS is a well researched area
[11]–[17]. The literature presents extensive position estima-
tion theory, algorithm, and experimental results that illustrate
alternative modeling choices and their impact on performance
and reliability [18]–[21].

One important aspect of DGNSS positioning is the sensitiv-
ity of position error to baseline separation and communication

latency. References [22]–[25] present methods to construct
networked differential correction services, ultimately leading
to nationwide differential correction service (e.g., WAAS, EG-
NOS). Various pre-2001 papers [14], [15], [26]–[29] charac-
terize the degradation of positioning accuracy as a function
of latency in the era of selective availability (SA). Due to the
design of SA, the correction error and hence the position error
grew rapidly over tens of seconds. Methods to compensate for
communication latency over low bandwidth channels for real-
time applications are discussed in [14], [15]. Until recently
[1], the literature lacked studies of real-time positioning per-
formance versus correction latency in the post-SA data.

Multipath error is the dominant error source in differentially
corrected GNSS measurements. The literature provides a few
methods to address the issue. In [30], the author introduces
a narrow correlator based tracking loop system that provided
a 20 to 50 percent reduction in multipath error effects for
the L1 pseudorange measurement. In [31], [32], multipath
error modeling is addressed using dual frequency carrier phase
measurements in a GNSS antenna array system. Choke ring
antennae [33] are another option, but are not practical for
inexpensive on-vehicle applications. Lastly, many implemen-
tations augment one (or more) multipath states per satellite
to the state vector. Use of Doppler measurement improves
positioning performance by estimating the velocity [34]–[37].
A less well understood benefit of the Doppler measurement is
that it enhances the degree-of-observability of the multipath
states. This topic will be discussed in Section V.

III. GNSS BACKGROUND

This section introduces notation and the GNSS measure-
ment models. For additional information on GNSS, see [18],
[19], [21].

GNSS receivers provide three different types of measure-
ments: pseudorange, Doppler and carrier phase. At present,
these signals are available to civilians only on the L1 fre-
quency. This study focuses pseudorange and Doppler L1 mea-
surements for the GPS constellation.

In the near-term, low-cost consumer receivers are expected
to provide additional measurements from multiple constella-
tions and at multiple frequencies for GPS (i.e., L1, L2, and
L5). The methods that we discuss will generalize to such situa-
tions with only minimal algorithmic changes. These additional
measurements will enhance performance further and facili-
tate implementations. For example, measurements at multiple
frequencies will improve real-time estimation of ionospheric
delays with or without a base station.

A. Notation

To clearly distinguish between models and computations
this report will use two different symbols. The symbol =̇ indi-
cates that the equation is a model. Models are used to analyze,
understand, and physically interpret measurements, often with
the goal of designing algorithms to estimate quantities that
are of interest (e.g., position). The symbol = indicates that an
equation represents an actual algorithmic calculation.

Copyright c©2018, University of California, Riverside. All Rights reserved. p. 3
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When it is necessary to represent both the actual and com-
puted versions of a variable, x will represent the actual value
while x̂ will represent the computed value. For example, ps

represents the actual position of satellite s while p̂s repre-
sents the position of satellite s computed from the available
ephemeris data.

B. Models

The pseudorange measurement model is

ρ
s
r =̇R(pr, ps)+ ctr− cts + Is +T s +Ms

r +η
s
r (1)

where the range between a receiver location pr and a satellite
location ps is

R(pr, ps) = |pr− ps|. (2)

The symbol ctr represents the receiver clock bias, cts is the
residual satellite clock bias after ephemeris corrections, Is is
ionospheric error, T s is tropospheric error, Ms

r is multipath
error, and ηs

r is random noise affecting the pseudorange mea-
surement.

The Doppler Ds
r measurement model is

λDs
r=̇(hs)T (vr− vs)+ cbr− cbs + ε

s
r (3)

where the line-of-sight vector from satellite s to receiver r is

hs =
pr− ps

|pr− ps|
. (4)

The symbols vr and vs represent the receiver and satellite
velocity vectors, cbr and cbs are the receiver and satellite clock
drift rates, and εs

r is random measurement noise affecting the
Doppler measurement.

C. Measurement Errors

The pseudorange measurement has 7 types of errors, (see
Sections 1.2-1.3 of [10] and [38]). They can be classified into
two categories:
• Common-mode errors (ephemeris, satellite clock bias, iono-

sphere, troposphere) are common to all receivers in the
same vicinity and can be mitigated with the use of DGNSS
corrections.

• Noncommon-mode errors (receiver clock bias, multipath,
receiver noise) are different for each receiver.

This report discusses methods to manage both types of errors
to achieve sub-meter positioning accuracy.

IV. DGNSS CORRECTION APPROACH

This section discusses DGNSS technique and delineates var-
ious issues that must be addressed toward achieving sub-meter
positioning accuracy. DGNSS is the typical approach to re-
move common-mode errors from pseudorange measurements
[10], [13], [18].

All DGNSS approaches use at least one base station with
a high quality receiver and antenna located at a mechanically
stable and known location pb. Due to the antenna location
being stationary and known, the DGNSS approach can es-
timate corrections for roving receivers, enabling significant

enhancement in rover position estimation accuracy, assuming
that the corrections can be communicated to the rovers.

DGNSS can be implemented on local, regional or global
scales. Local DGNSS approaches are the easiest to understand.
The standard basic approach is described in detail in Sec-
tion IV-A. Regional and global approaches utilize a network
of GNSS receivers. The measurements from the network are
combined to estimate correction information that is broadcast
to users, such that each user can reconstruct a local correction
[23], [24]. For commercial DGNSS applications on a global
scale, network DGNSS methods are likely to be the most
feasible for a few reasons. First, the number of base stations is
significantly reduced relative to local approaches implemented
worldwide. Second, a single entity responsible for the network
of base stations can implement measures to ensure and verify
integrity. Third, commercial entities utilizing the corrections
(e.g., car manufacturers) could interact with a single standard
(e.g., data format and communication physical layer) globally
rather than numerous local standards.

The collection of data from remote base receivers, com-
putation and verification of corrections, and communication
of corrections to users results in latency ` between the time-
of-applicability t0 and the time that it is actually used t0 + `.
Robustness to communication latency is critical.

A primary goal of this study is to evaluate the sensitivity
of positioning accuracy to communication latency. For the
purpose of this study, it is sufficient to utilize local corrections.
The local approach used in this paper, described in Section
IV-B, is a variant of the RTCM standard [11].

For the approach herein, the correction convergence time
at the rover is zero seconds, once the base station message
is received. For alternative approaches, such as those based
on precise point positioning [10], [39], [40], the convergence
time is non-zero, so the results of this study would not be
applicable.

A. Local DGNSS Corrections

This section discusses a local base station algorithm that
is essentially compatible with the RCTM standard. The local
base station position Pb is known.

At time t the base station algorithm computes

c̃s(t) = ρ
s
b(t)−R(pb, p̂s(t))− ct̂b(t)+ ct̂s(t) (5)

where ρs
b is the base pseudorange measurement, R(pb, p̂s) =

|pb− p̂s|, p̂s and t̂s are the satellite position and clock bias
computed from ephemeris data, and ct̂b(t) is an estimate of
the base receiver clock bias.

The model for c̃(t) is

c̃s(t)=̇Is(t)+T s(t)+Es(t)− cδ ts(t)+Ms
b(t)+η

s
b(t) (6)

where Es = R(pb, ps)−R(pb, p̂s) is satellite ephemeris error
and cδ ts = cts−ct̂s is residual satellite clock bias. Note that all
of the terms on the right-hand side of eqn. (6) are unknown.
The goal is that the broadcast correction to the rover should
allow accurate prediction of the common-mode error

Is(t)+T s(t)+Es(t)− cδ ts(t),
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while being minimally influenced by the base station noncommon-
mode error

Ms
b(t)+η

s
b(t).

Eqn. (6) shows that c̃s(t) contains both common and noncommon-
mode errors; therefore, additional processing is desirable.

B. Filtering to Decrease Non-common Mode Errors Effects

Each noncommon-mode error source is correlated over only
a few minutes whereas the common-mode error sources are
correlated over several hours. Due to this frequency separation,
various forms of low-pass filtering should attenuate the affects
of the noncommon-mode errors.

Before filtering, it is useful to consider the ionospheric de-
lay. When the ionospheric delay rate is high, a low-pass fil-
tered correction would lag the present value of c̃s(t). The
ionospheric delay has trends that are largely predictable using
satellite data available at each base and rover. Therefore, the
predictable portion of these terms is removed prior to filtering
and added back into the filtered results.

Let Îs represents the ionosphere delay computed using satel-
lite data. Using this predicted ionospheric delay produces the
new computed variable

d̃s(t) = c̃s(t)− Îs(t). (7)

The model for d̃s(t) is

d̃s(t) =̇ δ Is(t)+T s(t)+Es(t)− cδ ts(t)

+Ms
b(t)+η

s
b(t) (8)

where δ Is(t)=̇Is(t)− Îs(t). The first line of eqn. (8) contains
the desired signal for the corrections. These signals have very
small changes in rate over long periods of time (i.e., many min-
utes). The second line of eqn. (8) contains the noncommon-
mode errors. These errors change rapidly and are zero mean
over several minutes. Therefore, to also attain the ability to
predict corrections at future times, the form of low pass filter
that we select is line fitting to d̃s(t).

At time t0, the line at0 +bt0(t− t0) is fit to the data{
d̃(τ) for τ ∈ [t0−L, t0]

}
.

The parameters [at0 ,bt0 , t0, IODE] are communicated to the
rover arriving at the rover at some time after t0. The parameter
IODE ensures that the base and rover use the same issue of
ephemeris data. For any time t ≥ t0, the rover computes the
correction as

ĉ(t; t0) = at0 +bt0(t− t0)+ Îs(t). (9)

For position computations, the rover uses the DGNSS com-
pensated pseudorange measurement:

∆ρ
s
r (t; t0) = ρ

s
r (t)− ĉ(t; t0). (10)

The correction latency is l = (t− t0). Assuming perfect can-
cellation of common-mode errors when l = 0 and elimination

of the base multipath and receiver noise from the corrections,
the DGNSS compensated pseudorange model is

∆ρ
s
r (t; t0) =̇ R(pr(t), p̂s(t))+(ĉ(t; t)− ĉ(t; t0))

+Ms
r(t)+η

s
r (t). (11)

The term (ĉ(t; t)− ĉ(t; t0)) accounts for the error in prediction
of the common-mode errors due to communication latency.

Figures showing the results of example base station calcula-
tions are included in Appendix A. The differential correction
in eqn. (9) is designed to be robust to latency and base sta-
tion multipath error. Latency effects on both correction and
positioning error are analyzed in Section VI.

The dominant error source in ∆ρs
r (t; t0) is the rover mul-

tipath Ms
r which can be of several meters in magnitude. Ad-

dressing this rover multipath is necessary to achieve meter
level performance. This issue is studied in Section V-B. The
predictions of this study are verified experimentally in the
results of Algorithm 3 in Section VI.

V. POSITION ESTIMATION

This section considers the problem of position estimation
from GNSS data. For this portion of the study a main question
is position estimation sensitivity to correction latency.

The experimental analysis of position accuracy will use two
position estimation algorithms: the linear Kalman filter [21],
[41] and the risk-averse performance-specified approach [2],
[42]–[44]. Each will be designed using a position, velocity,
acceleration (PVA) state space model [21], [41] as outlined
in Section V-A. The main applications of interest are moving
vehicles. This portion of the study will only consider data
from a stationary receiver, but the algorithms will be designed
and tuned to be applicable to a moving vehicle. Section V-B
considers a simplified system to highlight challenges related
to and approaches for addressing multipath.

A. System Model

The state estimation algorithms (e.g., Kalman filter, RAPS)
are designed using the standard state-space model:

xk+1 =̇ φ xk +Γwk (12)
zk =̇ H xk +ηk. (13)

The rover state vector is

x = [pT ,vT ,aT , tr,br,M]T ∈ IRns . (14)

In (14) the symbols p, v, a ∈ IR3 represent the rover position,
velocity and acceleration, tr and br are the receiver clock bias
and drift, and M ∈ IRm represents the multipath error state
vector. Therefore, ns = 11 + m, where m is the number of
available satellite measurements. The details of the state-space
model, defining φ , Γ, cov(wk), and cov(ηk) are described in
Appendix B.

When both pseudorange and Doppler measurements are used,
the observation matrix H is

H =

[
ĥm×3 0m×3 0m×3 1m 0m Im×m

0m×3 ĥm×3 0m×3 0m 1m 0m×m

]
, (15)

Copyright c©2018, University of California, Riverside. All Rights reserved. p. 5
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where ĥm = [h1 h2 . . .hm]T and each hs is calculated using
eqn. (4) at the computed values: P̂r and P̂s. The symbol Iq×q
represents the identity matrix with q rows and columns and
0a×b is the zero matrix with a rows and b columns. When only
pseudorange is used, then the second set of rows is eliminated.

B. Simplified Illustrative Example

This section uses a simplified example to clarify the observ-
ability challenges connected to multipath and position estima-
tion. It also clarifies the importance and use of the Doppler
measurement to enhance the ability to attenuate the effects of
multipath on the position estimates.

Simplified System. Consider the following 1-dimensional
system with a standard position, velocity and acceleration (PVA)
model. For this simplified case, the rover state vector is x =
[p, v, a, M]T ∈ IR4 with p, v, a ∈ IR being the rover position,
velocity and acceleration and M ∈ IR represents a multipath
state. The receiver clock bias and drift tr and br are neglected.
The measurement white noise ηk ∼N (0, σ2

ρ ) has σρ = 0.5
m, and

φ =


I T a3 0
0 I a2 0
0 0 a1 0
0 0 0 γM

 and Γ =


T 5/2/

√
20 0

T 3/2/
√

3 0√
T 0

0
√

T

 .
The process white measurement noise wk ∼N (0, Qd) with

Qd ≈
[

σa 0
0 σM

]
. For Scenarios 1 and 2, the actual measure-

ment matrix is H = [1, 0, 0, 1]. The remaining parameter val-
ues are stated in Appendix B.

Design Scenario 1: In this scenario, the designer makes
the naive decision to design the estimator ignoring the mul-
tipath state, defining the estimator state as x̂ = [p, v, a]> with
H = [1, 0, 0], and defining R = 0.25 = σ2

ρ . Assuming that the
actual state vector is defined to be the same as x̂ (i.e., only the
PVA states), the designer (optimistically) predicts the steady-
state performance as indicated by the blue curve in Fig. 1.1

When the designer tests the system in the real world (i.e., four
states), the observed performance is indicated by the green
curve in Fig. 1. The predicted performance is not achieved as
the designer has neglected to account for the multipath state.

Design Scenario 2: Disappointed with the results of Sce-
nario 1 and realizing the culprit is multipath error, the de-
signer decides to continue with the same three state model,
but to increase R = 4.25m2 = σ2

ρ + γ2
m, where γm = (2m)2 is

the covariance of the multipath error on the pseudorange. The
designer (optimistically) predicts the performance as indicated
by the red curve in Fig. 1. When the designer tests the system
in the real world (i.e., four states) the observed performance
is as indicated by the black curve in Fig. 1. The predicted is
better (in the sense of being closer to the actual), but is still

1Performance is predicted by (1) computing the steady-state Kalman
gain for the design model, (2) using that gain to compute the steady-state
covariance of the actual system, (3) extracting the position error standard
deviation, and (4) ploting the corresponding folded normal distribution. For
additional detail on the analysis approach see Ch. 6 in [21].

Fig. 1: Position error distribution for scenarios 1 and 2.

Fig. 2: Position error distribution for scenario 3 and 4

too conservative. The predicted and actual performance do not
match because the design model is assuming that the multipath
error is white, while for the actual system the multipath error
is correlated in time. Also, the actual performance is only
achieving meter-level accuracy at 63%.

Design Scenario 3: This scenario uses the four state model
in the design (i.e., including the multipath state). The measure-
ment noise is assumed to be white noise with R = 0.25 = σ2

ρ .
With the four state model, the estimator accounts for the fact
that there are correlated measurement errors (i.e., multipath)
present and optimizes the estimator gain for the scenario.

Because the design and actual models are the same, their
performance will match. This performance is shown by the
blue curve in Fig. 2. The performance is not as good as that
predicted for either of the design models in Fig. 1; however, it
makes the correct prediction of the performance and its actual
performance is better that either of the actual performances in
Fig. 1. This design achieves meter-level accuracy at 88%.

Design Scenario 4: The system uses both the pseudorange
and Doppler measurements. The measurement vector, H ma-
trix, and measurement covariance matrix are:

z =
[

∆ρr
λDr

]
, H =

[
1 0 0 1
0 1 0 0

]
, R =

[
σ2

ρ 0
0 σ2

d

]
with σd = 0.04 m.

The estimator performance is shown by the red curve in
Fig. 2. The performance is better than that for Scenario 3. This
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result should be obvious, as more information has been used
to generate the estimate in Scenario 4; however, the specific
contribution of the information is interesting. In Scenario 3,
while the state is observable, the position and multipath are
not highly separable. Adding the Doppler measurement in Sce-
nario 4 directly measures the velocity, which greatly enhances
the ability of the state estimator to seperably estimate p and M.
The condition number of the observability matrix for Scenario
3 is more than 50000 times that of Scenario 4. This design
achieves meter-level accuracy at 98%.

VI. EXPERIMENTAL RESULTS: LATENCY EFFECTS

This section presents results analyzing experimental perfor-
mance. The analysis considers the effect of latency on the
correction accuracy, the effect of latency on position estimation
accuracy, and the extent to which of different Kalman filter
based estimation algorithms are able to achieve the one-meter
accuracy specification. These results were first reported in [1].

A. Experimental Data Description

The experimental data was acquired using a consumer-grade,
single-frequency GNSS receiver (u-blox M8T). The duration
of the experiment is 3000 seconds. All data is saved and post-
processed so that multiple algorithms can be compared using
identical data. All results are produced using only pseudorange
and Doppler data. Phase measurements were not considered.

The base station data was obtained using the RTCM stan-
dard [11] and NTRIP protocol from two base stations: ESRI
(baseline separation 14.5 km) and UCR (baseline separation 6
m). The DGNSS correction parameters [at0 ,bt0 , t0, IODE] are
computed and stored (using L = 500). This value of L was
selected to be about four times the expected base multipath
correlation time. The DGNSS corrections c(t; t − `) will be
used at time t to study the impact of the latency `.

All the results shown in this section are conducted for a sta-
tionary rover with the GNSS receiver connected to an antenna
at a surveyed location. The stationary rover state estimation
algorithm has parameters tuned for a rover that is in motion
(i.e., not stationary).

B. Correction Sensitivity to Latency

The correction error due to communication latency, as de-
fined in eqn. (11) is

ec(k, l) = |ĉ(k;k)− ĉ(k;k− l)|, (16)

where ĉ(k;k) is the correction with no latency and ĉ(k;k− l) is
the correction with latency of l epochs, where both corrections
are computed using eqn. (9).

Fig. 3 shows the mean plus and minus the standard deviation
of ec(k, l) as a function of l for three satellites. For each fixed
value of l and each satellite, the mean and standard deviation
of ec(k, l) are computed from experimental data by averaging
over (3000− l) epochs.

The correction error ec(k, l) remains less than one meter for
up to 600 seconds.

Fig. 3: Correction error defined in eqn. (16) versus latency for three satellites.

C. Position Estimation Algorithms

The following subsections report positioning accuracy ex-
perimental results for 3 estimation algorithms:

1) an 11 state Kalman Filter (KF) with state defined as
x(t) = [pT ,vT ,aT , tr,dr]

T using only pseudorange mea-
surements;

2) an (11+m) state KF with the state defined in eqn. (14)
using only pseudorange measurements; and,

3) an (11+m) state KF with the state defined in eqn. (14)
with pseudorange and Doppler measurements.

All the Kalman filter implementations use a PVA model [21],
[41]. Additional details are included in Section V-A and Ap-
pendix B. Each algorithm is used to process the entire set
of measurements (k = 1, . . . ,3000 seconds) as if they were
occurring in real-time (i.e., incrementally) to estimate the state
vector at each time k, using correction ĉ(k;k− l) from eqn. (9)
for a given value of the latency l. For algorithm n and latency
l, this produces the position sequence p̂n

k,l . The experiment is
repeated for each algorithm for latency values l = 0, . . . ,900
seconds.

The norm of horizontal position error is

en
hk,l

= ‖pr− p̂n
k,l‖ (17)

where pr is the known antenna position and p̂n
k,l is the esti-

mated position for algorithm n, time epoch k, and correction
latency l.

D. Positioning Accuracy

Fig. 4(a-c) show histograms of the norm of horizontal po-
sition error en

hk,l
defined in eqn. (17) for latency l = 0 for each

algorithm as summarized in Section VI-C.
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Fig. 4: Histogram of the horizontal position error en
hk,l

defined in eqn. (17)
for Algorithm 1 (Top), Algorithm 2 (Middle), Algorithm 3 (Bottom)
with l = 0.

TABLE I: Horizontal Positioning Performance with l = 0.

Algo. Mean Std. Dev Max Prob.

eh < 1 eh < 2

1 0.74 0.38 2.25 76 99.6
2 0.75 0.38 2.28 76 99.6
3 0.33 0.16 0.91 100 100

Table I and II summarize various measures of positioning
accuracy when the latency is zero. Horizontal position error
eh is in Table I. Vertical error ev is in Table II. Column 1
shows the algorithm number. Column 2 displays the mean
error. Column 3 contains the error standard deviation. Column
4 shows the maximum value of the position error. Columns 5
and 6 report the percentage of the samples that have a error
less than 1.0 and 2.0 meters, respectively.

Fig. 4, Table I and Table II demonstrate that including the
multipath state vector and using the Doppler measurement
significantly improves the performance in all standard, as was
motivated by the simplified examples in Section V-B.

E. Positioning Sensitivity to Latency

For each of the three algorithms described in Section VI-C,
Fig. 5 illustrates the effect of the DGNSS correction latency
l on GNSS position accuracy as measured by en

hk,l
defined

in eqn. (17). In each graph, the black curve shows the mean

TABLE II: Vertical Positioning Performance with l = 0.

Algo. Mean Std. Dev Max Prob.

ev < 2 ev < 3

1 0.76 0.62 3.6 95 99.7
2 0.76 0.68 3.5 95 99.6
3 0.59 0.38 1.65 100 100

Fig. 5: Horizontal position error vs latency. Algorithm 1 (Top). Algorithm 2
(Middle). Algorithm 3 (Bottom).

of en
hk,l

. Each point on the graph is also marked with a one-
standard-deviation error bar that is indicated in blue.

Fig. 5 shows that position estimation accuracy is insensitive
to communication latency for delays up to 600 sec.

VII. EXPERIMENTAL RESULTS: POSITION ACCURACY
WITH OUTLIERS

This section discusses achievable performance and the ef-
fects of outliers using the first 1000 seconds of data described
in Section VI-A. These results were first reported in [2].

A. Outlier Generation

Due to the location of the stationary antenna on the roof
of a four story building, the sky was clear and there were no
obstacles; therefore the collected data set should contained no
outliers. This was confirmed by analysis of the KF residuals.

To allow analysis of algorithm performance in the presence
of outliers, outliers were added to the pseudorange measure-
ments in a sequence of Monte Carlo tests. For each Monte
Carlo test, computer-generated outliers are added to two ran-
domly chosen measurements at each time instant. The size of
each outlier is drawn from a uniform distribution parameter-
ized by µ ∈ [0.2,20]. For µ < 4, the distribution is U [0,µ +4].
For µ >= 4, the distribution is U [µ − 4,µ + 4]. For each
Monte Carlo run, the same outlier corrupted data is used for
all algorithms.

B. State Space Model

All analysis in this section uses the PVA model as defined
in Section V-A and Appendix B. The state vector is defined in
eqn. (14). Both pseudorange and Doppler measurements are
used. The H matrix is defined by eqn. (15).
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C. State Estimation Algorithms

This section compares the results of three algorithms:
• Kalman filter (KF): This is Algorithm 3 defined in Sec-

tion VI-C. This algorithm uses all measurements and no
outliers are added. These results show the best possible
results in an ideal outlier-free situation.

• Neyman-Pearson Kalman filter (NP-KF): This is Algo-
rithm 3 defined in Section VI-C except that measurements
are only used if they pass a Neyman-Pearson check on the
absolute value of their residual. This algorithm has all the
measurements available to it, but outliers have been added
as described in Section VII-A. The NP-KF ignores all
measurements for which the absolute value of their resid-
ual is greater than the threshold sii = γ

√
Rii +hiP−k h>i

where hi is the ith row of H and γ is a positive constant.
Unless otherwise stated, the results herein use γ = 5.

• Risk-Averse Performance-Specified (RAPS): The RAPS
approach is discussed briefly in Appendix C. The mea-
surements to be used at each epoch are selected based
on risk minimization subject to a constraint on the ex-
pected accuracy. The measurement update for the selected
measurements is the same as for a Kalman filter. This
algorithm has all the measurements available to it, but
outliers have been added as described in Section VII-A.

These algorithms will all use the same data, with the same
outlier corruption, and performance is compared.

D. Performance Metrics

Peformance analysis will compare the norm of the horizon-
tal position error, sub-meter accuracy percentage, and maxi-
mum position error. The norm of the horizontal position error
is calculated as:

En
pk
= ‖pr− p̂n

k‖ (18)

where pr is the surveyed antenna position, p̂n
k is the estimated

rover position at time epoch k. The symbol n is the algorithm
number.

E. Experimental Results: Single Run

Fig. 6 compares the position error for the three algorithms
using two different values of the outlier parameter µ . This is
one example simulation of the Monte Carlo analysis that will
follow. The blue curve is the KF without outliers, representing
the best performance achievable for the given dataset. The red
and green curves represent the performance of RAPS and NP-
KF when outliers are added. In top set of graphs the outlier
parameter is µ = 8. In the bottom set of graphs the outlier
parameter is µ = 13. In both figures, the RAPS performance
with outliers is not quite as good as the KF (no outliers), but
better than NP-KF with outliers. The performance of the NP-
KF is improved in the bottom graph (µ = 13) relative to that
in the top graph (µ = 13), because the larger magnitude of the
outlier results in the threshold test being more successful in
correctly detecting and removing outliers.

Fig. 6: Performance Comparison. Blue curves are the Kalman Filter without
outliers. Green curves are for NP-KF with outliers. Red curves are for RAPS
with outliers. Top has µ = 8; Bottom has µ = 13.

It is important to note that the RAPS approach does not
simply use the smallest residuals. Selecting the smallest resid-
uals might not satisfy the performance constraint, because the
corresponding rows of the H matrix may not be sufficiently di-
verse. In the RAPS approach, the optimization process ensures
that the selected measurements result in sufficient diversity
in the rows of H to satisfy the position error specification,
while minimizing the risk of including outliers. As the number
of measurements that are used increases, the expected infor-
mation from those measurement increases, but so does the
risk of inclusion of outliers. RAPS may ignore some of the
smaller residuals, as they would add risk without supplying a
sufficient amount of new information. In the RAPS approach
the number of measurements used at each time may vary. In
this experiment, over 60% of the measurements at each time
are used.

Table III summarizes various measures of positioning accu-
racy for [0,1000] seconds of data with two different scenarios:
a) The outlier magnitude is µ = 8. The results are presented
in the column headed by NP-KF1. b) The outlier magnitude
is µ = 13. The results are presented in the column headed by
NP-KF2. The RAPS results for the two scenarios were the
same to within centimeters of accuracy.
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Fig. 7: (Top) Position error and (Bottom) Percentage of used measurement
versus outlier magnitude. Red curves are for RAPS. Black, yellow, blue and
green are for NP-KF with γ = 2,3,4 and 5.

TABLE III: Algorithm Comparison. The KF is outlier free. NP-KF and RAPS
have outliers.

Performance analysis KF NP-KF1 NP-KF2 RAPS

Mean of position error (m) 0.55 1.17 0.85 0.59

Std. of position error (m) 0.17 0.28 0.26 0.18

Sub-meter accuracy % 99 19 67 98

Maximum error (m) 1.2 1.8 1.4 1.2

Outlier parameter, µ (m) 0 8 13 8, 13

The first and second rows of the table compare the mean
and standard deviation (std) of horizontal position error de-
fined in eqn. (18). Row 3 reports the percentage of samples
that achieved sub-meter accuracy. Without outliers, the KF
demonstrates 99% of samples achieving submeter accuracy.
With outliers, the RAPS approach achieves 98% of the samples
with submeter accuracy. The NP-KF approach achieves lower
percentages with submeter accuracy. Its performance would
be altered by selecting different values for the threshold test
parameter γ .

F. Experimental Results: Monte Carlo

Fig. 7 shows the NP-KF and RAPS performance, averaged
over 20 Monte Carlo simulations. To produce one point on
each curve for one value of µ ∈ [0.2,20] meter: (1) twenty
experiments were performed over [0,1000] seconds; (2) the
position error at each second was computed; (3) the position
error was averaged both over the 1000 seconds and the 20
Monte Carlo experiments. Each Monte Carlo experiment gen-
erate a different set of outliers that was used both for NP-
KF and RAPS. With nine satellites available and two outliers
per epoch, the measurement set (pseudorange plus Doppler)
contains 11% outliers. The red curves display the result for the
RAPS algorithm. The other curves display the results for the
NP-KF approach for different values of the threshold parame-
ter γ . The black, yellow, blue, and green curves correspond to

γ values of 2, 3, 4, and 5, respectively. The y-axis in the top
figure is the mean position error. The y-axis in bottom figure is
the percentage of the measurements that were used for state es-
timation. NP-KF uses all measurements when µ is small. Then
its threshold test removes an increasingly higher percentage of
the outliers as the magnitude of the outlier increases, until it is
correctly removing 11% of the measurements. Therefore, NP-
KF mean error initially rises and later falls as the magnitude of
the outlier increases. RAPS mean position error performance
is robust to the magnitude of the outlier.

VIII. CONCLUSION AND FUTURE WORK

Real-time absolute positioning (i.e., relative to an Earth
frame) is one of the primary requirements of navigation tech-
nology in important commercial applications, e.g. connected
and autonomous vehicles. Data communication latency, in-
terruption, and lost packets are the challenges that all real-
time systems encounter. Reliably achieving submeter position
accuracy in realistic environments is a main focus of this
research project.

This report discussed GNSS measurement error character-
istics and methods to accommodate them. The report provides
an algorithm able to compensate latency, short-term communi-
cation interruption, and lost packets. The prime contributions
of the research described in this report are [1], [2]: (1) demon-
strating that, with suitable algorithmic processing, positioning
performance is insensitive to correction latency up to 600
s; and (2) demonstating that horizontal position estimation
accuracy at the submeter level for over 99% of samples.

Future research will focus on extending the results herein
to vehicle positioning performance on maneuvering platforms,
real-time implementations, and the use of inertial navigation
[21], [45], [46]; inclusion of carrier phase measurements [21],
multiple frequencies (L2, L5), and multiple constellations (e.g.,
Galileo, BeiDou, QZSS, IRNSS) [47]–[50] for achieving pre-
cise positioning could be another research motivation.
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APPENDIX

A. Example Computed Corrections

This section illustrates the DGNSS correction approach de-
scribed in Section IV using an example set of data. The blue
points in Fig. 8 show the DGNSS corrections c̃ as computed
using eqn. (5). The model corresponding to c̃ is defined in
eqn. (6). An estimate Îs(t) of the first term (i.e., Is(t)) is
computable from ionosphere model parameters communicated
in the satellite data and is plotted as the green line in Fig. 8.

The blue curve in Fig. 9 is the ionospheric-free DGNSS cor-
rection, d̃, formed using eqn. (7) and has the model described
in eqn. (8). While the slope of c̃ was approximately 3 mm/sec,
the slope of d̃ is reduced to approximately 1.5 mm/sec.

Over long periods of time (e.g., hours), d̃(t) will not be
linear due to the rising and setting of the satellite causing
the signal to traverse paths through different portions of the
ionoshpere that vary in length and time of day. See Fig. 10.
Alternative, over very short intervals of time, line fitting might
fit either the random noise or multipath effects without pro-
viding useful predictive capability of future common-mode
errors. For L greater than a few multiples of the multipath
correlation time, multipath effects will be attenuated and the
line fit should have useful predictive capabilities. In Fig. 11
the blue dots again show d̃. The red line shows the line fit
to d̃(t) for t ∈ [t0− L, t0] for t0 = 500 and L = 500. On the
interval t ∈ [t0− L, t0], the line follows the general trend of
the data without following the random noise or multipath. For

Fig. 8: DGNSS correction c̃ (blue) and computed ionospheric delay Îs(t)
(green).

Fig. 9: Ionospheric-free correction d̃(t).

Fig. 10: Ionospheric-free correction d̃(t) for long period of time
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Fig. 11: Line fit to ionospheric delay free correction.

Fig. 12: DGNSS correction raw data c̃ and computed correction ĉ(t; t).

t > to, the line fit predicts the general trend of d̃(t). The predic-
tion accuracy will decease (as expected) as (t− t0) increases.
Fitting the line to d̃ provides the parameters t0, at0 and bt0.

Finally, the correction ĉ(t; t), as computed using eqn. (9),
is shown as the green line in Fig. 12 along with the original
data (blue dots).

B. Kalman Filter Design

The state space model has the standard form described in
eqns. (12-13). The state vector defined in eqn. (14) has three
vector sub-components: the vehicle state xv = [pT ,vT ,aT ]T ∈
IR9, the clock state xc = [tr,br]

T ∈ IR2, and the multipath state
M ∈ IRm, such that x = [xT

v ,x
T
c ,M

T ]T ∈ IRm+11. Each of these
three sub-components evolve independently through time, which
simplifies the definition of the state space model.

The matrices of the discrete-time state-space model are

φ =

φv 0 0
0 φc 0
0 0 φM

 , Γ =

Γv 0 0
0 Γc 0
0 0 ΓM

 and

Qd =

Qdv 0 0
0 Qdc 0
0 0 QdM

 .
In the following definitions of the model portions, the time-
step is defined as T = 0.1s. The GNSS epochs will occur at
1 Hz. Therefore, the time update will occur 10 times between
measurement epochs. Alternatively, the analysis could have
used T = 1 with a single time update between measurement
epochs. The conclusions of the analysis would be identical and
fewer computations would be required. The choice of T = 0.1
allows more detailed graphs illustrating the smooth growth of
the covariance during the time evolution.
Vehicle Model. The continuous-time PVA vehicle model is

ẋv(t) =̇

0 I 0
0 0 I
0 0 −λaI

xv(t)+

0
0
I

ωa(t),

where ωa(t) is modeled as Gaussian white noise with power
spectral density Qa = σ2

a . The corresponding discrete-time de-
scription of the PVA vehicle model is approximated as

φv =

I T I a3 I
0 I a2 I
0 0 a1I

 , Γv≈

T 5/2/
√

20 I
T 3/2/

√
3 I√

T I

 , and Qdv =

 0
0

σ2
a I

 ,
with all submatrices being three by three, a1 = e−λaT ,

a2 =
(
1− e−λaT )/λa, and a3 =

(
λaT −1+ e−λaT )/λ

2
a .

The approximation indicated in Γv yields the correct diagonal
of the discrete-time noise covariance matrix, but ΓvQdvΓ>v
approximates the off-diagonal terms relative to the exact cal-
culation.
Clock Model. The continuous-time description of the clock
model is

ẋv(t) =̇

[
0 1
0 −λc

]
xv(t)+

[
0
1

]
ωc(t),

where ωc(t) is modeled as Gaussian white noise with power
spectral density Qc = σ2

c . The corresponding discrete-time de-
scription of the clock model is

φc =

[
1 b2
0 b1

]
, Γc ≈

[
T 3/2/

√
3√

T

]
, and Qdc = σ

2
c ,

with all matrix elements being scalars and

b1 = e−λcT and b2 =
(
1− e−λcT )/λc.

The approximation in Γc yields the correct diagonal of the
discrete-time noise covariance matrix, but approximates the
off-diagonal terms.
Multipath Model. The continuous-time multipath model is

ẋM(t) =̇ −λMIxM(t)+ωM(t),
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The corresponding discrete-time multipath model is

φM = γMI,ΓM =
√

T I, and QM = σ
2
MI, with I ∈ IRm×m.

Model Parameter Values. The parameters describing the
Markov model parameters for the acceleration, clock drift, and
multipath states are defined in the Tables IV and V. The values
in these tables were defined by selecting the correlation time
τ = 1

λ
and steady-state covariance P̄ to be reasonable values,

then computing:

λ =
1
τ
, Q = 2λ P̄, γ = e−λT , and Qd = P̄(1− γ

2).

The multipath correlation time of 10s was selected for a mov-
ing vehicle, for which the reflective surfaces change relatively
rapidly.

λ Q = σ2 P̄ = Q
2λ

Process Value Unit Value Unit Value Unit

Acceleration 0.1 s−1 1 m2s−5 5 m2s−4

Clock drift 1.0 s−1 0.001 m2s−3 0.0005 m2s−2

Multipath 0.1 s−1 0.1 m2s−1 0.5 m2

TABLE IV: Parameters of the continuous-time Markov process.

γ = e−λ T Qd = P̄(1− γ2)

Process Value Value Unit

Acceleration 0.9905 0.1 m2s−4

Clock drift 0.9048 9.06e−5 m2s−2

Multipath 0.9905 0.01 m2

TABLE V: Parameters of the discrete-time Markov process.

C. Risk-Averse Performance-Specified State Estimation

The literature discusses various outlier detection techniques
building on fundamental ideas [51]–[56]. RAIM techniques
are based on computing a party vector from the measurement
residual [57]–[60] assuming that there is enough measure-
ment redundancy to discriminate the outlier source. While
many RAIM approaches assume that there is only one outlier,
multiple outlier detection has also been well developed [58],
[59], [61]–[63]. Extended RAIM (eRAIM) [64] incorporates
an Inertial Measurement Unit (IMU) and Kalman filter based
estimation into RAIM.

Data redundancy, quantified by the number of degrees-of-
freedom (DOFs), is critical to successful outlier accommo-
dation. Both RAIM and eRAIM are based on measurements
from a single epoch, limiting data redundancy. Redundancy
can be enhanced both by adding additional sensors, multiple
GNSS constellations, multiple GNSS frequencies, or by using
all sensor data within a sliding temporal window.

The outlier detection problem is fundamentally unobserv-
able, when all measurements have the potential to be affected
by outliers [42], [65]. Therefore, outlier detection methods
such as those reviewed above are built on outlier hypothesis as-
sumptions, resulting in tests to choose the most likely assump-
tion. When the number of possible hypothesis assumptions is

too low, the actual outlier scenario may not be included, but
the required level of computations increases with the number
and complexity of the assumed fault scenarios.

Recently new methods for outlier accommodation without
explicit detection have been presented in the literature. The
Least Soft-thresholded Squares (LSS) approach, building on
l1-regularization, that was presented in [66]–[70]. A version of
the LSS approach adapted to the sliding time-window problem
[71] is presented in [72]. Alternatively, [65] works within an
optimization setting to find the largest set of measurements
self-consistent with the assumed model. Finally, [42] works
within an optimization setting to choose the set of measure-
ments that achieves a performance specification with minimum
risk. A main new idea of [42], [65] was to change the focus
from detecting outliers to optimal measurement selection. The
two papers evaluate optimality by different approaches.

The Risk-Averse Performance-Specified (RAPS) approach
[42] specifies the desired level of performance in terms of
the posterior information matrix (inverse covariance matrix).
Risk is quantified by the norm of the covariance-normalized
residual vector. RAPS is able to identify when the performance
specification is feasible and to both minimize and quantify
the risk associated with the achieved level of performance.
The main contribution of [2] is that RAPS was applied to and
explained for the GNSS state estimation problem, including
both the theoretical derivation and experimental results. The
experimental results utilize real-world Doppler and differential
pseudorange data, considering the risk associated with both
sets of measurements.

In the standard Maximum A Posteriori (MAP) state estima-
tion approach, using all measurements at time k, the negative
log-likelihood of the distribution yields the optimization

x?k = argmin
xk

(
‖x− x−k ‖

2
P−k

+‖Hkxk− zk‖2
R
)
, (19)

where x̂−k represents the optimal a prior estimate at time k.
The Kalman filter is the solution to this optimization problem.

The RAPS approach is more general, allowing selection of
the state estimate and which measurements to use, subject
to the constraint on performance. The RAPS optimization is
stated as:

P1a : min
x,b

[
‖x− x−k ‖

2
P−k

+‖Φ(b)(Hx− zk)‖2
R

]
subject to: H>R−1

Φ(b)H + J−k ≥ Jl

bi ∈
{

0,1
}

for i = 1, . . . ,m,

 (20)

where J−k is the prior information matrix, Jl is a lower bound
on the posterior information matrix H>R−1Φ(b)H + J−k , b is
the measurement selection vector, and Φ(b) = diag(b). The
cost function

C(x,b) = ‖x− x−k ‖
2
P−k

+‖Φ(b)(Hx− zk)‖2
R

quantifies the risk. Variants of this problem and alternate so-
lution methods are discussed in [42]–[44].
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