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ABSTRACT OF THE DISSERTATION

Active Learning for the Subgraph Matching Problem

by

Yurun Ge

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Andrea Bertozzi, Chair

The subgraph matching problem arises in a variety of domains including pattern recognition

for segmented images, meshes of 3D objects, biochemical reactions, and security applications.

Large and complex solution spaces are common for this graph-based problem, especially when

the world graph contains many more nodes and edges in comparison to the template graph.

Overall, this dissertation covers three parts: using symmetry to boost the subgraph

matching algorithm and compress the solution space; presenting an active learning problem

for subgraph matching problem; and discussing the different quantitative strategies for active

learning.

As for the symmetry, we introduce rigorous definitions of structural equivalence and

establish conditions for when it can be safely used to generate more solutions. We then

adapt a state-of-the-art solver and perform a comprehensive series of tests to demonstrate

how the Venn-diagram could be applied to visualize the symmetry and compress the solution

space.

Next, a real use-case scenario may require analysts to query additional information to

reduce the complexity of the problem and there is currently little guidance to analysts on how
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to optimize this choice. By analogy to the well-known active learning problem in machine

learning classification problems, we present an active learning problem for the subgraph

matching problem in which an algorithm suggests optimal template target nodes that would

be most likely to reduce the overly large solution space. Additional information about those

target nodes are then acquired from humans in the loop, in an iterative process. We present

some case studies illustrating different strategies on a variety of datasets.

We further develop this idea by introducing rigorous mathematical definitions of the

active learning problem. We also prove NP completeness of this problem. We present

numerical experiments for single channel and multichannel subgraph matching problems

created from both synthetic and real world datasets. We compare different quantitative

criteria for choosing nodes to query. We introduce a new method based on a spanning tree

that outperforms other graph-based criteria for the multichannel datasets.
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CHAPTER 1

Introduction to Subgraph Matching

1.1 Background of the subgraph matching problem

The subgraph matching problem, also known as the subgraph isomorphism problem is

an important problem in computer science and graph theory as illustrated in the surveys

[24],[14],[23]. It has practical applications in many areas such as pattern recognition [68],

image analysis [85], bioinformatics [22], and knowledge graph searches [1, 78]. In the sub-

graph matching problem, we consider two networks: a template graph and a world graph.

We wish to find all subgraphs of the world graph that match the template. To represent the

broad variety of graphs in the real world, we allow the nodes in the graphs to be labelled as

well as permit any number of edges in either direction between nodes.

In this dissertation, we consider the subgraph matching problem for multichannel graphs,

meaning that each edge in a graph occupies a specific ”channel” that represents a type

of edge, e.g. email communication versus electronic fund transfer. Multichannel graphs

are used in adversarial activity detection[59] with complex scenarios in which edge types

represent different types of activities. Another type of graph that has different edge types

are knowledge graphs in which edges can represent relationships between entities (nodes).

Such graphs also can have an ontology that describes a heirarchical structure of labels on

the graph. Figure 1.1 depicts an simple example of the subgraph isomorphism problem for

multichannel graphs.

Multichannel graphs are closely related to single channel graphs with edge labels. For a
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single channel graph, we can construct a multichannel graph by putting together the edges

with the same labels in the same channel, and vise versa. These two notions are different in

the following sense: (1) edge labels may possibly exist in the multichannel graphs, and for

these graphs with edge labels, they cannot be easily converted to single channel graphs. (2)

the topology structures of the multichannel graphs are different from single channel graphs.

Figure 1.1: Example subgraph matching problem in the multichannel setting reproduced

from [59].(© 2021 IEEE) The colors of nodes and edges correspond to different node

labels and channels, respectively. There are four subgraph isomorphisms correspond-

ing to mapping the template nodes (A,C,B) to each of the four circled sets of nodes

(4, 7, 5), (7, 10, 9), (1, 6, 8), (1, 6, 2).

Part of this research was supported by the DARPA Modeling Adversial Activity (MAA)

program [62]. The MAA program desires to develop graph models and algorithms in order

to better understand and detect transactions which can potentially be associated with the

development of ”weapons of mass terror”. Some of the data sets referenced in this thesis are

generated by three performers for that program. the PNNL (Pacific Northwest National Lab-

oratory [17] , the GORDIAN (Graphing Observables from Realistic Distributions in Activity

Networks) project [42], and Ivysys Technologies [2]). These teams generate template graphs

and world graphs from both real life and synthetic data like COVID data [93], and detecting

the adversarial activity is the same as solving the subgraph matching problem. However,

these datasets in practice often possess high computational complexity, making them unsolv-
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able with standard subgraph isomorphism approaches. In addition to the DARPA datasets,

we also consider multichannel public domain datasets such as the British Transportation

Network[26], Higgs Twitter network [21], Airlines [9].

1.2 Solving the Subgraph matching problem

In the first section, we introduce the definition of a multichannel graph and the subgraph

matching problem for multichannel graph. This section subsection provides the formal math-

ematical definition of the subgraph matching problem and reviews the standard algorithms

from the previous research for solving the subgraph matching problem.

Definition 1 (Multichannel Graph). A multichannel graph G = (V,E, L, C) is a set of

nodes (or vertices), directed edges between the nodes, labels on the nodes, and channels on

the edges. The number of nodes is denoted n. Each node v ∈ V has a label L(v) belonging

to some arbitrary set of labels. There can be any number of edges between each pair of nodes

(u,v) in either direction. Each edge belongs to one of the channels C. Edges between the

same pair of nodes in the same channel with the same direction are indistinguishable. The

function E : V × V → N|C| describes the number of edges in each channel between each

pair of nodes. In particular, E(u,v) can be represented as a |C|-dimensional vector the kth

element of which is the number of edges from node u to node v in the kth channel.

We refer to graphs with only one channel as single-channel graphs.

Now we introduce some standard graph terminology which we extend to the multichannel

setting. Two vertices are adjacent or neighboring if there is an edge between them in either

direction in any channel. An edge is incident to a vertex if the vertex is one of the edge’s

endpoints. We define the degree of a vertex v, denoted deg(v), in a multichannel graph as

the number of edges incident to a vertex. The neighborhood of a vertex v, denoted N(v), is

the set of all adjacent vertices. A path is a finite sequence of distinct vertices such that any

two consecutive vertices are adjacent. A subgraph of a multichannel graph G = (V,E, L, C)

3



is a multichannel graph G′ = (V ′, E ′, L′, C ′) with V ′ ⊂ V,C ′ = C, L′(v) = L(v) for all v ∈ V ,

and E ′(u, v) ≤ E(u, v) for all u, v ∈ V ′.

The subgraph matching problem (SMP) can be succinctly stated: given two mul-

tichannel networks, a template Gt = (Vt, Et, Lt, C) and a world Gw = (Vw, Ew, Lw, C), we

wish to find all subgraphs of the world that match the template. To formalize what we mean

by match, we introduce the subgraph isomorphism (SI) as defined in [59].

Definition 2 (Subgraph Isomorphism). An injective function f : Vt → Vw is called a sub-

graph isomorphism (SI) or subgraph matching from Gt = (Vt, Et, Lt, C) to Gw =

(Vw, Ew, Lw, C) if

Lt(v) = Lw(f(v)) ∀v ∈ Vt (1.1)

Et(u,v) ≤ Ew (f(u), f(v)) ∀u,v ∈ Vt × Vt. (1.2)

The set of all SIs from Gt to Gw is denoted F (Gt, Gw).

This definition allows for isomorphisms in which the world graph has more edges than the

template. If the function additionally satisfies (1.2) at equality, it is an induced subgraph

isomorphism. A function which satisfies (1.1) and (1.2) but is not necessarily injective is

an edge preserving map (EPM).

Finding a subgraph matching is proved to be NP-complete [28]. As a result, there is no

algorithm that efficiently finds all subgraph matchings on all graphs. Standard algorithms

for exact subgraph matching use one of three approaches [10, 11]: tree search, constraint

propagation, and graph indexing [37].

Tree search methods was first applied to solving the subgraph matching problem in

single channel undirected graph in Ullmann’s algorithm [79]. For each template node, a tree

search algorithm creates a list of nodes in the world graph that enumerates all the possible

mapping of the template node. This list is called candidate list. The tree search algorithm

then exhausts all the possible mappings of the template node. In each step of the tree
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search, the template node is mapped to one of the nodes in its candidate list, and then all

the remaining candidate lists are refined. The tree search algorithms have different efficiency

due to their different ways to create and refine candidate list. For a given template node, the

Ullman’s algorithm includes all the nodes in the world graph with degree no less than the

template node. In each step of the tree search, the candidate lists are refined by removing

the candidates that are impossible to be neighbors for a neighboring pair in the template

graph. This algorithm is further developed in , VF2 [16] and its variants (VF2Plus [12], VF3

[10, 11], VF2++ [40]). In VF2 and its generalization methods, the algorithms can be used to

solve subgraph matching problem in directed graphs. Also, more semantic rules are applied

to refine the candidate sets, like the rules considering the matched nodes (nodes with only

one candidate) and the rules that counts the number of valid neighbors of a candidate.

As for the tree search of the candidate list, the order to select nodes has a huge impact

on the algorithm efficiency. The approach to determine the best index of the template graph

nodes in the tree search to speed up algorithms is referred to as the graph indexing ap-

proach. Examples of graph indexing approaches include GraphQL [34], SPath [91], GADDI

[89], QuickSI [72], TurboISO [32], BoostISO [66], CFL-Match [6], and CNI-Match [60]. These

methods exploits the graph structures and data structures in the template graph and their

candidate lists. Many of them have inspired our work. In [66], the authors proposed algo-

rithm which makes use of the equivalence class from the perspective of set theory. They

defined syntactic equivalence to combine the similar nodes in the template graph structure

and the query dependent equivalence based on the graph structure and the candidate list.

They also proposed the syntactic containment and query containment relations. These re-

lations reduce the redundant computation in the tree search. Also, in CFL-Match [6], the

authors found that it improves the computation efficiency to decompose the template graph

into three parts: core, forest and leaves and follow a specific search order from nodes in core

to forest then leaves. It is worth mentioning that in their work, they proposed an innovative

data structure called CPI (compact path index) to encode possible matchings of the tem-
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plate graph. In the CPI structure, an auxiliary graph is constructed among the candidates

of all the nodes in the template graph, where the adjacent pair of candidates of the adjacent

template graph are connected. In their work, the CPI structure is constructed on a breadth

first search (BFS) tree of the template graph by visiting the nodes level-by-level in a top-

down manner. This structure plays an important role in determining the order of the three

search and computing the number of subgraph matchings. In [87], the authors defined the

candidate structure for the purpose of exploring the topology structures among candidates.

The candidate structure is also an auxiliary graph constructed based on adjacent template

pairs and their candidates. The formal definition is given as follows:

Definition 3. Given template graph GT = (VT , ET ), world graph GW = (VW , EW ), and

candidate sets C[u] ⊂ VW for each u ∈ VT , the candidate structure is the directed graph

GC = (VC , EC) where the vertices VC = {(u, c) : u ∈ VT , c ∈ VW} are template vertex-

candidate pairs and ((u1, c1), (u2, c2)) ∈ EC if and only if (u1, u2) ∈ ET and (c1, c2) ∈ EW .

Constraint propagation approaches cast the problem as a constraint satisfaction problem.

One keeps a record of world nodes that are possible matches for each template node.This

approach can be combined with a tree search to solve the subgraph matching problem.

Examples of constraint propagation approaches include McGregor [55], nRF+ [46], ILF

[88], LAD [73] (and its variants, IncompleteLAD and PathLAD [44]), McCreesh and Prosser

(Glasgow) [52], and FocusSearch [80]. These methods differ from each other in the constraint

rules they apply. For example, in Larrosa’s work [46], they proposed a constraint saying that

for a candidate of the template node, the number of its neighbors must be less than or equal

to the number of candidates for those neighbors that are adjacent to the candidate. The

LAD method [44] designed a constraint that for a template node and its candidate, their

should at least one solution to map their neighbors without duplicating. This constraint is

equivalent to solving an all-different problem.

After checking the constraints , the algorithm uses the tree search to find all the subgraph

matchings. A typical algorithm that was used in these papers is shown in 1 . In this
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algorithm, the ”Solve” function is executed recursively after each time we ”match” a template

graph node u to its candidate v. The rule of applying the constraints is also referred to as

”filters” in the tree search algorithm. The function ”ApplyFilters” reduces the candidate list

based on the constraint rules. The tree search algorithm will terminate until all the possible

matchings of template nodes to its candidates are exhausted.

Algorithm 1 Basic routine for a tree search

1: function Solve(partial match, cands)

2: if MatchComplete(partial match) then

3: ReportMatch(partial match)

4: return

5: ApplyFilters(partial match, cands)

6: Let u = GetNextTemplateVertex()

7: Let cands copy = cands.copy()

8: for candidate v of u do

9: partial match.match(u, v)

10: Solve(partial match, cands copy)

11: partial match.unmatch(u, v)

12: for unmatched u′ ∼ u do

13: Set cands[u′, v] = 0

14: Let cands = cands copy

15: return

Our work in [57, 59] designed and generalized constraint rules to multichannel graphs.

The rules include statistic filter, topology filter, repeated sets filter, neighborhood filter and

elimination filter. The statistic filter checks the satisfaction of the node-level statistics such

as in/out-degree, number of in/out-neighbors, number of reciprocated edges, and number

of self-edges. The topology filter checks the existence of the mapping from the candidate

lists of the following structure: a template node and all its neighboring nodes. The repeated
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sets filter removes redundant candidates by checking the already matched template nodes or

group of nodes. The neighborhood filter checks the existence of injective mapping from the

neighbors of a template node to their candidates under which the corresponding nodes in the

world graph are also neighbors. It is also called the all-different constraint. The elimination

filter will assign a template node to its candidate node and remove the candidate node if no

mapping would exist after running other filters.

The following figure 1.2 shows how the number of candidates change after applying the

different types of filters. The datasets used in this experiment is from [17].

In practice, both real world and synthetic examples illustrate the complexity of the set

of solutions to the subgraph matching problem. For example, for single channel (single

edge-type) networks, there are several benchmark datasets [74, 18, 75, 29, 53] for which the

total SI count ranges from zero to approximately 10384 [87]. This complexity arises from

two key features of the problem. On the one hand, the world graph may have additional

nodes and edges that are equally good candidates for components of the template graph.

On the other hand the template has nodes and edges that are interchangeable. These are

forms of equivalence that have been explored recently in the literature [78, 87] to reduce

the complexity of the solution space by providing a categorization of groups of nodes that

can be interchanged. In figure 1.3 is an example of the template graph that consists of

interchangeable nodes. In our work [87], we show that by considering the interchangeability

among the equivalence classes in this dataset, one can generate over 10100 subgraph matchings

from a single representative solution.
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Figure 1.2: (Top): The number of candidates for each template node after different levels of

filtering are applied to PNNL Version 6 B1-S1. (Bottom): The number of template nodes

for which each world node is a candidate.. Note that the Validation histogram perfectly

overlaps the Elimination histogram and the Neighborhood histogram perfectly overlaps the

Topology histogram. This figure is from [59] (© 2021 IEEE)
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Figure 1.3: Example of equivalence class from [87](© 2023 IEEE). The template graph

is from Ivysys Technologies [2]. Non-gray vertices of the same color represent different

equivalence classes and are interchangeable without changing the structure of the graph.
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1.3 The current research landscape of combinatorial graph prob-

lems

1.3.1 Related Combinatorial Graph Problems

While this dissertation focuses on exact matches for subgraph matching, there is a literature

on the relevant problems. The work discussed in this thesis could be possibly extended to

these similar problems.

One closely related problem is the inexact subgraph matching problem. This problem

replaces the strict edge-preserving constraints of exact isomorphism with a penalty for edge

and label mismatches which is to be minimized. The exact form of the penalty varies across

applications and there are a myriad of approaches many taking inspiration from the exact

matching problem. These involve a variety of techniques including filtering [78, 43], A*

search [39], indexing [47], and continuous techniques [76].

Another related problem is the maximum common subgraph detection problem. This

problem deals with two input graphs and aims to find their largest common subgraphs. In

this literature [3], the authors designed a ”branch and bound” algorithm called GLSearch

based on Graph Neural Network. Their work shows that combining search methods with

reinforcement learning and deep learning improves the efficiency and is promising in solving

these constraint combinatorial problems.

In a recent work [45], the authors developed efficient learning methods called AEDNet

for obtaining a sufficient similar solution for the induced subgraph matching problem. An

induced subgraph is a special case of the subgraph matching in which the edge count in the

template and world are the same for those nodes in the template and its image. They justify

the need for an efficient solver for subgraph matching problem in large graphs to satisfy the

need for real life use, and their method is much faster than the exact solver in large graphs.
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1.3.2 Variability in Scale of Datasets for Subgraph Matching

The dataset has a significant influence on the performance of subgraph matching algorithms.

On the one hand, researchers develop different methods that are applicable to the template

graph and world graph with different scales. For instance, while [45] presents template graphs

that are 20 times larger than previous methods, these are still much smaller than those in

our study, making their approach less suited to our datasets. On the other hand, even for

the template graphs and world graphs with similar sizes, the level of difficulty to solve the

subgraph matching problem can vary significantly. For example, the work of [59] shows that

for different instances in the PNNL[17] dataset with similar template graph size and world

graph size, the number of total isomorphisms can range from 1152 to 3.13× 108.

In the following paragraphs, we enumerate the scale of datasets used in some notable

state-of-art researches on subgraph matching.

Liu and his team proposed a learning based method to count the total number of all

the subgraph matchings. They significantly accelerated the algorithm of VF2 [16] with the

help of their learning framework. Their work is tested on some “small” datasets and some

“large” datasets. For their“small” datasets, the world graph has an average of 76.3 vertices.

The total number of matchings is less than 1024. The corresponding statistics for the world

graph in their “large” datasets is 560, and the total number of matchings is less than 4096.

The template graphs of the subgraph matching problem have sizes from 4 to 16. They are

generated using randomized algorithms by the research group.

As introduced in the above subsection, the AEDNet algorithm [45] tries to find sufficiently

similar matchings of an induced subgraph. This problem is considered to be less complex

than the general subgraph matching problem for the following reasons. First, this problem

allows some errors on the matchings they find. Second, the requirement of the induced

subgraph is a strong constraint on the problem that would greatly trim the tree search.

Their algorithm is tested across six datasets with the average number of vertices in the
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template graph ranging from 7.5 to 75 and in the world graph from 19.77 to 2372.

The work [90] also studies learning based methods for counting all the number of subgraph

matchings. They combine their algorithm with active learning in order to accelerate the

training of deep neural network. Their algorithm is tested on datasets with larger world

graphs. The largest world graph in their datasets contains 12,811,197 vertices, 15,768,516

edges and 188,883 different labels. However, the sizes of their template graph range from 3

to 12, which are small compared to datasets in other research and in this thesis.

In table 1.1, we list the statistics of datasets in the works mentioned earlier in this section.

These datasets are the largest in the cited paper using the metric of template graph size,

world graph size, or the number of matchings. We also list two large datasets BTN100 and

Ivysys v7 used in this thesis. The detail of these datasets are introduced in chapter 3 and 4.

From the comparison, the datasets in our research have distinct characteristics compared to

those in state of the art research regarding to the number of matchings and template size.
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Table 1.1: Comparison of Dataset scales on Subgraph Matching. The first four datasets are

from state-of-art algorithms introduced in section 1.3.2. The last two datasets, BTN100 and

Ivysys are the datasets used in this thesis. The first column represents the dataset name.

The second column represents the maximum number of nodes in the template graph. The

third column represents the average number of nodes in the world graph. The fourth column

represents the number of labels or channels. The fifth column represents the estimated

number of subgraph matchings. ”Unknown” indicates that the authors have not estimated

the number for various reasons.

Dataset T Size(max) W Size(avg) # of channels # of matchings

”Large” in [48]. 16 560 1 4,096

PPI in [45] 75 2,372 1 Unknown

yago in [90] 8 12,811,197 188,883 108

eu2005 in[90] 12 842,664 40 1014

BTN100 100 262,377 7 Unknown

Ivysys v7 94 2,488 3 > 10103
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CHAPTER 2

Equivalence Structure in Subgraph matching

In this chapter, we introduce our work in [87]. This work studies the acceleration of subgraph

matching algorithms with the different equivalence relation among the nodes in the template

graph and world graph, and the compress of the subgraph matching solutions with the

equivalence structure. I contributed to proposing a novel equivalence relation called the

node cover equivalence, as well as the compressed representative solution using the node

cover equivalence. I also developed a Venn diagram representation for the solution space,

making use of structural equivalence.

2.1 Structural equivalence and candidata equivalence

In our work, we study three kind of equivalences: structrual equivalence, candidate equiv-

alence and node cover equivalence. The idea of the equivalence structure is to explore the

nodes that are interchangeable with each other in a subgraph matching solution. In this

way, if we have one representative subgraph matching from the template graph to the world

graph, we can generate other matchings by swapping the nodes in the equivalence class. The

definitions of these relations are listed as followed:

Definition 4. In a graph G = (V,E), we say that two vertices v, w are structurally

equivalent (denoted v ∼s w) if:

1. For u ∈ V, u ̸= v, w,

(a) (u, v) ∈ E ⇔ (u,w) ∈ E.
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(b) (v, u) ∈ E ⇔ (w, u) ∈ E.

2. (v, w) ∈ E ⇔ (w, v) ∈ E.

This definition implies that the neighbors of structurally equivalent vertices (not including

the vertices themselves) must coincide. Nodes in template graph and world graph that are

structurally equivalent can be freely interchangeable with each other in a subgraph matching

solution and thus generating factorial numbers of other solutions.

The candidate equivalence is defined based on the candidate structure3 which was intro-

duced in the previous section.

Definition 5. Given a candidate structure GC = (VC , EC), c1, c2 ∈ VW , we say that c1

is candidate equivalent to c2 with respect to u ∈ VT , denoted c1 ∼c,u c2, if and only if

c1, c2 /∈ C[u] or c1, c2 ∈ C[u] and (c1, u) ∼s (c2, u).

We can swap the candidates in the candidate structure that is specified in the following

proposition:

Proposition 6. Suppose that given a specific candidate structure GC = (VC , EC), we have

that c1, c2 ∈ C[u] and c1 ∼c,u c2 for some template vertex u. Suppose that c1 and c2 are not

candidates for any other vertex. Then c1 and c2 are GC-interchangeable.

Proof. This is clearly injective, and for any edge (v, w) which doesn’t include u, g agrees with

f , so it preserves those edges. If we have (u, v) ∈ ET , we have (f(u), f(v)) = (c1, f(v)) ∈ EW .

Since c1 ∼c,u c2, and we have ((u, c1), (v, f(v)) ∈ EC , we must have ((u, c2), (v, f(v)) ∈ EC

which implies (c2, f(v)) ∈ EW .

In the above proposition, we add one additional condition that c1 and c2 are not can-

didates for any other vertex. Without the condition, the interchangeability situation is too

complex to discuss. So, the above candidate equivalence is dependent on the tree search.
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In our tree search, when we generate candidate vertices for a given vertex u, we find repre-

sentatives, for each candidate equivalence class, that do not appear as candidates for other

vertices. If a class has a vertex appearing in other candidate sets, then we cannot exploit

equivalence and must check each member of the class. Furthermore, as we continue to

make matches and eliminate candidates, more world vertices will become equivalent, so it is

advantageous to recompute equivalence in each step of the tree search.

If we have that f(v) = c1 and f(w) = c2, and we want to swap c1 for c2, we need a

stronger condition; namely, we need that they are equivalent with respect to both v and w.

In the process of a tree search, we do not know exactly what each vertex will be mapped to

so instead we consider an even stronger condition:

Definition 7. Given a candidate structure GC = (VC , EC), we say that c1 ∈ VW is fully

candidate equivalent to c2 ∈ VW , denoted c1 ∼c c2 if for all u ∈ VT , c1 ∼c,u c2.

Proof. If (x, y) ∈ ET , and neither is u1 or u2, then g agrees with f and preserves the edge.

If one is u1 or u2, without loss of generality take x = u1, then (g(x), g(y)) = (c2, f(y)). As

f is a subgraph isomorphism (c1, f(y)) ∈ EW and since c1 ∼c c2, (c2, f(y)) ∈ EW as well.

If x = u1, y = u2, then (g(x), g(y)) = (c2, c1) = (f(y), f(x)) and this edge is in EW since

c1 ∼c c2 and (c1, c2) ∈ EW .

Note that if c1 ∼c,u c2 for some u, and c1, c2 are not candidates for any other vertices,

then c1 ∼c c2. This condition enables us to interchange world vertices and still maintain the

subgraph matching conditions. This is established by the following proposition:

Proposition 8. Suppose that given a specific candidate structure GC = (VC , EC), we have

that c1, c2 ∈ VW and c1 ∼c c2. Then, c1 and c2 are GC-interchangeable.
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2.2 Node Cover Equivalence

An alternate notion of equivalence, introduced in [59], involves the use of a node cover. A

node cover is a subset of nodes whose removal, along with incident edges, results in a

completely disconnected graph. The approach in [59] is to build up a partial match of all the

vertices in the node cover followed by assigning all the nodes outside the node cover. After

reducing the candidate sets of all the nodes outside the cover to those that have enough

connections to the nodes in the cover, what remains is to ensure that they are all different.

We formalize this with some definitions. A partial match is a subgraph isomorphism

from a subgraph of the template graph to the world graph. We list out the mapping as a

list of ordered pairs M = {(v1, w1), . . . , (vn, wn)}. A template vertex - candidate pair (v, c)

is joinable to a partial match M if for each (vi, wi) ∈ M , if (vi, v) ∈ VT , then (wi, c) ∈ VW

and if (v, vi) ∈ VT , then (c, wi) ∈ ET . If two world vertices w1, w2 are interchangeable

in any subgraph isomorphism extending a partial match M , we say that w1 and w2 are

M-interchangeable.

Since the problem is significantly simpler, it is easier to obtain a form of equivalence on

the vertices.

Definition 9. Let M be a partial match M on a node cover N of VT and suppose that for

all u ∈ VT \ N , the candidate set C[u] is comprised entirely of all world vertices joinable

to M . Two world vertices w1, w2 are node cover equivalent with respect to M , denoted

w1 ∼N,M w2, if for all u ∈ VT \N , w1 ∈ C[u] if and only if w2 ∈ C[u].

For example, consider the template and world in figure 2.1. Once nodes B and D in

the node cover are mapped to 2 and 5, the remaining nodes have candidates that have

the associated color in the world graph. We then simply group each of these candidates

together into equivalence classes. Note that the edges depicted in red are what prevent

structural equivalence, and the node cover approach effectively ignores these edges to expose

the equivalence of these vertices.
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Figure 2.1: In order from left to right: template, world, and possible candidate structure.

The boxed vertices comprise a node cover of the template and the image of the node cover in

the world. Nodes of the same color in the world are node cover equivalent. The red edges are

extraneous edges which once removed, expose equivalence.This figure is from [87](© 2023

IEEE)

Proposition 10. Suppose we have a node cover of the template graph N , and a partial

matching M on N and two world vertices w1, w2 not already matched satisfy w1 ∼N,M w2.

Then w1 and w2 are M-interchangeable.

Proof. Let f be such an isomorphism which maps u1 to w1 and u2 to w2 and g interchanges

w1 and w2. Consider (x, y) ∈ ET . If neither are u1, u2, then g agrees with f and so the

edge is preserved. If one of them is u1 or u2, say x = u1, then it must be that y is in N

as N is a node cover (u1 is disconnected from any element outside the node cover). Since

f is a subgraph isomorphism, (u1, w1) must be joinable to M and (w1, f(y)) ∈ ET and so

w1 ∈ C[u1]. It must be that w2 ∈ C[u1] and so (u1, w2) is also joinable to M . Hence

(w2, f(y)) = (g(x), g(y)) ∈ ET . The last case x = u1 and y = u2 is impossible since x and y

are outside the node cover and therefore disconnected.

Node cover equivalence is easy to check and captures a significant portion of the equiv-

alence posed by other methods. This is often due to interchangeable nodes being composed

of sibling leaves which are generally outside of a node cover.

We note that the methods discussed in this chapter (with the exception of basic structural
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equivalence for template and world) cannot incorporate both template and world equivalence.

The combination of allowing template and world node interchanges and having dynamic

world equivalence classes significantly complicates the counting process. One approach that

can facilitate the use of both forms of equivalence involves a tree search where entire template

equivalence classes are assigned at once instead of individual template nodes. This kind of

approach for assigning the remaining nodes outside of the node cover is discussed in the

Appendix Section D of [87].

2.2.1 Equivalence Hierarchy

There is a relation between node cover equivalence and full candidate equivalence, given in

the following proposition:

Proposition 11. Suppose that N is a node cover of VT , M is a partial match on N , candidate

sets are reduced to joinable vertices, and w1, w2 ∈ VT \N . Then w1 ∼N,M w2 ⇔ w1 ∼c w2.

Proof. Fix a template vertex u. If u ∈ N , then these nodes are already assigned to world

vertices, neither of which will be w1 or w2 and so w1, w2 /∈ C[u]. Therefore w1 ∼c,u w2. If

u /∈ N , and we have ((u,w1), (v, x)) ∈ EC , then (u, v) ∈ ET and (w1, x) ∈ EW . v must be

inside the node cover as those can be the only connections to u and therefore v must already

be assigned to x. As w1 ∼N,M w2, we must have w2 ∈ C[u] as well, and so must be joinable

to the matching. This implies that (w2, x) ∈ EW . Hence we must have ((u,w2), (v, x)) ∈ EC .

Since this edge was chosen arbitrarily, we must have w1 ∼c,u w2. Since this holds for all u,

we must have w1 ∼c w2.

On the other hand, if w1 ∼c w2, for any template vertex t, if (t, w1) is joinable to M , then

(t, w2) is also joinable to M . Hence, the template nodes for which w1 and w2 are candidates

coincide, so that w1 ∼N,M w2.

Thus, until we have assigned a node cover, we can use candidate equivalence to prevent
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redundant branching; once we have matched all nodes in the node cover, we can check for

node cover equivalence: a simpler condition.

The agreement of node cover equivalence and fully candidate equivalence is apparent

in the candidate structure presented on the right of 2.1. From the candidate structure,

the yellow nodes and the green nodes are fully candidate equivalent as they have the same

neighbors, and that they are node cover equivalent as they only appear as candidates for the

corresponding yellow and green nodes in the template.

The various notions of equivalence form a hierarchy. Structural equivalence of world

nodes has the strictest requirements and implies all other forms of equivalence. Proposition

11 asserts that under mild conditions, full candidate equivalence and node cover equivalence

are one and the same. We can also include candidate equivalence with respect to a template

vertex as a weaker condition implied by full candidate equivalence that does not guarantee

interchangeability. The following proposition summarizes these findings:

Proposition 12. Suppose the assumptions of Proposition 11 hold. Given template vertex t,

world vertices w1, w2, we have w1 ∼s w2 ⇒ w1 ∼N,M w2 ⇔ w1 ∼c w2 ⇒ w1 ∼c,t w2. Under

the first three equivalences, w1 and w2 are interchangeable.

2.3 Experiments for multichannel graphs

2.3.1 Tree search algorithm with equivalence

To demonstrate the utility of equivalence for the SMP, we adapt a state-of-the-art tree search

subgraph isomorphism solver, Glasgow [54], using the modifications described in Algorithm

??. We consider seven levels of equivalence: no equivalence (NE) (default), template struc-

tural equivalence (TE), world structural equivalence (WE), template and world structural

equivalence (TEWE), candidate equivalence as in Proposition 6 (CE), full candidate equiva-

lence as in Proposition 8 (FE), and node cover equivalence (NC). Each equivalence mode is

21



integrated into the Glasgow solver separately. We assess the performance of our equivalence

enhancements on the Glasgow solver, adapted to handle multiplex subgraph isomorphism

problems. The adaptations involve minimal changes to the base algorithm, to ensure that

matches are only made if they preserve the edges in every channel. To eliminate more can-

didates, we also perform a prefilter using the statistics and topology filters from [58] as well

as maintain the subgraphs in each channel as the supplemental graphs used in the Glasgow

algorithm.

2.3.2 Datasets and Experiment Results

We consider datasets including those from [59] and which represent both real world examples

and synthetically generated data. The real world examples include a transportation network

in Great Britain [26], an airline network [9], a social network built on interactions on Twitter

related to the Higgs Boson [21], and COVID data [93]. For the transportation and twitter

networks, the template is extracted from the world graph. The synthetically generated

datasets are examples which represent emails, phone calls, financial transactions, among

other interactions between individuals and are all generated as part of the DARPA-MAA

program [42, 2, 17]. The subgraph isomorphisms to be detected may be a group of actors

involved in adversarial activities including human trafficking and money laundering. The

statistics regarding these different subgraph isomorphism problems are described in Table

2.1. For more details on these particular datasets, see [59].

The synthetic datasets are divided into three groups based on which organization gener-

ated the dataset: PNNL [17], GORDIAN [42], and IvySys Technologies [2].

For our experiments, we examine the seven modes of equivalence with a time limit of one

hour to count as many solutions as possible. These experiments were run using our adapted

version of the Glasgow solver. The amount of time required to enumerate all the solutions is

displayed in Table 2.2 and the number of solutions found with a given method is displayed

in Table 2.3 and 2.4.
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Algorithm 2 Generic routine for a tree search with equivalance

1: function Solve(partial match, cands)

2: if MatchComplete(partial match) then

3: ReportMatch(partial match)

4: return

5: ApplyFilters(partial match, cands)

6: Let u = GetNextTemplateVertex()

7: Let cands copy = cands.copy()

8: if Using World Equivalence then

9: RecomputeEquivalence(partial match, cands)

10: Let ws = GenerateWorldVertices(cands, eq)

11: for v in ws do

12: partial match.match(u, v)

13: Solve(partial match, cands copy)

14: partial match.unmatch(u, v)

15: if Using Template Equivalence then

16: for unmatched u′ ∼ u do

17: Set cands[u′, v] = 0

18: Let cands = cands copy

19: if Using World Equivalence then

20: RestoreEquivalence()

21: return
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Table 2.1: Data on Multiplex Graphs from [87](© 2023 IEEE)

Template World

Dataset Nodes Edges Nodes Edges Chan.

Brit. Trans. 53 56 262377 475502 5

Higgs Twitter 115 2668 456626 5367315 4

Airlines 37 210 450 7177 37

PNNL RW 74 35 158 6407 3

PNNL v6-b0-s0 74 1620 22996 12318861 7

PNNL v6-b5-s0 64 1201 22994 12324975 7

PNNL v6-b1-s1 75 1335 22982 12324340 7

PNNL v6-b7-s1 81 1373 23011 12327168 7

GORDIAN v7-1 156 3045 190869 123267100 10

GORDIAN v7-2 92 715 190869 123264754 10

IvySys v7 92 195 2488 5470970 3

IvySys v11 103 387 1404 5719030 5

COVID 28 38 87580 1736985 9

Twitter - ER 5-15 4-31 456626 5367315 4
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Table 2.2: Time (s) to enumerate solution spaces of multichannel problems. Experiments

timed out at one hour. The Twitter-ER dataset is averaged over a collection of problems

and timed out after ten minutes.This table is from [87](© 2023 IEEE)

Algorithm CE FE NC NE TE TEWE WE

Dataset

Brit. Trans. 3600 3600 3600 3600 3600 3600 3600

Higgs Twitter 3600 369 456 3600 3600 3600 3600

Airlines 0.34 0.24 1985 3600 1329 3600 3600

PNNL RW 3600 3600 3600 3600 3600 3600 3600

PNNL v6-b0-s0 41.6 42.1 41.8 41.3 41.7 41.4 41.6

PNNL v6-b1-s1 241 240 241 240 242 240 240

PNNL v6-b5-s0 62.6 58.1 58.9 58.0 62.3 62.3 63.0

PNNL v6-b7-s1 1133 200 201 3600 188 211 1138

GORDIAN v7-1 3600 327 3600 3600 3600 3600 3600

GORDIAN v7-2 3600 316 3600 3600 3600 3600 3600

IvySys v7 3600 3600 3600 3600 3600 3600 3600

IvySys v11 3600 3600 3600 3600 3600 3600 3600

COVID 3600 3600 3600 3600 3600 3600 3600

Twitter - ER 514.7 505.4 494.8 536.0 536.7 544.2 541.3
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Table 2.3: Number of solutions found for multichannel problems within one hour (Part 1).

The Twitter-ER dataset is averaged over a collection of problems and is timed out after ten

minutes. This table is from [87](© 2023 IEEE)

Dataset CE FE NC NE

Brit. Trans. 1.48e+11 2.34e+15 4.97e+08 1.27e+07

Higgs Twitter 1.38e+14 3.23e+14 3.23e+14 5.65e+06

Airlines 3.67e+09 3.67e+09 3.67e+09 3.55e+09

PNNL RW 3.50e+09 2.78e+11 4.72e+11 8.59e+08

PNNL v6-b0-s0 1.15e+03 1.15e+03 1.15e+03 1.15e+03

PNNL v6-b1-s1 1.15e+03 1.15e+03 1.15e+03 1.15e+03

PNNL v6-b5-s0 1.15e+03 1.15e+03 1.15e+03 1.15e+03

PNNL v6-b7-s1 3.14e+08 3.14e+08 3.14e+08 8.57e+07

GORDIAN v7-1 1.11e+12 9.13e+12 1.35e+10 1.61e+07

GORDIAN v7-2 2.14e+11 1.35e+16 1.15e+15 1.72e+07

IvySys v7 2.04e+14 8.04e+96 2.09e+90 1.75e+09

IvySys v11 7.41e+10 3.64e+89 5.09e+66 1.77e+09

COVID 5.27e+14 7.45e+21 3.11e+20 9.63e+06

Twitter - ER 3.52e+08 8.84e+09 1.40e+11 7.17e+05

26



Table 2.4: Number of solutions found for multichannel problems within one hour (Part 2).

The Twitter-ER dataset is averaged over a collection of problems and is timed out after ten

minutes. This table is from [87](© 2023 IEEE)

Dataset TE TEWE WE

Brit. Trans. 2.48e+12 2.02e+12 1.17e+07

Higgs Twitter 6.44e+06 5.72e+06 6.95e+06

Airlines 3.65e+09 8.11e+08 2.35e+09

PNNL RW 2.01e+10 5.00e+09 8.70e+08

PNNL v6-b0-s0 1.15e+03 1.15e+03 1.15e+03

PNNL v6-b1-s1 1.15e+03 1.15e+03 1.15e+03

PNNL v6-b5-s0 1.15e+03 1.15e+03 1.15e+03

PNNL v6-b7-s1 3.14e+08 3.14e+08 3.14e+08

GORDIAN v7-1 7.84e+09 5.34e+09 1.58e+07

GORDIAN v7-2 3.88e+08 3.19e+08 1.65e+07

IvySys v7 2.67e+47 5.84e+45 5.39e+07

IvySys v11 4.43e+72 6.64e+71 4.88e+07

COVID 9.53e+06 4.51e+07 1.31e+07

Twitter - ER 7.41e+05 6.14e+05 6.78 e+05
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A quick inspection of the times illustrates that in a few cases (Airlines, GORDIAN,

and Higgs Twitter), using full equivalence can enumerate the full solution space an order of

magnitude faster than any other approach. This speedup is reflected in the solution count

table for which FE finds significantly many more solutions. The other methods only find a

mere fraction of the total solutions. The NC method often appears to be the second best

both in terms of solutions found and time taken to enumerate all. This makes sense given

Proposition 12. TE appears to be the third best method which can be explained by the

simplicity of implementation and having no need to recompute equivalence. WE and CE are

not competitive with the other methods. The datasets bear different qualities that illustrate

why certain levels of equivalence work better than others. We discuss a few datasets in

detail.

2.4 Venn-Diagram representation of condensed solution

When there are large equivalent classes in the template graph, the intersection of their

candidate sets are very common. On the other hand, their candidate sets often satisfy the

definition of node cover equivalence. This is because a large equivalent class in the template

is usually comprised of low degree nodes, especially those with degree one. If we include the

common neighbors of low degree nodes in the node cover, then the candidates of equivalent

classes will satisfy the definition of node cover equivalence.

The equivalent classes both in the template graph and world graph lead to a combinatorial

complexity when solving the all-different assignment problem for counting the total number

of solutions. To deal with this case, we can visualize the intersection of candidate sets with

a venn diagram. We consider the node cover equivalence with intersection after we get a

partial match M on the node cover.

Definition 13. Let M be a partial match M on a node cover N of VT and suppose that for

all u ∈ VT \ N , for two nodes w1, w2 in the world graph, they are equivalent to each other
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as long as they are the candidate of the same template nodes. That is to say, w1 ∼v w2 ⇔

{u|w1 ∈ C[u]} = {v|w2 ∈ C[v]}

The difference of the node cover equivalence with intersection with candidate equivalence

is that this equivalence does not change when we perform the tree search as long as the

partial match is given.

Actually, if we draw the Venn diagram of the candidate sets of each node outside the

partial match, then the nodes in the same section of the Venn diagram are equivalent to

each other. This is the visualization of the nodes that has node cover equivalence.

If we have L unfixed nodes, we can store the size of each equivalence class in a list of length

2L. We call this list Venn diagram List. In practice, this list is often very sparse. Then

we use the following tree search to extend the partial match 3 to a complete representative

solution. The way to do this is to choose the corresponding numbers from each section of

the Venn diagram such that their sums match the size of template equivalent classes. The

number of nodes to choose is stored in a solution list.

In the following sections, we will show some numerical examples and the venn-diagram

representation of condensed solution from which we can generate large numbers of trivial

solutions through node cover equivalence combined with other equivalence relations.

2.4.1 IvySys

The Ivysys template and world graphs [2] are separately generated to match the degree dis-

tribution and email behavior of the Enron email dataset and have the most complex solution

space. None of the methods were successful at enumerating all solutions. The vastness of the

solution space is in contrast to the size of the graphs which only have thousands of nodes.

The complexity emerges from the preponderance of template leaf nodes as shown in figure

1.3, depicting one solution class from which 7.82× 10103 solutions may be generated. Figure

2.2 depicts the compressed representation of the world subgraph for this solution as well as
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Algorithm 3 Extending the Partial Match using Venn diagram

1: function Extension(partial match,template eq class size

venn diagram list,solution list)

2: if ExtensionComplete(partial match,solution list) then

3: ReportMatch(partial match,solution list)

4: return

5: Let u = GetNextTemplateVertex()

6: Let venn diagram list copy = venn diagram list.copy()

7: Let solution list copy = solution list.copy()

8: Let ws = GenerateSolutionSequence( template eq class size, venn diagram list copy)

9: for v in ws do

10: venn diagram list-=v

11: solution list+=v

12: Extension(partial match,template eq class size, venn diagram list copy, solution

list copy)

13: return
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a Venn diagram displaying candidates of certain template nodes. The TE solver finds an

astonishing 1047 solutions for IvySys v7. However, using the FE method still dramatically

increases the solution count, by mapping these large template equivalent classes into larger

world equivalence classes. An equivalence-informed subgraph search is essential as the NE

method finds only 1.75 × 109 solutions, 90 orders of magnitude less than the FE search.

Furthermore, a typical subgraph search would assign each group of leaf nodes sequentially

meaning only the candidates of the last group would be explored. Incorporating symmetry

gives a fuller vision of the solution space.

2.4.2 COVID

We lastly apply our algorithm to the problem of querying a knowledge graph representing

known causal relations between a large variety of biochemical entities. This problem arises

from a desire to extracting causal knowledge in an automated fashion from the research

literature. In [93], a knowledge graph is assembled from multiple sources including the

COVID-19 Open Research Dataset [83], the Blender Knowledge Graph [84], and the com-

parative toxigenomics database [20]. The authors of [93] then create a query representing

how SARS-CoV-2 might cause a pathway leading to a cytokine-storm in COVID-19 patients,

but is generalized to detect other possible confounding factors in the pathway.

When rephrased as a multichannel subgraph isomorphism problem, template and world

nodes represent biochemical entities. Some template nodes are specified, and others are

labeled as a chemical, gene or protein. The 9 channels in this problem are various known

types of interactions between entities, e.g., activation. A solution is an assignment of each

node which has the desired chemical interactions.

Figure 2.3 depicts the template and Venn diagrams of candidates sets for one solution

class and exposes unspecified template nodes with a large amount of candidates. Such

information is useful to an analyst for determining confounding factors in a pathway and

suggesting label information or interactions to add to better specify the entire solution space.
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Figure 2.2: IvySys v7 [2] Compressed solution-induced world graph (left) and the Venn

diagram representation of intersecting candidate sets in world graph(right) for a solution

class from which 7.82× 10103 solutions can be generated. The number in each section in the

Venn diagram represents the size of a node cover equivalence class in the world graph. All

solutions represented by this compressed solution can be generated by mapping each colored

node in the template to the set in the Venn diagram with the same color. This graph is from

[87](© 2023 IEEE)
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Figure 2.3: COVID-19 [93] template (left) and the Venn diagram of candidate sets in world

graph (right) from which 2.6 × 1018 solutions can be generated in one solution class. Each

section in the Venn Diagram represents a node cover equivalence class, and the number in

the section is the size of the class. A few template nodes were specified at the start whereas

others simply received a node label of C, P, or G indicating chemical, protein, and gene

respectively. The solutions may be generated by mapping non-gray template nodes of one

color to world nodes in the Venn diagram section of the same color. This graph is from

[87](© 2023 IEEE)
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CHAPTER 3

Active learning for Subgraph matching

This chapter is about reducting the solution space with the help of active learning. The

work was published in [30] where I am the first author. In this chapter, we present different

strategies to fixing the candidate nodes for a small number template nodes and we ask the

question - which template nodes should be chosen so as to reduce the complexity of the

solution space the most? I contributed to these strategies including one original entropy

based strategy called edge entropy. This strategy performs well for some difficult datasets

like PNNL real world and British transportation.

3.1 background for active learning

In Chapter 1, we introduced the application of the subgraph matching to real life problems

where we would need to find all the subgraph matching solutions. On the other hand. in

some real use-case scenario, one might need to identify one specific subgraph isomorphism

by restricting the candidate nodes/edges in the world graph. There are a number of rea-

sons why this would be - for example if the knowledge graph represents data related to an

investigation involving an unknown actor, such as in a homicide investigation or a serial

offender, it would be important to identify the actual person involved. The consequences

of misidentifying someone could be grave - both for the person wrongly identified and for

potential future victims of the actual person involved. In some cases there could be more

than one subgraph isomorphism of relevance, for example in the case of identifying differ-

ent but equally important pathways in a biochemical reaction network [29] or the case of
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Figure 3.1: Active learning flowchart for subgraph matching [30](© 2021 IEEE). A subgraph

matching algorithm determines all potential candidates for template nodes (using constraint

propagation). An active learning algorithm determines the optimal nodes for SMEs to obtain

additional constraints/information. This is fed back into the subgraph matching algorithm.

identifying groups involved in human trafficking or smuggling. Likewise, organizations or

people interested in identifying those wrongly accused of crimes could look at a knowledge

graph of information that might present alternate scenarios. In a real life setting, this could

entail additional constraints added to the problem space such as attributes for the nodes

(e.g. names, dates, times etc). It could also involve addition of more data. Such informa-

tion might come at a cost and therefore it would be of interest to understand strategies to

reduce the complexity of the solution space with the minimal cost. A flowchart describing

how this approach might be used in a real world setting in shown in Fig. 3.1. We obtain

the candidate set for all template nodes using a filter based subgraph matching algorithm.

Then, an active learning algorithm determines the optimal nodes for subject matter experts

to obtain additional information. After that, the additional information is fed back into the

subgraph matching algorithm to get reduced candidate sets. The need for expert input for

multichannel subgraph matching is also illustrated quite well by the benchmark datasets de-

veloped under the DARPA MAA (Modeling Adversarial Activity) program [69]. The theme

of this program involves template graphs that describe a series of actions and the world

35



graph constructed from relevant data. The necessity of involving input from a human expert

to this problem inspires active learning.

Active learning is an area of research in statistical machine learning that involves a subject

matter expert (SME) in the actual algorithm for classification of points in a dataset. Super-

vised machine learning algorithms require an abundance of labeled data. In the real-world

however, unlabeled data is common and accurate labeling may require human involvement

that can not be crowd-sourced due to privacy or security reasons. Semi-supervised methods

use significantly fewer training points. Meanwhile, the choice of labelled data often affects

classifier performance. Active learning involves the use of an algorithm or formula to choose

individual data points for labeling by a SME. Then the newly labeled data are included in

the semi-supervised learning problem. These active learning methods iterate between the

following procedures: (1) Training a model given the current labeled data (2) Choosing one

or a batch of query points in the unlabeled set based on an active learning criterion such

as an acquisition function. Most active learning acquisition functions for statistical ma-

chine learning belong to one of a few categories: uncertainty [71, 36, 25], margin [77, 4, 38],

clustering [19, 49], and look-ahead [92, 8].

Researchers have introduced active learning into problems similar to subgraph isomor-

phism problems such as the network alignment problem. This problem tries to find an

optimal mapping of graph nodes with maximum similarity between the nodes and edges, in

which a cost function measures differences between the nodes or edges. The optimal solution

with least cost is given by updating the probability distribution for each node. Prior research

shows that better alignment can be achieved by introducing interaction with a human to

obtain extra information on certain nodes. For example, in [70], researchers compare three

probability matrix based query strategies. In [15], the cost function of network alignment is

updated after interaction with human. In [51], the authors examine the case where experts

only provide partial information about the mapping of certain nodes instead of the exact

answer. In [64], the authors study vertex nomination in the inexact subgraph matching
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problem. There is not much research on the active learning algorithms for subgraph isomor-

phism problem. However, their need can be both justified by the necessity of involvement

of human experts as well as the active learning research on the similar problems.

One might have the objective to identify one specific subgraph isormorphism by restrict-

ing the candidate nodes/edges in the world graph. There are a number of reasons why this

would be - for example if the knowledge graph represents data related to an investigation

involving an unknown actor, such as in a homicide investigation or a serial offender, it would

be important to identify the actual person involved. The consequences of misidentifying

someone could be grave - both for the person wrongly identified and for potential future

victims of the actual person involved. In some cases there could be more than one subgraph

isomorphism of relevance, for example in the case of identifying different but equally impor-

tant pathways in a biochemical reaction network or the case of identifying groups involved in

human trafficking or smuggling. Likewise, organizations or people interested in identifying

those wrongly accused of crimes could look at a knowledge graph of information that might

present alternate scenarios. In a real life setting, this could entail additional constraints

added to the problem space such as attributes for the nodes (e.g. names, dates, times etc).

It could also involve addition of more data. Such information might come at a cost and

therefore it would be of interest to understand strategies to reduce the complexity of the

solution space with the minimal cost.

3.2 Active learning assisting reduction of solution space

Below we propose a few simple querying strategies for active learning to reduce the solution

space. The querying strategies are carried out after first running the constraint propagation

algorithm to determine a potential list of candidate nodes. In numerical examples in this

chapter we choose simple filtering strategies without extensive tree searches. Thus we are

not solving the SNSP or MCSP in full, rather providing a pared down list of candidates
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under consideration for the subgraph matching problem. The reason for this is that an

active learning method requires code that can run in real time for analysts and this will be

essentially guaranteed for the constraint filters but not for extensive tree searches to validate

all the candidates.

3.2.1 Querying strategies for template nodes

This chapter focuses on querying strategies for template nodes. These are the easiest to

analyze and visualize by displaying the candidate counts for each template node, with the

templates being small enough that they can be displayed simply in a two dimensional dia-

gram. Such a strategy is also important for SME/analysts to interact with the active learning

algorithms. Below we present several strategies for choosing template nodes to query.

3.2.2 Local template-based strategies

First we consider two simple strategies:

• choose the template nodes with the largest degree centrality measure (number of edges

connecting that node)

• choose the nodes with largest sum of the number of candidates for neighboring template

nodes

3.2.3 Edge entropy

We introduce a notion of “edge entropy”. One purpose of the query is to simplify the

complex part of the graph to enable less costly tree searches. Shannon’s entropy is one

tool to measure complexity. In the subgraph matching problem, the mapping of an edge is
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usually more complex than the mapping of a node. We define the following edge entropy:

−
∑
i

pilog(pi), (3.1)

where pi is the probability that the mapping of an edge to its candidate set passes the local

filter in the affected region. Here i is summed over all edges connected to the node in question

and the entropy measure is assigned to that node.

Figure 3.2: Edge entropy toy example. This figure is from [30](© 2021 IEEE)

Fig. 3.2 shows a toy example, in which we want to query information for the orange

node, connected to edge A. In the world graph, this edge can be mapped to nine possible

candidate edges. There are three cases that the orange node can map to. In the first case,

there are three edges connected to the selected world node. So the probability in this case is

1/3. Similarly the probability for the remaining edges are 2/9 and 4/9 So the edge entropy

of this edge is −(1
3
log(1

3
)+ 2

9
log(2

9
)+ 4

9
log(4

9
)). For each template node, we calculate the sum

of edge entropies of all the edges that are incident to the template node.

While pruning the candidate list, we may run into cases where the size of the candi-

date set is too large. In this case, we are unlikely to find all the subgraph isomorphisms

using tree search because of limited computation time and resources. By introducing active

learning in the pruning of candidate list, we can query information about a certain nodes or

edges in the template or world graph to reduce the candidate list to an acceptable size. The

problem of determining the nodes and edges to query is the active learning problem in sub-

graph isomorphism problem. Below we show some examples using datasets for multichannel
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networks.

3.2.4 Ivysys V7 - sum of candidates

We show an example from IvySys Version 7 [2], developed by Ivysys technologies for the

DARPA MAA program, with three channels corresponding to financial, communication and

logistics transactions. This dataset has a template with 92 nodes and 195 edges. The world

graph has 2,488 nodes and 5,470,970 edges. To date the entire solution space has not been

solved for, although a representative solution with over 10100 isomorphisms is identified in

[87]. The template has a tree-like sparse structure, resulting in no unique candidates after

applying different levels of filtering methods, as seen in Fig. 3.3 (left).

We can significantly reduce the solution space by querying key nodes, selected according

to the maximum sum of neighboring candidates (see Fig. 3.3 (right - the nodes are dark

green)). We note that the degree centrality metric identifies five out of six of the same query

nodes in this example. The edge entropy criterion identifies the same six nodes but with a

different ordering. The sixth one is the query node that does not have many leaves. Based on

the query from the active learning criteria, we specific world nodes to the queried template

nodes. We chose world nodes from the first isomorphism found by the code from [87], as

a proxy for additional information supplied by SMEs. After fixing the queried nodes, the

remaining candidates in the center of the template are reduced significantly, mostly to a

single world node or a few world nodes. This example has a network structure reminiscent

of core-periphery structure [67]. However, the leaf nodes connecting to the core nodes still

have many candidates. Due to large equivalence classes in the template and world graph

[87, 61], the number of solutions for the SMP problem is still huge. That said, one can

still obtain useful information for SMEs and analysts with a Venn diagram representation of

candidates for several equivalence classes as shown in Fig. 3.3 in the bottom row. It shows

the intersection of candidate sets of the largest three equivalent classes in the template. The

difficulty of the subgraph isomorphism comes from the alldifferent problem [65] in assigning
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Figure 3.3: (Top left) Number of candidates for querying the nodes of ivyvys v7 template

after implementing the main filters in [87]. The template nodes with the highest degree

centrality are marked in purple. This figure is from [30](© 2021 IEEE) (Top right) Number of

candidates after querying the template nodes with maximum sum of neighboring candidates,

using the first isomorphism in the first found representative solution using the code in [87].

(bottom) The overlapping structure of candidate sets after the query. The circles in the

Venn diagram represent the candidate sets of the nodes in the template with corresponding

color - Set A (red nodes), Set B (green nodes), Set C blue nodes).
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the template nodes to its candidate set. But analysts can get an idea of what the solution

space looks like before solving the all-different problem. The Venn Diagram itself could be

incorporated into a computational tool in which an analysts could click on a portion of the

Venn diagram to obtain an itemized list of those candidates.

3.2.5 Example from PNNL real world

This dataset was made by Pacific Northwest Nationabl Lab from a social media dataset

collected by Matteo Magnani and Luca Rossi [13, 50]. It involves friend/follower relationships

on three social media platforms, each of which corresponds to a channel. The template graph

has 35 nodes and 158 edges and is an induced subgraph in the world graph.The world graph

has 6,407 nodes and 74,862 edges in six channels. Additional SI solutions can be found with

additional edges. We use the induced subgraph as “ground truth” for our query analysis. We

refer to this dataset and its induced subgraph template as the “PNNL Real World dataset”.

An analysis in [59] found a total of 2.12 × 1012 isomorphisms using all filters including

the elimination filter which performs a final tree search. Fig. 3.4 shows the template for

this subgraph matching problem in which each node has listed the number of candidates

from the world graph after applying the node level statistics, topology, repeated-set, and

neighborhood filters (but not elimination filter) [59]. For this reason the candidate counts

are slightly higher than what are shown in [59] and are more realistic for an active learning

scenario when there may not be sufficient time to run extensive tree searches, especially

when additional information can be added to greatly reduce the solution space. The entropy

values of each of the template nodes are shown in the top right. The full candidate count is

shown in the bottom figures for two choices of queries - on the left the top two entropy node

are chosen. On the right the third and fourth highest entropy nodes are chosen. The choice

of the highest entropy nodes clearly has a much smaller solution space than the resulting

solution space for the alternate choices. We also tried the sum of neighboring candidate

counts as a metric and found that we needed to query the top three nodes with that metric
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Figure 3.4: (Top left) Number of candidates of PNNL real world template, after running

basic filters [30](© 2021 IEEE). The template nodes with the highest degree centrality are

marked in purple. Notice that they each only have one candidate node and are thus not useful

to query in an active learning scenario. (Top right) Entropy values for each each template

node. (bottom left) Number of candidates after querying the two nodes with highest entropy.

(Bottom right) Number of candidates after querying the the nodes with third and fourth

highest entropy rather than the top two highest entropy.
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to get the same reduction of the solution space as what was found by querying the top two

nodes according to the entropy metric.
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CHAPTER 4

Active learning to locate one solution

This chapter is based on the manuscript “Iterative active learning strategies for subgraph

matching” by myself, Dominic Yang, and my advisor Andrea Bertozzi. I am the lead author

on this paper and this chapter summarizes my contributions. Dominic Yang contributed to

studies on single channel networks.

4.1 Definitions and Terminology

In the first chapter, we introduce the definition of a multichannel graph and the subgraph

matching problem (SMP) for multichannel graph. We also introduced the notion of edge

preserve mapping (EPM) and subgraph isomorphism (SI). This section provides the intu-

ition and algorithm for our active learning framework. as well as formalizes the theoretical

problems associated to this framework.

4.1.1 Active Learning Framework

The problem we are interested in is to solve the SMP while simultaneously ruling out SIs

that can be eliminated by additional information that is available or potentially available to

subject matter experts (SME). The end goal is to have a final solution to the SMP, after

elimination of extraneous SIs, that has a modest solution count and provides a final list of

SIs that are clearly of interest to the the application problem. SMEs are part of the active

learning procedure, providing information based on active learning queries.
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Figure 4.1: Solution spaces for example template and world graph following active learning

queries. The ground truth subgraph matching is given by mapping 1 to A and 2 to B. In I,

there are initially four possible SIs, in II, there are two SIs after querying template vertex

1 and finding it maps to A, and in III, finally we have reduced the solution space to one SI

after querying vertex 2 and finding it maps to B.

In this subsection, we will present the general algorithmic framework we will be using

to test various active learning strategies. For each experiment, we will assume we have a

template graph Gt, world graph Gw, and a valid subgraph matching f which we are trying

to determine. f(t) will represent the ground truth world vertex which is associated with a

given template vertex t.

As a toy example of how the active learning problem may proceed, we consider the ex-

ample template and world presented in Figure 4.1. Initially, there are four possible subgraph

matchings in the world graph and the ground truth matching maps nodes 1 and 2 to A and

B, respectively. At this stage, we query template vertex 1 and determine its true assignment,

A. From this knowledge, we can rule out any solution which maps 2 to a world vertex not

adjacent to A eliminating two solutions. Then, with two solutions left we query template

vertex 2 finding it maps to B which fully determines the true subgraph matching after two

queries. However, if we instead had queried template vertex 2 first, we would have found

it mapped to B, which only one of the candidate solutions does, and we can determine the

solution in 1 query. From this simple example, we observe that having a clever strategy
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for querying template vertices is important to minimizing the total work needed to find a

solution.

During our subgraph search, we will encode the full set of information in candidate sets,

which are sets of world vertices to which a given template vertex t ∈ Vt may be mapped.

We denote the candidate set for template vertex t by C(t). They exclude any world vertex

which has been ruled out as a candidate for t.

The process of ruling out candidates is known as filtering and makes use of basic prop-

erties of subgraph isomorphisms known to be true (e.g., that template vertices must map

to nodes of higher degree or that neighboring template vertices map to neighboring world

vertices). The choice of the exact filters to use to prune candidates is an active area of

research with many possible choices of filters (see [79, 73, 54, 6, 57] for a selection of papers

discussing a variety of filtering choices).

We now present in Algorithm 4 the basic framework by which we perform active learning

for the subgraph matching problem. The algorithm proceeds by alternately filtering the

current candidate sets of each template vertex based on the filtering criteria described in

[59] and querying for a template vertex according to a given strategy.

Algorithm 4 Active Learning Template Query Loop

Input: Template Gt, World Gw, Matching f

C ← Filter(Gt, Gw) ▷ Initialize domains

count← 0

while Not all t in Vt have 1 candidate do

t← QueryStrategy(Gt, Gw, C)

Match(t, f(t))

C ← Filter(Gt, Gw, C)

count← count+ 1

Return count
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The QueryStrategy function picks out a template vertex to query and is the central object

of study in this chapter and we will discuss it in detail in Section 4.3. The Match function

formally associates t and f(t), and then the Filter function eliminates candidates based on

the various filters. Once filtering has reduced the size of the candidate sets of each template

vertex to one candidate, the matching has been determined, and we report the number of

queries made.

We now formally state the problem. Our thesis will address:

Definition 14 (Optimal Template Query Problem). Given Gt, Gw, candidate sets C(t) for

t ∈ Vt, and a fixed choice of filter, which query strategy will require the fewest template

queries as given by Algorithm 4?

In this thesis, our metric is the number of queries required to fully determine a subgraph

matching. We envision this as the most expensive operation as it potentially requires expert

involvement to perform the query. In our problem, each template node requires the same

amount of work to query, but future work may study an extension of this problem which

varies the work required on a per-node basis. We also note that this problem depends on the

choice of filter. Stronger filters (filters which eliminate more candidates) will give us more

information and it is possible that strategies which make better use of this information may

perform better in that context. We will sidestep this problem instead opting to fix the choice

of filter to that of the LAD filter introduced in [73].

4.1.2 Associated Theoretical Problems

Within this framework, we can consider two similar theoretical problems given a template

Gt and a world Gw. The first problem involves a candidate solution f ∈ F (Gt, Gw), and we

wish to determine the minimal number of template vertices we need to query to verify that

f is the true solution. This is formalized in the following definitions:

Definition 15 (Solution Verifying Set). Given Gt, Gw and f ∈ F (Gt, Gw), a solution
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verifying set is a subset A ⊂ Vt such that if we have g ∈ F (Gt, Gw) with g(t) = f(t) for

all t ∈ A, then g = f .

Definition 16 (Minimal Solution Verifying Set Problem). Given Gt, Gw and f ∈ F (Gt, Gw),

what is a solution verifying set for f of minimal size?

In the example in Figure 4.1, we observe that for any of the solutions, we need only to

query one template vertex to verify a given solution. For solutions 1 and 2, we query vertex

1 and for solutions 3 and 4, we query vertex 2.

For the second problem, we do not have a candidate solution. Rather, we wish to know

the minimal size of a subset of Vt for which if we knew the images of these vertices, we could

uniquely identify the images of the remaining vertices. We introduce the following definition

and problem to this end:

Definition 17 (Determining Set). Given Gt and Gw, a determining set is a subset A ⊂ Vt

where for every f, g ∈ F (Gt, Gw) if f(t) = g(t) for t ∈ A, then f = g.

Definition 18 (Minimal Determining Set Problem). Given Gt and Gw, what is a determin-

ing set of minimal size?

For the problem in Figure 4.1, we need to query both template vertices 1 and 2 to

determine the subgraph isomorphism in all cases. If we query template vertex 1 and 1 maps

to world vertex C, there are still two SIs which are possible. Similarly, if we query template

vertex 2 and find that 2 maps to world vertex D, there are also two possible SIs. Hence,

the minimal determining set is {1, 2} and is of size 2. Note that this is a counterexample to

the statement that the size of the minimal determining set is the maximal size of a minimal

verifying set over all SIs f ∈ F (Gt, Gw).

The decision variants of both of these problems are NP-complete. We will prove that

the solution verification set problem is NP-complete in Section 4.2 by reduction from the

minimum set cover problem. As for the minimal determining set problem, we note that in
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the case that Gt = Gw, finding a determining set of a certain size is equivalent to finding a

base for the automorphism group of Gt, which is already known to be NP-complete [7].

In practice, the optimal template query problem is intermediate to both of these theoret-

ical problems as we will generally not have a solution f at our disposal (and almost certainly

not the whole set of SIs F (Gt, Gw)). However, we may have some prior information and in

the process of querying template vertices, we will be gathering additional information which

will aid us in determining the ground truth SI.

4.2 NP-Completeness of the Minimal Solution Verification Set

Problem

In this section, we will present results on the complexity of the optimal template query

problem. We first introduce the set cover problem, which is well known for being NP-

complete. Then we prove that the minimum set cover problem is reducible to the minimal

solution verifying set problem proving NP-completeness of this problem. This shows that

the optimal template query problem is at least as hard as solving the minimum set cover

problem being an extension of the minimal solution verifying set problem.

4.2.1 Reduction of Minimum Set Cover to Minimum Solution Verification Set

We define the minimum set cover problem as follows:

Definition 19 (Minimum Set Cover Problem). Suppose S is a set S = {1, 2, . . . ,m}, and

we have k subsets Si ⊆ S, 1 ≤ i ≤ k. The minimum set cover problem is to find an

index set I ⊆ {1, 2 . . . , k} with minimum cardinality, such that S ⊆ ∪i∈ISi.

We assume the problem is non-trivial and has at least one set cover, i.e., ∪ni=1Si = S. We

denote the members of each subset Si = {a(i)1 , a
(i)
2 , . . . , a

(i)
ri }.

The associated decision problem (i.e., determining if there is a set cover with fewer than
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N elements) is NP-complete [41] and therefore believed to be unsolvable in polynomial time

with k. We will prove the solution verification set problem is NP-complete via reduction

from the minimum set cover problem.

Given an instance of the minimum set cover problem (S, {S1, . . . , Sn}), we will produce

an equivalent instance of the solution verification set problem. Let Vt = {v1, v2, . . . , vk} be

the vertices of complete single channel simple graph with k nodes. That is to say

ET (vi, vj) =


1 i ̸= j

0 otherwise

.

We impose that each node has a unique label: L(vi) = i. For each set Si = {a(i)1 , a
(i)
2 , . . . , a

(i)
ri },

We define its associate vertex set Vi = {v(i)a1 , v
(i)
a2 , . . . v

(i)
ari
} and ground truth vertex vigt. The

labels of these vertex are equal to i. That is to say L(v) = i ⇔ v ∈ Vi or v = vigt. The

vertices of world graph are defined to be the union of all the vertex sets and ground truth

vertices:

Vw = ∪ki=1(Vi ∪ {vigt}).

We also define a mapping f on the world vertices:

f : Vw −→ P(S ∪ {gt})

f(v(i)aj
) = {a(i)j }

f(vigt) = S \ Si ∪ {gt}.

where P(A) is the power set of A. The edges in the world graph are defined as followed:

EW (u, v) =


1 f(u) ∩ f(v) ̸= Ø

0 f(u) ∩ f(v) = Ø

.

The ground truth is set to be: SI(vi) = vigt.

Theorem 20. Using the above definitions, g is a subgraph isomorphism from the template

graph Gt to the world graph Gw if and only if:

g(vi) ∈ Vi ∪ {vigt} and ∩ki=1 f(g(vi)) ̸= Ø (4.1)
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Proof. ( =⇒ ) Let g satisfy (4.1). From the definition, we know if i ̸= j, then Vi ∩ Vj =

Ø. Then g(vi) ∈ Vi ∪ {vigt} implies if i ̸= j, g(vi) ̸= g(vj). So g is an injection. Sec-

ond, ∩ki=1f(g(vi)) ̸= Ø implies if i ̸= j, then f(g(vi)) ∩ f(g(vj)) ̸= Ø. By definition,

EW (g(vi), g(vj)) = 1. So g is edge-preserving. Finally, L(g(vi)) = i, so g preserves la-

bels. So g is a subgraph isomorphism

(⇐= ) Let g be a subgraph isomorphism. Then g preserves labels. So L(g(vi)) = i, g(vi) ∈

Vi ∪ {vigt}. If gt ∈ ∩k
i=1f(g(vi)), then the conclusion is true. If not, then ∃p, gt /∈ f(g(vp))

That means g(vp) = v
(i)
aq for some a

(i)
q ∈ S. So f(g(vp)) = {a(i)q } has only one element.

Since g is edge-preserving, if s ̸= p, then EW (g(vs), g(vp)) = 1, f(g(vp)) ∩ f(g(vs)) ̸= Ø. So

a
(i)
q ∈ f(g(vs)) Thus ∩ki=1f(g(vi)) ̸= Ø.

Theorem 21. Suppose S has a set cover S ∈ ∪i∈KSi, where K ⊂ {1, 2, . . . , k}, then

∪i∈K{vi} is a valid active learning query. The converse is also true.

Proof. For any subgraph isomorphism g, suppose g has the same image as the ground truth

SI for the queried nodes, i.e. ∀i ∈ K, g(vi) = vigt. Since f(SI(vi)) ∩ Si = Ø, Si /∈

∩kj=1f(g(vj)) Thus ∪i∈KSi /∈ ∩k
j=1f(g(vj)). Since S ∈ ∪i∈KSi,We have ∩kj=1f(g(vj)) = {gt}.

Thus ∀j, g(vj) = SI(vj). Thus g = SI.

On the other hand, suppose∪i∈K is not the set cover of S, then ∃t ∈ S, t /∈ ∪i∈KSi. For

each i, suppose t ∈ f(viax), then let g(vi) = viax ,by the previous theorem, g is a subgraph

isomorphism and g is different from SI.

The above theorem has immediate corollary:

Corollary 1. The minimum set cover problem is reducible to solving the minimum solution

verification set problem.

This demonstrates that the decision variant of the minimum solution verification problem

(finding a verification set with fewer than N queries) is NP-hard. If we note that any such
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set is a certificate for the problem, it follows that the problem is in NP , and so we have the

following corollary.

Corollary 2. The decision variant of the solution verification problem is NP-complete.

4.2.2 Solving the Minimal Solution Verification Set Problem

In spite of the fact that determining if there is a solution verification set of a given size is NP-

complete, it may still be possible to solve this problem if the solution space F := F (Gt, Gw)

can be computed and is of a manageable size.

Given F and a solution f ∈ F , we can reduce finding a minimal verification set to the

minimum set cover problem in the following manner. For each subset of template vertices

A ⊂ Vt, we define FA := {g ∈ F : ∃t ∈ A, g(t) ̸= f(t)}, the set of SIs that we can rule

out if we know f(t) for all t ∈ A. A solution verification set is any set A ⊂ Vt for which

FA = F \ {f}. We then define |Vt| sets, S1 = Ft1 , . . . , S|Vt| = Ft|Vt|
. Our goal is then to

determine an index set I ⊂ {1, 2, . . . , |Vt|} of minimal cardinality such that
⋃

i∈I Si = F\{f}.

This is precisely the minimum set cover problem as defined in Definition 19.

We can solve the minimum set cover using a binary program where we introduce binary

variables z1, . . . , zk ∈ {0, 1} where zi represents whether or not we are using subset Si in our

set cover. We define a matrix A ∈ {0, 1}k×m with entries aij for i = 1, . . . , k and j = 1, . . . ,m

where aij = 1 if element j is in subset Si and 0 otherwise. We can then write the optimization

problem we wish to solve with the following formulation:

min
z

k∑
i=1

zi (4.2)

s.t.
k∑

i=1

aijzi ≥ 1, j = 1, . . . ,m (4.3)

zi ∈ {0, 1}, i = 1, . . . , k (4.4)

where the objective that we are minimizing in (4.2) is exactly the count of how many subsets
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we use. The constraints in (4.3) verify that each element in S is in at least one chosen subset.

In practice, the matrix A often has a significant number of duplicate columns which we can

safely drop without changing the solution set of the problem. We can then solve this integer

program using any standard integer program solver; for this thesis, we use the state-of-the-

art solver Gurobi [31]. Once we have solved this problem, the size of the given solution

verifying set can then be used as a lower bound on the number of queries under any given

template query strategy.

4.3 Querying strategies for template nodes

In this section, we will introduce various query strategies for the active learning problem in

subgraph matching.

4.3.1 Local template centrality based strategies

The first strategies we consider are inspired by the assumption that querying a template

node will reduce the candidate set on neighboring nodes more than other nodes. As a result,

the strategies are based on the local regions containing neighbors of template nodes and

prefers nodes with higher degree.

In [30], these strategies are shown to be effective to reduce the solution space with a

limited number of queries.

• Maximum degree: choose the template node with the highest degree.

t = argmax
t∈Vt

deg(t) (4.5)

• Max sum of candidates: choose the node with the largest sum of the number of candi-

dates for neighboring template nodes and itself.

t = argmax
t∈Vt

|C(t)|+
∑

t′∈N(t)

|C(t′)|

 (4.6)
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• Edge entropy: Let t ∈ Vt and t′ ∈ N(t). Then let N tw
t′ be the number of candidates

for t′ if t is matched to w ∈ C(t). Let N t
t′ =

∑
w∈C(t) N

tw
t′ . Then we can interpret

PEE
t′ (t = w) := N tw

t′ /N
t
t′ as an estimate for the probability that t is mapped to w

based on the possible mappings of the edge with endpoints t′ and t. The edge entropy

formula is then given as follows:

EE(v) =
∑

t′∈N(t)

∑
w∈C(t)

−PEE
t′ (t = w) logPEE

t′ (t = w) (4.7)

4.3.2 Probabilistic Query Strategies

In this section, we introduce strategies for querying which attempt to estimate the probability

with which a template vertex is assigned to a given world vertex. There are a variety of ways

of establishing a probability space on the set of subgraph isomorphisms but the simplest

involves granting all subgraph isomorphisms for a given template graph and world graph

equal probability.

With this established, the probability that a template vertex t ∈ Vt and world vertex

w ∈ Vw are paired together is simply the proportion of subgraph isomorphisms where they

are matched:

PSI(t = w) =
|{f ∈ F (Gt, Gw) : f(t) = w}|

|F (Gt, Gw)|
. (4.8)

If we know certain template vertices are already assigned to world vertices, we can adjust

the above definition to restrict F (Gt, Gw) to those with the known assignments.

Directly computing all subgraph isomorphisms is in many cases computationally in-

tractable owing to the NP-complete nature of simply finding one. Instead of fully enu-

merating all subgraph isomorphisms, we can instead try to approximate the above quantity

based on local structures.

One such structure is the immediate neighborhood. We can attain an approximation for

the number of solutions by asking how many mappings there are from the neighbors of a

template vertex t to the neighbors of a world vertex w. Put concretely, we can define the set
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of local subgraph isomorphisms (LSI) for any template vertex, world vertex pair (t, w)

in the following manner:

LSI(Gt, Gw, t, w, C) = {f : N(t)→ N(w) : f injective,

f(t′) ∈ C(t′),∀t′ ∈ N(t)}.
(4.9)

This is precisely the set of subgraph isomorphisms from the neighborhood of t to the

neighborhood of w with the additional requirement that each template vertex has candidates

inherited from the original subgraph isomorphism problem.

We can then define an associated probability:

PLSI(t = w) =
|LSI(Gt, Gw, t, w, C)∑

w′∈C(t)| |LSI(Gt, Gw, t, w′, C)|
. (4.10)

Computing the number of LSIs corresponds to counting mappings between N(t) and N(w)

and ensuring that each template node is assigned a different world node. In the constraint

programming framework, this is referred to as an alldifferent problem. We can reduce this

problem to that of finding the permanent of a 0-1 matrix which lies in the P#-complete

complexity class [82] suggesting that even this problem may be difficult to solve efficiently.

In practice, the problem sizes are often small enough and we can exploit symmetry in the

candidate sets to solve these relatively quickly.

In the case that this problem is still too costly to solve, we can compute a crude approx-

imation to the number of LSIs by removing the injectivity requirement in which case we are

counting the number of local edge preserving mappings (LEPM). This quantity is very

easy to count as it is just given by the product of the sizes of each of the candidate sets for

the all neighbors:

|LEPM(Gt, Gw, t, w, C)| =
∏

t′∈N(t)

|C(t′) ∩N(w)|. (4.11)

Then our probability is defined in the same manner as before:

PLEPM(t = w) =
|LEPM(Gt, Gw, t, w, C)∑

w′∈C(t)| |LEPM(Gt, Gw, t, w, C)
|. (4.12)
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We can also obtain a rough approximation of the number of SIs by instead consider-

ing EPMs for a spanning tree of the template. As we will discuss in Section 4.4, it is

tractable to compute this and we present an algorithm for doing so. We denote the number

of EPMs between a spanning tree T of template Gt world Gw where t is mapped to w by

STEPM(Gt, Gw, t, w, T ). We then have an associated probability computed in the same

manner:

PSTEPM(t = w) =
|STEPM(Gt, Gw, t, w, T )|∑

w′∈C(t) |STEPM(Gt, Gw, t, w′, T )|
. (4.13)

Once we have computed the associated probabilities, we can devise a variety of strategies

for selecting query vertices. There are well-established strategies in active learning (sur-

veyed here [71]) and three popular choices for determining queries are minimum confidence

sampling, margin sampling, and maximum entropy sampling. We define these as follows:

• Minimum Confidence Sampling : Select the template vertex which is least confident

about its most likely assignment.

t = argmin
t∈VT

max
w∈C(t)

P (t = w). (4.14)

• Margin Sampling : Select the template vertex whose two most probable assignments

are closest together in probability. If w∗ = argmaxw∈C(t) P (t = w), then this is given

by

t = argmin
t∈VT

(
P (t = w∗)− max

w∈C(t),w ̸=w∗
P (t = w)

)
. (4.15)

• Maximum Entropy Sampling : Select the template vertex which maximizes entropy.

t = argmax
t∈VT

−
∑

w∈C(t)

P (t = w) logP (t = w). (4.16)

Results from preliminary experiments from the biochemical reactions dataset (to be

introduced in full detail in Section 4.5) are depicted in Figure 4.2. In these experiments, we

compare methods by the average amount of queries needed to uniquely determine a solution
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Figure 4.2: Average Number of queries needed to determine a solution to the subgraph

matching problem on the biochemical reactions dataset based on the approximation used

for the number of SIs and the uncertainty quantification method. Error bars depict the

standard deviation in the number of queries.

for a random selection of subgraph matching problems from this dataset. We observe that

the maximum entropy and minimum confidence methods have similar performances with the

minimum margin method doing worse for each method for computing probability. As these

methods have negligible differences on average, we will primarily focus on the maximum

entropy approach in this chapter.

4.3.3 Symmetry in Active Learning

Another approach for developing a query strategy involves analyzing the symmetry apparent

in the subgraph matching problem. Symmetry is well-known for confounding general combi-

natorial problems by dramatically expanding the solution space. Algorithms which exploit

symmetry [6, 66, 33, 61] can significantly reduce search time (sometimes by an exponential

factor for highly symmetric problems). These algorithms generally identify nodes which are

effectively interchangeable in that exchanging them in a subgraph isomorphism will produce

another valid isomorphism.
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There are various notions of symmetry which can be discussed in the context of the

subgraph matching problem. The simplest is structural equivalence (considered in [66,

33, 61]) and two nodes are deemed structurally equivalent when they have the exact same

set of neighbors (excluding each other). These nodes can be interchanged in any isomor-

phism and the new mapping will also be an isomorphism. A more complicated notion which

includes structural equivalence is automorphic equivalence. Two nodes are automorphi-

cally equivalent if there is an automorphism ϕ : V → V on the graph mapping one node

to the other. Then given this automorphism ϕ and any subgraph isomorphism f , we can

construct a new subgraph isomorphism f ◦ ϕ.

In the context of the active learning problem, symmetry can be an important factor to

consider when deciding which nodes to query. If we have a group ofM structurally equivalent

template nodes, then for any subgraph isomorphism f , we can construct M !− 1 additional

isomorphisms by simply permuting the images of these nodes. All of these isomorphisms are

valid based on the information apparent in the problem. To discern which permutation is

the true solution necessarily requires querying at least M − 1 of these nodes (the last may

be determined by process of elimination).

This discussion naturally leads to the following proposition:

Proposition 1. Suppose we have a satisfiable subgraph isomorphism problem with template

Gt = (Vt, Et) and world Gw = (Vw, Ew). Let Vt =
⋃N

i=1 Si partition the template vertices into

structural equivalence classes. Then at least
∑N

i=1(|Si| − 1) template queries are needed to

identify a unique solution.

Discerning between isomorphisms which are generated by applying an automorphism

to the template graph is more challenging. Relevant to this task is the notion of a base

of the automorphism group of a template graph. A base of an automorphism group is a

sequence of vertices (v1, v2, . . . , vn) such that for any pair of automorphisms ϕ1 ̸= ϕ2, the

two sequences (ϕ1(v1), ϕ1(v2), . . . , ϕ1(vn)) and (ϕ2(v1), ϕ2(v2), . . . , ϕ2(vn)) are distinct. This
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definition implies that the values of ϕ on v1, . . . , vn uniquely identify ϕ. Hence, to distinguish

isomorphisms generated by the automorphism group would involve querying all vertices of

a base of the automorphism group.

The problem of generating a base for the automorphism group is difficult but the library

nauty [56] in the process of finding generators for the automorphism group of a general graph

will also find a base. Querying nodes which constitute a base for the automorphism group

then may be a useful strategy for active learning which exploits symmetry.

4.4 Spanning-Tree-Based Estimation of the Subgraph Isomorphism

Count

In this section, we develop a new method that is computationally tractable on larger multi-

channel networks, especially those with long paths. The idea is motivated by the estimation

of the number of subgraph isomorphisms in the CFL-Match algorithm [6]. The authors of

this algorithm proposed a new data structure called the compact path index (CPI). Using

our notation, the structure of CPI is defined by the rule: There is an edge between v ∈ C(u)

and v0 ∈ C(u0) for adjacent nodes u and u0 in CPI if and only if E(v, v0) = 1 in G.

Here we use this data structure to estimate the frequency of solutions when the template

is a path graph, and extended the method to the case when the template is a tree. In such

a case, the estimation is the number of edge-preserving mappings generated by the current

candidate list. For a more general template, we use a breadth first search (BFS) starting

from the selected node to generate a spanning tree of the template, and do the estimation

using the spanning tree.
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4.4.1 Solution Frequency Estimation Algorithm

Solving the subgraph isomorphism problem is hard, even when the template structure is sim-

ple. This is in part because we need to solve an all-different problem due to the injectivity

requirement on the nodes, and the counting of all assignments under all-different constraint

is P# complete. Research has been done to estimate the cardinality of the solution space,

[86][63]. However, these methods cannot be easily adapted to estimate the number of map-

pings that each world node participates in in the solution space due to the size of the world

graph. A good estimation of this number is needed to inform the active learning problem.

We use the number of possible edge-preserving mappings to the current candidate set to ap-

proximate the number of subgraph isomorphisms. By removing the injectivity constraint, we

no longer need to solve the all-different problem, and complete the estimation in polynomial

time.

4.4.1.1 Estimation for Path Graphs

We start from the estimation on the root of a template which is a path graph. First, we give

the definition of a path graph for multichannel networks:

Definition 22 (Path graph). T is called a path graph if there exists an indexing of template

nodes Vt = {x1, x2, . . . , xk}, such that the edge set of the template satisfies the following

conditions:

Et(xi, xj) > 0⇐⇒ (xi, xj) ∈ {(x1, x2), . . . , (xk−1, xk)}

Here, xk is defined as the root of this path graph.

From the definition, if xk is the root of the path graph template, then the template nodes

can be indexed by x1, x2, . . . , xk such that edges only exist in nodes with consecutive indices.

Definition 23. The solution frequency estimation problem is defined as followed: Suppose xk

is a given node of a template Gt. Suppose C(xi)[j] represents the jth element in the candidate
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set C(xi). The solution frequency estimation problem is to approximate the cardinality of

the following sets of subgraph isomorphism solutions f : {f ∈ F (Gt, Gw)|f(xk) = C(xk)[j]}

for j = 1, 2, . . . , |C(xk)|.

If the template is a path graph with a root xk, the solution frequency estimation problem

with given node xk is called the path graph root estimation problem.

Definition 24. Under the setting of the path graph root estimation problem, we suppose

the template is a path graph. the CPI adjacency matrix Mi,i+1 is a 0 − 1 matrix of size

|C(xi)| × |C(xi+1)| defined as followed:

if Ew(C(xi)[a], C(xi+1)[b]) > 0, then Mi,i+1[a, b] = 1. Otherwise, Mi,i+1[a, b] = 0.

Under the setting of the path graph root estimation problem, the CPI graph is defined

as follows:

Definition 25. The CPI graph is a single-channel graph with
∑k

i=1 |C(xi)| nodes. The nodes

are indexed by the following set: V = {(xi, C(xi)[j]), i = 1, 2, . . . , k; j = 1, 2, . . . , |C(xi)|}.

This means that each node corresponds to a unique template-candidate pair. The edge set is

defined to be:

E((xi, C(xi)[a]), (xj, C(xj[b])) = 1⇔ |j − i| = 1

and Ew(C(xi)[a], C(xj)[b]) ≥ Et(xi, xj).

Otherwise,

E((xi, C(xi)[a]), (xj, C(xj[b])) = 0

This means the edges of CPI graph contains all the template-candidate pairs such that

the template node and candidate are simultaneously neighboring to each other.

The following theorem gives a formula to calculate the exact number of edge preserving

mappings for path graph templates.
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Theorem 26. In the setting of the path graph template root estimation problem, the cardi-

nality of edge-preserving mappings |{g ∈ EPM |g(xk) = C(xk)[j]}| = (1T · Πk−1
i=1Mi,i+1)[j].

Proof. We first prove the following mapping m is a bijection between paths of length k

in the CPI graph and edge-preserving mappings: m(g) = {(xi, g(xi)), i = 1, 2, . . . , k}, by

the definition of CPI graph, the {(i, g(xi)), i = 1, 2, . . . , k} is a path in CPI graph. By

the definition of g, m is injection. On the other hand, for all the node lists {(i, g(xi)), i =

1, 2, . . . , k} that is a path in CPI graph, by definition, m−1 is also an edge preserving mapping

and injection. So m is bijection.

Suppose the adjacency matrix of the CPI graph is denoted by ADJ ; it is a matrix of

size
∑k

i=1 |C(xi)|. We use the notation ADJ(C(xa), C(xb)) to represent the block of ADJ

indexed by the following nodes:

{(xa, C(xa)[j]), j = 1, 2, . . . , |C(xa)|} and {(xb, C(xb)[j]), j = 1, 2, . . . , |C(xb)|} Then

ADJ(C(xi), C(xi + 1)) = Mi,i+1,ADJ(C(xi + 1), C(xi)) = MT
i,i+1, and all other blocks are 0

matrices.

By induction, ADJk(C(x1), C(xk)) = Πk−1
i=1Mi,i+1. So, for any s ∈ {1, 2, . . . , |C(x1)|},j ∈

{1, 2, . . . , |C(xk)|}, the number of paths of length k from (x1, C(x1)[s])} to (xk, C(xk)[j]) is

given by ADJk(C(x1), C(xk))[s, j] = Πk−1
i=1Mi,i+1[s, j] . By taking the sum over s, we get the

number of edge preserving mappings (1T · Πk−1
i=1Mi,i+1)[j]. This completes the proof.

4.4.1.2 Estimation for Trees

A tree in graph theory is defined for single channel graphs as a connected acyclic undirected

graph. A tree is also a notion in data structure usually visualized by a tree in the graph

theory sense, and stores the connection and hierarchy of the nodes. These two definitions

are linked together by assigning a root to the tree.

The following definitions are aimed to extend the definition of graphical tree to multi-
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channel graphs and define the tree data structure similarly by assigning a root node.

Definition 27 (Underlying graph). Given a directed or undirected multichannel graph G,

the underlying graph Gu is a single channel, undirected simple graph which is defined as

followed:

VG = VGu ,

(x,y) ∈ EGu ⇐⇒ EG(x, y) > 0 or EG(y, x) > 0.

Definition 28. A multichannel graph G has a tree structure if and only if the underlying

graph Gu is a tree.

The definition of rooted tree is generalized from [5] is equivalent to the tree data structure.

Definition 29 (Rooted tree). Suppose G is a tree or G is a multichannel graph with tree

structure, and u ∈ VG, then the pair (G, u) is called a rooted tree with root u.

Definition 30 (Parent, Ancestor, Child, Descendant, and Sibling). For a rooted tree(T, r),

suppose w is any node other than r. If G is a tree, then there is a unique path P in G that

connects w and r. If G has tree structure, then there is a unique path P in Gu that connects

w and r. Suppose P = (v0, v1, . . . , vk), where v0 = r, vk = w. Then vk−1 is called the parent

of w, w is called the child of vk−1. v0, v1, . . . , vk−1 are called the ancestors of w, and w is the

descendant of v0, v1, . . . , vk−1. Vertices with same parent are called siblings to each other.

Definition 31 (Subtree for rooted tree). Suppose (T, r) is a rooted tree, and w ∈ VT . The

subgraph Tw generated by w and all its descendants also has a tree structure. (Tw, w) is called

the subtree of (T, r) with root w.

We call the formula given in Theorem 4.4.1.1 pathEPM , and use the following divide

and conquer algorithm which we call TreeEPM to calculate the number of EPMs. To avoid

repeat calculations, we pre-calculate all the CPI matrices and store them in a hash map M .

We denote by M(x, y) the CPI matrix for template nodes x and y.
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Algorithm 5 TreeEPM

Input: Template T with tree structure, root x, CPI matrix dictionary M

y1 . . . , ym ← Children(x)

(T1, y1), . . . , (Tm, ym)← Subtrees

if T is a path graph then:

Return pathEPM(T, x,M)

else

for Ti ∈ Subtree(T ) do

subepmi ← TreeEPM(Ti, yi,M) ∗M(yi, x)

Return subepm1 ⊙ subepm2 ⊙ . . . subepmm

In the above algorithm, ⊙ denotes the element-wise product of two vectors. This algo-

rithm returns the exact number of EPMs regarding each candidate node of the selected root

x.

Theorem 32. The cardinality of edge-preserving mappings |{g ∈ EPM(T )|g(x) = C(x)[j]}| =

TreeEPM(T, x,M)[j].

Proof. For the rooted tree (T, x), suppose x has children y1, y2, . . . , ym, the subtrees rooted

at y1, y2, . . . , ym are (T1, y1), (T2, y2), . . . , (Tm, ym) We proceed by induction on the number

of the nodes of the tree T . For the base case where |VT | = 1, then T is a path graph,

pathEPM(T, x,M) will return the correct result. Now suppose when |VT | < k, the proposi-

tion is true, then for |VT | = k, Ti are subtrees of size less or equal than k. treeEPM(Ti, yi,M)

will give correct result.That is to say |{g ∈ EPM(Ti)|g(yi) = C(yi)[j]}| = TreeEPM(Ti, yi,M)[j].

Since |{g ∈ EPM(Ti∪x)|g(x) = C(x)[j]}| =
∑C(yi

r=1 |{g ∈ EPM(Ti∪x)|g(yi) = C(yi)[r], g(x) =
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C(x)[j]}|,we have

|{g ∈ EPM(Ti ∪ x)|g(x) = C(x)[j]}|

=

C(yi)∑
r=1

|{g ∈ EPM(Ti)|g(yi) = C(yi)[r]}|

× |{g ∈ EPM(yi, x)|g(yi) = C(yi)[r], g(x) = C(x)[j]}|

=

C(yi)∑
r=1

TreeEPM(Ti, yi,M)[r] ∗M(yi, x)[r, j]

= TreeEPM(Ti, yi,M) ∗M(yi, x)[j]

Since {g ∈ EPM(T )|g(x) = C(x)[j]} is the Cartesian product of the sets {g ∈ EPM(Ti∪

{x})|g(x) = C(x)[j]}, we can conclude the theorem is true when the |Vt| = k.

4.4.1.3 Extension to general templates

For a general template, we do not have a tree structure naturally generated by the template.

In this setting, we use a breadth first search to produce a spanning tree of our template. We

then can estimate the number of EPMs on our general template by using the algorithm in

the previous section on the spanning tree. Then we give the following estimation algorithm

for a general template. For a selected node x, we use the TreeEPM algorithm on the rooted

tree structure with root x. The algorithm returns a vector of length |C(x)| recording an

estimate of the number of EPMs that map x to each element in C(x). In Figure 4.3, we

show the example of a template and its related data structures in each step of the EPM

estimation.

4.4.2 Complexity analysis of Spanning Tree Entropy method

We introduce first some terminology to be used in the complexity analysis. First, we denote

by |Et|, |Ew|, |Eu
w|, |Eu

t | the number of edges in the template, world, and underlying graphs
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Figure 4.3: The figure above shows a toy example of estimating the edge preserve mappings

for the candidate of the selected node with label 3. The underlying graph of the template

is shown on the top right. By using the BFS starting from node 3, we can get a rooted

tree with parent/children relations shown in the bottom left. By looking at the subtrees,

the estimation can be calculated by the Cartesian product of the estimation from three

subproblems with smaller size.
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of template and world respectively. We denote by Cmax the maximal size of a candidate set

C(x). We denote the maximal degree of the template by Dmax
t and the average degree of the

underlying graph of the world Davg
u .

There are three steps for the estimation algorithm, the calculation of CPI matrix hash

map M , the multiplication of matrices in the path, and the Cartesian product constructed

in the tree structure. First, we give an upper bound for the worst case complexity. We need

to compute a CPI matrix for all the adjacent pairs of nodes in the template. So the numbers

of CPI matrices to compute is equal to Neut and the size of each CPI matrix is Cmax×Cmax.

So the complexity of this part is bounded by O(|Eu
t |(Cmax)2). Suppose we already selected a

node x, to construct the tree, we need to visit all the nodes in the template once. Therefore,

the complexity of this part is bounded by O(|Vt|)

Then, we need to perform the multiplication of matrix for every edge in the BFS tree, and

the number of edges is equal to |Vt|− 1. For each node in BFS tree, the size of the Cartesian

product is bounded by |Vt|−1, and the cost of computing each Cartesian product is bounded

by O(Cmax). So the total cost of this step is bounded by O((Cmax)3|Vt|) +O(Cmax ∗ |Vt|) =

O((Cmax)3|Vt|).

We then need to select all nodes and repeat the calculation. So the total time complexity

of the algorithm is bounded by O((Cmax)3|Vt|2 + |Eu
t |((Cmax)2). That means the algorithm

can be completed within polynomial time. However, this bound of time complexity can be

huge if the number of candidates for any vertex is large.

In certain cases, the template and the world graph both are sparse. Then from the sparsity

of template, we assume |Eu
t | = O(|Vt|). From the sparsity of world graph, the expectation of

number of nonzero elements of each column of the CPI matrix is equal to Davg
u . Therefore,

the complexity of matrix multiplications for a BFS tree will be O((Cmax)2|Vt|Davg
u ) instead of

O((Cmax)3|Vt|). Hence, the expectation of total complexity with the assumption of sparsity

is O((Cmax)2|Vt|2Davg
u ).
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4.5 Experiments on Single Channel Networks

In this section, we describe a series of experiments performed on a collection of real and

synthetic single channel subgraph isomorphism problems. We consider ten different strategies

for querying nodes which are listed as follows:

1. MC (Most Candidates): Node with the most candidates.

2. MD (Minimum Degree): Node with the lowest degree.

3. MNCS (Maximum Neighbor Candidate Sum): Node whose neighbors have the most

candidates as given by (4.6).

4. ME (Maximum Entropy): Node given by (4.16) with PSI defined as in (4.8).

5. MLE (Maximum Local Entropy): Node given by (4.16) with PLSI defined as in (4.10).

6. MLE∼ (Maximum Local Entropy Approximation): Node given by (4.16) with PLSH

defined as in (4.12).

7. R (Random): Random node.

8. EE (Edge Entropy): Node with the highest edge entropy as defined in (4.7).

9. STE (Spanning Tree Entropy): Node given by (4.16) with PSTEPM as defined in (4.13).

10. O (Optimal): The optimal node to query as given by solving (4.2).

In the event that multiple nodes tie on one of these criteria, out of these nodes, the node

with minimal index which has not been queried yet will be selected.

For our study, we will consider the benchmark dataset for subgraph matching problems

compiled by Solnon [74]. We describe briefly some of the datasets included in this prob-

lem suite. The LV dataset is composed of a variety of graphs with theoretically interesting

properties (e.g., biconnected, triconnected, highly symmetric, etc.). The SI dataset has four
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Table 4.1: Benchmark Dataset Statistics

Template World

Dataset # # Nodes # Edges Density # Nodes # Edges Density

Inst Min Max Min Max Min Max Min Max Min Max Min Max

LV-easy 26 10 435 10 2520 0.027 1.000 10 2000 45 2592 0.001 1.000

SI-easy 446 40 777 43 2047 0.006 0.201 200 1296 299 4377 0.004 0.098

bio-easy 739 9 68 8 90 0.036 0.417 9 386 12 886 0.012 0.423

images 10 5 11 6 13 0.236 0.600 4838 4838 7067 7067 0.001 0.001

LV-hard 246 10 280 10 1848 0.002 1.000 42 6671 114 209000 0.001 1.000

SI-hard 249 40 518 41 1669 0.006 0.197 200 1296 299 7788 0.004 0.191

bio-hard 554 9 184 8 355 0.021 0.423 25 386 44 886 0.012 0.160

phase 47 30 30 128 387 0.294 0.890 150 150 4312 8740 0.386 0.782

different graph matching problem sets involving bounded valence graphs, modified bounded

valence graphs, meshes, and Erdős–Rényi graphs. There are two sets of instances repre-

senting images for pattern recognition problems, images-cv and images-pr [18, 75] which we

combine into one dataset images. The biochemical reactions dataset [29] represents matching

problems on systems of biochemical reactions. The last dataset under consideration is the

phase dataset [53] are instances involving randomly generated Erdős–Rényi graphs known

to be very difficult.

For our experiments, we only consider problems for which there are at least ten subgraph

isomorphisms. From these, we divide our datasets into “easy” and “hard” instances. Easy

instances are those for which we can fully enumerate the solution space and therefore can

compute the optimal amount of queries as in Section 4.2. Hard instances are the subgraph

matching problems where we do not have the full solution space and as such we cannot

compute the number of queries using the O or ME methods. We also include in this set,

problems for which the MLE does not find terminate within ten minutes. A compilation of

basic graph statistics for these datasets is presented in Table 4.1.
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For these problems, we select ten random solutions from the solution space for a given

subgraph matching problem. For the easy instances, this is uniformly chosen over all so-

lutions, and for hard instances, it is randomly chosen from a selection of solutions by the

Glasgow solver [54] within one minute. Then for each solution, we proceed using the frame-

work described in Algorithms 4. We count the number of queries made and then record

the average number of queries required for a given subgraph isomorphism problem for each

querying strategy.

The results for the easy data sets are presented in Figure 4.4. We also consider the average

percent gap between a given method’s number of queries and the best method for a specific

problem. We observe that the ME method is nearly optimal for the biochemical reactions

and SI datasets and requires 20% more guesses on the other datasets. The next best methods

are MLE, MLE∼, and STE which all approximate the ME method and require between 15

and 40% more guesses across the datasets. Empirically, there does not seem to be much

difference in using MLE or the approximation MLE∼ with MLE∼ even outperforming MLE

on certain datasets. The EE and MNCS methods on average perform worse than picking

vertices at random. From the disparity between the optimal and the other methods, there

remains significant work to be done to develop computationally tractable methods which

can close this gap.

The average number of queries for the hard instances is presented in Figure 4.5 along with

the average percent additional queries needed over the best method.As we do not have the

full solution set computed, we cannot consider the O or ME methods, and we also exclude

the MLE method due to its long computation time. These problems require significantly

more queries, and we observe less variation in the number of queries across methods. On

average, we observe that the MLE∼ and STE methods perform the best with MC not too

far behind. The random method on average requires 10-15% more queries over the best of

these methods typically.

As discussed in Section 4.3.3, graph symmetry plays a significant role in subgraph match-
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Figure 4.4: Bar charts depicting (left) the average number of queries and (2) average percent

additional queries over the best query strategy for the easy problems in Table 4.1. Error

bars depict the standard deviation. The methods listed are described in Section 4.5.

Figure 4.5: Bar charts depicting (left) the average number of queries and (right) average

percent additional queries over the best query strategy for the hard problems in Table 4.1.

Error bars depict the standard deviation. The methods listed are described in Section 4.5.
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Figure 4.6: Two separate query strategies applied to an example template graph from the

biochemical reactions dataset. The numbered nodes indicate the order in which template

nodes are queried. On the left, the MLE query strategy is used, and on the right the ME

query strategy is used. Non-gray nodes of the same color are structurally equivalent.

ing and neglecting it may confound some of the methods presented in this section. The

biochemical reactions data set is a highly symmetric data set, and as a result of Propo-

sition 1 necessarily require a high number of queries to distinguish a solution. For some

query strategies, they systematically avoid the structurally equivalent nodes leading to high

query counts. We observe this behavior in Figure 4.6 where the template graph from the

biochemical reactions dataset has multiple sets of structurally equivalent vertices. The ME

strategy which picks out the structurally equivalent vertices to query first finds the ground

truth solution after only seven queries whereas the MLE strategy requires 20 queries. The

reason for the significantly higher count comes from how the MLE approach leaves these

structurally equivalent vertices for the end as other vertices have higher local entropy values

at the stage in which they are queried.

In Figure 4.7, we compare two equivalence-based improvements on the MC strategy to
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Figure 4.7: Average number of queries made before a solution is found on various single

channel datasets when using the MC method with equivalence-informed queries.

the base MC approach. As discussed in Section 4.3.3, the structural equivalence approach

queries all but one member of each structural equivalence class before considering other

template vertices. The automorphic equivalence approach first queries template vertices

which constitute a base of the automorphism group. As can be seen in the figure, these

equivalence-informed improvements on the base methods can make significant improvements

on the average number of queries required to determine a solution. On average, we can save

nearly half a query for particular symmetric datasets like the biochemical reactions and SI

graphs, and on particular examples as in Figure 4.6, using symmetry is essential.

4.6 Experiments on Multichannel Networks

In this section, we discuss the performance of algorithms on multichannel subgraph isomor-

phism problems. The real world data include a transportation network in Great Britain [26]

and COVID data [93]. The synthetically generated dataset, Ivysys v7 [2], was generated as

part of the DARPA-MAA program.
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4.6.1 Multichannel Datasets

The Great Britain Transportation Network [26] is comprised of the public transportation

dataset available through the United Kingdom open-data program [81] with timetables of

domestic flights in the UK. It is a multiplex time-dependent network. There are six channels

involving different transportation methods, including bus, air, ferry, railway, metro, coach.

This dataset has 262,377 nodes and 475,502 edges. The original dataset can be found at [27].

The authors of [59] have an online interactive map [35] for users to visualize the template.

The Ivysys data sets [2] concern interactions between individuals such as emails, phone

calls, financial transactions. The template and world graphs are separately generated to

match the degree distribution and email behavior of the Enron email dataset. The template

graph of Ivysys v7 data has 92 nodes and 195 edges. The world graph has 2,488 nodes and

5,470,970 edges.

The COVID dataset studies the problem of extracting knowledge automatically from

casual relations between biochemical entities. In [93], a knowledge graph is constructed

using multiple sources, including the COVID-19 Open Research Dataset [83], the Blender

Knowledge Graph [84], and the comparative toxigenomics database [20]. The authors of [93]

then create a query representing how COVID 19 might cause a cytokine-storm in patients

as well as other possible confounding factors. The template has 28 nodes and 38 edges. The

world graph has 87,580 nodes and 1,736,985 edges.

The multichannel network data sets differ from the single channel data sets in terms of

size of the networks and number of solutions. Previous research [87, 57] gives a lower bound of

the number of solutions. To be specific, the lower bounds are 2.34e+15, 7.45e+21, 7.82e+103

respectively for British Transportation, Ivysys v7 and Covid data. We present two ways to

generate ground truth data for our experiment.
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4.6.2 Methods for Generating Ground Truth Data

For the British Transportation Network, there is a small set of locations that interact with

each other through all channels (excluding airlines, since this channel is very sparse). If a

location involves all five non-air channels in the network, we assume that it is important.

There are only three nodes that interact in the five non-air channels, and they randomly

chose one of them as the template center, specifically the Blackfriars Station in London.

Starting from this node, we do a random walk which terminates after it has visited 53 nodes.

We repeat this process 100 times to produce 100 templates. These templates have the same

number of nodes as the template used in [59]. In the process of creating the template, We

record the names of stations visited by the random walk and use this as the ground truth of

the subgraph isomorphism problem. This dataset is abbreviated as BTN in Table 4.2. We

also generate the templates with 100 nodes in the same way. These templates are denoted

by BTN100 in Table 4.2.

For the Covid data and Ivysysv7 data, the templates are generated from realistic problems

instead of a random walk. However there are a large number of isomorphisms so we develop

a randomized selection algorithm to choose one isomorphism as a ground truth to be “found”

by our active learning method. This method iteratively assigns a random template node to

its random candidate until we get a unique solution. We repeat this process 100 times to

produce 100 ground truth isomorphisms.

4.6.3 Numerical Experiments

In our experiments, the templates in some of the datasets have unique structures. For

example, as a result of random walk, the templates of BTN data usually contain several

long paths. This is the same for the larger BTN templates with 100 nodes. But BTN100

has longer random walk length, so the templates tend to form a core around the node

representing starting station. The template of Ivysysv7 data represents e-mail activity,
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Algorithm 6 Random Selection of Ground Truth

Input: Template Gt, World Gw

Match = Ø

C ← Filter(Gt, Gw) ▷ Initialize domains

Solutions = SolveSI(Gt, Gw, C,Match) ▷ Solve the SI problem with given matching

while |Solutions| ≠ 1 do:

if |Solutions| > 1 then:

u = randomselect(Gt), v = randomselect(C(u))

Match = Match ∪ (u, v)

Solutions = SolveSI(Gt, Gw, C,Match)

if |Solutions| = 0 then:

Match = Ø

Solutions = SolveSI(Gt, Gw, C,Match)

Return Solutions

Figure 4.8: Bar charts depicting (left) the average number of template queries and (right)

the average percent of additional queries over the best method for each problem in each

multichannel data set. All methods are given in Section 4.5 except MaxD which represents

the strategy of choosing the maximal degree node.
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Dataset |Vt| |Vw| Log of Search Space MaxD MNCS STE MD R EE MC

BTN 53 262377 75.02 25.07 21.32 17.41 17.92 21.44 20.96 17.4

BTN100 100 262377 110.57 42.06 36.64 30.25 30.66 35.93 35.88 30.15

Ivysysv7 94 2488 262.11 78.96 77.32 69.64 69.98 72.73 76.46 69.81

Covid 28 87580 29.86 15.28 15.28 12.96 13.0 14.1 15.16 13.15

Table 4.2: This table shows the average of the statistics of different datasets and the average

number of nodes to query for different active learning results. The search space of a dataset

is defined to be the product of the size of candidate sets. We take the logarithm with base

10 and calculate the average. See Section 4.5 for definition of the methods.

and there are several components in the template that form star graphs. There are many

structural equivalence classes in the template [87]. Table 4.2 shows some statistics related to

datasets and the average numbers of queries needed for each active learning method. Figure

4.8 is a bar chart of the average number of queries and the average percent of additional

queries compared to the best method.

The experimental results show that under our problem setting, assuming equal cost for

querying each template node, less constrained nodes tend to be more important. By simply

querying the node of least degree, we often get better results than most methods that need

much more calculation.

The STE strategy gives similar query numbers as the minimum degree. But the way

of selecting nodes is different. In our experiment, for a given ground truth, we include the

nodes in the query list of any active learning method if querying all the other nodes can not

reduce the solution space to one. In addition, for any non-trivial equivalent class of size k,

we need to include at least k− 1 nodes in the query list. We show a case study in figure 4.9

to illustrate how this works with a particular instance from the BTN dataset; the theoretical

optimal query is reached by an exhaustive search on all the selections. The optimal query

is one node less than both methods. Notice that the STE stategy queried an unnecessary
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Figure 4.9: (Top left) Number of candidate of nodes for one of the British Transportation

Network templates. In the remaining panels we show the selection of nodes using different

active learning queries. Color codes are as follows: Green: the nodes that must be included.

Purple: other nodes selected by the active learning method. The number in the circle rep-

resent the number of candidates after querying the green nodes. (Top right) EPM entropy

method uses 17 queries. (Bottom Left) The minimum degree method uses 18 queries. (Bot-

tom right) A theoretically optimal solution with 16 queries.
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node (the node with 1 inside the circle). That node can be determined by the all-different

constraint and the information from other nodes. minimum degree method does not differ

between the nodes with same degree, so the performance of this method depends on some

randomness.

4.7 Conclusions and Future Work

In this chapter, we present a rigorous mathematical treatment of the active learning query

problem for subgraph matching where only one ground truth solution is desired. This has

not been considered in the prior literature however it is an important problem for real-world

problems in which a subgraph-matching problem may have a multitude of solutions yet

the solution space can be greatly reduced with additional information brought by a subject

matter expert. Such active learning problems are well-known in semi-supervised machine

learning but have not been studied in the subgraph matching setting. We prove that finding

the optimal template vertices to query to be NP-complete even if the solution space and

the ground truth are known. We present several strategies for determining template queries,

some based on simple graph structure and others which attempt to estimate the probability of

matching template and world nodes. We design an inexpensive and fast method to estimate

the solution space based on the spanning tree. We assess our results on benchmark data and

compare the performance of different strategies on single channel and multichannel network

datasets with varying graph size and number of solutions. Our experiments show that for

single channel networks, the maximum entropy strategy which requires the calculation of

the solution space is nearly optimal and other methods which approximate this approach are

close but with much room for improvement. For large multichannel graphs, several methods

have similar behavior, with the spanning tree entropy method performing best on average.

There are many open problems not discussed in this chapter. One obvious one is the

consideration of more diverse active learning strategies. For example, the information of
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query could be related to world graph nodes rather than template graph. Likewise we do not

consider combinations of different strategies in sequence but rather just consider iterations

of a single strategy. Extensions on the subgraph isomorphism problem is another possible

direction for future research. We can introduce noise to the problem and study the active

learning for inexact subgraph matching problem [78, 43, 76]. Another class of problems

are path-based queries where one desires to find a path from A to B in the network of e.g.

shortest length, rather than finding an exact or inexact match of a template graph.

We also only considered sequential queries. Future work could examine batch active

learning scenarios - especially in the case of large complex graphs or queries done on the

world graph rather than the template.

4.8 Limitations

This work introduces a new set of problems in subgraph matching. We propose some strate-

gies that have limitations. For example, the spanning tree based strategy assumes that the

template graph is sparse with a tree-like structure. This strategy may be less informative

with templates that are not sparse or that have a cyclical structure. We do not have an

efficient strategy for finding the optimal solution to the active learning problem. We also

note that the sequential strategies mentioned here have a total number of queries that are

of the same order of magnitude as the number of template graph nodes. The example in

fig. 12 shows an optimal choice that likewise has the same order of magnitude, indicating

that for such combinatorially complex solution spaces one will need to provide additional

information about a large fraction of the template nodes in order to reduce the solution space

to one isomorphism. This last issue is a limitation of the problem rather than our suggested

strategies.
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