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ABSTRACT

Objective: Amid electronic health records, laboratory tests, and other technology, office-based patient and pro-

vider communication is still the heart of primary medical care. Patients typically present multiple complaints, re-

quiring physicians to decide how to balance competing demands. How this time is allocated has implications

for patient satisfaction, payments, and quality of care. We investigate the effectiveness of machine learning

methods for automated annotation of medical topics in patient-provider dialog transcripts.

Materials and Methods: We used dialog transcripts from 279 primary care visits to predict talk-turn topic labels.

Different machine learning models were trained to operate on single or multiple local talk-turns (logistic classi-

fiers, support vector machines, gated recurrent units) as well as sequential models that integrate information

across talk-turn sequences (conditional random fields, hidden Markov models, and hierarchical gated recurrent

units).

Results: Evaluation was performed using cross-validation to measure 1) classification accuracy for talk-turns

and 2) precision, recall, and F1 scores at the visit level. Experimental results showed that sequential models had

higher classification accuracy at the talk-turn level and higher precision at the visit level. Independent models

had higher recall scores at the visit level compared with sequential models.

Conclusions: Incorporating sequential information across talk-turns improves the accuracy of topic prediction

in patient-provider dialog by smoothing out noisy information from talk-turns. Although the results are promis-

ing, more advanced prediction techniques and larger labeled datasets will likely be required to achieve predic-

tion performance appropriate for real-world clinical applications.
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INTRODUCTION

Background
Appropriate documentation of the clinical visit is critical for

communication among medical professionals,1,2 enabling quality

assurance,3 and accurate billing and reimbursement.4 The tradi-

tional way of documenting a clinical visit in the electronic health

record, namely physicians’ notes, provide a source of valuable infor-

mation on what occurred during the interaction and what physicians

consider to be important. Electronic health records have improved

the accessibility of medical information,5 but patients are demand-

ing access to information at a greater scale.6 Pressure to quickly doc-

ument the medical visit may lead providers to type into the record

during the medical visit, which can negatively impact patient-

provider communication.7–9 Primary care providers spend about

half of their time working on computers,10,11 which appears partly

responsible for growing concerns of physician burnout across a wide

range of physician specialties.12–14 In addition, physician generated

notes do not always provide an accurate representation of what oc-

curred during the visits.15,16

Technologies that could reduce the burden of documentation on

providers, and increase convergence between documentation of a

visit and the content of the clinical interaction are greatly needed.

Natural language processing (NLP) technologies combined with

advances in automatic speech recognition17,18 offer potentially

promising solutions.19,20 Information extraction and summarization

technologies built on top of resulting transcripts will be needed to

take the next step in reducing the burden of documentation on

physicians and in providing clinical decision support to both

patients and physicians.18 If successful, machine learning–enabled

automatic speech recognition and charting could free up valuable

time for physicians to talk to their patients, rather than typing exten-

sively during clinical encounters.21,22

Patient-provider conversations are complex, multidimensional,

and multifunctional.23–27 Patients present multiple issues during an of-

fice visit requiring clinicians to divide time and effort during a visit to

address competing demands,28,29 such as a patient could be concerned

about blood pressure, knee pain, and blurry vision in a single

appointment. Moreover, visit content does not solely focus on bio-

medical issues, but also on psychosocial matters, personal habits,

mental health,30 patient-physician relationship,31 and small talk.28,32

Health communications researchers analyze the content of patient-

provider communication by directly labeling the interaction using

trained raters to label the topical content of clinical interactions. For

example, during periodic health examinations with their primary care

physicians, only one-third of patients with mental health needs had a

discussion about mental health.30,33 These findings suggest that qual-

ity improvement efforts that evaluate the content of clinical interac-

tions might help address gaps in service delivery.

However, labeling each talk-turn using coding systems designed

to capture the content of medical visits, such as the Multi-

Dimensional Interaction Analysis system,28,32,33 is labor intensive

and costly. It requires training a team to label the text and establish

and maintain reliability. Depending on the extensiveness of the la-

beling system, it can take several hours to label one patient-provider

interaction.34,35 This level of effort means that even in research

settings with resources for detailed evaluation, studies of patient-

provider interaction are often limited in scale.28 As a result, the di-

rect evaluation of clinical interactions is not feasible in routine care

settings for quality improvement purposes.36,37 Automated methods

capable of extracting the topical content of clinical encounters could

support providers who overlook asking patients about critical issues

(eg, suicide, blood pressure medication) when it is clinically indi-

cated, reduce the burden of documentation currently placed on pro-

viders, and facilitate large-scale research on the quality of patient-

provider communication.

Related work
The past decade has seen an explosion of interest in machine

learning and NLP in medical contexts,38 targeting problems such as

automated extraction of information from clinical notes and elec-

tronic health records.39–42 Of direct relevance to the present article

is a growing body of work dedicated to applying methods from ma-

chine learning and NLP to the automatic annotation of conversa-

tions between providers and patients. The typical approach in such

studies begins with labeling a corpus of transcript data (eg, provid-

ing human-generated labels for each utterance or talk-turn in each

visit in the corpus). Machine learning techniques are then used to

learn a classification model from a subset of the corpus, the training

data, and the model’s predictions are evaluated by comparing its

predictions with the known human labels on unseen test transcripts.

For example, Mayfield et al43 analyzed patient-provider transcripts

from the ECHO (Enhancing Communication and HIV Outcomes)

study44 and employed a logistic regression model to classify utteran-

ces into the categories “information-giving” or “information-

requesting.”45 More recently, Kotov et al46 analyzed transcripts

from motivational interviewing related to pediatric obesity and de-

veloped probabilistic machine learning models for classifying patient

utterances into classes of behavioral responses. In later work on the

same dataset, Hasan et al47 compared probabilistic models with

more recent recurrent neural network approaches and found the lat-

ter to be generally more accurate on that dataset.

There has been less prior work on the problem of automated

classification of topical content in patient-provider dialog. Wallace

et al48 developed machine learning models to classify dialog utteran-

ces into 1 of 6 high-level discussion topics: biomedical, logistics, psy-

chosocial, antiretroviral (ARV), missing/other, and socializing.

Using the same ECHO dataset44 as used in the Mayfield et al study,

they evaluated the performance of conditional random fields (CRFs)

for this prediction task and concluded that the results showed prom-

ise for automated classification of patient-provider interactions into

clinically relevant topics. Gaut et al49 proposed the use of labeled

topic models for classifying psychotherapy sessions with 161 possi-

ble topic labels, using a dataset published by Alexander Street Press,

and again finding that these models showed promise in terms of pre-

dictive ability.

These earlier studies demonstrate that machine learning systems

can generate plausible annotations of medical dialogues—our work

in this article pursues this line of research further. We differ from

earlier work on topic classification in a number of aspects. For ex-

ample, we compare both probabilistic and neural network classifica-

tion methods for topic classification of talk-turns, whereas Wallace

et al48 and Gaut et al49 only focused on probabilistic approaches.

We also evaluate performance for a more detailed set of 27 topics

compared with the 6 high-level topics used in the Wallace et al

study. The Gaut et al study also differs from our work in that it pri-

marily focused on session-level labels and did not investigate the use

of sequential information across talk-turns for talk-turn–level pre-

dictions as we do here. To our knowledge, this is the first study that

systematically compares sequential and nonsequential classification

methods, for both probabilistic and neural network models, on the
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problem of talk-turn topic classification from transcripts of patient-

provider dialog.

MATERIALS AND METHODS

Dataset
The source data include transcripts of audio-recordings of primary

care office visits from the MHD (Mental Health Discussion) study.33

Each transcript corresponds to a visit between a patient and a

provider—a small fraction of the dialog corresponds to other

participants in the conversation (such as a nurse and family mem-

ber). Data collection occurred from 2007 to 2009 in a health system

in Michigan with 26 ambulatory care clinics. Patients were 50-80

years of age, all had insurance, and were due for a colorectal cancer

screening at the time of appointment. All aspects of the research pro-

tocol were approved by relevant organizations’ institutional review

boards.

Each visit is comprised of a series of talk-turns, with 122 083

talk-turns in total across 279 visits (median and mean of 408 and

438 talk-turns per visit, respectively, with upper and lower quartiles

of 312 and 522) from 59 providers. Each talk-turn was manually

assigned by a human coder (labeler) to 1 of 39 different topic

labels33 that were modified from the Multi-Dimensional Interaction

Analysis coding system.32 A topic is defined as an issue raised in a

conversation that required a response from the other member of the

dyad and had at least 2 exchanges between the dyad. A small num-

ber of talk-turns were split into 2 if the turn straddled 2 topics. This

resulted in a few of the original talk-turns being represented as 2

separate talk-turns after coding. Figure 1 illustrates how different

topics were assigned to talk-turns during a short portion of a partic-

ular visit. Topic labels that occurred in less than 20 visits were

merged into a single topic denoted as Other, resulting in a total of

27 unique topics in the corpus. Table 1 provides the names of the

topic labels, a brief description of each, as well as the percentage of

talk-turns assigned to each by the labelers across the corpus. The

topic label distribution is skewed toward topics relevant to periodic

health exams—the 3 most frequent topics (BiomedHistory,

PreventiveCare, and MusSkePain) account for more than half of all

talk-turns.

Text preprocessing
We applied a number of preprocessing steps to convert the dialog

text into a set of tokenized words. We first replaced the patient

names and numbers with -NAME- and -NUMBER- tokens to

remove potentially identifiable information. After removing sym-

bols, other than a set of punctuation symbols, such as “.”, “?”, “-”,

the sentences in each talk-turn were tokenized into a list of words

using the standard Python NLTK tokenizer.50

For the models that used bag-of-words encoding, the vocabulary

included all unigrams and bigram noun phrases that occurred at

least 5 times in the corpus, except for 2 sets of stopwords (see Sup-

plementary Appendix A for more information), resulting in a vocab-

ulary of size V ¼ 14 800. For our neural network models, the

vocabulary consisted of all unigrams, with neither set of stopwords

removed (as is customary in neural network models) with a final vo-

cabulary size of 5073 including an unknown token.

Representing talk-turns for classification models
The data for each visit i, 1 � i � 279, is represented as a sequence

of labeled talk-turns j, with Li talk-turns in the ith visit, 1 � j � Li.

Let Wi;j and yi;j represent the list of word tokens and the topic label,

respectively, for the jth talk-turn in the ith visit. As mentioned ear-

lier, yi;j can take values from 1 to 27, corresponding to each of the

27 unique topics. Each word in Wi;j is encoded as a binary vector

(“one-hot encoding”) of length V, where V is the vocabulary size.

For example, if a word occurs in a talk-turn and the ID in the vocab-

ulary for the word is 10, then the binary/one-hot-encoded vector

Figure 1. A short excerpt from an annotated dialogue transcript. Topic labels are assigned to each talk-turn. MD and PT indicate the speaker for each talk-turn,

where MD stands for “medical doctor” or “provider,” and PT stands for “patient.”

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12 1495

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz140#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz140#supplementary-data


becomes a vector of length V, where the 10th entry of the binary

word vector is set to 1 and all other entries are set to zero.

For the majority of the classification models we evaluated, the

binary word vectors in each talk-turn were aggregated into a single

talk-turn vector ei;j by adding the individual binary word vectors

(also known as a bag-of-words encoding) and reweighting using tf-

idf weights, a common text preprocessing step that downweights

common and uninformative words. The vector ei;j represents each

talk-turn and has dimensionality equal to the size of the vocabulary

V ¼ 14 800.

For our neural network models, we used a different representa-

tion as follows. We generated one vector ei;j per talk-turn using a

network composed of an embedding layer and a bidirectional set

of gated recurrent units (GRUs). The embedding layer, initialized

with pretrained GloVe51 vectors, takes each binary word vector in

the talk-turn and maps it to a dense embedded vector representa-

tion. The GRU component takes the sequence of embedded vectors

within a talk-turn (1 embedded vector per word) and produces a

single fixed-dimensional vector ei;j to represent the talk-turn. This

approach has been shown to be useful in NLP applications for

encoding variable-length sequential information from words in a

sentence (talk-turn) into a fixed-dimensional vector that can be

used as a feature vector for downstream classification.52 We used

128 for the GRU unit size, and the output talk-turn vector ei;j had

size 256 because the GRU outputs in 2 directions are

concatenated.

Given the talk-turn vectors ei;j, we classify each talk-turn ei-

ther independently or by using sequential information across

talk-turns. Figure 2A provides a high-level overview of the 3 pri-

mary different types of models we explored: 1) independent mod-

els that classify each talk-turn j only using the words in talk-turn

j, 2) window-based models that also use words from a window of

talk-turns both before and after talk-turn j, and 3) fully sequen-

tial models that also consider the topic labels (or predictions) of

talk-turns before and after j when predicting a topic for talk-turn

j. In addition, we consider another type of sequential model that

uses the talk-turn–level GRUs on top of word level GRU outputs,

which is depicted in Figure 2B. We describe each of the 3

approaches in more detail below. Additional implementation

details can be found in Supplementary Appendix C.

Independent models
Independent models classify each talk-turn j by using only the words

in that talk-turn, Wi;j, independently of the other talk-turns. The in-

dependent models used in our study were the logistic regression

(LR) classifiers, support vector machines (SVMs), and feedforward

neural networks with a single hidden layer. The LR and SVM classi-

fiers used the bag-of-words vectors with tf-idf weights as input to

predict the topic label yi;j. For the feedforward neural network, the

output talk-turn vectors ei;j of the bidirectional GRU units were used

as inputs, and the softmax function was used for the activation func-

tion in the perceptron. The parameters (weights) of the embedding

layer, the GRU, and the feedforward neural network were all

trained together as a single network, and we refer to this model as

independent GRU.

Window-based models
Instead of using a single talk-turn vector ei;j as an input (as in the in-

dependent models), for the window-based models, we concatenated

the adjacent M vectors before and after each talk-turn. The input

vector was defined as ½ei;j�M; . . . ; ei;j ; . . . ; ei; jþM�, with dimen-

sion V � ð2M þ 1Þ, where V is the size of the vocabulary for bag-

of-words representations. This windowed input vectors were then

used as input to either the LR or SVM classifier. In Figure 2, the

window-based approach is indicated with dashed lines at the input

level.

The window-based representation captures potentially useful se-

quential information across talk-turns in a manner not available to

the independent models—but at the cost of having on the order of 2

M times as many parameters. The approach is particularly useful

when making topic predictions for short talk-turns with very little

information—information from neighboring talk-turns can be used

to help to make predictions in such cases. We used M ¼ 2 in our

experiments based on the knowledge that the transcripts were la-

beled with the convention that each topic label must span at least 2

exchanges (4 talk-turns).

Table 1. Name and brief description of each topic ordered by the

percentage of each topic in talk-turns

Short topic name Brief description

Talk-turns

assigned (%)

Biomed History Biomedical history,

symptoms, and medical

condition

29.85

Preventive Care Preventive medical measures 14.67

Mus Ske Pain Musculoskeletal pain 8.30

Visit Flow Mgmt Agenda setting, opening of

visit, closing of visit

6.38

Gyn Genito Urinary Gynecological and genitouri-

nary problem

4.72

Physical Exam Physical exam 3.41

Family Family and significant other 3.10

Health Care System Health care system 2.89

Work Leisure Work and leisure activities 2.73

Tests Tests and diagnostic

procedures

2.59

Cigarette Cigarette 2.43

Weight Weight 2.38

Dizzy Dent

Hear Vision

Dizzyness, vision, hearing,

dental issues

2.03

Other Other (various rare topics) 1.94

Exercise Exercise 1.89

Depression Depression 1.86

Medication Medications 1.84

SmallTalk Small talk 1.72

General

Anxieties

General anxieties and worries 1.38

MDLife Physician personal life 1.04

Diet Diet, food (exclude

supplements)

0.69

Alcohol Alcohol 0.57

Sleep Sleep 0.53

Therapeutic

Intervention

Therapeutic intervention 0.33

Risky Behavior Risky behaviors (eg, interna-

tional travel, weapons at

home) and risk avoidance

preventive practices (eg,

safe sex, wearing seatbelt

or bike helmet)

0.32

OtherAddictions Caffeine, or other addictions 0.21

Age Age 0.17
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Fully sequential models
To model the sequential dependencies between the topic labels yi;j,

we used linear-chain CRFs and hidden Markov models (HMMs).

The linear-chain CRF is widely used for sequence labeling tasks

such as named-entity recognition or part-of-speech tagging48,53—

here, we applied it to the problem of predicting the topic label of a

talk-turn, given a sequence of talk-turns. The HMMs are con-

structed by using the output class label probabilities from each of

the independent models discussed above. We converted the class

probabilities from the classifiers, pðyi;j ¼ k j Wi;jÞ, to emission

probabilities, pðWi;jj yi;j ¼ kÞ (needed by the HMM), by using the

fact that pðWi;jj yi;j ¼ kÞ / pðyi;j ¼ k j Wi;jÞ=pðyi;j ¼ kÞ, given

Figure 2. (A) A high-level diagram of the various models discussed in the article. i, j stands for talk-turn j in session i. Wi, j is the list of tokenized words in talk-turn

j. For each talk-turn j, we first generate the vectorized talk-turn representation ei, j, and the talk-turn representation ei, j is used as an input to different classifiers to

predict the topic label yi, j, which is the topic label for talk-turn j. Windowed models use the adjacent talk-turns to create the talk-turn–level representation, and the

fully sequential models make use of the sequential dependencies between the topic labels. (B) Simplified diagram of the hierarchical gated recurrent units (Hier-

GRU). Each one-hot-encoded word vector in talk-turn j in visit i (shown as wi, j k for the k-th word in talk-turn j) is fed into the word level encoder to get a talk-turn

representation ei, j, which becomes the input to the talk-turn–level encoder. The model has dependencies at the hidden state of talk-turn–level gated recurrent

units (GRUs). In our experiments, both encoders were bidirectional.

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 12 1497



that the talk-turn probabilities pðWi;jÞ do not depend on a particu-

lar topic k. The emission probabilities are combined with the

Markov transition probabilities (which can be directly estimated

from label sequences in the training data) via the Viterbi algorithm

to compute the sequence of topic labels that has the highest joint

probability across talk-turns, conditioned on the observed talk-

turn words.

We also found that using speaker-specific transition matrices im-

proved the accuracy of our sequential models. Not surprisingly,

providers tend to start new topics during a conversation more than

the patients do. The figure in Supplementary Appendix B shows

the percentage of time that a particular speaker (provider, patient,

or other) starts each topic. To incorporate speaker information in

the HMM approach, we augmented the standard HMM to use 2

topic transition matrices, 1 for the provider and 1 for the patient

or other speakers. Each transition matrix corresponds to the

speaker of the state that the HMM is transitioning to (eg, one tran-

sition matrix for transitioning to provider and the other for transi-

tioning to all others). The decoding process in the Viterbi

algorithm is modified so that it uses the appropriate matrix

depending on the speaker.

Another type of sequential model that is entirely neural-

network-based does not have direct dependencies between the topic

labels, but has bidirectional connections between the hidden states

of the talk-turn–level GRUs. The model, which we also refer to as

Hier-GRU, has a hierarchical structure having 2 different GRUs,

one at the word level to generate talk-turn–level representation, and

the other which takes the talk-turn vectors as inputs to predict the

output label yi;j for each talk-turn j. Similar to independent GRU,

the talk-turn–level GRU output is connected to a fully-connected

layer and then a softmax to make prediction.

RESULTS

Experimental methods
We evaluated all models using 10-fold cross-validation and com-

puted evaluation metrics both at the talk-turn level and at the visit

level. At the talk-turn level, we computed the classification accuracy

by comparing 1) the predicted topic from a model with 2) the

human-generated topic for the talk-turn. To obtain results at the

visit level, we aggregated the predictions from the individual talk-

turns within each visit to generate a visit-level binary-valued predic-

tion vector s of dimension 27 (the number of topic labels) with 1 for

topic label k if the model predicted topic k for 1 or more talk-turns

in the visit, and 0 otherwise. Using such a vector for each visit, we

calculated the accuracy, precision, recall, and F1 scores. The metrics

were micro-averaged by globally counting the true positives, false

positives, and so on, for all the topic labels.

To evaluate the performance of the classifiers, we compared the

results with those of simple baseline models that predict the most

common topics. The baseline at the talk-turn level just predicts the

most common topic in the corpus, BiomedHistory (as shown in Ta-

ble 1). At the visit level, the baseline always predicts the set of topic

labels that occur in 50% or more of all visits, irrespective of the

words within each visit.

Summary of experimental results
Table 2 shows the classification accuracies at the talk-turn level for

independent models, windowed models, and sequential models.

The most accurate independent model is the GRU and the most ac-

curate windowed model is the windowed LR. The models with se-

quential information clearly outperform independent models with

the Hier-GRU yielding the highest accuracy of 61.77% over all the

models. The improvement in accuracy of Hier-GRU and HMM-

GRU are both statistically significant, with P < :01, relative to

each of the independent GRU and windowed LR models (using

dependent t tests for paired samples across the 10 folds of cross-

validation).

The visit-level evaluation scores are shown in Table 3. Interest-

ingly, the gap in performance (as measured by the micro-averaged F1

score) between independent, windowed, and sequential models is

much smaller in the visit-level scores. The primary reason for this is

that the independent models tend to have relatively high recall scores,

whereas sequential models have relatively high precision scores.

The prediction models also can be evaluated at the level of indi-

vidual topics to understand variability in prediction accuracy

across topics. Precision, recall, and F1 scores were calculated by

Table 2. Accuracies for topic prediction at the level of talk-turns for

different prediction models

Model

Talk-turn level

accuracy (%)

Baseline 29.85

Independent models LR 37.00

SVM 36.64

GRU 38.85a

Window-based models Windowed LR 51.12a

Windowed SVM 50.46

Fully sequential models CRF 48.37

HMM-LR 56.89

HMM-SVM 51.52

HMM-GRU 57.60b

Hier-GRU 61.77a,b

Micro-averaged precision and recall scores are the same as accuracy.

CRF: conditional random field; Hier-GRU: hierarchical gated recurrent

units; HMM-GRU: hidden Markov model gated recurrent units; LR: logistic

regression; SVM: support vector machine;
aHighest talk-turn level accuracy in each model type.
bScores from the two best models.

Table 3. Micro-averaged accuracy, precision, recall, and F1 scores,

at the visit level, for different prediction models

Visit level (%)

Model Accuracy Precision Recall F1

Baseline 72.29 73.79 62.22 67.42

Independent

models

LR 75.19 67.91 84.25 75.15a

SVM 72.45 63.40 90.40 74.50

GRU 72.47 64.19 86.59 73.68

Window-based

models

Windowed LR 77.28 69.82 86.47 77.21

Windowed SVM 79.81 75.06 82.13 78.37a

Fully sequential

models

CRF 74.19 80.43 58.42 67.64

HMM-LR 80.00 80.16 73.31 76.55

HMM-SVM 75.21 78.70 60.90 68.63

HMM-GRU 79.00 74.98 79.35 77.06

Hier-GRU 78.96 73.69 82.43 77.78a

CRF: conditional random field; Hier-GRU: hierarchical gated recurrent

units; HMM-GRU: hidden Markov model gated recurrent units; LR: logistic

regression; SVM: support vector machine;
aHighest F1 score in each model type.
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treating each topic label separately at the talk-turn level. Scores

from the 2 best-performing models (Hier-GRU and HMM-GRU)

are shown in Table 4, sorted by the percentage of each topic. The

more common topics (that occur for example in at least 5% of the

talk-turns) generally have higher F1 scores. However, there are

some less common but highly specific topics, such as the cigarette

topic (in 2.43% of talk-turns), that also have relatively high F1

scores.

DISCUSSION

Using sequential information across talk-turns in predictive models

systematically leads to more accurate predictions, particularly when

predicting topic labels for talk-turns. To illustrate this point in more

detail, Figure 3 shows sequences of predicted and human-assigned

topic labels, for one particular visit, where different colors represent

different topic labels. The top plot is from the independent GRU

model. The lack of sequential information in the model leads to pre-

dictions that are noisy and lack the sequential smoothness of the

human-assigned labels (bottom plot). The second plot is from the

Hier-GRU model, and the third plot shows the predicted sequence

of topics from the Viterbi parse of the HMM-GRU model (ie, the

probabilistic predictions from the same GRU model in the top plot,

but which are now sequentially smoothed by the HMM transition

matrices). It is visually apparent (not only for this visit but for all vis-

its) that the sequential models (second and third) are much more

similar to the human labeling (bottom) than the independent model

(top).

Figures 4 and 5 provide a more detailed look at portions of the

transcript corresponding to Figure 3. We see for example that there

are quite a few short talk-turns that have no words with topic-

relevant information, such as “Yeah” (talk-turns 5 and 7 in Figure 4

and 222 in Figure 5) and “Okay” (talk-turn 224 in Figure 5). The se-

quential models are able to use the context information to assign

these talk-turns to the same topic as the human labeler.

The independent GRU model, however, does not have any context

and assigns these talk-turns by default to the topic with the highest

marginal probability (BiomedHistory).

While the smoothing in sequential models helps to improve pre-

diction accuracy, it can also produce errors due to oversmoothing.

In particular, we found that the HMM-GRU model tends to predict

longer topic segments relative to the human-labeled results, as can

be seen in talk-turns 100 to 200 of the visit in Figure 3. The human

labels contain short bursts of topics GynGenitoUrinary and Biomed-

History that are not detected by the HMM-GRU model. This is fur-

ther quantified by the visit-level results in Table 3, where the recall

scores of the fully sequential models are systematically lower than

the independent models, and the reverse for the precision scores.

We also observed that some topics are semantically similar and

easily confusable. For example, in Figure 5, from talk-turn 233 to

242, the 2 sequential models predict the topic PhysicalExam, while

Table 4. Precision, recall, and F1 scores of each topic, calculated at the talk-turn level using Hier-GRU and HMM-GRU prediction results.

Hier-GRU HMM-GRU

Label Precision Recall F1 Precision Recall F1 Assigned topic (%)

BiomedHistory 65.80 76.61 70.79a 74.24 56.26 64.01 29.85

PreventiveCare 73.34 83.41 78.05a 77.98 72.49 75.13a 14.67

MusSkePain 67.48 69.14 68.30a 67.68 64.27 65.93a 8.30

VisitFlowMgmt 63.64 63.58 63.61a 64.97 64.54 64.76a 6.38

GynGenitoUrinary 67.62 54.76 60.51 72.15 57.66 64.09a 4.72

PhysicalExam 48.91 52.33 50.56 50.21 63.20 55.96 3.41

Family 49.31 47.56 48.42 42.79 54.21 47.83 3.10

HealthCareSystem 37.81 28.85 32.73 46.10 39.49 42.54 2.89

WorkLeisureActivity 47.26 46.20 46.72 52.90 53.14 53.02 2.73

TestDiagnostics 49.67 32.43 39.24 37.24 52.88 43.70 2.59

Cigarette 71.38 85.84 77.94a 81.38 72.73 76.81a 2.43

Weight 49.54 52.60 51.02 47.20 46.77 46.98 2.38

Other 21.42 9.59 13.25 14.45 15.20 14.81 2.03

Depression 50.82 64.27 56.76 45.71 44.24 44.96 1.94

DizzyDentHearVision 23.08 14.01 17.44 46.96 50.83 48.82 1.89

Medication 38.97 27.09 31.96 22.46 64.29 33.29 1.86

Exercise 56.94 59.23 58.06 45.42 67.01 54.14 1.84

SmallTalk 20.61 18.70 19.61 32.79 31.09 31.92 1.72

GeneralAnxieties 32.51 18.63 23.68 16.36 32.86 21.84 1.38

MDLife 33.81 14.19 19.99 12.79 11.69 12.22 1.04

Diet 27.15 19.62 22.78 27.52 57.10 37.14 0.69

Alcohol 56.08 36.12 43.94 52.19 64.91 57.86 0.57

Sleep 13.40 2.33 3.97 29.80 40.32 34.27 0.53

TherapeuticIntervention 0.00 0.00 0.00 2.04 5.30 2.95 0.33

RiskyBehavior 33.90 5.87 10.00 44.87 41.06 42.88 0.32

OtherAddictions 0.00 0.00 0.00 23.55 41.40 30.02 0.21

Age 0.00 0.00 0.00 13.23 20.00 15.93 0.17

The rows are sorted by the percentage of talk-turns of each topic. In general, the more frequently discussed topics have higher F1 scores.

Hier-GRU: hierarchical gated recurrent units; HMM-GRU: hidden Markov model gated recurrent units.
aHighest F1 scores.
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Figure 3. Sequences of color-coded topic labels for one of the visits in our dataset. The upper plot shows the predicted topic labels from an independent model,

and the center 2 plots show those from fully sequential models. The lower plot corresponds to the human-coded labels. The segments for the MusSkePain topic

(1) had lengths of 23 talk-turns for hierarchical gated recurrent units (Hier-GRU), 27 for hidden Markov model gated recurrent units (HMM-GRU), and 26 for human

labeled. Similarly, (2) the PreventiveCare segments had lengths 30, 28, and 27, and (3) the TestDiagnostics segment had lengths 10, 31, and 22 in talk-turns, re-

spectively, for Hier-GRU, HMM-GRU, and human labeled. See Supplementary Appendix E for the boxplots of topic segment lengths for the 4 sequences of labels.

Figure 4. The beginning part of the visit shown in Figure 3. Each talk-turn is presented with predicted labels from 3 different models (independent gated recurrent

units [GRU], hierarchical gated recurrent units [Hier-GRU], and hidden Markov model gated recurrent units [HMM-GRU]) and the human-coded labels. For the

short talk-turns the BiomedHistory topic label is predicted quite often by the independent GRU, while the 2 other models produce label sequences that are more

similar to human-coded labels. MD: medical doctor or provider; PT: patient.
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the human labeled MusSkePain—from the corresponding tran-

script text either prediction seems reasonable. Similarly, from talk-

turn 249 to 254 the HMM-GRU predicts SmallTalk, while the hu-

man labeled WorkLeisure—from the text the corresponding talk-

turns appear to be a mixture of both. We also found other exam-

ples across the corpus where the model frequently gets confused

among small groups of related topics (eg, GeneralAnxieties and

Depression; Weight and Diet). The full confusion matrices are

shown in Figure 6. There is inevitably a subjective aspect to the hu-

man labeling, suggesting that there is likely to be a performance

ceiling in terms of the accuracy of any algorithm relative to human

labels on this data.

From the topic-specific results in Table 4 we can see that while

the predictions are relatively accurate for some topics, for others

(eg, Age, TherapeuticIntervention, OtherAddictions, Other,

MDLife), the scores are quite low. The broad nature of these topics

is a likely contributor to the low accuracies, but the relative lack of

training data per topic may also be another contributing factor.

These topics account for roughly 1% (or less) of talk-turns in the

corpus and many of these talk-turns are relatively short with little

topical content, leading to relatively less signal, particularly for

training neural network models. One possible approach to im-

prove accuracy would be to incorporate additional external infor-

mation relevant to these topics, such as incorporating lists of

relevant words from ontological sources such as Unified Medical

Language System into the training of prediction models, or adding

relevant information from sources such as physician or specialist

notes.

Figure 5. Another excerpt from the same visit in Figure 3. Topics that are semantically similar are confusable (PhysicalExam and MusSkePain in talk-turns 233-

242, and SmallTalk and WorkLeisure in talk-turns 249-254). GRU: gated recurrent units; Hier-GRU: hierarchical gated recurrent units; HMM-GRU: hidden Markov

model gated recurrent units; MD: medical doctor or provider; PT: patient.
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CONCLUSION

Patient-provider communication is an essential component of health

care. In this context, prediction models that annotate patient-

provider transcripts can in principle provide both useful information

about the nature of topics discussed in specific conversations as well

as contribute to a broader understanding of patient-provider com-

munication. We have demonstrated that machine learning methods

show promise for building models that can automatically predict

discussion topics in dialog at the talk-turn and visit level. In particu-

lar, using a large real-world patient-provider dialog corpus, we in-

vestigated the performance of a variety of classification models

including LR, SVMs, feedforward neural network model with

GRUs, hierarchical GRUs, CRFs, and HMMs. We found that se-

quential models (eg, Hier-GRU and HMM-GRU) are more accurate

compared with nonsequential models for predicting topic labels for

talk-turns. In addition, we found that semantic similarity of discus-

sion topics can be a significant contributor to prediction error.

While additional research and model improvement is needed,

our results show promise for a number of medical topics that are

critical quality indicators in primary care (eg, cigarette smoking,

pain). Potential applications might include exploring systems that

incorporate prior information from a list of problem areas or prior

diagnoses found in the medical record. For example, the presence or

absence of smoking cessation counseling during primary care

encounters may inform population health management programs

aimed at helping patients quit smoking. Deployment of systems such

as this in real-world primary care may also be useful for obtaining

the scale of data needed to improve model performance.
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