
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Signature Transformations and Neural Differential Equations for Sequential Data Analysis

Permalink
https://escholarship.org/uc/item/38h127dp

Author
Jiang, Huiyu

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38h127dp
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Signature Transformations and Neural Differential

Equations for Sequential Data Analysis

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Statistics and Applied Probability

by

Huiyu Jiang

Committee in charge:

Professor Tomoyuki Ichiba, Chair
Professor Jean-Pierre Fouque
Professor Ruimeng Hu

June 2024

The Dissertation of Huiyu Jiang is approved.

Professor Jean-Pierre Fouque

Professor Ruimeng Hu

Professor Tomoyuki Ichiba, Committee Chair

June 2024

Signature Transformations and Neural Differential Equations for Sequential Data

Analysis

Copyright © 2024

by

Huiyu Jiang

iii

Acknowledgements

First, I extend my heartfelt gratitude to my advisor, Professor Ichiba. Throughout

the long journey of my six-year doctoral program, I often felt overwhelmed and doubted

whether I was suited for this academic path. Professor Ichiba not only paid attention

to my mental health, but also consistently provided warm encouragement and support.

He always listened patiently to my reports, which might have seemed naive, and offered

valuable advice that helped me find my way forward. Without his comprehensive support

and assistance, I cannot imagine being able to complete my studies successfully.

Secondly, I must thank my parents for their unwavering support behind the scenes,

which allowed me to completely devote myself to my studies without distracting myself

from daily trivialities. Being far from home, whenever I faced difficulties in life, I could

always share them with my parents and other relatives, receiving comfort and encour-

agement in return. I am also grateful to their friends, such as Mr. Chen, Mr. Wang, Mr.

Shen, and Mr. Xu, whose care and greetings often brought me warmth.

Lastly, I owe a debt of gratitude to my friends—Li, H., Yang, H., Wang, W., Mei, J.,

and Li, H.—whose companionship filled my monotonous life with laughter and joy. My

collaboration with Luo, X. resulted in published articles, while Cheng, J., Li, Y., and

Wang, S. provided numerous valuable suggestions and assistance in both my professional

and personal life. All these people and experiences came together to help me overcome

low points and complete my academic journey successfully.

Thank you to everyone who has helped me along the way. I hope for a bright future

for us all.

iv

Curriculum Vitæ
Huiyu Jiang

Education

2024 Ph.D. in Statistics, University of California, Santa Barbara.

2018 M.S. in Statistics, University of Wisconsin, Madison.

2017 B.S. in Statistics, Nanjing University

Publications

1. Luo, X., Wang, H., Huang, Z., Jiang, H., Gangan, A., Jiang, S., & Sun, Y. (2024).
Care: Modeling interacting dynamics under temporal environmental variation. Ad-
vances in Neural Information Processing Systems, 36.

2. Wang, H., Jiang, H., Sun, J., Zhang, S., Chen, C., Hua, X. S., & Luo, X. (2023).
DIOR: Learning to Hash With Label Noise Via Dual Partition and Contrastive
Learning. IEEE Transactions on Knowledge and Data Engineering.

3. Luo, X., Gu, Y., Jiang, H., Huang, J., Ju, W., Zhang, M., & Sun, Y. (2023). Graph
ODE with Factorized Prototypes for Modeling Complicated Interacting Dynamics.
arXiv preprint arXiv:2311.06554.

4. Luo, X., Yuan, J., Huang, Z., Jiang, H., Qin, Y., Ju, W., ... & Sun, Y. (2023, July).
Hope: High-order graph ode for modeling interacting dynamics. In International
Conference on Machine Learning (pp. 23124-23139). PMLR.

v

Abstract

Signature Transformations and Neural Differential Equations for Sequential Data

Analysis

by

Huiyu Jiang

Sequential data arise in numerous domains, including finance, Natural Language Pro-

cessing, and healthcare. Effectively modeling and analyzing such data presents significant

challenges due to their high dimensionality, nonstationarity, and complex dynamics. This

dissertation tackles these challenges by using two powerful mathematical frameworks:

signature transformations and neural differential equations (NDEs).

The first part explores the versatility of signature transformations in capturing the

essential dynamics of sequential data, demonstrating their robustness and effectiveness

for tasks such as classification, regression, and time series analysis. The second part

investigates the practical applications of NDEs, including neural ordinary differential

equations (NODEs) and neural stochastic differential equations (NSDEs), in modeling

physical systems, biological processes, and other real-world phenomena with intricate

dynamics. The third part delves into the efficacy of Channel Independent (CI) and

Channel Dependent (CD) training strategies in multivariate time series forecasting. It

presents a rigorous mathematical formulation and theoretical analysis to elucidate why

the CI strategy often exceeds the CD strategy, particularly highlighting its robustness to

distribution shifts between training and test datasets, a common scenario in real-world

applications.

Through theoretical analysis, experimental evaluations, and case studies, this disser-

tation contributes to the advancement of sequential data analysis techniques. It also

vi

provides a comprehensive understanding of signature transformations, NDEs, and the

impacts of different training strategies, their properties, and their applications in various

domains. The findings and methodologies presented in this work have the potential to

impact a wide range of fields, allowing more accurate modeling, prediction, and decision-

making processes involving sequential data.

vii

Contents

Curriculum Vitae v

Abstract vi

1 Introduction 1
1.1 Importance of Sequential Data Analysis 1
1.2 Review of Sequential Data Analysis Methods 3
1.3 Current Trends and Challenges . 6

2 Rough Path Theory and Signature 8
2.1 Rough Path Theory . 8
2.2 Signature Transform . 14
2.3 Methods . 23
2.4 Experiments and Results . 30

3 Neural Differential Equations 44
3.1 Neural Ordinary Differential Equations (NODEs) 44
3.2 Neural Stochastic Differential Equations

(NSDEs) . 66
3.3 Applications for physical simulation . 72

4 Training strategy: Channel Independent (CI) versus Channel Depen-
dent (CD) 112
4.1 Introduction and Related Work . 112
4.2 Preliminaries . 114
4.3 Mathematical Analysis . 118

5 Conclusion and Future Work 121
5.1 Conclusion . 121
5.2 Future Work . 122

viii

A Proofs 126
A.1 HOPE . 126
A.2 CARE . 129
A.3 POEM . 131
A.4 GraphSDE . 133

B Experiment Details 137
B.1 HOPE . 137
B.2 CARE . 140
B.3 POEM . 143
B.4 GraphSDE . 145

ix

Chapter 1

Introduction

1.1 Importance of Sequential Data Analysis

Time series analysis helps in identifying underlying patterns such as trends and sea-

sonal variations in data over time. This is crucial in fields such as economics for under-

standing market trends, in meteorology for weather forecasting, and in retail for sales

predictions. In addition, by understanding the normal patterns of time-dependent data,

analysts can identify anomalies or outliers. This is particularly important in fraud detec-

tion in finance, fault detection in manufacturing processes, or unusual patient readings

in healthcare. The importance of these analyses can be attributed to several key factors

and applications.

1. Economic and Business Intelligence

• Financial Markets: In finance, time series analysis is used to forecast stock

prices [1, 2], exchange rates [3], and market trends. This helps traders and

investors in making informed decisions, managing risks, and optimizing port-

folios.

1

Introduction Chapter 1

• Supply Chain and Inventory Management: Predicting future demand

and sales to optimize inventory, reduce costs, and improve service levels [4, 5].

2. Scientific and Environmental Insights

• Astronomy: Studying celestial objects’ time series data to understand the

universe’s structure and dynamics [6].

• Environmental Science: Monitoring climate patterns, pollution levels, and

wildlife populations to predict changes and plan interventions [7].

3. Technological and Service Enhancements

• Speech Recognition and Natural Language Processing: Analyzing se-

quential data to interpret human speech, improving virtual assistants and

language translation services [8, 9, 10, 11, 12].

• Video Surveillance and Security: Utilizing time series in video feeds for

security, traffic management, and event detection [13].

4. Personalized Experiences and Services

• Recommendation Systems: Employing user activity and preferences over

time in technology platforms like shopping, entertainment, and social media to

provide personalized recommendations, enhancing user experience and prod-

uct promotion [14].

• Healthcare Tailoring: Analysis of patient data over time leads to person-

alized treatment plans, predictive health insights, and improved healthcare

services [15, 16].

5. Decision Making and Policy Development

2

Introduction Chapter 1

• Public Health and Epidemiology: Understanding and predicting disease

spread, evaluating intervention impacts, and informing policy making [17, 18].

• Economic Indicators and Policy Making: Analyzing and forecasting eco-

nomic data to guide fiscal and monetary policies.

• Resource Allocation in Energy and Utilities: Predicting energy demand

for efficient generation and distribution, ensuring sustainability [19].

These applications underscore the importance of time series and sequential data anal-

ysis in extracting meaningful insights, predicting future events, and making informed

decisions.

1.2 Review of Sequential Data Analysis Methods

1. Traditional Time Series Analysis Methods

Traditional models form the bedrock of time series analysis with their robust sta-

tistical foundations and decades of application across various fields:

• Autoregressive Integrated Moving Average (ARIMA): ARIMA mod-

els are among the most widely used forecasting methods, suitable for non-

stationary series that can be made stationary by differencing. They combine

autoregressive terms with moving averages to capture complex temporal struc-

tures [20, 21, 22].

• Exponential Smoothing (ES): These methods, including Holt-Winters, are

used to smooth data and forecast in the presence of trends and seasonality,

providing an intuitive approach to time series forecasting [23, 24, 25, 26].

• Seasonal Decomposition of Time Series (STL): STL is a versatile and

robust method for decomposing a series into seasonal, trend, and residual com-

3

Introduction Chapter 1

ponents, often used in conjunction with other forecasting methods to handle

complex seasonal patterns [27, 28, 29].

• Vector Autoregression (VAR): VAR models capture linear interdependen-

cies among multiple time series, making them a popular choice in econometric

forecasting and to understand the dynamics of the system [30, 31, 32, 33].

• Dynamic Linear Models (DLM) / State Space Models: These flexible

models accommodate time-varying parameters and can incorporate both state

and observation noise, widely used for robust filtering and forecasting [34, 35,

36, 37].

2. Jump Models and Counting Processes

• Poisson Process: The Poisson process is a fundamental model for counting

events over time, where events occur continuously and independently at a

constant average rate [38].

• Hawkes Process: An extension of the Poisson process, the Hawkes process

models events that self-excite, meaning past events increase the likelihood of

future events, useful in finance, social media analytics, and seismology [39, 40,

41].

3. Extending Traditional Models with Differential Equations Differential equations

provide a theoretical framework for modeling dynamic systems and are integral to

understanding changes in time series data:

• Ordinary Differential Equations (ODEs): ODEs model the rate of change

in systems with deterministic behaviors and are widely used in engineering,

physics, and biology [42, 43].

4

Introduction Chapter 1

• Partial Differential Equations (PDEs): PDEs extend to multiple vari-

ables and are crucial in representing physical phenomena, such as fluid dy-

namics, heat transfer, and electromagnetic fields [44].

• Stochastic Differential Equations (SDEs): SDEs incorporate randomness

directly into the evolution of the system, suitable for modeling more complex

and unpredictable dynamics often found in financial markets and biological

processes [45, 46, 47].

4. Modern Advances in Time Series Analysis

The advent of deep learning has led to the development of innovative models that

can capture intricate patterns and dependencies in sequential data:

• Recurrent Neural Networks (RNN) and Variants (LSTM, GRU):

RNNs and their variants are specifically designed to handle sequential data,

learning long-term dependencies and temporal patterns with significant suc-

cess [48, 49, 50, 51, 52, 53, 54].

• Transformers: Originally designed for natural language processing, Trans-

formers have been adapted for sequential data, offering efficient handling of

long-range dependencies [55, 56, 57, 58, 59, 60].

5. Differential Equations in Modern Data Analysis

Bridging traditional differential equations with modern learning techniques has

resulted in powerful models for sequential data:

• Neural Ordinary Differential Equations (NODEs): Integrating ODEs

with neural networks, NODEs model the continuous evolution of data, offering

a flexible approach to modeling complex systems [61, 62, 63, 64, 65, 66, 67].

5

Introduction Chapter 1

• Neural Stochastic Differential Equations (NSDEs): NSDEs extend

NODEs by incorporating stochasticity, capturing the irregular and noisy na-

ture of many real-world time series [68, 69, 70, 71].

• Neural Controlled Differential Equations (NCDEs): NCDEs specifi-

cally address the challenges of irregularly sampled time series data, providing

a robust framework for handling a wide variety of data types [72, 73, 74].

1.3 Current Trends and Challenges

Recent advances have significantly enhanced the capability of time series models, but

they also present new challenges and opportunities:

• Handling Non-Stationarity: Non-stationary data, common in real-world applica-

tions, pose significant challenges. Models must adapt to changing trends and

variances over time. Techniques for tackling non-stationarity include differencing,

transformation, and advanced decomposition methods [75].

• High-Dimensionality and Multivariate Time Series: As data complexity increases,

models must efficiently handle multivariate and high-dimensional time series, cap-

turing interactions between multiple series and variables [76].

• Irregular Sampling and Missing Values: Real-world data often come with irregularly

sampled or with missing values. Models must be robust to these irregularities, often

requiring innovative approaches to interpolation and imputation [77].

• Interpretability and Trustworthiness: Although deep learning models provide im-

proved predictive accuracy, their ”black-box” nature poses challenges to inter-

pretability and trust. There is a growing demand for models that balance predictive

power with explainability, especially in critical applications [78].

6

Introduction Chapter 1

• Computational Efficiency and Scalability: With the increasing size and complexity

of the data, computational efficiency and the ability to scale become critical. This

includes the need for models that can be trained and deployed efficiently without

compromising performance [28].

In response to these challenges, this thesis presents a comprehensive study and novel

contributions in the following structure:

• Chapter 2: Applications of Signature Transformation: Focusing on the

versatility of signature transformation in capturing essential dynamics of sequen-

tial data, this chapter will delve into its application in classification, distribution

regression, and beyond, providing a robust solution for complex time series analysis.

• Chapter 3: Applications of Neural Differential Equations: Exploring the

practical applications of NODEs and NSDEs, this chapter will demonstrate their

efficacy in modeling physical systems and other real-world phenomena, showcasing

the power of continuous-depth models.

• Chapter 4: Training Strategy Analysis - Channel Independence versus

Channel Dependence: This chapter investigates the efficacy of Channel Inde-

pendent (CI) and Channel Dependent (CD) training strategies in multivariate time

series forecasting. It presents a rigorous mathematical formulation and theoretical

analysis to elucidate why the CI strategy often exceeds the CD strategy. Our anal-

ysis reveals that the superiority of the CI approach is mainly due to its robustness

to distribution shifts between training and test datasets, a common scenario in

real-world applications.

7

Chapter 2

Rough Path Theory and Signature

2.1 Rough Path Theory

Rough Path Theory emerges as a pivotal mathematical framework designed to analyze

and integrate paths characterized by highly irregular behaviors, thus extending classical

analysis to signals or paths that are too ”rough” for traditional methods. This chapter

delves into the foundational concepts of Rough Path Theory, including the basics of rough

paths with formal definitions and preliminary notations that underpin this advanced

field. The theory extends the boundaries of conventional analysis, offering new vistas

for understanding complex, non-smooth dynamics that are prevalent in numerous real-

world phenomena. For readers keen on exploring this topic in greater depth, works

like [79, 80, 81, 82, 83, 84, 85] provide comprehensive insights into the intricacies of

Rough Path Theory. These references serve as a cornerstone for those wishing to gain a

thorough grasp of the theory’s principles and applications, offering a blend of foundational

knowledge and advanced theoretical developments.

8

Rough Path Theory and Signature Chapter 2

2.1.1 Preliminaries and Notations

Before diving into the specifics of rough paths and their properties, let’s establish the

basic notations and concepts used throughout the discussion of Rough Path Theory.

Let I = [0, T] be a closed time interval and consider a path X : I → Rd mapping

from the interval into a d-dimensional space. The set of all partitions of I is denoted as

P(I), where a partition is a finite sequence D := (t0, t1, . . . , tn) such that 0 = t0 < t1 <

. . . < tn = T .

Furthermore, we introduce the concept of the increment of a path over a subinterval

of I. For any [s, t] ⊂ I, the increment of X over [s, t] is given by Xs,t = Xt −Xs, where

Xs and Xt are the values of the path at times s and t, respectively.

2.1.2 Basics of Rough Paths

We first introduce the concept of p-variation, a measure of a path’s irregularity, which

plays a central role in defining rough paths.

Definition 1 (p-variation). The p-variation of a path X on the interval I = [0, T] is

defined as:

Vp(X; [0, T]) =

(
sup

D∈P(I)

n−1∑
i=0

∥Xti+1
−Xti∥p

) 1
p

, (2.1)

where ∥ · ∥ denotes the Euclidean norm in Rd. A path is said to have finite p-variation if

Vp(X; [0, T]) is finite for some p ≥ 1.

The concept of p-variation is foundational in understanding the irregularity and com-

plexity of paths considered in rough path theory. It provides a quantifiable measure of

a path’s roughness and is a prerequisite for defining rough paths [79]. The choice of p

directly correlates to the regularity of the path; higher p values indicate higher irregu-

larity, and for a path with finite p-variation, it can be shown that it is continuous with

9

Rough Path Theory and Signature Chapter 2

respect to the p-variation norm, a property fundamental when dealing with integration

and differential equations driven by such paths [84].

Definition 2 (Tensor Product). Given vectors v1, v2, . . . , vn ∈ Rd, their tensor product

v1 ⊗ v2 ⊗ . . . ⊗ vn is an element in (Rd)⊗n, defined by the outer product of the vectors.

The result is a tensor of order n, which can be represented as a multidimensional array.

For example, consider two vectors v1, v2 ∈ R2 where v1 = (a1, a2) and v2 = (b1, b2).

Their tensor product, v1 ⊗ v2, is computed as follows:

v1 ⊗ v2 =

a1 · b1 a1 · b2

a2 · b1 a2 · b2

 .

This result is a 2 × 2 matrix, which is an element of (R2)⊗2. The matrix entries are

formed by multiplying the elements of v1 with those of v2 in a manner consistent with

the definition of the outer product.

The tensor product of vectors leads to higher-dimensional analogs of vectors, known

as tensors. The role of tensor algebra is foundational in Rough Path Theory, providing

the necessary structure for understanding iterated integrals and signatures. The space

of tensors, equipped with shuffle and unshuffle products, forms an algebra that is deeply

intertwined with the combinatorial aspects of iterated integrals.

With this understanding, we can now define a rough path.

Definition 3 (Rough Path). A rough path over a path X : I → Rd is a sequence

X = (1, X,X(2), . . . ,X(n)) where X is the path itself, and X(i) for i ≥ 2 are the iterated

integrals of X. These iterated integrals are defined inductively by:

X(n)
s,t =

∫ t

s

X(n−1)
s,u ⊗ dXu. (2.2)

10

Rough Path Theory and Signature Chapter 2

This sequence must satisfy specific algebraic and analytic conditions, including conti-

nuity with respect to the p-variation norm and a coherence condition relating the iterated

integrals. A rough path is thus an enhanced version of the traditional path, incorporat-

ing not only the path’s increments but also higher-order information about its behavior,

allowing for the analysis and integration of paths with irregular trajectories.

These preliminary concepts lay the foundation for understanding Rough Path Theory

and its applications. The p-variation provides a means to quantify the irregularity of

paths, while the rough path itself, with its iterated integrals, offers a robust framework

for analyzing and integrating such paths.

2.1.3 Rough Integrals

In rough path theory, controlled paths constitute a specific class of paths that align

with a given rough path, thereby enabling meaningful integration against it.

Definition 4 (Controlled Path). A path Y : [0, T] → Re is said to be controlled by a

rough path X = (1, X,X(2), . . . ,X(n)) over the interval [0, T] if there exists a Gubinelli

derivative Y ′ : [0, T] → (Rd)⊗(n−1), which approximates the increments of Y in relation

to the increments of X. Specifically, the remainder term Rs,t is defined as

Rs,t = Yt − Ys − Y ′
s ⊗Xs,t,

where Rs,t must exhibit finite p-variation for some p ≥ 1, indicating its negligible effect

over small intervals. Here, ⊗ denotes the tensor product operation between Y ′ and Xs,t.

This definition ensures that the path Y closely follows the structure of the driving

rough path X, thereby facilitating the rough integral of Y against X. This extends

classical integration to include paths with lower regularity.

11

Rough Path Theory and Signature Chapter 2

Definition 5 (Rough Integral). Given a controlled path Y , controlled by a rough path

X, the rough integral of Y with respect to X over an interval I = [0, T] is defined as

∫ T

0

Yu dXu = lim
∥D∥→0

∑
[ti,ti+1]∈D

YtiXti,ti+1
, (2.3)

where D represents a partition of [0, T]. Here, ∥D∥ = maxi(ti+1 − ti) denotes the maxi-

mum length of the subintervals.

The definitions provide a solid mathematical foundation, setting the stage for explor-

ing system evolution under the influence of rough paths.

The concept of rough integrals, introduced by Terry Lyons, broadens the scope of

classical integration to include semimartingales and functions beyond bounded variation.

This breakthrough permits the integration of paths that exhibit merely Hölder continuity

with an exponent greater than 1
2
. As a result, rough path theory, and by extension, rough

integrals, empower the meticulous examination of differential equations driven by such

paths.

2.1.4 Controlled Differential Equations (CDEs)

Controlled Differential Equations (CDEs) extend classical differential equations to

accommodate driving signals that are rough paths, marking a significant advancement

in Rough Path Theory. This extension facilitates a deeper understanding of system

evolution under the influence of irregular paths, addressing the complexities of modeling

real-world phenomena.

Definition 6 (Controlled Differential Equations). A Controlled Differential Equation

12

Rough Path Theory and Signature Chapter 2

(CDE), driven by a rough path X, is formulated as:

dYt = V (Yt) dXt, (2.4)

where Y : [0, T] → Re denotes the system’s state variable, and V : Re → L(Rd,Re)

represents a smooth vector field, dictating the system’s response. The differential dXt

symbolizes integration against the rough path X. The solution Yt evolves in a manner

controlled by the rough path X, reflecting the cumulative effect of the driving signal on

the system

Properties

The solution to a CDE is a controlled path that adheres to the prescribed dynamics.

Formally, given an initial condition Y0, the solution Y to the CDE over [0, T] is the

controlled path satisfying:

Yt = Y0 +

∫ t

0

V (Ys)dXs,

where the integral is understood as a rough integral. The existence, uniqueness, and

stability of solutions typically hinge upon the regularity of the vector field V and the

rough path X, along with certain growth and Lipschitz conditions [84].

CDEs generalize several core principles from classical differential equations to the

context of rough paths, including:

1. Existence and Uniqueness: Provided specific conditions on the driving rough

path X and the vector field V are met, a unique solution to the CDE exists for any

given initial condition [79].

2. Continuity: The solutions to CDEs exhibit continuous dependence on both the

initial conditions and the driving rough path. This continuity guarantees that mall

13

Rough Path Theory and Signature Chapter 2

changes in the input lead to small changes in the output [82].

Controlled Differential Equations are pivotal in various domains, especially in model-

ing complex systems influenced by irregular signals. They are extensively used in financial

mathematics for modeling market dynamics where they can represent the evolution of

asset prices or interest rates under stochastic influences, in engineering for signal process-

ing, and in many other fields where inputs are inherently noisy or irregular. Specifically,

they pave the way for sophisticated models like neural CDEs, which are discussed in

Chapter 3. These models provide powerful frameworks for understanding and predicting

the behavior of complex systems under irregular influences.

2.2 Signature Transform

2.2.1 Mathematical Definitions

The signature of a path offers a detailed summary by capturing its geometric prop-

erties through an infinite series of iterated integrals.

Definition 7. Let E be a Banach space with a metric d(·, ·). The space of formal series

of tensors over E, denoted by T (E), is defined as

T (E) := {a = (a0, a1, · · ·)|∀n ∈ N, an ∈ E⊗n}. (2.5)

Here, ⊗ represents the tensor product, with the convention E⊗0 = R.

For elements a = (a0, a1, · · ·) and b = (b0, b1, · · ·) ∈ T (E), their addition and tensor

14

Rough Path Theory and Signature Chapter 2

product are defined as follows:

a + b = (a0 + b0, a1 + b1, · · ·);

a⊗ b = (c0, c1, · · ·),

where ck =
∑k

j=0 aj ⊗ bk−j computes the k-th convolution from the first k elements of a

and b.

Definition 8 (Signature). For a continuous path X(·) : I → E of finite p-variation,

p < 2, its signature, S(X)I , is defined as

S(X)I := (1, X1
I , X

2
I , · · ·) ∈ T (E), (2.6)

with each k-th level signature Xk
I being the k-th iterated integral:

Xk
I =

∫
s<u1<···<uk<t

dXu1 ⊗ · · · ⊗ dXuk ,

for k ≥ 1.

Considering E = Rm for an m-dimensional path X(t) = (X1(t), · · · , Xm(t)), we

express the signature for a multi-index (i1, · · · , ik), where i1, · · · , ik ∈ {1, · · · ,m}, as:

S(X)
(i1,··· ,ik)
s,t =

∫
s<u1<···<uk<t

dX i1
u1
· · · dX ik

uk
. (2.7)

Thus we have the signature of X as a vector:

S(X)I = (1, S(X)
(1)
I , · · · , S(X)

(m)
I , S(X)

(1,1)
I , · · · , S(X)

(1,m)
I , · · ·) ∈ T (Rm).

Definition 9 (Truncated signature). The signature of path X over interval I truncated

15

Rough Path Theory and Signature Chapter 2

at level l is

Sl(X)I = (1, S(X)
(1)
I , · · · , S(X)

(m)
I , · · · , S(X)

l︷ ︸︸ ︷
(m, · · · ,m)
I). (2.8)

2.2.2 Properties of the Signature

The signature of a path has several key properties that underscore its utility in ana-

lyzing path data:

1. Shift Invariance: Suppose we shift the whole path along a given direction, like

X̃(·) = X(·) + v⃗ where v⃗ = (v1, · · · , vm) ∈ Rm, then S(X̃)I = S(X)I because

∀i1, · · · , ik ∈ {1, · · · ,m},

S(X̃)
(i1,··· ,ik)
s,t =

∫
s<u1<···<uk<t

d(X i1
u1

− vi1) · · · d(X ik
uk

− vik) = S(X)
(i1,··· ,ik)
s,t . (2.9)

2. Invariance under time reparametrisations: Suppose ψ : I = [0, T] → [0, T]

is a reparametrisation and X̃(t) = Xψ(t), then we have ˙̃X i
t = Ẋ i

ψ(t)ψ̇(t),∀i ∈

{1, · · · ,m}. From this we have ∀i, j ∈ {1, · · · ,m},

S(X̃)
(i,j)
I =

∫ T

0

X̃ i
tdX̃

j
t =

∫ T

0

X i
ψ(t)Ẋ

j
ψ(t)ψ̇(t)dt =

∫ T

0

X i
tdX

j
t = S(X)

(i,j)
I . (2.10)

By induction, we can show that S(X̃)I = S(X)I .

Here is an example. Suppose the original path X(t) =

 t

t2

 , t ∈ [0, 1], and

the reparameterization function ψ(t) = t3. Then we have the reparameterized path

X̃(t) =

t3
t6

 , t ∈ [0, 1].

16

Rough Path Theory and Signature Chapter 2

Now let’s calculate the Signatures. For the original path X, we have

S(X)(1) =

∫ 1

0

dX(t) =

 ∫ 1

0
dt∫ 1

0
2t dt

 =

1

1

 ,

S(X)(1,1) =

∫ 1

0

∫ s

0

dX(u) ⊗ dX(s) =

∫ 1

0

∫ s

0

 1

2u

⊗

 1

2s

 du ds

=

∫ 1

0

∫ s

0

1

2s

2u

4us

du ds =

1
2

2
3

1
3

1
2

.

For the reparameterized Path X̃(t), we have

S(X̃)(1) =

∫ 1

0

dX̃(t) =

∫ 1

0

3t2

6t5

 dt =

∫ 1

0
3t2 dt∫ 1

0
6t5 dt

 =

1

1

 ,

S(X̃)(1,1) =

∫ 1

0

∫ s

0

dX̃(u) ⊗ dX̃(s) =

∫ 1

0

∫ s

0

3u2

6u5

⊗

3s2

6s5

 du ds

=

∫ 1

0

∫ s

0

9u2s2

18u2s5

18u5s2

36u5s5

du ds =

1
2

2
3

1
3

1
2

.

After calculating these integrals, we can see the signatures of the original path X(t)

and the reparameterized path X̃(t) are equal:

S(X̃)I = S(X)I for all I.

17

Rough Path Theory and Signature Chapter 2

This demonstrates the invariance of the signature under time reparameterization.

Chen’s Identity and Uniqueness of Signature are fundamental theorems that

further elucidate the mathematical structure and the robustness of the signature as an

analytical tool:

Theorem 1 (Chen’s Identity). For continuous paths X(·) : [0, t] → E and Y (·) : [t, T] →

E of finite p-variation (p < 2), their concatenation (X ∗ Y)(u), defined as

(X ∗ Y)(u) =

X(u), if u ∈ [0, t],

X(t) + Y (u) − Y (t), if u ∈ [t, T],

satisfies

S(X ∗ Y) = S(X) ⊗ S(Y). (2.11)

Applying Chen’s identity, we can calculate the k-th level signature of path by

Xk
[s,t] =

n∑
i=1

Xk
[ti−1,ti]

+
k−1∑
j=1

n∑
i=1

Xj
[s,ti−1]

⊗Xk−j
[ti−1,t]

, (2.12)

for every subinterval [s, t] ⊆ I with a given partition s = t0 < t1 < · · · < tn = t.

Theorem 2 (Uniqueness of Signature [86]). For any two paths X, Y : [0, T] → Rd of

finite p-variation, if their signatures are identical over the interval [0, T], then X and Y

are identical up to tree-like equivalence, assuming neither path is tree-like.

This theorem underscores the significance of the signature transform in ensuring that

the encoded geometric information of a path is sufficiently rich to recover the path’s orig-

inal trajectory, excluding non-informative tree-like segments. The proof of this theorem

involves sophisticated mathematical concepts from rough path theory, please see [83] for

a detailed exposition of the proof and further discussion.

18

Rough Path Theory and Signature Chapter 2

2.2.3 Log Signature: A Compact Representation

The log signature provides a compact representation of a path’s signature, which

is particularly useful when dealing with high-dimensional data. It simplifies the signa-

ture’s complexity by reducing the number of terms needed to capture the path’s essential

information.

Given a path X(·) : I → Rm and its signature truncated at level l, the exponen-

tial growth of the signature vector’s length, len(Sl(X)I), can be problematic for model

training due to high dimensionality:

len(Sl(X)I) =
l∑

i=0

mi =
ml+1 − 1

m− 1
.

For instance, augmenting a one-dimensional stochastic process X(·) : I → R to include

time as X̃(t) = (t,X(t)), t ∈ I, with m = 2. Then its length of the signature truncated

at level l is 2l+1 − 1. If the length of observed path is n = 100, we can see that when

l ≥ 6, we have len(Sl(X)I) > n. It means we use more features than the length of the

path to train the model. This is because we use redundant information in the signature

vector. A typical example is that

S(X)

l︷ ︸︸ ︷
(2, · · · , 2)
I =

(X2(T) −X2(0))l

l!
.

Thus we hope to store fewer values to improve the efficiency of training models.

Now, for fixed N , denote tN(Rm) = {a ∈ T ((Rm))|a = (0, a1, a2, · · ·), ∀n > N, an =

0}. Then for the vector space (tN(Rm),+, .), we define the commutator:

[g, h] := g ⊗ h− h⊗ g ∈ tN(Rm), ∀g, h ∈ tN(Rm). (2.13)

19

Rough Path Theory and Signature Chapter 2

It is easy to check this bilinear map is anticommutative:

[g, h] = −[h, g], ∀g, h ∈ tN(Rm), (2.14)

and it satisfies the Jacobi identity:

[g, [h, k]] + [h, [k, g]] + [k, [g, h]] = 0, ∀g, h, k ∈ tN(Rm). (2.15)

Thus, we have (tN(Rm),+, ., [·, ·]) is a Lie algebra.

Definition 10 (Exponential and logarithm map). Let a = (0, a1, · · ·) ∈ tN(Rm), then

the exponential map is defined by:

exp(a) = 1 +
N∑
n=1

a⊗n

n!
∈ 1 + tN(Rm). (2.16)

The logarithm map is defined by:

log(1 + a) =
N∑
n=1

(−1)n−1

n
a⊗n ∈ tN(Rm). (2.17)

Let X(·) : I → E be a continuous path of finite p-variation for some p < 2. Then

the log signature of the path X truncated at level l is defined by: lSl(X)I = log(Sl(X)I).

For example, suppose a,b ∈ t3(Rm), then

exp(a) ⊗ exp(b) =
(

1 + a +
a⊗2

2
+

a⊗3

6

)
⊗
(

1 + b +
b⊗2

2
+

b⊗3

6

)
=1 + a + b +

a⊗2

2
+ a⊗ b +

b⊗2

2

+
a⊗3

6
+

b⊗3

6
+

a⊗2 ⊗ b

2
+

a⊗ b⊗2

2
,

⇒ log(exp(a) ⊗ exp(b)) =a + b +
1

2
[a,b] +

1

12
[a, [a,b]] +

1

12
[b, [b, a]].

20

Rough Path Theory and Signature Chapter 2

Theorem 3. The log signature of path X(·) : I → Rm truncated at level l has length:

len(lSl(X)I) =
l∑

i=1

1

i

∑
x|i

µ(
i

x
)mx, (2.18)

where µ is the Mobius function. Detailed proof can be found in [87].

From this theorem we have the conclusion that the length of log signature vector

is less than that of a signature for the same path at the same truncation level. In

[88], there is a detailed table showing how log signature transformation significantly

reduces the number of features as level increases. Based on this property, we can use log

signature transformation to train the models based on fewer features without reducing

much precision rate.

2.2.4 Signature Calculation

Given a one-dimensional time series, the calculation of its signature requires the

transformation of the series into a multi-dimensional object that the signature transform

can process. Two common methods for this transformation are the addition of a time

dimension and the lead-lag transformation.

• Adding Time Dimension: The addition of a time dimension involves augmenting

each observationXt in the time series with its corresponding timestamp t, effectively

transforming the series into a two-dimensional path. Mathematically, this can be

represented as:

X̃t = (t,Xt),

where X̃t denotes the augmented path. This transformation ensures that the re-

sulting path captures not only the values of the time series but also the temporal

ordering of these values, which is crucial for the signature calculation.

21

Rough Path Theory and Signature Chapter 2

• Lead-Lag Transformation Given a time series {Xt}nt=1, the lead-lag transfor-

mation constructs a new sequence by interleaving the original series with its own

lagged version, resulting in a two-dimensional path. This transformation can be

concisely expressed as:

Lead-Lag(X) = {(Xt, Xt), (Xt+1, Xt)}n−1
t=1 ∪ {(Xn, Xn)}. (2.19)

This method ensures that each point in the time series is represented alongside

its preceding value, enriching the dataset without favoring either the lead or lag

values.

In practice, the lead-lag transformation may offer advantages over simply adding a

time dimension, particularly when the magnitude of the time series data significantly

differs from the scale of the time values. In the case of time addition, X̃t = (t,Xt),

such disparity in scale could result in one dimension overwhelming the other, potentially

obscuring important information. The lead-lag transformation, by contrast, preserves

the scale of the original data and avoids this issue by maintaining consistency in the di-

mensions’ magnitude. This characteristic makes the lead-lag transformation particularly

suitable for datasets where preserving the relative scale of data points is crucial.

For computational purposes, packages such as esig 1, iisignature [89], and signatory

[90] are available. Among these, signatory is preferred for its compatibility with PyTorch,

enabling GPU acceleration and efficient tensor operations, which are advantageous for

deep learning models.

1available from https://pypi.org/project/esig/

22

https://pypi.org/project/esig/

Rough Path Theory and Signature Chapter 2

2.3 Methods

2.3.1 Universal Approximation

A cornerstone of rough path theory is the Universal Approximation Theorem [91],

which posits that for any continuous function f over paths in a compact set, there exists

a linear combination of signature elements that can approximate f within any given error

bound. Formally, it states:

Theorem 4 (Universal Approximation Theorem for Signatures [91]). Let X ⊂ C(I, E)

be a compact set of paths and consider a continuous function f : X → R. Then for any

ϵ > 0 there exists a truncation level n ≥ 0 such that for any path X ∈ X ,

∣∣∣∣∣∣f(X) −
n∑
k=0

∑
J∈{1,...,d}k

αJS(X)J

∣∣∣∣∣∣ < ϵ, (2.20)

where αJ ∈ R are scalar coefficients.

The Universal Approximation Theorem highlights the signature’s ability to extract

and represent the critical information of paths, facilitating the accurate approximation of

path-dependent functions. This characteristic makes signatures immensely useful for fea-

ture generation from sequential data, allowing the application of diverse machine learning

and deep learning methodologies to develop predictive models. This approach leverages

the rich information encoded in the signatures, optimizing model performance across

various data analysis tasks.

2.3.2 Missing data and augmentation

In practical scenarios, datasets often come with missing observations. Traditional

approaches might discard such incomplete data, potentially losing valuable information.

23

Rough Path Theory and Signature Chapter 2

To maximize data utilization, various methods are employed to impute missing parts,

enhancing model performance.

The signature method exhibits remarkable robustness to missing data, a property

particularly beneficial for handling real-world datasets. Consider a path X(t) = (t, Bt)

over I = [0, 1], with Bt representing standard Brownian Motion. The signature elements

S(X)
(1,2)
I and S(X)

(2,1)
I are calculated as follows:

S(X)
(1,2)
I =

∫
0<s<t<1

dX1
sdX

2
t =

∫ 1

0

tdBt; S(X)
(2,1)
I =

∫ 1

0

Btdt.

These calculations are visually represented in Figure 2.1, where the shaded areas under

the curve illustrate the integral’s computation.

Figure 2.1: An illustration of the elements from the signature of the path. (Left) The

shadow area represents S(X)
(1,2)
I . (Right) The shadow area represents S(X)

(2,1)
I .

The robustness of the signature method to missing data is evident when considering

the removal of a data point from the path. Despite the absence of a point, the integral

calculations and thus the signature elements S(X)
(1,2)
I and S(X)

(2,1)
I remain largely un-

affected. This resilience is illustrated by the negligible shaded areas in Figure 2.2, even

24

Rough Path Theory and Signature Chapter 2

when some data points are omitted. The integral-based nature of the signature inher-

ently accounts for the continuous structure of the path, minimizing the impact of missing

discrete observations. This property is crucial for real-world applications where data may

often be incomplete. By leveraging the signature method’s inherent robustness to missing

data, we can retain more information from the available data, thereby enhancing model

training and analysis without substantial loss of accuracy or fidelity.

(a) Full path (b) Signature comparison

Figure 2.2: An illustration of the robustness of signature transformation.

Despite the signature method’s robustness to missing data, enhancing the dataset

through strategic transformations can further improve model performance. It’s essential

to recognize that the significance of missing data often lies not in the missing values

themselves but in understanding the circumstances of their absence. For instance, missing

stock prices might not be as interesting as the dates when these values are missing. The

absence of values often coincides with market closures during festivals or, more critically,

when a circuit breaker is activated. Similarly, in medical studies, if a treatment causes

discomfort, patients might cease recording specific indices in the research. Such patterns

of missingness are non-random and warrant further investigation. To address this, we

might introduce an extra dimension to capture information about the occurrence of

25

Rough Path Theory and Signature Chapter 2

missing values.

[x1,NA, x3, x4]

[y1, y2,NA, y4]

[x1, x1, x3, x4]

[y1, y2, y2, y4]

[0, 1, 2, 2]

Transformation

Figure 2.3: Data augmentation example for handling missing values.

Figure 2.3 illustrates an example of data augmentation for missing values. Here, NA

represents the missing values in the original dataset. We apply two transformations to

augment the data and mitigate the impact of missing values. Firstly, we replace NA

values with the nearest preceding observations in the dataset, maintaining the original

length of the dataset. This approach ensures that we preserve the non-NA observations

at each time point, thereby retaining significant information without significantly altering

the signature elements, due to the inherent robustness of the signature method. Secondly,

we introduce an additional dimension to record the cumulative count of missing values

at each time point. This dimension provides critical insights into the frequency and

patterns of missingness. Through this augmentation process, we generate a new dataset

which, upon applying the signature transformation, yields more features. Given that

len(Sl(X)I) = ml+1−1
m−1

, these additional features can significantly enhance the model’s

performance.

2.3.3 Distribution regression

Suppose we have a collection of observations structured in input-output pairs:

({
X1,j : I → E

}N1

j=1
, y1 ∈ R

)
, . . . ,

({
Xm,j : I → E

}Nm

j=1
, ym ∈ R

)
,

26

Rough Path Theory and Signature Chapter 2

where there are m groups of observations. For each group i, the output yi is a fixed real

number, and {X i,j}Ni

j=1 represents Ni independent paths corresponding to the parameter

yi for i = 1, . . . ,m. By incorporating the time parameter, we represent each path as

X i,j =
{

(t1, X
i,j
1), . . . , (tli,j , X

i,j
li,j

)
}

, where li,j is the length of the j-th sample path in

group i.

The empirical measure of group i is defined as:

δi =
1

Ni

Ni∑
j=1

δXi,j ∈ P(X), (2.21)

where δXi,j denotes the Dirac measure with a point mass at path X i,j. The expected

signature of the empirical measure is then given by:

Φ(δi) =
1

Ni

Ni∑
j=1

S(X i,j), (2.22)

illustrating the foundational approach for two distribution regression methods: kernel-

based and pathwise.

• A kernel-based approach (kerES):

(1) Calculate the signature of each path X i,j truncated at a fixed level l.

(2) Average the signature of paths from the same group to get the expected signa-

ture, i.e, Φl(δi) := 1
Ni

∑Ni

j=1 S
l(X i,j).

(3) Apply kernel ridge regression method to the transformed data

{(Φl(δ1), y1), · · · , (Φl(δm), ym)}.

• A pathwise approach (linSES):

(1) Calculate the pathwise signature of each path X i,j truncated at a fixed level l1,

i.e, for any given partition 0 = t0 < t1 < · · · < tn = T , calculate Sl1(X[0,ti]),∀ti.

27

Rough Path Theory and Signature Chapter 2

(2) Average the pathwise signature of paths from the same group to get the expected

pathwise signature which has dimension n× d with d = 2l1+1 − 1.

(3) For the new expected pathwise signature, calculate its signature truncated at

level l2, then we get dl2+1−1
d−1

features.

(4) Apply the Lasso regression method to select features from the new dl2+1−1
d−1

feature and fit the linear regression model.

For more details and mathematical backgrounds for these two models, please refer to

[91].

2.3.4 RNN models

Recurrent neural networks (RNNs [48]) have been shown to be effective in machine

learning applications based on time series, such as natural language processing (NLP).

Given a sequential input (x1, · · · , xn), where xk ∈ Rd,∀k ∈ {1, · · · , n} and d is the

dimension of the observation, at each time step t, an RNN generates a hidden state ht

based on the current input xt and the previous hidden state ht−1 by:

ht = f(xt, ht−1) (2.23)

Additionally, at each time step, an optional output can be generated by yt = g(ht).

However, classical RNN models struggle to learn longer-term dependencies and have

issues with vanishing or exploding gradients during backpropagation through time [92].

Long Short-Term Memory (LSTM) [49] and its variant, Gated Recurrent Units (GRU)

[53], were introduced to address these problems. LSTMs and GRUs are designed with

gating mechanisms that regulate the flow of information and enable better capturing of

long-range dependencies. These architectures have been widely adopted and have shown

28

Rough Path Theory and Signature Chapter 2

improved performance in various sequence modeling tasks.

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

ht

ht

Figure 2.4: An illustration of the LSTM model architecture at time t.

Figure 2.4 illustrates the architecture of the Long Short-Term Memory (LSTM) model

at each time step t. The sigmoid function is denoted as σ(x) = 1
1+e−x . At each step t,

the LSTM maintains an input gate it, a forget gate ft, an output gate ot, and a cell state

ct to store long-term memory. These components are updated as follows:

it = σ(Wixt + Uiht−1 + bi), (2.24)

ft = σ(Wfxt + Ufht−1 + bf), (2.25)

ot = σ(Woxt + Uoht−1 + bo), (2.26)

c̃t = tanh(Wcxt + Ucht−1 + bc), (2.27)

ct = it ⊙ c̃t + ft ⊙ ct−1, (2.28)

ht = ot ⊙ tanh(ct), (2.29)

where W∗, U∗ are the weight matrices and b∗ are the bias vectors. The operation ⊙
29

Rough Path Theory and Signature Chapter 2

denotes the element-wise vector product.

Gated Recurrent Units (GRUs) [53] are a lightweight variant of LSTMs, sharing a sim-

ilar architecture but requiring fewer parameters to train. GRUs have shown comparable

performance to LSTMs in various sequence modeling tasks while offering computational

efficiency.

At each time step t, a GRU updates a reset gate rt and an update gate zt as follows:

rt = σ(Wrxt + Urht−1 + br), (2.30)

zt = σ(Wzxt + Uzht−1 + bz), (2.31)

h̃t = tanh(Wxt + U(rt ⊙ ht−1) + b), (2.32)

ht = zt ⊙ ht−1 + (1 − zt) ⊙ h̃t. (2.33)

The reset gate rt determines how much of the previous hidden state should be retained,

while the update gate zt controls the balance between the previous hidden state and the

candidate hidden state h̃t. This gating mechanism allows GRUs to effectively capture

long-term dependencies while requiring fewer parameters compared to LSTMs.

2.4 Experiments and Results

2.4.1 Classification

In our analysis, we focus on the ARMA(1, 1) model and generate simulations for

four distinct classes of time series, each with a length of 100 observations. For every

class, we simulate 500 paths, incorporating white noise represented as εt ∼ N(0, 1). The

30

Rough Path Theory and Signature Chapter 2

generation process for each time series class is governed by the equations below:

Class 0: Yt = 0.4Yt−1 + εt + 0.5εt−1

Class 1: Yt = 0.8Yt−1 + εt + 0.7εt−1

Class 2: Yt = −0.4Yt−1 + εt + 0.5εt−1

Class 3: Yt = −0.8Yt−1 + εt + 0.7εt−1

Figure 2.5 presents a comparison between the different time series. The left panel

compares time series from Class 0 and Class 1, which have positive autoregressive (AR)

coefficients, while the right panel compares time series from Class 2 and Class 3, with

negative AR coefficients.

Figure 2.5: Four different time series. (Left) Comparison between time series from
Class 0 and Class 1 with positive AR coefficients. (Right) Comparison between time
series from Class 2 and Class 3 with negative AR coefficients.

We can observe from Figure 2.5 that the time series in the right panel, with negative

AR coefficients, exhibit more drastic changes compared to those in the left panel with

positive AR coefficients. This difference in behavior can be attributed to the sign of

the AR coefficients, which significantly influences the behavior and evolution of the time

series.

31

Rough Path Theory and Signature Chapter 2

For any given path Y = (Y1, · · · , Yn), we employ the lead-lag transformation (see

Equation 2.2.4) to extend the original path into a two-dimensional form, upon which we

then apply the signature transformation.

(a) Signature comparison (b) Logsignature comparison,

Class 0 and 1

(c) Logsignature comparison,

Class 2 and 3

Figure 2.6: (Left) Comparison between two signature values of paths from Class 0
and Class 1. (Middle) Comparison between two log-signature values of paths from
Class 0 and Class 1. (Right) Comparison between two log-signature values of paths
from Class 2 and Class 3.

We can observe from Figure 2.6 that the left panel shows the scatter plot of S(P0)
(1,2)

versus S(P1)
(2,1), where P0 and P1 are the paths simulated from Class 0 and Class 1,

respectively. From the left panel, we note that the two elements in the signature vector

are more widely distributed for Class 1, but it is difficult to distinguish the classes solely

based on these two elements. In the middle panel, we can see that the scatter plot of

log(S(P0)
(1)) versus log(S(P1)

(1,2)) exhibits a clear separation between the paths from

these two classes. This observation indicates that the logsignature can help distinguish

time series effectively, similar to the signature. However, the logsignature has a shorter

length compared to the signature because it retains most of the essential information from

the original time series while removing redundant information present in the signature

vector.

For the right panel, we observe that even the logsignature fails to distinguish paths

32

Rough Path Theory and Signature Chapter 2

from Class 2 and Class 3. This might be due to the fact that paths from these two

classes are negatively related and therefore exhibit more frequent changes within the

time interval, making it challenging for the signature and logsignature vectors to extract

useful information for classification.

Subsequently, we partition the observations from Classes 0 and 1 into training and

test sets in a 7:3 ratio. We apply both the signature and log-signature transformations,

followed by logistic regression with an l1 penalty for feature selection. The results are

presented in the confusion matrices below:

Table 2.1: Signature
TruePredicted 0 1

0 144 2
1 9 145

Table 2.2: logSignature
TruePredicted 0 1

0 142 4
1 14 140

We can observe that both the signature (Table 2.1) and logsignature (Table 2.2)

methods perform well in classifying observations from Class 0 and Class 1. The confusion

matrices show that the models are able to accurately distinguish between the two classes,

with high true positive rates and low false positive rates.

33

Rough Path Theory and Signature Chapter 2

2.4.2 Missing data

Figure 2.7: Examples of hand-written numbers from the pen-digit dataset. (Left)
Path of the number 4. (Right) Path of the number 5.

In this section, we use the pen-digit dataset. For the raw data and the code for data

cleaning, please refer to Pen-digit Data Clean. From Figure 2.7, we can observe that

there are obvious gaps between consecutive points in some of the handwritten numbers.

Although these gaps do not represent missing values, they arise from the discontinuity

in the writing process. To address this issue, we treat these gaps as missing values and

augment the raw data with an ”ink” dimension, which records the amount of int spent

while writing the number.

Figure 2.8 shows the distribution of the maximum distances between consecutive

points from records in the Pen-digit dataset. From the picture, we can observe that most

handwritten numbers do not have gaps greater than 30. Therefore, we set a threshold

of 30 to identify gaps between consecutive points. Based on this observation, we add

the ”ink” dimension following the rule: when d(Xn−1, Xn) > 30, inkn = inkn−1, which

means we did not spend any ink between the two points. When d(Xn−1, Xn) < 30,

inkn = inkn−1 + 0.01, indicating that we spent ink while writing down these consecutive

points.

34

https://github.com/logsigRNN/learn_sde/tree/master/Pen-digit_learning

Rough Path Theory and Signature Chapter 2

Figure 2.8: Histogram of maximum distances between two continuous points from the
Pen-digit dataset.

After the augmentation, we apply the Min-Max transformation

x̃ = 2 · x− min(x)

max(x) − min(x)
− 1

to the xy-coordinates, restricting all points to the square [−1, 1] × [−1, 1]. Then, we

apply the signature and logsignature transformations truncated at level 4 separately to

the raw data and augmented data and fit a linear regression model. We compare the

true classes with the predicted classes over the test dataset, and the precision rates are

presented in the following table:

From Table 2.3, we can observe that after using the missing data augmentation, the

precision rate is significantly improved. The logSignature method uses fewer features

35

Rough Path Theory and Signature Chapter 2

Table 2.3: Prediction precision rate
Signature logSignature

Raw-data 0.877 0.831
Augmented-data 0.942 0.902

than the signature method but achieves better performance.

Next, with the idea from [93], we will train the GRU model based on the raw data

and signatures. Since in each batch, the GRU model requires the input sequences to

have equal length, we will append [0, 0] to short paths and randomly drop some points

from long paths to make them have equal length of 50. Therefore, the input has a shape

of 50 × 2. To use the signature transformation, I divided the new paths into 3 parts

and calculated the signatures truncated at level 4 of each part. Besides, due to the

shift-invariance of the signature, I also added the first observation of each subpath to the

signature vector, which indicates the position of the subpath in the square. Consequently,

the Sig-GRU model has an input shape of 3 × 32. Additionally, we tried training the

GRU model based on the log signatures of the augmented data, which has an input shape

of 3 × 34.

Table 2.4: GRU Model Comparison
Training Time (s) Prediction Precision

GRU 160.49 95.62
Sig-GRU 15.04 91.97

logSig-GRU 15.21 93.20

From Table 2.4, we can observe that the GRU models indeed improve the prediction

precision rate compared to the classical logistic regression model. Additionally, we can

see that the GRU model has the greatest prediction precision, but the training time

is quite long. However, the signature-GRU and logsignature-GRU models have similar

prediction performance but require much shorter training times.

36

Rough Path Theory and Signature Chapter 2

2.4.3 Parameter Estimation

In this section, we will apply the two methods mentioned in Section 2.3.3: kerES

and linSES to see how signature transformation performs in estimating parameters.

The fractional Ornstein-Uhlenbeck (fOU) process is expressed as:

dPt = −a(Pt −m)dt+ γdWH
t ,

where a > 0 is the parameter we want to estimate, Pt is the stock price, m = 0.5 is

the mean of the price, γ = 0.08 is the volatility coefficient, and WH
t is the fractional

Brownian Motion (fBM) with Hurst parameter H. The volatility process is defined as

σt = exp(Pt).

The fractional Brownian Motion WH
t is a continuous-time Gaussian process that

satisfies the following properties:

E[WH
t] = 0,

E[(WH
t −WH

s)2] = σ2|t− s|2H ,

where σ2 is the variance parameter, and H ∈ (0, 1) is the Hurst parameter. The Hurst

parameter H controls the roughness or smoothness of the fractional Brownian Motion.

When H = 0.5, fBM reduces to standard Brownian Motion with independent increments.

When H > 0.5, the increments exhibit positive correlation or persistence, resulting in a

smoother behavior. Conversely, when H < 0.5, the increments exhibit negative correla-

tion or anti-persistence, leading to a rougher behavior.

In our experiment, we set H = 0.2, which gives us rough paths.

From Figure 2.9, we can observe that different values of a have an influence on the

variance of the fOU process paths when other parameters are fixed. The larger the value

37

Rough Path Theory and Signature Chapter 2

(a) a = 0.00001 (b) a = 0.001 (c) a = 0.1

Figure 2.9: Examples of fOU paths driven by different a values.

of a, the less volatile the entire path will be. We will randomly draw {aj}50j=1, where

aj ∼ Unif(0, 1). For each selected aj, we simulate 50 fOU volatility paths {σi,jt }50i=1 driven

by aj and use kerES and linSES for parameter estimation.

In kerES, we calculate the expected signature truncated at level 5. For the linSES

method, since the length of the simulated path is 300 (0 = t0 < t1 < · · · < t300 = 1), it

requires a lot of time and storage space to find the whole pathwise signature. To save

time and storage, we calculate the signature truncated at level 3 for the path σ[0,30k]

for k ∈ {1, 2, · · · , 10}. Then, for the new 10 × 14 path, we calculate the signature

truncated at level 2. Inspired by the fact that the logSignature transformation uses fewer

features and achieves almost the same performance, we also try to calculate the pathwise

logSignature truncated at level 4 in linSES, and for the new 10× 8 matrix, we calculate

the logsignature truncated at level 3.

Figures 2.10 and 2.11 depict the prediction performance of these two methods, as well

as the log-signature linSES, on the training set and test set, respectively. From the

figures, we can observe that all methods work, and linSES and log-signature linSES

perform better on the test set. However, this improved performance comes at the cost

of more training time and storage space. Additionally, the log-signature linSES does

not outperform the linSES.

38

Rough Path Theory and Signature Chapter 2

(a) kerES (b) linSES-Signature (c) linSES-logSignature

Figure 2.10: Performance of kerES and linSES on the training set.

(a) kerES (b) linSES-Signature (c) linSES-logSignature

Figure 2.11: Performance of kerES and linSES on the test set.

Next, we compare the kerES, linSES, and sigGRU models under the condition

H = 0.5. In this case, the model is the classical Ornstein-Uhlenbeck (OU) process.

(a) a = 0.001 (b) a = 0.1

Figure 2.12: Examples of OU paths driven by different a values.

39

Rough Path Theory and Signature Chapter 2

(a) kerES (b) linSES (c) SigGRU

Figure 2.13: Performance of kerES, linSES and SigGRU on the test set.

Figure 2.13 shows a different result from the previous one. In this example, the kerES

model performs better than the linSES model, while the SigGRU seems not to work

at all.

2.4.4 Frequency Detection

Seasonality, a recurring pattern within time series data, significantly influences various

scientific and economic domains. Unraveling these periodic trends is paramount for

accurate forecasting, anomaly detection, and strategic decision-making. The two most

widely used techniques for seasonality or frequency detection are Fast Fourier Transform

(FFT) and Lomb-Scargle analysis, particularly adept at handling regular and irregular

time series, respectively.

1. Fast Fourier Transform: The FFT algorithm ([94]) efficiently computes the

Discrete Fourier Transform (DFT), which transforms a time series from the time

domain into the frequency domain. In the DFT formula:

X(k) =
N−1∑
n=0

x(n) · e−
i2π
N
kn (2.34)

where

40

Rough Path Theory and Signature Chapter 2

• X(k) is the amplitude and phase of the frequency component at frequency k;

• x(n) is the observed time series with a total of N observations.

When k corresponds to a true frequency in the time series, X(k) exhibits a peak,

indicating a strong presence of that frequency in the data. Thus, the magnitudes

|X(k)| for dominant frequencies will be significantly higher than others in the time

series. Therefore, the FFT allows the identification of dominant frequencies that

represent the underlying seasonalities.

2. Lomb-Scargle Periodogram: While FFT is proficient with evenly spaced data,

the Lomb-Scargle analysis ([95], [96]) extends the exploration of seasonality into

the realm of irregular time series. Its formula:

P (ω) =
1

2σ2

[∑N−1

n=0 (xn − x̄) cosω(tn − τ)
]2

∑N−1
n=0 cos2 ω(tn − τ)

+

[∑N−1
n=0 (xn − x̄) sinω(tn − τ)

]2
∑N−1

n=0 sin2 ω(tn − τ)

(2.35)

where

• σ2 is the variance of the observed data;

• τ is a time offset that makes the periodogram invariant to shifts in time;

• P (ω) represents the power associated with a particular frequency ω.

A significant peak in P (ω) at a certain frequency indicates a strong periodic com-

ponent at that frequency.

The Lomb-Scargle method is particularly salient in astronomical observations, en-

vironmental studies, and any field grappling with data irregularities, as it maintains

high sensitivity to periodic signals even with missing or sparse data points.

41

Rough Path Theory and Signature Chapter 2

In our study, we also try to apply the signature transformation to detect frequencies

of time series. Here are the steps of our method:

1. Apply the Lead-Lag transformation (2.2.4) if the original time series is 1-dimensional,

so that we can calculate its signature vectors.

2. For all possible frequencies f = 1
d
, where d is the duration of the seasonality ranging

from 1 to l
2
, and l is the length of the entire time series, we calculate the signature

vectors of all subpaths with length d, and then compute the average l2 distance

between each vector.

3. Sort all average l2 distances, and the smallest k distances represent the k most

likely frequencies.

The proposed algorithm, while theoretically sound, failed to perform well in detect-

ing frequencies accurately on real-world datasets. Despite our initial motivation that

signature vectors could potentially serve as an alternative to Fourier-based methods for

frequency detection, especially for irregular time series, the experimental results were un-

satisfactory. Several factors may contribute to the algorithm’s suboptimal performance:

1. Truncation of Signature Vectors: In practice, we truncate the signature (or

log-signature) vectors at a certain level N for computational feasibility. However,

this truncation can lead to information loss, as the infinite signature vector is a

one-to-one mapping of the original time series. Truncating the signature vector

at level N may miss some higher-order features essential for accurate frequency

detection.

2. Magnitude Variations in Higher-Order Signatures: The signature terms

are computed as iterated integrals, and their magnitudes can either explode or

42

Rough Path Theory and Signature Chapter 2

diminish for higher levels, depending on the characteristics of the time series. The

magnitude variations in higher-order signature terms can cause the l2 distance, used

as a similarity measure between signature vectors, to be dominated by a few large

terms or insensitive to small but informative terms, hindering accurate frequency

detection.

3. Non-stationarity and Noise: Real-world time series data often exhibits non-

stationarity and is contaminated with noise and irregularities. These factors can

distort the signature representation and adversely affect the frequency detection

process.

4. Choice of Lead-Lag Transformation: The Lead-Lag transformation used to

generate higher-dimensional paths from a one-dimensional time series may not be

optimal for frequency detection, and alternative transformations or pre-processing

steps could be more suitable.

Despite our initial motivation to leverage signature vectors for frequency detection,

particularly for irregular time series, the experimental results indicate that this approach

cannot reliably match the accuracy of well-established methods like the Fast Fourier

Transform (FFT). Further research is needed to explore alternative techniques, similar-

ity measures, or a combination of signature transformations with other frequency analysis

methods to improve the performance of signature-based approaches for frequency detec-

tion.

43

Chapter 3

Neural Differential Equations

3.1 Neural Ordinary Differential Equations (NODEs)

3.1.1 Overview

Introduction to Neural ODEs

Neural Ordinary Differential Equations (Neural ODEs), as introduced by [61], repre-

sent a revolutionary approach in the field of deep learning, blending the discrete compu-

tational models traditionally used in machine learning with the continuous models preva-

lent in physical sciences and engineering. Unlike conventional neural networks, such as

feedforward and recurrent neural networks that operate on discrete data across spatial

or temporal dimensions, Neural ODEs are designed to model continuous-time dynamics.

This distinction allows Neural ODEs to encapsulate the inherently continuous nature of

many real-world phenomena, evolving over time in a way that traditional models may

not accurately capture.

At the core of Neural ODEs is the concept of parameterizing the derivative of a hidden

state with respect to a continuous variable, such as time, through a neural network. This

44

Neural Differential Equations Chapter 3

neural network learns the vector field dictating the hidden state’s evolution across the

input range, effectively bridging the gap between discrete layer-based architectures and

continuous-depth models. The inspiration for Neural ODEs can be traced back to the ob-

servation that Residual Networks (ResNets) [97] can be viewed as an Euler discretization

of continuous transformations, as governed by Ordinary Differential Equations (ODEs).

This continuous-depth approach to modeling allows Neural ODEs to achieve several

significant advantages over traditional architectures. It enables constant-memory compu-

tation by calculating the hidden state on-the-fly during evaluation, without the need to

store intermediate values. Additionally, Neural ODEs offer flexibility in handling irreg-

ularly sampled data and provide a natural framework for interpreting continuous-time

processes. The integration of ODE solvers at inference time allows for the network’s

evolution to be modeled as a continuous process, enhancing the representational power

and interpretability of Neural ODEs in domains where continuous dynamics are crucial.

Problems Addressed

Neural ODEs elegantly address several challenges inherent to discrete models:

• Memory Efficiency: By leveraging the adjoint method for backpropagation, Neu-

ral ODEs significantly reduce the memory footprint during training, as they do not

require storing intermediate states.

• Handling of Irregular Time Series: Their continuous nature makes Neural

ODEs particularly suited for modeling time series data sampled at irregular inter-

vals, a common scenario in many real-world applications.

• Flexibility and Generalization: Neural ODEs can theoretically represent an

infinite depth network, providing a flexible framework that can adapt to the com-

plexity of the data.

45

Neural Differential Equations Chapter 3

Important Follow-up Work

Following the foundational work on Neural ODEs, several significant research direc-

tions have emerged, focusing on extending the framework and enhancing its practicality

and efficiency. Key developments include:

• Augmented Neural ODEs enhance the model’s ability to learn complex func-

tions by augmenting the state space, thus improving stability and generalization

[63].

• Neural Stochastic Differential Equations (SDEs) extend Neural ODEs to

stochastic settings, allowing for the modeling of systems influenced by inherent

randomness, thereby broadening the scope of applications significantly [68, 69, 70].

• Neural Controlled Differential Equations (CDEs) offer a framework for ef-

ficiently handling irregular time series by incorporating control signals into the

continuous dynamics, enhancing their applicability to a wide range of real-world

datasets [72].

• FFJORD: Free-form Continuous Dynamics for Scalable Reversible Gen-

erative Models utilizes continuous dynamics for reversible generative modeling,

allowing unrestricted neural network architectures in the dynamics function for

improved density estimation and variational inference [62].

• Neural Manifold ODEs aim to model data residing on manifolds with continuous

dynamics, facilitating the processing of complex geometrical and topological data

structures [65].

• Some works focus on accelerating the training process of Neural ODEs, addressing

the challenges of training stability and efficiency: [66] delves into Jacobian and

46

Neural Differential Equations Chapter 3

kinetic regularization, while [67] optimizes the adjoint method for quicker and more

memory-efficient backpropagation.

This vibrant trajectory of research reflects the deepening and broadening of Neural

ODEs’ theoretical foundations and practical applications, illustrating the community’s

ongoing commitment to refining and expanding this versatile modeling framework.

3.1.2 Mathematical Backgrounds

ODE Review

An Ordinary Differential Equation (ODE) describes the relationship between a func-

tion and its derivatives, providing a way to model the change in a system over a continuous

variable, typically time. Formally, an ODE for a function y(t) is given by:

dy(t)

dt
= f(t, y(t)), (3.1)

where f(t, y(t)) is a function of t and y(t). The solution to an ODE is the function y(t)

that satisfies this equation for given initial conditions y(t0) = y0.

Classical solvers for ODEs range from simple methods like the Euler approximation

to more complex, adaptive step-size methods. The Euler method, in particular, updates

the value of y(t) in discrete steps as follows:

yn+1 = yn + hf(tn, yn), (3.2)

where h is the step size. This discrete update mechanism is conceptually similar to the

way Residual Networks (ResNets) update their hidden states:

hn+1 = hn + f(hn, θn), (3.3)

47

Neural Differential Equations Chapter 3

with θn representing the parameters of the n-th layer of the network, and f(·, ·) embody-

ing the layer’s transformation function. This resemblance between the discrete steps of

Euler’s method for solving ODEs and the layer-wise updates in ResNets inspired the

development of Neural ODEs. By modeling the hidden state transformation as a contin-

uous process governed by an ODE, Neural ODEs extend the discrete update strategy of

ResNets into a continuous domain, allowing for an infinitely deep model conceptualized

through continuous dynamics.

Theorem 5. (Picard–Lindelöf Theorem [98]) Let D ⊆ R × Rn be a closed rectangle

with (t0, y0) ∈ D. Let f : D → Rn be a function that is continuous in t and Lipschitz

continuous in y. Then, there exists some ε > 0 such that the initial value problem:

y′(t) = f(t, y(t)), y (t0) = y0. (3.4)

has a unique solution y(t) on the interval [t0 − ε, t0 + ε] .

This theorem is crucial in the analysis of ODEs as it guarantees the existence and

uniqueness of solutions under certain conditions, a property that will be later leveraged

to discuss the efficacy of the Neural ODE model.

NODE Algorithm

Neural Ordinary Differential Equation (NODE) Algorithm The Neural ODE

algorithm leverages the continuous nature of ODEs to model the transformation of hidden

states in a neural network. This continuous transformation is parameterized by a neural

network, termed as the dynamics function fθ(t, h(t)), where h(t) represents the hidden

state at time t, and θ denotes the parameters of the neural network. The evolution of

48

Neural Differential Equations Chapter 3

h(t) from an initial state h(t0) to a final state h(t1) is governed by the following ODE:

dh(t)

dt
= fθ(t, h(t)). (3.5)

Adjoint Method The key to efficiently training Neural ODEs lies in the adjoint

method, a technique for calculating gradients of a cost function L with respect to the

parameters θ, without retaining the entire trajectory of h(t) during backpropagation.

This method computes the gradient dL
dθ

by solving an additional ODE backward in time.

The adjoint state a(t) = ∂L
∂h(t)

captures the sensitivity of the loss with respect to the

hidden state at any time t. The evolution of a(t) is described by the adjoint equation:

da(t)

dt
= −a(t)T

∂fθ(t, h(t))

∂h(t)
. (3.6)

Solving this equation backward in time, from t1 to t0, allows us to compute the gradients

with respect to the hidden states throughout the trajectory.

To update the parameters θ, we also need to compute the gradient of the loss with

respect to θ. This is achieved by integrating another term alongside the adjoint state:

dL

dθ
= −

∫ t0

t1

a(t)T
∂fθ(t, h(t))

∂θ
dt. (3.7)

By solving this integral backward in time, the adjoint method efficiently computes the

gradient of the loss with respect to the parameters θ, enabling the update of the model

parameters using gradient descent or other optimization algorithms.

This adjoint-based approach significantly reduces the computational cost and memory

requirements of training Neural ODEs, as it obviates the need to store the forward pass’s

intermediate states. Moreover, it aligns with the continuous nature of Neural ODEs,

allowing for the flexible adjustment of the model’s complexity by simply changing the

49

Neural Differential Equations Chapter 3

integration bounds.

NODE for Time Series Prediction

Loss Functions in Time Series Prediction To guide the learning process, a loss

function is employed to quantify the discrepancy between the model’s predictions and

the actual data. The choice of the loss function can vary based on the project’s objec-

tives, with common options including Mean Squared Error (MSE), Mean Absolute Error

(MAE), and Symmetric Mean Absolute Percentage Error (SMAPE).

• Mean Squared Error (MSE): The MSE is widely used for regression tasks,

including time series prediction. It calculates the average of the squares of the

errors between the predicted and actual values. Mathematically, it is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (3.8)

where yi represents the actual value and ŷi the predicted value for the i-th data

point, and n is the number of data points.

• Mean Absolute Error (MAE): The MAE measures the average magnitude of

errors in a set of predictions, without considering their direction. It is defined as:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (3.9)

providing a straightforward measure of prediction accuracy with the same units as

the data.

• Symmetric Mean Absolute Percentage Error (SMAPE): SMAPE is an ac-

curacy measure based on percentage errors, which is less sensitive to large outliers

50

Neural Differential Equations Chapter 3

than MSE and MAE. SMAPE is defined as:

SMAPE =
100%

n

n∑
i=1

|yi − ŷi|
(|yi| + |ŷi|)/2

, (3.10)

making it a useful metric when dealing with datasets that span several orders of

magnitude and where the relative error is more meaningful.

These metrics are instrumental in evaluating the efficacy of predictive models by

quantitatively measuring the discrepancies between the predicted outputs and the actual

observed values. This comparison not only serves as a benchmark for model performance

but also directs the adjustment of the model’s parameters to improve its performance.

NODE-VAE Architecture A Variational Autoencoder (VAE) is a generative model

that leverages deep learning and Bayesian inference to learn latent representations of

high-dimensional data. The model consists of two main components: an encoder and a

decoder. The encoder compresses the data into a latent space representation, while the

decoder reconstructs the data from this latent representation. The objective of a VAE

is to maximize the Evidence Lower Bound (ELBO), balancing reconstruction accuracy

with model complexity.

For time series data X ∈ Rd×n, with d denoting the feature dimension and n the num-

ber of timestamps, traditional VAEs face challenges due to the discrete and potentially

irregular temporal nature of the observations. Here, X comprises sequences of feature

vectors at timestamps {Xt0 , . . . ,Xtn}, where the interval tj − tj−1 may vary.

Integrating Neural Ordinary Differential Equations (NODEs) within the VAE frame-

work provides a solution to these challenges by modeling the latent variables’ continuous

dynamics. This approach is particularly suited for handling irregular sampling intervals

in time series data.

51

Neural Differential Equations Chapter 3

Figure 3.1: NODE-VAE architecture for time series prediction

From figure 3.1 [61], we can see that given a time series x(t) = {xt0 ,xt1 , . . . ,xtN}, the

RNN encoder processes the data sequentially to produce hidden states ht that capture

the temporal dependencies. Then, the latent distribution at the initial time point t0 is

parameterized by the mean µ and variance σ2 derived from the RNN encoder:

q(zt0|xt0 , . . . ,xtN) = N (µ, σ2). (3.11)

A sample zt0 from this distribution initializes the NODE, which is defined by the

differential equation:

dz(t)

dt
= f(z(t), t; θ). (3.12)

Here, f is a neural network parameterized by θ, encoding the time derivatives of the

latent states. This NODE is capable of evolving the latent states across arbitrary time

points, enabling interpolation and extrapolation to predict future states ztm , which the

decoder then maps to the predicted time series x̂(t).

The training of the NODE-VAE model is driven by the maximization of the Evidence

52

Neural Differential Equations Chapter 3

Lower Bound (ELBO), given by:

L(θ;x) = Eq(zt0 |x)[log p(x|zt0)] − KL[q(zt0|x)||p(zt0)]. (3.13)

The ELBO is composed of two key terms: The first term Eq(zt0 |x)[log p(x|zt0)] is

the expected log likelihood of the observed data, which reflects the accuracy of data

reconstruction from the latent variables. This term encourages the decoder to generate

data closely resembling the original input. Maximizing this term directly reduces the

reconstruction error, compelling the latent variables to capture the essential features of

the data for accurate reconstruction.

The second term KL[q(zt0|x)||p(zt0)] is the KL divergence, acting as a regularizer that

measures how much the approximate posterior distribution of the latent variables deviates

from their prior distribution. Minimizing the KL divergence enforces the encoded latent

variables to remain close to the prior, encouraging the latent space to be well-structured

and avoiding overfitting to the training data.

By maximizing the ELBO, we aim to train a model that not only reconstructs the

training data accurately but also captures the underlying probabilistic structure, ensuring

that the model can generalize well and generate new, plausible time series sequences.

[64] explores various configurations within the VAE framework to effectively model

time series data that exhibit irregular sampling. The paper investigates different com-

binations of encoders and decoders, specifically contrasting ODE-based and RNN-based

architectures. The configurations examined include ODE-ODE, where both the encoder

and decoder are ODEs; RNN-ODE, with an RNN encoder and an ODE decoder; and

RNN-RNN, where both components are RNNs.

Empirical results from the study reveal that the ODE-ODE configuration yields the

best performance among the architectures tested. This configuration, by employing con-

53

Neural Differential Equations Chapter 3

tinuous dynamics models for both encoding and decoding phases, demonstrates a superior

ability to handle the challenges posed by irregular sampling in time series data. The con-

tinuous nature of ODEs offers a natural and coherent approach for modeling time series

data, providing flexibility and robustness that are advantageous for capturing complex

temporal patterns, especially when the time points are non-uniformly distributed.

3.1.3 Important follow-up works

Following the introduction of Neural Ordinary Differential Equations (NODEs), re-

searchers have explored various directions to extend their applicability and address inher-

ent limitations. In this section, we will focus on two significant developments: Augmented

Neural ODEs (ANODEs) and Neural Manifold ODEs.

To better understand the theoretical foundations and practical advantages of these

advancements, we first need to review the concept of manifolds, which plays a central

role in these extensions. The notion of manifolds, along with the associated tangent

spaces and geometric properties, will provide the necessary mathematical background to

understand how ANODEs and Neural Manifold ODEs improve the traditional NODE

framework by accommodating more complex geometrical and topological structures.

Other dynamic function approximation methods, such as Neural Stochastic Differ-

ential Equations (NSDEs), which also present important extensions of NODEs, will be

discussed in detail in the subsequent section.

Manifold Review

A manifold is a mathematical space that, at a small enough scale, resembles the Eu-

clidean space and can be mapped to coordinate planes or open subsets of Euclidean space.

Formally, a manifold M can be defined as a set that is a Hausdorff space, with a count-

54

Neural Differential Equations Chapter 3

able basis, and locally homeomorphic to Rn, making it a locally Euclidean topological

space of dimension n.

Definition 11 (Manifold). A manifold of dimension n, denoted as M, is a topological

space where every point p ∈ M has a neighborhood U that is homeomorphic to the

Euclidean space Rn. This homeomorphism ϕ : U → Rn is called a chart. The dimension

n is called the dimension of the manifold.

Definition 12 (Atlas). An atlas for a manifold M is a collection of charts {(Ui, ϕi)}

that together cover the entire manifold. The manifold M is said to be smooth if the

transition maps ϕi ◦ ϕ−1
j are smooth for every pair i, j where Ui ∩ Uj ̸= ∅.

Definition 13 (Transition Functions). The transition functions between two over-

lapping charts (U, ϕ) and (V, ψ) are the maps ϕ ◦ ψ−1 : ψ(U ∩ V) → ϕ(U ∩ V) and

ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V). These functions must be smooth for M to be a smooth

manifold.

Definition 14 (Tangent Space). The tangent space at a point p on a manifold M,

denoted as TpM, is a vector space that consists of the tangent vectors at p. These vectors

represent the directions in which one can ”move” through p, and they are formally the

derivatives of curves passing through p.

Examples of Manifolds and Their Tangent Spaces:

• Circle (S1): The tangent space at any point on the circle S1 can be visualized as

the line tangent to the circle at that point. It is isomorphic to R.

• Sphere (S2): The tangent space at any point on the sphere S2 is the plane that

touches the sphere at that point and is perpendicular to the radius at that point.

It is isomorphic to R2.

55

Neural Differential Equations Chapter 3

• Torus (S1 × S1): The torus, typically represented as a product of two circles,

S1 × S1, is a manifold of dimension 2. The tangent space at a point on the torus

is the direct sum of the tangent spaces of the two circles that form the torus, each

isomorphic to R. Thus, it is isomorphic to R2.

Manifolds are fundamental in many areas of science and engineering, such as in the

theory of relativity, where the universe is modeled as a four-dimensional manifold, and in

robotics and computer graphics, where configurations and movements are often modeled

using manifold theory.

Hyperbolic Space and Its Mathematical Structure

Hyperbolic space, denoted Hn, is a model of n-dimensional non-Euclidean geometry

characterized by a constant negative curvature. Unlike Euclidean spaces, hyperbolic

spaces expand rapidly away from any given point, and the geometry of lines and triangles

significantly differs.

Definition 15 (Hyperbolic Space). Hyperbolic space Hn can be expressed as the upper

half-space model in Rn:

Hn = {(x1, . . . , xn) ∈ Rn : xn > 0} (3.14)

equipped with the hyperbolic metric:

ds2 =

∑n
i=1 dx

2
i

x2n
. (3.15)

This metric defines the infinitesimal distance between nearby points in hyperbolic space,

emphasizing how distances increase as one moves towards the boundary of the half-space.

56

Neural Differential Equations Chapter 3

Tangent Space in Hyperbolic Space: The tangent space TpHn at any point p in

hyperbolic space is crucial for defining vectors and differential operations in hyperbolic

space. Given the hyperbolic metric, the inner product in the tangent space at p is given

by:

⟨u, v⟩p =
1

x2n

n∑
i=1

uivi, (3.16)

where u = (u1, . . . , un) and v = (v1, . . . , vn) are vectors in the tangent space TpHn.

Exponential and Logarithmic Maps in Hyperbolic Space: These mappings

are crucial for modeling transitions between hyperbolic and Euclidean spaces, facilitating

data representation and manipulation in various applications.

Definition 16 (Exponential Map in Hyperbolic Space). The exponential map at a point

p in hyperbolic space, denoted expp : TpHn → Hn, maps a vector v in the tangent space

at p to a point on the manifold. In the upper half-space model, if p = (x1, . . . , xn) and

v = (v1, . . . , vn), the exponential map can be computed by:

expp(v) = p · cosh(∥v∥) +

(
v

∥v∥

)
· sinh(∥v∥), (3.17)

where ∥v∥ is the norm of vector v calculated using the hyperbolic metric.

Definition 17 (Logarithmic Map in Hyperbolic Space). Conversely, the logarithmic

map at a point p in hyperbolic space, denoted logp : Hn → TpHn, maps a point q on

the manifold back to a vector in the tangent space at p. For points p = (x1, . . . , xn) and

q = (y1, . . . , yn), the logarithmic map is given by:

logp(q) =
d(p, q)

tanh(d(p, q))
· (q − p), (3.18)

57

Neural Differential Equations Chapter 3

where d(p, q) is the hyperbolic distance between p and q, calculated as:

d(p, q) = arcosh

(
1 +

2∥p− q∥2

xnyn

)
.

These mappings enable significant functionalities in geometric deep learning and other

applications where hyperbolic geometry plays a crucial role.

Augmented Neural ODEs (ANODEs)

Neural Ordinary Differential Equations (NODEs) have shown great promise in mod-

eling continuous-time data, attributed to their efficient memory use and elegant formu-

lation. Despite these advantages, NODEs face a significant limitation: they can only

model homeomorphic transformations, which are both continuous and invertible. This

topological constraint means that NODEs preserve the topology of the input space and

therefore cannot model any function that would require the ”tearing apart” of the input

space.

To address this limitation, Augmented Neural ODEs (ANODEs) [63] were introduced.

By augmenting the system’s dimensionality, ANODEs enable the representation of more

complex dynamics without increasing the complexity of the ODE solver. The augmented

system can be expressed mathematically as:

d

dt

h(t)

a(t)

 = f

h(t)

a(t)

 , t; θ

 ,

h(0)

a(0)

 =

x

0

 , (3.19)

where h(t) ∈ Rd represents the original state, a(t) ∈ Rp denotes the augmented dimen-

sions, f is the neural network parameterized by θ, and x is the initial condition of the

state.

The effectiveness of ANODEs is theoretically supported by the Whitney Embedding

58

Neural Differential Equations Chapter 3

Theorem [99]:

Theorem 6 (Whitney Embedding Theorem). Every smooth n-dimensional manifold M

can be smoothly embedded in R2n+1.

This theorem elucidates that through the utilization of extra dimensions, ANODEs

are capable of learning expressive feature mappings beyond the confines of homeomor-

phisms, unlike traditional NODEs. Consequently, ANODEs can represent a more ex-

tensive class of functions, enhancing their performance, generalization capabilities, and

computational efficiency relative to conventional NODE models.

Neural Manifold ODEs

Neural Manifold ODEs [65] adapt Neural ODEs to handle data with intrinsic ge-

ometric properties by modeling the evolution of hidden states z(t) on a manifold M

rather than in Euclidean space. This approach is particularly effective for complex data

structures that are naturally represented in non-Euclidean geometries.

Neural Manifold ODEs can be expressed by the differential equation:

dz

dt
= fM(z(t), t; θ) ∈ Tz(t)M, (3.20)

where fM denotes the manifold-adapted dynamics ensuring that the evolution of z(t)

is confined to the tangent space Tz(t)M of the manifold at z(t). Here, θ represents the

parameters of the neural network modeling the dynamics.

Dynamic Chart Methodology: The dynamic chart approach facilitates the inte-

gration of Neural Manifold ODEs by employing a sequence of local charts, each mapping

a part of the manifold to a Euclidean space. This approach is articulated mathematically

59

Neural Differential Equations Chapter 3

as:

MODE = φk ◦ ODEk ◦ (φ−1
k ◦ φk−1) ◦ · · · ◦ (φ−1

2 ◦ φ1) ◦ ODE1 ◦ φ−1
1 , (3.21)

where each ODEi represents an ODE solved in a local Euclidean space provided by the

chart φi. The φ−1
i mappings ensure correct transitions between local solutions, main-

taining a coherent global solution on the manifold.

Advantages of Dynamic Charts:

• Local Solvability: Each segment of the ODE is solved within a local Euclidean

context, which increases numerical stability and accuracy.

• Flexibility in Transitions: Smooth transitions between charts are managed to

ensure the global coherence of the solution across the manifold.

• Effective Utilization of Euclidean Solvers: By transforming the manifold-

bound problem into a series of local Euclidean problems, the method leverages the

robustness of conventional ODE solvers adapted for Euclidean spaces.

This innovative integration technique, supported by rigorous mathematical validation,

enhances the ability of Neural Manifold ODEs to model dynamics on complex geometrical

structures effectively.

The exploration of Augmented Neural ODEs and Neural Manifold ODEs marks sig-

nificant strides in adapting Neural ODE technology to more complex data structures. By

integrating advanced mathematical concepts from manifold theory, these models not only

enhance the handling of non-Euclidean geometries but also pave the way for more precise

and efficient data analysis techniques. These developments highlight the ongoing shift

towards incorporating geometric and topological awareness in machine learning models,

promising new avenues for research and application.

60

Neural Differential Equations Chapter 3

3.1.4 Neural Controlled Differential Equations (NCDEs)

Neural Controlled Differential Equations (NCDEs) [72] represent another significant

extension of Neural Ordinary Differential Equations (NODEs) by integrating control

mechanisms that directly interact with the input data. Unlike NODEs, which generate

hidden states based solely on initial conditions, NCDEs dynamically adjust the hidden

state trajectory in response to irregularly sampled, continuous-time input data. This

capability makes NCDEs particularly suited for modeling complex time-series data that

exhibit non-uniform sampling rates.

Mathematical Background

NCDEs are formulated to handle time-series data where the input may not be regu-

larly spaced or may come in continuous streams. The model is defined by the following

differential equation:

z(t0) = ζθ2(x0), z(t) = z(t0) +

∫ t

t0

fθ1(z(s))dX(s), (3.22)

where:

• z(t) represents the hidden state at time t.

• X(s) is a controlled path that encodes the input data up to time s.

• fθ1 is a neural network that models the dynamics of the system, parameterized by

θ1.

• ζθ2 maps the initial input x0 to the initial state z(t0), parameterized by θ2.

This setup allows NCDEs to process input data effectively, providing a powerful

framework for applications that require handling of streaming or irregularly sampled

61

Neural Differential Equations Chapter 3

data. The following figure [72] illustrates the process:

Figure 3.2: Illustration of the Neural Controlled Differential Equation model, where
the trajectory of the hidden states is influenced by the controlled input path X(s).

The integration over the controlled path X(s), combined with the differential com-

ponent fθ1(z(s)), allows the model to adjust its state dynamically in response to changes

in input data, thus capturing complex dependencies and temporal characteristics of the

input series.

Extension for Online Prediction

Neural Controlled Differential Equations (NCDEs) have demonstrated excellent per-

formance in modeling functions of irregular time series in offline prediction tasks. How-

ever, existing implementations of NCDEs rely on non-causal interpolations of the data,

making them unsuitable for use in online prediction tasks, where predictions need to be

made in real-time.

In online prediction, the model needs to make predictions based only on the infor-

mation available up to the current time point, without access to future data. This is in

contrast to offline prediction, where the entire time series is observed in advance. Online

prediction models are crucial for a wide range of real-world applications, such as contin-

uous monitoring in intensive care units (ICUs), where timely decisions and interventions

62

Neural Differential Equations Chapter 3

are essential.

Online vs. Offline Prediction:

• Offline Prediction models are trained and make predictions based on complete

datasets. They are not suitable for scenarios where data is received sequentially

and predictions must be updated continually.

• Online Prediction involves updating predictions as new data arrives, without the

need to retrain the model from scratch. This approach is essential for time-sensitive

applications where the latency between data reception and decision-making must

be minimized.

To address the limitations of existing NCDE implementations and adapt NCDEs for

online prediction, [73] introduce two new control signal schemes and compare them to

the previously considered options:

1. Natural Cubic Splines: The original control signal used in [72], which requires

the full time series to be available prior to construction. This makes it unsuitable

for online prediction, as the solution z(t) depends on all datapoints.

2. Linear Control: A simple interpolation scheme that is discretely online for fully

observed data, but cannot be used even discretely online in the presence of missing

data.

3. Cubic Hermite Splines with Backward Differences: This scheme smooths

the discontinuities in the linear control, while retaining the same online properties.

It is discretely online and faster to integrate numerically than linear controls.

4. Rectilinear Control: This control signal updates the time and feature channels

separately in a lead-lag fashion, resulting in a continuously online scheme. However,

the parameterization is longer, leading to slower evaluation and training times.

63

Neural Differential Equations Chapter 3

Figure 3.3: Illustration of the four control methods used in NCDEs for online prediction.

Figure 3.3 [73] shows that each method has its advantages and limitations, making

them suitable for different types of applications depending on the need for real-time

responsiveness and data availability .

Neural Rough Differential Equations (NRDEs)

Neural Rough Differential Equations (NRDEs) [74] generalize the concept of Neural

Controlled Differential Equations (NCDEs) by leveraging the theory of signatures of

rough paths. This extension allows for modeling systems driven by signals that exhibit

non-smooth behavior, typical in real-world time series data. At the core of NRDEs is the

approximation of the system’s evolution through a Taylor expansion, using the signature

of the control path to capture the intricate details within the time series.

Given an NCDE driven by a vector field f , the state update equation from t = 0 to

some t = s is expressed as:

Zt = Z0 +

∫ t

0

f(Zs)
dX

dt
(s)ds (3.23)

64

Neural Differential Equations Chapter 3

In NRDEs, the Taylor expansion is employed to approximate the state update equa-

tion by considering the effects of the entire subpath on the change in the system state.

This is represented as follows:

Zt ≈ Z0 +

∫ t

0

f(Za)
dX

dt
(s)ds+Df(Za)(Zs − Za)

dX

dt
(s)ds (3.24)

≈ Z0 + f(Za)

∫ t

0

dX

dt
(s)ds+Df(Za)

∫ t

0

∫ s

0

f(Zu)
dX

dt
(u)du

dX

dt
(s)ds (3.25)

The double integral term captures the interactions between different segments of the

path, which is essential for NRDEs. This term is efficiently computed using the signature

of the subpath, which succinctly encapsulates the path’s behavior up to a certain degree

of interaction as defined in Equation 2.2.1.

Finally, the NRDE is expressed in terms of the signature as:

Zt ≈ Z0 + f(Za){S(X)
(i)
0,t}di=1 +Df(Za)f(Za){S(X)

(i,j)
0,t }di,j=1 (3.26)

Here, the signature terms S(X)
(i)
0,t and S(X)

(i,j)
0,t stand in for the integrals over the path

increments, with the subscript (0, t) indicating the integral range, while the superscript

indices correspond to the dimensions of the original time series data involved in the

integration. The signature-based representation elegantly handles the roughness inherent

in the driving signal by considering the combined effect of the signal increments over

intervals, thus generalizing the traditional NCDE model.

By utilizing rough path theory and signatures, NRDEs offer a potent framework for

modeling complex dynamical systems driven by irregular data streams.

65

Neural Differential Equations Chapter 3

3.2 Neural Stochastic Differential Equations

(NSDEs)

Stochastic differential equations (SDEs) provide a general framework for modeling

dynamic systems that evolve over time and are subject to random fluctuations or noise.

A typical SDE takes the form:

dXt = f(Xt, t)dt+ g(Xt, t)dBt + h(Xt, t)dNt, (3.27)

where f(Xt, t) is the drift term representing the deterministic component of the dynamics,

g(Xt, t)dBt is the diffusion term modeling the continuous-time random fluctuations driven

by a Brownian motion Bt, and h(Xt, t)dNt is the jump term capturing the impact of

sudden events modeled by a jump process Nt.

This section explores how to extend the deterministic NODE algorithm by introducing

diffusion and jump terms, leading to Neural Stochastic Differential Equations (NSDEs),

to improve the NODEs model’s performance and robustness and adjust it in different

situations.

3.2.1 Stabilizing NODEs with Stochastic Noise

A well-known drawback of Neural Ordinary Differential Equations (ODEs) is that the

system dynamics are deterministic and completely determined by the initial conditions.

Small perturbations in the initial state can potentially lead to significant deviations in

the final output, making the model ill-conditioned and susceptible to adversarial attacks

or overfitting. To address this issue and stabilize the model’s performance, [100] proposed

the Neural Stochastic Differential Equation (Neural SDE) framework, which introduces

stochastic noise into the continuous-time formulation.

66

Neural Differential Equations Chapter 3

The Neural SDE algorithm models the evolution of the hidden state ht as a stochastic

differential equation:

dht = f(ht, t;w)dt+ G(ht, t;v)dBt, (3.28)

where Bt is a Brownian motion, f(·) is a neural network parameterized by w (the drift

term), and G(·) is a diffusion matrix parameterized by v that introduces stochastic noise.

The diffusion matrix G(ht, t;v) can be designed to model various types of noise

injection commonly used for regularization in discrete networks, such as additive noise,

multiplicative noise, and dropout. By incorporating these stochastic regularization mech-

anisms into the continuous-time formulation, Neural SDEs aim to improve the general-

ization and robustness of Neural ODEs.

Training Neural SDEs requires developing a specialized backpropagation approach

based on stochastic control theory, as outlined in [100]. The key idea is to calculate the

expected loss conditioning on the initial state h0 and then obtain an unbiased gradient

estimator using the path-wise derivative method.

The authors provide a theoretical analysis of the stability conditions of Neural SDEs,

showing that the introduced stochastic noise can stabilize the dynamical system and

improve robustness against input perturbations and adversarial attacks. Let εt = het −ht

be the perturbation of the hidden state with ∥ε0∥ ≤ δ, where het and ht are the solutions

of the Neural SDE with slightly different initial conditions. Furthermore, let

f∆(εt, t;ω) = f(het , t;w) − f(ht, t;w)

G∆(εt, t;ω) = G(het , t;w) −G(ht, t;w).

67

Neural Differential Equations Chapter 3

Then, the perturbation εt follows the SDE:

dεt = f∆(εt, t)dt+ G∆(εt, t)dBt. (3.29)

Definition 18 (Lyapunov stability of SDE). The solution εt = 0 of 3.29:

1. is stochastically stable if for any α ∈ (0, 1) and r > 0, there exists a δ = δ(α, r) > 0

such that Pr {∥εt∥ < r for all t ≥ 0} ≥ 1 − α whenever ∥ε0∥ ≤ δ. Moreover, if for

any α ∈ (0, 1), there exists a δ = δ(α) > 0 such that Pr {limt→∞ ∥εt∥ = 0} ≥ 1 − α

whenever ∥ε0∥ ≤ δ, it is said to be stochastically asymptotically stable;

2. is almost surely exponentially stable if lim supt→∞
1
t

log ∥εt∥ < 0 a.s. for all ε0 ∈ Rn.

Then, the main theoretical result is given by the following theorem:

Theorem 7 (Theorem 3.2 in [100]). If there exists a non-negative real valued function

V (ε, t) defined on Rn × R+ that has continuous partial derivatives

V1(ε, t) :=
∂V (ε, t)

∂ε
, V2(ε, t) :=

∂V (ε, t)

∂t
, V1,1(ε, t) :=

∂2V (ε, t)

∂ε∂ε⊤
(3.30)

and constants p > 0, c1 > 0, c2 ∈ R, c3 ≥ 0 such that the following inequalities hold:

• c1∥ε∥p ≤ V (ε, t)

• LV (ε, t) = V2(ε, t) + V1(ε, t)f∆(ε, t) + 1
2

Tr
[
G⊤

∆(ε, t)V1,1(ε, t)G∆(ε, t)
]
≤ c2V (ε, t)

• ∥V1(ε, t)G∆(ε, t)∥2 ≥ c3V
2(ε, t)

for all ε ̸= 0 and t > 0. Then for all ε0 ∈ Rn,

lim sup
t→∞

1

t
log ∥εt∥ ≤ −c3 − 2c2

2p
a.s. (3.31)

In particular, if c3 ≥ 2c2, the solution εt ≡ 0 is almost surely exponentially stable.

68

Neural Differential Equations Chapter 3

This theorem provides a theoretical justification for the improved robustness of Neural

SDEs against input perturbations and adversarial attacks, as the stochastic noise can

stabilize the dynamical system and prevent the amplification of small perturbations.

3.2.2 Neural Jump SDEs

While Neural SDEs can model continuous dynamics driven by Brownian motion,

many real-world systems also exhibit discontinuous jumps due to discrete events. The

Neural Ordinary Differential Equations (NODE) framework cannot handle such abrupt

changes in the state trajectory. To address this limitation, [71] introduced Neural Jump

Stochastic Differential Equations (NJSDEs) that combine the continuous dynamics of

NODEs with a stochastic jump process.

In the NJSDE formulation, the state vector zt ∈ Rn evolves according to the following

SDE:

dzt = f(zt, t;θ)dt+ w(zt,kt, t;θ)dNt (3.32)

Here, f(zt, t;θ) governs the continuous dynamics as in standard NODEs, parameterized

by θ. The new term w(zt,kt, t;θ) models the effect of discrete events on the state zt,

where kt represents the type or mark of the event at time t. Nt is a counting process

that increments by 1 whenever an event occurs.

The events are assumed to arrive stochastically, with their conditional intensity λ(zt)

parameterized by a neural network that takes zt as input. Similarly, the probability

distribution p(kt|zt) over event types is also modeled by a neural network conditioned on

zt.

By combining continuous dynamics and discrete jumps in a single framework, NJS-

DEs can capture the behavior of hybrid systems that exhibit both smooth evolution and

discontinuous changes triggered by random events. The authors derive an adjoint sen-

69

Neural Differential Equations Chapter 3

sitivity method to efficiently compute the gradients of the loss function with respect to

the model parameters θ, enabling NJSDEs to be trained on datasets containing event

sequences.

3.2.3 Neural SDEs for Data Generalization

Generative Adversarial Networks (GANs) [101] are a class of generative models that

aim to learn the underlying probability distribution of the training data. A GAN consists

of two neural networks, a generator G and a discriminator D, trained in an adversarial

manner. The generator G takes random noise z as input and produces fake samples G(z),

while the discriminator D tries to distinguish between real samples from the training data

and fake samples produced by the generator. The objective function for training GANs

is given by:

min
G

max
D

{
Ex∼Pr [logD(x)] + Ez∼P (z)[log(1 −D(G(z)))]

}
, (3.33)

where x represents samples from the real data distribution Pr, and z denotes input noise

to G, aiming to model a distribution Pg that closely approximates Pr.

In [70], the authors show that Neural Stochastic Differential Equations (NSDEs) can

be viewed as a continuous-time generalization of GANs. The generator in this framework

is an NSDE of the form:

dXt = µθ(t,Xt)dt+ σθ(t,Xt) ◦ dWt, X0 = ζθ(V) (3.34)

where µθ, σθ, and ζθ are neural networks parameterized by θ, representing the drift,

diffusion, and initial condition of the SDE, respectively. Wt is a Brownian motion, and V

is the initial noise drawn from a standard multivariate normal distribution. The output

70

Neural Differential Equations Chapter 3

of the generator is then given by Yt = αθXt + βθ, which is a linear transformation of the

hidden state Xt.

The discriminator is modeled as a Neural Controlled Differential Equation (Neural

CDE) [72] with respect to the control path Yt, which is the output of the generator:

dHt = fϕ(t,Ht)dt+ gϕ(t,Ht) ◦ dYt, H0 = ξϕ(Y0) (3.35)

where fϕ, gϕ, and ξϕ are neural networks parameterized by ϕ, representing the drift,

diffusion, and initial condition of the CDE, respectively. The discriminator score is then

given by D = mϕ · HT , where mϕ is a learnable vector and HT is the terminal state of

the CDE.

The authors show that by using the Wasserstein GAN objective, NSDEs can be

trained to learn arbitrary stochastic processes in the infinite data limit, without the need

to pre-specify statistics or density functions. They demonstrate the effectiveness of their

approach on several datasets, including financial time series, air quality data, and the

evolution of weights during stochastic gradient descent optimization.

This framework opens up new possibilities for generative modeling of continuous-time

processes, with applications in diverse domains such as finance, biology, and physics,

where stochastic differential equations are commonly used to model dynamical systems.

In recent years, diffusion models [102, 103] have emerged as a promising direction for

generative modeling, and there are connections between diffusion models and NSDEs.

Diffusion models can be viewed as a discretization of a certain type of SDE called the

reverse-time SDE [104]. By parameterizing one of the terms in the reverse-time SDE with

a neural network, diffusion models can be used to sample from complex high-dimensional

distributions, such as images or audio. This has led to state-of-the-art results in various

generative modeling tasks. The connection between diffusion models and NSDEs provides

71

Neural Differential Equations Chapter 3

a unifying framework for continuous-time generative modeling and opens up exciting

avenues for future research.

3.3 Applications for physical simulation

3.3.1 Graph Neural Networks

Graph Neural Networks (GNNs) are a sophisticated class of deep learning models

designed to process data that inherently possesses a graph structure. Common examples

include physical systems, social networks, and biological networks. A graph G = (V , E)

comprises a set of nodes (or vertices) V and edges E that connect pairs of these nodes.

Define N = |V| as the number of nodes and M = |E| as the number of edges within

the graph. Each node vi ∈ V is associated with a feature vector xi ∈ RF with i =

1, · · · , N , where F is the feature dimensionality. Additionally, each edge (vi, vj) ∈ E may

have an associated edge feature vector eij ∈ RF ′
, where F ′ represents the edge feature

dimensionality.

The central concept of GNNs involves learning a robust representation for each node

through iterative updates based on the features of adjacent nodes. This mechanism,

commonly referred to as message passing, employs both aggregation and transformation

steps to refine each node’s representation.

Mathematically, this message-passing process in GNNs can be articulated through

the following equations:

m
(k+1)
i =

∑
j∈N (i)

MSG(k)(h
(k)
i ,h

(k)
j , eij; θmsg) (3.36)

h
(k+1)
i = UPDATE(k)(h

(k)
i ,m

(k+1)
i ; θupd) (3.37)

72

Neural Differential Equations Chapter 3

Here, h
(k)
i denotes the representation of node vi at the k-th iteration. The function

N (i) represents the set of neighbors of node vi. The functions MSG(k) and UPDATE(k)

compute the messages and update the node representations, respectively, and are param-

eterized by neural networks with parameters θmsg and θupd.

After K iterations of message passing, the representations h
(K)
i are leveraged for

downstream tasks such as node classification, link prediction, or graph classification.

GNNs have demonstrated exceptional utility in a range of applications, particularly in

simulating physical systems, where they effectively model complex dynamics encoded in

graph structures. In this section, we will see the integration of GNNs with Neural Differ-

ential Equations (NDEs) for advanced physical simulations, showcasing their combined

strength in capturing both spatial relationships and continuous-time dynamics.

3.3.2 HOPE: High-Order Graph ODE for Modeling Interacting

Dynamics

Motivation

While dynamic interacting systems are prevalent and influential in both natural and

social sciences, effectively modeling their complexities presents substantial challenges.

Traditional approaches using Graph Neural Networks (GNNs) primarily handle object

interactions within a static or discretely evolving graph framework, focusing on learning

representations at distinct time steps. These methods, however, struggle with irregu-

larly sampled data and require complete observations at each timestep, which is often

impractical in real-world scenarios.

The integration of Neural Ordinary Differential Equations (ODEs) with GNNs has

offered a pathway to model system dynamics continuously, which allows for handling

missing data and capturing smoother system evolutions. Despite these advancements,

73

Neural Differential Equations Chapter 3

current implementations predominantly employ first-order differential equations which

model the rate of change in state but overlook the acceleration, a crucial aspect in many

physical and social phenomena described by second-order dynamics, such as planetary

motion or oscillatory systems.

Furthermore, existing graph ODE frameworks suffer from several limitations:

• Insufficient Capture of High-Order Correlations: Most current models uti-

lize spatial-based GNNs within their encoders, constructing only temporal graphs

without adequately addressing the complex, non-linear interactions that span be-

yond immediate neighbors in the graph structure. This oversight leads to a failure

in capturing high-order dependencies that are pivotal for understanding the full

spectrum of interactions within dynamic systems.

• Inefficiency and Inadequacy of First-Order Models: The reliance on first-

order derivatives not only restricts the model’s capacity to express more complex

natural laws but also results in inefficiencies during training and inference. These

models require a high number of function evaluations (NFEs) to achieve accurate

results, which significantly hampers their scalability and practicality in larger sys-

tems.

In response to these challenges, our work introduces the High-Order graPh ODE

(HOPE) [105], a novel approach that leverages both advanced graph encoding tech-

niques and second-order differential equations. HOPE is designed to initialize and evolve

state representations through a twin graph encoder using dual GNN branches. This

setup captures both spatial and temporal correlations effectively. Additionally, by incor-

porating second-order dynamics, HOPE not only aligns more closely with physical laws

governing many dynamic systems but also improves the efficiency of learning by reducing

the required NFEs and enhancing model convergence rates. This approach allows for a

74

Neural Differential Equations Chapter 3

deeper understanding and more accurate forecasting of complex dynamics in evolving

graphs, pushing the boundaries of what can be achieved with neural network models in

this domain.

Methodology

<latexit sha1_base64="UIXfuJAHC45rcM0A6WAwLNmhh8U=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgxbCrQT0GvXiMYB6QLGF2MknGzO4sM71CWPIPXjwo4tX/8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYVSiGa8zJZVuBdRwKSJeR4GSt2LNaRhI3gxGt1O/+cS1ESp6wHHM/ZAOItEXjKKVGthNzy4m3WLJLbszkGXiZaQEGWrd4lenp1gS8giZpMa0PTdGP6UaBZN8UugkhseUjeiAty2NaMiNn86unZATq/RIX2lbEZKZ+nsipaEx4zCwnSHFoVn0puJ/XjvB/rWfiihOkEdsvqifSIKKTF8nPaE5Qzm2hDIt7K2EDammDG1ABRuCt/jyMmmcl73LcuW+UqreZHHk4QiO4RQ8uIIq3EEN6sDgEZ7hFd4c5bw4787HvDXnZDOH8AfO5w869Y7q</latexit>

t�3
<latexit sha1_base64="pDkdsn2XdNdO5c2YZ9oJzgMxq9k=">AAAB7XicbVDLSgNBEOyNrxhfUY9eFoPgxbAbgnoMevEYwTwgWcLsZJKMmZ1ZZnqFsOQfvHhQxKv/482/cZLsQRMLGoqqbrq7wlhwg5737eTW1jc2t/LbhZ3dvf2D4uFR06hEU9agSijdDolhgkvWQI6CtWPNSBQK1grHtzO/9cS04Uo+4CRmQUSGkg84JWilJvbSi8q0Vyx5ZW8Od5X4GSlBhnqv+NXtK5pETCIVxJiO78UYpEQjp4JNC93EsJjQMRmyjqWSRMwE6fzaqXtmlb47UNqWRHeu/p5ISWTMJAptZ0RwZJa9mfif10lwcB2kXMYJMkkXiwaJcFG5s9fdPteMophYQqjm9laXjogmFG1ABRuCv/zyKmlWyv5luXpfLdVusjjycAKncA4+XEEN7qAODaDwCM/wCm+Ocl6cd+dj0Zpzsplj+APn8wc5cI7p</latexit>

t�2
<latexit sha1_base64="W7Td7Qwrf2hteghrKe2D2xy5Wvw=">AAAB7XicbVBNS8NAEJ34WetX1aOXxSJ4sSRS1GPRi8cK9gPaUDbbTbt2swm7E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6wHHC/YgOlAgFo2ilJvayc2/SK5XdijsDWSZeTsqQo94rfXX7MUsjrpBJakzHcxP0M6pRMMknxW5qeELZiA54x1JFI278bHbthJxapU/CWNtSSGbq74mMRsaMo8B2RhSHZtGbiv95nRTDaz8TKkmRKzZfFKaSYEymr5O+0JyhHFtCmRb2VsKGVFOGNqCiDcFbfHmZNC8q3mWlel8t127yOApwDCdwBh5cQQ3uoA4NYPAIz/AKb07svDjvzse8dcXJZ47gD5zPHzfrjug=</latexit>

t�1
<latexit sha1_base64="BVi80pgHR/v2vbBc9dS/gt/aFhU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2m3bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJx37uTvvVmlt35yCrxCtIDQo0+9Wv3iBhWcwVMkmN6XpuikFONQom+bTSywxPKRvTIe9aqmjMTZDPj52SM6sMSJRoWwrJXP09kdPYmEkc2s6Y4sgsezPxP6+bYXQT5EKlGXLFFouiTBJMyOxzMhCaM5QTSyjTwt5K2IhqytDmU7EheMsvr5LWRd27ql8+XNYat0UcZTiBUzgHD66hAffQBB8YCHiGV3hzlPPivDsfi9aSU8wcwx84nz/Lj46w</latexit>

t0

<latexit sha1_base64="9W6W5mEAPHuoMKZo9Hi0v0h0Abk=">AAAB6nicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2g9ol5JNs21okl2SrFCW/gQvHhTx6i/y5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61TJxqypo0FrHuhMQwwRVrWm4F6ySaERkK1g7HtzO//cS04bF6tJOEBZIMFY84JdZJDz2Z9ssVr+rNgVeJn5MK5Gj0y1+9QUxTyZSlghjT9b3EBhnRllPBpqVealhC6JgMWddRRSQzQTY/dYrPnDLAUaxdKYvn6u+JjEhjJjJ0nZLYkVn2ZuJ/Xje10XWQcZWklim6WBSlAtsYz/7GA64ZtWLiCKGau1sxHRFNqHXplFwI/vLLq6R1UfUvq7X7WqV+k8dRhBM4hXPw4QrqcAcNaAKFITzDK7whgV7QO/pYtBZQPnMMf4A+fwBgTI3f</latexit>µ
<latexit sha1_base64="ewDXALEmqnRDMxlpjdYfO2t7Sq8=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5idzCZj5rHMzAphyT948aCIV//Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1eoYNBe6XK37VnwOtkiAnFcjR6Je/egNFUkGlJRwb0w38xIYZ1pYRTqelXmpogskYD2nXUYkFNWE2v3aKzpwyQLHSrqRFc/X3RIaFMRMRuU6B7cgsezPxP6+b2vg6zJhMUkslWSyKU46sQrPX0YBpSiyfOIKJZu5WREZYY2JdQCUXQrD88ippXVSDy2rtvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOW9eO/ex6K14OUzx/AH3ucPn02PLA==</latexit>�

First-order Spatial
Convolution

Second-order Spectral
Convolution

<latexit sha1_base64="1jM/+lhH5yHf31UUzR8v296eypc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO65vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we5QY1x</latexit>

A0

<latexit sha1_base64="haCOgF1x3tKpr+JlhKaAgUHRZno=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPbUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP7ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wffV42K</latexit>

Z0

Reparametrization
Sampling

<latexit sha1_base64="1jM/+lhH5yHf31UUzR8v296eypc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO65vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we5QY1x</latexit>

A0

Encoder Decoder

<latexit sha1_base64="haCOgF1x3tKpr+JlhKaAgUHRZno=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPbUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP7ZUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wffV42K</latexit>

Z0

Second-order ODE Solver

<latexit sha1_base64="Suc3rqoIuCQZv3EjM7Tv4tVJ6G8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPbUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WPP65UrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+ien53Xqld53EU4QiO4RQ8uIQa3EIdGsBgAM/wCm+OdF6cd+dj3lpw8plD+APn8wfg242L</latexit>

Z1

…

…

<latexit sha1_base64="fPy1Zut4+Nh672Bw8J33CD5JYhY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ6uO55vXLFrbozkGXi5aQCOeq98le3H7M0QmmYoFp3PDcxfkaV4UzgpNRNNSaUjegAO5ZKGqH2s9mpE3JilT4JY2VLGjJTf09kNNJ6HAW2M6JmqBe9qfif10lNeOVnXCapQcnmi8JUEBOT6d+kzxUyI8aWUKa4vZWwIVWUGZtOyYbgLb68TJpnVe+ien5/Xqnd5HEU4QiO4RQ8uIQa3EEdGsBgAM/wCm+OcF6cd+dj3lpw8plD+APn8we6xY1y</latexit>

A1

<latexit sha1_base64="nldCXVjQXXLla3o8KRQsYrlvh9Y=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY+oF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD9e9Sq9YcsvuHGSVeBkpQYZ6r/jV7ccsjbhCJqkxHc9N0J9QjYJJPi10U8MTykZ0wDuWKhpx40/mp07JmVX6JIy1LYVkrv6emNDImHEU2M6I4tAsezPxP6+TYnjlT4RKUuSKLRaFqSQYk9nfpC80ZyjHllCmhb2VsCHVlKFNp2BD8JZfXiXNStm7KFfvq6XaTRZHHk7gFM7Bg0uowR3UoQEMBvAMr/DmSOfFeXc+Fq05J5s5hj9wPn8AvEmNcw==</latexit>

A2

<latexit sha1_base64="OBXlXJhR5GXthTpup0B6YDpJgwg=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiPChswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzcxvPaHSPJYPZpygH9GB5CFn1Fjp/rFX6RVLbtmdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE175Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7KFfvqqXadRZHHk7gFM7Bg0uowS3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8A4l+NjA==</latexit>

Z2
<latexit sha1_base64="Ho+MlFQF10rNEb8uox3+Xq/pvJU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPbUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWjm6nfeuLaiFg94DjhfkQHSoSCUbTS/WMPe+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1buont+dV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AFGdo3O</latexit>

Zt

<latexit sha1_base64="+pQPGZwJBLYm27QrK650F+2mGVg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj26nfeuLaiFg94jjhfkQHSoSCUbTSw3UPe+WKW3VnIMvEy0kFctR75a9uP2ZpxBUySY3peG6CfkY1Cib5pNRNDU8oG9EB71iqaMSNn81OnZATq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTsiF4iy8vk+ZZ1buont+fV2o3eRxFOIJjOAUPLqEGd1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AEgYI21</latexit>

At

<latexit sha1_base64="SvEw9j+G6/nNSZebhlvQwRvlSiI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfAeMvQ==</latexit>

0
<latexit sha1_base64="xOra1flrqf7FD7e/7ECUaWQ39nw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4TyAuSJcxOepMxs7PLzKwQQr7AiwdFvPpJ3vwbJ8keNLGgoajqprsrSATXxnW/ndzG5tb2Tn63sLd/cHhUPD5p6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8P/fbT6g0j2XDTBL0IzqUPOSMGivVG/1iyS27C5B14mWkBBlq/eJXbxCzNEJpmKBadz03Mf6UKsOZwFmhl2pMKBvTIXYtlTRC7U8Xh87IhVUGJIyVLWnIQv09MaWR1pMosJ0RNSO96s3F/7xuasJbf8plkhqUbLkoTAUxMZl/TQZcITNiYgllittbCRtRRZmx2RRsCN7qy+ukdVX2rsuVeqVUvcviyMMZnMMleHADVXiAGjSBAcIzvMKb8+i8OO/Ox7I152Qzp/AHzucPspeM4Q==</latexit>

T
time

…

…

Decoder
<latexit sha1_base64="AFICpsnXcZvyPPE/Y8uOz8yEpgs=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq5eMeF/2yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A5qojyk=</latexit>

�n

Decoder
<latexit sha1_base64="1aUdoXh91pdAKEvPMDJ2cdQ3Jag=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6iUj3sd+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NopObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsdTLgCpkRE0soU9zeStiIKsqMDahkQ/CWX14lrYuqd1mt3dcq9Zs8jiKcwCmcgwdXUIc7aEATGDzCM7zCmxM7L86787FoLTj5zDH8gfP5A40EjyA=</latexit>

�e

<latexit sha1_base64="qDwUSsxoTL9zKxWvaTk5xK23scg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20sWy2m3bpZhN2J2Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/ncLK6tr6RnGztLW9s7tX3j9omCTTjPsskYluhdRwKRT3UaDkrVRzGoeSN8PhzdRvPnJtRKLucZTyIKZ9JSLBKFrJf+qKB+yWK27VnYEsEy8nFchR75a/Or2EZTFXyCQ1pu25KQZjqlEwySelTmZ4StmQ9nnbUkVjboLx7NgJObFKj0SJtqWQzNTfE2MaGzOKQ9sZUxyYRW8q/ue1M4yugrFQaYZcsfmiKJMEEzL9nPSE5gzlyBLKtLC3EjagmjK0+ZRsCN7iy8ukcVb1Lqrnd+eV2nUeRxGO4BhOwYNLqMEt1MEHBgKe4RXeHOW8OO/Ox7y14OQzh/AHzucP7oWOxw==</latexit>

xt
i

<latexit sha1_base64="0cR4PCYefL4H7iFAaMVMK6fdD00=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4xkUcCSGaHWRiZnV1nejVkw0948aAxXv0db/6NA+xB0Uo6qVR1p7vLj6Uw6LpfTm5peWV1Lb9e2Njc2t4p7u41TJRoxusskpFu+dRwKRSvo0DJW7HmNPQlb/qjy6nffODaiEjd4Djm3ZAOlAgEo2il1mMvFXeTW+wVS27ZnYH8JV5GSpCh1it+dvoRS0KukElqTNtzY+ymVKNgkk8KncTwmLIRHfC2pYqG3HTT2b0TcmSVPgkibUshmak/J1IaGjMOfdsZUhyaRW8q/ue1EwzOu6lQcYJcsfmiIJEEIzJ9nvSF5gzl2BLKtLC3EjakmjK0ERVsCN7iy39J46TsnZYr15VS9SKLIw8HcAjH4MEZVOEKalAHBhKe4AVenXvn2Xlz3uetOSeb2YdfcD6+AXxvkEY=</latexit>

wt
ij

Decoder
<latexit sha1_base64="AFICpsnXcZvyPPE/Y8uOz8yEpgs=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqexKUY9FLx4r2A9ol5JNs21sNlmSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvTAQ31vO+UWFtfWNzq7hd2tnd2z8oHx61jEo1ZU2qhNKdkBgmuGRNy61gnUQzEoeCtcPx7cxvPzFtuJIPdpKwICZDySNOiXVSq5eMeF/2yxWv6s2BV4mfkwrkaPTLX72BomnMpKWCGNP1vcQGGdGWU8GmpV5qWELomAxZ11FJYmaCbH7tFJ85ZYAjpV1Ji+fq74mMxMZM4tB1xsSOzLI3E//zuqmNroOMyyS1TNLFoigV2Co8ex0PuGbUiokjhGrubsV0RDSh1gVUciH4yy+vktZF1b+s1u5rlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4Q0p9ILe0ceitYDymWP4A/T5A5qojyk=</latexit>

�n

Decoder
<latexit sha1_base64="1aUdoXh91pdAKEvPMDJ2cdQ3Jag=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Ae0oWy2k3btZhN2N0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHssHM0nQj+hQ8pAzaqzU6iUj3sd+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxg/o8pwJnBa6qUaE8rGdIhdSyWNUPvZ/NopObPKgISxsiUNmau/JzIaaT2JAtsZUTPSy95M/M/rpia89jMuk9SgZItFYSqIicnsdTLgCpkRE0soU9zeStiIKsqMDahkQ/CWX14lrYuqd1mt3dcq9Zs8jiKcwCmcgwdXUIc7aEATGDzCM7zCmxM7L86787FoLTj5zDH8gfP5A40EjyA=</latexit>

�e

<latexit sha1_base64="eg+p2PnGtalxs5kuevLN2IucE3Y=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20sWy2k3bpZhN2N2Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAqujet+O4WV1bX1jeJmaWt7Z3evvH/Q0EmmGPosEYlqhVSj4BJ9w43AVqqQxqHAZji8mfrNR1SaJ/LejFIMYtqXPOKMGiv5T13+4HXLFbfqzkCWiZeTCuSod8tfnV7CshilYYJq3fbc1ARjqgxnAielTqYxpWxI+9i2VNIYdTCeHTshJ1bpkShRtqQhM/X3xJjGWo/i0HbG1Az0ojcV//PamYmugjGXaWZQsvmiKBPEJGT6OelxhcyIkSWUKW5vJWxAFWXG5lOyIXiLLy+TxlnVu6ie351Xatd5HEU4gmM4BQ8uoQa3UAcfGHB4hld4c6Tz4rw7H/PWgpPPHMIfOJ8/iPmOhA==</latexit>

x1
i

<latexit sha1_base64="2WhKepsU+9mLwtgKoO5Sj3TFDF4=">AAAB73icbVDLTgJBEOzFF+IL9ehlIjHxRHYNUY9ELx4xkUcCSGaHXhiZnV1nZjVkw0948aAxXv0db/6NA+xB0Uo6qVR1p7vLjwXXxnW/nNzS8srqWn69sLG5tb1T3N1r6ChRDOssEpFq+VSj4BLrhhuBrVghDX2BTX90OfWbD6g0j+SNGcfYDelA8oAzaqzUeuyl/G5y6/WKJbfszkD+Ei8jJchQ6xU/O/2IJSFKwwTVuu25semmVBnOBE4KnURjTNmIDrBtqaQh6m46u3dCjqzSJ0GkbElDZurPiZSGWo9D33aG1Az1ojcV//PaiQnOuymXcWJQsvmiIBHERGT6POlzhcyIsSWUKW5vJWxIFWXGRlSwIXiLL/8ljZOyd1quXFdK1YssjjwcwCEcgwdnUIUrqEEdGAh4ghd4de6dZ+fNeZ+35pxsZh9+wfn4BhbjkAM=</latexit>

w1
ij

Figure 3.4: Overview of our proposed HOPE. To begin, the twin encoder utilizes two
branches of graph convolution to extract spatio-temporal relationships for the initial-
ization of latent state representations. Then, a generative model utilizes second-order
ODEs to simulate the evolution of both nodes and edges. In the end, HOPE feeds
state representations into the decoders to output the predicted nodes and edges. We
maximize the evidence lower bound (ELBO) of the likelihood during optimization.

In the HOPE model, we propose an innovative approach to model dynamic sys-

tems by enhancing the learning of high-order spatio-temporal correlations, thereby im-

proving both model capacity and optimization efficiency. Our model consists of three

main components: (1) a twin graph encoder for initializing state representations, (2) a

continuous-time generative model utilizing second-order graph ODEs, and (3) a decoder

for outputting prediction values. Detailed architecture can be found in Figure 3.4.

Twin Graph Encoder The twin graph encoder in HOPE is designed to capture com-

plex spatio-temporal relationships, initializing latent states for objects and edges through

75

Neural Differential Equations Chapter 3

two specialized GNN branches that process different aspects of graph data:

• Temporal Graph Construction: Constructs a temporal graph GH that accounts

for both spatial and temporal correlations. Nodes represent object observations over

time, connected by spatial and temporal edges formulated as:

A(it, jt′) =

wtij t = t′

1 i = j, t′ = t+ 1

0 otherwise

. (3.38)

• Graph Convolution Operations: Utilizes first-order spatial convolution inte-

grated with a self-attention mechanism to adaptively learn from neighborhood

data. Meanwhile, second-order spectral graph convolution is employed to handle

non-neighborhood interactions, enhancing the encoder’s ability to capture deeper

semantic relationships buried within the graph spectrum.

Node Representation Learning: Node features are processed through layers of

graph convolutions, refining the embeddings based on both immediate and extended

spatial relations, ensuring a comprehensive initialization of object and edge states which

are critical for the subsequent generative modeling:

h
t,(k+1)
i = h

t,(k)
i + σ

 ∑
j∈N (i)

s(k)(vti , v
t′

j)Wvalueh
t′,(k)
j

 , (3.39)

where s(k)(vti , v
t′
j) represents interaction scores between each central node and its neigh-

bors which is calculated by

s(k)(vti , v
t′

j) = A(it, jt)cos(Wqueryh
t,(k)
i ,Wkeyh

t′,(k)
j).

76

Neural Differential Equations Chapter 3

N (i) denotes the neighbors of node i, W are the weight matrices, k is the number of

iteration and σ is a non-linear activation function.

Sequence Representation Learning: Combines spatial and spectral representa-

tions, employing an attention mechanism to aggregate these into a coherent sequence

representation for each object. This representation is used to initialize the latent states

in the generative model:

ui =
1

T

T∑
t=1

σ(αtiq
t
i), (3.40)

where αti are attention weights derived from the sequence of node representations, pro-

viding a dynamic summarization of the temporal interactions. And qti are the combined

representations calculated by:

qti = δ([eti,h
t
i]) + TE(t) (3.41)

This encoder structure not only prepares detailed state initializations for the model’s

dynamical simulations but also directly addresses the challenges in capturing high-order

correlations within dynamic systems.

Neural Coupled Graph ODE Model With the initial latent state representations

for nodes and edges established, we introduce a neural graph ODE model to simulate the

dynamics of interacting systems in a generative manner. Traditional models typically

utilize first-order ODEs, which are not efficient for capturing long-term dependencies

and require a large number of function evaluations (NFEs) for both optimization and

inference, leading to inefficiencies. To overcome these limitations, we employ second-

order neural ODEs, which align more closely with physical laws in complex systems and

have been shown to achieve faster convergence in numerical optimization.

77

Neural Differential Equations Chapter 3

Formulation of the Second-Order Graph ODE We define the dynamics of the

node states with a second-order graph ODE function as follows:

d2Zt

dt2
+ γ

dZt

dt
= σ((D̂t)−1ÂtZtWp) − Zt, (3.42)

where Zt represents the latent state matrix at time t, and γ is a damping coefficient

that balances the influence of first-order and second-order derivatives, facilitating a more

robust simulation of dynamic processes.

Edge Dynamics To update the adjacency matrix Ât with dynamic edge information,

we incorporate a similar second-order differential equation:

d2Πt
ij

d2t
+ γ

dΠt
ij

dt
= ρn

([
zti∥ztj∥zti ⊙ ztj

])
+ ρe

(
Πt
ij

)
, (3.43)

where ρn and ρe are MLPs that process node and edge information, respectively.

Optimization with Momentum The update rule for the ODEs utilizes a momentum-

based optimization approach, extending classical momentum techniques to the graph

domain:

Zt+1 = (1 − λ)Zt + λσ((D̂t)−1ÂtZtWp) + β
(
Zt − Zt−1

)
, (3.44)

where λ and β control the learning rate and momentum terms, respectively. This method

significantly enhances the convergence rate by incorporating information about previous

updates.

Lemma 1. Given the momentum updating algorithm for GNNs, we have Equation 3.42

when λ→ 0.

Lemma 2. Our ODE formalization can be transformed into an augmented first-order

ODE.

78

Neural Differential Equations Chapter 3

Lemma 3. Given the initial state (t0,Z
t0), we claim that there exists ε > 0, s.t. Equation

3.42 has a unique solution in the interval [t0− ε, t0 + ε] when the activation function σ(·)

is ReLU.

The proofs of these lemmas can be found in Appendix A (See proof A.1.1, A.1.2,

A.1.3). This methodology ensures not only theoretical robustness but also practical

effectiveness, as demonstrated in our experiments.

Decoder and Optimization The decoding and optimization stages are crucial for

reconstructing the input data from the learned latent states and refining the overall

predictive performance of the model. We utilize two decoders in our framework, each

specialized for a different type of output based on the latent states:

µti = ϕn(zti); µtij = ϕe(Π
t
ij), (3.45)

where ϕn and ϕe are distinct MLPs that respectively decode the node and edge informa-

tion from their corresponding latent representations.

In training, our model employs the variational inference technique to optimize the

evidence lower bound (ELBO), enhancing the likelihood of observed data while ensuring

a minimal divergence between the prior and the inferred posterior distributions:

ℓELBO = EZ0∼
∏N

i=1 q(z0i |X ,A) [log p(X ,A)] − KL

[
N∏
i=1

q(z0i |X ,A)∥p
(
Z0
)]
, (3.46)

where KL(·||·) represents the Kullback-Leibler divergence. This optimization process is

computed individually for each node and edge, allowing for a precise adjustment to the

79

Neural Differential Equations Chapter 3

model parameters based on the reconstruction error:

ℓELBO = −
∑
i

∑
t

∥xti − µti∥
2

2σ2
−
∑
i

∑
j

∑
t

∥∥wtij − µtij
∥∥2

2σ2
− KL

[
N∏
i=1

q(z0i |X ,A)∥p
(
Z0
)]
,

(3.47)

where σ2 denotes the variance of the prior distribution, ensuring that the model not only

predicts accurately but also adheres closely to the distributional assumptions encoded by

the prior. The detailed algorithm and additional implementation details are provided in

the Appendix.

Experiment Results

Datasets. We evaluated our model using three key datasets:

• COVID-19: Daily trend data sourced from the Johns Hopkins University Center

for Systems Science and Engineering.

• Social Network: Simulates opinion dynamics within a social network.

• Spring Oscillator: Models physical dynamics of a system of interconnected springs

and balls.

Baseline Comparison. Our approach is compared against various established methods,

including LSTM, GRU, DGCRN for neural network models, and NODE, HBNODE,

MPNODE, and CG-ODE for neural ODE-based models.

For more details about dataset and baseline models, please see appendix B.

Implementation Details. The model was implemented using Pytorch and optimized

with Adam over 100 epochs. We used a single-layer graph convolutional network with

second-order ODE integration in our model encoder.

Evaluation Metrics. Performance was assessed using MAE, RMSE, and MAPE, with

MAPE excluded for the Spring Oscillator due to near-zero ground truth values.

80

Neural Differential Equations Chapter 3

Table 3.1: Results of compared methods on COVID-19 with the prediction length
one week, two weeks and three weeks. Bold numbers indicate the best performance
whereas underline numbers indicate the second best performance.

Methods
1-week-ahead 2-week-ahead 3-week-ahead Average

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LSTM 231.7 370.4 0.0816 482.3 771.8 0.1608 547.5 865.9 0.1809 420.5 669.4 0.1411

GRU 234.9 373.8 0.0786 491.8 780.3 0.1544 555.3 874.0 0.1739 427.3 676.0 0.1356

NODE 103.1 184.7 0.0349 183.7 293.4 0.0516 255.7 400.1 0.0677 180.8 292.7 0.0514

HBNODE 243.8 383.6 0.0712 220.1 380.8 0.0527 283.3 464.2 0.0767 249.1 409.5 0.0669

DGCRN 102.4 161.5 0.0279 191.7 301.0 0.0479 281.4 428.1 0.0739 191.8 296.9 0.0499

MPNODE 152.7 237.5 0.0357 272.0 549.4 0.0527 248.7 385.8 0.0696 224.5 390.9 0.0527

CG-ODE 91.59 146.9 0.0255 182.5 298.9 0.0431 251.1 385.6 0.0632 175.1 277.1 0.0439

Ours 85.64 146.0 0.0228 180.9 275.2 0.0397 243.1 373.3 0.0612 169.9 264.8 0.0412

Table 3.2: Results of compared methods on Social Network with the prediction length
10, 20 and 40.

Methods
10 20 40 Average

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

LSTM 0.0933 0.1367 0.1269 0.1880 0.2719 0.2748 0.3677 0.5268 0.6276 0.2163 0.3118 0.3431

GRU 0.0939 0.1374 0.1280 0.1844 0.2724 0.2772 0.3916 0.5478 0.6566 0.2233 0.3192 0.3539

NODE 0.1276 0.1630 0.1161 0.2430 0.3066 0.2521 0.5383 0.6742 0.6025 0.3030 0.3813 0.3236

HBNODE 0.1230 0.1596 0.1149 0.2701 0.3358 0.2635 0.4877 0.6247 0.5934 0.2936 0.3734 0.3239

DGCRN 0.0913 0.1284 0.1192 0.2337 0.3046 0.2558 0.4764 0.5723 0.5614 0.2671 0.3351 0.3121

MPNODE 0.0887 0.1198 0.1151 0.1792 0.2554 0.2549 0.3678 0.5239 0.5214 0.2119 0.2997 0.2971

CG-ODE 0.0852 0.1236 0.1205 0.2073 0.2436 0.2432 0.3199 0.4871 0.4909 0.2041 0.2848 0.2849

Ours 0.0796 0.1167 0.1050 0.1543 0.2203 0.2174 0.3019 0.4873 0.4867 0.1786 0.2748 0.2697

Table 3.3: Results of compared methods on Spring Ocsillator with the prediction
length 36, 48 and 60.

Methods
36 48 60

MAE RMSE MAE RMSE MAE RMSE

LSTM 0.2661 0.3401 0.4120 0.5321 0.6257 0.7775

GRU 0.3110 0.3910 0.3940 0.4997 0.6369 0.7950

NODE 0.2757 0.3491 0.4569 0.5702 0.6259 0.7770

HBNODE 0.2969 0.3792 0.4512 0.5778 0.6486 0.8086

DGCRN 0.2798 0.3623 0.4013 0.5296 0.6159 0.7683

MPNODE 0.3473 0.4340 0.4161 0.5199 0.6133 0.7648

CG-ODE 0.2723 0.3515 0.4178 0.5382 0.6180 0.7729

Ours 0.2649 0.3387 0.3329 0.4351 0.5883 0.7359

81

Neural Differential Equations Chapter 3

Performance Tables The comparative performance of our model against baseline

methods is detailed in Tables 3.1, 3.2, and 3.3, demonstrating superior accuracy and

efficiency across all datasets.

Efficiency Analysis Figure 3.5 shows the number of function evaluations (NFE)

needed for our model compared to CG-ODE, indicating higher efficiency and faster con-

vergence.

10 2 10 3 10 4

 Tolerance

 0

 400

 800

 1200

 1600

 2000

 N
FE

HOPE
CG-ODE

10 2 10 3 10 4

 Tolerance

 0

 60

 120

 180

 240

 300

 N
FE

 HOPE
 CG ODE

Figure 3.5: Comparison of NFEs between CG-ODE and our model on the COVID-19
and Social Network datasets.

Table 3.4: Ablation study on Social Network.

Methods
10 20 40 Avgence

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HOPE w.o. FC 0.09910 0.1222 0.1172 0.1856 0.2669 0.2624 0.3934 0.5360 0.5421 0.2260 0.3084 0.3072

HOPE w.o. FO 0.08477 0.1334 0.1237 0.2018 0.2761 0.2835 0.3244 0.5163 0.4935 0.2037 0.3086 0.3002

HOPE w.o. SC 0.08322 0.1169 0.1122 0.1520 0.2384 0.2682 0.3167 0.4700 0.5782 0.1840 0.2751 0.3195

HOPE w.o. SO 0.08067 0.1212 0.1099 0.1793 0.2497 0.2223 0.3029 0.4847 0.6470 0.1876 0.2852 0.3264

HOPE w.o. E 0.09612 0.1358 0.1249 0.1879 0.2648 0.2616 0.3612 0.6249 0.5238 0.2151 0.3418 0.3034

Ours 0.07958 0.1167 0.1050 0.1543 0.2203 0.2174 0.3019 0.4873 0.4867 0.1786 0.2748 0.2697

82

Neural Differential Equations Chapter 3

Ablation Study An ablation study (Table 3.4) was conducted to verify the contri-

bution of each model component, affirming the necessity of our model’s architectural

choices.

 1 2 3 4

 0.10

 0.15

 0.20

 0.25

 0.30

 M
AP

E

 10 3 1 0 1 3 10

 0.10

 0.15

 0.20

 0.25

 0.30

 pred 10
 pred 20

 1 2 3 4
 Number of convolutional layer K

 0.10

 0.15

 0.20

 0.25

 0.30

 R
M

SE

 10 3 1 0 1 3 10
 Balance coefficient

 0.10

 0.15

 0.20

 0.25

 0.30

Figure 3.6: Sensitivity analysis of hyperparameters K and γ on prediction performance
in the Social Network dataset.

Sensitivity Analysis Figure 3.6 explores how different settings of K and γ impact

model performance, aiding in the optimal configuration of our model parameters.

83

Neural Differential Equations Chapter 3

3.3.3 CARE: Modeling Interacting Dynamics Under Temporal

Distribution Shift

Motivation

Modeling interacting dynamical systems accurately is crucial for applications rang-

ing from social network analysis to physical simulations. These systems are inherently

complex, with interactions that can be represented using geometric graphs where nodes

and edges depict objects and their interactions, respectively. Graph Neural Networks

(GNNs) have shown promising results in capturing these interactions by predicting ob-

ject trajectories based on the aggregated information from their neighbors.

However, a significant challenge arises when dealing with long-term dependencies and

temporal distribution shifts in dynamic environments. Traditional GNN-based methods

are adept at next-step predictions but struggle with error accumulation over extended

periods, especially under conditions where the system’s environmental or relational struc-

tures change. Such changes can be triggered by factors like varying temperatures or

pressures, which in turn can cause a continuous temporal distribution shift, making the

prediction task even more daunting.

Most existing methods focus on stable, in-distribution trajectories and fail to gener-

alize well to out-of-distribution data, which is often encountered in real-world scenarios

due to continuous shifts. Unlike discrete domain shifts commonly addressed in vision

and text applications, interacting dynamical systems experience continuous shifts that

require models to generalize across varying conditions effectively.

This motivation leads us to develop a model that not only predicts with high accu-

racy under known conditions but also adapts effectively to changes, capturing the con-

tinuous and often unpredictable variations in dynamical systems. Our proposed model,

Context-attended Graph ODE (CARE) [106], is designed to handle these challenges by

84

Neural Differential Equations Chapter 3

incorporating context variables that capture the essence of temporal distribution shifts,

thereby enhancing the model’s ability to generalize across different dynamic states.

Methodology

In the methodology of CARE, we introduce a sophisticated approach to model inter-

acting dynamics under temporal domain shifts through a context-attended graph ODE

system. This approach systematically incorporates assumptions and lemmas crucial for

understanding how temporal distribution shifts affect system behavior.

Formulating the Coupled ODE System To capture the dynamics of nodes and

contexts under changing conditions, we make foundational assumptions:

Assumption 8. (Independence-I) The context variable is independent of the sequences

before the last observed timestamp, i.e., P (ct|ct−k, G0:t) = P (ct|ct−k, Gt−k:t), where t− k

is the last observed timestamp.

In the assumption, ct is a context variable. For example, the context variable could

indicate flow speed, density and viscosity in fluid dynamics. Gt represents the graph state

at time t, and the abbreviation G0:t = {G0, · · · , Gt} represents the sequence of graph

states for convenience.

Assumption 9. (Independence-II) Given the current states and contexts, the future

trajectories are independent of the previous trajectories and contexts, i.e.,

P (Yt−k:t+l|G0:t−k, c0:t−k) = P (Yt−k:t−k+l|Gt−k, ct−k)

where l is the length of the prediction.

Then, we can have the following lemma:

85

Neural Differential Equations Chapter 3

Lemma 4. With Assumptions 8 and 9, we have:

P
(
Yt | G0:t−1

)
=

∫
P
(
Yt | ct−1, Gt−1

)
·

P
(
ct−1 | ct−k, Gt−k:t−1

)
· P
(
ct−k | G0:t−k)dct−1dct−k.

(3.48)

Graph ODE Modeling for Continuous Dynamics To model continuous evolution

effectively, we incorporate an ODE system into CARE. The precondition for applying

neural ODE models, which are ideal for dynamic systems, requires that both the context

variable and node representations be continuously differentiable:

Assumption 10. We assume that both context variable cs and node representations vsi

are continuously differentiable with respect to s.

We utilize this continuous framework to define the dynamics of node states and the

context variable, facilitating the integration of state changes over time:

dvsi
ds

= Φ([vs1, · · · ,vsN , cs]) = σ(
∑

j∈N s(i)

Âs
ij√

D̂s
i · D̂s

j

vsjW1 + csW2), (3.49)

where Âs denotes the adjacency matrix at timestamp s with self-loop, D̂s
i represents the

degree of node i, and N s(i) includes the neighbors of node i at that timestamp.

dcs

ds
= Φc(AGG({vsi}i∈V),AGG({dv

s
i

ds
}i∈V), cs), (3.50)

where Φc is an MLP with the concatenated input and AGG(·) is an operator to summarize

node representations such as averaging and sum.

Assumption 11. All time-dependent coefficients in Eqn. 3.49, i.e., At
ij, D̂

t
i are contin-

uous with respect to t and bounded by a constant C > 0. All parameters in the weight

matrix are also bounded by a constant W > 0.

86

Neural Differential Equations Chapter 3

To simplify the analysis, we set AGG(·) to summation and rewrite Eqn. 3.50 with

learnable matrices W3, W4 and W5 as:

dcs

ds
= σ

(
N∑
i=1

(vsiW3 +
dvsi
ds

W4) + csW5

)
. (3.51)

Then, with Assumption 11, we can deduce the following lemma:

Lemma 5. Given the initial state (t0,v
t0
1 , · · · ,vt0N , ct0), we claim that there exists ε ¿ 0,

such that the ODE system 3.49 and 3.50 has a unique solution in the interval [t0−ε, t0+ε].

A comprehensive theoretical analysis supporting the model’s predictive capabilities,

based on historical data, is provided in the Appendix A. This includes the proofs for

lemma 4 and 5 (See proof A.2.1, A.2.2 respectively).

Experiment Results

We conducted extensive evaluations of the CARE model on both particle-based and

mesh-based physical systems to assess its efficacy under various simulation conditions,

emphasizing its robustness to temporal distribution shifts.

Data Split and Training Details A rigorous data split strategy was implemented,

with 80% of the data reserved for training and 10% each for validation and testing. During

training, each trajectory sample was divided into a conditional part for initializing node

and context representations, and a prediction part for model supervision, facilitating

accurate assessment over varying prediction lengths.

Baseline Comparison CARE was compared against several state-of-the-art models

such as LSTM, STGCN, GNS, MeshGraphNet, TIE, CG-ODE, and MP-NODE. This

87

Neural Differential Equations Chapter 3

comparison highlighted CARE’s advancements in handling complex temporal interactions

and distribution shifts.

Performance on Particle-based Physical Simulations CARE was tested on

Lennard-Jones Potential and 3-body Stillinger-Weber Potential, both sensitive to environ-

mental conditions like temperature changes, to predict future velocities in all directions

(vx, vy, and vz).

Table 3.5: The RMSE (×10−2) results of the compared methods with the prediction
lengths 1, 5, 10 and 20. vx, vy and vz represent the velocity in the direction of each
coordinate axis.

Prediction Length +1 +5 +10 +20

Variable vx vy vz vx vy vz vx vy vz vx vy vz

Lennard-Jones Potential

LSTM 3.95 3.92 3.68 9.12 9.21 9.15 10.84 10.87 10.76 14.82 14.94 14.67

GNS 3.28 3.75 3.39 7.97 8.05 7.68 10.09 10.15 10.13 13.65 13.62 13.59

STGCN 2.91 3.08 2.95 5.06 5.17 5.11 6.89 6.90 6.93 9.31 9.32 9.44

MeshGraphNet 2.89 3.13 2.94 5.29 5.53 5.28 7.03 7.09 7.11 9.12 9.21 9.24

CG-ODE 1.79 2.05 1.71 3.47 3.92 3.38 5.46 5.99 5.36 9.03 9.26 8.92

TIE 1.62 1.98 1.47 3.25 3.90 3.15 5.24 5.82 5.17 8.24 8.34 8.47

Ours 0.76 0.89 1.01 2.94 3.16 2.85 5.01 4.69 4.71 5.75 5.91 5.82

3-body Stillinger-Weber Potential

LSTM 17.11 17.14 17.18 23.64 23.69 23.60 25.46 25.42 25.48 28.44 28.45 28.44

GNS 15.39 15.27 15.33 22.14 22.19 22.17 25.29 25.36 25.31 27.18 27.15 27.14

STGCN 12.33 12.31 12.35 17.94 17.96 17.91 20.08 20.14 20.13 23.49 23.51 23.52

MeshGraphNet 12.16 12.10 12.13 18.33 18.38 18.34 20.65 20.62 20.71 23.62 23.54 23.61

CG-ODE 9.78 9.74 9.75 12.11 12.05 12.14 15.55 15.58 15.50 16.17 16.24 16.22

TIE 10.18 10.26 10.19 14.75 14.70 14.73 18.42 18.45 18.41 20.92 21.04 21.36

Ours 4.21 4.29 4.18 9.74 9.79 9.71 13.65 13.71 13.57 15.30 15.39 15.35

From table 3.5, we can see CARE significantly outperformed all baselines, achieving

88

Neural Differential Equations Chapter 3

error reductions of 24.03% and 36.35% on the two datasets, respectively, attributable to

the effective use of context variables and robust learning techniques.

Performance on Mesh-based Physical Simulations CARE was evaluated on

CylinderFlow and Airfoil, involving complex fluid dynamics with cyclically varying flow

conditions.

Table 3.6: The RMSE results of the compared methods over different prediction
lengths 1, 10, 20 and 50. vx, vy and p represent the velocity in different directions
and the pressure field, respectively.

Prediction Length +1 +10 +20 +50

Variable vx vy p vx vy p vx vy p vx vy p

CylinderFlow

LSTM 3.35 29.4 12.5 7.06 44.8 17.8 9.47 49.5 19.9 14.3 73.6 42.3

GNS 3.12 28.8 11.9 7.18 44.3 17.3 9.01 49.6 19.2 13.5 73.2 41.6

STGCN 2.68 26.7 11.0 5.47 42.1 16.9 6.72 45.6 18.4 9.15 68.7 40.0

MeshGraphNet 1.75 22.4 10.6 4.09 39.7 15.7 5.38 44.5 17.2 7.92 64.3 37.7

CG-ODE 1.05 20.4 8.51 3.44 36.8 13.6 4.15 38.5 17.1 5.14 61.2 32.3

TIE 1.22 20.8 8.94 3.75 35.2 13.0 4.62 40.6 16.0 5.87 59.5 32.1

Ours 0.87 19.1 7.21 3.02 32.9 11.8 3.95 37.8 13.9 4.97 55.8 29.4

Airfoil

LSTM 7.49 7.73 1.92 8.86 9.02 3.78 10.8 11.0 4.71 14.9 15.7 4.96

GNS 6.95 7.14 1.69 8.20 8.34 3.34 10.2 10.5 3.98 14.2 14.1 4.11

STGCN 6.24 5.35 1.07 6.57 6.51 2.33 7.88 8.01 3.16 11.6 11.8 3.17

MeshGraphNet 4.72 4.68 0.50 5.89 5.74 1.23 6.32 6.48 1.85 9.03 9.12 2.08

CG-ODE 4.26 4.32 0.35 4.78 4.70 0.46 5.81 5.66 1.04 7.39 7.85 1.69

TIE 4.17 4.39 0.33 4.99 4.86 0.51 5.75 5.62 0.95 7.25 7.63 1.44

Ours 3.51 4.11 0.19 3.86 3.75 0.34 4.16 4.12 0.45 6.74 6.82 0.81

In table 3.6, CARE showed superior performance, exceeding the best baseline by

89

Neural Differential Equations Chapter 3

12.99% and 22.78% on the respective datasets. The model’s effectiveness in simulating

unsteady flow dynamics was particularly notable.

Further Analysis Ablation Study. To further validate the effectiveness of different

components within CARE, we conducted an ablation study, removing key features such

as the context variable and robust learning term to assess their individual impacts on

model performance. The results of this study are detailed in the following table:

Table 3.7: Ablation study on four datasets.

Datasets Lennard-Jones 3-body Stillinger-Weber CylinderFlow Airfoil

Variable vx vy vz vx vy vz vx vy p vx vy p

CARE V1 6.98 7.12 7.06 18.2 18.3 18.3 6.13 60.4 32.2 7.13 7.21 1.43

CARE V2 6.03 6.35 6.30 16.8 16.5 16.6 5.21 57.2 29.8 6.94 6.99 1.15

Ours 5.75 5.91 5.82 15.3 15.4 15.4 4.97 55.8 29.4 6.74 6.82 0.81

Table 3.7 demonstrate that removing the context variable (CARE V1) or the robust

learning term (CARE V2) leads to a noticeable degradation in performance, underscoring

their significance in enhancing the model’s ability to adapt to environmental changes and

distribution shifts.

Parameter Sensitivity. We also explored how different settings for condition lengths

and prediction lengths affect model performance. This sensitivity analysis helps in under-

standing the optimal configuration for both short-term and long-term forecasting accu-

racy. The results, as illustrated in the following figure, show that longer condition lengths

generally improve model performance, likely due to the increased amount of information

available for making predictions:

90

Neural Differential Equations Chapter 3

Figure 3.7: (a) and (b) show performance with respect to different condition and
prediction lengths on the CylinderFlow and Airfoil datasets. (c) Examines the sensi-
tivity of the interval for graph updating on the Lennard-Jones Potential (LJP) and
3-body Stillinger-Weber Potential (SWP) datasets. (d) Compares running time for
dynamic graph updating versus full pairwise distance calculation on two particle-based
datasets, demonstrating efficiency improvements.

Efficiency. Lastly, the efficiency of CARE’s dynamic graph updating strategy was com-

pared against a baseline method that calculates all pairwise distances for graph con-

struction during each ODE step. The computational costs, as detailed in part (d) of

Figure 3.7, reveal that CARE significantly reduces computational overhead, validating

the model’s practical applicability in real-world scenarios where computational resources

are a constraint.

3.3.4 POEM: Hyperbolic ODE System for Mesh-based Simula-

tions

Motivation

The motivation behind our proposed Hyperbolic ODE System (POEM) stems from

critical challenges faced in the simulation of physical systems using traditional mesh-based

methods and contemporary data-driven approaches. The field of physics simulations,

which is crucial for advancements in areas ranging from mechanics to acoustics, has long

relied on mesh-based finite element methods to describe complex interactions at various

91

Neural Differential Equations Chapter 3

mesh points. While these methods are proficient in allocating high-resolution resources

to critical regions, they inherently produce complicated and irregular mesh structures

that can be computationally intensive and less efficient for dynamic simulations.

Recent strides in deep learning have seen the introduction of graph neural networks

(GNNs) to model physical interactions on these irregular meshes. These data-driven sim-

ulators, despite their innovative approach, primarily engage in learning from discretized

data, which poses significant limitations in capturing continuous physical dynamics across

mesh structures. This methodological constraint often leads to error accumulation and

distribution shifts during long-term simulations, undermining the fidelity and reliability

of the predictions.

Moreover, traditional simulation methods and recent GNN adaptations typically op-

erate within a Euclidean framework, which may not naturally accommodate the hierar-

chical and multi-resolution nature of many physical systems. As physical systems like

fluid dynamics and aerodynamics increasingly rely on multi-resolution meshes for efficient

and accurate simulation, the need for a modeling approach that can inherently represent

complex geometric and hierarchical structures becomes apparent.

Our motivation is further deepened by the inadequacies in the representation capa-

bilities of Euclidean spaces for hierarchical data, which is a prevalent characteristic of

advanced mesh-based models used in complex simulations. The hyperbolic space, with its

unique geometric properties, offers a promising alternative for embedding such data with

minimal distortion, a potential that has been largely untapped in physical simulations.

POEM is designed to address these challenges by leveraging the continuous nature

of ordinary differential equations (ODEs) and the representational benefits of hyperbolic

spaces. By embedding mesh points within a hyperbolic manifold, our model not only

ensures a more natural representation of hierarchical structures but also enhances the

interaction dynamics through a novel hybrid propagator mechanism. This mechanism

92

Neural Differential Equations Chapter 3

Encoder

Decoder Decoder

...

Decoder

...

Cluster Center

ODE Propagator

Space Projection

Gradient Flow

Hyper-edge

Updating

...

Figure 3.8: (a) The overview framework of the proposed POEM. Firstly, the encoder
computes the latent initial states for mesh points in the hyperbolic space. Then the
hybrid interacting propagator serves as the ODE function to drive the system to
move forward, based on both the mesh-based graph and cluster-based hypergraph for
efficient updating. Finally, a decoder outputs the predictions. (b) Details of our hybrid
interacting propagator, which explores local and global interaction with neighboring
nodes in the mesh graph and hyperedges in the hypergraph, respectively.

combines static mesh-based graphs with dynamic distance-based hypergraphs, facilitating

both local and global interaction captures with lower computational overheads.

In summary, the motivation for developing POEM is to transcend the limitations of

existing mesh-based and GNN methods by introducing a continuous, hyperbolic ODE-

based framework that can more naturally and efficiently simulate dynamic physical sys-

tems, especially those characterized by complex, hierarchical mesh structures. Our ap-

proach aims to set a new standard in the simulation of physical systems, marrying the

theoretical depth of continuous models with the practical efficacy of modern computa-

tional techniques.

93

Neural Differential Equations Chapter 3

Methodology

POEM introduces a novel architecture by leveraging hyperbolic spaces and ODE-

based models for dynamic mesh-based systems. As shown in Figure 3.8 (a), the method-

ology consists of three primary components: an initial state encoder, a hybrid interacting

propagator, and a decoder, each tailored to enhance the simulation’s accuracy and effi-

ciency.

Network Architecture POEM integrates three main components: an initial state

encoder, an ODE-based propagator, and a decoder. Each component is tailored to process

mesh-based simulations efficiently and effectively.

Initial State Encoder. The encoder’s primary function is to transform the initial

states of mesh points from the Euclidean to the hyperbolic space, thereby preparing the

data for the subsequent ODE-based propagation. This transformation helps in capturing

the hierarchical structure inherent among mesh points effectively. The notation h0,E
i

represents the hidden state of mesh point i in the Euclidean space:

h0,E
i = fEenc (xi) , (3.52)

Afterwards, each h0,E
i is mapped to the hyperbolic space, denoted as h0,H

i , using the

exponential map:

h0
i = h0,H

i = expo([0,h0,E
i]). (3.53)

Hybrid Interacting Propagator. This component of POEM is crucial for modeling

the interactions among nodes in a mesh. Unlike traditional models that handle interac-

tions in a purely Euclidean context, POEM utilizes a hyperbolic ODE system, allowing

for a more nuanced interaction that considers both the static and dynamic relationships

94

Neural Differential Equations Chapter 3

among mesh points:

dhsi
ds

= loghs
i
(fhs

i
(N (hsi))) ∈ Ths

i
M,∀i. (3.54)

where N (hsi) encompasses both local (N l) and global (N g) neighborhood aggrega-

tions. These are defined as follows:
N l (hsi) =

∑
j∈N(i)

w(hsi ,h
s
j) loghs

i

(
hsj
)

N g (hsi) =
K∑
k=1

w(hsi , e
s
k) loghs

i
(esk) ,

(3.55)

where w(·, ·) is a weight function modeled by a shared MLP, calculating normalized

weights for both local and hyperedge interactions.

The evolving nature of mesh point interactions, especially in dynamic settings, is

captured by periodically updating the interaction hypergraph based on online clustering,

thus ensuring that all significant interactions are accounted for efficiently.

Decoder. The decoder uses the trajectory information, predicted by the propagator,

to generate final outputs:

ŷti = fdec(h
s
i), (3.56)

Model Optimization To ensure the practical implementation of our ODE model

within the constraints of hyperbolic space, we design an update strategy that approx-

imates the continuous dynamics in a computationally feasible manner. Standard ODE

solvers typically operate in Euclidean spaces; therefore, we approximate the dynamics

within small time intervals to efficiently train our model in the tangent space at each

mesh point:

95

Neural Differential Equations Chapter 3

dhs,Ei
ds

= loght
i
(fht

i
(expht

i
(N l (hsi) + N g (hsi)))), (3.57)

where hs,Ei = loght
i
(hsi). This equation defines how we map hyperbolic embeddings

back to the tangent space at each interval, allowing us to leverage traditional numerical

methods for ODEs.

We discretize the total simulation time [0, T] into uniform intervals [0, t1], . . . , [tL−1, T].

At each interval, the hyperbolic embeddings from the initial state hti are transformed into

their Euclidean tangent space representations hs,Ei , and the ODE is solved in this space.

The solution is then mapped back to the hyperbolic space, ensuring consistency with the

model’s geometric constraints.

To facilitate this transformation between tangent spaces across intervals, we use the

combination log
h
tl
i
◦ exp

h
tl−1
i

, which is differentiable due to the diffeomorphic nature of the

logarithmic and exponential maps. This approach ensures that the forward integration

process across different intervals remains smooth and differentiable, allowing the entire

model to be optimized using standard ODE solvers.

fht
i

= expht
i
◦fpro ◦ loght

i
, (3.58)

where fpro is an MLP designed for feature transformation, simplifying the interaction

calculations by maintaining operations within the Euclidean space of the tangent bundle.

This strategy not only allows for efficient training but also ensures that our model

adheres closely to the dynamics dictated by the underlying physical principles, thus

maintaining the accuracy and robustness of the simulation over time.

Theoretical Analysis The theoretical foundation of POEM ensures that the simula-

tions are not only efficient but also adhere closely to the dynamics dictated by the un-

96

Neural Differential Equations Chapter 3

derlying physical principles. The hyperbolic manifold and the ODE framework together

facilitate a robust simulation environment that can handle complex, multi-resolution

mesh structures naturally and efficiently.

Assumption 12. The mesh representations are Lipschitz-continuous and bounded in

Lorentz norm, i.e., we have constants C1, C2 > 0, s.t. ∀i, s ∈ [t, t+ ∆t],

∥hsi − hti∥L2 ≤ C1(s− t), |∥hti∥L| ≤ C2. (3.59)

Lemma 6. For any given ε > 0, we can find ∆t > 0, s.t. the difference between solutions

to the ODE system

dhs,Ei
ds

= loght
i
fhs

i
(exphs

i
(N l (hsi) + N g (hsi))), (3.60)

and Eqn. 3.57 is bounded by ε · ∆t, ∀s ∈ [t, t+ ∆t].

Corollary 13. Given the initial state ht, we claim that for any given ε > 0, we can find

∆t, s.t. the difference between solutions to the model Eqn. 3.54 and our approximation

Eqn. 3.57 is bounded by Cε · ∆t on interval [t, t+ ∆t] for some constant C.

The proofs of these theoretical assertions are detailed in the Appendix A, providing

a rigorous mathematical underpinning to the proposed methodology. This theoretical

framework not only supports the operational efficacy of POEM but also reassures its

adaptability and scalability to various physical simulation scenarios, particularly those

involving complex and hierarchical mesh structures.

Experiment Results

Our methodology is rigorously tested on four distinct datasets from various physical

domains: CylinderFlow, Airfoil, DeformingPlate, and FlagSimple. Each dataset embod-

97

Neural Differential Equations Chapter 3

ies a different aspect of physical simulations—ranging from fluid dynamics to structural

mechanics and cloth modeling—ensuring a comprehensive evaluation of our model’s ca-

pabilities across diverse settings.

Experimental Setup The datasets utilized offer a challenging array of dynamics:

• CylinderFlow involves predicting the velocity fields and pressure around a cylinder

within an incompressible flow.

• Airfoil examines the aerodynamics at an airfoil cross-section with predictions fo-

cusing on velocity, pressure, and density fields.

• DeformingPlate deals with the structural dynamics of a deforming plate.

• FlagSimple captures the movement of a flag in wind, focusing on acceleration pre-

dictions.

Each dataset comprises 1000 training samples, with 100 samples each for validation

and testing. The complexity of the mesh interactions, combined with the hyperbolic

space modeling, poses a unique set of challenges addressed by our model. We employ a

cluster number of 15 for constructing dynamic hypergraphs and set the interval length

to 10, details of which are discussed in the Appendix.

Quantitative Analysis The effectiveness of our model is quantitatively validated

against several state-of-the-art models including GNS, MeshGraphNet, and TIE, par-

ticularly in long-term prediction scenarios. Our model demonstrates substantial im-

provements in accuracy across all datasets, significantly reducing the average error in

long-term predictions compared to the baselines. The detailed results are presented in

Table 3.8, showing a marked decrease in average RMSE across different physical systems.

98

Neural Differential Equations Chapter 3

Table 3.8: The average error of all the time steps on four systems, with unit of
×10−3. We compare our proposed method with GNS, MeshGraphNet and TIE on
four benchmark physics simulation datasets. Our model significantly outperforms all
the baselines on four datasets for long-term predictions.

Method
CylinderFlow Airfoil DeformingPlate FlagSimple

vx vy p vx vy p d vx vy s ax ay

LSTM [49] 78 912 524 18569 10046 1084 987 12.4 18.7 52 184 496

GNS[107] 82 981 519 20718 11034 1234 1011 12.6 19.6 57 201 513

STGCN[108] 46 525 285 15792 9564 989 864 8.1 14.1 31 136 313

MeshGraphNet[109] 38 521 274 13246 7623 974 528 8.6 12.8 29 122 255

MP-NODE[110] 15 208 105 6514 4523 455 396 7.4 11.6 21 81 124

TIE[111] 11 215 92 5231 4016 430 377 7.5 13.2 20 78 129

POEM (Ours) 3.6 96 48 2798 2006 272 169 7.1 10.4 17 49 103

Visualization of Results We provide detailed visualizations of the velocity fields for

both CylinderFlow and Airfoil. These visualizations not only highlight the precision of

our model in capturing complex fluid dynamics but also its ability to maintain accuracy

over extended simulation periods. This capability is particularly noted in the stable

prediction of long-term dynamics, which is a notable challenge for existing simulation

methods. Figure 3.9 illustrates these comparisons.

Ground
Truth

POEM

Figure 3.9: The visualization of the velocity field for (left) water flow around a cylinder
obstacle, and (right) air around the cross-section of an aircraft wing. We show that
our proposed POEM can accurately make long-term predictions on varying system
variables.

99

Neural Differential Equations Chapter 3

Statistical Performance Comparison Further statistical analysis reveals that our

model outperforms traditional and recent GNN-based methods by a significant margin.

For instance, in the CylinderFlow dataset, our model achieves a 56.81% reduction in

RMSE compared to the best-performing baseline. Similar trends are observed across

other datasets, reinforcing the superiority of our hyperbolic ODE-based approach in

handling complex mesh dynamics and long-term dependencies. Figure 3.10 displays

these comparisons graphically.

MeshGraphNet TIE Ours Ground Truth

MeshGraphNet TIE Ours Ground Truth

Figure 3.10: Left: The simulation results of MeshGraphNet, TIE, and our model at
the time step 400 on CylinderFlow and Airfoil compared to the ground truth. Our
model can make the most accurate predictions in both cases. Right: Averaged RMSE
(vx) over all mesh points with respect to different time steps on CylinderFlow and
Airfoil.

Trade-off between Effectiveness and Efficiency As highlighted in our theoretical

analysis, optimizing the interval length (i.e., T/L) is crucial for balancing computational

cost and model accuracy. We evaluate performance across different interval lengths to

identify the optimal setting, which is depicted in Figure 3.11. Our findings indicate that

performance improves with decreasing interval length until it reaches a saturation point,

beyond which further reductions yield diminishing returns. This trade-off is critical in

practical applications where both precision and efficiency are valued.

100

Neural Differential Equations Chapter 3

Figure 3.11: Performance with respect to different interval lengths on CylinderFlow
and Airfoil. The graph demonstrates the trade-off between simulation accuracy and
computational efficiency.

Ablation Study To validate the effectiveness of the individual components of our

model, we conduct an ablation study. We compare our full model against three variants:

(i) POEM w.o. HB, which does not use hyperbolic embeddings; (ii) POEM w.o. M,

which excludes the mesh-based graph component; and (iii) POEM w.o. HG, which

omits the dynamic hypergraph component. The results, presented in Table 3.9, highlight

the significant impact of each component on the model’s performance, particularly the

crucial role of hyperbolic embeddings in managing the complexity and hierarchy of the

mesh structures.

101

Neural Differential Equations Chapter 3

Table 3.9: Ablation studies on three key components of our method. POEM w.o.
HB learns mesh representations in the Euclidean space; POEM w.o. M removes the
usage of the mesh-based graph; POEM w.o. HG removes the usage of the dynamic
hypergraph.

Method CylinderFlow Airfoil DeformingPlate FlagSimple

Variable vx vy p vx vy p d vx vy s ax ay

POEM w.o. M 18.74 278 113 8976 5655 607 414 11.3 19.1 48 231 584
POEM w.o. HB 7.9 177 75 5679 4428 489 354 7.4 10.9 21 164 289
POEM w.o. HG 4.1 105 66 2954 2480 294 187 7.2 10.8 22 54 108
POEM 3.6 96 48 2798 2006 272 169 7.1 10.4 17 49 103

3.3.5 GraphSDE: Modeling Stochastic Dynamics for Interact-

ing Systems

Motivation

In the real-world, interacting dynamical systems, such as those in autonomous driv-

ing, climate modeling, and stock market forecasting, exhibit inherent uncertainties and

complexities that deterministic models struggle to capture accurately. This limitation

stems from the deterministic nature of traditional modeling approaches, which often

assume that future trajectories follow a predictable path. However, many real-world

scenarios inherently contain multiple potential outcomes due to their stochastic nature,

such as weather patterns and financial markets. Recognizing these challenges, we pro-

pose a novel method, GraphSDE, to model the stochastic dynamics of such systems more

effectively.

Our motivation for developing GraphSDE arises from the critical need to handle the

inherent randomness present in every small time interval of real-world systems, which

is often overlooked by existing deterministic or discretely stochastic approaches. These

methods typically predict a single trajectory or a set of discrete outcomes, failing to

account for the continuous stochastic nature of the underlying processes. By integrating

continuous stochastic processes within a graph-based framework, GraphSDE aims to pro-

102

Neural Differential Equations Chapter 3

vide a more robust and realistic modeling of dynamical systems by generating a spectrum

of possible outcomes. This approach not only enhances the accuracy of predictions in

systems with inherent uncertainties but also empowers decision-makers to evaluate risks

and make informed decisions based on a range of potential scenarios.

Furthermore, the introduction of GraphSDE addresses the challenge of modeling com-

plex interactions within these systems, where the dynamics are driven by intricate in-

terdependencies among individual components. By employing a conditional neural SDE

that incorporates drift and diffusion processes, our method captures both the individual

behaviors and the collective dynamics influenced by stochastic interactions. This holistic

approach ensures that GraphSDE can effectively represent the detailed interactions and

randomness, providing a significant advancement over traditional methods in capturing

the true complexity of interacting dynamical systems.

Methodology

GraphSDE encompasses an encoder for initial state estimation, a conditional graph

SDE for modeling dynamic systems with inherent stochasticity, and a decoder for tra-

jectory prediction, optimized using a variational inference framework.

Spatio-Temporal Graph Encoder The encoder initializes node states by extracting

spatio-temporal features from historical data, leveraging a message passing mechanism

to update node representations:

h
t,(l)
i = fmp([h

t,(l−1)
i ,h

t−1,(l−1)
i ,AGG({ht,(l−1)

j , j ∈ S(i)})]), (3.61)

where AGG(·) is an aggregation function such as sum or average. The final node repre-

sentation ui is obtained through attention mechanisms over all time steps, allowing the

103

Neural Differential Equations Chapter 3

estimation of Gaussian distribution parameters for the variational inference:

q(z0i |Xob, G) = N (f enc,m(ui), f
enc,v(ui)), z0i ∼ q(z0i |Xob, G). (3.62)

Conditional Graph SDE To address the limitations of Neural ODEs, particularly

their deterministic nature, we introduce a Conditional Graph SDE model to incorporate

continuous randomness into dynamical systems modeling. This approach enables us

to capture complex interacting dynamics by combining individual trends, interactive

influences, and global system states in a hierarchical feature space. This complexity is

essential for accurately representing real-world systems that exhibit inherent stochastic

behavior.

In the implementation, we first sample hidden features z0i for each node and generate

hierarchical features by aggregating local and global information:

n0
i = AGGl({z0j , j ∈ N (i)}),g0

i = AGGg({z0j , j ∈ V }), (3.63)

where AGGl(·) and AGGg(·) aggregate features from local neighbors and the entire graph,

respectively. The local and global features are critical for capturing the dynamics of the

system as they provide insights from different perspectives of the graph structure.

These features are used to initialize the state of each node in the graph SDE, which

is then defined as:

dhti = ϕdrc

(
ĥti, t

)
dt+ ϕdic

(
ĥti, t

)
dWt, (3.64)

with ĥti incorporating the concatenated features of local interactions and global state

104

Neural Differential Equations Chapter 3

influences:

ĥti =

zti

AGGl({nti, j ∈ N (i)})

AGGg({gti, j ∈ V })

 , (3.65)

where ϕdrc and ϕdic represent the drift and diffusion terms, respectively, and Wt is a

multi-dimensional Wiener process, adding stochasticity to the system’s evolution.

Stability Analysis. To ensure the robustness and reliability of our SDE model,

we analyze its stability under perturbations. We assume the linear aggregation opera-

tors, AGGl(·) and AGGg(·), allow us to represent the drift and diffusion functions in a

linearized form:

dεt = f∆(εt, t)dt+ g∆(εt, t)dWt, (3.66)

where

f∆(εt, t) = Mt,drεt, g∆(εt, t) = Mt,diεt, (3.67)

and Mt = WtAt represents the message passing matrix. The stability of our model is

supported by the following lemma:

Lemma 7. Suppose ∃λmax, λmin > 0, s.t ∀t > 0, the eigenvalues for Mt satisfy:

0 < λmin ≤ |λt1| ≤ · · · ≤ |λt3dN | ≤ λmax. (3.68)

Then we claim that the following inequality is a sufficient but not necessary condition to

guarantee that the solution εt ≡ 0 to Eqn. 3.66 is almost surely exponentially stable:

2 ≤ λmin ≤ λmax ≤
√

2λ2min + 1 − 1. (3.69)

The proof is provided in Appendix A. This lemma is foundational for our stabil-

105

Neural Differential Equations Chapter 3

ity claims, demonstrating robustness against small perturbations and ensuring reliable

predictions under dynamic conditions.

Decoder and Optimization Decoder. Our decoder function maps the sampled

latent embeddings zti from the GraphSDE model to trajectory predictions, using a fully

connected network:

x̂ti = fdec(zti), (3.70)

where fdec(·) represents the decoding network. This setup allows for the generation of

diverse trajectory predictions by sampling multiple outcomes from the latent distribution,

reflecting the probabilistic nature of future states in the dynamical system.

Optimization. The model is optimized by maximizing the evidence lower bound (ELBO),

balancing the likelihood of the generated trajectories with the complexity of the model.

The ELBO formulation is as follows:

L = EZ0∼
∏N

i=1 q(z0i |Xob,C)

[
log p(XT ′+1:T |Z0, C)

]
− KL

[
N∏
i=1

q(z0i |G1:Tobs , C)∥p
(
Z0|C

)]
,

(3.71)

where C represents the class labels that condition the model.

Robustness. Ensuring robustness in stochastic modeling is critical, especially when

dealing with real-world dynamical systems that are subject to various perturbations and

uncertainties. We define the robustness of our model as follows:

Definition 19. A model f , operating on an input x and outputting a continuous random

variable, is considered r-robust for a radius r ∈ R+ against a perturbation δ, if P(∥f(x+

δ) − f(x)∥ ≤ r) > P(∥f(x + δ) − f(x)∥ > r).

Under this framework, we propose the following theorem, leveraging the stability

conditions established earlier to demonstrate enhanced robustness margins in our SDE

106

Neural Differential Equations Chapter 3

model compared to traditional ODE models:

Theorem 14. Under the assumption of Lemma 7, let Rr
X (t) denote the robustness

margin for the SDE model as per Eqn. 3.64, solved via the autoencoder framework in

Eqn. 3.71. Assume R̃r
X (t) represents the robustness margin for the following ODE model:

dhti = ϕdrc

(
ĥti, t

)
dt, (3.72)

which removes the diffusion term
∫
ϕdi (zs, s) dWs solved using Eqn. 3.71. We further

assume there exist positive constants c1, c2 such that:

c1∥z1 − z2∥ ≤ gt(z1 − z2) ≤ c2∥z1 − z2∥. (3.73)

Then, we can have:

Rr
X (t) ≥ R̃r

X (t) ∀r > 0 and t = T ′ + 1, . . . , T. (3.74)

The proof, detailed in Appendix A, showcases the model’s capability to maintain

reliable predictions despite inherent uncertainties and variabilities, underscoring the sig-

nificance of incorporating stochastic elements into the dynamical systems modeling.

Experiment Results

Datasets and Settings. We assess GraphSDE on four dynamic system datasets:

COVID-19, Radar Map, Stock, and Social Network. These datasets encapsulate a

range of dynamics from pandemic progression to financial fluctuations and social inter-

actions. Detailed descriptions are available in Appendix B.

Baselines. GraphSDE is benchmarked against several state-of-the-art models includ-

107

Neural Differential Equations Chapter 3

ing LSTM, GRU, NODE, and others, detailed in Appendix B. We adopt the Best-of-N

strategy and use MAE, RMSE, and MAPE for evaluation, further elaborated in Appendix

B.

Table 3.10: The compared results on COVID-19 over 7-Day, 14-Day, and 21-Day
periods. Bold numbers highlight the best performance whereas underline numbers
highligh the second best performance.

Methods
7-Day Average 14-Day Average 21-Day Average

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

LSTM 30.1±0.3 39.0±0.6 15.3±1.3 29.8±0.2 40.3±0.3 26.2±1.5 31.6±0.1 45.6±0.2 34.8±1.5

GRU 24.7±0.5 34.9±0.9 8.19±0.35 26.5±0.3 41.0±0.4 11.6±0.1 30.0±0.2 49.4±0.3 14.4±0.2

NODE 29.3±0.7 39.3±1.1 10.6±0.5 30.5±0.8 40.8±1.5 18.4±0.7 32.1±0.8 44.1±1.5 25.2±0.8

HBNODE 30.7±0.8 41.3±1.4 10.3±0.5 30.0±0.7 39.5±1.4 18.7±0.6 32.0±0.7 46.9±1.5 22.5±0.6

MPNODE 17.7±0.2 26.1±0.3 3.54±0.26 19.4±0.1 28.8±0.2 6.07±0.47 21.5±0.1 33.7±0.1 8.32±0.65

CG-ODE 16.3±0.3 24.1±0.2 2.48±0.32 18.2±0.2 29.8±0.2 4.26±0.43 22.3±0.1 33.0±0.3 6.26±0.54

HOPE 16.1±0.3 23.9±0.3 2.31±0.22 18.3±0.3 28.3±0.3 4.15±0.46 21.7±0.3 32.4±0.2 6.12±0.64

GraphSDE 15.8±0.2 23.8±0.3 2.26±0.21 17.8±0.3 27.5±0.2 3.90±0.36 19.4±0.5 29.5±0.1 6.04±0.51

Table 3.11: The compared results on Radar Map over cumulative 3-Spans and 5-S-
pans periods, each span representing a 6-minute interval. MAE and RMSE values are
presented in units of 10−3.

Methods
3-Spans Average 5-Spans Average

MAE RMSE MAE RMSE

LSTM 46.9±0.1 76.7±0.1 58.1±0.2 88.3±0.1
GRU 48.2±0.2 80.2±0.2 60.0±0.1 90.6±0.2

NODE 46.7±0.1 76.2±0.1 56.8±0.2 86.2±0.2
HBNODE 47.1±0.3 77.1±0.2 57.2±0.3 87.1±0.1
MPNODE 52.1±0.2 82.3±0.1 61.7±0.2 93.1±0.3
CG-ODE 53.3±0.2 82.5±0.2 64.1±0.3 95.4±0.1

HOPE 52.8±0.2 81.8±0.3 62.8±0.2 93.7±0.3
GraphSDE 45.5±0.3 70.3±0.1 56.0±0.2 85.5±0.2

Performance Comparison. Our evaluations, summarized in Tables 3.10 to 3.11,

show that GraphSDE consistently outperforms the baselines across all datasets. Notably,

on the Stock dataset, it reduces prediction errors significantly compared to the best base-

line, MPNODE. The introduction of stochastic elements and hierarchical interactions in

GraphSDE effectively captures the complex dynamics and randomness in these systems,

enhancing predictive accuracy.

Visualization and Insights. We visualize the results of different approaches on

108

Neural Differential Equations Chapter 3

Day 21Day 14Day 7Day 5Day 3

40071 50

Tr
ut

h
O

ur
s

B
as

e
G

ro
un

d
Tr

ut
h

G
ra

ph
SD

E
H

O
PE

Figure 3.12: Comparative results of HOPE and our GraphSDE on COVID-19 fatalities
in the US over three weeks, using a logarithmic scale for better visibility.

the COVID-19 and Radar Map datasets. The predictive capability of GraphSDE is

illustrated as follows:

To illustrate the capability of capturing the dynamic nature of epidemic spread on

the COVID-19 dataset, we map the daily fatalities in the United States to intuitively

depict the progression or mitigation trends of the pandemic.

The Radar Map results show that our GraphSDE can generate accurate predictions

in areas with sudden shifts over time intervals, demonstrating superior performance in

long-term prediction due to our continuous modeling of stochastic dynamical systems

with reduced error accumulation.

109

Neural Differential Equations Chapter 3

Span 6Span 5Span 4Span 3Span 2Span 1

G
ro

un
d

Tr
ut

h
G

ra
ph

SD
E

H
O

PE

0 10.80.2 0.4 0.6

Figure 3.13: Comparison of HOPE and our GraphSDE on Radar Map reflectivity,
with RBF Interpolation for reconstructing location data from 30 observation points.

Table 3.12: Comparisons between our GraphSDE and its variants on Stock data.

Methods
10-day Average 20-day Average 40-day Average

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

GraphSDE w/o G 31.4±0.2 94.5±0.4 17.4±0.2 34.1±0.2 94.5±0.5 18.5±0.3 37.1±0.2 99.2±0.4 21.2±0.3

GraphSDE w/o L 35.1±0.3 120.4±0.5 22.1±0.3 38.2±0.3 103.6±0.4 22.4±0.2 39.7±0.1 108.8±0.4 24.2±0.2

GraphSDE w/o D 33.7±0.4 105.2±0.4 19.2±0.2 36.8±0.4 99.8±0.4 21.6±0.3 38.2±0.2 102.1±0.3 20.8±0.2

GraphSDE w/o C 31.9±0.2 97.4±0.5 18.0±0.3 35.2±0.2 98.3±0.4 20.4±0.1 37.7±0.2 100.8±0.4 21.1±0.3

GraphSDE 31.0±0.2 92.5±0.5 17.6±0.2 32.5±0.1 90.0±0.5 17.8±0.1 35.0±0.1 94.1±0.4 18.4±0.1

Ablation Study. We conduct ablation studies on the Stock dataset to evaluate the

different contributions of each component in GraphSDE. The results, presented in Table

3.12, affirm the significance of both local and global messages, the diffusion components,

and the mode-specific SDE configurations in capturing the nuanced stochastic dynamics

110

Neural Differential Equations Chapter 3

 40 50 60 70 80
 Conditional length

 80

 85

 90

 95

 100

 R
M

SE

 40 50 60 70 80
 Conditional length

 16

 17

 18

 19

 20

 M
AP

E
(%

)

 8 12 16 20 24
 Hidden dimension

 80

 85

 90

 95

 100

 R
M

SE

 8 12 16 20 24
 Hidden dimension

 16

 17

 18

 19

 20

 M
AP

E
(%

)

Figure 3.14: Sensitivity analysis on a 20-day forecast task for Stock, showing accuracy
and 80% confidence intervals.

of the system.

Sensitivity Analysis. We examine how key hyperparameters, condition sequence

length Tcond and hidden dimension d, impact the performance of GraphSDE on the Stock

dataset:

Increasing condition length typically reduces predictive errors before reaching satu-

ration, indicating that more historical trajectories can enhance performance. However,

overly long historical trajectories might degrade performance due to potential overfitting.

Increasing the hidden dimension generally improves performance due to enhanced model

representation capacity, stabilizing once dimensions exceed 16.

111

Chapter 4

Training strategy: Channel

Independent (CI) versus Channel

Dependent (CD)

4.1 Introduction and Related Work

Transformer-based architectures [55] have achieved remarkable success in various time

series modeling tasks, including forecasting, classification, and regression. Notable exam-

ples include Informer [57], Autoformer [58], and FedFormer [59], among others. However,

as studied in [60], when the input sequence length increases, the performance of trans-

formers does not improve proportionally, suggesting potential overfitting during training.

This observation has prompted the exploration of alternative architectures that can ef-

fectively capture long-range dependencies while mitigating overfitting.

One such alternative is the Dlinear architecture proposed in [60], which employs a

simple multi-layer perceptron (MLP) architecture. Although Dlinear may not initially

outperform transformers, its prediction error decreases as the input sequence length in-

112

Training strategy: Channel Independent (CI) versus Channel Dependent (CD) Chapter 4

creases, indicating its ability to learn from more input data. This contrasting behavior

has led to a rethinking of the transformer architecture, leading to the development of

iTransformer [112] and Crossformer [113].

The iTransformer [112] introduces a novel channel-wise embedding strategy, where

each channel is embedded separately before being combined through cross-channel in-

teractions. This approach aims to capture the intrinsic dynamics of individual channels

while maintaining the ability to model cross-channel dependencies. The Crossformer

[113], on the other hand, proposes a cross-channel attention mechanism, allowing effi-

cient capture of channel-wise and cross-channel dependencies.

Furthermore, the work of [114] revisits the channel-independent (CI) and channel-

dependent (CD) strategies for multivariate time series forecasting. The authors introduce

a distribution difference metric to quantify the divergence between the distributions of the

training and test set. Through visualizations and empirical analysis, they demonstrate

that for most real-world datasets, there exists a significant distributional shift between

the training and test sets. This observation provides insights into the potential reasons

behind the superior performance of the CI strategy over the CD strategy in certain

scenarios, as the CI strategy may be more robust to distributional shifts.

The authors of [114] also investigate the trade-off between the capacity and robustness

of the CI and CD strategies. They argue that while the CD strategy has a higher

capacity to fit the training data, it may suffer from reduced robustness when faced with

distributional shifts, leading to inferior performance on the test set. In contrast, the

CI strategy, despite having lower capacity, exhibits greater robustness to distributional

shifts, potentially explaining its better generalization in certain cases.

In this chapter, we build on these recent developments and insights, aiming to provide

a comprehensive theoretical analysis of CI and CD strategies, quantifying the distribu-

tional shift between training and test sets, and exploring the trade-off between capacity

113

Training strategy: Channel Independent (CI) versus Channel Dependent (CD) Chapter 4

and robustness in these approaches. Our analysis will contribute to a deeper understand-

ing of the underlying dynamics and guide the development of more effective and robust

time series forecasting models.

4.2 Preliminaries

4.2.1 Overview of the Transformer

Building upon the remarkable success of Transformer-based architectures in various

time series modeling tasks, as highlighted in the introduction, this subsection aims to

delve deeper into the core components that make the Transformer model particularly

effective. Central to the Transformer’s ability to handle sequential data is the attention

mechanism, which allows the model to dynamically focus on relevant parts of the input

sequence when generating the output.

The basic unit of computation in a Transformer is the attention mechanism [55],

specifically designed to compute a weighted sum of the values, the weights themselves

being determined by a compatibility function between each value and a given query. The

mathematical formulation of the attention function is as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (4.1)

Here, Q, K, and V represent the matrices of queries, keys, and values, respectively,

each derived from the input data. dk is the dimension of the keys, and scaling by
√
dk is

done to prevent the dot products from growing too large in magnitude, which could lead

to computational difficulties during training.

The queries, keys, and values are computed as linear transformations of the input

114

Training strategy: Channel Independent (CI) versus Channel Dependent (CD) Chapter 4

embeddings:

Q = XWQ, K = XWK , V = XW V (4.2)

where X denotes the input embeddings, and WQ, WK , and W V are the weight matrices

that are learned during training.

Extending the attention mechanism to multi-head attention allows the model to ex-

plore different subspace representations of the input sequence concurrently, enabling it

to capture various types of relationships between the elements of the input sequence:

MultiHead(Q,K, V) = Concat(head1, . . . , headh)W
O

where headi = Attention(QWQ
i , KW

K
i , V W

V
i)

(4.3)

In this configuration, WQ
i , WK

i , and W V
i are the projection matrices for the i-th

attention head, transforming the input into different subspaces for queries, keys, and

values, respectively. WO is another learned matrix that combines the outputs of all the

heads of attention into a single output.

This framework of multi-head attention enables the Transformer to capture various

aspects of the data’s structure, accommodating complex dependencies across different

positions in the sequence. This capability is particularly advantageous in multivariate

time series forecasting, where understanding intricate patterns across multiple variables

is crucial.

Position-wise Feed-Forward Networks Each layer of the Transformer includes a

position-wise feedforward network (FFN), which applies the same two-layer neural net-

work to each position separately and identically. This consists of two fully connected

layers with a ReLU activation function in between, applied independently to each posi-

115

Training strategy: Channel Independent (CI) versus Channel Dependent (CD) Chapter 4

tion in the sequence:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4.4)

where W1, b1, W2, and b2 are learnable parameters. The FFN allows the Transformer

to apply a further non-linear transformation to the output of the attention mechanism,

enhancing the model’s ability to represent complex functions.

Positional Encoding Since the Transformer architecture lacks recurrence or convolu-

tion, positional encodings are added to the input embeddings to incorporate information

about the order of the sequence. This is necessary because the self-attention mecha-

nism alone does not have a notion of the relative positions of the input elements. The

positional encodings are defined as:

PE(pos,2i) = sin
(pos

100002i/dmodel

)
, PE(pos,2i+1) = cos

(pos

100002i/dmodel

)
(4.5)

where pos is the position in the sequence, and i is the dimension. These positional

encodings are added to the input embeddings to provide the model with some notion of

token position within the sequence.

The positional encodings are crucial for enabling the self-attention layers to interpret

the sequences effectively, considering not only the content but also the order of the data

points. The added positional information allows the attention mechanism to differentiate

between elements based on their positions in the sequence, which is particularly important

in tasks like time series forecasting, where the order of data points carries significant

predictive power.

116

Training strategy: Channel Independent (CI) versus Channel Dependent (CD) Chapter 4

4.2.2 Channel Dependent and Channel Independent Losses

In this section, we adopt the notation from [114] to provide a mathematical analysis

of training strategies for multivariate time series forecasting (MTSF). Data in MTSF typ-

ically contain multiple variables, or channels, at each time step. The following notations

are used in our analysis:

• X ∈ RL×C - the matrix representing historical values of the multivariate time series,

where L is the length of the look-back window, and C is the number of channels.

• Y ∈ RH×C - the matrix representing future values to be predicted for the multi-

variate time series, where H is the forecast horizon.

• ℓ - the loss function, typically the mean squared error (MSE) for regression tasks.

With these notations, we define the losses for the two training strategies:

• Channel Dependent (CD) loss

min
f

1

N

N∑
i=1

ℓ(f(X(i)), Y (i)) (4.6)

• Channel Independent (CI) loss

min
f

1

NC

N∑
i=1

C∑
c=1

ℓ(f(x(i)c), y(i)c) (4.7)

where X = [x1, · · · , xC], Y = [y1, · · · , yC] with xc ∈ RL, yc ∈ RH , 1 ≤ c ≤ C.

117

Training strategy: Channel Independent (CI) versus Channel Dependent (CD) Chapter 4

4.3 Mathematical Analysis

Let’s consider a simple linear embedding function for the standard Transformer ar-

chitecture, which maps the input sequence X ∈ RL×C to a higher-dimensional space:

XE = XWE ∈ RL×e,

where e represents the size of the embedded token and WE ∈ RC×e is a able-to-learn

embedding matrix.

With this embedding, the attention mechanism can be calculated as follows:

Attention(Q,K, V) = softmax

(
(XEWQ)(WK)T (XE)T√

dk

)
XEW V

= softmax

(
X(WEWQ)(WK)T (WE)TXT

√
dk

)
XWEW V

To simplify the representation, we can replace the matrix multiplications with single

matrices, and get:

Attention(Q,K, V) = softmax

(
XW1X

T

√
dk

)
XW2,

where W1 ∈ RC×C and W2 ∈ RC×O are learnable matrices, and O represents the

dimension of output of the attention block.

For the iTransformer [112], the embedding function is given by:

X iE = XTW iE ∈ RC×e,

where W iE ∈ RL×e is a learnable embedding matrix. Unlike other Transformer-based

architectures that embed all dimensions of the input at the same time stamp, the iTrans-

118

Training strategy: Channel Independent (CI) versus Channel Dependent (CD) Chapter 4

former embeds the entire path for each channel of the input separately. This approach

ensures that the embedded vector contains information about the entire sequence for a

single channel, allowing the model to capture intricate patterns within each individual

channel.

Following a similar approach, we can formulate the attention block in the iTransformer

as:

iAttention(Q,K, V) = softmax

(
XTW3X√

dk

)
XTW4,

where W3 ∈ RL×L and W4 ∈ RL×O are learnable matrices, and the attention is

computed in the channel dimension instead of in the sequence length dimension.

Now, suppose that the test data set has a distribution shift in the first s channels,

that is, Xtest = [XS + ∆XS, XC−S] = [x1 + ∆x1, · · · , xs + ∆xs, xs+1, · · · , xC]. To analyze

the impact of this distribution shift on the attention mechanism, we can represent the

attention matrix W1 as four block matrices:

W1 =

W11 W12

W21 W22

 ∈

 RS×S RS×(C−S)

R(C−S)×S R(C−S)×(C−S)

Then, for the standard Transformer attention mechanism, we have:

Attention(Q,K, V) =softmax

(
1√
dk

(
(XS + ∆XS)W11(XS + ∆XS)T

+XC−SW21(XS + ∆XS)T + (XS + ∆XS)W12X
T
C−S

+XC−SW22X
T
C−S

))
XtestW2,

119

Training strategy: Channel Independent (CI) versus Channel Dependent (CD) Chapter 4

While for the iTransformer attention mechanism, we have:

iAttention(Q,K, V) =softmax

(
1√
dk
Wnew

)(XS + ∆XS)T

XT
C−S

W4,

where Wnew =

(XS + ∆XS)TW3(XS + ∆XS) (XS + ∆XS)TW3XC−S

XT
C−SW3(XS + ∆XS) XT

C−SW3XC−S

 .

From the equations above, we can observe that in the standard Transformer, all at-

tention scores will be affected by the distribution change in the first s channels, and three

of the four terms in the attention matrix calculation will change, making the performance

unpredictable.

However, for the iTransformer, we can see that for the latter C − S channels that do

not have a distribution shift, only the first S elements in the attention matrix calculation

will be changed by (XT
C−SW3 · ∆XS). Thus, the attention scores for predicting these

channels will be relatively robust to the distribution shift.

This robustness to distribution shifts in a subset of channels gives an explanation for

why the iTransformer can outperform existing Transformer-based architectures for time

series prediction, especially in tasks where there is an obvious distribution shift from the

training dataset to the test dataset.

120

Chapter 5

Conclusion and Future Work

5.1 Conclusion

This dissertation has presented a comprehensive study and novel contributions in the

domains of signature transformations, neural differential equations, and training strate-

gies for multivariate time series forecasting. The key findings and contributions of each

chapter are summarized as follows.

• Chapter 2: Applications of Signature Transformation - This chapter demon-

strated the versatility and efficacy of signature transformations in capturing the

essential dynamics of sequential data. The application of signature methods to

classification, distribution regression, and other tasks showcased their robustness

and flexibility in handling complex time series data.

• Chapter 3: Applications of Neural Differential Equations - By exploring

the practical applications of Neural Ordinary Differential Equations (NODEs) and

Neural Stochastic Differential Equations (NSDEs), this chapter highlighted their

power in modeling physical systems and other real-world phenomena. The experi-

121

Conclusion and Future Work Chapter 5

ments with high-order NODEs, Neural Manifold ODEs, and neural SDEs, combined

with Graph Neural Networks (GNNs) for simulation, demonstrated the significant

potential of continuous-depth models in capturing intricate system dynamics.

• Chapter 4: Training Strategy Analysis—Channel Independence versus

Channel Dependence - This chapter investigated the efficacy of Channel Inde-

pendent (CI) and Channel Dependent (CD) training strategies in multivariate time

series forecasting. The mathematical formulation and theoretical analysis provided

insights into why the CI strategy often surpasses the CD strategy. It was revealed

that the CI approach’s robustness to distribution shifts between training and test

datasets is a crucial factor contributing to its superior performance, a common

scenario in real-world applications.

Overall, this thesis has provided significant insight into advanced techniques for time

series analysis and forecasting, offering theoretical and practical contributions to the

field. The comparative analysis of CI and CD strategies, in particular, sheds light on the

importance of considering distribution shifts in real-world applications, guiding future

research and application development.

5.2 Future Work

While this dissertation has made substantial progress, several avenues for future re-

search remain open:

• Application of Signature Methods in Reinforcement Learning and

Decision-Making Tasks - Future research could explore the integration of signa-

ture methods in reinforcement learning or other decision-making tasks. Given that

122

Conclusion and Future Work Chapter 5

signature transformations provide a compact and informative summary of histori-

cal data, they could be highly beneficial in environments where a precise model is

unnecessary, yet a useful summary of the past is crucial for decision-making.

• Signature Methods and Channel Categorization - Address the challenge of

long signature vectors in high-dimensional input paths by categorizing channels

first. Calculate signatures for subgroups where channels within each group share

similar distributions, patterns, or high correlations. This approach reduces the

length of the signature vector while leveraging the advantages of the CI strategy.

• Advancements in Neural Differential Equations - While this work explored

high-order NODEs, Neural Manifold ODEs, and neural SDEs combined with GNNs,

future research could further investigate these models’ potential. Areas of inter-

est might include exploring higher-dimensional manifolds, incorporating additional

physical constraints, or developing more efficient training algorithms. Additionally,

applying these models to a broader range of real-world phenomena could further

validate their efficacy and reveal new applications. Specifically, adopting a Channel

Independent (CI) strategy for NDEs, similar to the channel-wise embedding used

in iTransformer, could be explored to improve the training efficiency and model

performance.

• Mathematical Proofs for CI/CD Strategy Comparison - The comparison

between CI and CD training strategies provided valuable insights, but further math-

ematical proofs are necessary to understand and quantify how distribution shifts

affect these strategies. Future research could focus on developing rigorous theoret-

ical frameworks and proofs to better explain the observed phenomena and poten-

tially uncover new training strategies that leverage the strengths of both CI and

CD approaches.

123

Conclusion and Future Work Chapter 5

• Hybrid Models and Multi-modal Time Series Analysis - Combining the

strengths of signature transformations, neural differential equations, and transformer-

based architectures could lead to hybrid models that leverage the advantages of

each method. Future research could explore the design and implementation of such

hybrid models, aiming to improve the robustness and accuracy of time series fore-

casting and other sequential data tasks. Additionally, these hybrid models could

be extended to handle multi-modal data sources (e.g., sensor data, text, images,

video), developing techniques for fusing and modeling inter-dependencies between

different modalities.

• Scalability and Efficiency - Investigating ways to enhance the scalability and

computational efficiency of the discussed methods is another promising direction.

Techniques such as model compression, parallelization, and optimization algorithms

could be explored to make these advanced models more practical for large-scale and

real-time applications.

• Improving Interpretability and Trustworthiness - While deep learning mod-

els provide improved predictive accuracy, their ”black-box” nature poses challenges

for interpretability and trust. Future work could focus on developing methods to

make these models more interpretable without compromising performance. This is

especially important for critical applications where explainability is crucial.

• Uncertainty Quantification and Probabilistic Forecasting - Extend the de-

veloped methods to provide uncertainty estimates and probabilistic forecasts, cru-

cial in many real-world applications. Investigate techniques like Bayesian neural

networks, ensemble methods, or incorporating domain knowledge to quantify and

communicate the uncertainty associated with predictions.

124

Conclusion and Future Work Chapter 5

• Transfer Learning and Domain Adaptation - Explore transfer learning tech-

niques to leverage knowledge from related domains or tasks, potentially accelerating

training and improving performance. Investigate domain adaptation strategies to

adapt models to different but related domains, addressing distribution shifts be-

tween training and deployment environments. Develop techniques to identify and

leverage invariant features or representations across domains.

• Federated Learning and Privacy-Preserving Techniques - Investigate fed-

erated learning frameworks for training models using decentralized data sources

while preserving data privacy. Develop privacy-preserving techniques like differen-

tial privacy or secure multi-party computation. Explore trade-offs between privacy,

model performance, and computational efficiency.

• Hardware Acceleration and Edge Computing - Explore hardware accelera-

tion techniques (e.g., GPUs, TPUs, FPGAs) to improve computational efficiency.

Investigate deploying these models on edge devices or resource-constrained envi-

ronments, leveraging model compression or specialized hardware architectures. De-

velop edge computing frameworks for real-time decision-making and forecasting in

IoT, autonomous systems, and edge analytics.

In conclusion, this dissertation has laid the groundwork for several innovative ap-

proaches in time series analysis and forecasting. The insights gained and the methodolo-

gies developed provide a solid foundation for future research, with numerous opportunities

to further advance the field and address real-world challenges.

125

Appendix A

Proofs

A.1 HOPE

A.1.1 Proof of Lemma 1

Proof: Assuming Rk := (Zt+1 − Zt) /
√
λ and β := 1 − γ

√
λ where γ is a given

coefficient, the momentum updating algorithm can be rewritten as follows:

Rt+1 = (1 − γ
√
λ)Rt +

√
λ(σ((D̂t)−1ÂtZtWp) − Zt). (A.1)

When λ→ 0, we have

dZt

dt
= Rt, (A.2)

dRt

dt
= −γRt + (σ((D̂t)−1ÂtZtWp) − Zt), (A.3)

Finally, we combine Equation A.2 and Equation A.3 by deleting Rt as below:

d2Zt

dt2
+ γ

dZt

dt
= σ((D̂t)−1ÂtZtWp) − Zt. (A.4)

126

Proofs Chapter A

A.1.2 Proof of Lemma 2

Proof: A coupled first-order ODE can be directly obtained from Equation A.2

and Equation A.3. Further, we can augment the node state representation matrix by

Ft = [Zt, Żt] and Ḟt = [Żt, Z̈t]1, resulting in a first-order ODE with the variable Ft.

A.1.3 Proof of Lemma 3

Proof: Let the message passing matrix be

Mt = (D̂t)−1Ât =

M t

11 . . . M t
1N

...
. . .

...

M t
N1 . . . M t

NN

 , (A.5)

the weight matrix is

Wp =

W11 . . . W1d

...
. . .

...

Wd1 . . . Wdd

 . (A.6)

Then, we define the transformation function

S : RN×d → RNd×1 (A.7)

Zt =

zt1
...

ztN

 7→

(zt1)

T

...

(ztN)T

 , (A.8)

1Żt := dZt

dt and Z̈t := d2Zt

dt2

127

Proofs Chapter A

and transform the augmented ODE Equations A.2 and A.3 to be

d
dt
S(Zt) = S(Rt),

d
dt
S(Rt) = −γS(Rt) − S(Zt) + ReLU(S(MtRtWp))

(A.9)

where (MtRtWp)ij =
∑d

b=1

∑N
a=1M

t
iaZ

t
abWbj.

Now, let Yt =

S(Zt)

S(Rt)

 ∈ R2Nd×1, we get the ODE equation dYt

dt
= f(Yt). It is

obvious that f is continuous w.r.t t since it does not depend on t explicitly.

For any two solutions Yt
1,Y

t
2, denote ∆Rt

i = S(Rt)1i − S(Rt)2i, ∆Zt
i = S(Zt)1i −

S(Zt)2i. Note |ReLU(x) −ReLU(y)| = |x+ − y+| ≤ |x− y|. Therefore, we have

∥f(Yt
1) − f(Yt

2)∥22 ≤
Nd∑
i=1

(∆Rt
i)

2 (A.10)

+ 3
Nd∑
i=1

[
γ2(∆Rt

i)
2 + (∆Sti)

2 (A.11)

+N2d2
∑
a,b

(M t
ka)

2W 2
bj(Z

t
ab,1 − Ztab,2)

2
]

(A.12)

≤
Nd∑
i=1

[
(1 + 3γ2)(∆Rt

i)
2 (A.13)

+ (3 + 3N3d3M2W 2)(∆Zt
i)

2
]

(A.14)

≤ L2∥Yt
1 −Yt

2∥22 (A.15)

where M = maxi,j |M t
ij|, W = maxij |Wij|, L = max(

√
1 + 3γ2,

√
3 + 3N3d3M2W 2).

Hence, we prove that f is Lipschitz-continuous in y, then by Picard–Lindelöf theorem 5,

we prove the uniqueness of the solution.

128

Proofs Chapter A

A.2 CARE

A.2.1 Proof of Lemma 4

Proof: We have:

P
(
Yt | G0:t−1

)
=

∫
P
(
Yt | ct−1, G0:t−1

)
· P
(
ct−1 | G0:t−1

)
dct−1

=

∫
P
(
Yt | ct−1, Gt−1

)
· P
(
ct−1 | G0:t−1

)
dct−1

=

∫
P
(
Yt | ct−1, Gt−1

)
· P
(
ct−1 | ct−k, G0:t−1

)
· P
(
ct−k | G0:t−k)dct−1dct−k

=

∫
P
(
Yt | ct−1, Gt−1

)
· P
(
ct−1 | ct−k, Gt−k:t−1

)
· P
(
ct−k | G0:t−k)dct−1dct−k

(A.16)

A.2.2 Proof of Lemma 5

For convenience, Eqn. 3.49 in the main paper is repeated as:

dvsi
ds

= Φ([vs1, · · · ,vsN , cs]) = σ

 ∑
j∈N s(i)

Âs
ij√

D̂s
i · D̂s

j

vsjW1 + csW2

 , (A.17)

Eqn. 3.51 is repeated as:

dcs

ds
= σ

(
N∑
i=1

(vsiW3 +
dvsi
ds

W4) + csW5

)
. (A.18)

Proof: Let As
ij = 0 if j /∈ N s(i) and denote Ms

ij =
Âs

ij√
D̂s

i ·D̂s
j

. Then, we transpose

129

Proofs Chapter A

them with Eqn. A.17 and A.18 becoming:

d(vsi)
T

ds
= σ

(
N∑
j=1

Ms
ijW

T
1 (vsj)

T + WT
2 (cs)T

)
d(cs)T

ds
= σ

(
N∑
i=1

(WT
3 (vsi)

T + WT
4

d(vsi)
T

ds
) + WT

5 (cs)T

)

= σ

(
N∑
j=1

(WT
3 + (

N∑
i=1

Ms
ij)W

T
4 W

T
1)(vsj)

T + (WT
5 +NWT

4 W
T
2)(cs)T

)
.

(A.19)

Denote Ssj = WT
3 + (

∑N
i=1M

s
ij)W

T
4 W

T
1 and Sc = WT

5 + NWT
4 W

T
2 . Then, we can get

the following ODE system:

d

ds

(vs1)
T

...

(vsN)T

(cs)T

=

Ms
11W

T
1 · · · Ms

1NW
T
1 WT

2

...
. . .

...
...

Ms
N1W

T
1 · · · Ms

NNW
T
1 WT

2

Ss1 · · · SsN Sc

(vs1)
T

...

(vsN)T

(cs)T

. (A.20)

Now, let Ys =

(vs1)
T

...

(vsN)T

(cs)T

∈ R(N×dv+dc)×1, where vi ∈ Rdv , c ∈ Rdc . For the ODE

equation dYs

ds
= FsYs, with Assumption 8, the coefficient matrix Ft is continuous w.r.t t

since all coefficients in the matrix are continuous w.r.t t.

For any two solutions Yt
1,Y

t
2, we have:

∥f(Yt
1) − f(Yt

2)∥2 ≤ L∥Yt
1 −Yt

2∥2, (A.21)

where L = maxi,j |Ft
ij| ≤ W + NCW 2. Then by Picard–Lindelöf theorem 5, we prove

130

Proofs Chapter A

the uniqueness of the solution.

A.3 POEM

A.3.1 Proof of Lemma 6

For convenience, Eqn. 3.57 in the main paper is repeated as:

dhs,Ei
ds

= loght
i
(fht

i
(expht

i
(N l (hsi) + N g (hsi)))), (A.22)

Proof: By the definition of fhs
i
, the ODE system can by simplified to

dhs,E
i

ds
=

loght
i
(exphs

i
fpro(N (hsi))) and Eqn. A.22 becomes

dhs,E
i

ds
= loght

i
(expht

i
fpro(N (hsi))). De-

note the solutions by Hs
i,1 and Hs

i,2 respectively.

Both exponential and logarithmic maps are smooth, i.e, ∀ε > 0,∃δ1(ε), δ2(ε), when

∥x1 − x2∥L2 ≤ δ1, ∥y1 − y2∥L2 ≤ δ2, we have

∥ expx1
(h) − expx2

(h)∥L2 ≤ ε, ∥ logx(y1) − logx(y2)∥L2 ≤ ε. (A.23)

Therefore, we only need to choose ∆t < δ1(δ2)
C1

, with the assumption of Lipschitz-continuity,

we can get ∥ exphs
i
fpro(N (hsi)) − expht

i
fpro(N (hsi))∥L2 ≤ δ2, thus

∥ loght
i
(exphs

i
fpro(N (hsi))) − loght

i
(expht

i
fpro(N (hsi)))∥L2 ≤ ε (A.24)

It means for any ε > 0, s ∈ [t, t+ ∆t], the difference between solutions satisfies∥∥∥d(Hs
i,1−Hs

i,2)

ds

∥∥∥
L2

≤ ε. As a result,

∥Hs
i,1 −Hs

i,2∥L2 ≤ ε · ∆t

131

Proofs Chapter A

A.3.2 Proof of Corollary 13

For convenience, Eqn. 3.54 in the main paper is repeated as:

dhsi
ds

= loghs
i
(fhs

i
(N (hsi))) ∈ Ths

i
M,∀i. (A.25)

Proof: Suppose we have h = (h0,h1, · · · ,hn), then the directional derivative of the

exponential map can be expressed as

∂ expx(h)

∂h
=
(∂ expx(h)

∂h0

,
∂ expx(h)

∂h1

, · · · , ∂ expx(h)

∂hn

)
(A.26)

∂ expx(h)

∂h0

= cosh (∥v∥L)h0 + sinh (∥v∥L)x (A.27)

∂ expx(h)

∂hj
=

sinh (∥v∥L)

∥v∥L
hj, ∀j ≥ 1 (A.28)

Now, suppose we have solutions to Eqn. A.25 and
dhs,E

i

ds
= loght

i
fhs

i
(N (hsi)) denoted

by Hs
i,1 and Hs

i,2 respectively with the same initial state Ht
i. Then by Cauchy-Schwarz

inequality, we have

∥∥∥d(Hs
i,1 −Hs

i,2)

ds

∥∥∥
L2

=
∥∥∥ loghs

i
fhs

i
(N (hsi)) −

∂ expHt
i
(Hs,E

i,2)

∂Hs,E
i,2

loght
i
fhs

i
(N (hsi))

∥∥∥
L2

(A.29)

≤
∥∥∥I(n+1)×(n+1) −

∂ expHt
i
(Hs,E

i,2)

∂Hs,E
i,2

∥∥∥
1
· (A.30)∥∥∥ loghs

i
fhs

i
(N (hsi)) − loght

i
fhs

i
(N (hsi))

∥∥∥
L2

(A.31)

By the assumption that mesh representations are bounded by the Lorentz norm, the

matrix norm will be bounded by some constant C. By the continuity of the logarithmic

map, the vector norm is bounded by ε. Therefore, we get
∥∥d(Hs

i,1−Hs
i,2)

ds

∥∥
L2 ≤ Cε.

Denote the solution to Eqn. A.22 by Hs
i,3 with the initial state Ht

i. Then by Lemma

132

Proofs Chapter A

6 we have

∥∥∥d(Hs
i,1 −Hs

i,3)

ds

∥∥∥
L2

≤
∥∥∥d(Hs

i,1 −Hs
i,2)

ds

∥∥∥
L2

+
∥∥∥d(Hs

i,2 −Hs
i,3)

ds

∥∥∥
L2

(A.32)

≤ (C + 1)ε. (A.33)

As a result, we have the difference between solutions to Eqn. A.25 and Eqn. A.22 is

bounded by (C + 1)ε · ∆t in the interval [t, t+ ∆t].

A.4 GraphSDE

A.4.1 Proof of Lemma 7

Proof: Define V (ε, t) = ∥ε∥2, a non-negative real valued function defined on R3dN×

R+. Recall εt = htp − ht, where htp is the perturbed solution; and dεt = f∆(εt, t)dt +

g∆(εt, t)dWt, where

f∆(εt, t) = ϕdrc
(
htp, t

)
− ϕdrc

(
ht, t

)
= Mt,drεt;

g∆(εt, t) = ϕdic
(
htp, t

)
− ϕdic

(
ht, t

)
= Mt,diεt.

Here we assume the Brownian motions for the SDE associated with h0
p and h0 has

the same sample path. By Eqn. 3.67, it can be obtained that f∆ and g∆ are at most

liner:

∥f∆(εt, t)∥ = ∥Mdr
t ε

t∥ ≤ λmax∥εt∥ < λmax(1 + ∥εt∥)

∥g∆(εt, t)∥ = ∥Mdi
t ε

t∥ ≤ λmax∥εt∥ < λmax(1 + ∥εt∥);

(A.34)

133

Proofs Chapter A

and Lipschitz continuous:

∥f∆(εt1, t) − f∆(εt2, t)∥ = ∥Mdr
t (εt1 − εt2)∥ ≤ λmax∥εt1 − εt2∥;

∥g∆(εt1, t) − g∆(εt2, t)∥ = ∥Mdi
t (εt1 − εt2)∥ ≤ λmax∥εt1 − εt2∥.

(A.35)

By Lemma 3.3 in [100], P{εt ̸= 0 for all t ≥ 0} for all ε0 ̸= 0. The second order Taylor

series of V (ε, t) is bounded by

∂V (ε, t)

∂ε
f∆(ε, t) +

1

2
Tr

[
g⊤∆(εt1, t)

∂2V (ε, t)

∂ε∂ε⊤
g∆(εt1, t)

]
≤2∥ε∥ · λmax∥ε∥ + λ2max∥ε∥2 = (λ2max + 2λmax)∥ε∥2.

(A.36)

Note that Eqn. A.36 remains valid for ε = 0. Applying Itô’s formula with Eqn. A.36,

for all t ≥ 0,

log V
(
εt, t
)
≤ log V

(
ε0, 0

)
+ (λ2max + 2λmax)∥ε∥2t+M(t)

− 1

2

∫ t

0

∣∣∣ ∂V (ε,t)
∂ε

∣∣∣
ε=εs

G∆ (εs, s)
∣∣∣2

V 2 (εs, s)
ds,

(A.37)

where M(t) =
∫ t
0

| ∂V (ε,t)
∂ε |

ε=εs
g∆(εs,s)|2

V 2(εs,s)
dWs is a continuous martingale with initial M(0) =

0. By the exponential martingale inequality, for any arbitrary α ∈ (0, 1) and n ∈ N+,

P

 sup
0≤t≤n

M(t) − α

2

∫ t

0

∣∣∣ ∂V (ε,t)
∂ε

∣∣∣
ε=εs

g∆ (εs, s)
∣∣∣2

V 2 (εs, s)
ds

 > 2

α
log n

 ≤ 1

n2
. (A.38)

By Borel–Cantelli lemma, there exists an integer n0 such that ∀n ≥ n0,

M(t) ≤ 2

α
log n+

α

2

∫ t

0

∣∣∣ ∂V (ε,t)
∂ε

∣∣∣
ε=εs

g∆ (εs, s)
∣∣∣2

V 2 (εs, s)
ds, ∀0 ≤ t ≤ n. (A.39)

134

Proofs Chapter A

Combine Eqn. A.36, Eqn. A.39 and

∥∥∥∥ ∂V (ε, t)

∂ε

∣∣∣∣
ε=εs

g∆ (εs, s)

∥∥∥∥2 = 4∥εs⊤Mdi
t ε

s∥2 ≥ 4λ2minV
2(εs, t),

one obtain

log V
(
εt, t
)
≤ log V

(
ε0, 0

)
− 1

2

[
(1 − α)4λ2min − 2(λ2max + 2λmax)

]
t+

2

α
log n. (A.40)

Thus, for all n− 1 ≤ t ≤ n and n ≥ n0,

1

t
log V

(
εt, t
)
≤ −1

2

[
(1 − α)4λ2min − 2(λ2max + 2λmax)

]
+

log V (ε0, 0) + 2
α

log n

n− 1

which implies:

lim sup
t→∞

1

t
log V (εt, t) ≤ −1

2

[
(1 − α)4λ2min − 2(λ2max + 2λmax)

]
a.s. (A.41)

Therefore we only need to guarantee 2λ2min ≥ λ2max + 2λmax, we can have almost surely

exponential stability. After solve the equation, we get the relation 2 ≤ λmin ≤ λmax ≤√
2λ2min + 1 − 1. Of course, it’s a rough estimation, there might exist other choices for

the message passing matrix to help guarantee the almost surely exponential stability.

A.4.2 Proof of Theorem 14

Proof: We start with the case t = 0. For simplification, we define ∆0
z(y) :=

g0(y) − g0(µ(X0)). To compare Rr
X (0) and R̃r

X (0), we first identify Rr
z(0) satisfying:

P(∥∆0
Z(Z0 + δZ0)∥ ≤ r) > P(∥∆0

Z(Z0 + δZ0)∥ > r). (A.42)

135

Proofs Chapter A

Let Ar(0) be the set of all δZ0 for which Equation Eqn. A.42 holds. We define

p∆(δZ0) := P(∥∆0
z(Z

0 + δZ0)∥ ≤ r). (A.43)

Given Z0 = µ(X0)+η ◦σ(X0) is Gaussian conditioned on µ(·) and σ(·), p∆(δZ0) becomes

a continuous function of δZ0 .

Applying the Neyman-Pearson lemma [115], we obtain that the boundary between

Ar(0) and its complement is a hyperplane perpendicular to the direction of lowest vari-

ance in Z0. In this direction, δZ0 increases. Following a similar argument as in [116],

∥δZ0∥ =
(
minσ(X0)

)
Φ−1

(
P
(
∥∆(X0)∥2 ≤ r

))
, (A.44)

where Φ is the cumulative distribution function of the standard normal distribution, and

∆(X0) = g0(Z0) − g0(µ(X)).

According to Lemma 7, Zt from Equation 3.64 is almost surely exponentially stable,

implying

∥gt(Zt) − gt(µ(Xt))∥ ≤ c2∥εt∥ → 0. (A.45)

Conversely, when Zt originates from the model in Equation 3.64 minus the diffusion term∫
ϕdi(Zs, s)dWs, [100] shows that Zt is not stable. In this scenario, ∆(Xt) > c3 > 0,

making Φ−1(P(∥∆(X0)∥2 ≤ r)) larger for the SDE model compared to the ODE model.

Thus we obtain R̃r
X (0) < Rr

X (0). The proof is complete by combing Eqn. A.45, the SDE

model Eqn. 3.64 and the Lipschitz continuity of gt.

136

Appendix B

Experiment Details

B.1 HOPE

B.1.1 Details of Datasets

We utilize the COVID-19 data from the Johns Hopkins University (JHU) Center for

Systems Science and Engineering [117] to build our node feature data. We selected five

dynamic features along with one static feature as object attributes. Detailed information

about these features is introduced below.

• Population: The number of population in each state.

• Confirmed-Number: The number of state increased confirmed cases in each day.

• Deaths-Number: The number of state increased deaths in each day.

• Recoverd-Number: The number of state increased recovered cases in each day.

• Mortality-Rate: The number of state cumulative deaths / the number of state

cumulative confirmed cases each day.

137

Experiment Details Chapter B

• Testing-Rate: The number of state cumulative test results per 100,000 persons

in each day.

Then we manage to generate training and testing samples. To capture dynamic

spatial correlations between each object, the Dynamic Time Warping (DTW) algorithm

[118] is employed for similarity measurement of states. To be specific, for each time

t the edge weight of two nodes is measured with their feature series in [t − ∆, t] by

the DTW algorithm. Social Network models opinions migrating from individuals to

individuals in a social network. Following [119], the number of individuals and the noise

parameter is set to 80 and 0.2, respectively. The sparsity parameter is set to e−0.4.

For Spring Ocsillator, we set the number of balls to 50 and simulate the data for

total 240 timestamps. The side length of the box is set to 2 and the initial locations

of these balls follow uniform distribution in the area inside the box. Every two balls

have a probability of 0.5 to be connected together with a spring, and we also ensure that

every ball has at least one spring on it. As we discussed before, each training or testing

sample is a continuous time series composed of the condition part and prediction part.

The conditional part is model input and the prediction part is used for supervising or

evaluating. As a result, it is sufficient to ensure no overlapping between the training

sample and the testing sample.

To be specific, we split feature data in COVID-19, a 266-days time series, into a 233-

day part and 31-day part. The training samples and validating samples are extracted from

233-day part, and testing samples are extracted from 31-day part. The similar procedure

is deployed on Social Network and Spring Oscillator. Socail Network is divided into a

320-day part and a 80-day part, and Spring Oscillator is divided into a 500-stamp part

and a 50-stamp part.

To evaluate our HOPE and baselines, we select several testing samples and adopt the

138

Experiment Details Chapter B

average performance among the samples. For example, on the 2-week-ahead prediction

task in COVID-19, we select Dec.02-Dec.15, Dec.10-Dec.22, Dec.17-Dec.29 as testing

samples. The three metrics, i.e., MAE, RMSE and MAPE are then computed on each

sample. Finally, we take the average on these samples to report.

B.1.2 Details of Baselines

The details of baselines are elaborated as follows:

• LSTM [49]: It is a classic recurrent neural network (RNN) that learns the dynamics

of the sequence, without considering the interaction between nodes.

• GRU [53]: It is another variant of RNNs, which involves two gates to model

temporal evolution.

• NODE [61]: It is the first continuous-depth neural network model which is solved

by the back-propagatable ODE solver.

• HBNODE [120]: It employs a heavy ball ODE to accelerate the forward and back

propagation of the ODE model.

• DGCRN [121]: It constructs the dynamic graph and utilizes a graph convolu-

tion recurrent unit to capture the real-time spatial-temporal dependencies in the

dynamical system.

• MPNODE [110]: It combines augmented ODE with message passing mechanism.

• CG-ODE [119]: It is a graph ODE model that integrates the evolution of both

edges and nodes into a holistic ODE system.

139

Experiment Details Chapter B

B.2 CARE

B.2.1 Dataset Details

We evaluate our proposed CARE on four physical simulation datasets with temporal

distribution shift caused by environmental variations. Then we introduce the details of

these four datasets.

• Lennard-Jones Potential (a.k.a. 6-12 potential) is popular in modeling electroni-

cally neutral atoms or molecules, which can be formulated as:

VLJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (B.1)

where r is the distance between particle pairs, σ denotes the size of the particle, ϵ

denotes the depth of the potential well. The first term denotes the attractive force,

which decreases as the distance between particles increases. The second term de-

notes the repulsive force, which increases when two particles are too close. The

temperature in the system is changed along with the time to model the environ-

mental variations and a high temperature would bring a more intense molecular

motion.

• 3-body Stillinger-Weber Potential provides more complex relationships besides pair-

wise relationships in Lennard-Jones Potential. It contains both two-body and three-

body terms with the following formulation:

VSW =
∑
i

∑
j>i

ϕ2 (rij) +
∑
i

∑
j ̸=i

∑
k>j

ϕ3 (rij, rik, θijk) , (B.2)

where ϕ2 (rij) = Aijϵij

[
Bij

(
σij
rij

)pij
−
(
σij
rij

)qij]
exp

(
σij

rij−aijσij

)
is the two-body term

140

Experiment Details Chapter B

and ϕ3 (rij, rik, θijk) = λijkϵijk [cos θijk − cos θ0ijk]
2 exp

(
γijσij

rij−aijσij

)
exp

(
γikσik

rik−aikσik

)
is

the three-body term. The two body term is similar to Lennard-Jones Potential to

model the pairwise relationships and the three body term can consider the angles

among atom triplets. Similarly, the temperature is changed along with the time

to model the environmental variations and a high temperature would also bring a

more intense molecular motion.

• CylinderFlow is a popular computational fluid dynamics (CFD) simulation dataset,

which models the fluid flow around a given cylinder by OpenFoam [122]. It consists

of simulation data from modeling an incompressible flow governed by the Navier-

Stokes equations. The Reynolds number, denoted by Re, is a dimensionless quantity

that characterizes the flow regime of the fluid. It is defined as: Re = ρV D
µ

, where

ρ is the density of the fluid, V is the velocity of the fluid relative to the cylinder,

D is the diameter of the cylinder, and µ is the dynamic viscosity of the fluid.

The transition from laminar to turbulent flow usually occurs at a critical Reynolds

number, which depends on the geometry of the cylinder and the properties of the

fluid. In general, the flow is more likely to be laminar for small cylinders and viscous

fluids, and more likely to be turbulent for large cylinders and low-viscosity fluids.

Notably, the initial flow velocity V of the incoming water flow to the cylinder varies

cyclically over time, meaning the Reynolds number of the flow field also changes

periodically.

• Airfoil is generated in a similar manner through simulations of a compressible flow

by OpenFoam [122]. The lift coefficient of an airfoil depends on a number of factors,

including the angle of attack, the shape of the airfoil, and the Reynolds number

of the flow. The angle of attack is the angle between the chord line of the airfoil

(the straight line connecting the leading and trailing edges) and the direction of

141

Experiment Details Chapter B

the incoming flow. The Reynolds number, as mentioned in the previous question,

is a dimensionless quantity that characterizes the flow regime of the fluid. It also

plays a crucial role in the lift produced by an airfoil, as it determines whether the

flow around the airfoil is laminar or turbulent. For laminar flow, the air moves

smoothly over the surface of the airfoil, while for turbulent flow, it moves in a

chaotic, swirling pattern. The Reynolds number is given by: Re = ρV c
µ

, where c is

the chord length of the airfoil, and µ is the viscosity of the fluid. The lift coefficient

is typically higher for laminar flow than for turbulent flow, up to a certain point

where the flow separates from the airfoil. Notably, in our simulation datasets, the

inlet velocity V over the wing also varies cyclically over time.

B.2.2 Details of Baselines

Our proposed method is compared with a range of competing baselines as follows:

• LSTM [49] is a widely recognized approach for sequence prediction problems. It

involves three gates, i.e., forget gate, input gate and output gate, enabling the

model to acquire knowledge of long-term relationships.

• STGCN [108] is a deep learning approach to handle spatial dependencies and tem-

poral dynamics in complicated spatio-temporal data. It involves a recurrent com-

ponent and a message passing component for effective analysis of spatio-temporal

signals.

• GNS [107] utilizes a graph to represent a physical dynamical system and then

utilizes a message passing neural network to explore complicated dynamics and

interactions among multiple objects.

• MeshGraphNet [109] characterize each physical system as meshes, followed by graph

142

Experiment Details Chapter B

neural networks to learn interacting dynamics. Moreover, remeshing techniques are

adopted to fit the multi-resolution nature in irregular meshes.

• CG-ODE [119] models both nodes and edges jointly through two groups of ODEs,

which can capture the evolution of both objective and interaction in the system.

• TIE [111] attempts to improve the particle-based simulations by decomposing edges

into both ends, and introducing abstract nodes to capture global information in the

system.

• MP-NODE [110] is an ODE-based approach for homogeneous dynamical systems.

It adds neighborhood information into node updating by augmenting the latent

dimension.

B.3 POEM

B.3.1 Dataset Details

Table B.1: All of our datasets are listed in detail. The system describes the underlying
PDE: cloth, hypere-lastic flow, or a compressible or incompressible Navier-Stokes flow.
Simulation data is generated using a solver. In DeformingPlate, there is no time step
since it is a quasi-static simulation.

Dataset Nodes (avg) System Type Solver Steps Interval/s

CylinderFLow 1885 Incompressible NS Eulerian COMSOL 500 0.01
Airfoil 5233 Compressible NS Eulerian SU2 500 0.008
DeformingPlate 1271 Hyper-elasticity Lagrangian COMSOL 300 -
FlagSimple 1579 Cloth Lagrangian ArcSim 300 0.02

Four physics simulation benchmark datasets are utilized to evaluate our proposed

POEM and the compared baselines with details listed in Table B.1.

CylinderFlow simulates the incompressible Navier-Stokes flow of water around a

cylinder on a fixed 2D Eulerian mesh generated by COMSOL [123]. The irregular mesh

143

Experiment Details Chapter B

structure has varying edge lengths in different regions. Each trajectory, containing 1,800

nodes on average, has 500 time steps with an interval 0.01s. Node attributes in the system

include mesh position, node type, velocity, and pressure. Node types can be divided into

3 categories in fluid domains, i.e., fluid nodes, wall nodes, and inflow/outflow boundary

nodes. We predict the velocity values in both directions, denoted as vx and vy, and the

pressure field p.

Airfoil simulates the aerodynamics around the cross-section of an airfoil wing for

compressible Navier-Stokes flow by SU2 [124]. As the edge lengths of the mesh range

between 2× 10−4m to 3.5m, the mesh structure is highly irregular. Each trajectory con-

taining 5,200 nodes averagely has 500 time steps with an interval 0.008s. Node attributes

include mesh position, node type, velocity, pressure, and density. Besides vx, vy and p,

we predict the density field d as well.

DeformingPlate is a hyper-elastic plate in the structural mechanical system, de-

formed by a kinematic actuator, simulated with a quasi-static simulator COMSOL. Each

trajectory has 300 time steps with 1,200 nodes averagely. A one-hot vector for each type

of node distinguishes actuators from plates in the Lagrangian tetrahedral mesh. Besides,

node type, position, and velocity are fed to predict the velocity vx, vy and the von-Mises

s.

FlagSimple uses a static mesh and ignores collisions to simulate a flag waving in the

wind, which is generated by ArcSim [125] for simulating the cloth system. An average

trajectory contains 1,500 nodes, which is observed in 300 time steps with the interval

0.02s. The node type distinguishes cloth and obstacle/boundary nodes, and we encode

it together with position and velocity to predict the acceleration in both directions,

i.e., ax and ay. Of note, our four datasets are chosen from four physical domains, i.e.,

incompressible fluids, compressible fluids, structural mechanics, and cloth, respectively.

Each dataset contains 1000 training and 100 validation, and 100 test trajectories.

144

Experiment Details Chapter B

B.3.2 Details of Baselines

The baselines are the same as what we use in the analysis of CARE.

B.4 GraphSDE

B.4.1 Details of Datasets

GraphSDE is evaluated in four dynamic system datasets, encompassing diverse do-

mains and showcasing the versatility of our approach.

• COVID-19 [117] used in this study includes COVID-19 data from the Johns Hop-

kins University, focusing on state-level daily cumulative deaths in the United States

and incorporating various dynamic features like confirmed cases, deaths, recover-

ies, mortality rate, testing rate, and state population. It also integrates mobility

data from SafeGraph, capturing people’s movements between and within states, to

construct an interaction graph and provide an additional dynamic feature for each

node. The goal is to predict future trends conditioning on historical data.

• Radar Map 1 aims at short-term quantitative precipitation forecasting. It in-

cludes real radar reflectivity maps from meteorological observatories, each covering

a 101x101 km² area around a target site. These maps, collected at fifteen different

time spans and four varying heights, offer a comprehensive view of the spatio-

temporal patterns in rainfall prediction. We select 30 observation points and the

goal is to forecast the radar reflectivity accurately at these spots.

• Social network [126] investigates the dynamics of opinion dispersion within social

networks, offering insights into the complex interactions that underpin information

1from https://tianchi.aliyun.com/competition/entrance/231596

145

https://tianchi.aliyun.com/competition/entrance/231596

spread in societal contexts. It simulates opinion migration over time, featuring 80

nodes and 399 timestamps, with individuals’ initial opinions following a uniform

distribution in a 2D space. The goal is to predict future opinion migration based

on historical opinion propagation.

• Stock [127] comprises historical data of 80 stocks in the Nasdaq market, sourced

from Yahoo Finance. Each stock’s daily record includes key financial metrics such

as open, low, high, close, adjusted close, and volume values. The goal is to forecast

stock movements, based on historical stock market information.

B.4.2 Details of Baselines

The baselines are the same as what we use in the analysis of HOPE.

146

Bibliography

[1] K.-C. Tseng, O. Kwon, and L. Tjing, Time series and neural network forecasts of
daily stock prices, Investment Management and Financial Innovations (2012),
no. 9, Iss. 1 32–54.

[2] M. Wen, P. Li, L. Zhang, and Y. Chen, Stock market trend prediction using
high-order information of time series, Ieee Access 7 (2019) 28299–28308.

[3] Y. Leu, C.-P. Lee, and Y.-Z. Jou, A distance-based fuzzy time series model for
exchange rates forecasting, Expert Systems with Applications 36 (2009), no. 4
8107–8114.

[4] Y. Aviv, A time-series framework for supply-chain inventory management,
Operations Research 51 (2003), no. 2 210–227.

[5] P. Doganis, E. Aggelogiannaki, and H. Sarimveis, A combined model predictive
control and time series forecasting framework for production-inventory systems,
International Journal of Production Research 46 (2008), no. 24 6841–6853.

[6] D. Foreman-Mackey, E. Agol, S. Ambikasaran, and R. Angus, Fast and scalable
gaussian process modeling with applications to astronomical time series, The
Astronomical Journal 154 (2017), no. 6 220.

[7] A. Bărbulescu, Studies on time series applications in environmental sciences,
vol. 103. Springer, 2016.

[8] J. A. Bilmes and C. Bartels, Graphical model architectures for speech recognition,
IEEE signal processing magazine 22 (2005), no. 5 89–100.

[9] J. C. B. Gamboa, Deep learning for time-series analysis, arXiv preprint
arXiv:1701.01887 (2017).

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[11] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et. al., Language
models are unsupervised multitask learners, OpenAI blog 1 (2019), no. 8 9.

147

[12] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et. al., Language models are
few-shot learners, Advances in neural information processing systems 33 (2020)
1877–1901.

[13] Z. Gao, G. Lu, P. Yan, and L. Wang, Retrospective analysis of time series for
frame selection in surveillance video summarization, Signal, Image and Video
Processing 11 (2017) 581–588.

[14] Y. Zou, R. V. Donner, N. Marwan, J. F. Donges, and J. Kurths, Complex network
approaches to nonlinear time series analysis, Physics Reports 787 (2019) 1–97.

[15] M. Imhoff, M. Bauer, U. Gather, and D. Löhlein, Time series analysis in
intensive care medicine, tech. rep., Technical Report, 1998.

[16] S. Aydin, Time series analysis and some applications in medical research, Journal
of Mathematics and Statistics Studies 3 (2022), no. 2 31–36.

[17] A. Zeroual, F. Harrou, A. Dairi, and Y. Sun, Deep learning methods for
forecasting covid-19 time-series data: A comparative study, Chaos, solitons &
fractals 140 (2020) 110121.

[18] H. Qi, S. Xiao, R. Shi, M. P. Ward, Y. Chen, W. Tu, Q. Su, W. Wang, X. Wang,
and Z. Zhang, Covid-19 transmission in mainland china is associated with
temperature and humidity: A time-series analysis, Science of the total
environment 728 (2020) 138778.

[19] T. Boehme, A. R. Wallace, and G. P. Harrison, Applying time series to power
flow analysis in networks with high wind penetration, IEEE transactions on power
systems 22 (2007), no. 3 951–957.

[20] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

[21] J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo, Arima models to
predict next-day electricity prices, IEEE transactions on power systems 18 (2003),
no. 3 1014–1020.

[22] V. Ş. Ediger and S. Akar, Arima forecasting of primary energy demand by fuel in
turkey, Energy policy 35 (2007), no. 3 1701–1708.

[23] C. C. Holt, Forecasting seasonals and trends by exponentially weighted moving
averages, International journal of forecasting 20 (2004), no. 1 5–10.

[24] R. J. Hyndman, A. B. Koehler, R. D. Snyder, and S. Grose, A state space
framework for automatic forecasting using exponential smoothing methods,
International Journal of forecasting 18 (2002), no. 3 439–454.

148

[25] R. J. Hyndman and Y. Khandakar, Automatic time series forecasting: the forecast
package for r, Journal of statistical software 27 (2008) 1–22.

[26] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and practice.
OTexts, 2018.

[27] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning, Stl: A
seasonal-trend decomposition, J. Off. Stat 6 (1990), no. 1 3–73.

[28] P. J. Brockwell and R. A. Davis, Introduction to time series and forecasting.
Springer, 2002.

[29] X. Wang, K. Smith, and R. Hyndman, Characteristic-based clustering for time
series data, Data mining and knowledge Discovery 13 (2006) 335–364.

[30] C. A. Sims, Macroeconomics and reality, Econometrica: journal of the
Econometric Society (1980) 1–48.

[31] C. A. Sims, Interpreting the macroeconomic time series facts: The effects of
monetary policy, European economic review 36 (1992), no. 5 975–1000.

[32] H. Lütkepohl, New introduction to multiple time series analysis. Springer Science
& Business Media, 2005.

[33] B. Pfaff, Analysis of integrated and cointegrated time series with R. Springer
Science & Business Media, 2008.

[34] R. E. Kalman, A new approach to linear filtering and prediction problems, .

[35] J. Durbin and S. J. Koopman, Time series analysis by state space methods oxford
university press, 2012.

[36] M. West and J. Harrison, Bayesian forecasting and dynamic models. Springer
Science & Business Media, 2006.

[37] G. Petris, S. Petrone, and P. Campagnoli, Dynamic linear models with R.
Springer Science & Business Media, 2009.

[38] J. F. C. Kingman, Poisson processes, vol. 3. Clarendon Press, 1992.

[39] A. G. Hawkes, Spectra of some self-exciting and mutually exciting point processes,
Biometrika 58 (1971), no. 1 83–90.

[40] T. Liniger, Multivariate hawkes processes. PhD thesis, ETH Zurich, 2009.

[41] A. Reinhart, A review of self-exciting spatio-temporal point processes and their
applications, Statistical Science 33 (2018), no. 3 299–318.

149

[42] P. Hartman, Ordinary differential equations. SIAM, 2002.

[43] J. C. Butcher, Numerical methods for ordinary differential equations. John Wiley
& Sons, 2016.

[44] L. C. Evans, Partial differential equations american mathematical society,
Providence, RI 2 (1998).

[45] K. Itô, 109. stochastic integral, Proceedings of the Imperial Academy 20 (1944),
no. 8 519–524.

[46] B. Oksendal, Stochastic differential equations: an introduction with applications.
Springer Science & Business Media, 2013.

[47] E. Platen and N. Bruti-Liberati, Numerical solution of stochastic differential
equations with jumps in finance, vol. 64. Springer Science & Business Media, 2010.

[48] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by
back-propagating errors, nature 323 (1986), no. 6088 533–536.

[49] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural computation
9 (1997), no. 8 1735–1780.

[50] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical evaluation of gated
recurrent neural networks on sequence modeling, arXiv preprint arXiv:1412.3555
(2014).

[51] A. Graves, A.-r. Mohamed, and G. Hinton, Speech recognition with deep recurrent
neural networks, in 2013 IEEE international conference on acoustics, speech and
signal processing, pp. 6645–6649, Ieee, 2013.

[52] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to sequence learning with neural
networks, Advances in neural information processing systems 27 (2014).

[53] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, Learning phrase representations using rnn
encoder-decoder for statistical machine translation, arXiv preprint
arXiv:1406.1078 (2014).

[54] J. Heaton, Ian goodfellow, yoshua bengio, and aaron courville: Deep learning: The
mit press, 2016, 800 pp, isbn: 0262035618, Genetic programming and evolvable
machines 19 (2018), no. 1-2 305–307.

[55] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, Attention is all you need, Advances in neural
information processing systems 30 (2017).

150

[56] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et. al., An image is worth 16x16
words: Transformers for image recognition at scale, arXiv preprint
arXiv:2010.11929 (2020).

[57] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, Informer:
Beyond efficient transformer for long sequence time-series forecasting, in
Proceedings of the AAAI conference on artificial intelligence, vol. 35,
pp. 11106–11115, 2021.

[58] H. Wu, J. Xu, J. Wang, and M. Long, Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting, Advances in Neural
Information Processing Systems 34 (2021) 22419–22430.

[59] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting, in
International Conference on Machine Learning, pp. 27268–27286, PMLR, 2022.

[60] A. Zeng, M. Chen, L. Zhang, and Q. Xu, Are transformers effective for time
series forecasting?, in Proceedings of the AAAI conference on artificial
intelligence, vol. 37, pp. 11121–11128, 2023.

[61] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary
differential equations, Advances in neural information processing systems 31
(2018).

[62] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and D. Duvenaud,
Ffjord: Free-form continuous dynamics for scalable reversible generative models,
arXiv preprint arXiv:1810.01367 (2018).

[63] E. Dupont, A. Doucet, and Y. W. Teh, Augmented neural odes, Advances in
neural information processing systems 32 (2019).

[64] Y. Rubanova, R. T. Chen, and D. K. Duvenaud, Latent ordinary differential
equations for irregularly-sampled time series, Advances in neural information
processing systems 32 (2019).

[65] A. Lou, D. Lim, I. Katsman, L. Huang, Q. Jiang, S. N. Lim, and C. M. De Sa,
Neural manifold ordinary differential equations, Advances in Neural Information
Processing Systems 33 (2020) 17548–17558.

[66] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. Oberman, How to train your
neural ode: the world of jacobian and kinetic regularization, in International
conference on machine learning, pp. 3154–3164, PMLR, 2020.

151

[67] P. Kidger, R. T. Chen, and T. J. Lyons, ” hey, that’s not an ode”: Faster ode
adjoints via seminorms., in ICML, pp. 5443–5452, 2021.

[68] X. Li, T.-K. L. Wong, R. T. Chen, and D. Duvenaud, Scalable gradients for
stochastic differential equations, in International Conference on Artificial
Intelligence and Statistics, pp. 3870–3882, PMLR, 2020.

[69] P. Kidger, J. Foster, X. C. Li, and T. Lyons, Efficient and accurate gradients for
neural sdes, Advances in Neural Information Processing Systems 34 (2021)
18747–18761.

[70] P. Kidger, J. Foster, X. Li, and T. J. Lyons, Neural sdes as infinite-dimensional
gans, in International conference on machine learning, pp. 5453–5463, PMLR,
2021.

[71] J. Jia and A. R. Benson, Neural jump stochastic differential equations, Advances
in Neural Information Processing Systems 32 (2019).

[72] P. Kidger, J. Morrill, J. Foster, and T. Lyons, Neural controlled differential
equations for irregular time series, Advances in Neural Information Processing
Systems 33 (2020) 6696–6707.

[73] J. Morrill, P. Kidger, L. Yang, and T. Lyons, Neural controlled differential
equations for online prediction tasks, arXiv preprint arXiv:2106.11028 (2021).

[74] J. Morrill, C. Salvi, P. Kidger, and J. Foster, Neural rough differential equations
for long time series, in International Conference on Machine Learning,
pp. 7829–7838, PMLR, 2021.

[75] J. D. Hamilton, Time series analysis. Princeton university press, 2020.

[76] W. W. Wei, Multivariate time series analysis and applications. John Wiley &
Sons, 2018.

[77] R. H. Shumway, D. S. Stoffer, and D. S. Stoffer, Time series analysis and its
applications, vol. 3. Springer, 2000.

[78] F. Doshi-Velez and B. Kim, Towards a rigorous science of interpretable machine
learning, arXiv preprint arXiv:1702.08608 (2017).

[79] T. J. Lyons, Differential equations driven by rough signals, Revista Matemática
Iberoamericana 14 (1998), no. 2 215–310.

[80] T. Lyons and Z. Qian, System control and rough paths. Oxford University Press,
2002.

152

[81] A. Lejay, An introduction to rough paths, in Séminaire de probabilités XXXVII,
pp. 1–59. Springer, 2003.

[82] M. Gubinelli, Controlling rough paths, Journal of Functional Analysis 216 (2004),
no. 1 86–140.

[83] T. J. Lyons, M. Caruana, and T. Lévy, Differential equations driven by rough
paths. Springer, 2007.

[84] P. K. Friz and N. B. Victoir, Multidimensional stochastic processes as rough
paths: theory and applications, vol. 120. Cambridge University Press, 2010.

[85] T. Lyons, Rough paths, signatures and the modelling of functions on streams,
arXiv preprint arXiv:1405.4537 (2014).

[86] B. Hambly and T. Lyons, Uniqueness for the signature of a path of bounded
variation and the reduced path group, Annals of Mathematics (2010) 109–167.

[87] C. Reutenauer, Free lie algebras, in Handbook of algebra, vol. 3, pp. 887–903.
Elsevier, 2003.

[88] J. Reizenstein, Calculation of iterated-integral signatures and log signatures, arXiv
preprint arXiv:1712.02757 (2017).

[89] J. Reizenstein and B. Graham, The iisignature library: efficient calculation of
iterated-integral signatures and log signatures, arXiv preprint arXiv:1802.08252
(2018).

[90] P. Kidger and T. Lyons, Signatory: differentiable computations of the signature
and logsignature transforms, on both cpu and gpu, arXiv preprint
arXiv:2001.00706 (2020).

[91] M. Lemercier, C. Salvi, T. Damoulas, E. Bonilla, and T. Lyons, Distribution
regression for sequential data, in International Conference on Artificial
Intelligence and Statistics, pp. 3754–3762, PMLR, 2021.

[92] Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with
gradient descent is difficult, IEEE transactions on neural networks 5 (1994), no. 2
157–166.

[93] S. Liao, T. Lyons, W. Yang, and H. Ni, Learning stochastic differential equations
using rnn with log signature features, arXiv preprint arXiv:1908.08286 (2019).

[94] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of
complex fourier series, Mathematics of computation 19 (1965), no. 90 297–301.

153

[95] N. R. Lomb, Least-squares frequency analysis of unequally spaced data,
Astrophysics and space science 39 (1976) 447–462.

[96] J. D. Scargle, Studies in astronomical time series analysis. ii-statistical aspects of
spectral analysis of unevenly spaced data, Astrophysical Journal, Part 1, vol. 263,
Dec. 15, 1982, p. 835-853. 263 (1982) 835–853.

[97] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image
recognition, in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[98] E. Lindelöf, Sur l’application de la méthode des approximations successives aux
équations différentielles ordinaires du premier ordre, Comptes rendus
hebdomadaires des séances de l’Académie des sciences 116 (1894), no. 3 454–457.

[99] H. Whitney, Differentiable manifolds, Annals of Mathematics (1936) 645–680.

[100] X. Liu, T. Xiao, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh, Neural sde: Stabilizing
neural ode networks with stochastic noise, arXiv preprint arXiv:1906.02355
(2019).

[101] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial networks, Communications of
the ACM 63 (2020), no. 11 139–144.

[102] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, Deep
unsupervised learning using nonequilibrium thermodynamics, in International
conference on machine learning, pp. 2256–2265, PMLR, 2015.

[103] J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models, Advances
in neural information processing systems 33 (2020) 6840–6851.

[104] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole,
Score-based generative modeling through stochastic differential equations, arXiv
preprint arXiv:2011.13456 (2020).

[105] X. Luo, J. Yuan, Z. Huang, H. Jiang, Y. Qin, W. Ju, M. Zhang, and Y. Sun,
Hope: High-order graph ode for modeling interacting dynamics, in International
Conference on Machine Learning, pp. 23124–23139, PMLR, 2023.

[106] X. Luo, H. Wang, Z. Huang, H. Jiang, A. Gangan, S. Jiang, and Y. Sun, Care:
Modeling interacting dynamics under temporal environmental variation, Advances
in Neural Information Processing Systems 36 (2024).

[107] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia,
Learning to simulate complex physics with graph networks, in International
conference on machine learning, pp. 8459–8468, PMLR, 2020.

154

[108] B. Yu, H. Yin, and Z. Zhu, Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting, arXiv preprint arXiv:1709.04875 (2017).

[109] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. W. Battaglia, Learning
mesh-based simulation with graph networks, arXiv preprint arXiv:2010.03409
(2020).

[110] J. Gupta, S. Vemprala, and A. Kapoor, Learning modular simulations for
homogeneous systems, Advances in Neural Information Processing Systems 35
(2022) 14852–14864.

[111] Y. Shao, C. C. Loy, and B. Dai, Transformer with implicit edges for particle-based
physics simulation, in European Conference on Computer Vision, pp. 549–564,
Springer, 2022.

[112] Y. Liu, T. Hu, H. Zhang, H. Wu, S. Wang, L. Ma, and M. Long, itransformer:
Inverted transformers are effective for time series forecasting, arXiv preprint
arXiv:2310.06625 (2023).

[113] Y. Zhang and J. Yan, Crossformer: Transformer utilizing cross-dimension
dependency for multivariate time series forecasting, in The eleventh international
conference on learning representations, 2022.

[114] L. Han, H.-J. Ye, and D.-C. Zhan, The capacity and robustness trade-off:
Revisiting the channel independent strategy for multivariate time series
forecasting, arXiv preprint arXiv:2304.05206 (2023).

[115] J. Neyman and E. S. Pearson, Ix. on the problem of the most efficient tests of
statistical hypotheses, Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character 231 (1933),
no. 694-706 289–337.

[116] A. Camuto, M. Willetts, S. Roberts, C. Holmes, and T. Rainforth, Towards a
theoretical understanding of the robustness of variational autoencoders, in
International Conference on Artificial Intelligence and Statistics, pp. 3565–3573,
PMLR, 2021.

[117] E. Dong, H. Du, and L. Gardner, An interactive web-based dashboard to track
covid-19 in real time, The Lancet infectious diseases 20 (2020), no. 5 533–534.

[118] D. J. Berndt and J. Clifford, Using dynamic time warping to find patterns in time
series, in Proceedings of the 3rd international conference on knowledge discovery
and data mining, pp. 359–370, 1994.

[119] Z. Huang, Y. Sun, and W. Wang, Coupled graph ode for learning interacting
system dynamics, in Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pp. 705–715, 2021.

155

[120] H. Xia, V. Suliafu, H. Ji, T. Nguyen, A. Bertozzi, S. Osher, and B. Wang, Heavy
ball neural ordinary differential equations, Advances in Neural Information
Processing Systems 34 (2021) 18646–18659.

[121] F. Li, J. Feng, H. Yan, G. Jin, F. Yang, F. Sun, D. Jin, and Y. Li, Dynamic graph
convolutional recurrent network for traffic prediction: Benchmark and solution,
ACM Transactions on Knowledge Discovery from Data 17 (2023), no. 1 1–21.

[122] H. Jasak, Openfoam: Open source cfd in research and industry, International
Journal of Naval Architecture and Ocean Engineering 1 (2009), no. 2 89–94.

[123] C. Multiphysics, Introduction to comsol multiphysics®, COMSOL Multiphysics,
Burlington, MA, accessed Feb 9 (1998), no. 2018 32.

[124] T. D. Economon, F. Palacios, S. R. Copeland, T. W. Lukaczyk, and J. J. Alonso,
Su2: An open-source suite for multiphysics simulation and design, Aiaa Journal
54 (2016), no. 3 828–846.

[125] R. Narain, A. Samii, and J. F. O’brien, Adaptive anisotropic remeshing for cloth
simulation, ACM transactions on graphics (TOG) 31 (2012), no. 6 1–10.

[126] Y. Gu, Y. Sun, and J. Gao, The co-evolution model for social network evolving
and opinion migration, in Proceedings of the 23rd ACM SIGKDD international
conference on knowledge discovery and data mining, pp. 175–184, 2017.

[127] A. Jafari and S. Haratizadeh, Gcnet: graph-based prediction of stock price
movement using graph convolutional network, Engineering Applications of
Artificial Intelligence 116 (2022) 105452.

156

	Curriculum Vitae
	Abstract
	Introduction
	Importance of Sequential Data Analysis
	Review of Sequential Data Analysis Methods
	Current Trends and Challenges

	Rough Path Theory and Signature
	Rough Path Theory
	Signature Transform
	Methods
	Experiments and Results

	Neural Differential Equations
	Neural Ordinary Differential Equations (NODEs)
	Neural Stochastic Differential Equations (NSDEs)
	Applications for physical simulation

	Training strategy: Channel Independent (CI) versus Channel Dependent (CD)
	Introduction and Related Work
	Preliminaries
	Mathematical Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	Proofs
	HOPE
	CARE
	POEM
	GraphSDE

	Experiment Details
	HOPE
	CARE
	POEM
	GraphSDE

