UC Santa Barbara

UC Santa Barbara Previously Published Works

Title

Interplay Between Bromine and Iodine in Oxidative Dehydrogenation

Permalink

https://escholarship.org/uc/item/38g506gw

Journal

ChemCatChem, 5(7)

ISSN

1867-3880

Authors

Ding, Kunlun Metiu, Horia Stucky, Galen D

Publication Date

2013-07-01

DOI

10.1002/cctc.201200913

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives License, available at <u>https://creativecommons.org/licenses/by-nc-nd/4.0/</u>

Peer reviewed

Interplay Between Bromine and Iodine in Oxidative Dehydrogenation

Kunlun Ding,^[a] Horia Metiu,^[a] and Galen D. Stucky*^[a]

Oxidative dehydrogenation is a promising way to produce olefins, diolefins and aromatics. However, the product yield is limited by the consecutive oxidation of the product to oxygenated products. The highest yield reported for propane oxidative dehydrogenation is only about 30%. Alternatively, halogens can be used as oxidants in oxidative dehydrogenations. Although the iodine process is highly selective, it requires very high reaction temperatures (~ 900 K) to give a good yield of " $C_3H_6+C_3H_7$ I", and iodine is too expensive for industrial deployment. Bromine is a more reactive oxidant, however, less

Introduction

Most of the current propylene production is via steam cracking (SC) and fluidic catalytic cracking (FCC).^[1] However, in both the SC and FCC processes, propylene is produced as a by-product and the selectivity and yields are always low.^[2] The availability of ethane as a major component of natural gas at natural gas prices has attracted many ethylene producers to utilize ethane instead of naphtha as the feedstock in steam crackers. As a result, the ratio of propylene/ethylene produced from steam crackers continues to decline. At the same time, driven by the expanding polypropylene market, the demand ratio of propylene/ethylene is increasing. For these reasons, it becomes increasingly important to develop on-purpose propylene production technologies that offer higher propylene/ethylene production ratios.^[1]

Propane dehydrogenation has long been thought to be an ideal route for propylene production because of the theoretical high propylene selectivity and low capital investment, as well as the independence of the propylene production cost to naphtha price. Propane is commercially available from two major sources, petroleum refining and natural gas processing (natural gas usually contains 1-4% of propane by volume^[3]). Compared to methane and ethane, propane is more easily transported. For this reason, most of the propane produced is used as a fuel for domestic heating. industrial and However, propane dehydrogenation is limited by thermodynamics, so that very high reaction temperatures on the order of 1000 K are required to give a high single-pass propane conversion.^[2,4] Hence, the separation of the resulting hydrogen and unreacted propane from propylene becomes an issue. Despite these disadvantages, several propane dehydrogenation processes have been commercialized, including the Catofin® process developed by Lummus and the Oleflex[™] process developed by UOP.^[4] Theoretically, introducing an oxidant can drive the reaction to be more thermodynamically favorable. However, the highest propylene yield reported for propane oxidative dehydrogenation (ODH) is only about 30%, mainly due to the consecutive oxidation of propylene to products.^[2,5] The oxidative dehydrogenation oxygenated

selective towards C_3H_6 and C_3H_7Br . We show here that using bromine/iodine mixtures with low iodine content (no greater than 20%) results in up to 80% of " $C_3H_6+C_3H_7X$ " single-pass yield at moderate reaction temperatures (< 800 K). The results are promising for developing a low temperature on-purpose propylene technology. Furthermore, the underlying chemistry might be extended to the synthesis of many other commercially desirable unsaturated hydrocarbons.

pathways to produce diolefins and aromatics suffer from the same issue. Although many different catalysts, promoters and alternative oxidants have been studied^[2,5,6], a commercially viable breakthrough has yet to be achieved. The chemistry described in this work is a new pathway that increases the previous best yield of ~30% for propane conversion to propylene to ~80%.

One possible alternative is to produce propylene through a halogen route, as illustrated in Figure 1. Propane reacts readily with halogens, producing propyl halides. A subsequent elimination process produces propylene and hydrogen halides.^[7] The resulting hydrogen halides can be oxidized back to halogens and recycled.^[7,8] Among the halogens, F_2 is inappropriate because of its high reactivity and the unfavorable thermodynamics for its use in a halogenationdehydrohalogenation process. Similarly, Cl₂ reactions with alkanes are always fast and non-selective, and under some conditions an explosion may occur.^[9] I₂ reacts selectively, but relatively slowly, with propane at low temperatures to produce propyl iodides and propylene. High propylene yields can be achieved with stoichiometric I₂ and propane feeding.^[10] However, this reaction is only thermodynamically favorable at high temperatures (Figure S1). Furthermore, since a stoichiometric reaction of I2 with propane is needed, the recycling efficiency of the relatively expensive I2 greatly limits the potential industrial application of this process.^[11] Figure S1 summarizes the thermodynamics and energy profiles of propane halogenation reactions. Compared to Cl_2 and l_2 , Br_2 reactions with propane are more feasible. However, in order to resolve the polyhalogenation selectivity issue in gaseous alkane bromination processes, a higher propane to bromine ratio is required in order to avoid the formation of 2,2-C₃H₆Br₂.^[7] Consequently, single-pass propane conversion, using present technology, has limited utility.

 [a] Dr. K. L. Ding, Prof. H. Metiu, and Prof. G. D. Stucky Department of Chemistry and Biochemistry University of California Santa Barbara, California 93106-9510, United States. E-mail: stucky@chem.ucsb.edu (G.D.S.)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cctc.200xxxxx.

Figure 1. Illustration of halogen-mediated propane to propylene process.

In our previous efforts to solve the dibromomethane selectivity issue that exists in the bromine based methane conversion to petrochemicals process, we discovered that iodine could efficiently catalyze the reaction between propane and dibromomethane, highly selectively producing propylene and methyl bromide.^[8b] Thereby, we proposed a low-cost, integrated on-purpose propylene technology using methane and propane as feedstocks. However, the overall propylene yield is limited by the methyl bromide-to-propylene conversion, which is analogous to the methanol-to-propylene process. In order to reduce the complexity as well as the potential capital cost of the propylene production, we aimed at using propane alone as the feedstock.

In this paper, we report a dual halogen process for the high yield, single-pass conversion of propane to " $C_3H_6+C_3H_7X$ " (X = Br, I). The C₃H₇X that is formed is readily converted to propylene. The selectivity is significantly improved by the presence of even small amounts of iodine. This is a low temperature (< 800 K)

process that avoids all of the issues described above when either bromine or iodine is the sole halogenation agent. We show how the interplay between bromine and iodine plays an important role in oxidative dehydrogenation.

Results and Discussion

Ideally, a propane-to-bromine molar ratio of 1 is required to convert all the propane to C_3H_7Br or C_3H_6 . For this reason we fixed the propane-to-bromine molar ratio to 1 in our studies. We initially carried out control experiments on propane bromination without I₂, with the results being given in Figures S2, 2A, and 3. Propane conversion with bromine alone increases with reaction temperature and finally reaches a constant value of approximately 66%. At 523 K, propane is highly selectively converted to $2-C_3H_7Br$, but with a low conversion (10%). Significant amounts of polybrominated products, mainly 2,2-C₃H₆Br₂, appear at reaction temperatures above 573 K (reactions 1-5). When the reaction temperature is further increased to 673 K, C_3H_7Br and $2.2-C_3H_6Br_2$ start to decompose, giving C_3H_6 and CH₂=CBrCH₃ (reactions 6 and 7). CH₂=CBrCH₃ further decomposes to C_3H_4 (allene and propyne) at even higher reaction temperature (reaction 8). As the reaction temperature is increased, the selectivity for "C₃H₆+C₃H₇Br" drops first and then slightly increases and finally reaches a constant value of approximately 70%. Plotting the "C₃H₆+C₃H₇Br" selectivities against the propane conversions, one can see that the maximum " $C_3H_6+C_3H_7Br$ " yield is less than 50% (Figure 3).

Figure 2. Product distributions of the " $C_3H_8+Br_2$ " reaction (A) without I₂ at 773 K; (B) with I₂/Br₂ mole ratio of 1/9 at 773 K; (C) with I₂/Br₂ mole ratio of 1/9 at 798 K. Residence time = 8 s, C₃H₈:Br₂:Ar mole ratio = 7:7:47, C₃H₈ input = 7.9 mmol. (All the pie charts are on a mole carbon basis.

 $Br_2 + M \leftrightarrows \cdot Br + \cdot Br + M$ (1)

•Br + C_3H_8 \Rightarrow •CH(CH₃)₂ + HBr (2)

 $\bullet CH(CH_3)_2 + Br_2 \leftrightarrows \bullet Br + 2 - C_3H_7Br \qquad (3)$

•Br + 2-C₃H₇Br \Rightarrow •CBr(CH₃)₂ + HBr (4)

 $\bullet CBr(CH_3)_2 + Br_2 \leftrightarrows \bullet Br + 2,2-C_3H_6Br_2 \quad (5)$

 $2-C_3H_7Br \leftrightarrows C_3H_6 + HBr \qquad (6)$

 $2,2-C_3H_6Br_2 \leftrightarrows CH_2=CBrCH_3 + HBr \qquad (7)$

 $CH_2=CBrCH_3 \leftrightarrows C_3H_4 + HBr(8)$

In order to produce high-purity C_3H_6 using only bromine as a halogenation reactant, C_3H_7Br needs to be separated out of the stream and then fed into another reactor.^[7] Furthermore, compared to halocarbons, C_3H_6 is difficult to efficiently separate from C_3H_8 . For this reason, 573 K seems to be the best bromination temperature. Unfortunately, at this temperature the formation of $2,2-C_3H_6Br_2$ reduces the carbon and bromine efficiencies for the overall process.

The formation of 2,2-C₃H₆Br₂ is similar to the formation of CH₂Br₂ in methane bromination. As we described in our previous work^[8], the presence of CH₂Br₂ is one of the main obstacles hindering the industrial application of a bromine based gas-to-liquid technology. We found that small amounts of iodine could effectively catalyze the reaction between CH₂Br₂ and C₃H₈, producing CH₃Br and C₃H₆.^[8b] Iodine can also improve the methane conversion and CH₃Br selectivity in the methane bromination process, as iodine catalyzes the reaction between CH₂Br₂ and CH₄, producing more CH₃Br.^[8c]

Inspired by the iodine catalysis effect in the methane bromination process, we expected that similar chemistry should exist in the C_3H_8 bromination process. We studied next the influence of iodine in the C₃H₈ bromination process. We kept the C₃H₈/Br₂ molar ratio equal to 1 and varied the I₂/Br₂ ratio, reaction temperature, and residence time. The results are given in Figures 2 to 4 and S3 to S5. With an I₂/Br₂ ratio of 1/9, the conversions of C_3H_8 and selectivities for " $C_3H_6+C_3H_7X$ " at low reaction temperatures (573 and 673 K) are similar to results obtained in the absence of I_2 (Figure 3A). Further increasing the reaction temperature leads to dramatic differences in the C3H8 conversions and " $C_3H_6+C_3H_7X$ " selectivities with and without I₂. As we mentioned above, both C₃H₈ conversion and "C3H6+C3H7X" selectivity reach constant values above 723 K without I₂. Interestingly, and in contrast, in the presence of I₂, both C_3H_8 conversion and " $C_3H_6+C_3H_7X$ " selectivity increase with reaction temperature. At 773 K, only 66% of C₃H₈ is converted with " $C_3H_6+C_3H_7X$ " selectivity of 71% without I₂, while in the presence of I_2 (with an I_2/Br_2 ratio of 1/9), 84% of the C_3H_8 is converted with a "C₃H₆+C₃H₇X" selectivity of 81%. Further increasing the temperature to 798 K leads to a C₃H₈ conversion of 87% with the " $C_3H_6+C_3H_7X$ " selectivity of 85% in the presence of I₂, and C₃H₄ as a major side-product.

Increasing the I₂/Br₂ ratio from 1/9 to 2/8 leads to a higher conversion of C_3H_8 with almost the same selectivity for "C₃H₆+C₃H₇X", while the trends of these two factors as a function of the reaction temperature are similar. A C₃H₈ conversion of 97%

with a "C₃H₆+C₃H₇X" selectivity of 84% was achieved at 798 K with the I₂/Br₂ ratio of 2/8. The "C₃H₆+C₃H₇X" selectivities are plotted against propane conversions in Figure 3B, and one can see that the maximum "C₃H₆+C₃H₇X" yield in the presence of I₂ is well above 80%.

Figure 3. (A) Temperature-dependent C_3H_8 conversions and " $C_3H_6+C_3H_7X$ " selectivities of the " $C_3H_8+Br_2$ " reaction with different mole ratios of I_2/Br_2 . (B) " $C_3H_6+C_3H_7X$ " selectivities plotting against C_3H_8 conversions. Residence time = 8 s, $C_3H_8:Br_2:$ Ar mole ratio = 7:7:47, C_3H_8 input = 7.9 mmol.

In order to explore the origin of the iodine promoting effects in the C₃H₈ bromination process, we carried out several control experiments. We first focused on the reaction between 2,2-C₃H₆Br₂ and C₃H₈. Our control experiments on "2,2- $C_3H_6Br_2+C_3H_8$ " show that 2,2- $C_3H_6Br_2$ is too reactive compared to C₃H₈. (Figures S6 and S7) 2,2-C₃H₆Br₂ quickly decomposes into CH_2 =CBrCH₃ and C_3H_4 in high conversions at higher temperatures with or without a heterogeneous catalyst, but the C₃H₈ conversion remains lower than 10%. As we stated above, iodine effectively catalyzes the reaction between CH2Br2 and $C_{3}H_{8}/CH_{4}.^{[8b,8c]} \text{ lodine mainly abstracts bromine from } CH_{2}Br_{2},$ while bromine abstracts hydrogen from C₃H₈/CH₄. Introducing a small amount of iodine (I₂/2,2-C₃H₆Br₂ mole ratio of 3/97) certainly accelerates the reaction between 2,2-C₃H₆Br₂/CH₂=CBrCH₃ and C_3H_8 (Figure S8). However, the conversion of C_3H_8 is lower than that in the "CH2Br2+C3H8" system using the same amount of I2. $\ensuremath{^{[8b]}}$ Although we do not have the exact bond dissociation energy

(BDE) of the C–Br bonds in 2,2-C₃H₆Br₂, we estimate that the value is somewhat close to that of CH₂Br₂ (~66kcal/mol).^[12] From our previous work^[8b] we have determined that bromine atom abstraction by iodine radicals requires a high temperature (773 K in case of CH₂Br₂). However, such a high reaction temperature leads to the decomposition of 2,2-C₃H₆Br₂, producing CH₂=CBrCH₃. Since the C–Br bond in CH₂=CBrCH₃ has a much higher BDE (~80kcal/mol), the bromine abstraction becomes even harder. This explains the lower conversion of C₃H₈ in "2,2-C₃H₆Br₂+C₃H₈" system compared to that in "CH₂Br₂+C₃H₈" system.

The influence of residence time on the C_3H_8 bromination process was also studied. Changing the residence time is equivalent to changing the size of the reactor and keeping the flow constant. It can be seen in Figures 4 and S5 that a longer residence time leads to slightly higher C_3H_8 conversion and " $C_3H_6+C_3H_7X$ " selectivity. From the product distributions one can clearly see that the percentage increases of " $C_3H_6+C_3H_7X$ " are approximately equal to the percentage decreases of " $C_3H_8+C_3H_5Br$ ". This can be ascribed to the iodine-catalyzed C_3H_8 reaction with C_3H_5Br (Figure S8). The iodine-catalyzed C_3H_8 reaction with C_3H_5Br giving C_3H_6 and C_3H_7X is one of the reasons for the higher C_3H_8 conversions and " $C_3H_6+C_3H_7X$ " selectivities of C_3H_8 bromination in the presence of I_2 .

Figure 4. Product distributions of the "C₃H₈+Br₂" reaction with I₂/Br₂ mole ratio of 1/9, at 1.3 s (A) and 16 s (B). T = 773 K, C₃H₈:Br₂:Ar mole ratio = 7:7:47, C₃H₈ input = 7.9 mmol. (All the pie charts are on a mole carbon basis)

It should be noted that the contribution of $2-C_3H_7Br$ decreases with reaction temperature and residence time, while the contribution of $2-C_3H_7I$ goes in the opposite direction (Figures 2 and S3 to S5). Since $2-C_3H_7I$ decomposes faster than $2-C_3H_7Br$, it is not reasonable that $2-C_3H_7I$ remains in the outlet stream while $2-C_3H_7Br$ does not. The most likely explanation is that the observed $2-C_3H_7I$ in the outlet stream was formed in the cooling region between the reactor and NaOH/organic bi-phase trap, through the addition of HI to C_3H_6 . The amount of $2-C_3H_7I$ is proportional to the concentrations of HI and C_3H_6 and residence time in the cooling region. Higher temperature accelerates reaction 9 in the forward direction so that more HI and $2-C_3H_7I$ are formed.

$$C_3H_8 + I_2 \leftrightarrows C_3H_6 + 2HI \qquad (9)$$

If Br_2 is not present, the above reaction is accomplished via the following elementary reactions:

$$I_2 + M \leftrightarrows \cdot I + \cdot I + M$$
 (10)
 $\bullet I + C_3H_8 \leftrightarrows \cdot CH(CH_3)_2 + HI (11)$
 $\bullet CH(CH_3)_2 + I_2 \leftrightarrows \cdot I + 2 - C_3H_7I$ (12)
 $2 - C_3H_7I \leftrightarrows C_3H_6 + HI (13)$

Since the •Br-radical abstraction of hydrogen from C₃H₈ is several orders of magnitude faster than the abstraction of hydrogen from C₃H₈ by the •I radical,^[8b] reaction *11* does not make a significant contribution if Br₂ is present. Instead, reaction *2* is the main route for the generation of the •CH(CH₃)₂ radical. After the •CH(CH₃)₂ radical is formed, it can be trapped both by Br₂ and I₂, giving 2-C₃H₇Br and 2-C₃H₇I respectively, which further decomposes into C₃H₆. 2-C₃H₇I decomposes faster than 2-C₃H₇Br. In addition to Br₂ and I₂, IBr is also likely present during the propane dehydrogenation reaction (reaction *14*). It has been shown that the reaction between a radical and an interhalogen molecule XY (ICI, BrCI and IBr) will always favor attack on the less electronegative atom of XY.^[13] For this reason, 2-C₃H₇I instead of 2-C₃H₇Br is more likely to be formed when reacting the •CH(CH₃)₂ radical with IBr (reaction *15*).

 $|Br + M \leftrightarrows \cdot | + \cdot Br + M(14)|$

•CH(CH₃)₂ + IBr \leftrightarrows •Br + 2-C₃H₇I (15)

Another possible way for the •CH(CH₃)₂ radical to evolve into C_3H_6 is by reacting •CH(CH₃)₂ radical with •Br and •I radicals, as shown in reactions 16 and 17.^[10b,14] These two aspects, the trapping of •CH(CH₃)₂ radical by I₂ and IBr to form 2-C₃H₇I (reaction 12 and 15) and the dehydrogenation of •CH(CH₃)₂ radical by •I radical to form C₃H₆ (reaction 17), both contribute to the acceleration of C₃H₆ formation with the addition of I₂.

$$\bullet Br + \bullet CH(CH_3)_2 \leftrightarrows C_3H_6 + HBr \quad (16)$$

•I + •CH(CH₃)₂ \leftrightarrows C₃H₆ + HI (17)

We know that the main side-reaction of C_3H_8 bromination is the consecutive bromination of 2- C_3H_7Br to 2,2- $C_3H_6Br_2$. The introduction of I_2 into the bromine halogenation process accelerates the formation of C_3H_6 , which is in competition with the formation of 2,2- $C_3H_6Br_2$. The result is a higher " $C_3H_6+C_3H_7X$ " selectivity.

Conclusion

In conclusion, we have studied C_3H_8 dehydrogenation by bromine with and without the presence of iodine. A small amount (I_2/Br_2 ratio no more than 2/8) of I_2 results in up to 80% single-pass " $C_3H_6+C_3H_7X$ " yield at 798 K. The yields presented here are much higher than those reported in the traditional ODH processes, which are no greater than 30%. Compared to the less-selective bromine process and the high-temperature, also expensive, iodine process, a dual halogen process using bromine and iodine together displays the advantages of both halogens. The results are particularly promising for developing a low-temperature onpurpose, high-yield propylene technology. Furthermore, the underlying chemistry might be extended to the high yield synthesis of many other unsaturated hydrocarbons, including olefins, diolefins, and aromatics.^[10,15]

Experimental Section

The reactions were conducted in an atmospheric pressure glass tube reactor system, which is identical with that in our previous work.^[8a, 8b] The configuration of the reaction system is shown in Figure S9. C_3H_8 , HBr and Ar flow rates were controlled by mass flow controllers. I2 was dissolved in Br₂ or 2,2-C₃H₆Br₂ and delivered by syringe pump. The liquid reactant was vaporized in the head space of the reactor. The effluent stream from the reactor was passed through a fritted glass bubbler trap containing organic solution (10 wt% octadecane in hexadecane) and 4M NaOH solution, all remaining gaseous product were collected in a gas bag after passing through a final base trap (4M NaOH solution) to prevent any residual HBr/HI from entering the bag. For most of the experiments, reactions were run for half an hour with all the products collected and analyzed. The products were analyzed with three GCs equipped with flame ionization detectors and capillary columns, which measured: (1) gaseous halocarbons including C₃H₅Br and C₃H₇Br (HP-PLOT Q and DB-624, Agilent); (2) gaseous hydrocarbon C1-C6 (Select Al2O3 MAPD, Varian); and (3) liquid halocarbon products (DB-17, Agilent). All the experiments reported here have carbon balances of 95-105%.

Keywords: on-purpose propylene • dual halogen • bromine • iodine • oxidative dehydrogenation

- http://www.ihs.com/products/chemical/planning/ceh/propylene.aspx IHS Website. (accessed July 15, 2012).
- [2] F. Cavani, N. Ballarini, A. Cericola, Catal. Today 2007, 127, 113-131.
- [3] a) R. H. Crabtree, Chem. Rev. 1995, 95, 987-1007; b) A. Kidnay, W. R. Parrish, Fundamentals of Natural Gas Processing, Taylor & Francis Group, 2006.
- [4] M. M. Bhasin, J. H. McCain, B. V. Vora, T. Imai, P. R. Pujado, Appl. Catal., A 2001, 221, 397-419.
- [5] R. Grabowski, Catal. Rev. Sci. Eng. 2006, 48, 199-268.
- [6] a) S. Sugiyama, Y. lizuka, E. Nitta, H. Hayashi, J. B. Moffat, *J. Catal.* 2000, 189, 233-237; b) P. Michorczyk, J. Ogonowski, *Appl. Catal.*, A 2003, 251, 425-433; c) K. Takehira, Y. Ohishi, T. Shishido, T. Kawabata, K. Takaki, Q. H. Zhang, Y. Wang, *J. Catal.* 2004, 224, 404-416; d) E. V. Kondratenko, M. Cherian, M. Baerns, D. S. Su, R. Schlogl, X. Wang, I. E. Wachs, *J. Catal.* 2005, 234, 131-142; e) S. Vajda, M. J. Pellin, J. P. Greeley, C. L. Marshall, L. A. Curtiss, G. A. Ballentine, J. W. Elam, S. Catillon-Mucherie, P. C. Redfern, F. Mehmood, P. Zapol, *Nat. Mater.* 2009, *8*, 213-216; f) Y. Cao, M. A. Chen, J. Xu, H. Y. He, K. N. Fan, J. H. Zhuang, *J. Catal.* 2010, 272, 101-108.
- [7] X. P. Zhou, G. D. Stucky, J. H. Sherman, U.S. Patent 6465696 2002.
- [8] a) K. L. Ding, A. R. Derk, A. H. Zhang, Z. P. Hu, P. Stoimenov, G. D. Stucky, H. Metiu, E. W. McFarland, ACS Catal. 2012, 2, 479-486; b) K. L. Ding, A. H. Zhang, G. D. Stucky, ACS Catal. 2012, 2, 1049-1056; c) K. L. Ding, H. Metiu, G. D. Stucky, unpublished results.
- [9] a) G. Egloff, R. Schaad, C. D. Lowry, *Chem. Rev.* **1931**, *8*, 1-80; b) S. Yuster, L. H. Reyerson, *J. Phys. Chem.* **1935**, 39, 859-876.
- [10] a) R. D. Mullineaux, J. H. Raley, U.S. patent 2890253 1956; b) J. H. Raley, R. D. Mullineaux, C. W. Bittner, J. Am. Chem. Soc. 1963, 85, 3174-3178.
- [11] a) I. M. Dahl, E. M. Myhrvold, U. Olsbye, F. Rohr, O. A. Rokstad, O. Swang, *Ind. Eng. Chem. Res.* **2001**, *40*, 2226-2235; b) V. V. Chesnokov, A. F. Bedilo, D. S. Heroux, I. V. Mishakov, K. J. Klabunde, *J. Catal.* **2003**, *218*, 438-446.
- [12] Y. R. Luo, Comprehensive handbook of chemical bond energies, Taylor & Francis Group, Boca Raton, 2007.
- [13] B. S. Evans, E. Whittle, Int. J. Chem. Kinet. 1978, 10, 745-757.
- [14] O. Dobis, S. W. Benson, J. Phys. Chem. A 1997, 101, 6030-6042.
- [15] R. D. Mullineaux, J. H. Raley, J. Am. Chem. Soc. 1963, 85, 3178-3180.

Acknowledgements

This research was supported by the University of California Discovery Grant Program, GRT Inc., and the U.S. Department of Energy.

Received: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

Entry for the Table of Contents

FULL PAPER

A single-pass " $C_3H_6+C_3H_7X$ " yield above 80% was achieved in propane oxidative dehydrogenation using bromine and iodine together as oxidants. This dual-halogen process is promising for the synthesis of many other unsaturated hydrocarbons, including olefins, diolefins, and aromatics.

Kunlun Ding, Horia Metiu, and Galen D. Stucky*

Page No. – Page No.

Interplay Between Bromine and lodine in Oxidative Dehydrogenation