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Abstract

Ioannis Anastopoulos

Leveraging Chemical Structures And Molecular

Information With Interpretable Deep Learning

As biological data become more readily available and convoluted, equally involved methods

are needed to predict and understand outcomes in biological systems. Classical machine learning

methods are not well suited for prediction tasks that need to integrate heterogeneous sources of

information to predict the target variable. Deep learning is capable of integrating such disparate

inputs with impressive results.

Here, I present my work in integrating cancer cell line transcriptomic information with the

chemical structure information of the perturbagen they were treated with (Chapter 2). This work

leverages recent developments in deep learning for aligning domains (here cell lines and patients)

in a data-driven way and advanced featurization of molecules. I show that by integration of these

methods predicting drug response in patients is improved compared to more conventional methods.

This model can be used to identify therapies for a patient by using only transcriptomic and

chemical information. I further present my work on applying chemical featurization on nanopore

sequences to de novo model nucleotide modifications (Chapter 3). Given the polynomial nature

of possible modifications, producing gold standard data to identify such events is a daunting

task. I show that knowledge learned on chemical features in the canonical (un-modified) context

can be transferred to identify nucleotide modifications with a high degree of accuracy.

Finally, in Chapter 4 I present a collaborative work on developing an interpretable deep

learning model for identifying the activation of biological pathways following application of a

iv



perturbagen. We show that by guiding the the flow of information through the neural network

we can extract more biologically meaningful information following perturbation compared to

more classical methods such as Gene Set Enrichment Analysis (GSEA). This model can be used

to circumvent costly and time consuming experiments to inform of the pathways being altered

during application of a pertubagent is any biological system.

v



Acknowledgements

I gratefully acknowledge the support of my advisors Dr. Joshua Stuart and Dr. Olena Vaske.

I thank the members of the Stuart Lab for being outstanding fellow researchers and friends.

I especially want to thank Dr. Hongxu Ding whose ambition inspired me to aim high.

I thank my parents and my grandparents, who are the real heroes here. I am grateful for

their encouragement and support all these years.

vi



Chapter 1 : Introduction

1.1 Drug Response Prediction In the Era of Deep Learning

Precision medicine aims to tailor treatment to each patient’s genome by obtaining a clear

understanding of the underlying cause of the disease. Once the cause is identified, and the basic

biology contributing to the disease is well established, treatments targeting specific genes and

pathways can be developed benefiting patients that display a similar phenotype [1].

Nevertheless, developing such treatments is a long and expensive process [2]. The stages of

drug development include the following:

1. Drug discovery. This involved the identification of molecules that can bind to a the target

in question

2. Preclinical research. Successful molecules from stage 1 are tested on disease models, such

as tumor-derived cell lines or patient derived xenografts (PDX).

3. Clinical research. When a drug passes through stage 2 it moves on to clinical trials that

assess efficacy and toxicity in patients.

4. Approval and marketing. The drug gets approved by the Food and Drug Administration

(FDA) and is ready to be sold on the market.

It can take anywhere between 10 - 20 years, for a drug to pass through the above stages. The

cost to develop a New Molecular Entity (NME; a small molecule compound) or New Biological

Entity (NBE; an antibody, protein, gene therapy, or other biological medicine) can reach $2.6

billion or more [3, 4, 5, 2]. The pharmaceutical industry’s business model cannot sustain adequate

innovation of new compounds without a significant increase in RD productivity. A big part of

this issue are the diminishing numbers of novel drugs that are approved by the FDA. For example

in 2007 only 17 NMEs were approved - the lowest number of approved novel drugs since 1983 [6].
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Given the decline in RD productivity [7], and the diminishing market exclusivity for recently

launched new medicines coupled with the huge loss of revenues owing to generic competition

over the next decade [8], it is evident that the current state of drug development and marketing

needs rethinking and new tools to expedite RD and reduce costs.

However, computational approaches and various prediction algorithms can help to reduce

time, risks and save resources [9]. Techniques developed in deep learning have already shown

promising results within the past 5 years. While many non-deep learning methods have been

developed [10] none are yet optimal, given their inability to perform high-throughput screening,

and to incorporate a variety of protein classes. On top of that, several studies now show that

deep learning is an important approach to consider.

Drug–target interaction prediction is one of the most important tasks in developing a drug.

Targets (proteins) often have one or more binding sites with substrates or regulatory molecules;

these can be used for building prediction models. However, including other protein sites could

bring bias into the analysis. The ability of pairwise input neural network (PINN) to accept two

vectors with features obtained both from protein sequences and target profiles was used by Wang

et al. to compute target–ligand interaction [11]. This advantage of NNs resulted in a better

accuracy than other representative target-ligand interaction prediction methods. More recently

Zhavoronkov et al. developed an deep learning approach for de novo drug design named GENTRL

(developed generative tensorial reinforcement learning) using graph convolution networks and

reinforcement learning. The algorithm allowed for designing, synthesizing, and experimentally

testing potent six DDR1 kinase inhibitors in just 46 days, demonstrating the potential of this

approach to provide rapid and effective molecular design [2].

A frequent cause for removal of a drug from the development or production pipeline is the

risk of toxicity. Prediction of hepatotoxicity with computational approaches could help to avoid

likely hepatotoxic drugs [9]. Xu et al. showed that it is possible using deep learning to predict
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compound toxicity with raw chemical structure without requiring a complex encoding process

[12]. Using CNNs, it is also possible to predict properties such as epoxidation, which means high

reactivity and possible toxicity; this was first implemented by Hughes et al. by using simplified

molecular input line entry specification (SMILES) format data of epoxidized molecules and

hydroxides molecules, as a negative control [13]. Unintended side effects is another major cause

for halting development of a new compound. This is especially true when patients with complex

diseases or co-existing conditions are treated with a cocktail of medicines. While the use of

drug combinations has been shown to be beneficial to such patients [14, 15] the risk for side

effects induced by drug-drug interactions is quite high. Zitnik et al. showed that Decagon, a

deep learning approach using graph convolutional networks to model drug-drug interactions,

outperforms other approaches by a significant margin in predicting a large number of different

side effects [16].

1.2 Embedding Molecular Structure in a Data-Driven Manner

Encoding the molecular structure and predicting molecular properties from it has been of

significant interest in recent years [17]. Prediction of properties include modification status

of molecules, solubility, membrane permeability, drug-target interaction, side effect prediction,

transcriptome alteration prediction, etc. The value of creating a very accurate molecular

embedding is that high throughput screening can become less laborious and time consuming.

Models developed in predicting the aforementioned chemical properties can help in identifying

lead molecules in terms of their predicted performance in membrane permeability, drug response

and assist in whether molecules should proceed in the later stages of development [18].

The following have been common approaches in the field for extracting molecular features:

1. Sparse bit vectors with indices corresponding to the presence or absence of molecular

substructures called fingerprints. Traditional fingerprints (which use a limited set of
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predefined substructures) have developed into extended connectivity fingerprints (ECFPs),

which are able to incorporate more predefined substructures [19]. ECFPs incorporate all

substructures up to a user-selected radius size into the molecular representation, similar to

Morgan fingerprints. Multiple substructures are represented by the same fingerprint index,

however these representations are very static as the importance of any one substructure

over another is not encoded in the vector.

2. Determination of empirical solute descriptors. Abraham relationships are a representative

example of those. Solutes and solvents are described by five empirical parameters measures

chemical functionalities. The descriptor is thereof is then written as a linear combination

of solute–solvent interactions.

3. Concatenation of many known molecular descriptors, which may include calculation of

electronic descriptors or the use of existing property-estimation models. Software packages

including Dragon[20] and CDK[21] among others can produce thousands od such descriptors.

4. SMILES strings or InChI strings, which are two different methods to encode molecules as

character sequences. These can be used as as model inputs to character based models, or

molecular structure models [22, 23].

Although classical machine learning models have been applied on commonly extracted

molecular features, the high dimensional of these embeddings lead these models to downgrade

features that have low effect on the final prediction. Furthermore, the chemical descriptors

described above are very static in nature. Creating a more flexible molecular representation can

lead to improvements in chemical property prediction, and in turn to the machine suggesting

more and more viable lead molecules. ECFPs are still being extensively used in a variety of

prediction tasks. However, it is possible that multiple important substructures are described

by the same ECFP index, leading to collisions. In addition, it is also possible that many of the

indices are not relevant to the prediction task. It is clear, therefore, that a more flexible molecular
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representation is needed. Further, models that can learn this representation while learning

the prediction target can lead to superior prediction performance, aiding in high throughput

screening of molecules.

Techniques developed in deep learning allow models to learn general rules of chemical structure

while learning the target variable. Specifically, recent studies have shown that graph convolutional

networks (GCNs) perform better than the state of the art in node embedding, classification, and

graph visualization. Graphs are essential tools to capture and model complicated relationships

among data. In a variety of graph applications, including protein-protein interaction networks,

social media, and citation networks, analyzing graph data plays an important role in various

data mining tasks including node or graph classification. In this thesis I have applied graph

embeddings learned from GCNs to learn general rules for a) drug response prediction in cancer,

and b) for identifying the modification status of nucleotide bases from nanopore sequencing.

Kipf & Welling showed that a GCN autoencoder (GAE) performs better against the baseline

graph embedding algorithms[24] in link prediction In the citation network datasets—Citeseer,

Cora and Pubmed [25]. Further, the same group showed that a variational version of their graph

encoder (VGAE) performed significantly better than their previously developed GAE on the

same task [26]. Lastly, Pan et al. developed an adversarial version of graph autoencoders: an

adversarially regularized graph autoencoeder (ARGA) and an adversarially regularized variational

graph autoencoder (ARVGA). Both of these models showed superior performance against GAE,

and VGAE in link predictions on the same datasets. For the node clustering task, the authors

showed that both ARGA, and ARVGA achieve dramatic improvement against not only GAE

and VGAE, but also compared to other baselines across all metrics used: accuracy, non-mutual

information, F1score, Precision, average rand index (ARI) [27].
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Chapter 2 : Reconciling the Differences Between Cell Lines

and Primary Tumors Coupled with Drug Chemical Informa-

tion to Improve Drug Response Prediction

2.1 Chapter Introduction

Cell lines have long served as models to study molecular mechanisms of cancer. Cell lines

harbor many of the mutations and transcriptomic alterations that are present in the primary tumor

from which they were cultured. As pharmacogenomics models, cell lines offer the advantages

of being easily grown, relatively inexpensive, and amenable to high-throughput genomic and

pharmacokinetic testing. Data generated from cell lines can then be used to link cellular drug

response to genomic features, where the ultimate goal is to build predictive signatures of patient

outcome [28]. In colorecal cancer, cell lines have been used extensively to study mechanism of

disease and biomarkers. Mouradov et al. showed that COAD/READ cell lines exhibit similarities

in hypermutation profiles, particularly in DNA mismatch repair, chromosomal remodeling genes

(e.g. ARD1A) and histone methylation genes to the colorectal cancers in TCGA [29]. Further,

Daemen et al. used least-squared support vector machine (LS-SVM) to predict drug response

across 90 compounds in breast cancer cell lines. They found that mutation frequencies of crucial

genes was the same in cell lines as in their primary tumors, and that their gene panel for

Tamoxifen predicted a significantly improved relapse-free survival for patients predicted to be

tamoxifen-sensitive [30].

Furthermore, large datasets have been generated to characterize pharmacogenomic profiles of

tumor-derived cell lines. One of the first these datasets was the NCI-60, which consisted of 60
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cancer cell lines screened across several drugs [31]. Genomic features were also characterized for

the same cell lines. The genomic and response data were collectively displayed on CellMiner [32].

Targeted study of a panel of breast cancer cell lines have led to insights into the pathways and

process directly affected by anticancer compounds [33].

Additional pharmacogenomics datasets such as the Connectivity Map [34], Genomics of

Drug Sensitivity in Cancer [35], the Cancer Cell Line Encyclopedia [36], the Cancer Ther-

apeutics Response Portal [37], and the Cancer Target Discovery and Development Project

(https://ocg.cancer.gov/programs/ctd2) have expanded the numbers of cell lines, drugs, and

cancer types. The most recent version of the CCLE dataset includes the same tumor-derived cell

lines sequenced with next generation sequencing, providing an up-to-date genomic profiling of

this valuable resource [38]. Table 1 in this study [28] shows the number of tumor derived cell lines

collected across all groups. These studies have led to advances in our understanding of cellular

response to drugs and have provided the necessary data to develop prediction algorithms that

aim to match the response with genomic features (The connectivity map: using gene-expression

signatures to connect small molecules, genes, and disease)

2.2 Generalizing Drug Response Prediction to Patients

Despite the large contribution that cell lines have had in our understanding of cancer biology

and development, there are disadvantages associated with them. One of the main criticisms is

that the environment the tumor-derived cell lines are developed in is very different from the

environment that gave rise to the primary tumor [39]. Another is that while cell lines carry

many of the aberrations that are represented in the original tumor, many of the passenger

mutations (low frequency) are not maintained leading to a homogeneous population of cells that

does not necessarily resemble the heterogeneity that has been observed in primary tumors [39].

Therefore, there is an unmet need to efficiently and systematically transform cell line sequencing
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data rendering them more similar to that of their primary tumor, while maintaining hot-spot

aberrations.

While precision medicine has benefited from a large increase in RNA-seq being carried out

in the clinic, and from large consortia such as The Cancer Genome Atlas (TCGA), and the

International Cancer Genome Consortium (ICGC), drug response data of large patient cohorts

have not become readily available. Because of the fundamental differences between the in

vitro and in vivo setting, translation from pharmacogenomics features derived from cells to the

prediction of drug response in adult and childhood cancers has not yet been fully realized [40]

The majority of prior art in deep learning and drug design has focused on drug target

interactions and drug-drug interactions, showing serious promise for reducing labor, cost, and

time in the initial stages of drug development. However, there is still a need to test these

molecules in model organisms, such as tumor-derived cell lines and mice, which also takes time

and is not cost-effective. Using similar approaches in deep learning as discussed above, prediction

of drug response in model organisms as well as further generalization to patients is possible.

Due to the inherent differences between in vitro and in vivo biological systems, a translation of

pharmacogenomics features derived from cells to the prediction of drug response of tumors is not

fully realized. Prior work in this area has made use of the previous generation of CCLE data

(sequenced with Affymetrix arrays) expression data and SMILES (Simplified Molecular-Input

Line-Entry System) strings [41] to predict drug response in cell lines and aid in cancer-drug

re-purposing without applying the model to patients. Chiu et al. used mutation and expression

information from the newly sequenced (RNA-seq) CCLE cell lines to develop a deep learning

framework for the prediction of drug response named DeepDR [42]. Although the performance of

the model in cell lines is moderate (RMSE achieved 1.4 compared to 0.98 achieved by CDRscan),

the model showed promise when applied to select patient cohorts, such as HER2(+) BRCA

patients predicted to be significantly more sensitive to Tamoxifen. EGFR(+) NSCLC patients
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were predicted to be significantly more sensitive to EGFR inhibitors Gefitinib and Afatinib

than EGFR(-) patients, however Erlotinib was not shown to be sensitive in this patient cohort.

Nevertheless, the model focuses primarily on adult patients and not on pediatric patients.

The following work aims at bridging the discipline of domain adaptation, to incorporate

patient information regularization during training of a deep learning framework, and leveraging

chemical structure information to improve drug response prediction in patients. I led this

study and I was responsible for the analysis and writing. The contributions of others are as

follows: Lucas Seninge contributed to the analysis and interpretation of results, and Hongxu

Ding contributed to the refinement of the paper and the analysis.

This manuscript has been submitted to International Journal of Environmental Research and

Public Health, on November 2021.
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Embedding Drug Chemical Information with Patient-Cell Line Domain Adaptation
to Predict Clinical Response

Ioannis Anastopoulos1,2,*, Lucas Seninge1,2, Hongxu Ding1,2,*, Joshua Stuart1,2,*

1Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA.
2UC Santa Cruz Genomics Institute, Santa Cruz, California, USA.
*Correspondence should be addressed to I.A. (ianastop@ucsc.edu), H.D. (hding16@ucsc.edu)
or J.S. (jstuart@ucsc.edu).

ABSTRACT
In silico modeling of patient clinical drug response (CDR) promises to revolutionize personalized
cancer treatment. State-of-the-art CDR predictions are usually based on cancer cell line drug
perturbation profiles. However, prediction performance is limited due to the inherent differences
between cancer cell lines and primary tumors. In addition, current computational models
generally do not leverage chemical information of drugs. Here we develop the Prediction with
Adaptation and Chemical Embedding (PACE) dual convergence deep learning framework that
a) integrates gene expression along with drug chemical structures, and b) is adapted in an
unsupervised fashion to primary tumor gene expression. We show that PACE outperforms
state-of-the-art linear regularized method TG-LASSO in recapitulating drug efficacy (9/12 VS
3/12 drugs with available clinical outcomes).

GLOSSARY: GCN, Graph Convolutional Network. MorganFP, Morgan Fingerprint. SMILES,
Simplified Molecular Input Line Entry System for annotating chemical structures using character
strings. ML/DL, machine learning/deep learning, CDR, Clinician Drug Response. CDI
Cell-line-Drug-IC50. EM Expression Module. DM Drug Module. PM Prediction Module. OOD Out
of Distribution.

INTRODUCTION
Precision medicine promises to revolutionize cancer treatment by improving clinical drug

response (CDR) prediction. CDR prediction could be greatly facilitated by cutting-edge
high-throughput sequencing technologies, which provide comprehensive and individualized
omics profiles. Based on these omics profiles, several CDR prediction approaches have been
proposed. For instance, TG-LASSO1 integrates tissue-of-origin information with gene
expression profiles for CDR prediction. DeepDR2, on the other hand, predicts CDR from
mutation and expression profiles.

However, as another crucial component for CDR prediction, the chemical properties of
drugs have been under-utilized. Although the traditional Morgan Fingerprint (MorganFP)
molecular representation3 has been used to integrate drug chemical information for CDR
prediction, it cannot adaptively learn alternative representations of drug chemical properties, as
it is a static representation of the molecule and does not dynamically extract features for the
desired prediction task. For example, CDRscan uses MorganFP to represent key molecular
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substructures with an explicitly defined featurization. A limitation of this specific methodology is
its inability to adaptively learn alternative representations that may be beneficial to the particular
task in hand4. DrugCell also uses MorganFP to represent drugs along with a Visible Neural
Network (VNN) embedded in Gene Ontology (GO) terms, which provides interpretable results5,
however it has the same limitation as CDRScan in terms of adaptively learning chemical
features.

The Graph Convolutional Network (GCN)6 representation emerges as an attractive
alternative for encoding drug chemical properties. GCN adaptively learns chemical information
by generalizing the convolution operation from a grid of pixels to a graph, where each node can
have a variable number of neighbors. GCNs have been used to explore drug-target interactions
and side effect predictions - the two most important factors for developing a new drug. For
instance, Decagon uses GCN to predict potential side effects of a drug 7. DeepDrug is another
such example that predicts drug-drug interactions8. Such methodological advances provide
novel insights in incorporating drug chemical properties during CDR prediction.

The majority of CDR prediction algorithms are trained with cancer cell line drug
preturbation profiles. Cell lines have long served as models to study molecular mechanisms of
cancer, because they maintain valuable molecular information of the primary tumors from which
they were derived. Cell lines offer the advantages of being easily grown, relatively inexpensive,
and amenable to high-throughput assays. Data generated from cell lines can then be used to
link cellular drug response to molecular features, where the ultimate goal is to build predictive
signatures of patient outcomes 9. Various models have been developed to predict patient CDR
from the molecular profiles of cell lines 10–12. However, these models only show limited success
in certain drugs 13 14. Therefore, developing a model based on cell line molecular features to
predict CDR in patients for most drugs remains challenging 15. One major difficulty for such
cross-domain CDR prediction is the prominent differences between cell lines and primary
tumors 16–20. Recent advances in domain adaptation aim at aligning domains to tackle domain
alignment problems, such as batch effect correction to reconcile differences across laboratories
and studies 21. Mean Maximum Discrepancy (MMD) 22 has shown promising results in aligning
domains in an unsupervised manner 23. Such a technique could be used to align cell lines and
patient tumors in developing drug response models that are more clinically focused.

Inspired by the advanced GCN-based drug chemical information encoding, as well as
the MMD-based domain adaptation, we develop a model for drug response Prediction with
Adaptation and Chemical Embedding (PACE, Figure 1A). The PACE deep learning framework
predicts drug efficacy by integrating compound chemical information extracted using GCN
layers, with gene expression profiles encoded using fully connected neural network layers.
Specifically, to make PACE more compatible for patient CDR predictions, when training the
framework, we applied the MMD domain adaptation technique 24–26 to implicitly align cell lines
with reference patient samples of the same tissue of origins. Thus, the model does not assume
that cell line and patient samples are drawn from the same distribution. We demonstrated the
superior performance of PACE in recapitulating drug efficacy compared to the state-of-the-art
linear regularized method TG-LASSO (9/12 VS 3/12 drugs with available clinical outcomes).
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RESULTS

Overview of PACE
The PACE deep learning framework consists of three modules: Expression Module

(EM), Drug Module (DM), and Prediction Module (PM). As shown in Figure 1A, the EM is
composed of fully connected layers and learns highly informative features from gene expression
vectors. The DM is composed of a GCN and learns highly informative features for each atom
from the graph representation of chemical compounds. Atom-level features are then aggregated
to represent information about the compound as a whole (see METHODS). Given the success
GCNs have had in computational chemistry and biology applications 28–30, we posited that the
DM could learn a general graph embedding that would extend to drugs unseen during training.
The PM is composed of a fully connected layer and takes the information learned from the EM
and DM as input to predict log(IC50). The model was trained with “CDI tuples” -- Cell line gene
expression, Drug SMILES, IC50 -- indicating the contribution of the cell line transcriptomic
landscape and the drug chemical property to the cell line-drug IC50 value. Specifically, we
included cell line gene expression profiles from the Cancer Cell Line Encyclopedia (CCLE)
project 31, and the cell line-drug IC50 values from the Genomics of Drug Sensitivity in Cancer
(GDSC) project 32.

Our goal is to extrapolate drug response from cell lines to patients. Hence, the model
needs to embed the cell line training data to an out-of-distribution (OOD) embedding space
representing patient samples. Inspired by 24, and recent advances in the field of domain
adaptation27, we used maximum mean discrepancy (MMD) to adapt the latent distribution
produced by the EM so that cell lines could be aligned to patients. We excluded cell lines whose
tissue-of-origins are not shared with TCGA reference samples when training PACE. We provide
the samples from CCLE and TCGA with matching tumor types in Supplementary Tables 1 and
2. By this means, we collected 531 remaining cell lines treated across 310 drugs, amounting to
142,351 total CDI pairs. During the MMD domain adaptation step of the training process, each
cell line was paired with a random TCGA reference sample of the same tissue of origin, in order
to create a general enough adaptation of EM’s latent space. We included in total 7,702 TCGA
patient samples as MMD references.

To test the efficacy of adapting the EM with patient gene expression via MMD, we
constructed a non-adapted version of PACE for comparison purposes. In addition, we also
compared our model to one in which the DM uses MorganFP, representing a more conventional
molecular encoding. Altogether, we created three alternative models closely related to PACE --
PACE-Morgan, noPACE, and noPACE-Morgan (see Table 1).
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Table 1. All alternative models used and their specifications

Name EM DM

PACE Adapted GCN

PACE-Morgan Adapted MorganFP

noPACE Not adapted GCN

noPACE-Morgan Not adapted MorganFP

We compared the drug-level predictive performance (per-drug across-cell line Spearman
Rho against ground truth) achieved by our proposed PACE model to all the other
PACE-variations (Supplementary Figure 1A). We found that PACE does better compared to
PACE-Morgan for the majority of the drugs (points above the diagonal), suggesting that in
general drug chemical structures are better encoded by GCN. Meanwhile, the non-adapted
noPACE and noPACE-Morgan achieve a slightly higher correlation (points below the diagonal)
as opposed to PACE and PACE-Morgan, respectively. Such slightly compromised IC50

predictions for PACE and PACE-Morgan are expected, as MMD was introduced as an additional
regularization term. Moreover, such a prediction performance decrease is negligible: besides
slightly compromised drug-level predictive performance, when comparing across all 142,351
CDI pairs, the PACE model and the alternatives achieved comparable results (Supplementary
Figure 1B). This suggests that MMD adaptation preserves the prediction performance of drug
response in cell lines while yielding superior performance in the patient setting (Figure 1B).

In addition to PACE derivatives, we further compared PACE to the state-of-the-art
TG-LASSO1 model, which is a linear regularized method for CDR prediction. To evaluate all of
the models in the patient setting, we followed the same evaluation presented in the TG-LASSO
study1. Specifically, we used the same curated CDR dataset consisting of 531 patients treated
across 24 drugs labeled with the type of response indicated for each patient. Some drugs are
used in multiple tumor types (e.g. cisplatin) whereas others are used in a restricted setting (e.g.
bicalutamide in prostate cancer, tamoxifen in breast cancer, bleomycin in testicular cancer, see
Supplementary Table 3 for details). The majority of patients in this dataset (70%) were treated
with a single drug, while the rest were given two or more. Patients with stable diseases and
clinical progressive diseases were labeled as resistant (R), whereas those with partial or
complete response were labeled as sensitive (S). Following the same data filtering steps as
TG-LASSO and further retaining samples for which we had expression information, 506 patients
across 12 drugs remained. To measure the performance of the methods, we asked if their
predicted log(IC50) drug response (a continuous measure) correlated to the drug response
labels (R/S) (a categorical measure) in the CDR dataset (see METHODS). Specifically, a one
sided Mann-Whitney U test was used to determine whether the predicted log(IC50) for the
resistant (R) patients is significantly larger than that of sensitive (S) patients.

As shown in Figure 1B, sensitive patients across more drugs compared to all other
models that lack such adaptation. The combination of patient information adaptation with MMD
and GCN for drug embedding had better correlation to patient response than all the alternative
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methods examined. Specifically, PACE showed significant discrimination between resistant and
sensitive patients (p<0.05) for nine out of the twelve drugs compared to six by noPACE (Figure
1B). Similarly, PACE-Morgan predicted six drugs, compared to five by noPACE-Morgan
(Supplementary Figure 2). Please note that all PACE-variants could outperform TG-LASSO,
which could only recapitulate the efficacy of three drugs.

Taken together, these results suggest that the combination of patient adaptation via
MMD and a combination of the chemical embedding learned from GCN produced a highly
informative model that can be extended to the patient setting.
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Cell line diversity is crucially important for patient CDR prediction
Next, we asked if gene expression information or drug information has a bigger impact in

predicting drug response in patients. To this end, we created two different dropout experiments
-- one where all the CDI pairs for a cell line were withheld, and another in which all the CDI pairs
for a drug were withheld. For the cell line dropout experiment, we created training sets with
20%, 40%, 60%, and 80% of the total cell lines (531). For the drug dropout experiment, we
removed the 12 drugs presented in the CDR dataset, and created training sets that included
20%, 40%, 60%, and 80% of the remaining 298 drugs. For each group in cell line and drug
dropout experiments, the PACE model was trained ten independent times. The ten
independently trained models were then applied to the patient CDR dataset, and the average
predicted log(IC50) was computed. The Mann-Whitney U test was used to evaluate the
discrimination between labeled resistant and sensitive patients (see METHODS).

As summarized in Supplementary Figure 3A and B, lack of gene expression information
had a bigger impact compared to the lack of drug information across all drugs in our CDR
dataset, which is suggested by the higher prediction performance variance. This is likely caused
by the vast difference in complexity and variance between the gene expression profiles and the
compound structures. The robustness (measured by the variance of the p-value across 10 fold
cross validation) of the model suffers more with 20% of the cell lines included in training
compared to the same percentage of drugs included in training (Supplementary Figure 3B).
Addition of more cell lines in the training set drastically improves robustness of the model as
shown by the decreasing variance of the p-value across all 10 folds, indicative of the crucial role
expression information plays in predicting drug response (Supplementary Figure 3A). This result
also suggests that the GCN needs a small amount of drug chemical structures in the training set
to be able to generalize well to new drugs not seen in the training set. To further demonstrate
that the drug chemical structure diversity has been saturated, we removed all the 12 drugs in
the CDR dataset during training the PACE model. As shown in Supplementary Figure 3C,
compared to the full PACE performance, the efficacy of only tamoxifen and vinorelbine were no
longer recapitulated. Please note that the significance level drop of the two drugs are marginal,
suggesting that new drugs could be generalized with only a small amount of training drug
chemical structures.

PACE predictions recapitulate knowledge on targeted therapy
Most of the drugs we tested can be classified as chemotherapy agents, with the

exception of sorafenib (VEGFR inhibitor), tamoxifen (ESR1 inhibitor) and androgen receptor
(AR) inhibitor bicalutamide. To assess the performance on other targeted agents for well
characterized cohorts, we carried out an in silico analysis on drugs with known biomarkers of
response. We used mutations as biomarkers of response for the TCGA cohorts where
expression and mutation information were available. For the cohorts where these were not
available we used expression as a biomarker of response to confirm that the model learns
biologically meaningful information. The idea here is that as a target gene’s expression
increases, the drug’s predicted IC50 should decrease accordingly, indicating an increase in
sensitivity.
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We collected mutation information from TCGA breast cancer (BRCA), melanoma
(SKCM) samples and lung adenocarcinoma (LUAD) and lung squamous cell carcinoma cohorts
(combined and abbreviated as LUNG). We used mutation information as a biomarker of
sensitivity. We tested trametinib, olaparib, and dabrafenib on all of the aforementioned cohorts.
Trametinib is a MEK inhibitor and used to treat SKCM, and dabrafenib is a BRAF inhibitor also
used in SKCM. Olaparib is a PARP1 inhibitor and used to treat BRCA1- or BRCA2-mutated
breast and ovarian (OV) cancers. Next, we examined the correlation between a drug’s predicted
log(IC50) and its target gene’s expression (after Z-score transformation of the gene expression
values). We specifically examined OV in this way due to the fact that we could not collect
sufficient OV samples with predicted BRCA1 or BRCA2 mutations, and thus could not use
BRCA1/2 mutation as a biomarker for OV and olaparib.

As expected, BRCA1 mutant samples were predicted to be more significantly sensitive
to olaparib compared to BRCA1 WT samples (Figure 2A), NRAS and MAP2K1 SKCM mutants
were predicted to be significantly more sensitive to trametinib compared to SKCM WT samples
(Figure 2B/E). NRAS SKCM mutants were additionally predicted to be more sensitive to
dabrafenib compared to NRAS WT samples (Figure 2C). Olaparib has been previously shown to
be effective in ATM mutated BRCA patients. Although our model was not able to predict this
association correctly, SKCM ATM mutated samples were predicted to be sensitive to olaparib
(Figure 2D). Lastly, LUNG cancer NRAS mutated samples were predicted to be more sensitive
to dabrafenib (Figure 2F).

Studies have pointed to PARP expression as a promising biomarker of olaparib
response33. When we examined the correlation between PARP1 z-score and the predicted
log(IC50) per disease, OV had a significantly negative Spearman Rho (rho=-0.48)
(Supplementary Figure 4A). Testicular cancer (TGCT) showed the strongest negative correlation
between PARP1 expression and predicted IC50 for olaparib, which has recently been in clinical
trials in combination with chemotherapy for TGCT34.

We further examined the predicted response of lapatinib and the correlation with the
expression of its target genes, EGFR and ERBB2. In-vitro studies have previously shown that
lapatinib inhibits cell proliferation and migration of breast cancer cell lines expressing different
levels of EGFR and ERBB2, and that cells overexpressing ERBB2 were more sensitive35.
Interestingly, our model predicted EGFR expression as a stronger biomarker (Supplementary
Figure 4B) in BRCA patients compared to ERBB2 expression (Supplementary Figure 4C).
Taken together, these results suggest that our model can recapitulate the relationship of well
characterized drugs with the appropriate biomarkers, and their applicability in equally
well-characterized cohorts.
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DISCUSSION
In this study, we presented PACE, a new deep learning framework that uses both a

graph convolutional network (GCN) as a general encoding for drug information together with
patient information to aid in out-of-dataset prediction. During training, the method aligns cell-line
and patient gene expression domains using implicit tissue-driven adaptation together with drug
information to derive highly informative features for drug response prediction.

We showed that adapting cell lines to tumor gene expression space with maximum
mean discrepancy (MMD) preserves performance in cell lines while improving the prediction of
clinical drug response (CDR) in patients regardless of the drug encoding used. We found that
GCN’s embedding extends to drugs that have not been seen in training. These results suggest
that a combination of implicit tissue-driven adaptation and a highly flexible drug encoding lead to
improved prediction performance in patient samples. Interestingly, we note that the drug dropout
experiments revealed that only a random 20% (60) of drugs are needed to yield robust
generalization performance. On the other hand, the cell line dropout experiments showed that a
lack of cell line diversity during training greatly impairs generalization of drug response in
patients. Such discoveries shed light on the design of training datasets when extending PACE to
larger-scale patient CDR prediction tasks. To test whether PACE could be used for real-world
applications, we examined our model on some of the well known targeted therapeutics for
melanoma, breast cancer, and lung cancer. We found that PACE was able to predict MEK2
mutant melanomas as significantly more sensitive to trametinib, a MEK inhibitor, compared to
the WT cohort. Similarly, BRCA1 mutants in breast cancer were significantly more sensitive to
olaparib, a first-line treatment to patients with such a mutation, compared to the WT cohort.
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Ideally, PACE should be trained on patient samples rather than surrogates such as cell
lines. However, at this time, an adequate amount of patient data is lacking for any particular
drug of interest as most patients receive the standard of care based on the tissue of origin. For
example, as shown in Supplementary Table 3 all of the testicular germ cell tumors (TGCT)
patients were treated with bleomycin, whereas there were no TGCT cell lines treated with the
same drug. In the coming years, single cell sequencing should improve the performance of
predictive models. Promising results have been published by the MIX-seq study in which the
sequencing of cell lines before and after drug treatment has detailed the heterogeneity in
response across individual cancer cells36. Together with single-cell sequencing, human-derived
xenografts and 3D human organoids should complement cell line studies to add needed realism
for model training; e.g. by including contributions from the microenvironment 37–39.

PACE can be extended to incorporate additional diverse biological data as it becomes
available. As expected, we found that accuracy depended heavily on the presence of an
appropriate cell line of a matching tissue type in the training data. Beyond extending the training
data to cover more cell lines, which will increase the diversity of patients to which the method
can be applied, other data types may also provide a boost in performance. For example, the
current work focuses on gene expression and does not consider genomic alterations, such as
mutations and structural variants, and the vulnerabilities that these may introduce. In particular,
the CDR prediction on bicalutamide could be better with adding mutation information to account
for Antiandrogen withdrawal syndrome (AAWS) caused by mutations in the AR, which is known
to confer resistance 40,41. Genetic dependency data generated from the ACHILLES project 42 for
example are now available for many of the same cell lines that our model was trained on. In
theory, incorporating synthetic lethality prediction into the model should improve drug response
prediction, as drugs that target synthetically lethal pairs should have a substantial impact on
drug response. Incorporating protein level information could also lead to improvements in
performance as many of the drugs target specific proteins whose expression may or may not be
correlated with the gene’s RNA. The ongoing CPTAC project 43 is systematically quantifying
protein levels and phosphorylation states in cancer patients from TCGA. In addition, it has been
shown that proteome-level characterization of cell lines can aid in drug response prediction 44. It
is therefore evident that addition of proteomic data to our model could have a significant impact
on the prediction of drug response. Furthermore, the PACE framework could be repurposed to
adapt any source distribution to any target distribution. For instance, xenograft space could be
adapted to a patient space. We leave such explorations to future studies.

Increasing the interpretability of PACE would be of great value. It would be very
informative to developers of new drugs if they could predict the pathways affected by
administration of a new treatment. Recent advances in developing more interpretable biological
models45,46 should help models like ours in providing generalizable and interpretable results.
Lastly, the GCN of our model uses only atomic features for drug encoding. Other types of GCN,
such as GINEConv 47, are more expressive and use both atomic- and bond-level features, which
could potentially create an even more generalizable drug embedding. We leave the exploration
of the most appropriate GCN for this task and the inclusion of an interpretable EM to future
work.
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METHODS
Overall Framework. Our model is an adapted dual convergence architecture that integrates
gene expression information with drug structure aimed at generalizing clinical drug response
(CDR) prediction in patients. It consists of three modules: Expression Module (EM), Drug
Module (DM) and Prediction Module(PM). Highly informative representations of gene expression
and drug structure are generated by the EM and DM, respectively. These representations are
jointly passed to the PM where the log(IC50) prediction is made. The model takes as input a cell
line expression vector (xc), a primary tumor expression vector (xt), and the compound that was
applied on the cell line. The way the compound is presented as input to the model is explained
in the Morgan Fingerprint (MorganFP) Representation of Drugs and Graph Representation
of Drugs sections.

Expression Module (EM). The EM consists of 2 fully connected layers of 1024, and 100 nodes
with Rectified Linear Unit (ReLU) activation. BatchNormalization and Dropout of 0.35 are
applied on each layer. During training, the EM produces latent representations for both cell line
and primary tumors via weight sharing as follows:
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Inspired by the field of domain adaptation, and driven by the need to generalize drug response
prediction to patients, we used a domain alignment method called Mean Maximum Discrepancy

(MMD) 22. Specifically, the model tries to align to with the goal of making the cell line latent 𝑧
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space more similar to the primary tumor latent space by minimizing the following loss:
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tissue-of-origin during training. Thereby, the model implicitly aligns cell lines and primary tumors
in a tissue driven manner.

MorganFP Representation of Drugs. We used the python library RDKit to generate Simplified
Molecular Input Line Entry System (SMILES) strings, which describe the structure of a molecule
using a single line of text, and compute MorganFP for each molecule in our datasets 48. SMILES
strings are simple string annotations that describe the structure of the molecule. MorganFP is
part of the Extended-Connectivity Fingerprints (ECFPs) family and are generated using the
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Morgan algorithm 3,49. These fingerprints represent molecular structures and the presence of
substructures by means of circular atom neighborhoods (bond radius). In this study we used
radius 2 and constructed a 2048 long bit vector for each molecule. A radius of 2 takes into
account neighbors up to two atoms away when constructing the bit vector (fingerprint) of the
molecule.

Graph Representation of Drugs. We used RDKit to generate SMILES strings for each drug.

Next, we represented the SMILES string for each compound as a graph{𝑐
𝑗
} ∈ 𝐶

, where represents the set of nodes (nodes here are atoms on the𝐺 = {𝑉, 𝑋} 𝑉 = {𝑣
𝑗
}

molecule). An adjacency matrix represents the topological structure of each molecule with𝐴
denoting a bond between two atoms, otherwise . indicates the𝐴
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𝑖
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vector of features for each atom on the compound. The features (189 in total) used for each𝑣
𝑖

compound can be found in Table 2.

Table 2. Description of Atomic Features

Atom feature Size Description

Atom symbol 19 [As, B, Br, C, Cl, F, Hg, I, K, N, Na, O, P, Pt, S, Sb, Se, V, Zn]
(one-hot)

Atomic Number 119 Atomic number of each atom (one-hot)

Chirality type 4 [UNSPECIFIED, R, S, OTHER]

Degree 11 Number of covalent bonds (one-hot)

Formal Charge 12 Electrical charge (one-hot)

Hydrogens 9 Number of connected hydrogens (one-hot)

Radical Electrons 5 Number of radical electrons (one-hot)

Hybridization 8 [UNSPECIFIED, sp, sp2, sp3, sp3d, sp3d2, OTHER] (one-hot)

Aromatic 2 Atom is an aromatic ring (one-hot)
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Total 189 Total number of features

Drug Module (DM). The DM of the model aims at extracting highly informative features from
each molecule. This is done via either the MorganFP representation of the molecule, or the
graph representation of the molecule. For the former, the DM consists of one fully connected
layer, ReLU, BatchNormalization and Dropout. For the latter, we used the python library PyTorch
Geometric to produce data-driven molecular features using GCN 50. In particular, we used the
GCN architecture from 51. That architecture learns substructures of a given graph, and
relationships between graphs, which is crucial in this study as we aim to generate a general
embedding space for structurally diverse molecules presented in the drug response dataset.
This type of GCN falls under the spatial GCN category, which can generalize the learned
embedding to heterogeneous graphs 52,. We used one layer, followed by a pooling layer, which
aggregates highly informative nodes on the molecular graph 53. The DM consists of one layer
due to the small average size of the molecules (34 nodes). ReLU, BatchNormalization and
Dropout were applied here as well.

The purpose of the GCN is to map each to low dimensional vectors . The𝑣
𝑖

∈ 𝑉 𝑧
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Furthermore, to obtain a latent representation for graph , we computed both average and𝑧
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due to concatenation of both average and maximal features for each graph.
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Prediction Module (PM). The PM of the model consists of one fully connected layer, and aims
at predicting log(IC50) using highly informative features derived from the EM and DM. As such,
the operation carried out by the PM is the following:
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Our model updates the weights of EM, DM, and PM by minimizing the mean squared error
(MSE),
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Hence, the overall loss minimized by PACE is:
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where controls the tradeoff between the goals of aligning the cell line latent space with theλ
primary tumor latent space, and achieving an accurate predicted log(IC50).

Training Procedure and Tuning. Our model was implemented in Python with the PyTorch
API54 using the Adam optimizer 55 for gradient descent optimization. The training was allowed to
proceed for a maximum of 200 epochs. To control for overfitting EarlyStopping was used to
monitor the training loss for overfitting. Training was terminated after 10 epochs if the training
loss was not further minimized after 10 consecutive epochs, with a delta of 0.05. Dropout was
applied on a random 35% of nodes to further prevent overfitting. We used the Adam55 optimizer
for gradient descent optimization with a learning rate of 1E-4. Given the stochasticity of the
training procedure, and that we wanted to achieve considerable robustness with our model
when predicting CDR of patients, we repeated the training 10 independent times.

Due to the computational expense of training, the number of layers for the DM and PM
were fixed to one, and the number of layers of the EM were fixed to 2. We experimented with

the , and with the number of drug nodes for the DM, as well as the number of layers of the EM.λ
We found that and 200 drug nodes were the best parameters for distinguishingλ = 0. 01
sensitive from resistant patients in the CDR dataset
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CDR prediction in TCGA patients. We obtained the clinical drug response (CDR) of 531
TCGA patients across 24 drugs from this study 1. Following the same filtering steps as Huang et
al. resulted in 12 drugs. Finally, after filtering for patients for which we had gene expression
information resulted in 506 patients. Patients with “clinical progressive disease” or “stable
disease” were labeled as resistant (R). Those with “partial response” or “complete response”
were labeled sensitive (S). These are categorical variables, whereas our model predicts
log(IC50) which is a continuous variable. To test how well our model can be extended to OOD
samples, we grouped the predicted log(IC50) of each patient in the corresponding R or S bin.
Then, we tested if the predicted log(IC50) of the R patients was significantly larger than that of
the S patients by performing a one-sided nonparametric Mann Whitney U test. A summary of
the number of R and S patients for each drug is shown in Table 3.

Table 3. Number of Resistant and Sensitive Patients in TCGA CDR dataset

Drug Num
Resistance

Num Sensitive N of cell lines
in training

Mode of Action

bicalutamide 3 14 525 Androgen
receptor

antagonist

bleomycin 4 46 470 DNA synthesis
inhibitor

cisplatin 25 108 524 DNA synthesis
inhibitor

docetaxel 17 55 524 Tubulin
polymerization

inhibitor

doxorubicin 7 52 479 Topoisomerase
inhibitor

etoposide 10 71 484 Topoisomerase
inhibitor

gemcitabine 43 37 509 Ribonucleotide
reductase
inhibitor

paclitaxel 27 66 470 Tubulin
polymerization

inhibitor

sorafenib 13 2 470 FLT3 inhibitor
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tamoxifen 4 14 520 ESR1 inhibitor

temozolomide 83 10 520 DNA alkylating
agent

vinorelbine 6 23 513 Tubulin
polymerization

inhibitor

Drug/cell line exclusion experiment. For dropout analysis, we created random train splits in a
10-fold cross validation. After training on each fold 10 independent times, we tested the
generalizability potential of our model in the CDR dataset for each fold, thereby producing 10
p-values (see CDR prediction in TCGA patients). For drug-centered dropout analysis, we
created train sets by first removing all 12 CDR drugs (bicalutamide, bleomycin, cisplatine,
docetaxel, doxorubicin, etoposide, gemcitabine, paclitaxel, sorafenib, tamoxifen, temozolomide,
and vinorelbine), and then retaining random 20%, 40%, 60%, and 80% of the remaining 298
drugs (310 drugs in total). Similar to the drug-centered dropout analysis, the cell line-centered
dropout was carried out in a similar manner without removing the 12 CDR drugs.

AUTHOR CONTRIBUTIONS
I.A. conceived the idea, performed deep learning framework modeling,
optimization and analysis. L.S. contributed in developing ideas on how to align cell lines
and patients. H.D., J.S. supervised the project. All authors prepared the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

CODE AVAILABILITY
The package and API for PACE is available at https://github.com/ioannisa92/PACE. The
code and data to train and deploy the model of this manuscript are available on the
github.

DATA AVAILABILITY
Expression Datasets. We downloaded gene expression data of 1376 cell lines of the Cancer
Cell Line Encyclopedia (CCLE) project, along with their metadata 31, and 10,536 TCGA
pan-cancer tumors from the DepMap project 56 and UCSC Xena browser 57, respectively. All
expression values were represented as log2(TPM+1), where TPM denoted transcripts per million
reads of each gene in each sample. The gene space was intersected resulting in 31,501
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Drug Response Datasets. We downloaded release 8.1 of the GDSC project containing drug
response measured by the half maximal inhibitory concentration (IC50) from the DepMap project,
which has harmonized cell lines and drug names32,58. In total 974 cell lines tested across 398
drugs are included in this dataset, amounting to 387,626 cell line-drug-IC50 pairs (CDI pairs).
After intersecting for cell lines included in the CCLE RNA-Seq compendium, selecting drugs for
which we could obtain SMILES string, removing CDI pairs representing combination therapies
and pairs with missing values for either drug name or IC50, 692 cell lines tested on 310 drugs
remained, amounting to 185,186 CDI pairs. All IC50 values were transformed to log scale
log10(IC50). After selecting for cell lines that represent the same tissue of origin as the TCGA
dataset (25 tumor types), 531 cell lines tested on 310 drugs amounting to 142,351 CDI pairs.

FIGURE LEGENDS
Figure 1. Deep learning model architecture and performance comparison of PACE. (A)
Graphic overview of the proposed deep learning framework PACE. Expression Module (EM)
extracts informative features for the input expression vectors for both CCLE and TCGA via
shared weights. These two compact expression representations are compared with each other
via Mean Maximum Discrepancy (MMD) to diminish the distance between them, thereby
aligning the two representations. The Drug Module (DM) encodes the molecule and pools the
most informative nodes (atoms) to also create a compact representation. Finally, the CCLE
expression representation and the drug representation are concatenated together and passed
to the Prediction Module (PM) that makes the final log(IC50) prediction for each CDI pair. (B)
PACE was compared to non-adapted alternatives as well as alternatives using MorganFP for
molecule encoding, against the state-of-the-art TG-LASSO linear method. Bar plots showcasing
p-value, corresponding to the one-sided Mann-Whitney U test, determined by averaging 10
independent predictions made by each model. (C) Box plots reflecting the distribution of
estimated log(IC50) values using PACE for resistant or sensitive patients. The p-values here also
correspond to a one-sided Mann-Whitney U test.

Figure 2. Functional Analysis. (A) Predicted log(IC50) for BRCA1 mutant and wild-type (WT)
breast cancer (BRCA) samples in-silico treated with olaparib. P-value corresponds to the
one-sided Mann Whitney U test discriminating between mutant and WT predicted log(IC50). (B)
Predicted log(IC50) for NRAS mutant and wild-type (WT) melanoma (SKCM) samples in-silico
treated with trametinib. (C) Predicted log(IC50) for NRAS mutant and wild-type (WT) melanoma
(SKCM) samples in-silico treated with dabrafenib. (D) Predicted log(IC50) for ATM mutant and
wild-type (WT) melanoma (SKCM) samples in-silico treated with olaparib. (E) Predicted log(IC50)
for MAP2K1 mutant and wild-type (WT) melanoma (SKCM) samples in-silico treated with
trametinib. (F) Predicted log(IC50) for NRAS mutant and wild-type (WT) LUSC/LUAD (LUNG)
samples in-silico treated with dabrafenib.
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Chapter 3 : Biological Pathway Informed Deep Learning

Recapitulates Known Biology

3.1 Chapter Introduction

Although cancer cell lines have played critical role in our understanding of cancer biology

and how tumors might respond to various treatments, cell lines do not adequately represent

their tumor type. Chen et al compared hepatocellular carcinoma primary tumor samples to

cell lines using gene expression data and showed that only about half of the cell lines sufficient

resemble their primary tumors [43]. Vincent et al performed similar analysis integrating use gene

expression data for breast cancer cell lines and primary tumors and reported similar results with

Chen et al [44]. With the revised CCLE compendium there is a unique opportunity to study the

differences and commonalities between the two cohorts. The compendium now contains over

1,000 cell lines across 36 tumor types sequenced with next generation RNA-seq [38]. However,

the differences between cell lines and primary tumors are still apparent. Yu et al identified

important differences between cell lines and tumors. Namely, using the top 5k most variable

genes and GSEA, the authors were able to identify cell cycle related pathways upregulated in cell

lines, and a moderate upregulation of immune system related pathways in primary tumors. The

upregulation of cell cycle pathways in CCLE, is potentially reflective of the culturing conditions

[45]. These differences are important, however, to improve our understanding of disease biology,

and identify pathways that contribute to sensitivity or resistance to treatment, we need to identify

common pathways between cell lines and tumors. This is important, because pathways provide

a more holistic understanding of biology than genes. One of the shortcoming of established

methods, such as GSEA, is that the transcriptome has to be restricted to the most important

genes. Deep learning methods are not constrained by this, and may identify new and novel

pathways. In addition, the authors attempt to remedy the issue of poor translatability between
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the two cohorts by creating a new cancer cell line compendium called the TCGA110-CL. Its

comprised of the top 5 most correlated cell lines for each of the 22 common tumor types between

CCLE and TCGA.

Deep learning models usually act as black boxes learning a mapping from input to output.

However, it is possible to embed an interpretable structure in the hidden layers of the model.

Ma et al used extensive knowledge of cell biology to create a Visible Neural Network (VNN)

named DCell. The hidden layers of DCell are hierarchical and resemble the inner workings of

a eukaryotic cell, namely the budding yeast Saccharomyces cerevisiae. The model was trained

so several million genotypes to predict cell growth. The authors showed that the model could

make accurate phenotypic predictions for cell growth, and that it can outperform an equivalent

fully connected artificial neural network (ANN) [46]. By embedding the structure of the model

with prior knowledge of biological systems not only enables competitive performance, but also

transparent biological interpretation of the predictions the model makes.

The following work aims at developing a variational autoencoder (VAE) that is not a black

box. It can be interpreted to identify the biological pathways responsible for trascriptomic

alteration following perturbation. The model takes as input un-stimulated (control) cell lines

and predicts their perturbated transcriptomic profile. The decoding of the model is embedded

with prior biological pathways which are connected to the respective genes that they comprise.

The bottleneck space can then give us the most active pathways following purturbation.

The manuscript has been published at Nature Communications, 2021.

3.2 Biological Network-Inspired Interpretable Variational Autoencoder
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VEGA is an interpretable generative model for
inferring biological network activity in single-cell
transcriptomics
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Deep learning architectures such as variational autoencoders have revolutionized the analysis

of transcriptomics data. However, the latent space of these variational autoencoders offers

little to no interpretability. To provide further biological insights, we introduce a novel sparse

Variational Autoencoder architecture, VEGA (VAE Enhanced by Gene Annotations), whose

decoder wiring mirrors user-provided gene modules, providing direct interpretability to the

latent variables. We demonstrate the performance of VEGA in diverse biological contexts

using pathways, gene regulatory networks and cell type identities as the gene modules that

define its latent space. VEGA successfully recapitulates the mechanism of cellular-specific

response to treatments, the status of master regulators as well as jointly revealing the cell

type and cellular state identity in developing cells. We envision the approach could serve as

an explanatory biological model for development and drug treatment experiments.
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Recent advances in single-cell RNA sequencing (scRNA-Seq)
technologies have enabled the characterization of cellular
states at an unprecedented scale and resolution1. Among

the many widely-used frameworks for analyzing complex tran-
scriptomic patterns in single cells, artificial neural networks
(ANNs) such as autoencoders (AEs)2 have emerged as powerful
tools. AEs are neural networks that transform an input dataset
into a decoded representation while minimizing the information
loss3. The diversity in their architectural design makes AEs
suitable to tackle various important challenges of scRNA-Seq
analysis, such as dimensionality reduction4, clustering5, and data
denoising6.

More recently, deep generative models such as variational
autoencoders7 (VAEs) have proven to be extremely useful for the
probabilistic modeling of single-cell transcriptomes, such as scVI
and scGen8–10. While standard AEs learn to reconstruct an input
dataset, deep generative architectures explicitly model and learn
the true data distribution, which allows a broader set of queries
to be addressed. While deep generative models have shown
impressive performance for their dedicated modeling tasks, they
often lack interpretability thus cannot offer a biologically mean-
ingful latent representation of transcriptomes. For example, latent
perturbation vectors extracted with scGen cannot be directly
related to gene module variations10.

Integration of prior knowledge about gene modules to aid
interpretability has already been successfully applied to tran-
scriptomics data. DCell11 is a deep neural network integrating the
hierarchical information about the molecular subsystems involved
in cellular processes to guide supervised learning tasks, such as
predicting growth in yeast. Such a model yields an informative
biological interpretation of predictions by investigating the activa-
tion of the different subsystems embedded in the model’s archi-
tecture. However, this model only works in a supervised learning
setting where the goal is to predict a phenotypic outcome. On the
other hand, f-scLVM12 is a Bayesian hierarchical model with
explicit prior biological knowledge specification to infer the activity
of latent factors as a priori characterized gene modules. While this
approach enables the modeling of single-cell transcriptomes in an
interpretable manner, the computational cost of the inference
algorithm, as well as the absence of inference for out-of-sample
data, make the development of more efficient approaches highly
desirable.

Here we propose VEGA (VAE enhanced by gene annotations),
a VAE with a sparse linear decoder informed by biological
networks. VEGA offers an interpretable latent space to represent
various biological information, e.g., the status of biological
pathways or the activity of transcriptional regulators. Specifically,
the scope of VEGA is twofold, (1) encoding data over an inter-
pretable latent space and (2) inferring gene module activities for
out-of-sample data.

Results
Architectural design of VEGA. To create a readily interpretable
VAE, we propose a novel architecture we refer to as VEGA (VAE
enhanced by gene annotations) where the decoder (generative
part) connections of the neural network are guided by gene
module membership as recorded in gene annotation databases
(e.g., Gene Ontology, PANTHER, MolSigDB, or Reactome)
(Fig. 1a). In many standard VAE implementations, the infor-
mation bottleneck of the encoder-decoder architecture often
represents latent variables modeled as a multivariate normal
distribution. Despite providing highly informative representa-
tions of the input data, VAE latent variables are in general hard
to interpret. Svensson et al.13 proposed using a linear decoder
which directly connects latent variables to genes, providing

interpretability similar to that offered by standard factor models
such as PCA. Although providing valuable insights, such an
approach requires further statistical enrichment tests on the
weights of the decoder to infer biological processes contributing
to the single-cell expression dataset.

In contrast to previous approaches, VEGA implements a sparse
architecture that explicitly reflects knowledge about gene regulation.
In the service of biological pathways, genes work together in gene
modules, regulated by common transcription factors that often
produce correlated expression. Thus, if a given scRNA-Seq dataset
X reflects the patterns of known gene modules, then it is possible
for a VAE to learn a compact representation of the data by
incorporating those modules as latent variables Z. VAEs use
multiple layers to approximate the latent variable distribution and
produce a low dimensional, nonlinear representation of the original
feature data. Importantly, the first and last layers directly connect to
the input or predicted features and so can be fashioned to depict
intuitive groupings. Standard VAEs use a fully connected layer for
both the encoding first layer and the decoding final layer
(SFig. 1aiv). Instead, VEGA uses a gene membership mask M to
select a subset of trainable weights in the decoder layer that are
determined by a given set of gene modules (see Methods). The
mask is applied to the weights that connect to the predicted output
features to yield an interpretation of the latent variable layer where
each latent variable is viewed as a specific gene module, henceforth
referred to as a gene module variable (GMV). Specifically, the
generative part of VEGA (decoder) maintains a link from a GMV to
an output gene only if this gene is annotated to be a member of this
specific gene module. The two main advantages of this design are
(1) the latent variables are directly interpretable as the activity of
biological modules and (2) the flexibility in the gene module
specification allows it to generalize to different biological abstrac-
tions (such as pathways, gene regulatory networks (GRNs), or even
cell types) and can be taken from any of several curated databases of
gene sets (such as MSigDB14, Reactome pathways15, inferred
GRNs16). Additionally, VEGA incorporates information about
covariates such as technical replicates in its latent space. This can be
used to alleviate batch effects, as it has been demonstrated in
previous deep generative models for single-cell data9 (Fig. 1a and
SFig. 2)

Note that it is possible to implement gene module sparseness in
the encoder half of the neural network (inference part), in addition
to (or in place of) the decoder half (generative part), which gives
three possible VAE architectures that we considered for single-cell
RNA-seq analysis (SFig. 1ai–iii). As expected, we found that the
GMV-guided designs resulted in decent although slightly worse
performance compared to the full architecture (SFig. 1c). Among
these options, we chose the sparse decoding architecture over the
others for its improved separation of known cellular states and
types in the Kang et al. PBMC data17 (SFig. 1b). Intuitively, using a
deep encoder maintains a full VAE’s inference capacity to capture a
potentially complex latent space while together with a sparse
decoder approximates the posterior distribution of GMV activities
p(Z∣X) to provide interpretation over gene modules. Additionally,
we found that VEGA benefits from having a trainable, sparse
decoder to adequately capture the biological signal of a dataset
compared to simpler pathway transformations (SFig. 3).

Recapitulating biological information over an interpretable
latent space. We asked if VEGA could recapitulate the status of
biological pathways by applying it to a published and well-studied
peripheral blood mononuclear cells (PBMCs) dataset stimulated with
the chemokine interferon-β17 (Methods). We first found that VEGA
is able to capture cell types and stimulation status using the Reactome
collection of processes and pathways15 in the GMV decoding layer
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(Fig. 1b). Specifically, we found that the interferon-α/β signaling
GMV activity segregates stimulated and naive cells, confirming the
ability of VEGA to capture pathway activity in its latent space
(Fig. 1c, d). We further examined other known biological pathways
involved in interferon-induced immune cell activation and found
cell-type-specific activation of certain cellular processes. For
example, tryptophan catabolism response to interferon separates
innate immune cells (Dendritic cells, FCGR3A+monocytes, and
CD14+monocytes) from adaptive immune cells (NK cells, T-cell
CD8, T-cell CD4, and B cells) (Fig. 1d), as previously
investigated18,19. Together, these results suggest that VEGA’s
GMV’s reflect the expected major biological pathways in PBMCs
and therefore may be useful for other datasets to project cells into
an interpretable space, allowing investigation of cell-type-specific
patterns at the cellular process level.

We next asked whether the differential activities of the GMVs
accurately contrast pathway states as a function of a specific,
experimentally controlled context.

For this purpose, we propose a similar Bayesian hypothesis
testing procedure as introduced by Lopez et al.9 to study the
difference in GMV activities. As VEGA models the posterior
distribution of each GMV, we can formulate mutually exclusive
hypotheses similar to differential gene expression tests (i.e.,
GMVs are activated at different levels). We can approximate the
posterior probability of these hypotheses through Monte Carlo
sampling of VEGA’s latent variable distribution. The ratio of
hypothesis probabilities corresponds to the Bayes Factor20 (BF,
see Methods).

When applied to innate immune cells in the stimulated vs
control groups of the Kang et al.17 dataset, the BF analysis found
GMVs that correspond to pathways expected to be activated in
the stimulated groups (interferon signaling, tryptophan catabo-
lism; ∣loge(BF)∣ > 3, Fig. 1e). We compared the GMV BFs with the
false discovery rate (FDR) values of the standard GSEA toolkit
(Methods, Fig. 1f). While both methods found the expected
activation of the interferon-α/β signaling pathway GMV in the
stimulated groups, GSEA missed the tryptophan catabolism

activation in innate immune cells (Fig. 1f). Overall, VEGA seems
more robust than GSEA to gene set size bias (Fig. 1f and SFig. 4),
suggesting it may emphasize more context-relevant pathways.
Additionally, the differential GMV activity test can be applied in a
cell-type-specific fashion (similar to one-vs-rest differential gene
expression analyses). We found that such a procedure yields
informative results in terms of cell type-specific biological
processes activated independently of perturbation status (SFig. 5
and Supplementary Data 1).

Large-scale investigation of biological responses to drug
treatments in cell lines. Next, we investigated whether VEGA
could detect patterns of drug responses in large-scale experiments
over cancer cell lines, such as the data introduced in recent
experimental protocols like MIX-Seq21. To this end, we gathered
single-cell data for 97 cancer cell lines under five different con-
ditions: 24 h DMSO treatment (control), 24 h Trametinib treat-
ment (MEK inhibitor), 24 h Dabrafenib treatment (Mutated
BRAF inhibitor), 24 h Navitoclax treatment (Bcl-2 inhibitor), and
24 h BRD3379 treatment (tool compound with unknown mode of
action, MoA) (Methods). We trained one model for each different
drug treatment (four models in total) by combining the drug
treatment dataset and the control group (DMSO dataset), initi-
alizing the GMVs of VEGA with the hallmark gene sets from
MSigDB22 to focus on core cellular processes. Overall, each model
was able to separate cell lines and treatment conditions in the
GMV space (Fig. 2a, and SFig. 6). For Trametinib notably, the
important change in G2M checkpoint GMV activity (decrease in
the treated condition) agrees with the expected MoA of a MEK
inhibitor23,24 (Fig. 2b). Next, we sought to investigate whether we
could recapitulate the pattern of biological responses between
control and treated conditions for each cell line/drug treatment
pair. For each pair, we computed GMV BFs to approximate
differential pathway activities between the two conditions. The
resulting heatmap can be used to understand and interpret pat-
terns of response over all experimental conditions (Fig. 2c). As
found when visually investigating the low dimensional

Fig. 1 Designing a novel VAE architecture with interpretable latent space. a Overview of the VEGA model. Composed of a deep nonlinear encoder (μ, Σ)
and a masked linear decoder, VEGA represents single-cell transcriptomics data into a lower-dimensional interpretable latent space z that approximates a
set of user-supplied gene modules (GMV). Additionally, VEGA can integrate batch information as another variable s to condition its generative process on
batch labels. b UMAP embedding of the latent space of VEGA retains the biological signal of the Kang et al. PBMCs dataset17. c Inferred interferon-alpha/
beta signaling pathway activity segregates stimulated cells from the control population. d Bivariate GMV plot showing the ability of the model to recover
the tryptophan catabolism activity, an innate (Dendritic cells, FCGR3A+monocytes, CD14+monocytes) immune cell-specific response to the perturbation.
e Volcano plot showing differentially active GMVs between stimulated and control innate immune cells. The red dots indicate GMVs with ∣loge(Bayes
Factor)∣ > 3 and a mean absolute difference (MD) in the latent space of at least 5. f Comparison of VEGA Bayes Factor with GSEA -log10(FDR). The size of
the dots indicates the gene set size. The red, blue, and purple quadrants correspond respectively to significant hits unique to our model, unique to GSEA,
and common to both.
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embedding of each dataset (Fig. 2a and SFig. 6a–c), Trametinib
resulted in the strongest transcriptional response of all studied
drugs. Notably, the Trametinib-specific interferon-α and inter-
feron-γ response was correctly recapitulated in VEGA’s latent
space, consistent with previous experimental work25 and the
findings reported by the original MIX-Seq authors21. Further-
more, we found that Dabrafenib-treated BRAF-mutant mela-
noma cell lines exhibited larger ∣loge(BF)∣ than other Dabrafenib-
treated cell lines (average ∣loge(BF)∣ of 0.763 vs 0.668 for other cell
lines), clustering with the Trametinib-treated cell lines as reported
in the MIX-Seq study (Fig. 2c and SFig. 6d). Overall, the results
presented here agree with the previous gene set analysis results on
this dataset, and demonstrate VEGA’s GMVs can recapitulate
patterns of drug response in large-scale experiments.

Gene regulatory analysis of glioblastoma reveals stratification
of neoplastic cells. As previously mentioned, one of VEGA’s
strengths is the flexibility in the specification of the GMV con-
nectivity, as any gene module can be used in the decoder.
Transcription factors often exert tight regulation of gene
expression in many biological contexts26. Analyzing the activity
of transcriptional regulators is important in understanding bio-
logical states like cell types or diseases, as dysregulation in their
activity can have a dramatic impact on gene expression programs
and phenotypes27,28. To this end, we investigated whether using
master transcriptional regulators as the GMVs could help
understand the underlying GRNs in the context of a single-cell
glioblastoma (GBM) dataset29. We used the GBM ARACNe16

network reported in Carro et al.28 to guide the structural design of
our model. Specifically, VEGA’s GMVs were set to the reported
transcription factors and the connectivity matrix M, defining the
GMVs decoding architecture, was created from the set of pre-
dicted target genes of each transcription factor. After training, we
found that the pre-annotated cell types were well-separated in the
latent space (Fig. 2d). We examined the activity of STAT3 and

OLIG2, two well-known master regulators of the mesenchymal
(MES) and proneural (PN) GBM subtypes, respectively. We
confirmed that their GMV activity was largely anticorrelated in
neoplastic cells (Fig. 2e). Additionally, OLIG2, a known master
regulator of oligodendrocytes differentiation30, was inferred as
activated in oligodendrocyte precursor cells (OPCs). These results
demonstrate that VEGA is able to home-in on the relevant
transcriptional regulators when the decoder wiring is extended to
model known factor-to-target relationships.

Combining cell type and cellular state representations refines
cortical organoid development analysis. A great challenge of
modern cellular biology is to identify and define cell types and
cellular states, at the level of individual cells, in order to sys-
tematically study homeostasis and disease development under a
common vocabulary. In a typical single-cell study, a few “marker
sets” will be known, each containing a list of genes having
expected expression patterns for some of the cell types of interest.
Leveraging such marker sets often provides clues and helps orient
data analysis. We asked whether the information recorded in such
marker sets could be used in VEGA to produce a disentangled
representation of cell types and cellular states. To this end, we
added a GMV zt, with appropriate entries in M, for each latent
cell type t in addition to the Reactome pathway GMVs already in
VEGA’s model.

We applied VEGA to a dataset of cells assayed during the early
development of cortical organoids from Field et al.31, including all of
the major cell types defined in the study as GMVs (Fig. 3a). After
training, we found that the activity of each marker set GMV was able
to correctly segregate its corresponding cell type as annotated by the
original authors (Fig. 3b–d). Moreover, in a one-vs-rest differential
GMV analysis setting for each cell type population, the activity of the
corresponding marker set GMV showed significant enrichment
(∣loge(BF)∣ > 3), which suggests using GMV BFs could help annotate
the cell types of unknown clusters (Fig. 3e). We further noted that the

Fig. 2 The flexibility in the latent space specification sheds light on the activity of core cellular processes and transcription factors. a tSNE embedding
of the latent space of VEGA for the MIX-Seq data21. The color indicates the treatment condition, and the arrow indicates the median shift in coordinates of
each cell line between the two conditions. b Inferred G2M checkpoint activity of each cells, showing a decreased activity in the treated condition, as
expected from the MoA of Trametinib. c Heatmap with hierarchical clustering showing the average loge(Bayes Factor) of each pathway for each cell line/
drug treatment pair (test between DMSO and treatment condition). Each row corresponds to a hallmark gene set and each column to a different cell line/
drug pair. The first row of color indicates the drug, and the second row of color indicates the tissue identity (Tissue legend available in SFig. 2). Highlighted
cell lines correspond to BRAF-mutant melanoma. Highlighted activities correspond to Trametinib-specific responses. d tSNE embedding of the latent space
of the model for the glioblastoma dataset29, colored by cell type or e Inferred activity of the master regulators STAT3 and OLIG2.
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most differentially activated GMVs were coherent in the context of
early brain development (SFig. 7 and Supplementary Data 2). To
study whether VEGA could separate cell type identity from cellular
states such as dividing vs quiescent cell populations, we projected the
dataset into two components: (1) the cell type GMV representing the
neural epithelium marker set (a type of early brain progenitor) and
(2) the cell state GMV representing the cell cycle mitotic pathway
activity (Fig. 3f). As discussed previously, the activity of the neural
epithelium GMV separated the neural epithelium cells from the rest
of the dataset, while the activity of the cell cycle mitotic pathway
GMV separated quiescent from actively dividing cells in the two
progenitors populations (radial glia cells and neural epithelium). To
validate that the cells identified as dividing were proliferating, we
studied the correlation between the cell cycle mitotic pathway GMV
activity and the expression of the MKI67 gene, a canonical marker of
proliferation (external validator not present in the cell cycle mitotic
pathway set) (Fig. 3g). Overall, the expression of MKI67 correlates
well with the inferred activity of the cell cycle mitotic pathway GMV
(R2= 0.64). Together, these results demonstrate VEGA’s potential
use to jointly infer cell type and state for different populations of cells,
as combining different sources of information (pathways, master
regulators, and cell type markers) in the latent space can shed light on
different aspects of the identity of a single-cell.

Generalization of the inference process to out-of-sample data.
We next asked whether VEGA could generalize to correctly infer
an interpretable latent representation of data unseen at the time
of training (out-of-sample data). To this end, we evaluated VEGA
in two settings. In the first case, we measured the biological
generalization of VEGA’s inference by holding out (cell type,
condition) pairs during training. Specifically, we investigated
whether the inferred GMV activities for held-out cells were
conveying the same biological information as to when this

population is seen at the time of training. To this end, we
removed one cell type of the stimulated condition during training,
and then inferred the GMV activities for that held-out population
(out-of-sample) and compared them to the GMV activities
learned from the fully trained model. The experiment was con-
ducted using the Kang et al.17 PBMC dataset. In the second case,
we estimated the “technical generalization” of VEGA’s inference
by training on one dataset (study A) and then evaluating on a
second dataset (study B) that contains only control cells. We used
the Kang et al.17 PBMC dataset as study A and the Zheng et al.32

dataset as study B.
For the biological generalization test, we first checked that the

distribution of the interferon-α/β signaling pathway GMV activity
in the out-of-sample stimulated CD4 T cells matched the inferred
activity in the in-sample CD4 T cells (Fig. 4a). To perform a more
systematic comparison of the inferred latent space between out-
of-sample and in-sample cells, we used the differential BF
procedure (Methods) between (1) stimulated in-sample cells and
control cells for a given cell type (model trained with the whole
dataset) and (2) stimulated out-of-sample cells and control cells
for the same cell type (model trained with one cell type/condition
pair left out), and checked the amount of overlaps in the top 50
differentially activated GMVs (Fig. 4b). The results suggested
consistency between the in-sample and out-of-sample differen-
tially activated GMVs, with an average 72% overlap. To further
evaluate the capacity of data reconstruction, we measured the R2

between the original and decoded data in the in-sample and out-
of-sample settings (Fig. 4c). We found that the R2 decreases only
marginally in the out-of-sample setting, confirming the ability of
the model to generalize to unseen data produced in a similar
experimental setting.

For the technical generalization test, we again checked that the
interferon-α/β signaling pathway GMV activity distribution of
study B encoded control CD4 T cells matched that of study A

Fig. 3 Disentangling cellular states and cell types in the early development of cortical organoids. a UMAP embedding of the latent space of our model
for the week 2 cortical organoid dataset31. The cell type annotation corresponds to the original paper annotation. b, c, d The inferred activity of each cell
type GMVs (as defined by marker genes) correctly identifies the three main subpopulations of cells. e One-vs-rest differential GMV analysis of each cell
type population provides a statistical significance for each cell type signature. The significance threshold for positive enrichment was set to loge(BF)> 3.
f Identification of dividing and quiescent subpopulations of neural progenitors using pathway and cell-type activity projection. g CELL_CYCLE_MITOTIC
pathway activity correctly identifies dividing cells as reported by its correlation with MKI67 gene expression (an external canonical marker of dividing cells).
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control CD4 T cells (Fig. 4d). We also investigated whether the
top 50 differential GMVs of each cell type in a “one-vs-rest”
differential setting for the control cells of study A overlapped with
a similar procedure performed on the control cells of study B
(Fig. 4e). We found that on average 67% of the top 50 differential
GMVs for study A overlap with those of study B, showing that the
model can generalize across studies unseen at the time of training.
We then asked whether the model can use the inferred latent
space to accurately reconstruct the original expression profiles of
both studies. We found that the R2 between original and
reconstructed cells of study B, although lower than those for
study A, improves upon the baseline correlation between the
expression profiles of study A vs study B for most of the cell
types (Fig. 4f).

Discussion
In this study, we introduced VEGA, a novel VAE architecture with a
decoder inspired by known biology to infer the activity of various
gene modules at the level of individual cells. By encoding single-cell

transcriptomics data into an interpretable latent space specified a
priori, our method provides a fast and efficient way of analyzing the
activity of various biological abstractions in different contexts. In
contrast, previous approaches used a posteriori interpretations of the
latent variables to infer modules. VEGA’s flexibility in the specifi-
cation of the latent space paves the way for analyzing the activity of
biological modules such as pathways, transcriptional regulators, and
cell type-specific modules. We illustrated how VEGA could be used
to simultaneously investigate both cell type and cell state of cell
subpopulations, in both control and experimentally perturbed con-
ditions. Additionally, the weights of decoder connections provide
direct interpretability of the relationship between the latent variables
and the original features. For example, the decoder’s weights could be
used to contrast interaction confidence in inferred GRNs or to rank
genes by their importance in a certain biological module in a data-
driven way. We further note that it was possible to modify VEGA’s
architecture, following the same rationale as widely-used scVI9 and
linear scVI13, such that it could handle count data in place of nor-
malized expression profiles (SFig. 8).

Fig. 4 Generalization of VEGA architecture to out-of-sample data. a Violin plot (n= 10,000 randomly sampled cells per condition) representing the
distribution of the interferon-α/β pathway activity in control CD4-T cells, stimulated CD4 T cells unseen at the time of training (out-of-sample), and
stimulated CD4-T cells when included in the training procedure (in-sample). Boxes inside the violins represent the median of the distribution bounded by
the first and third quartile. Violin limits correspond to data extrema. b Proportion of overlap in the top 50 differentially activated GMVs in the in-sample and
out-of-sample settings with stimulated vs control differential procedures for the seven main cell types in the study. Data were presented as mean
values ± standard deviation over 100 random sampling. c R2 between the mean expression of real and reconstructed cells in the in-sample and out-of-
sample settings for the seven main cell types of the study. Data were presented as mean values ± standard deviation over 100 random samplings. d Violin
plot (n= 2000 randomly sampled cells per condition) of distribution of the interferon-α/β pathway activity in control CD4-T cells of study A (Kang
et al.17), stimulated CD4-T cells of study A and control CD4-T cells of study B (Zheng et al.32). Boxes inside the violins represent the median of the
distribution bounded by the first and third quartile. Violin limits correspond to data extrema. e Proportion of overlap in the top 50 differentially activated
GMVs of each study with one-vs-rest differential procedures for the control cells of the seven main PBMC cell types. Data were presented as mean
values ± standard deviation over 100 random samplings. f R2 between the mean expression of real and reconstructed cells of study A (Study A), mean
expression of real and reconstructed cells of study B (Study B), and mean expression of real cells of study A and real cells of study B (Study A vs Study B).
Data were presented as mean values ± standard deviation over 100 random samplings.
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The clear limitations of the current architecture resides in the
sparse, single-layer decoder of the model. In fact, such an archi-
tectural design prevents the further improvement of generalizability
and robustness. As a consequence, the generative capacity of VEGA
is limited. For example, while VEGA theoretically could be used for
interpretable response prediction using latent vector arithmetics in a
similar fashion to scGen10, VEGA’s limited generative capacity
sacrifices predictive performance for biological interpretability of the
latent space. We believe advanced insights in network biology, e.g.,
multi-layer GRNs that can describe regulatory machinery more
comprehensively, could alleviate these limitations. This would open
the possibility to perform targeted, in-silico activation, and repression
of biological programs on specific cell populations to study its effect
on development or disease progression. On the other hand, hard-
coded connections of the linear decoder do not leave any room for
correcting prior knowledge about gene modules when the context
requires it, as is the case in other latent variable models such as
f-scLVM12. In fact, prior biological knowledge obtained from
existing databases like MSigDB can be incomplete or not con-
text-specific, as additional unannotated genes can play an
important role in certain gene modules. In parallel to our work
on VEGA, Rybakov et al.33 introduced a regularization proce-
dure to incorporate prior knowledge from gene annotation
databases via a penalty term on the weights of the linear
decoder. We demonstrated that VEGA performs comparatively
to their interpretable autoencoder (SFig. 9), and that their
approach is complementary to the unique attributes of VEGA
and can be used to recover missing gene-GMV links in a data-
driven fashion (SFig. 10).

In summary, we found VEGA useful for understanding the
response of specific cell type populations to different perturbations,
providing interpretable insights on biological module activity. The
variational aspect of VEGA provides an advantage for addressing
queries about samples, or sample groups, that are not possible with a
regular AE. We illustrated how the latent multivariate Gaussian
distribution of the VAE, which approximates the posterior prob-
ability of every GMV, enables a new kind of differential test to be
performed. The BF reflects the likelihood of how active a gene
module is in one condition compared to another, providing a
straightforward method to perform differential activity analysis using
the RNA-Seq data similar to the approach described by Lopez et al.9.
Other types of queries are possible, for example, to automate the
annotation of unsupervised clusters or modules that dynamically
change across the branches of an inferred cellular trajectory. We
envision VEGA could also be useful to prioritize drugs based on
pathway expression in cancer, as studying the response of specific cell
populations may inform drug sensitivity and resistance. Integrating
drug response prediction models with such explanatory models could
benefit designing novel therapeutic strategies.

Methods
The VEGA architecture. VEGA is a deep generative VAE that aims at maximizing
the likelihood of a single-cell dataset X under a generative process7,10 described as:

pðXjθÞ ¼
Z

pðXjZ; θÞpðZjθÞdZ; ð1Þ

with θ being the learnable parameters of a neural network. VEGA uses a set of
latent variables Z that explicitly represent sets of genes (gene modules), such as
pathways, GRNs, or cell type marker sets. To enforce the VAE to interpret a
dataset from the viewpoint of a set of gene modules, VEGA’s decoder part is
made up of a single, masked, linear layer. Specifically, the connection of this
layer, between latent node z(j) and gene features, are specified using a binary
mask M in which Mi,j is true if gene i is a member of gene module j and false
otherwise. We refer to each latent variable z(j) as a GMV since each provides a
view of the data constrained to the subset of genes for a distinct gene module j.
During training, gradients associated with masked (false) weights are “zeroed
out” such that backpropagation only applies to weights originating from a user-
supplied given gene set. Additionally, the weights of the decoder are constrained

to be nonnegative (w ≥ 0) to maintain interpretability as to the directionality of
gene module activity.

Having explicitly specified the connections between genes and latent variables
in the decoder of VEGA (generative part), we incentivize that the latent space
represents a biological module activity interpretation of the data. We choose to
model the GMVs as a multivariate normal distribution, parametrized by our
inference network with learnable parameters ϕ As such, the distribution of the Z
latent variables can be expressed as:

qðZjX; ϕÞ ¼ N ðμϕðXÞ;ΣϕðXÞÞ ð2Þ
This choice of variational distribution is common and has proven to work well

in previous single-cell studies9,10. Following similar standard VAE
implementations7,10, the objective to be maximized during training is the evidence
of lower bound (ELBO):

LðXÞ ¼ EqðZjX;ϕÞ log pðXjZ; θÞ� �� KLðqðZjX; ϕÞjjpðZjθÞÞ ð3Þ
where the expectation over the variational distribution can be approximated using
Monte Carlo integration over a minibatch of data, and the Kullblack–Leibler
divergence term has a closed-form solution as we set the prior to:

pðZjθÞ � N ð0; IÞ ð4Þ
The reparametrization trick7 is used when sampling VEGA’s variational

distribution to allow standard backpropagation to be applied when training
the model.

To retain information of genes that are not present in our pre-annotated
biological networks, we add additional fully connected nodes to the latent space of
our model. This has two effects: (1) it allows VEGA to model the expression of
unannotated genes, which could be crucial for a good reconstruction of the data
during training, and (2) it can help capture additional variance of the data that is
unexplained by the provided gene modules, considerably improving the training of
the model. The number of additional fully connected nodes can be determined
based on a trade-off between model performances and the loss of information
encoded by pre-annotated GMV nodes. As a rule of thumb, we recommend picking
16 or fewer extra FC nodes to preserve the biological signals encoded by GMV
nodes (SFig. 11).

Additionally, the diagonal covariance prior used in the latent space modeling
discourages GMVs from being correlated. Thus, the VAE may be forced to choose
an arbitrary gene set among many equally informative but overlapping sets and
could fail to reveal a key annotation. To address this issue, we add a dropout layer
to the latent space of the model. This has been shown to force the VAE to preserve
redundancy between latent variables34, which is applicable when the gene
annotation database used to initialize VEGA’s latent space contains overlapping
gene sets (SFig. 12).

Finally, batch information or other categorical covariates can be encoded via
extra nodes in the latent space, conditioning the generative process of VEGA on
this additional covariate information (SFig. 2).

Measuring differential GMVs activity of the latent space with Bayes Factor
(BF). The difference in the activity of genes and/or pathways is often of interest
when contrasting two different groups of cells. To this end, we draw inspiration
from the Bayesian differential gene expression procedure introduced in Lopez
et al.9 and propose a similar differential GMV analysis procedure. We follow a
similar notation as Lopez et al. For a given GMV k, a pair of cells (xa, xb) and their
respective group ID (sa, sb) (e.g., two different treatment conditions), our two
mutually exclusive hypotheses are:

Hk
0 :¼ Es z

k
a

� �
> Es z

k
b

� �
vs: Hk

1 :¼ Es z
k
a

� �
≤ Es z

k
b

� � ð5Þ
This can intuitively be seen as testing whether a cell has a higher mean GMV

activation than another, the expectation representing empirical frequency. We
evaluate the most probable hypothesis by studying the log-Bayes factor K defined
as:

K ¼ log e
pðHk

0jxa; xbÞ
pðHk

1jxa; xbÞ
ð6Þ

Here, the sign of K tells us which hypothesis is more likely, and the magnitude
of K encodes a significance level. Having access to the conditional posterior
distribution q(Z∣X) over the GMVs activation (the encoding part of VEGA), we can
approximate each hypothesis’ probability distribution as:

p Hk
0jxa; xb

� � � ∑
s
p sð Þ

Z Z

sup:ðzaÞ; sup:ðzb Þ

p zka > zkb
� �

dq zkajxa
� �

dq zkbjxb
� �

ð7Þ

where p(s) is the relative abundance of cells in group s, and the integrals are
approximated with direct Monte Carlo sampling.

Similarly to Lopez et al.9, assuming cells are independent, we can compute the
average Bayes factor across many cell pairs randomly sampled from each group
respectively. This helps us decide whether a GMV is activated at a higher frequency
in one group or the other. Through the paper, we consider GMVs to be
significantly differentially activated if the absolute value of K is greater than 3
(equivalent to an odds ratio of ≈20)9,20.
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Datasets and preprocessing
Kang et al. dataset. The Kang et al.17 dataset consisted of two groups of PBMCs,
one control and one stimulated with interferon-β. We chose to use the same
preprocessing steps as described by scGen authors10, using the Scanpy package35.
Briefly, cells were annotated using the maximum correlation to one of the eight
original cell type clusters identified, using an average of the top 20 cluster genes.
Megakaryocytes were removed due to uncertainty about their annotation. Then
data were filtered to remove cells with less than 500 genes expressed and genes
expressed in five or less cells, using the scanpy.pp.filter_genes()and
scanpy.pp.filter_cells() functions. Count per cells were then normalized
and log-transformed using the scanpy.pp.normalize_per_cell() and
scanpy.pp.log1p() functions, and we selected the top 6998 highly variable
genes with scanpy.pp.highly_variable_genes(), resulting in a final
dataset of 18,868 cells. Raw data is available at GSE96583. We used the same
preprocessing functions for the rest of the datasets unless specified otherwise.

Zheng et al. dataset. The Zheng et al.32 dataset consists of 3K PBMCs from a healthy
donor. After filtering the cells, the count per cells were normalized and log-
transformed. We then subset the genes to use the same 6998 genes of the Kang et al.
PBMC dataset. The final dataset has 2623 cells and 6998 genes. Raw data are available
at https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k.

MIX-seq dataset. The MIX-seq21 datasets were obtained from https://figshare.com/
s/139f64b495dea9d88c70, and we used the data from experiment 3 to have enough
cells to carry a smooth training of our model. For the five available datasets (97 cell
lines treated with respectively DMSO, Trametinib, Dabrafenib, Navitoclax, and
BRD3379), we removed cells with 200 or less expressed genes, and genes expressed
in less than three cells. We then normalized the number of counts per cell, and log-
transformed the data. Finally, each dataset that was a drug treatment experiment
was combined with a copy of the control dataset (DMSO treatment), and we
extracted the top 5000 highly variable genes. This resulted in final datasets of size
(16,732 cells and 4999 genes) for the Trametinib+DMSO data, (16,942 cells and
5000 genes) for the Dabrafenib+DMSO data, (14,507 cells and 5000 genes) for the
Navitoclax+DMSO data, and (15,304 cells and 5000 genes) for the
BRD3379+DMSO data.

Darmanis et al. dataset. The raw GBM data from Darmanis et al.29 were obtained
from http://www.gbmseq.org/ and preprocessed as followed: we removed cells with
200 or less expressed genes, and genes expressed in three or less cells. Count per
cells were normalized and data were then log-transformed. Finally, we restricted
the transcriptome to the top 6999 highly variable genes. The final dataset had a
total of 3566 cells. Raw data is available at GSE84465.

Field et al. dataset. The cortical organoid data from Field et al.31 was processed
similarly to the GBM dataset. After normalization and highly variable genes
selection, the dataset had a total of 4378 cells, with 6999 genes. Raw data is available
at GSE106245.

Shekhar et al. dataset. The mouse retina dataset from Shekhar et al.36 was processed
as described (see https://github.com/broadinstitute/BipolarCell2016). Briefly, we
removed cells with more than 10% mitochondrial transcripts. Then, cells with less
than 500 genes were removed, and genes expressed in less than 30 cells and with
less than 60 transcripts across all cells were removed. To be able to use human
versions of gene modules from the Reactome database, we performed one-to-one
ortholog mapping of mouse transcripts to human transcripts using BioMart from
the Ensembl project37. Genes without human orthologs were removed. We saved a
version of the dataset with the raw count data for the selected genes/cells, and
further processed the data by normalizing and log-transforming the libraries.
Finally, we restricted the transcriptome to the top 4000 highly variable genes. The
same highly variable genes were used to subset the raw QC count matrix. The final
datasets (for both count and log-normalized versions) had a total of 27,499 cells,
coming from two technical batches. We used the annotation with 15 cell types from
the original authors. Raw data is available at GSE81904.

Choice of gene annotations for the latent space of VEGA. When initializing the
latent space of our model, we chose to use pre-annotated gene sets from the
Molecular Signature Database (MSigDB, at https://www.gsea-msigdb.org/gsea/
msigdb/collections.jsp#C2)14. In particular, we chose to use the hallmark gene sets
annotation (50 gene sets) or the Reactome database (674 gene sets). Reactome was
used for the stimulated PBMCs analysis, and MSigDB’s Hallmark gene sets were
used in the MIX-Seq analysis part of this study. For the gene regulatory network
analysis of GBM cells, we derived an ARACNe16,38 network from bulk RNA-Seq
samples of GBM. Specifically, this network was obtained from a previously pub-
lished paper39 and repurposed for the study of GBM single-cell transcriptomics
profiles.

For the cell type marker genes in the cortical organoid analysis, we contacted
the authors to obtain relevant genes used in annotating those cell types. The GMT
file including these marker genes can be found along with the reproducibility code
at https://github.com/LucasESBS/vega-reproducibility.

Dimensionality reduction for visualization. For visualizing datasets, we used the
UMAP algorithm40 as implemented in the Scanpy35 python package, using
scanpy.pp.neighbors() for the k-NN computation with n_neigh-
bors=15, and scanpy.tl.umap() for the actual dimensionality reduction.
We used default parameters except for the min_dist parameter that we set to 0.5.
We also used tSNE41 implemented as sklearn.manifold.TSNE() in the
sklearn python package42, with default parameters.

Comparison with GSEA. We ran Gene Set Enrichment Analysis https://
www.zotero.org/google-docs/?grfpAv14 (GSEA) using the prerank function from the
gseapy package in Python. Briefly, we calculated differential expression scores for each
gene between the control and treatment group using a Wilcoxon rank-sum test, as
implemented in the scanpy.tl.rank_genes_groups() functionality of the
Scanpy package https://www.zotero.org/google-docs/?fKytT735. We ranked genes
according to their test statistics, and ran GSEA using the gseapy package function
gseapy.prerank() with the following settings: a minimum gene set size min_-
size=5, a maximum gene set size max_size=1000, and a number of permuta-
tions permutation_num=1000. We ranked gene sets according to their FDR and
considered significant hits when FDR ≤0.05. When the FDR returned by GSEA was
equal to 0, we replaced it with 1e-5 (to avoid math error when taking the logarithm).

Batch correction comparison. To assess batch information integration in VEGA’s
latent space, we compared the average silhouette scores on batch labels from the
Shekhar et al. retina dataset of (1) PCA with 50 principal components (computed
using scanpy.tl.pca() function), (2) linear scVI13 as implemented in the
scvi-tools package ran on the count version of the dataset with following
parameters: AnnData object setup with batch_key=Batch, model initialized
with n_hidden=800, n_layers=2, dropout_rate=0.2,
n_latent=677, training performed with max_epochs=300, ear-
ly_stopping=True, lr=5e-4, train_size=0.8, ear-
ly_stopping_patience=20, and (3) VEGA with following parameters:
AnnData object setup with batch_key=atch, model initialized using the
REACTOME pathway database with three extra FC nodes to initialize the latent
space and the same training hyperparameters as linear scVI.

Evaluation metrics. Silhouette scores were calculated to evaluate the separation of
cell types and states in the latent space of our model. We used Euclidean distance in
the latent space to compute the silhouette coefficient of each cell i defined as :

sðiÞ ¼ bðiÞ � aðiÞ
maxfaðiÞ; bðiÞg ð8Þ

where a(i) and b(i) are respectively the mean intra-cluster distance and the mean
nearest-cluster distance for cell i. We used either the stimulation or cell type labels
from Kang et al.17 to assess the biological relevance of the latent space of our
model. The sklearn package17silhouette_score() implementation was used
for computation. For computing correlations throughout the paper, we used the
function numpy.corrcoef() from the Numpy package43.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All of the datasets analyzed in this manuscript are publicly available. Please see the
section Datasets and preprocessing of Methods for details. These datasets are also
downloadable at https://github.com/LucasESBS/vega-reproducibility.

Code availability
The package and API for VEGA is available at https://github.com/LucasESBS/vega/tree/
vega_dev44. The code and data to reproduce the results of this manuscript is available at
https://github.com/LucasESBS/vega-reproducibility.
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Chapter 4 : Leveraging Chemical Structure Information to

Identify Methylation Status of Nanopore Reads

4.1 Chapter Introduction

Nanopore sequencing has made possible sequencing of a single strand of unamplified genetic

material [47]. During sequencing, long strands of DNA or RNA block the pores embedded in a

bilayer. Current that flows across the membrane is disrupted as nucleotide bases pass through it.

The characteristic trace that the chemical structure of each base produces can be used to not

only infer the identity of the nucleotide base, but also its potential modification status.

One of the major modifications the community is interested in is nucleotide methylation

status. The current ’gold standard’ method for profiling methylation (specifically cytosine

methylation) in DNA has been bisulfite sequencing [48]. Such treatment is very harsh on the

genetic material and leads to excessive DNA fragmentation. In addition, traditional short

read sequencing only identifies short-range patterns of methylation [49]. As such, long-range

nanopore sequencing is uniquely positioned to discover patterns of methylation that have not been

previously characterized. Previous work has shown that 5-mC can be distinguished from cytosine

by careful analysis of the electrical current signals measured by nanopore-based sequencing

devices [50, 51].

To date, most modification prediction algorithms are based on kmer models. However, such

learning strategies struggle to generalize knowledge between related kmers. Moreover, such

approaches necessarily represent base modifications as distinct, unrelated characters. The upshot

being that such kmer character-based models require extensive training data and are unable

to predict the impact of a chemical modification de novo. Given that the number of possible

kmers increases polynomially with the number of modifications being modeled, it is extremely
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challenging to generate sufficient control data for such models, especially considering that more

than 50 and 160 nucleotide modifications have been verified in DNA and RNA respectively

[52, 53].

It is therefore clear that there is a need for models to learn general chemical structure rules

in specific chemical contexts that can then be extended to nucleotide modifications that have

not been seen by the model. As described in Chapter 2 graph convolutions have been successful

in a number of fields, ranging from social media to protein-protein interaction networks and

drug-target interaction prediction. In addition, I showed that such networks can generalize

chemical information on drugs that have not been included in training.

The following work aims at applying similar graph convolutional networks presented in

Chapter 2.3 to embed the structure of nucleotides from nanopore reads, and associating them to

their distinctive pA value produced when they traverse the bilayer. This chemical embedding is

then used to predict modification on DNA and RNA bases in a de novo manner. Specifically, we

show that the model can predict 5mC and 2mG modifications, having only seen (trained on)

canonical DNA.

The manuscript has been published in Nature Communications, 2021
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ARTICLE

Towards inferring nanopore sequencing ionic
currents from nucleotide chemical structures
Hongxu Ding 1,2,3✉, Ioannis Anastopoulos 1,2,3, Andrew D. Bailey IV 1,2,3, Joshua Stuart 1,2✉ &

Benedict Paten 1,2✉

The characteristic ionic currents of nucleotide kmers are commonly used in analyzing

nanopore sequencing readouts. We present a graph convolutional network-based deep

learning framework for predicting kmer characteristic ionic currents from corresponding

chemical structures. We show such a framework can generalize the chemical information of

the 5-methyl group from thymine to cytosine by correctly predicting 5-methylcytosine-

containing DNA 6mers, thus shedding light on the de novo detection of nucleotide

modifications.
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During nanopore sequencing, consecutive nucleotide
sequence kmers block the pores sequentially, producing
ionic currents1. Chemical modifications on nucleotides

additionally alter the ionic currents measured during nanopore
sequencing2–22. The characteristic ionic currents of kmers, which
are represented in kmer models, are used in interpreting
nucleotide modifications2,3,7,23. Up to now, 292–11 and 3012–22

modifications have been successfully characterized in DNA and
RNA, respectively.

To date, most modification analysis algorithms are based on
kmer models2,3,7,23. However, such learning strategies struggle to
generalize knowledge between related kmers. For example, our
previous hierarchical Dirichlet process approach could be struc-
tured to learn associations between kmers with specific shared
properties, e.g., by numbers of pyrimidine bases, but could not
generally learn relationships between arbitrary chemical
similarities2. Moreover, such approaches necessarily represent
base modifications as distinct, unrelated characters. The upshot is
that such kmer character-based models require extensive training
data and are unable to de novo predict the impact of a chemical
modification. Given that the number of possible kmers increases
polynomially with the number of modifications being modeled, it
is extremely challenging to generate sufficient control data for
such models, especially considering that more than 50 and 160
nucleotide modifications have been verified in DNA and
RNA,respectively24,25.

To start to tackle this problem, we propose a graph convolu-
tional network (GCN)-based deep learning framework26,27 for
predicting kmer characteristic ionic currents from corresponding
kmer chemical structures. We confirm that the proposed frame-
work is able to represent individual kmer chemical modules, such
as the phosphate group and the sugar backbone, as well as the
nucleobase methyl and amine groups. We further demonstrate
that this framework can infer full kmer models even when the
training data does not include all possible kmers. This opens up
the possibility of modeling kmers that are under-represented in
control datasets. We also show that the framework can generalize
the 5-methyl group in thymine to cytosine, thereby accurately
predicting the characteristic ionic currents of 5-methylcytosine
(5mC)-containing DNA 6mers. Such generalization of chemical
information is a reason for optimism about the potential for de
novo detection of nucleotide modifications.

Results
Architecture of the deep learning framework. Our deep learning
framework consists of three groups of layers, including GCN
layers, convolutional neural network (CNN) layers, and one fully
connected neural network (NN) layer. As shown in Fig. 1A, the
kmer chemical structures are first represented as graphs, with
atoms as nodes and covalent bonds as edges. The atom chemical
properties are then assigned as node attributes. Based on such
graphs, GCN layers extract one chemical feature vector for every
atom, by visiting its immediate graph neighbors. By this means,
after several GCN layers, atom feature vectors will contain che-
mical information for all atoms within a certain graph distance.
Specifically, this distance equals the number of GCN layers
applied. Considering the small encoding distance of each layer of
a GCN, to improve the encoding efficiency of the framework,
CNN layers are then applied to summarize relatively long-range
chemical information above the GCN layers. The output matrices
of the final CNN layer are then “flattened” as feature vectors.
Such feature vectors are then passed to the final fully connected
NN layer to summarize kmer-level information and finally pre-
dict the kmer characteristic ionic currents (see “Methods”). For
DNA and RNA, the corresponding best-performing architecture

in hyperparameter tuning was selected for downstream analysis
(see “Methods”).

Kmer-level generalization. We first confirmed that the proposed
framework can accurately predict characteristic ionic currents of
kmers from their chemical structures. To do so, we performed a
downsample analysis on the canonical DNA 6mer model pro-
vided by Oxford Nanopore Technologies (ONT, see “Methods”),
by randomly partitioning canonical DNA 6mers with various
train-test splits. For each train-test split group, we performed 50-
fold cross-validation and used root mean square error (RMSE)
and Pearson’s correlation (r) to quantify the goodness of fit (see
“Methods”). As shown in Fig. 1B, Supplementary Fig. 1, and
Supplementary Table 1, the performance stabilized as more than
40% of DNA 6mers were included in the training. Specifically, for
DNA 6mers only used in the test, average RMSE and Pearson’s
correlation reached 1 and 0.995, respectively. Such a result indi-
cated on average 40% of randomly selected DNA 6mers contain
sufficient information to recapitulate the full DNA 6mer model.

We next explored how specific kmer training subsets influence
the ionic current predictions. Specifically, we trained the frame-
work using either the DNA 6mers that (a) do not contain a given
nucleotide (base dropout), (b) do not specify a nucleotide at a
given position (position dropout), or (c) that are combined from
different base dropouts (for instance, using the union of
A-dropout and T-dropout kmers, such that kmers containing
both A and T would be excluded, but not kmers containing either
A or T, noted as A–T model combination, see “Methods” and
Supplementary Note 1 for details). This latter combination
analysis simulates the situation in which we have knowledge
about two modifications independently, but must guess at the
effect of their combination. For each group in (a–c), 50
independent repeats were performed, and goodness of fit was
used to evaluate the performance. As shown in Fig. 1B and
Supplementary Fig. 1, base and position dropouts significantly
decreased the prediction power. Moreover, dropouts in third and
fourth positions contributed the most to the decrease in
prediction power, followed by the second and fifth positions,
consistent with prior observations28. Model combinations, on the
other hand, in general, had a minor influence on the
prediction power.

The above-mentioned analyses together suggest, once properly
trained with sufficient and diverse 6mers, the kmer-level
generalizability of the framework. To further validate and extend
our framework, we performed all the above-mentioned analyses
using RNA, switching to using 5mers instead of 6mers to match
the available training data. Considering the significantly smaller
amount of training data (1/4th the number of distinct RNA
5mers vs DNA 6mers), the prediction power of the RNA
architecture is compromised. However, once trained with a
similar number of kmers, the RNA architecture yielded
comparable prediction power. For instance, the RNA 0.95–0.05
(972 training kmers) and DNA 0.25–0.75 (1024 training kmers)
train-test splits yielded comparable performance on test data.
Such a result suggests the validity of our proposed architecture
(see “Methods,” Supplementary Fig. 2, and Supplementary Note 2
for details).

Such kmer-level generalizability could facilitate nucleotide
modification detection by greatly reducing the required control
data to generate reliable full modification-containing kmer
models. As a proof of concept, we trained the DNA deep
learning architecture with all canonical 6mers plus {1%, 5%, 10%,
30%, 50%, 70%, 90%} of randomly selected 5mC-containing
6mers (“modification imputation” analysis). The characteristic
ionic current signals of such 5mC-containing DNA 6mers were
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obtained from the nanopolish model as reported in refs. 3,23. For
each training group, 50 independent repeats were performed (see
“Methods”). As shown in Fig. 1C and Supplementary Fig. 3,
decent goodness of fit could be obtained when as few as 5% of
5mC-containing DNA 6mers were used as training data.

Specifically, for test DNA 6mers, the average RMSE and
Pearson’s correlation reached 1.2 and 0.995, respectively.
Furthermore, models trained with the knowledge of 50% 5mC-
containing DNA 6mers performed about as well as models
trained with 90%.

Fig. 1 Predicting kmer characteristic ionic currents from chemical structures. A Graphic overview of the proposed deep learning framework for DNA
analysis. B Goodness of fit of DNA canonical random downsample, base-dropout, position-dropout, and model combination analyses. Specifically,
“downsample” denotes the random dropout experiment, where we create random train-test splits. “Base” denotes base-dropout experiment, where we
drop DNA 6mers that contain a specific base in any given position during training. “Position” denotes positional base-dropout experiment, where we drop
DNA 6mers that contain a specific base in a given position during training. As for “combine,” we drop DNA 6mers that contain both of the specified bases
during training. C Goodness of fit of 5mC-containing DNA 6mer imputation analysis. D Goodness of fit of de novo 5mC-containing DNA 6mer prediction. C
and 5mC refer to the goodness of fit of canonical DNA 6mers and 5mC-containing DNA 6mers, respectively. In B–D, Train (red) and Test (blue) refer to
the goodness of fit of the training and test DNA 6mers, respectively. E Predictive accuracy of C/5mC status quantified by balanced accuracy. Nanopolish,
predictive analysis with the nanopolish model as baseline control. De Novo, predictive analysis with 5mC-containing DNA 6mer models described in (D),
which were predicted from canonical training. 0.01–0.9, predictive analysis with different imputation 5mC-containing DNA 6mer models as described in
(C). FAB39088 (cyan) and FAF01164 (purple) refer to two independent NA12878 cell line native genomic DNA nanopore sequencing datasets.
Throughout (B–E), the median, minimum/maximum (excluding outliers), and first/third quartile values were shown by the boxplots.
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Chemical group-level generalization in DNA 5mC de novo
prediction. We noted that performance of the model on held out
5mC kmers trained with just 1% of 5mC kmers was better than
chance. This raised the question of if chemical group-level
information was being usefully generalized among nucleotides by
our framework, potentially allowing the 5mC to be predicted de
novo, without ever having been seen by the model. As a chemical
derivative of cytosine, 5mC contains an additional methyl group
at the fifth position (5-methyl) of the pyrimidine ring. This
5-methyl group is shared between 5mC and thymine. We thus
hypothesized that 5mC can be generalized by combining the
pyrimidine ring from cytosine and 5-methyl group from thymine.
As a proof of concept, we trained the framework with all canonical
DNA 6mers to make de novo predictions on 5mC-containing
DNA 6mers. Similar to previous analyses, 50 independent repeats
were performed, and the prediction power was first quantified by
goodness of fit against the above-mentioned nanopolish model. As
shown in Fig. 1D and Supplementary Fig. 3, although goodness of
fit of 5mC-containing DNA 6mers was significantly worse than
the canonical counterparts, decent performance could still be
obtained (average RMSE and Pearson’s correlation reached 1.8
and 0.993, respectively). We also compared the goodness of fit
between canonical and 5mC-containing DNA 6mers, and as
shown in Supplementary Fig. 4, a positive correlation trend could
be observed. Such a result confirmed that no overfitting was
introduced during architecture training with canonical DNA
6mers, and further suggested 5-methyl generalization.

Human genome C/5mC-status predictive analysis. We next
performed “predictive analysis” to test whether the DNA 6mer
models inferred by our deep learning framework could be used to
correctly predict DNA C/5mC status at a per-read, per-site
resolution from ionic currents (“predictive accuracy,” see
“Methods”). C/5mC sites to be predicted were confirmed by
bisulfite sequencing (see “Methods”). We also quantified the
predictive accuracy with the above-mentioned nanopolish model
as a baseline control (see “Methods”). As shown in Fig. 1E,
average predictive accuracy, quantified by balanced accuracy
(BA), became comparable with baseline control with 50% of
imputed 5mC-containing 6mers. Taken together, these results
confirmed the kmer-level generalizability of our framework, as
well as suggesting that reliable modification-containing kmer
models can be built with significantly less control data once
facilitated by our methodology. Such a result confirmed the
successful 5-methyl generalization. More confusion matrix-based
prediction evaluations can be found in Supplementary Fig. 5.

The encoding of chemical structures. To better understand how
chemical structures were encoded, we visualized DNA 6mer atom
similarity matrices. Specifically, we trained the proposed frame-
work with all canonical DNA 6mers. We then calculated and
visualized the Pearson’s correlations of the feature vectors derived
by the final GCN layer as atom-level similarities. As shown in
Supplementary Fig. 6, we visualized ten randomly chosen cano-
nical DNA 6mers. Taking CGACGT as an example, as shown in
Fig. 2A, C, atoms were in general aggregated by chemical con-
texts. For instance, as shown in (A), for the first cytidine
monophosphate in CGACGT, atoms #0–4 were tightly clustered
with average r > 0.9, recapitulating the phosphate group. Atoms
#5–8 and #17–18 are also clustered with average r > 0.9, denoting
the deoxyribose backbone. Among cytosine atoms #9–16, #9
nitrogen atom connected the nucleobase to the deoxyribose
backbone, atoms #10–11 denoted the C=O group, and atoms
#12–16 composed the C=C-C=N conjugation system and the
covalently bonded amine group. Similarly, atoms in other

nucleotides can also be clustered into phosphate groups, deox-
yribose backbones and nucleobases. Within the nucleobases,
chemical modules including chemical groups and conjugation
systems can further be dissected. Such a phosphate-deoxyribose-
nucleobase pattern repeated and constituted DNA 6mers.

We also examined the inter-nucleotide similarities of different
components. As shown in Fig. 2A, C, in general high similarities
(average r > 0.9) were observed among phosphates, as well as
deoxyriboses from different nucleotides. Meanwhile, chemical
modules sharing similar structures, e.g., the conjugation systems of
adenines, cytosines, and guanines were more similar to each other.
On the other hand, low similarities (average r < 0.5) were observed
between chemical modules with distinct structures, e.g., the
cytosine C=O group and the thymine methyl group. Taken
together, these results suggest that the GCN layers in the proposed
framework can effectively capture features interpretable as
individual chemical modules.

We further visualized the atom-level similarity matrices of
5mC-containing DNA 6mers, aiming to understand the general-
ization of methyl group among thymine and 5mC. We thus
trained our deep learning framework with all canonical DNA
6mers, calculated the Pearson’s correlations of the feature vectors
derived by the final GCN layer, and further visualized such atom-
level similarity matrices of ten randomly selected 5mC-containing
DNA 6mers (Supplementary Fig. 7). Taking GT(5mC)AGA as an
example (Fig. 2D, F), the phosphate-deoxyribose-nucleobase
repetitive pattern was recapitulated. Within nucleobases, high
similarities (average r > 0.9) were again observed among chemical
modules with similar structures. Specifically, strong similarities
(average r > 0.9) were observed between thymine (#38) and 5mC
(#58) methyl groups (Me). In addition, such methyl groups were
uniquely encoded as they were less correlated with any other
DNA 6mer chemical modules (average r < 0.5). We also
quantified the atom-level similarity between GT(5mC)AGA and
corresponding canonical counterpart GTCAGA. As shown in
Supplementary Fig. 8, strong similarities (average r > 0.9) were
observed between GT(5mC)AGA and GTCAGA thymine methyl
groups, as well as the 5mC-methyl groups from GT(5mC)AGA
and thymine methyl groups from GTCAGA. These observations
together suggested the successful chemical information general-
ization. Noticeably, the methyl groups were encoded with the
pyrimidine backbone C=C modules. Such a result suggests that
the GCN encoding is driven by chemical context, which further
implies when generalizing one specific chemical group among
different nucleotides, the corresponding chemical contexts in
which such chemical group resides should be the same.

Finally, we projected kmer atom feature vectors into the tSNE
space, in order to summarize the atom-level similarity matrices
further providing a global visualization of kmer atoms. As shown
in Fig. 2B, E, atoms under the same chemical context clustered
together, e.g., phosphate group phosphate atoms (#1, #20, #42,
#63, #82, and #104 in B and #1, #23, #43, #63, #84, and #106 in F)
and deoxyribose ring oxygen atoms (#7, #26, #48, #69, #88, and
#110 in B and #7, #29, #49, #69, #90, and #112 in E), as well as
NH3 group nitrogen atoms (#14, #35, #55, #76, and #97 in B and
#16, #56, #76, #99, and #119 in E). Specifically, as shown in E, in
5mC-containing DNA 6mer GT(5mC)AGA, T-methyl group
carbon atom #38 and 5mC-methyl group carbon atom #58
clustered together, along with pyrimidine backbone C=C module
atoms #37 and #39 in T, as well as #57 and #59 in 5mC. Taken
together, these results confirm that GCN could properly encode
chemical structures based on the corresponding chemical contexts.

Analyzing the 2mG site in Escherichia coli 16S ribosomal RNA
(rRNA). Our deep learning framework could potentially shed
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light on previously understudied, less prevalent nucleotide mod-
ifications. As a proof of concept, we analyzed 2mG, which can be
represented as the purine ring in guanine with the N2-methyl
group in 6mA. Specifically, we generated an RNA 5mer model
using canonical and 6mA-containing kmers (see “Methods”). We
then predicted the characteristic ionic current signals of 2mG-
containing RNA 5mers (see “Methods”). To test our predictions,
we analyzed nanopore sequencing reads of E. coli 16S rRNA
transcript J01859.1, which contains an annotated 2mG at position
1206 (see “Methods”). As shown in Supplementary Fig. 9, our
predictions recapitulated the characteristic ionic current signals of
2mG-containing and pairing canonical RNA 5mers (see “Meth-
ods”). Moreover, we confirmed that such predicted characteristic
ionic current signals could be used to correctly determine the G/
2mG modification status (see “Methods”).

Discussion
We propose a GCN-based deep learning framework for asso-
ciating kmer chemical structures with corresponding character-
istic ionic currents. We show that such a framework can
recapitulate full kmer models from partial training data, thus
greatly facilitating modification analysis by reducing the amount
of required control data. Specifically, for cases where a small
proportion of random kmers are under-represented in control
data, we can apply the same principle as the downsample analysis
to learn around these training deficiencies. For cases where
comprehensive control datasets are available only for single

modifications, we could apply model combination (as we showed
for individual nucleotides) to model kmers containing multiple
modifications simultaneously.

We further demonstrated that our framework can represent
novel modifications by generalizing encoded chemical groups
between nucleotides, thus shedding light on de novo modification
detection. However, the current model is not without its limita-
tions. For example, the proposed framework encodes chemical
groups, e.g., the methyl groups in thymine and 5mC, as well as
the amine groups in cytosine, guanine, and adenine, with cova-
lently bonded “backbone atoms,” showing a strong chemical
context-specificity (Fig. 2 and Supplementary Figs. 6 and 7).
Thus, the current framework cannot properly handle “stacked”
chemical groups. For instance, the methylamine group in N6-
methyladenine (6mA) cannot be correctly encoded by simply
stacking methyl with an amine. As shown in Supplementary
Fig. 10, substituting A with 6mA was predicted to decrease
characteristic ionic currents, which is the opposite of a previous
study6. Therefore, the extensibility of the framework is currently
limited. To overcome such a limitation, controlled nanopore
sequencing profiles of diverse nucleotide modifications are nee-
ded, in addition to the modeling of other chemical interactions.

Deep learning-based approaches have emerged as powerful
tools for detecting nucleotide modifications from nanopore
sequencing readouts. Compared to kmer model-based counter-
parts, deep learning-based approaches are reported to have better
accuracy and less computational resource consumption5,8.

Fig. 2 Visualizing the encoding of chemical structures. A–C Atom similarity matrix, tSNE visualization, and chemical structure of the example canonical
DNA 6mer CGACGT. In A, B, atoms were numbered and colored based on the chemical structure in (C). Carbon, nitrogen, oxygen, and phosphorus were
colored as black, blue, red, and orange, respectively. Specifically, in A, nucleobases were highlighted by dashed boxes. D–F Atom similarity matrix, tSNE
visualization, and chemical structure of the example 5mC-containing DNA 6mer GT(5mC)AGA. In D, E, atoms were numbered and colored based on the
chemical structure in (F). Carbon, nitrogen, oxygen, and phosphorus were colored as black, blue, red, and orange, respectively. Specifically, in D, E, methyl
group carbon atoms (#38 in T and #58 in 5mC) were highlighted.
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Recently, ONT released the megalodon algorithm (https://
github.com/nanoporetech/megalodon), which can drastically
increase the accuracy for 5mC identification (Supplementary
Fig. 5, see “Methods”). Thus, one potential future extension of the
paper would be using the learned models as components of a
larger, recurrent deep NN.

Another potential future direction would be generalizing the
proposed framework to handle both DNA and RNA kmers. Due
to different translocation speeds, the nanopore sequencing ionic
currents of DNA and RNA are not directly comparable29.
Therefore, advanced deep learning frameworks, which can take
both kmer chemical structures and nanopore sequencing
experimental setups, are needed. Considering DNA and RNA
share several noncanonical nucleobases, e.g., inosine (I)30, we
might combine the ribose in RNA and I in DNA to reconstruct
I-containing RNA 5mers, and vice versa for I-containing DNA
6mers. By this means, required RNA control nanopore sequen-
cing reads, which are usually challenging to obtain, can be largely
compensated. Meanwhile, such generalization would largely
diversify the chemical contexts that can be represented, further
facilitating the de novo modification analysis.

Methods
Graph representation of kmer chemical structures. Following the workflow
described in ref. 26, kmer chemical structures were first described by SMILES
(Simplified Molecular Input Line Entry System) strings, which were assembled by
concatenating SMILES strings of individual nucleotides, as summarized in Table 1.
Each nucleotide base can be described by several SMILES strings. The SMILES
strings presented in Table 1 were selected due to the ease of combining them into
complete kmers. Based on the information provided by ONT, as well as a previous
study28, DNA and RNA are represented by 6mer and 5mer, respectively. An “O”
was then added to the end of each concatenation to represent the residual
unbonded hydroxyl group on the sugar backbone.

We then represent the SMILES string of each kmer as a graph noted as G(A, X).
Specifically, the topology (atom order is determined by SMILES string) of each
kmer chemical structure was represented by an adjacency matrix A, with Ai,j equals
1 iff the ith and jth atoms were covalently bonded. Meanwhile, for every atom in A,
the corresponding chemical properties were represented by feature matrix X, with
Xi recording the chemical property vector for the ith atom. Atom chemical
properties included in the study were summarized in Table 2.

Therefore, the GCN has encoded as input a chemical feature matrix X with the
guide of chemical topology matrix A, representing kmer chemical structures.
Notably, for convenient GCN implementation, the size of A and X is kept constant.
Due to the variable number of atoms across kmers, A and X were thereby padded
with zeros based on the largest kmers. Specifically, the A matrix was padded at the
end of its rows and columns, with dim(A) is {133, 133} and {116, 116} for DNA
and RNA, respectively. While the X matrix was padded at the end of its rows, with
dim(X) is {133, 8} and {116, 8} for DNA and RNA, respectively. Note that the kmer
representation is guided by the nonzero elements (covalent bonds) in A, thus such
padding will not affect the GCN encoding.

Architecture of the deep learning framework. The GCN layers of our framework
were built based on the procedure described by ref. 26. Fast approximate con-
volutions on G were used to create a graph-based NN f(X, A), following the

propagation rule:

Hðlþ1Þ ¼ σð~U
1
2 ~A~U

1
2HðlÞWðlÞÞ

σ(•) is the activation function applied to each layer. Here, the activation function
used was the exponential linear unit (ELU). ~U i;j ¼ ∑j Ai;j is the degree matrix for

each atom in the graph. ~A ¼ Aþ I adds self edges to each of the atoms. The
~U

1
2 ~A~U

1
2 transformation prevents changes in the scale of the feature vectors26 and

constructs filters for the averaging of neighboring node features. H and W denote
the output (activation vectors) and weights of each GCN layer, respectively. The
corresponding superscript represents the layer index. H0=X; however, subsequent
H represents the GCN-derived features.

The intuition of the graph convolution process is described as follows. For every
kmer, chemical properties of atoms, together with their covalently bonded
neighbors, will be convoluted with the guidance of G. Such graph convolution
yields an activation matrix H, following the aforementioned propagation rule. H is
an atom-by-feature matrix, with dimensions {133, N} and {116, N} for each of the
DNA and RNA kmers, respectively. Here, N equals the number of nodes of the
GCN layer, which determines the number of features to be derived. The selection
rule for N is described in the following section. As more GCN layers are stacked,
the graph convolution process is repeated. The Hmatrix will thus contain chemical
information of all atoms within a certain graph distance, which equals the number
of GCN layers applied. By this means, “chemical modules” composed of several
atoms linked by covalent bonds are encoded.

Considering the small encoding distance of a GCN, for a better encoding
efficiency we wanted additional layers that can quickly summarize atom
information. We thus applied standard 1-D CNN layers with rectified linear unit
activation right after the GCN layers. Average Pooling31 was applied on the output
of each 1-D CNN layer. Average Pooling takes the average of each 2 × 2 patch of
the CNN output matrix. Specifically, the output dimension of the first CNN layer
equals {133− K+ 1, N′} and {116− K+ 1, N′} for DNA and RNA kmers,
respectively. Here, K is the CNN kernel size and N′ is the node number of the final
GCN layer. Output dimensions of subsequent CNN layers equals
{m− K+ 1− 2+ 1, n− 2+ 1}, where {m, n} denotes the output dimension of the
previous layer and 2 denotes the Average Pooling patch size. The output from the
final 1-D CNN layer, after Average Pooling, was passed to a Flatten layer, which
converts the final 1-D CNN output matrix to a 1-D feature vector in a row-wise
fashion. The NN layer then takes the flattened vector as input, thereby
summarizing information about the entire kmer and producing a highly
informative representation. Elements of the NN layer output vector are linearly
combined as the final pA value.

Training procedure. Our framework was trained with the Keras32 framework
(2.3.1) with TensorFlow backend using the Adam33 optimizer for gradient descent
optimization. The framework was allowed to train for a maximum of 500 epochs.
To control for overfitting, EarlyStopping34 was used by monitoring the increase in
validation loss. Early termination of training was reached if the validation loss was
increasing for ten consecutive epochs, indicating that the framework had reached
maximum convergence. A mean-squared error was used as the loss function during
the training process. Meanwhile, a 10% random dropout was applied after each
layer, to further prevent overfitting35. In the following experiments, the exact same
training routine was used.

Hyperparameter tuning. In order to determine the optimal architecture, we
performed a hyperparameter grid search. The search involved the hyperparameters
shown in Table 3.

We used the following scaling factor to determine the number of nodes in each
GCN/CNN layer of our framework:

n ¼ 16 ´ 2ðl�1Þ;

Table 1 SMILES strings of individual nucleotides.

Nucleotide SMILES string

A (DNA) OP(=O)(O)OCC1OC(N3C=NC2=C(N)N=CN=C23)CC1
T (DNA) OP(=O)(O)OCC1OC(N2C(=O)NC(=O)C(C)=C2)CC1
C (DNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C=C2)CC1
G (DNA) OP(=O)(O)OCC1OC(N2C=NC3=C2N=C(N)NC3=O)CC1
5mC (DNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C(C)=C2)CC1
6mA (DNA) OP(=O)(O)OCC1OC(N3C=NC2=C(NC)N=CN=C23)CC1
A (RNA) OP(=O)(O)OCC1OC(N3C=NC2=C(N)N=CN=C23)C(O)C1
U (RNA) OP(=O)(O)OCC1OC(N2C(=O)NC(=O)C=C2)C(O)C1
C (RNA) OP(=O)(O)OCC1OC(N2C(=O)N=C(N)C=C2)C(O)C1
G (RNA) OP(=O)(O)OCC1OC(N2C=NC3=C2N=C(N)NC3=O)C(O)C1
6mA (RNA) OP(=O)(O)OCC1OC(N3C=NC2=C(NC)N=CN=C23)C(O)C1
2mG (RNA) OP(=O)(O)OCC1OC(N2C=NC3=C2N=C(NC)NC3=O)C(O)C1
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where l is the layer index of the GCN, CNN, and NN layer groups. For instance, the
number of GCN layers determined to yield the best performance for DNA was 4.
The number of nodes for each GCN layer was therefore 128, 64, 32, and 16. The
same logic was applied to all other layer groups.

We performed 10-fold cross-validation for each hyperparameter combination.
The combination that produced the lowest average RMSE across all folds was
adopted as the optimal architecture. The optimal framework for DNA analysis
(ATGC DNA) has four GCN layers and three CNN layers with a kernel size of 10
and 8192 nodes in the NN layer. The optimal framework for canonical RNA
analysis (AUGC RNA) has four GCN layers and five CNN layers with a kernel size
of 10 and 8192 in the NN layer. The optimal framework for modified RNA analysis
(A(6mA)UGC RNA) has six GCN layers and six CNN layers with a kernel size of
10 and 8192 in the NN layer.

Downsample, base-dropout, position-dropout, and combination analysis. For
downsample analysis, we performed random train-test splits in 5% intervals, noted
as 0.95–0.05, etc. For base-dropout analysis, we created training sets by removing
certain bases. Such train-test split creates 729/4096 (18%) training kmers and 3367/
4096 (82%) test kmers for DNA and 243/1024 (24%) training kmers and 781/1024
(76%) test kmers for RNA. It is important to note that everytime a base is dropped
from the training set, it is retained in the test set. Similar to base dropout, the
position dropout adds one more dimension, which is the position of the nucleotide
base. For a given position dropout, the testing kmers are all kmers with the dropout
nucleotide covering the target position, and the training kmers are the remaining
kmers. Such position dropout creates 3072/4096 (75%) training kmers and 1024/
4096 (25%) test kmers for DNA and 768/1024 (24%) training kmers and 256/1024
(25%) test kmers for RNA. It is important to note that bases dropped in a specific
position in the training appear in the same position in testing. For combination
analysis, we trained the framework by combining any of the two base-dropout
kmer sets. For instance, all G- and C-dropout DNA 6mers were noted as G–C.
Such analysis creates 1394/4096 (34%) training kmers and 2702/4096 (66%) test
kmers for DNA and 454/1024 (44%) training kmers and 570/1024 (56%) test kmers
for RNA. For each above-mentioned train-test split, in order to perform statistical
analyses, we produced 50 independently trained frameworks for each experiment.
Specifically, we performed 50-fold cross-validation in the downsample analysis,
considering for each fold the train kmers were randomly selected. As for other
analyses, we performed 50 independent repeats using the same training kmer sets.
The variability among repeats came from the stochasticity of the training process.
To confirm the robustness of our architecture, we further performed two inde-
pendent replicates (Run-1 and Run-2) of 50.

Predicting modification-containing kmers. For the 5mC imputation experiment,
the framework was trained on all 4096 {A, T, C, G} DNA 6mers plus {1%, 5%, 10%,
30%, 50%, 70%, 90%} of randomly selected 5mC-containing DNA 6mers, following
the training process as described above. In order to perform statistical analyses, we
produced 50 independently trained frameworks (50 independent repeats) for each
category, with a total of two independent replicates (Run-1 and Run-2) of 50. Such
frameworks were then applied on all 15,625 possible {A, T, C, G, 5mC}
DNA 6mers.

For the chemical group-level generalization experiment, the framework was
trained on all 4096 {A, T, C, G} DNA 6mers following the training process as
described above. In order to perform statistical analyses, we produced 50
independently trained frameworks (50 independent repeats), with a total of two

independent replicates (Run-1 and Run-2) of 50. Such frameworks were then applied
on all 15,625 possible DNA 6mers, including those composed of {A, T, C, G, 5mC}
and {A, T, C, G, 6mA}.

For the 2mG prediction experiment, the framework was trained by the union of
{A, U, C, G} and {6mA, U, G, C} RNA 5mers (GSE124309 model, in total 1805
RNA 5mers), which were reported in ref. 13, following the training process as
described above. In order to perform statistical analyses, we produced 50
independently trained frameworks (50 independent repeats). Such frameworks
were then applied on all 7776 possible {A, 6mA, U, G, 2mG, C} RNA 5mers.

Human genome C/5mC-status predictive analysis
Overview. To test whether the predicted {A, T, G, C, 5mC} DNA 6mer models can
be used to correctly interpret C/5mC status from nanopore readouts, we performed
predictive analysis by using signalAlign to make per-read per-base predictions2.
For a given reference position, signalAlign can produce posterior probabilities for
all possible bases based on a provided kmer model. Thus, for DNA 6mer models
generated as described in “predicting modification-containing kmers,” the
empirical nanopolish3,23 model obtained as described in “kmer models,” we
allowed signalAlign to predict between C and 5mC. Considering no significant
goodness-of-fit differences were observed between Run-1 and 2, only models
generated in Run-1 were used here. All predictive analyses performed in this paper
were within the human NA12878 cell line.

Selecting prediction sites. The prediction sites were selected among the entire
human genome. To avoid artifacts caused by ambiguous genomic DNA mod-
ification status, we only focused on confident 5mC sites and canonical genomic
regions in our analysis. Besides 5mC, other modifications exist in genomic DNA.
Considering extremely low fractions of other modifications, e.g., only ~0.05% are
modified as 6mAs in the human genome36, we define “non-5mC” sites as “cano-
nical regions” during predictive analysis. Among these canonical regions, we used
the Poisson process with lambda equals 50 to randomly select genomic sites for
signalAlign to predict. Such selected sites were at least 12 nucleotides apart,
avoiding potential interference by the neighbors. We thus obtained confident 5mC
and C sites for signalAlign prediction.

The genomic DNA C/5mC status was determined by analyzing two
independent NA12878 cell line bisulfite sequencing datasets37. A C site was
determined as confidently methylated if, for both bisulfite sequencing datasets, 95%
of reads were methylated with at least 10× coverage. On the other hand, a C site
was considered confidently unmodified if, for both bisulfite sequencing datasets, at
most 1% of reads were methylated with at least 10× coverage. Such analysis covered
3367/3367 canonical C-containing DNA 6mers and 3950/6144 single-5mC-
containing DNA 6mers.

Selecting nanopore sequencing reads. We then ran signalAlign with reads reported
in the nanopore consortium NA12878 cell line native genomic DNA datasets38

covering the above-mentioned prediction sites. Considering the computational
complexity of signalAlign, we performed the following filtering steps to use the
fewest reads to cover the most kmers. First, we calculated read-level kmer coverage.
For example, the center 5mC site of DNA read CAGAT(5mC)ACAGA was
selected for signalAlign prediction. 6mers CAGAT(5mC), AGAT(5mC)A,
GAT(5mC)AC, AT(5mC)ACA, T(5mC)ACAG, and (5mC)ACAGA span such
5mC site and therefore are considered as being covered. Based on such read-level
kmer coverage, we iteratively selected reads that covered the least frequently

Table 2 Atom chemical properties included in the study.

Feature Description

Carbon 1 if the atom is carbon, 0 otherwise (boolean)
Nitrogen 1 if the atom is nitrogen, 0 otherwise (boolean)
Oxygen 1 if the atom is oxygen, 0 otherwise (boolean)
Phosphorus 1 if the atom is phosphorus, 0 otherwise (boolean)
Atom degree Total number of covalent bonds around an atom (integer)
Implicit valence It equals the valence of the atom minus the valence calculated from the bond connections (integer)
Number of hydrogens Total count of hydrogens (integer)
Aromaticity 1 if atom in an aromatic ring, 0 otherwise (boolean)

Table 3 Hyperparameters searched in the study.

Parameters Space searched ATGC DNA AUGC RNA A(6mA)UGC RNA

The number of GCN layers {2, 3, 4, 5, 6} 4 4 6
The number of CNN layers {2, 3, 4, 5, 6} 3 5 6
The kernel size for the CNN layers {2, 4, 10, 20} 10 10 10
The number of nodes in the dense (NN) layer {32, 128, 512, 2048, 8192} 8192 8192 8192
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covered kmers. Thus, building a read set that covers as many kmers as possible as
often as possible with the fewest number of reads. We included two biological
replicates of NA12878 cell line native genomic DNA-sequencing experiments
(FAB39088 and FAF01169) in the C/5mC predictive analysis. For such analysis,
our final FAB39088 set contained 1706 reads, which covered 2625/3367 C-only
DNA 6mers with an average 61.52× coverage as negative control and 3105/3950
possible single-5mC DNA 6mers with an average 5.01× coverage. The final
FAF01169 set contained 1396 reads, which covered 2610/3367 C-only DNA 6mers
with an average 63.26× coverage as negative control and 3140/3950 single-5mC
DNA 6mers with an average 4.76× coverage. Combining the two sets, in total 2792/
3367 C-only DNA 6mers were covered with an average 58.49× coverage and 3481/
3950 single-5mC DNA 6mers were covered with an average 4.38× coverage.

Performing signalAlign prediction. Based on the selected prediction sites and
nanopore sequencing reads as described above, per-read per-site predictive analysis
was performed by signalAlign. The signalAlign analysis was performed with default
parameters, except for internal read-level quality filtering. Such quality filtering
removes reads with poor kmer-to-ionic current correspondence. During signalA-
lign analysis, kmer-to-ionic current correspondence probability matrices (event
tables) are first generated. Based on such event tables, signalAlign will remove reads
with low average probabilities (<10−5). In addition, reads with >50 consecutive
ionic current signals that cannot be corresponded to kmers (probability equals 0)
will be discarded. Considering that the event table generation is based on the
provided kmer model, after the above-mentioned default quality filtering, the
number of remaining reads varies when different kmer models are supplied during
predictive analysis. To ensure the statistical soundness, we deactivate the default
quality filtering, such that reads to be analyzed by different supplied kmer models
will be the same.

Performing megalodon prediction. We also performed predictive analysis using the
deep learning-based modification calling algorithm megalodon (https://
github.com/nanoporetech/megalodon) as an additional baseline control. The
megalodon (version 2.3.1) analysis was performed with tags “<fast5>–outputs
mod_mappings mods --reference <reference>--processes 1 --overwrite --guppy-
server-path guppy_basecall_server --output-directory <output dir>--guppy-time-
out 1000 --guppy-concurrent-reads 1 --guppy-params’--num_callers
7–cpu_threads_per_caller 10–chunks_per_runner 100’.”

Considering the extraordinary performance of megalodon (Supplementary
Fig. 5), we further used megalodon predictions as additional ground truth for the
C/5mC status for every nanopore sequencing read at every prediction site. Please
see Supplementary Note 3 for more information.

Quantifying predictive accuracy. signalAlign quantifies the probability of being C or
5mC for every prediction. We used probability threshold 0.7 to ensure only con-
fident predictions were included in predictive accuracy quantification. Together
with the megalodon 5mC calling results, we further created confusion matrices
(2 × 2 for 5mC predictive analysis with 5mC as “positive” class and C as “negative”
class) to quantify predictive accuracy. Specifically, we calculated the true-positive
rate, true-negative rate, positive predictive value, negative predictive value, F1 score
(F1), and BA as predictive accuracy quantifications. BA was presented in Fig. 1E as
representative quantification and the full predictive performance can be found in
Supplementary Fig. 5.

Escherichia coli 16S rRNA 2mG-site analysis
Ionic current signal distributions. We first downloaded the nanopore sequencing
fast5 reads of E. coli 16S rRNA nanopore sequencing reads reported in ref. 14. We
then performed nanopolish extract analysis3,23 to retrieve the fastq records, with
tags “-v -r -q -t template.” The fastq records were then aligned using minimap2
(2.16-r922)39 with flags “-ax map-ont,” further sorted and indexed by samtools
(1.12)40. Per-read event tables were generated using nanopolish eventalign with flag
“–scale-events,” by taking fast5 reads, alignment files, and retrieved fastq records as
described above. The yielded event tables contain RNA 5mer sequences and cor-
responding ionic current signals. We then quantified the distributions of RNA
5mer ionic current signals.

Predictive analysis. We also performed predictive analysis for the {A, 6mA, T, G,
2mG, C} RNA 5mer model described in “predicting modification-containing
kmers.” Specifically, we tested whether the predicted RNA 5mer model could be
used to correctly identify the position of 1206 2mG site, as well as three nearby G
sites (positions 851, 1221, and 1386) in E. coli 16S rRNA (see https://
www.ncbi.nlm.nih.gov/nuccore/J01859 for details). We thus ran signalAlign with
nanopore sequencing reads reported in ref. 14, following the same steps as
described in “human genome C/5mC-status predictive analysis.” We also used
probability threshold 0.7 to select confident predictions.

Kmer models. Canonical DNA 6mer and RNA 5mer models are available at:
https://github.com/nanoporetech/kmer_models. The nanopolish 5mC-containing
DNA 6mer model is available at: https://github.com/nanoporetech/nanopolish/
tree/master/etc/r9-models. The GSE124309 model, which contains the union of

{A, U, C, G} and {6mA, U, G, C} RNA 5mers, was constructed by the following
steps. We first downloaded the nanopore sequencing fast5 reads of modified
and non-modified “curlcake constructs” replicate 1 with GEO accession code
GSE12430913. We then performed nanopolish extract analysis3,23 to retrieve the
fastq records, with tags “-v -r -q -t template.” The fastq records were then aligned
using minimap2 (2.16-r922)39 with flags “-ax map-ont,” further sorted and indexed
by samtools (1.12)40. Per-read event tables were generated using nanopolish
(0.11.1) eventalign with flag “–scale-events,” by taking fast5 reads, alignment files,
and retrieved fastq records as described above. The yielded event tables contain
RNA 5mer sequences and corresponding ionic current signals. For every RNA
5mer, we averaged ionic current signals of all instances recorded in the event tables
to build the GSE124309 model. Please note that for more recent nanopore
sequencing chemistries, e.g., R10 where ONT kmer models are no longer available,
empirical kmer models could be trained instead as above-mentioned. Please see
Supplementary Note 4 for details.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The FAB39088 and FAF01169 NA12878 cell line native genomic DNA nanopore
sequencing datasets were downloaded from https://github.com/nanopore-wgs-
consortium/NA12878/blob/master/Genome.md. The two independent NA12878 bisulfite
datasets were downloaded from https://www.encodeproject.org/experiments/
ENCSR890UQO/. The E. coli 16S rRNA nanopore sequencing dataset was reported by
Smith et al.14. The nanopore sequencing dataset used to construct the GSE124309 model
is available at GEO under the accession code GSE12430913.

Code availability
Codes for constructing, training, and running the deep learning framework are available
at https://github.com/ioannisa92/Nanopore_modification_inference41. Codes for
nanopore sequencing data analysis are available at https://github.com/adbailey4/
functional_model_analysis42. Specifically, we adapted the original nanopolish (0.11.1) for
our analysis. The adapted nanopolish is available at https://github.com/adbailey4/
nanopolish43. Codes for reproducing all figures are available upon request to the
corresponding authors.
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Chapter 5 : Future Directions and Other Works

5.1 Future Direction: Drug Response in Tumor Patients

The current framework presented in Chapter 2.3 is a novel way to integrate patient information

of the same tissue of origin with cell lines. In addition the framework is able to integrate the

chemical information of every molecule in the training. I have shown that including such

information during training not only improves the accuracy of the discrimination between

resistant and sensitive patients, but also the number of drugs the model can have an accurate

prediction in. This means the model can be extended to more drugs.

However, the model lacks in two main areas: a) interpretability, and b) not including bond

information of each molecule. For a) there is an opportunity to combine the model presented in

Chapter 4.2 with the Expression Module of the model presented in Chapter 2.3. This joining

will allow the model to be interpretable at a pathway level. Furthermore, due to the flexibility

VEGA provides cell-states, transcription factors, or a protein-protein interaction network can

be used as input to its latent space. Thus, the drug response prediction could be interpreted

in a variety of ways. As for b) the current model only includes atom level features. There is

an opportunity to use a more expressive graph convolutional network, such as the GIN. This

network can incorporate bond level features along with atomic level features. The hope is that

by included a more expressive embedding space for each molecule, the model will be able to be

extended to even more drugs.

5.2 Future Direction: Molecular Structure Embedding in Nanopore

Sequencing

Similarly to what is described in the section above, the model developed for identifying

de novo the methylation status of nucleotides from nanopore reads only relies on atomic level
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features. As such, a more expressive graph convolutional network is needed so that the model

can be potentially extended to modifications beyond 5mC and 2mG.

At the same time, enough high quality nanopore data do not exist yet. Therefore, the

evaluation of the model on more modifications is currently a daunting task, if not impossible.

5.3 Other work: Internship at Coral Genomics Inc.

During my internship at Coral Genomics Inc. I developed a model that is able to handle

multiple drugs per patient. The goal was to use all the drugs each patient has been prescribed

and develop a model which, coupled with demographic or genetic information, can predict the

probability of hospitalization or death. FDA has created the FDA Adverse Event Reporting

System (FAERS) which collects information on records of adverse event reports, medication

error reports and product quality complaints resulting in adverse events that were submitted to

the FDA. This dataset includes details on demographics, drugs, indications, outcomes, reactions,

sources and therapies for the related events.

I used this information for each patient by creating a model that can encode the variable

number of drugs each patient in on, along with demographics data. I experimented with traditional

molecular representations, such as Morgan fingerprints, and compared the performance of the

model with graph convolution. Graph convolutions provided a superior encoding to the static

ones that Morgan fingerprints provide.

While the focus of this study was incorporating chemical structure into adverse event prediction

there are other avenues that future investigations could take to improve on this work. For example,

there is much attention on how socioeconomic factors might also influence the quality of the

prediction such models make [54]. In our work, we attempted to capture ethnic influences using

a PCA characterization of major DNA variants. PCA was also used to capture some of the

clinical information. The PCA reduction provides (hopefully) a non-redundant set of features
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for learning. Although such data are sparse in the FAERS database, it would be interesting to

encode additional socioeconomic-related variables. Then one could imagine training models with

and without these new variables to measure the amount of predictive information they carry. A

joint encoding of DNA, clinical, and socio-economic features could allow for correlations among

them to be accounted as well.

The following manuscript has been published on the International Journal of Environmental

Research and Public Health, on March 2021.
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Abstract: While the clinical approval process is able to filter out medications whose utility does
not offset their adverse drug reaction profile in humans, it is not well suited to characterizing
lower frequency issues and idiosyncratic multi-drug interactions that can happen in real world
diverse patient populations. With a growing abundance of real-world evidence databases containing
hundreds of thousands of patient records, it is now feasible to build machine learning models that
incorporate individual patient information to provide personalized adverse event predictions. In
this study, we build models that integrate patient specific demographic, clinical, and genetic features
(when available) with drug structure to predict adverse drug reactions. We develop an extensible
graph convolutional approach to be able to integrate molecular effects from the variable number of
medications a typical patient may be taking. Our model outperforms standard machine learning
methods at the tasks of predicting hospitalization and death in the UK Biobank dataset yielding an
R2 of 0.37 and an AUC of 0.90, respectively. We believe our model has potential for evaluating new
therapeutic compounds for individualized toxicities in real world diverse populations. It can also be
used to prioritize medications when there are multiple options being considered for treatment.

Keywords: adverse events; real world evidence; neural networks; graph convolution; FDA FAERS;
UK Biobank

1. Introduction

Clinical trials are used to determine the efficacy and toxicity of medications in humans.
Although effective in elucidating various acute responses to the pharmaceutical compound in
question, clinical trials are inherently limited by representation bias, size, and duration [1,2].
Current methods of toxicity and drug testing are unable to predict adverse drug reaction
(ADR) across diverse populations under conditions of chronic exposure [3,4]. Such ADRs are
a significant global health issue that affects millions of people each year with and accounting
for an estimated 17% of hospital readmissions [5–8].

One response to this inherent short-coming in predicting and preventing ADRs has
been the Tox21 Program. Through collaborative efforts, the U.S. National Institute of Health
(NIH), Federal Drug Administration (FDA), and Environmental Protection Agency (EPA)
have come together to help promote the evolution of toxicological testing and achieve
specific goals that would increase both acute and predictive testing capacities [9]. To
increase the ability to understand toxicity effects via data-driven predictions, the program
outlines key objectives that address current limitations in identifying rare idiosyncratic
responses, characterizing non-genotoxic potential carcinogens, gaining further insight into
Adverse Outcome Pathways for risk assessment, and other gaps in testing technology [9].

To fuel the large-scale studies geared towards advancing toxicological and predic-
tive technology, scientists utilize centralized real-world evidence (RWE) databases that
contain individual level records of adverse events and associated patient features. Such
sources, include the FDA Adverse Event Reporting System (FAERS) dataset which has been
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standardizing post-market adverse event reports for over six years and the UK Biobank
(UKBB), which links a large set of clinical variables (including medications) longitudinally
to genetic information [5,10]. These databases compile relevant information with the intent
to improve public health through innovation and discovery [11].

Machine learning may be able to fill the gaps outlined in the Tox21 program by
creating models that are predictive, scalable, cost-effective, and adaptable. More specifically,
computational methods that have been adapted to biomedical applications, such as toxicity
testing, drug responses, and drug discovery, include approaches that leverage Morgan
Fingerprints (Morgan FP), Graph Convolutional Networks (GCNs), and Neural Networks
(NNs) for Deep Learning applications [12,13].

Such methods utilize structural characteristics of molecules as inputs to computational
programs, which in turn, informs in vivo response predictions. Morgan FP, for example,
represent key molecular substructures using an explicitly defined featurization. However,
a limitation of this specific methodology is its inability to adaptively learn alternative
representations that may be more adapted to a particular task [13].

Differing from traditional fingerprint representations, GCNs represent atoms, molec-
ular connectivity, and bond characteristics in a graph-based format. The relationships
between neighboring atom-level features that are most informative for a particular task
can be learned as the network updates the weights connecting each of the graph convolu-
tional layers [13]. Since featurization and task prediction happen simultaneously in GCN
based models, they have significantly higher model complexity and typically require a
large dataset in order to outperform traditional machine learning approaches based on
traditional fingerprint representations. Alternatively, a pre-training strategy can be used
where the model is first trained on a related task (on which a large dataset is available) and
then subsequently fine-tuned [14].

Integrative approaches are required to not only enable accurate predictions, but also to
address the need for real world applicability. In clinical practice, it is common for those with
chronic disease to be on a regimen of multiple medications, which has a positive correlation
with the occurrence of ADRs [15,16]. Not only are multiple medications required for
patients with comorbidities, but a single illness may also commonly treated with more than
one medication [17,18]. The Center for Disease Control reported that from 2013–2016, in
the U.S. alone, 24% of the population reported using three or more medications, whereas
12.6% reported using five or more within the month preceding the survey [15].

While efforts have been made to create machine learning approaches and correspond-
ing databases that capture new ADRs or drug-drug interactions [19], they are limited in
their ability to generalize across larger sets. The computational costs and data required
to model these higher order interactions scales exponentially with the number of drug
interactions (i.e., n, n2, n3, for single drug, drug-drug, and drug triplet interactions respec-
tively) and as such no existing method can flexibly learn interactions across all medications
for patients on multiple medications. Additionally, incorporating other risk factors into
the model such as demographic and clinical data can be important in obtaining the most
accurate predictions and disentangling confounding risks [2,20,21].

In this paper, we discuss an integrative, precision medicine approach to multi-drug
adverse event prediction. The strategy utilized seeks to fill translational gaps in current
predictive methodologies.

2. Materials and Methods
2.1. Drug Name to Chemical Structure

Pubchempy (an open source Github repository) was used to convert drug names or
active ingredient to isomeric SMILES representation. Simple text filtering for case and
punctuation was performed on the drug name input.
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2.2. Chemical Structure Featurization of Single Molecules

In our GCN, SMILES structures are featurized using functionality from RDkit (an open
source Github repository). Specifically, atom-level features consisting of a one-hot encoding
if the atom is either C, N, O, F, P S, Cl, Br, I, the atomic number, a one-hot coding of chirality,
the atoms degree (number of neighboring atoms), formal charge, number of hydrogens,
number of radical electrons, a one-hot encoding of hybridization, whether it is or is not
aromatic, and whether it is or is not in a ring. Bond-level features including, conjugated
status, a one hot encoding of bond type (single, double, triple, aromatic), and a one hot
encoding of whether the bond is stereoisomeric. We chose to concatenate the bond-level
features to the atom-level features by summing over all bonds directly connected to each
atom. This resulted in a feature vector of length 42 for each atom. Finally, we constructed
the connectivity matrix between atoms and loaded these features into a Pytorch Geometric
Data object.

For cases in which a linear model was to be used as a comparator to the neural network
architecture, SMILES structures were featurized into binary feature vectors of length 2048
using Morgan FP with radius 2 using the python package RDkit.

2.3. Extension to Multi-Drug Framework

For our GCN, the atom-level connectivity matrices for each molecule were connected
in a block diagonal manner with atom-level and bond-level features being adjoined directly.

For use in the linear model comparisons when patients were taking multiple medica-
tions, the maximum value of each element of the Morgan fingerprint across all medications
was used as the corresponding featurization for the linear model (again resulting a vector
of length 2048).

2.4. Linear/Logistic Regression

For continuous variables, such as predicting hospitalization in the UKBB dataset,
a linear regression with an L2 norm penalty (Ridge regression) was used as a comparator
model (sklearn’s Ridge module with default parameters).

For discrete variables, such as predicting death or outcome labels in the FAERS dataset
a comparable model using sklearn’s logistic regression (with default parameters) was used.

2.5. Neural Network/Graph Convolutional Neural Network

For non-drug features, a simple neural network was constructed with the following
form:

1. Linear layer transforming the feature vector into a hidden dimension (100 in our
model)

2. Rectified linear unit (ReLU) transform
3. Batch normalization
4. Fully connected linear layer transforming hidden dimension to hidden dimension
5. ReLU transform
6. Linear layer transforming hidden dimension to target dimension

For medication associated features, the following architecture was used based roughly
on [14,22]:

1. GINConv (graph isomorphism) layer feature vector into a hidden dimension (100 in
our model)

a. This model performs uses a small neural network to map input atom-features
to the output dimension taking into account neighboring atoms

2. Rectified linear unit (ReLU) transform
3. Batch normalization
4. Four additional layers as in 1–3 above

Medication features are aggregated using pooling operators including Set2Set [23],
global_max_pool, and global_mean_pool, available in the PyTorch Geometric library.
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For the combined model, the outputs of the architectures described above are concate-
nated for the relevant feature subset.

2.6. Model Evaluation

In all cases, 5-fold cross validation is performed to evaluate model performance.

2.7. Feature Attribution/Importance

To evaluate the importance of individual features within the combined neural network
architecture the Integrated Gradients method [24] within the Captum library for PyTorch
was used. The sum of all gradients for each feature across patients is used as an estimate of
feature importance.

2.8. UK Biobank

UK Biobank (UKBB) contains deep genetic and phenotype information on approxi-
mately 500,000 individuals from across the United Kingdom who were aged 40 to 69 at
recruitment [10]. Our data were resourced under Application Number 5424. It is available
to researchers pending confirmation of their institutional affiliations by their approval
committee and payment of any applicable fees.

Medication and health supplements data (Data Field: 20,003) were coded using
6745 categories (Data coding 4) which were mapped to their corresponding active ingredi-
ent follow steps similar to those in [11]. This active ingredient was used to obtain SMILES
stings and featurization as described above.

Clinical features for each patient were extracted from ICD10 codes (Data Field: 41,202).
PCA was performed across all patients to reduce the dimensionality and the scores were
extracted as a representation of the “clinical status” of each patient.

A summary of the key subsets of the UKBB dataset that we reference in this work is
described in Table 1.

Table 1. Summary of key parameters of UKBB dataset.

Feature Value

Number of patients selected after filtering 291,560

Average number of medications per patient 3.2

Demographics Age, Sex, Weight, Height, BMI, and the number
of drugs the patient is taking

DNA Scores from first five genetic PCA components
from UKBB—Data-Field 22,009 [10]

Clinical Scores from first 10 PCA components of ICD10
codes—Data-Field 41,202 (see description above)

Drug structure

For linear model, the maximum of the Morgan
Fingerprint is used to featurized multi-drug

features, for the GCN, the featurization is flexibly
learned during model training

Hospitalization Log10 (hospitalizations documented + 1)
—Data-Field 41,235

Death Based on Data-Field 40,000

2.9. FDA FAERS

We captured a total of 8,224,912 unique cases in the FAERS database spanning the
years between 2014–2020 (through Q3 2020). The data may be readily accessed through
the FDA’s online portal. The data were further filtered by the reported role the drug
played in the adverse event report, which is characterized by the physician. We only
selected drugs that were characterized as primary suspect drugs, secondary suspect drugs,
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or suspected interacting drugs (PS, SS, or I in the DRUG file), meaning they may have
played an important role in the adverse event. Finally, we performed filtering to remove
potentially duplicated entries for cases in which the same combination of sex, weight, age,
and medications appeared more than once.

A summary of the key subsets of the FAERS dataset that we reference in this work is
described in Table 2.

Table 2. Summary of key parameters of FAERS dataset.

Feature Value

Number of cases selected (after filtering) 143,412

Average number of medications per case 1.5

Demographics Age, Sex, Weight, Reporting country

Clinical
Individual presence or absence for the top

200 indications for which drugs were
prescribed in the entire FAERS database

Drug structure For the GCN, the featurization is flexibly
learned during model training

3. Results

We sought to construct a machine learning framework that could incorporate vast (but
often disparate and filled with missing data elements) RWE databases to predict adverse
events (Figure 1). We imposed the requirement that the model be able to flexibly model
patients who are on multiple medications without being explicitly constrained to pairwise
drug-drug interactions or those previously described.
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In order to model the variable number of medications that any patient may be taking, we
leverage the graph-based featurization of molecules that GCNs can learn (Figure 2). A single
chemical can be represented by the connectivity between atoms, atom-level features, and
bond-level features. By concatenating atom level connectivity matrices in a block diagonal
format, and simply concatenating atom and bond-level features, multiple molecules can be
featurized together. This concatenation represents a collection of disjoint subgraphs. Since
there are no connections between different molecules in the connectivity matrix, the GCN
operations will not incorporate information across molecules. However, subsequent fully
connected operations can learn from the collection of extracted features. With a sufficiently
large training dataset, this architecture is able to learn new chemical features and interactions
between them that predict multi-drug properties including adverse events.
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Figure 2. An overview of the multi-drug GCN architecture: (A) A standard GCN applied to a chemical structure creates bond
and atom-level features, and an atom-level connectivity matrix to describe the molecule. Graph convolutions are performed
to learn new feature representations that learn local structures that can be used to predict chemical properties (B) Our multi-
drug GCN architecture concatenates the bond and atom- level features and creates a block diagonal connectivity matrix
that represents the set of molecules an individual is taking. In a generalization of the single molecule GCN, the multi-drug
GCN aggregates information from local structures across all molecules to predict multi-drug properties. We highlight the
featurization of an example patient currently taking simvastatin (red pill), ibuprofen (green pill), and metformin (blue pill).

In order to flexibly model other available individually predictive features (such as
age, sex, weight, and genetics), we create separate compact neural networks that learn
representations of these features. Finally, the learned representations across each small
neural network and the GCN can be combined in a final set of neural network layers to
predict the patient-level variable of interest.

3.1. Predicting Adverse Events in the UK Biobank Dataset

In order to test the performance of our framework, we applied it to the UK Biobank
dataset on two separate tasks: predicting the number of hospitalizations a patient expe-
rienced and predicting whether an individual has died. We were particularly interested
in characterizing the relative importance of each of the features and any nonlinear inter-
actions between features. As such we create separate models that contained each of the
individual features as well as a combined model containing all features. To benchmark the
performance of our approach, we contrast the neural network performance with that of
a linear model (which would have limited ability to discern interactions between feature
sets) (Figure 3A).
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For both the task of predicting hospitalization and death in the UKBB, we found that
clinical features (based on PCA scores of ICD10 codes) to be the most predictive individual
feature set. For hospitalization, but not death, we find that the neural network architectures
significantly outperformed the simple linear model for every feature set except the genetic
principal components by themselves. Similarly, for hospitalization, but not death, we find a
combined model including multi-drug GCN features significantly improves the predictive
performance of the model compared to one without those features (R2 0.364 vs. 0.331,
p = 0.00004, Figure 3A).

As a final evaluation of feature importance in the combined model, we use the In-
tegrated Gradients approach to assess contributions of the non-drug features [24]. Sur-
prisingly, we find that despite the fact that the both DNA and demographic features had
relatively low predictive performance individually, they were amongst the most predictive
features in the combined model (Figure 3B).

To highlight the improvements made possible by our multi-drug framework com-
pared to a single-drug framework, we revaluated performance on the task of predicting
hospitalization for the subset of patients who are on 2 or more medications. We compare
the performance of a model that only considers one randomly selected drug per patient to
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a model that considers all drugs (Figure 3C). We find a highly significant improvement in
model performance (R2 of 0.035 vs. 0.14, p < 10−10).

3.2. Predicting Adverse Events in the FDA FAERS Dataset

We next sought to apply our framework to the FDA FAERS dataset. It contains a larger
volume of data and a more targeted set of adverse event labels. Specifically, we attempted
to predict the outcomes codes using a similar set of features to those available in the UK
Biobank (except for DNA/genetic features which are not available in FAERS).

With the exception of congenital abnormality, which can be significantly predicted
with demographic information such as age, the best single feature set for predicting the
majority of outcomes was drug structure specific features (Figure 4A). For most categories,
an integrated model of demographic, clinical, and drug structure significantly outper-
formed any of the individual feature set models. These categories included hospitalization
(p < 10−5) and death (p < 10−5).
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Figure 4. Performance comparisons on the FAERS dataset. (A) Predictive utility of various features and model architectures
for predicting adverse events in the FAERS dataset. X-axis labels correspond to adverse event categories for a particular
case. Y-axis is the AUC at predicting each of the labels. Colors correspond to various feature subsets tested. Error bars
correspond to 95% confidence interval derived from bootstrapping on 5-fold cross-validation (each fold contains 28,682
records). (B) Power analysis demonstrating improvement in performance as a function of the number of patient records
examined. Blue corresponds to hospitalization model performance and orange corresponds to performance of model
predicting death. X-axis is log10 (number of records) Y-axis is AUC. Shaded error region corresponds to 95% confidence
interval derived from bootstrapping on 5-fold cross-validation in a subsampled dataset corresponding to the X-axis location.
(C) Plot demonstrating relationship between model error across all outcomes and age, (D) average molecular weight of
drugs patient is taking, and (E) patient sex.

We examined the extent to which model performance would be expected to improve
through the incorporation of additional data and find that the model would continue to
improve for both the prediction of hospitalization and death (Figure 4B). Additionally,
we examine the extent to which the model performs better or worse as a function of the
covariates we used. We find weak, but significant relationships between age, average
molecular weight, and sex and model error (p < 10−6) (Figure 4C–E).
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4. Discussion

The two datasets analyzed in this paper have contrasting strengths and weaknesses.
The UK Biobank includes deep genetic and phenotype information to compare the relative
predictive performance of a wide range of well annotated features, but is generally limited
to adults 40 years and older in the United Kingdom. It does not have a well-curated a
collection of adverse event labels and, as such, surrogate labels such as hospitalization
or death were used in this paper. In contrast FDA FAERS collection, is solely focused
on adverse events with detailed event labels, however, the database contains selection
bias against patients who did not suffer any adverse events on a medication. As such, a
predictor built on FDA FAERS will overestimate the likelihood of a particular patient in the
general population on a particular combination of medications having an adverse event
without performing an additional calibration for how widely those particular medications
are prescribed.

There are several promising directions for expanding upon and improving the ap-
proach described in this paper. These range from feature expansion for the representation
of each atom (including aspects such as drug route of administration and dosage) in each
chemical to optimization of the model architecture. One particularly promising area is the
incorporation of convolutions which incorporate bond features and the spatial relationships
between atoms [25,26].

The Integrated Gradients approach that we used can also be used to increase model
interpretability on drug features. Specifically, the relative importance of particular chemical
motifs (and interactions between motifs across medications) that drive the prediction a
particular individual to experience an adverse event can be visualized [24].

We also note several limitations of the work we present here. Modification of model
architecture would likely be required to incorporate and model the impact of biologic
therapies. Additionally, for the FAERS dataset, we filtered to around 3% of the overall
dataset, this limited dataset may have reduced the ability of the GCN approach to learn
improved featurizations. As such, we could either use less strict filtering or pre-train the
GCN using other datasets such as the Tox21 Data Challenge or UKBB data sets.

Despite the limited performance of genetic features as standalone predictors of ADRs,
we were encouraged by the feature importance of several genetic principal components in
the combined model to predict hospitalization in the UKBB dataset. As such we explored
using a more comprehensive genetic feature set and developed a companion manuscript,
which describes a more thorough variant level prediction of the genetic basis of ADRs
across the millions of genetic variants present in the UKBB.

Finally, we highlight two specific examples to illustrate situations in which our model
performs poorly and when it performs well. In the first example, we describe the case
of a 30-year-old female on Nexplanon who experienced a hospitalization and related
life-threatening event that our model failed to predict. We find multiple similar cases
of patients on Nexplanon or Nuvaring (implantable birth control medications that the
model performed poorly on (there are 659 such cases in our FAERS dataset, and we
find they have a 32% higher error than other cases, p < 10−4). We hypothesize that
this is due to the route of administration not being a component of our model (i.e., pill,
infusion, eluting implantable device, etc). In our second example, we highlight the case
of a 35-year-old female taking multiple medications who is likely immunocompromised
on medications for multiple infections and HIV antiretrovirals whose four adverse events
were predicted almost perfectly (difference between actual adverse event outcomes and
predicted probabilities was 0.82 out of 7).

5. Conclusions

In this work, we compare the relative predictive utility of demographic, genetic, clinical,
multiple drug structures, and the integration of these features to predict adverse outcomes in
real world evidence databases including the UKBB and FAERS dataset (Table 3).
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Table 3. Summary and support of key findings in each of the two datasets examined.

Attribute UKBB FAERS

Neural network outperforms
linear model for individual

features

For hospitalization across all
features except genetic

principal components, but not
death

For most categories except
congenital abnormality, and
disability and most models
except those only involving

clinical features

Combined multi-drug model
improves performance

relative to other feature sets

For hospitalization, but not
death

For both hospitalization and
death

Most important single feature Clinical ICD10 features Multi-drug features

In the UKBB, we find that in many cases the incorporation of a neural network
framework significantly improved predictive performance relative to a standard linear
model suggesting the presence of nonlinear interactions between features. We also find that
in an integrated model of all features, which outperformed and of the single feature models
for hospitalization, demographic and genetic features had significant weights despite not
having strong individual level performance.

Similarly, in the FAERS dataset we find that a combined model of demographic,
clinical, and multi-drug feature sets is able to outperform any individual feature set for
key outcomes like hospitalization and death. This result suggests a role for personalized
medicine approaches to predictive toxicology that incorporate patient specific and multi-
drug structure features into joint models.

As part of this work we outline and implement a multi-drug GCN framework that is
able to flexibly incorporate the variable numbers of medications that real-world patient
populations are taking. Built on a deep neural network architecture and deployed on
GPU frameworks, it has the potential to rapidly learn complex interactions from growing
databases of real-world evidence.

Overall, we believe that these methods will facilitate more accurate predictive person-
alized toxicology efforts in the future.
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