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THE RELATIONSHIP BETWEEN MICROJAVE SPECTROSCOPY, COMERENT TRIPLET EXCITONS,

AND DENSITY OF STATES FUNCTIONS IN MOLECULAR CRYSTALS

S o AR
‘rA; H. Francis and.C.-B. Harrls

Department of Chemlstry, Unlvers1ty of Callfornla,
and Inorganic Materials Research D1v1s1on, Lawrence Radiation Laboratory

Berkeley, California 94720

Abstract

- A theory for microwave band-to-band transitions in triplet Frenkel
excitons in the coherent migration limit for a one-dimensional exciton
associated with translationally equivalent molecules is developed. Be-
cause of selective spin-orbit coupling to the magnetic sublevels, an
anisotropy in the zero field splitting across the band (k=0 tok =i:m/a)
occurs which, on a reduced energy scale, "mirrors" the energy dispersion
of triplet exclton states. As a result, if the coherence time of a k
state of the triplet band is longer than the intrinsic time associated
with 2 microwave field connecting the magnetic sublevels of the band,

" one can measure both the bandwidth and density of states function with
a zero field electron spin resonance experiment.

T Aifred P. Sloan Fellow
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1. Intrdductiqg

. The dynamical properties of energy transport in molecular crystals

' has been a problem of considerable interest. (1) ‘Because the long life-

time of tfiplct states allows extensive energy transfér over”long dis-
tances with reasonably small intermolecular interéctions, the ﬁigration
of Frenkel triplet excitons is particularly important. ‘Despite extensive
experimental and theoretical work by many authors an adequate‘uﬁderstand-
ing of the basic mechanisn of migration is far from being realized. The

problem rests in properly treating exciton-phohon'coupling, vibrational

" coupling between adjacent molecules and exchange coupling between elec-

tronic states on adjacent molecules.

An interesting feature, however, of energy migration, exciton or

.polaron, is thé prediction of coherent motion in a narrow band of the mo-

(2)

lecular érystal at - certain temperatures. The importance of coherent
motion is that the exciton states aie delocalizéd over much greater dis-
tances than in the incoherent or "hoppingfmodél"-and consequently long
range inferactions can become extremely important in directing pﬁysical

. (3)

rhenomena associated with the exciton, e.g., exciton-exciton annihilation

exciton-trap interactions,(y) etc. The quantitative tempefature-and band

-width.dependence of coherent transport depends explicitly upon the scat-

(2,5)

tering model adopted. ZFor instance, in Holstein's. self_trapping
polaron model which assumes linear electron-phonon interactions,(6) the
loss of coherence is characterized by a transition temperature above

which the incoherent or hopping motion best describes the transpoft



phenonena. - The samé is true in the»quadratic—elédtron-phonon interaction
recently.developed by Siebraﬁd;(7) however, the'exﬁlicit temperature de-
pendence:diff¢rs in the twé”mbdels; the latter baving broader intermediate .
temperature regions where both précésses contribﬁté tb migration.

'iﬁ ié{not £hé'burpoée of this preliminary communication to differ-
entiate the various_models for exciton-phonon interactions, but rather to
develop.the,theOry_of microwave tranéitions between the triplet magnetic
sublevel exciton bands in molecdlar crystais in the one-dimensional case
for coherént.triplétéxéitonnﬁgrétion. "In the following péﬁer we‘will
demonstrate experimentally the observation of coherent migration of frip7
- let exci@ons‘at low tehperatures in a molecular crystél (1,2,4,5 tetra-

(8)

chlorobenzene) ﬁhich répresehts.the»one diménsional case. In a later
publicatioh'we wiil exfend the éoncebts and experimenﬁal techniques
de&elbped;he;éto thevintermediété dase betweeh coherent and incoherent
migrétion in éﬁ attémpf to look'explicitly ai the temperature dependence

of the phonon-exiton scattering.

-

2. The Relationship between Microwave Transitibn Fréquency and the

Energy Dispérsion of a Triplet Band

To properly consider a one-dimensional triplet band, account must

(9).

be-taken of the magnetic sublevels of the triplet stéte. By repre-

senting the moleculér'wavefunctions of the triplet staté>és the spin-

Qrbit functions, ¢p,'

V¢P. = N'r\"rp > .V ,(p =X, 3": Z))N . (1) :



~

. ,_,3___

where - wr Urépresents'the-triplct orbital function of T syﬁmetry and
1 represents the spin fdnctioﬁ of the pth magnetic sublevel, it is
clear that_thé total s&mmctry of ¢p (p = x, ¥, z) transforms as the
irreducible rcpresentéﬁién_gf the direct product T x Rp’ vhere Rp
(p=x, ¥y, 2) are the rotation operators of the molecular poinﬁ group.
In ,D2h for inStance, all three of the molecular spih-orbit.wave Tunc-

{tions must he of different symmetry. In the absence g{ spin-orbit coupling

of & triplet with the singlet states, the magnetic sublevels are split

(10)

only by the electron dipole-dipéle interactions. These splittings

are the well known zero field splittings. Because eleétron exchange is
the ‘dominating mechanism for energy migration in triplet exitOns(l’ll) and

because exchange is a totally symmétric operator, the delocalized states of

the crystal, specifically the triplet exciton bahd, can be formed from each

of the individual magnetic sublevel spin-orbit functions separately in the

absehce of spin-orbit coupling. Thus, the triplet exciton band for a one-
dimensional'exchange interaction between translationally equivalent mole-

cules is in zero order three pérallel bands whose separations are related

()

to the conventional molecular zero field splitting parameters D and

E as illustrated in Figure la. The intermolecular effective eléctron exg.

(12)

change interaction B, 1in the one-dimensional model is simply related

to the band width 2Ap -as

n - AT” : : : (2)
|

and the energy dependence in the wave vector, k, in the first Brillouin

" Zone of a one-dimensional band with intermolecular interaction along the

‘a direction is



EP(k) = E° - App(cos ka) + BP (p = x,¥,2),(k = 0,81,...¢ n/a) (3)

where E° . is the ground state singlet-triplet energy separation

of the molecule in the crystal environment in the absence of interiolecular

exchange and corresponds to the band energy at k = n/2a. "Ep is related

to the triplet zero field splittings as:

Y T )

2o oyzneE ()
E° = -2/3D. T (k)

-vIt.ghqﬁld be noted (cf. Figﬁre”l); that in the absence of a magnetic:
field the t;iplet-ﬁands are symmetfic around k = O bgéause of time re-
versal-symmétry.(l3)

.We»haVe assumed thus‘far spin-brbit-basis»fﬁnciions, however we have
excluded sbin—orbit éoupiing per §g. It is generaily recognized that in
molecules such as azaérOmatics and halogenated arbmgtics the primary
mechanism fof phosphorescence is via sélective spin-drbit‘couplihg‘bf one
-or more of the triplet sﬁblevels with the.excited Singlet statéSu(lh)
This impliés'natﬁrally:that there will be a small but- finite spin-orbit
contributioﬁ to the zero field splittings in the moleéular statés of the
(15)

triplet. In the delocalized states of molecular crystals, because

singlet_exéiton bands have bandwidths 10 to 100 times those for triplet

(2)

‘bands, one expects spin-orbit coupling to be k dependent. Assuming
for the moment that only one magnetic sublevel band, say 2z, spin-orbit
couples with a singlet band whose bandwidth is 2Ag» the contribution

of spin-orbit coupling to E?(k) can be treated via perturbation théory.

-



So

(¥

Specifically,

lwz v, — “0 : . _,v 1. p _-_lz . : [ =y
L_(k) = E°- AT(coe ka) 4+ B 4'LSO(L)’ - (5)
where the spir-orbit contribution -
Z . _ 2 ~0 : ‘_b
Bso(k) = - ¢t /(% spt Ag »AT)cos ka). (6)

EéST- is the singlet-triplet separation in the absence of inter-

molecular. interactions and £ is the molecular spin—orbit coupling coefl-

ficient. Expanding Eq. (6) in a binomial series, we obtain

| L oy -0 )
B2 (k) = - £2/E° 1|5 Sr cos ka + ~——1r:§£— cos®ka - ...
50 st\ ™ 7| g Eor

(7

.The leading term is simply the spin-orbit contributioﬁ in the absence of.
intermolecular interactions. To within one percent for reasonable values
of\'[¥§ﬁs§§2] , say O;i £o O.Ql,ethe series can be terminated after the
first power of cos kaf' The effect of selective spin-orbit coupling in
the flrst Brlllouln Zone of the trlplet bands is illustrated in Flgure lb.
In splte of the small contribution of spin-orbit coupllnrr Lo the
energy of the z magnetic sublevel of the triplet band, E°(k), its

importance can not be underestimated, for in a one-dimensional model it

 provides an anisotropy in the energy difference between two magnetic'sub- B

levels,'say E%(k). and -Ey(k), which reflects the overall energy dis-

pcr51on in k of the triplet band itself. Expressed more fopmally,

— em emm e e e amn e et e e e e e Gen e e W e e A awe M v e et e mm e m ey e e e Gme e e e

*Con31der1ng spin-orbit coupling rigorously in the wavefunctions forming the
basis functions for the delocalized states of the crystal results dlrectly
in an energy dependence, Eso’ linear in’ (AS -4 ) cos ka. . _
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in much the Séﬁé vay as chcmical-exchange averageé_micrbwave_or AR
traﬁéitions.(lB) The tempersture dependence of Aﬁjyz(k)/ﬁ thus pro-
vides,-in biinciple, avmethod for.distinguishihgvdifferent phonon-exciton
scattefing ﬁodels.v This will be discussed in a.iater;publication.

_Y In the coherent model, however, assuming a cbherence iifeﬁime
(k) > (ﬁ/AEyZ), we expect a broad lin¢ whose frequency reflects
thé k. degcndgnt'energy dispersion of thé band. Next we must consider

the intensity of AElyZ(k)/ﬁ as a function of k.

3.. The Reiationship 92 the Microwave Transition intensity'gg the Density

~ of States Function 2£ the Band

-To accurately treat the 'intensity of a band-to—band ﬁicrowave tran-
sition'jinra triplet‘eXCiton.reQuirés a quantitativevevalﬁation of the distri-
butibn’of exciton - states in the three maghetic sublevel bands, including.
spin latticé relaxation éffects; spin-spin relaxatioﬁ phenomena,vand many
othef térms."The problem can be greatly simplified by se#erél phyéiédlly
reasoﬁable assumptions. Fifst, we will assumé théﬁ the cohérenée time
- of a k state, 7(k), is longer than the intrinsic microwa&e tine,
h/AE (k)  but shorter than both the lifetime of the exciton and the
spin lattice relaxation tiﬁé between magnetic sublevels. It is highly
unlikely that' T(k)? for triplet exitons at 4.2°K, would be as long as - -
several millisecconds, which is a value typical for short.lived phosphores-
cent ﬁfiplét stétes in the halOgenated bénzeﬁes. Spin lat£ice relaxation
times at h4.2°K for tfiplet states in thevébéencc of magnetic fields also

have millisecond values. This assumption is tantamount to Boltzmannizing



.

independently via k "scatfering‘the individual magnetic sublevels,
Ep(k),' within both- the lifetime §f.the exciton and the sﬁinviatﬁice
relaxation ‘time, :the‘Bqltzmann distribution being takeﬁ'over the en-.
senble of N:‘idén;ical one-dimension exciton éhdins.'bf

" In terms of the number of identical chains N, the maghetié sub-
level populations NP(E)i are related as 'N==§;NP(E), where E = Ep(k);

- Secondly, ﬁe‘wil; éssume that Np(E) for all p (i.e., X, ¥, and
z)  are functionally the same in k. Expressed’another way, because the
spinaorbiﬁ'perturbationris small'compared to the bandwidth QAT, ‘we

need not ‘concern ourselves with small corrections in the population

v differen¢es between magnetic sublevels arising from k ‘depéndcnce of

the‘zero'field'splitting; With these two assumptions the populations

corresponding to energies Ep(k) (p=x, 9, 2) differ from.oné’another:

by a constant. Formally,

<

() = ’CyNy(E) - cA(w), o (1§)

. where the constants P (p = x, y, 2) are related to electron spin_

alignment via selective intersystem crossing and ‘phosphorescence emission

from the individual magnetic sublevels of the band and spin lattice re-

'laxétioh between the sublevels. The explicit features of the cPrs wild

nbt be discus#ed;at‘this point.
With these assumpbions the relationship of the individual sublevel
populatfbné'of .NP(E), to the band, ié'simﬁly fhe density ofistates
fﬁﬁctions-of'the bands_felated only to QAT ﬁimes the’Bolfzmann factqr; '
i.e., | | | v
o ;EAAT’

. Np(E)i = .cpb'(m) e (20)
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where E = A,,(l cos ka) and D'(E) is the dcnuty of stutes function
for a one- dL.lenolonal band 1nclud1ng the Van Hove S.Ln"’uld.rltle" (19)
The: Ijemqva,l_ of ,the ‘Van hove-s:mgularltl_esv can_ '_be_ achieved simply
and without SPec:lfyi_ng an explicit phonon sc'attéri-ng'param&er'by a Gaus-
sian or Lorentz broade.ning fxulétion.(Qo)' Usihg the Van Hove dcnsity of

states function for a one-dimensional cxciton and the Boltzmann factor,

the broadened Boltzmann density of states fuction,. DB(E)- is simply.

B B Dt (L') exp ( E /1"1‘) JUN
oYy ) » _ v
DB_(E) = ]'?@2 / D! (1:') exp( -E! /&T) exp[ (E - E')®1n 2/52] aE'
. ) o '

(21b)

where'.S is': the vLorentz.,[Eq‘.' -(éla):] or Gaussiah [Eq. (21b)] scattering
paraneter. | ‘ | |

The relation of a. dens:.ty of states functlon across. the band 2Aq to
the microwave band- to—band energy 2B (F) with the above assumptions

is s:.mply
o : » w/a T : ‘
V_DB[AEHZ(E):I' _ 5 f ) exp[Ar (1 - cos ka) /4T ] ax. (00)

o2 o W\ 2
[aELYZ(E) + A gp €OS kg] + _(o.w)




8 bandvWLdth_ dA = 2 cm

‘01' ) .. o 1(/8.

- DB[Anly&(L)] - - o2 f | eyP[Nl(l - cos xa)fhr]

E exp.<»v[AE1yZ(E)'+ Agsf cos ka]e in 2/ &% )dk

(22v)

‘This equation arises from substitution of Eq. (16) into Eqg. (21 a or b)

where Sw»iis related to the reduction factor f - by f£d = b.

The significance of Egs. (22 a and b) is that the intensity of a
microwave'band—to~band I(E)' transition as a function of AE,Y2(E) is

dlrectly related to the ‘Boltzmannized dens1ty of statcs of the triplet

"band or_'

T [anY(s)] - Ple@] (@)
Here] - cPw, @

wvhere C 1is some experimental constant.

-

It thus becomes poss1ble to determ:ne experimentally both the density.

of states function and the bandwidth of a one -dimensional trlplet exc1ton

when the coherence time of the k  state is longer than the rec1procal

'microwave'frequency.

_ Flgure 2 illustrates
[AEy (EX] Vs AI?.(E) for verious bandwidth-temperature ratloo, »

EAT/T whlle Fvgure 3 shows the var:at:on on scattcrlng at L, 2° X w1th
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k. Summary

In:theilimit ﬁhere_exciton’séaftering is sufficienfly wéak to aliow
the lifétiméfdf a k' state in”a'ﬁriplét exciton to be longer than the
reciproéal'microwave freqﬁehcy associated with the.zefbnfield magnetic
subieyéls‘of'the band:‘

-(g)"ﬁhe microWave frequency is directly related_tolthé tripiet_
band dis;ersion,in 6ne:dimehsion; S v
| (b) the intensity éf‘the microwave transition is related to the
’densiﬁf offétates function of the band times a Bolﬁzmahn factor. |
Thus, ﬁhé bandwidth “and density of states can be determined directly
by a zero-field microwave»experiment;’ - _

It'shbuld also:be noted that once‘ﬁhe triplet bandwidth 'ZAT “is

fdete?mineé fhe é6nt}ibution df spin-orbit coupling to the zero field
.splitting:ean belcalculated from the redudtibn-factof f since in one
dimension the m;crowave‘ffequencyvat k=0 and k-; ﬂ/a isvexperi-

'mentall& known. o : - L - -
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- Pigure Cupbions

The energy dispersion of the tfiplet magnetic sublevel
 bands in the absence of -spin-orbit couplihg. The separations

_betweén the spin levels are_greatly:éxaggerated for illus-

trative purposes.

The energy dispersion of the triplet magnetic sublevel

bands in'the‘presence of selective spin orbit coupling to

‘the 7, sublevel. The separations between the spin levels

Z

. are greatly exaggerated for illustrative purpbses.

.Thé'@iérowavc inteﬁSity vs. frequency of a band to band
'ﬁransition dépendehge on QAP/T _with the reduction factor,
“f,  adjusted to give the same micrdWaVe frequency dispersion:
(1) 2ag/T - a2s, (2) 2AL/T =075, and (3) 247/T = 150

A1l curves use a Gaussian broédening;- 5 =10 ¢ 6f 20p.

‘The microwave intensity vs. frequency dependence on the

- Gaussian broadening . | - B, 'with’QAT = 2.0 cm,

T.=l.2® K (1) 8 =10 of 2hp, (2) 8 = 18 ¢ of 2A,

and (3) 8 = 26 9, bf 2l
. | ’ s
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