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Abstract

Formal Verification and Synthesis for Quality-of-Service in On-Chip Networks

by

Daniel Edward Holcomb

Doctor of Philosophy in Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Sanjit A. Seshia, Chair

Quality-of-service (QoS) in on-chip communication networks has a tremendous impact on overall
system performance in today’s era of ever-increasing core counts. Yet, Networks-on-Chip (NoCs)
are still designed and analyzed using RTL simulation, or analysis of highly abstracted models. The
formal techniques that are used in core components do not find use in QoS verification due to the
scale of the problems of interest, such as verifying latency bounds of hundreds of cycles.

This dissertation presents my recent work toward leveraging formal methods for NoC design and
QoS verification. In particular, it addresses the problems of (1) verifying end-to-end latency
bounds in a mesh network using abstraction; (2) scalable latency verification using compositional
inductive proofs; and (3) optimal buffer sizing based on bounded model checking.
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Chapter 1

Introduction

Multi-processor systems historically meant multi-chip systems with high-performance links con-
necting them, but that has changed in the last 15 years. Technology scaling continues to enable
the fulfillment of Moore’s Law, with ever-increasing numbers of components integrated onto a
die. This thesis topic was chosen when 45nm CMOS technology was being rolled out, and indus-
try is now on the cusp of 14nm. Personal computers now routinely contain 8 high-performance
processing cores integrated onto a single chip, and much higher core counts are found elsewhere.
Inter-processor communication is no longer occurring over high-performance inter-chip links, but
now occurs on-die.

While a great deal of research has gone into automated design methodologies for on-chip commu-
nication networks to connect specialized IP blocks, the design methodologies for multiprocessor
networks has not kept pace. This thesis aims to advance the state-of-the art in design methodologies
for on-chip communication networks in multiprocessor systems. The two specific problems that
this dissertation addresses are performance verification, and synthesis of buffer sizes that guaran-
tee performance goals are met; both of these problems are addressed using state-of-the-art formal
techniques. Addressing these problems in a formal way requires work toward finding and applying
appropriate models for networks and traffic, and choosing appropriate verification techniques for
the chosen models.

1.1 Thesis Statement
The thesis explored in this dissertation is:

Scalable formal methods based on abstraction and compositionality, adapted to the
domain of communication networks, allow performance properties to be addressed
using model checking.

The formal techniques that are used in core components have not traditionally found use in perfor-
mance verification due to the scale of the problems of interest, such as verifying latency bounds
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of hundreds of cycles. In this dissertation, scalable model checking of communication networks is
achieved using techniques such as abstraction and invariant strengthening, but applied in a way that
is well suited to the problems that arise in networks. Bringing model checking into performance
analysis avoids the use of highly abstracted models, the creation of which is inherently error prone.
Through the application of model checking, performance properties can be proved with the same
highest level of assurance as formally verified functional properties are today.

1.2 Thesis Contributions
The contributions of this work are in devising domain-specific techniques that allow formal verifi-
cation to scale up to the problems arising in NoC performance verification. The novelty comes not
from the techniques, but instead from their adaptation to the problems at hand. Experimental data
is provided to evaluate each approach, and to highlight promising future directions and apparent
dead ends. Among performance properties verified, latency bounds play a role in all contributions
of the dissertation.

The verification of NoC latency bounds is an important problem to solve because network latency
can be a bottleneck for overall system performance. For example, consider the performance im-
pact of traffic sent from a processing core to a memory controller and back. A computation on
the processor may be stalled while waiting for data from memory, and the NoC is responsible for
delivering the request to the memory controller and returning data to the core. A large latency
for this traffic significantly degrades overall performance. Proving a worst-case bound on latency
enables designers to decide whether the bound is acceptable or whether the design must be mod-
ified for a smaller latency. However, the myriad types of traffic in a CMP make it challenging to
identify the conditions that induce worst-case latency, and this limits the confidence of any bound
determined through simulation alone. Formal verification addresses this problem by providing
guaranteed worst-case latency bounds.

Latency bounds are verified in this dissertation using model checking. Unfortunately, current
model checking engines are unable to scale up to handle problems as large as those arising in
naı̈ve formulations of latency verification. Two factors challenge scalability of model checking
latency properties. Firstly, in a SAT-based model checker, the number of variables generally scales
as the product of the number of unrollings and the number of state bits in the model. Secondly,
the number of unrollings is proportional to the worst-case latency, and this is unacceptably large.
Chapter 5 addresses these challenges using abstraction, while Chapter 6 uses invariant strengthen-
ing for inductive verification, and demonstrates that the technique reduces verification runtime by
2 orders-of-magnitude. An additional contribution of this dissertation is the use of model checking
for synthesizing latency-guaranteeing buffer sizes in Chapter 7.
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1.3 Thesis Overview
This dissertation is split into two parts: Part I gives motivation and background material about
techniques and models used; Part II gives two approaches for latency verification; Part III gives
an approach for synthesis, and more specifically for buffer sizing. The chapter topics are sketched
here, with a description of how myself and collaborators contributed to the novel material presented
in Chapters 5, 6, and 7:

• Part 1 (Background)

– Chapter 2: introduces networks-on-chip, why they are of interest, the need for quality
of service, and typical approaches for modeling and analysis.

– Chapter 3: presents an overview of the current state-of-the art in formal verification.

– Chapter 4: introduces the modeling approach that is employed for the novel contri-
butions of the subsequent chapters.

• Part 2 (Scalable Latency Verification)

– Chapter 5: presents work on traffic abstraction for latency verification. This work
was done in collaboration with Bryan Brady and Sanjit Seshia at UC Berkeley, and
published at the 2011 Design Automation Conference (DAC) [50].

– Chapter 6: presents work on compositional verification using invariant strengthening.
This work was a collaboration with Sanjit, myself, and many people at Intel Strategic
CAD Lab including Alexander Gotmanov, Mike Kishinevsky, Satrajit Chatterjee, and
Yuriy Viktorov. An early version of this chapter was published in the 2012 Formal
Methods and Models for Codesign Conference (MEMOCODE) [51] with Alexander,
Mike, and Sanjit as co-authors. While the ideas in this chapter were developed both at
Berkeley and during an internship at Intel, the published data and that appearing in this
dissertation are from my implementation of the work while at UC Berkeley. The work
appearing in Chapter 6 is extended and improved relative to the version that appeared
at MEMOCODE, and is currently under review as a journal paper.

• Part 3 (NoC Parameter Synthesis)

– Chapter 7: presents work on buffer sizing done in collaboration with Bryan Brady and
Sanjit Seshia; this work was originally published at the 2011 Design Automation and
Test in Europe Conference (DATE) [14]. Bryan did early work on the implementation,
and I later reimplemented it; Bryan and I were joint first authors on the paper.
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Part I

Background
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Chapter 2

On-chip Communication Networks

According to Moore’s law, technology scaling enables an integration of an ever-increasing number
of components onto each chip. With the increasing number of functional blocks on a chip, the im-
portance of the communication infrastructure that connects them rivals that of the individual blocks
themselves. On chip networks emerged in the early 2000s as an efficient mechanism for commu-
nication between a large number of components. Network-on-chip (NoC) is a term introduced
by Dally and Towles [37] to describe this paradigm for communication within large many-core,
system-on-a-chip designs.

2.1 Motivation for NoCs
Different types of communication fabrics can be used to interconnect a number of processing
elements, where each element is a processor core, memory controller, or other functional block
found in a modern VLSI design. The appropriate choice of communication fabric for a given design
depends on a variety of factors including bandwidth and latency requirements. The advantages
and disadvantages of various interconnection schemes are outlined in the following paragraphs.
Whereas buses or point-to-point links were used historically, the dominant paradigm is now multi-
hop communication using a series of on chip routers. A detailed quantitative comparison of these
interconnection schemes is given by Lee et al. [65].

Bus: as shown in Fig.2.1a, a bus is a communication network one in which all agents communi-
cate over a single shared resource (the bus). Each agent has a interface to the bus, and through this
interface it can inject and receive traffic. Area cost in a bus is linear in the number of connected
agents n. The significant drawback of a bus interconnect is performance. Due to the global sharing
of the bus resource, only two agents can communicate concurrently. Bus variants exists which can
support multiple concurrent communicating agents, but such schemes are essentially just multi-
ple redundant buses and do not avoid the problem of shared global resources which make buses
undesirable for a system with a large number of agents.
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Point-to-point: as shown in Fig.2.1b, a point-to-point network, has a dedicated link between
every pair of communicating agents. Each of the n agents arbitrates among n inputs. Area cost in
a point-to-point network is quadratic in n because all pairs of agents have dedicated connections.
Furthermore, the long dedicated links are not simple metal wires, since combinational repeaters
are required to linearize the delay of the long wires, or else sequential repeaters to pipeline the
link for increased bandwidth. Having such a high number of links constitutes an inefficient use of
resources, since it is not possible to use all of the links simultaneously. Point-to-point networks
with properly designed links perform very well, but are infeasible due to the high area costs.

Multi-hop: as shown Fig.2.1c, a multi-hop network is a configuration in which traffic travels from
one agent to another by making a series of hops along a path of intermediate routers. Nearly all
NoCs are multi-hop networks. Arbitration is distributed and simple, as each router only arbitrates
between a small number of neighboring routers. The area cost is linear in n because additional
agent requires exactly one additional corresponding router. Yet, contrary to the bus, there is no
single globally shared link that constrains the overall communication. NoCs are therefore a sort of
compromise between buses and point-to-point networks, where area is linear in n but performance
is not constrained by a single bus.

(a) Bus (b) Point-to-Point (c) Multi-hop

Figure 2.1: Types of Interconnection Networks. Each shaded block is a an agent comprising a processor
core or memory controller, along with associated logic for interfacing it to communication links which are drawn as
arrows.

NoCs for heterogeneous designs tend to be parameterized architectures that are customized ac-
cording to the communication needs of each IP block, whereas NoCs for chip-multiprocessors
(CMPs) tend to be uniform on account of the homogeneity of processing elements. Examples of
highly-customizable heterogeneous NoCs include ASOC [66], AEthereal [41], Xpipes [33], NOS-
TRUM [72], SPIN [49], and QNoC [10]. Examples of CMP NoCs include the Tilera TILE64 [105],
STI Cell BE [25], Intel Larrabee [92], and Intel Terascale [52].

2.2 Defining Characteristics of an NoC
Nearly all NoCs share a set of common characteristics and are based on multi-hop routing to avoid
both the quadratic cost of dedicated point-to-point links and the bandwidth limitations of globally
shared buses. All NoC architectures consist of a network of interconnected agents, where each
agent comprises a router, and a processing element such as a processor core, memory controller, or
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other functional unit. Each router interfaces to its processing element through a network interface
port, and to the routers of a small subset of other routers. Packet-switching is used to route data
packets among routers from a source node to a destination node. At the physical level, a packet
is transferred across a channel as some number of “flits”, or flow-control-units. A head flit carries
information about a packet’s destination address, and is followed by some number of payload-
carrying body flits and a single tail flit. Despite the many significant commonalities of all modern
NoCs, they also vary in a few significant ways. The following subsections highlight briefly a few
characteristics that vary across NoC designs.

Topology
A defining characteristic of an NoC is its topology. In heterogeneous networks, where bandwidth
requirements vary widely for each node, specialized topologies can be synthesized from commu-
nication requirements [82]. Chip multiprocessor NoCs, which tend to have a large number of
identical processing cores and a few memory controllers, tend to use a variety of more regular
topologies.

A mesh is a topology in which each router exchanges traffic with its neighbors. In an n-dimensional
mesh, each router connects to 2n neighbors. Because integrated circuits are planar, 2-dimensional
meshes are common, with each node connecting to its 4 neighbors, except for the edge nodes which
connect to 3 neighbors, and the corners which connect to 2 neighbors. Examples of industrial 2-
dimensional meshes are the Intel Terascale [52] and Tilera TILE64TM processors [105].

A torus topology is similar to a mesh, except that it lacks edges. A 2-dimensional torus can be con-
structed from a 2-dimensional mesh by connecting the left edge to the right edge, and bottom edge
to top edge. Hence, in a 2-dimensional torus every node has 4 neighbors, and in a 3-dimensional
torus every node has 6 neighbors (i.e. N,S,E,W planar neighbors as well as the neighbors above
and below). A torus is a common topology for communication between the many separate chips
in supercomputers; for example, IBM Blue Gene uses a 3-dimensional torus [2]. However, torus
networks are not well-suited to single-chip many-core designs because of the long wires that con-
nect the nodes on opposite edges of the die. A folded torus is proposed to solve this problem for
NoCs [35, 79], but does not appear to be used in any common industrial designs.

Rings are another common topology for NoCs. Rings are used in designs with relatively modest
core counts such the 48-core Intel Larrabee processor [92] or 8-core STI Cell BE [25]. To scale
beyond tens of rings, hierarchical rings can be used. Various configurations of hierarchical rings
are competitive with meshes up to around 128 [88] or 256 [44] cores.

Flow Control
Flow control describes mechanisms for deciding how to allocate channels and buffers to packets.
Flow control has a huge performance impact, and a wide variety of optimizations exist to maximize
performance. A thorough discussion of flow control options in NoCs is given in the dissertation of
Peh [81], and in this section only basic mechanisms are described.
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At a high level, flow control can be classified as either store-and-forward or wormhole. Store and
forward networks wait until all flits of a packet are received before forwarding any to the next
node, while wormhole networks forward the individual flits of a packet as they arrive. Wormhole
networks can have lower latency and use smaller buffers than store and forward [74], but a single
packet can be strung out across the network blocking the forward progress of many other traffic
flows. This type of blocking is known as head-of-line blocking, and performance analysis of
head-of-line blocking is a difficult problem [3]. In some cases, head-of-line blocking can lead to
deadlocks.

Virtual channels are a mechanism for avoiding head-of-line blocking. Virtual channels were ini-
tially introduced as a mechanism for deadlock avoidance in wormhole networks [36], and later
also shown to have desirable performance properties [34]. With virtual channels a single physical
channel is shared between multiple logical (i.e. virtual) channels. Each of the virtual channels
has its own buffer, but only one virtual channel can be active in a given cycle on account of their
sharing of a physical channel. When one of the virtual channels is blocked, another virtual channel
can proceed, thus eliminating head-of-line blocking. Some additional logic is required to control
how the physical channel is multiplexed to the virtual channels, but virtual channels are ubiquitous
in CMP NoCs.

A router will only send traffic across a link to a neighbor if that neighbor is ready to accept the
traffic. This readiness is determined either through the use of a credit system or on/off signaling.
With credits, the sending router keeps track of the number of open buffer slots in the ingress queue
of the receiving router, and halts when the supply of credits is exhausted, as this indicates a full
queue. The router only begins sending flits again once it receives a credit to indicate that a slot
has now become available. An alternative to credit-based flow control is on/off signaling, where
a router does not keep track of the number of free slots, but instead simply keeps sending packets
until the receiving router sends a signal to stop.

Routing
Routing in a mesh NoC can be classified as oblivious or adaptive. Oblivious routers use determin-
istic paths for packets that are independent of congestion, whereas adaptive routing steers packets
around congestion. The examples in this dissertation use oblivious routing, and more specifically
XY (dimension-order) routing. In XY routing, a packet reaches its destination by first being routed
to the appropriate column along the x-dimension, and then being routed to the appropriate row in
the y-dimension. XY-routing is guaranteed not to introduce deadlock or livelock [38].

Architectural Parameters
Once the topology, flow control and routing of an NoC are decided, remaining parameters such
as buffer depths and channel widths remain to be assigned. The depth of each physical or virtual
channel buffer is the maximum number of flits that can be stored in it; deeper buffers improve
performance, but increase the area cost of the NoC [53][55]. Similarly, wider channels (and hence
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wider flits) allow more data to be transferred per cycle across a channel, but require wider buffers
to store the flits and therefore also lead to increased area costs. An overview of these considerations
in NoC design is given by Ogras et al. [77].

2.3 Quality of Service
A correctly-designed NoC should ensure that performance properties are satisfied. First and fore-
most, the NoC should never deadlock or livelock. But guaranteeing that packets reach their desti-
nations is not a sufficient indicator of correctness in an NoC. To ensure that programs executing on
an NoC will perform well, the network must give guarantees on performance of network traffic.

Quality-of-Service (QoS) refers to performance guarantees that are provided by the NoC to users.
Some QoS metrics of interest are minimum throughput offered, end-to-end latency bounds, and
maximum jitter. Minimum throughput is a lower bound on the number of bytes per second that a
source can inject under arbitrary achievable network conditions. Maximum latency is the largest
allowable time between when a packet is injected at the network interface of its source agent, and
when it is ejected from the network interface of its destination. Jitter refers to irregularity in delay
and is especially problematic in streaming traffic, where the existing of jitter may require more
conservative buffering. This dissertation focuses primarily on latency bounds. Satisfaction of QoS
requirements depends on spatial and temporal properties of injected traffic, so in some cases QoS
guarantees are conditioned on traffic constraints.

Packets traveling through an NoC are used for many different purposes; for example, packets in
an NoC may be urgent control data, real-time data with deadline requirements, reads or writes
between processors and memory controllers, block transfers of large data, and so on. Some NoCs
therefore provide differentiated service classes, where high priority traffic is given guaranteed ser-
vice, and other traffic is given best-effort service. Best effort service refers to the manner in which
packets without service guarantees are handled, and the performance of such traffic depends sig-
nificantly on the amount of competing traffic in the network. The focus in this dissertation is on
QoS bounds in NoCs with undifferentiated service, where all traffic can be viewed as best-effort.

2.4 Modeling NoC
There are many different ways to model an NoC, and the right model depends on the purpose for
which it will be used. While modeling approaches such as GeNoC are tailored to proving func-
tional correctness and liveness [101, 103], the focus in this dissertation is on models more suitable
for performance verification. This section broadly splits modeling into cycle-accurate hardware
descriptions, and the variety of analytical models. Hardware description languages provide high-
est accuracy, but can be more detailed than is necessary for performance analysis because they
don’t hide any irrelevant details of the network behavior. Furthermore, full hardware descriptions
may not exist until late stages of design, potentially making them infeasible for design space explo-
ration. Analytical models are fast and typically admit closed-form solutions, but may not capture
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all the intricacies of real system behavior, and their applicability often only holds under specific
assumptions.

Hardware Description Languages
Before fabrication, every digital circuit first exists as a register transfer level (RTL) model in some
hardware description language such as Verilog or VHDL. To minimize the number of logic bugs
that reach silicon, extensive functional validation through simulation and formal verification are
performed on the RTL model. Performance verification is accomplished by monitoring the timing
in simulation of interesting events such as packet injection and ejection times. Clearly the perfor-
mance observations depend closely on the inputs that are applied, and so finding appropriate inputs
is a significant challenge.

To perform simulations, the inputs to the RTL model of the system are driven from a testbench, and
the state and output are monitored for violated assertions or unexpected outputs. The execution of
the model can be either cycle-driven or event-driven. In a cycle-driven simulator, all state variables
are updated in each cycle, and in event-driven simulation state variables are only updated on-
demand when one of their inputs changes.

Register Transfer Level Model

The canonical example of a simulatable system model of an NoC is the RTL description of the
hardware. An RTL description of a digital circuit is system of Boolean state variables often
grouped into bit-vector words, and transition relations. Each state variable is computed using a
deterministic function over the previous state and the inputs. The RTL representation of a NoC
is highly accurate, and captures all logic-level details of a design. Electrical interactions, timing
slack, and other non-logical details are abstracted away in RTL.

Testbench Environment Model

When evaluating performance using a simulatable model, the inputs supplied by the testbench can
have a significant impact on the measured performance. In choosing input patterns to apply there
exists a tradeoff between having models that are highly general or highly representative of the
traffic produced by certain applications of interest.

The most general inputs are those coming from synthetic traffic generators. Synthetic generators
can create sequences of non-repeating inputs according some basic assumptions on the destination
of packets and the rate at which they are injected. Different distributions such as uniform random
and hot-spot are commonly used [38]. Results of performance analysis may vary wildly across
different types of synthetic traffic generators [60], and therefore to obtain meaningful performance
measurements it is important to use highly representative traffic.

A highly representative set of traffic patterns can be obtained by running applications of interest
on architectural simulators and recording the inter-process communication [80]. This provides
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a trace of highly relevant inputs that can be simulated. However, the process is very involved
compared to using synthetic traffic generators, the finite traces generated in this manner are not
very comprehensive.

A compromise between synthetic traffic and architecture-level simulation traces is to use synthetic
traffic generators with parameters that are tuned to produce traffic resembling the traces; this syn-
thetic traffic can then be viewed as a generalization of the original traces. Varatkar and Marculescu
propose a model for MPEG-2 traffic that models self-similarity using a Hurst parameter [100].
Later, Soteriou et al. [96] show that a three parameter model leads to accurate representation of a
variety of applications; the three parameters used are a Hurst exponent for temporal burstiness, a
spatial hop distribution parameter, and a spatial injection distribution parameter.

Analytical Models
Instead of cycle-accurate RTL models, a second way to reason about performance is through the
use of analytical models [78]. Analytical models typically lack state variables, transition relations
and synchronous semantics. They instead aim to describe various performance metrics as direct
functions of traffic and configuration parameters.

Network Calculus

Network calculus is an analytical technique for reasoning about classes of discrete event systems
using max-plus algebra. Network calculus was first introduced by Cruz for modeling both traffic
and network elements [31][32], and relies on bounding envelopes for traffic. Incoming traffic to
an element such as a queue is upper bounded by an envelop function known as an arrival curve.
If function R(t) represents the number of packets to arrive before time t, then R is bounded by
arrival curve a if R(t)−R(s)≤ a(t− s) for all t and s. A common arrival curve is that of a leaky-
bucket [31], with arrival curve a(x) = σ +ρx having a burst-size of σ and long-time average of ρ
packets per cycle. The draining of packets through an element is lower bounded by a service curve,
such as a latency-rate service curve [97] in which the number of packet served from a backlog of
waiting packets in any time window of duration x is lower bounded by s(x) = (x− γ)∗κ . Various
network elements transform and shape arrival and service curves. If arriving and served traffic
are bounded by some arrival and service curves a and s, then closed-form analysis can be used to
compute from a and s the upper bounds on queue occupancy and latency (Fig. 2.2).

While the advantage of network calculus is the existence of closed-form analysis, it is not well
suited to many types of traffic. Burst-sizes in best effort NoC traffic can be very large, and therefore
only enveloped by arrival curves that are too conservative to yield meaningful results. Furthermore,
self-similar traffic cannot be bounded by any deterministic arrival curve. Work by Qian et al. [87]
shows that it is possible to derive from self similar traffic an arrival curve that envelopes no less
than some known percentage of traffic, but not all of it. From this, probabilistic latency bounds can
be obtained using the closed-form network calculus formulation



12

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30

P
a
c
k

e
t 

N
u

m
b

e
r

 Time 

a

s

Figure 2.2: Arrival and Service Curves in Network Calculus. Arrival curve is a leaky-bucket with
(σ ,ρ) = (5,1/3). Service curve is latency-rate server with (γ,κ) = (10,1/2). For a queue with this arrival curve
on input, and service curve at output, the horizontal arrow shows the maximum latency of 20 through the queue, and
vertical arrow shows the maximum queue occupancy of 9.

Queueing Theory

Queueing theory provides another analytical framework for reasoning about QoS. Whereas net-
work calculus reasons about worst-case behaviors, queueing theory applies to average-case. Under
the assumption of Poisson arrival of header flits [76] in each buffer, queueing theory gives closed-
form expressions for average buffer utilization, average packet latency per flow, and maximum
network throughput. A criticism of queueing theory models for NoCs is given by Bogdan et al. [9].

Preview of xMAS Formalism
This dissertation uses extensively a modeling formalism known as xMAS. Full description of
xMAS is delayed until Chapter 4, but for now it suffices to remark that xMAS is akin to a simpli-
fied form of RTL. While not analytical models in the sense of the previous section, xMAS models
are simple enough enough to be reasoned about formally.
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Chapter 3

Formal Verification

All designed systems are created with the goal of correctly implementing designer intent, but
correctness is more important in some systems than in others. In modern VLSI circuits, the costs
of the photolithographic masks for a design are in the millions of dollars, and therefore significant
effort is spent to ensure correctness before fabrication. In such situations, formal verification
techniques are used to prove that a model of a system satisfies its intended specifications.

An obvious but weak assurance of correctness is obtained from simulation. In simulation, selected
inputs are applied, the system model is executed, and properties over state variables and outputs
are monitored to check for violation of specifications. Simulation is a sound bug finder, meaning
that if a property fails, then the system model is indeed incorrect. However, simulation is woefully
incomplete, meaning that no guarantee of correctness can be given if the simulation is free of
failures. If no failures are observed in simulation, it is still possible that the model can fail, but that
the inputs applied were not the right ones to cause the failure.

Formal verification techniques, in contrast to simulation, can guarantee that a model always satis-
fies some desirable property. The two main formal verification techniques in use today are model
checking and theorem proving; there are significant overlaps between these two techniques, and
they are often used in concert. The applicability of formal verification is limited by its cost, as
significant human intuition and computationally expensive algorithms are generally required to
formally verify a model. However, the cost of formal verification is justified in applications such
as VLSI circuits where the cost of failure is also high.

3.1 Linear Temporal Logic (LTL)
Correctness of a system model is always defined in terms of properties that the system must satisfy,
or properties that it must not satisfy. One way to specify such properties is using Linear Temporal
Logic (LTL). Linear Temporal Logic (LTL) was first used for reasoning about systems by Pneuli
in 1977 [84], and has found wide application in the time since. Properties in LTL are specified
with respect to execution paths, where an execution path π is a sequence of states s0,s1,s2, . . . .
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true positive literal
false negative literal

p atomic proposition
¬ p negation

p ∧ q conjunction
p ∨ q disjunction

p =⇒ q implication
F Future
G Globally
X Next
U Until

Table 3.1: LTL operators LTL combines propositional logic operators with temporal operators.

The basic LTL operators are given in Tab. 3.1. In each state along a path, an atomic proposition p
evaluates to true or false; a state si where p holds can be written as p(si), and a state where it does
not hold as ¬p(si). The logical operators ¬,∧,∨, =⇒ are applied over propositions to produce
true or false in each state. The temporal operators F, G, X, and U evaluate to true or false for a
state in consideration of the path through the state.

Safety and Liveness Properties
A safety property asserts that some bad condition (e.g. p) must never happen (e.g. GF¬p), whereas
a liveness property asserts that something good (e.g. q) must eventually happen (e.g. GFq). A
safety property is disproved by a finite length witness (counterexample) that ends in a non-p (bad)
state. A liveness property has no finite-length witness because any finite length trace that does not
reach a p state may yet reach a p state in the future. A liveness checking problem can be encoded
as safety checking [6], but this causes a blow-up in the model.

Bounded Liveness Properties
A liveness property (e.g. GFp) specifies only that p must hold in some state subsequent to the cur-
rent state on a path, but does not specify how many other states are visited before a state satisfying
p. This makes liveness insufficient for specifying a QoS latency property, where it is necessary to
specify that some action (e.g. packet reaches destination), occurs not just in the future, but within
a specific number of cycles in the future.

Bounded liveness properties are better suited to checking latencies. A bounded liveness property
is a liveness property where a proposition must hold in the future within a specified number of
states. A bounded liveness property is written as F<x p to specify that p must occur no more than x
states into the future. A bounded liveness property is really a safety property, and is equivalent to
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Eq. 3.1, where the final property in the disjunction has n nestings of the X operator. Kupferman et
al. [59] describe a system where all F properties are bounded as a “prompt” system.

F<n p≡ p∨Xp∨X(Xp)∨X(X(Xp))∨ . . . (3.1)

3.2 Model Checking
Model checking performs verification by exhaustively checking whether a state-transition graph (a
model) satisfies a property. The model is M = (S, I,R,L). The set of states of the model are S, the
initial states are I ⊆ S, the transition relation R ⊆ S×S, and a labeling L : S 7→ 2p, where p is the
number of propositions that evaluate to true or false in each state of the model.

Model checking suffers from the so-called state explosion problem. This state explosion problem
refers to the fact that the number of model states is exponential in the number of Boolean variables.
Explicit state model checkers are based on graph-traversal of the model states, and must keep track
of visited states. This quickly becomes infeasible as the size of the model grows. Straightforward
implementations of explicit-state model checking are therefore unable to scale to models with
millions of states or more, as can arise from just 20 or so Boolean variables. Symbolic model
checking overcomes state explosion by avoiding explicit graph traversal.

Initial attempts at symbolic model checking [19] are based on Binary Decision Diagrams (BDDs) [17].
Binary decision diagrams are compact representations of sets, and in symbolic model checking
BDDs are used to efficiently encode the Boolean formulas for sets of reachable states, and for the
model transition relation. A BDD representation of the states that are immediately reachable from
a set of current states is computed by direct manipulation of the BDDs for the current states and
transition relation. BDD-based symbolic model checking enabled for the first time the checking of
properties on systems with up to 1020 states [19]. BDD-based model checking, while still used, is
limited by the fact that the compactness of BDD-based representation of formulas depends on the
variable ordering used in their construction.

SAT-based symbolic model checking has supplanted BDD-based as the dominant approach. SAT-
based symbolic model checking avoids variable ordering issues because there is no significance to
variable ordering in the conjunctive normal form used by SAT-solvers. Due to the nature of SAT-
solvers, most time is spent on the important parts of the problem, where solvers work to resolve
conflicts. SAT-based model checking is able to handle larger problems than BDD-based model
checking. SAT-based formulation of various model checking algorithms are given in the following
sections, and a comprehensive survey of SAT-based model checking is given by Prasad et al. [86].

Model checking can be applied to both Boolean formulas and formulas in various theories; this
dissertation makes use of both of these variants of model checking. Chapters 5 and 7 use SMT-
based model checking as will be explained in Sec. 3.2, and Chapter 6 uses SAT-based model
checking.
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Boolean Satisfiability Problem
A significant advantage to SAT-based symbolic model checking is that it leverages the tremendous
performance improvements in SAT-solvers over the last decade. The Boolean satisfiability problem
is, given an expression using ∧,∨,¬ over Boolean variables, to find an assignment to the variables
that causes the expression to evaluate to true, or else to determine with certainty that no such
assignment exists. Boolean satisfiability problems are typically written in conjunctive normal form
(CNF), as a conjunction of disjunctive clauses; 3-SAT refers SAT where each disjunctive clause
has up to 3 variables. The 3-SAT problem is NP-complete [30], meaning that SAT-solvers can be
used to solve the variety of interesting problems that are NP-complete [56]; for this reason SAT
solving has been the subject of a large amount of research.

SAT-solvers are now routinely able to solve SAT problems with thousands or millions of variables.
Most SAT-solvers are based on the DPLL procedure [40, 39] for resolution and backtracking.
The capabilities of SAT-solvers showed a dramatic improvement in the last 15 years. The solver
GRASP [69] advanced conflict analysis to enable non-chronological backtracking. The later solver
Chaff [73] sped up constraint propagation using watched literals. Most modern solvers make use of
the techniques pioneered by GRASP and Chaff. This dissertation uses extensively the SAT-solver
MiniSat [43].

Bounded Model Checking
SAT-based bounded model checking (BMC) was first introduced in 1999 by Biere et al. [7]. Given
a model M, BMC addresses the problem of whether it is possible within k frames from the initial
state, to falsify a property p. BMC attempts to falsify p by finding a counterexample, which is an
input assignment that causes Eq. 3.2 to be satisfied. BMC finds the shortest possible counterexam-
ple by first using a small value of k and then for as long as Eq. 3.2 cannot be satisfied, unrolling
the problem for an additional cycle by increasing k, until the formula is satisfied (i.e. the property
is disproved) or some preset resource limit (e.g. memory or runtime) is exceeded.

In general, if a safety property cannot be disproved by BMC within allotted resource limits, then
the validity of the property is unknown. Given that the model has finitely many states, it is of course
possible for BMC to be complete when k is sufficiently large, and the value of k required for this
is known at the completeness threshold [27]. In general there is no assumption of completeness
when using BMC. Due to its incompleteness, BMC is used primarily for bug-finding, and not for
proving properties.

BMC(M,k, p)≡ I(s0)∧
( ∧

i=0...k−1

R(si,si+1)

)
∧
( ∨

i=0...k

¬p(si)

)
(3.2)
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Induction
Informally, induction tries to prove a property by assuming that it has always held previously, and
then using that fact and the model transition relation to show that it holds in all reachable next
states. If it can be shown that no transition exists from state satisfying p to one that does not satisfy
p, then p is proved as long as it holds in the initial state. A property p that can be proved in this
way is called an inductive invariant.

Simple Induction

Inductive proof of a safety property p is a two-step process comprising a base case and an inductive
step. The base case checks that the property holds for all initial states (denoted s0). The inductive
step checks that, if the property holds in some arbitrary state sk, then it must hold in all sk+1 that
are reachable next states. If INDBASE and INDSTEP (Eq. 3.3) are both unsatisfiable, then all initial
states satisfy p, and all states reachable from p states are also p states; this constitutes a deductive
proof that M � p.

Induction is attractive proof method because it does not require an unrolling of the transition re-
lation past two frames. This translates to a small SAT problem, and ultimately one that is likely
to have a fast runtime for a SAT-solver. Unfortunately many properties cannot be proved using
simple induction, due largely to the general initial state in INDSTEP. The inductive step begins
from an arbitrary state sk, with the only constraint being that sk is a p state. This allows for the
inclusion as sk of many unreachable states that happen to be p states, and progression of the model
from unreachable p states is often erratic because it is anyway not a meaningful model trajectory.

IndBase(M, p)≡ I(s0)∧¬p(s0)

IndStep(M, p)≡ p(sk)∧R(sk,sk+1)∧¬p(sk+1) (3.3)

K-Induction

Properties that cannot be proved using simple induction require strengthening, and one way of
strengthening an inductive property is to use k-induction [8, 94]. K-induction is stronger than sim-
ple induction due to its handling of the inductive step. Where the inductive step in simple induction
assumes that a property holds in a single state, the equivalent step in k-induction assumes that a
property holds in k consecutive states. The base case in k-induction (KINDBASE) is equivalent to
BMC(M,k, p). Property p is proved using k-induction if KINDBASE and KINDSTEP (Eq. 3.4) are
both unsatisfiable.
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KIndBase(M,k, p)≡ I(s0)∧
( ∧

i=0...k−1

R(si,si+1)

)
∧
( ∨

i=0...k

¬p(si)

)

KIndStep(M,k, p)≡
( ∧

i=0...k

R(si,si+1)

)
∧
( ∧

i=0...k

p(si)

)
∧¬p(sk+1) (3.4)

If unique states are enforced in k-induction, then the approach constitutes a complete proof engine
if the value of k is not restricted. The completeness comes from the fact that ultimately there are
finitely many unique p states to visit, and once the induction depth is sufficient to reach all p states,
if still no transition is possible to a non-p state, then p is proved. However, the depth required to
reach all p states can be large, and therefore k-induction is not typically used for its completeness.

Invariant Strengthening

Invariant strengthening plays an important role in inductive and k-inductive proofs. The idea be-
hind invariant strengthening is to prove a property p by proving a stronger property p′ that implies
p but is easier to prove. Consider for example a model comprising a 10-bit variable x[9 : 0] where
the transition relation increments x in every cycle, except that x=10’d151 is followed by x=10’d0
instead of x=10’d16. Now assume that the goal is to prove a property p := x[9 : 0] 6= 10’d500. All
states are p states except for the single state where x=10’d500. The state x=10’d17 is a p state,
and the next 485 states that follow are all p states, until reaching the non p state x=10’d500. So
the value of k that would be needed to prove p would be at least 485. However, if the property
p′ := x[9 : 4] =6’d0 is proved, then the induction depth required to prove it will be greatly reduced.
Since p′ =⇒ p, proving p′ provides an easier way to prove the original property p.

IC3 / Property-Directed Reachability
The IC3 algorithm developed by Aaron Bradley is considered a recent breakthrough in model
checking [12]. An efficient AIG-based implementation of IC3 that is used in this dissertation is
referred to as property directed reachability (PDR) [42]. IC3 is based on automatically finding
and refuting candidate incremental inductive invariants. Ultimately, IC3 terminates by finding
invariants that over-approximate reachable states but are precise enough to show that non-p states
are unreachable.

Model Checking using Satisfiability Modulo Theories
An alternative to verifying Boolean formulas with SAT solvers is to use Satisfiability Modulo
Theories (SMT) solvers. SMT solvers extend SAT solvers by replacing Boolean variables with
predicates in some underlying theory or combination of theories.

1In notation borrowed from Verilog, 10’d15 is used here to represent a bit-vector of width 10 that has the decimal
equivalent of 15.
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SMT solvers can be categorized as eager or lazy. An eager solver [62, 93, 4] encodes an SMT
problem into an equisatisfiable SAT instance; all inference is done by the SAT solver in the prob-
lem’s Boolean representation. A lazy SMT solver is based on a generalized DPLL procedure [75],
with propagation and learning according to the underlying theory.

Some theories used that are relevant to this work are bit-vectors and linear arithmetic. Bit-vectors
are interesting because they match hardware implementations which are naturally restricted to
finite-size data. Bit-vector SMT problems can be mapped to Boolean SAT problems by bit-
blasting, a process in which each n-bit bit-vector variable is replaced by n Boolean variables.

The majority of SMT solving in this dissertation is performed using the UCLID verification sys-
tem [18, 62]. UCLID decides properties in first order logic that contain equality, uninterpreted
functions, constrained lambda expressions, integer linear arithmetic, and bit-vector arithmetic.
The lambda expressions in UCLID allow it to model memories, and infinite queues or queues
of bounded size. UCLID has been previously been used to verify hardware systems [63, 61, 13],
software systems [26, 45] and discrete-time hybrid systems [54]. Although UCLID can be used
for inductive verification, in this dissertation it is used for bounded model checking. From a given
initial state, UCLID performs the necessary unrolling of the transition relation to a specified depth
k, and then either outputs an SMT problem in SMT-lib format, or eagerly encodes the problem as
a decision procedure and dispatches it to a SAT-solver. If the problem is output in SMT-lib format,
then any available SMT solver can be used to check the property.
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Chapter 4

Formal NoC Modeling

This dissertation uses finite-state NoC models so that QoS problems can be solved using model
checking. To minimize complexity (e.g. the number of states in model), it is therefore desir-
able to use a model that is as simple as possible while still capturing with sufficient precision
the details that determine QoS. The approach for minimizing complexity is to use, to the max-
imum extent possible, a simple modeling language called xMAS to represent NoC designs. As
the xMAS modeling language is not well-suited to certain aspects of control logic, xMAS models
are supplemented with arbitrary combinational and sequential logic where needed. The model-
ing methodology presented in this chapter serves as the basis for all contributions in subsequent
chapters of the dissertation.

This chapter is structured as follows. The xMAS modeling language is presented in Sec. 4.1. Two
different implementations of xMAS queues are presented in Sec. 4.2. Modeling of NoC router
cores is given in Sec. 4.3. Approaches for checking latency bounds as simple safety properties are
given in Sec. 4.4, and traffic modeling is in Sec. 4.5. Among the sections of this chapter, Sec. 4.3,
Sec. 4.4, and Sec. 4.5 contain novel modeling contributions.

4.1 Executable Microarchitectural Specifications (xMAS)
As mentioned in the chapter introduction, the modeling language used heavily in this dissertation
is xMAS – standing for executable microarchitectural specifications. The xMAS formalism was
developed by researchers at Intel’s Strategic CAD Lab as a way to formally model communication
fabrics [22]. The development of xMAS was motivated by the observation that communication
fabrics are essentially compositions of queues, arbiters, and routing logic, connected and interfaced
to each other with a large amount of ad-hoc glue logic. The authors pose the following question in
the first paper on xMAS [22]:

Do we need this ad hoc glue logic? Instead can we identify a set of primitives that is
rich enough to permit a purely structural description of interesting systems?
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In response to this question, xMAS is a way to model networks that obviates the need for ad-hoc
glue logic by having all primitives adhere to a uniform interface that allows components to be
connected directly without glue logic. By providing a clean formal model of NoCs, xMAS makes
it possible to verify NoC properties using model checking [21, 23, 89] and other means [48].

Every xMAS model N is a finite state model composed of modeling elements drawn from a library
of eight simple parameterized kernel primitives (Fig. 4.2). All primitives communicate over chan-
nels using a common handshaking protocol. This provides a simple way to create network models
by simply wiring together primitives with channels. xMAS models use synchronous semantics,
and each stateful primitive updates its state variables on the same edge of an implicit global clock
that is omitted from diagrams of network models. An xMAS model is easily translated into the
UCLID modeling language (Chapters 5 and 7) or into synthesizable Verilog (Chapter 6) by map-
ping each primitive into the appropriate syntax. This provides a convenient tool flow for verifying
properties of xMAS models using UCLID or RTL model checking.

Communication over Channels
Communication in xMAS networks occurs between two primitives over a channel. The primitive
that is initiating the communication is referred to as the initiator of the channel, and the primitive
that is receiving the communication is referred to as the target. Each channel, drawn as a single
directed edge in xMAS network diagrams, comprises three signals that are shared between the
initiator and target (Fig. 4.1). For any channel c, the initiator primitive controls Boolean signal
c.irdy (initiator ready) and c.data, while the target controls c.trdy (target ready). The value of
c.data is transferred from initiator to target on any cycle when c.irdy and c.trdy are both asserted.

c.trdy!
c.data!
c.irdy!c!

initiator! target!

Figure 4.1: The Signals Comprising an xMAS Channel. The upstream primitive, denoted the initiator
of channel c, controls c.data and the Boolean signal c.irdy. The downstream primitive, denoted the target, controls
c.trdy. The value of c.data is transferred from initiator to target when c.irdy and c.trdy are true in the same cycle.

The communication protocol used in xMAS is an instance of latency-insensitive design [20], where
functional correctness is independent of channel latencies. The channels in xMAS networks obey
forward (Eq. 4.1) and backward (Eq. 4.2) persistency. Persistency means that a channel that is
ready to initiate or receive data will remain so until a transfer occurs over the channel. The behavior
of each primitive ensures that it will always obey forward and backward persistency, provided that
all primitives it interfaces to also obey forward and backward persistency.

c.irdy∧¬c.trdy =⇒ Xc.irdy (4.1)

c.trdy∧¬c.irdy =⇒ Xc.trdy (4.2)
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Data Types in xMAS
Each channel has a designated type, in reference to the data signal on the channel. By convention,
each channel in this dissertation uses one of two data types: the first type is flit data, and the second
type is token data. In xMAS network diagrams with both types, a bold line is used to represent flit
data, and a thinner line is used for tokens.

Flit Data

Flit data are bit-vectors that represent the individual flits of a packet (in Chapters 5 and 7) that
are communicated across links in an NoC. In Chapter 6, flit data is replaced by packet data that
represents all of the collective flits of a packet as one single unit of transfer. Flits and packets are
grouped together here into the single type “flit” because of their similarity. Using data to represent
an entire packet is a higher level of abstraction than representing individual flits, but ultimately the
choice of whether to model data at the packet level or flit level depends on the network model. In
chapters 5 and 7, flit-level modeling is used to capture the granting of output channels to head flits,
and releasing of output channels by tail flits. In Chapter 6, it suffices to model traffic at the packet
level.

Flit bit-vectors encode multiple logical fields. The values stored in certain positions of the data
bit-vector represent logical fields such as destination addresses and timing information (discussed
further in Sec. 4.4). Examples of these fields are shown in Tab. 4.1.

bits of data
23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

head flit: timestamp / age x dest y dest 01
body flit: timestamp / age payload 10

tail flit: timestamp / age payload 11

Table 4.1: Data Fields of a Typical Flit. Head, body, and tail flits all store a timestamp or age in data[24:10].
The bits data[9:2] represent destination information in head flits and arbitrary payload for body and tail flits. Bits
data[1:0] represent the flit type.

Token Data

Tokens channels are channels where the data value is null. The information communicated over
such a channel is only an agreement by the initiator and target that a transfer has occurred, and the
data value is insignificant. Token channels are used to model the transfer of credits in NoCs.

xMAS Primitives
All xMAS networks are compositions of eight simple kernel primitives (Fig. 4.2). The inputs and
outputs drawn for each primitive represent channels, but at a more detailed level the inputs and
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outputs to each primitive are the signals within the channels. More precisely, the input signals
to each primitive are (1) the irdy and data signals on each channel of which the primitive is the
target; and (2) the trdy signals on each channel of which the primitive is the initiator . The output
signals of each primitive are all the channel signals going in the opposite direction of the input
signals.

Primitives can be either stateful or stateless. The stateful primitives update their state variables
on each clock edge based on their current state and inputs, and also set outputs based on current
state and inputs. The stateless primitives set output signals based directly upon their input signals.
Among the eight kernel primitives, the source, sink, queue, and merge primitives have state, while
the join, fork, switch, and function primitives are stateless.

The primitives as defined in the following paragraphs differ from the original xMAS paper [22] in
the type of data transformations that are used. The original xMAS definition allows join primitives
to receive two flits as inputs and produce a single output with a data value that is a function of both
inputs. The convention is adopted here that the data transformations performed by the primitives
are always unary; such primitives have previously been referred to as restricted primitives [22].
Since all data transformations are unary, it suffices to use the function primitive for all data trans-
formations. All other primitives do not modify flits when propagating them from input channel to
output channel.

i!
depth!

queue!

o! i!

function!

f! o!

source!

o!

join!

o!a!
b!

i!

fork!

a!

b! b!
switch!

f! a!
i!

merge!

o!
b!

a!i!

sink!

x !

Figure 4.2: The xMAS Kernel Primitives. All xMAS networks are created by instantiating combinations of
these eight primitives, and connecting them using channels.

Source Primitive

A source primitive is an interface between the environment and network, and generates traffic that
it injects into the network through its output channel o. A flit source primitive has a single Boolean
state variable blocked := o.irdy ∧ ¬ o.trdy that is true when a source is blocked from injecting.
This state variable is used to ensure that the source satisfies forward persistency (Eq. 4.1) on its
output channel, by continuing to retry a blocked transfer until succeeding. Source primitives are
used for various purposes, and a few applications are given here:

• An Eager Token Source eagerly attempts to inject tokens in every cycle (i.e. o.irdy := true),
and succeeds whenever the target of its output channel is ready to receive.

• An Periodic Token Source with a period of x uses a counter that increments in every cycle
and rolls over to 0 after x−1. It injects a token on channel o whenever the count is x−1
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• A Non-deterministic Flit Source non-deterministically decides when to inject, and the data
of said packet is also non-deterministic:

o.irdy := pre(blocked)∧oracle

o.data := oracle ∈ B|i.data| (4.3)

• A Flit Source in a Traffic Model produces a constrained subset of the behaviors of a non-
deterministic source. This is explained in Sec. 4.5.

Sink Primitive

A sink primitive is an interface between the environment and network, and attempts to consume
data from a channel i. Finite latencies can only be achieved if sinks are not permitted to block
traffic indefinitely, so sinks are not allowed to be fully non-deterministic. The two types of sinks
that are used are eager sinks and bounded non-deterministic sinks.

• An eager sink is always ready to accept traffic. All token sinks are eager (i.e. i.trdy := true),
and flit sinks are eager in Chapters 5 and 7.

• A bounded non-deterministic sink uses a non-deterministic oracle to decide when to consume
a waiting flit within x cycles, where x is a parameter of the sink. Data sinks are assured of
satisfying liveness bounds by their transition relations per the state machine of Fig. 4.3; if
the blocking condition i.irdy∧¬i.trdy has been true for the past x cycles, then the sink is
forced to assert i.trdy in the current cycle.

waiting := i.trdy∧¬i.irdy
i.trdy := pre(waiting)∧oracle∧ f orce (4.4)

3!0! 1! 2!
blocked blocked blocked 

not 
blocked 

xfer xfer xfer 

Figure 4.3: State Machine for Bounded Non-deterministic Sink Primitive. The state machine
shown is for a sink with a bound of x = 3. Variable f orce is true when in state 3 and false otherwise. Labels x f er
and blocked are transitions guards, and determine the next state based upon whether or not a transfer occurs for the
blocked packet at the sink input. Together with Eq. 4.4, this ensures that data is not blocked for more than 3 cycles
before being transferred to the sink and out of the network.
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Queue Primitive

A queue primitive is a FIFO buffer that stores flits or tokens. It is parametrized by its depth (or
number of slots), which is the maximum number of items that can be stored in it. The most
prominent state variables of the queue are for its data storage, but the the queue primitive also
has bit-vector state variables to store the current head position, current tail position, and number
of items stored in the queue. These variables orchestrate reading from, and writing to, the queue.
Data is read from the head position, and written to the tail position.

A queue primitive that holds flits is a model for a typical data-storing NoC buffer such as an ingress
or egress queue of a router. A queue primitive that holds tokens represents a credit counter, and
is equivalent to a binary counter with xMAS channel interfaces to control the incrementing (i.e.
writing) and decrementing (i.e. reading) of the stored count.

Two different implementations of the internal data storage of a queue are given in Sec. 4.2. In
either implementation, a queue is ready to receive data (i.e. a write operation can be performed)
when the number of items stored in the queue is not equal to the queue depth. A queue is ready to
output data (i.e. a read operation can be performed) when the number of items stored in the queue
is not 0.

Function Primitive

The function primitive is stateless and maps input data on i to output data on o. The mapping from
i.data to o.data is performed according to a deterministic function f that is a parameter of the
primitive. The function primitive directly connects the irdy and trdy signals from its input channel
and output channel, and is therefore transparent with respect to timing.

i.trdy := o.trdy
o.irdy := i.irdy
o.data := f (i.data) (4.5)

Fork Primitive

A fork is a stateless primitive for synchronization. A transfer occurs through the fork when the
upstream primitive is ready to initiate a transfer and both downstream primitives are ready to
receive a transfer. A typical use for a fork is credit return, where a flit at the fork input is transferred
through to output b while a token is generated at output a to represent a credit being returned.
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i.trdy := a.trdy∧b.trdy
a.irdy := i.irdy∧b.trdy
a.data := null
b.irdy := i.irdy∧b.trdy
b.data := i.data (4.6)

Join Primitive

A join is a stateless primitive for synchronizing data with tokens. A flit channel typically connects
to input b of the join, and a token channel to input a. The flit is then forced to wait for a token before
propagating on through the join to the output channel. A transfer through a join occurs when both
upstream primitives are ready to initiate and the downstream primitive is ready to receive data.

a.trdy := o.trdy∧b.irdy
b.trdy := o.trdy∧a.irdy
o.irdy := a.irdy∧b.irdy
o.data := b.data (4.7)

Switch Primitive

The switch is a stateless primitive that performs all of the routing in xMAS networks. The input
channel to a switch is always a flit channel. The switch routes the incoming flit to output a or
output b depending on the data value of the input channel (i.data). Each switch is parameterized
by a switching function f : BN 7→ B, where N is the width of the data bit-vector (e.g. 24 for
the flit data shown in Tab. 4.1). Data consumed from input i is therefore routed to output a if
f (i.data) = true and to b otherwise. Note that the input data is always produced on both outputs,
but only the output channel that is selected by the routing function will have the irdy signal asserted
to initiate the transfer.

a.irdy := i.irdy∧ f (i.data)
b.irdy := i.irdy∧¬ f (i.data)
i.trdy := (a.trdy∧ f (i.data))∨ (b.trdy∧¬ f (i.data))

a.data := i.data
b.data := i.data (4.8)
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Merge Primitive

The merge is a stateful primitive that performs arbitration in xMAS models. It receives inputs on
channels a and b, consumes data from at most one of them, and produces data on output o. A
Boolean state variable u represents the current priority among the inputs. A merge can use any
priority scheme, such as round robin priority, where the value of u is negated whenever the high
priority input transfers a packet through the merge.

o.irdy := a.irdy∨b.irdy
a.trdy := o.trdy∧ u
b.trdy := o.trdy∧¬u (4.9)

4.2 Implementation of Queues
The xMAS components that make up the vast majority of network state are the queues. Regard-
less of whether the xMAS models are implemented in the UCLID verification system [1] or in
RTL (for conversion to AIG to verify with ABC), the stateful components other than queues are
implemented in a straightforward way as finite state models. However, there is a choice to make
in modeling queues when using the UCLID verifier. Queues of a fixed depth can be modeled as
circular buffers, but can also be implemented as an ordered data structure using lambda notation.
The two implementations are both given in the following paragraphs. Recall from the previous
section that in addition to the data storage variables, each queue uses three additional bit-vector
state variables to keep track of the head and tail position and the number of items stored. Both
queue implementations assume the availability of these variables. An experimental comparison of
the two queue implementations in given in Chapter 7.

Queues as Circular Buffers
In a circular buffer queue implementation, the storage element of queue with depth n is imple-
mented using n bit-vector variables queue0,queue1,. . . , where each such variable represents the
data value stored in one queue slot. State update of each queue slot is performed using case state-
ments. If the tail position matches the index of the slot (i.e. the number x in variable name queuex),
and a write operation is being performed, then the state variable for the slot is updated with the
value i data that is being written to the queue over its input channel. Otherwise, the state variable
for the queue slot remains unchanged from its previous value.

The data (o data) that is outputted from the queue on a read operation is also accomplished with a
case statement. One case exists for each queue slot, and if a read is being performed and the head
points to that slot, then the value from the slot is outputted onto the channel via the data bit-vector
for the output channel.
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The relevant part of the UCLID model for the circular buffer queue implementation is given below.
This queue implementation is also used in the RTL implementation of xMAS networks, as used in
the model checking flow of Chapter 6.

1 VAR
2
3 queue0 : BITVEC[24];
4 queue1 : BITVEC[24];
5 (* add bit-vector variable for each slot up to depth-1 *)
6
7 DEFINE
8
9 o_data := case

10 head = d0 : queue0;
11 head = d1 : queue1;
12 (* add case for each slot up to depth-1 *)
13 default : d0;
14 esac;
15
16 ASSIGN
17
18 init[queue0] := d0;
19 next[queue0] := case
20 (tail = d0) & i_irdy & ˜i_trdy : i_data; (* write to slot 0 *)
21 default : queue0; (* slot unchanged *)
22 esac;
23
24 init[queue1] := d0;
25 next[queue1] := case
26 (tail = d1) & i_irdy & ˜i_trdy : i_data; (* write to slot 1 *)
27 default : queue1; (* slot unchanged *)
28 esac;
29
30 (* repeated for each queue slot up to depth-1 *)

Queues as Records
The second model for FIFO buffers in UCLID follows the memory model presented by Bryant et
al. [18]. A brief description is given here, and interested readers can find a thorough discussion
in [18]. In this queue implementation, the queue storage is modeled by a function expression that
maps queue positions to the data stored at those positions. In principle this allows the queue to
have arbitrary finite size.

Head and tail pointers are implemented using bit-vector storage variables as in the circular buffer
queue implementation. When a write occurs, the tail position is mapped to the data from the input
channel (i data) and the tail position is then incremented. When a read occurs, the data value on
the output channel (o data) is the value that the head position maps to in the function expression
of the queue, and the head pointer is subsequently incremented. The relevant part of UCLID code
for the record-based queue implementation is shown below.
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1 VAR
2
3 queue : BITVECFUNC[24,1]; (* Queue/FIFO related signals *)
4
5 CONST
6
7 a : BITVEC[24];
8
9 DEFINE

10
11 o_data := queue(head); (* Queue function maps head to data *)
12
13 ASSIGN
14
15 (* update queue *)
16 init[queue] := Lambda(a).d0;
17 next[queue] := Lambda(a). case
18 a = tail & i_irdy & i_trdy : i_data; (* a now maps to written data *)
19 default : queue(a);
20 esac;

4.3 Model of Router Core
Chapters 5 and 7 both use models of NoC routers with five input channels and five output channels,
as would be found in a typical two-dimensional mesh network. Those chapters share in common
the router core shown in Fig. 4.4. The router core is implemented in UCLID and augments the basic
xMAS primitives with arbitrary combinational and sequential logic to implement control logic
(comprising route computation and switch allocation) and a crossbar, as shown in Fig. 4.4b. The
route computation, switch allocation, and crossbar components are each described in the following
paragraphs; along with the description of each component, a fragment of UCLID code shows the
most relevant details of its implementation.

Route Compute

Route computation determines which of the five output channels should be requested for incoming
head flits. The appropriate request to make depends on three fields extracted from incoming flit
data (see Tab. 4.1); these fields are the flit type (f type), and the x and y components of the
destination address (f addr y and f addr y respectively). For head flits, based upon the extracted
destination address fields and the router’s own address (r addr y and r addr x), the request for the
appropriate output channel is asserted. These requests are the output of the route compute block
and inputs to the switch allocation logic. Note that the route computation implements XY-routing,
and data is not routed to the north or south outputs until reaching its destination column.
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Figure 4.4: Router Core. Fig. 4.4a gives the symbol representing a router core. Fig. 4.4b shows that the router
core comprises a controller and a crossbar. The controller contains combinational route compute blocks for each input
channel, and a sequential switch allocator for each output channel.

1 hf := d1#[1:0]; (* 2-bit constant value for head flits *)
2 f_type := data#[1:0]; (* flit type, i.e. head/tail *)
3 f_addr_x := data#[9:6]; (* x destination address *)
4 f_addr_y := data#[5:2]; (* y destination address *)
5
6 req_w := (f_type = hf) & (f_addr_x <u r_addr_x);
7 req_e := (f_type = hf) & (f_addr_x >u r_addr_x);
8 req_s := (f_type = hf) & (f_addr_x = r_addr_x) & (f_addr_y <u r_addr_y);
9 req_n := (f_type = hf) & (f_addr_x = r_addr_x) & (f_addr_y >u r_addr_y);

10 req_ni := (f_type = hf) & (f_addr_x = r_addr_x) & (f_addr_y = r_addr_y);

Switch Allocation

A switch allocator is used for each of the five output channels of the router to control which input
channel is granted use of it. The input signals to the switch allocator are the Boolean requests
made by each input channel via the route compute. The switch allocator is the only sequential
component in the router core. The state variables of each switch allocator are a bit-vector (gnt) to
track which input channel is currently granted, and 10 Boolean state variables to store the current
priority. Each of these 10 Boolean variables signifies the current priority among a pair of input
channels (e.g. pns is the priority ordering between north and south inputs), and the 10 Boolean
variables collectively represent a total order of priority among the five input channels of the router.
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The switch allocator grants an output, when available, to the requesting input with the highest
priority. The state variable gnt is then updated to indicate that the channel is granted, and the
priority variables are updated to give the granted input lowest priority going forward. The grant is
released when the tail flit is transferred across the input channel.

1 init[gnt] := none;
2 next[gnt] := case
3 (gnt = none) & rn & (˜rs|pns) & (˜re|pne) & (˜rw|pnw) & (˜rp|pnp) : north;
4 (gnt = north) & ˜tail_n : north; (* don’t release output *)
5 (gnt = north) & tail_n : none; (* release output *)
6 (* repeated cases for other 4 inputs in same style as shown for north *)
7 default : idle;
8 esac;
9

10 (* update priority of n vs s inputs, repeat for other nine pairings *)
11 init[pns] := true;
12 next[pns] := case
13 (state = n_sending) : false;
14 (state = s_sending) : true;
15 default: pns;
16 esac;

Crossbar

The crossbar is the means through which the non-xMAS router core interfaces to standard xMAS
primitives that use channels. The crossbar is a stateless primitive that makes connections between
the five input channels and five output channels of the router. Boolean signals from the switch
allocator control which input-output channel pairings are connected by the crossbar. When a par-
ticular input channel is logically connected to some output channel by the crossbar, the irdy and
data signals of the output are driven from the input, and the trdy signal of the input is driven from
the output. Note that the crossbar cannot be implemented using the traditional xMAS switch prim-
itive because the switch primitive routes flits based on their value. In the crossbar, body and tail
flits do not contain any destination information and are routed according the value of a head flit
that preceded them, information that is stored in the state of the switch allocators.

4.4 Checking Latency Bound Properties on Network Model
While any performance property that can be formulated as a safety property is of relevance in this
work, the focus is on latency bounds. The three major components of this dissertation (Chap-
ters 5, 6, and 7) all concern verifying latency bound properties. The common approach in all these
chapters is to compute latencies by tracking the age of flits. Checking the validity of a latency
bound of x cycles is then simply a matter of checking the validity of a simple safety property stat-
ing that no flit ever has an age greater than or equal to x. Two different simple safety encodings are
used, termed “timestamp encoding” and “stopwatch encoding”.
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All flits within the network occupy a slot of some queue in each cycle. Checking the age of flit data
is then a matter of checking properties on queue slots. Let qi represent the state of the ith queue
slot in the network. Assuming the queue implementation of Sec. 4.2, this queue slot is a bit-vector
comprising a number of different logical fields as explained in Tab. 4.1, and checking latency
makes use of the field that stores the timing information. The notation age(qi) is used to signify
the age of a flit occupying the ith queue slot in the network. A latency bound of x cycles is therefore
checked on the ith queue slot using a simple safety property of the form φ := usedi∧age(qi)< x,
where usedi is true if slot i is non-empty.

t(qi): 29 
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Figure 4.5: Two Encodings of Flit Ages. Both encodings show flits with ages of 5 and 6 cycles. Timestamp
encoding stores a static timestamp with each flit and updates a global variable clk to advance the age. Stopwatch
encoding stores the age directly, and updates each age in-situ.

Timestamp Encoding
Timestamp encoding uses an injection timestamp, denoted t(qi) for the ith slot, and computes
age(qi) as the difference between a global clock (clk) and the injection timestamp. To use times-
tamp encoding, a network model is augmented with a single bit-vector state variable clk that im-
plements a global counter from 0 to tmax− 1, where tmax is some number that exceeds the largest
age bound that is being checked. In every cycle of execution, clk is incremented by 1 (mod tmax).
The timestamp field of each flit is assigned a static copy of the value of clk on the cycle when it is
injected into the network, and this timestamp propagates from source to sink unchanged as a part
of the flit. Because clk is incremented in every cycle to advance the age, the age of the data in slot
i is computed as age(qi) = clk− t(qi) mod (tmax). The overhead for timestamp encoding is the
inclusion of the clk state variable, and the fact that at least log2(tmax) bits of each queue slot’s state
variable are reserved to store the timestamp as part of the data.

A drawback of timestamp encoding is that ages are not represented canonically. There are tmax
equivalent representations of the same data ages. More specifically, given any state of the network
model, equivalent ages are formed by adding (mod tmax) a common offset x ∈ [0, tmax− 1] to clk
and all t(qi) timestamps. To show that some particular age cannot be reached by flits, the verifier
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must show that all equivalent representations of the age are unreachable. This is a burden for the
verifier when using induction as a proof engine, and is exacerbated by larger tmax.

Stopwatch Encoding
Stopwatch encoding is denoted as such because it stores within each flit data an age counter that
functions like a stopwatch for measuring latency. This variable is age(qi) for each slot i, and it
travels with the flit through the network model. In contrast to the static timestamp in timestamp
encoding, the age field of each flit begins at 0 when injected and then is incremented in every cycle
until the flit is ejected. Therefore, the value of the stored variable age(qi) is itself the age of the
flit occupying slot i, and there is no need for a global counter. The variable age(qi) is considered a
part of the flit just as is t(qi) in the timestamp encoding, and it similarly requires each queue slot
in the network to reserve at least log2(tmax) bits to store it. Because standard xMAS queues store
data without modifying it, some extra logic is added to the queue primitives for incrementing the
ages in each cycle. For the flit that will be stored in each queue slot i, the age field age(qi) of the
stored data is incremented by 1 (mod tmax) relative to the value that would be stored by a normal
xMAS queue. This ensures that the ages are incremented both for flits remaining in slot i from the
previous cycle, and for flits being newly written into slot i over the queue’s input channel.

Compared to timestamp encoding, stopwatch encoding requires a more complex transition relation
(incrementing values in all queue slots instead of incrementing a single counter), but represents
ages canonically. In stopwatch encoding, an age of x for a flit stored in slot i is unambiguously
represented by age(qi) = x.

Chapters 5 and 7 use timestamp encoding; Chapter 6 uses stopwatch encoding, and also presents
a comparison of the two encodings and shows stopwatch encoding to perform better when using
induction as the proof engine. It is unclear whether the work of Chapters 5 and 7 might also benefit
from stopwatch encoding, as this was not evaluated. It is believed that stopwatch encoding would
not offer significant benefit in those chapter because they use BMC as the proof engine and would
therefore have less benefit from a more canonical representation of bad states.

4.5 Formal Traffic Model
A formal traffic model injects traffic into a network while avoiding unrealistic traffic such ill-
formed flits that should never be injected, or flits injected at an overly adversarial rate. The traffic
model, denoted T , serves as a formal environment model for an NoC model N . It is constructed
as a modeling element that uses constrained non-determinism to generate a large finite set of traffic
patterns that meet certain qualifications. Before going into detail about traffic models, notation
regarding traffic patterns is introduced.

A concrete traffic pattern, denoted p, is a trace of what data is injected and when. A traffic pat-
tern can refer to either a single source or collection of sources. For simplicity of notation, the
description of a traffic pattern assumes a single source with channel data width of L. Over N cy-
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cles, traffic pattern p is a sequence of pairs 〈(irdy1,data1), . . . ,(irdyN ,dataN)〉, where irdyi ∈ B
and datai ∈ BL. A source that injects pattern p sends data into the network for all cycles i such
that irdyi is true, and the value injected on cycle i is datai. The value of datai is irrelevant when
irdyi = false. A traffic pattern for a collection of M sources is similar to that of a single source,
except that each scalar irdyi value is replaced by a vector of width M, and each datai of width L is
replaced by a vector of M data values that are each L-bit wide.

Using the definition of traffic pattern, a traffic model T is then a component that non-deterministically
generates a pattern pi from a finite set of possible patterns P = {p0, p1, . . .}. Note that the set of
patterns P for a traffic model T are an implicit set and never explicitly enumerated. For a traffic
model T that generates L-bit wide traffic to inject on M channels over N cycles, the set of patterns
P that can be generated is a subset of BNM(L+1). Note that the L+1 term arises because for each
channel, L-bit data values are generated along with a Boolean irdy signal.

The constraints enforced by the traffic model are of two types: data constraints and rate constraints.
Corresponding to the two types of constraints, the traffic model T logically comprises two stages
(Fig. 4.6). Stage 1 of T is tasked with using non-determinism to generate a candidate traffic
pattern, and stage 2 imposes deterministic rate constraints on the candidate traffic from stage 1.
For every output channel of T , there is therefore a corresponding channel from stage 1 to stage 2
that carries the candidate traffic. In the following sections, a generic instance of such a channel is
denoted as channel x, and so its channel signals are denoted x.irdy, x.data, and x.trdy.
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Figure 4.6: Block Diagram for a Traffic Model T . Traffic model uses a two-stage process to generate the
traffic patterns that are injected into the network model N . Stage 1 generates candidate traffic, and stage 2 regulates
the rate of the candidate traffic.
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Stage 1 of Traffic Model: Generating Candidate Patterns
A traffic model must not inject flits with fully non-deterministic data across a channel into a net-
work, as the network assumes incoming traffic to satisfy certain conditions. These traffic conditions
arise because the different logical fields of the flit data (Tab. 4.1) have defined meanings, and the
injected values must be sensible with respect to those meanings. To motivate the need for con-
strained data, consider the following two examples in which unrealistic flit data could foil attempts
at verification:

1. A head flit that is injected without a subsequent tail flit may cause a deadlock because a
reservation is made for the head flit but never released by the tail flit.

2. If 3 bits of data are used to encode the five different destination addresses 0 through 4, then
injected data with a destination address of 5 may never be routed to any destination.

Bounded non-deterministic data precludes these two types of unrealistic behaviors. Different
mechanisms within stage 1 of traffic model T are used for handling each of the two cases above.
While each field such as flit type or destination is generated independently using the appropriate
mechanism, ultimately the fields are simply concatenated to generate the overall data that is the
output of stage 1 of the traffic model T .

Non-deterministic Finite State Automata

A non-deterministic finite state automaton (ND-FSA) solves the problem of generating appropri-
ately ordered head, body, and tail flits. An example of such an ND-FSA is shown in Fig. 4.7, and
implemented in the UCLID modeling language. The state of the ND-FSA determines the single-bit
value for x.irdy and the 2-bit value representing the flit-type field of candidate data value x.data;
the values on the states in Fig. 4.7 represent x.irdy and the flit-type field of x.data.

When the ND-FSA is in the idle state, it is non-deterministically chosen whether or not to start
sending the flits of a packet by transitioning to the head state. Once in the head state, x.irdy is
true, meaning that an attempt is made to send to data, and x.data[1 : 0] is assigned value 01 to
indicate a head flit. The ND-FSA remains in the head state until the head flit is transferred through
stage 2 of T , and then transitions to the body state to send the body flit, and finally the tail state to
send the tail flit. Once the tail flit is sent, a non-deterministic choice is made to send the head flit
of the next packet, or else go to the idle state.

One or more ND-FSA form part of the traffic models T in Chapters 5 and 7. The ND-FSA shown
in Fig. 4.7 is exactly the one used in Chapter 5, and the one in Chapter 7 omits the body state, as
each packet in that chapter comprises only a head and tail flit. The traffic models of Chapter 6 do
not require an ND-FSA, because there each data independently represents an entire packet, and
there is hence no need to enforce consistency of flit types.
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Figure 4.7: Non-deterministic FSA for Generating Consistent Flit Sequences. Variations of this
ND-FSA are part of the traffic models T in Chapters 5 and 7. The values on each state represent the values used, when
in that state, for x.irdy and the bits of x.data that encode the flit type. The ND-FSA non-deterministically transitions
from the idle state to the state where a head flit is being sent, and only advances from the head, body, or tail states
when x.trdy is asserted. Because x.irdy is always asserted from those three states, x.trdy always corresponds to a flit
being successfully injected from the traffic model into the network model.

Non-deterministic Data Selection

The injection of flawed data values, as in the motivating example of the incorrect destination ad-
dresses, is prevented using non-deterministic choice among enumerated legal values. A multiplexer
controlled by a non-deterministic oracle selects between the values. Because every oracle value
selects a legal output value, there is no possibility of bad data values.

Stage 2 of Traffic Model: Deterministic Rate Constraints
Rate constraints in T prevent unrealistic behaviors such as, for example, every source injecting
flits on every cycle. The rate constraining mechanisms receive candidate traffic from stage 1 of
the traffic model, and produce the traffic model outputs that are the inputs to the network model.
The specific rate constraints implemented by traffic models in this dissertation are upper bounds on
burst size of traffic, and upper bounds on average injection rate. The constraints are enforced using
token bucket regulators built from xMAS primitives, as defined in the following paragraphs. The
token bucket regulators are similar to those described by Dally and Towles [38] among others, but
coupling the regulators to non-deterministic candidate traffic allows for exploration of “bounded”
adversarial traffic patterns in a manner suitable for formal verification.

The structures within dotted boxes in Fig. 4.8 are xMAS implementations of token bucket regula-
tors. Each regulator comprises a join primitive, a token buffer and a periodic token source. The
buffer has depth σ and is filled with tokens in the initial state (e.g. in BMC), and a token is con-
sumed each time data is injected through the join primitive from the output of stage 1 of the traffic
model. Token source srcρ adds a token to the buffer every ρ th cycle, unless the buffer is already
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full. When a token buffer is empty, no flits can be propagated through the regulator until more
tokens are added.

The token bucket regulators impose the rate constraints on the transition relation of traffic model
T , so every output sequence of T inherently satisfies the regulator constraint. Since at most σ
tokens can accumulate in the buffer, and each injected flit consumes one token, σ constrains the
burst size of traffic through the join. Also, in each regulator, the maximum number of packets
sent through the join in N cycles (after a possible initial burst) is dN

ρ e. In this dissertation the
relation σ < ρ always holds, and therefore the maximum burst size is σ + 1, as at most one new
token is added to the token bucket during the σ cycles when a burst is being sent. The following
paragraphs give three different applications of token buckets, corresponding to the three token
bucket regulators shown in Fig. 4.8.

Basic Regulator: Fig. 4.8a shows a basic token bucket regulator. When the token buffer is empty,
no candidate traffic from stage 1 of the traffic model T can be sent through the join to reach the
output of T . Applying the regulator prevents candidate traffic from being injected at an overly-
adversarial rate.

Conjunction of Regulators: Fig. 4.8b shows multiple regulators applied in sequence. The ith

regulator constrains burstiness and rate of traffic according to parameters σi and ρi. The traffic at
the output of the overall regulator satisfies all of the burstiness and rate constraints of the individual
token buckets. A more detailed discussion of this style of regulator is given in Chapter 5 where it
is used.

Selective Regulator: Fig. 4.8c shows a regulator combined with a switch parameterized by a
switching formula f . This regulator constrains the rate of all flits with data satisfying f . In Chap-
ters 5 and 7, formula f is set to be true for head flits and false otherwise; this allows for the rate
of head flits to be constrained while allowing body and tail flits to flow unimpeded after their head
flits. Otherwise, reservations may be blocked by the regulator for artificially large numbers of
cycles while waiting for tail flits to follow their corresponding head flits.
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Figure 4.8: Traffic Regulators. Within each dotted line is a type of token bucket regulator that receives on
its input channel candidate traffic , and produces on its output channel rate-constrained traffic for injection into a
network. Each regulator constrains the burstiness of traffic using σ parameters, and the average rate of traffic using ρ
parameters. Fig. 4.8a bounds the rate of all flits on a channel. Fig. 4.8b bounds the rate by of all flits on a channel by
conjunction of constraints. Fig. 4.8c bounds the rate of all flits on a channel that satisfy formula f .
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Part II

Scalable Latency Verification
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Compositional reasoning enables scalable model checking of latency properties, and the two chap-
ters in this part of the dissertation present two different approaches for compositional reasoning.
The approach in Chapter 5 reduces both the number of variables and the number of unrollings
by decomposing both the model and the latency bound. The approach in Chapter 6 keeps the
model and property whole, but strengthens the property such that it can be proved inductively, thus
reducing the number of unrollings required, and achieving scalability.
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Chapter 5

Compositional Reasoning using Traffic
Abstraction

This chapter presents an approach to formally analyze latency properties of large NoC designs.
Industrial-scale designs are tackled using an abstraction-based approach, where only the routers
of interest in the network are modeled precisely and the rest of the network is abstracted away as
sources and sinks of traffic. An automatic technique is given for inferring formal traffic models
of sources based on simulation traces from software benchmarks. Experimental results demon-
strate that the inferred models generalize well and demonstrate that the approach can be applied to
industrial-scale models. The significant limitations of this approach as implemented are also given.

5.1 Introduction
Verifying performance (QoS) properties on NoC designs is challenging. This point is illustrated
using the 8×8 mesh of interconnected routers shown in Fig. 5.1a. Each router has connections to a
processing element (shown by bold arrows), and connections to neighboring routers. Consider the
specific router in the mesh labeled R9, and suppose that one wants to verify the property that every
packet traveling through R9 spends no more than 42 cycles within it. One option is to perform
simulations, perhaps derived from software benchmarks. While software-derived testbenches are a
good way to characterize workloads for NoCs, simulations can only prove the presence of perfor-
mance bugs, not their absence. An alternative approach is to use a formal verification method such
as model checking [29]. The property above can be formalized in temporal logic, and the overall
network can be modeled as a synchronous composition of 64 finite-state machines, one for each
router. However, even a simple router has over 1000 state variables, and a model of the entire mesh
has tens of thousands of state variables and is beyond the capacity of current formal verification
tools.

The obvious approach for applying formal methods to this problem is to use abstraction. As
depicted in Fig. 5.1b, one can abstract all nodes in the network other than R9 into an environ-
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Figure 5.1: Challenge of Performance Verification. The goal of this chapter is to verify latency bounds
through individual routers, such as R9. When the entire network is modeled, there are 64 inputs and outputs represent-
ing connections between each router and its associated processing element (which is not depicted in figure). When
modeling a single router and abstracting away the rest of the network, there are five inputs and outputs representing
connections to the router’s single processing element and four neighboring routers.

ment model. The traditional approach to generating an environment abstraction is to liberally
use non-determinism: for example, the environment model can be a state machine that non-
deterministically decides at each cycle whether to send a packet to R9. Such non-deterministic
behavior is often restricted using additional constraints. However, while such modeling is useful
for verifying “logical correctness” properties such as absence of deadlock, as typically used it does
not work well for proving performance properties.

Consider again proving a latency property through router R9. With a completely non-deterministic
environment model that makes no assumptions about typical traffic patterns, it is not possible to
prove a useful latency bound. In the worst case, the environment will inject flits on inputs channels
of R9 in all cycles, and furthermore will configure all packets through R9 to require the same output
port. This unrealistic traffic would only allow overly pessimistic bounds to be proved for R9. The
question is: what sorts of constraints on the environment model would be reasonable?

This chapter presents TITAN, a new abstraction-based approach for performance verification of
NoC designs. TITAN1 leverages the presence of testbenches derived from software benchmarks
by generating formal models of network traffic from simulation traces. The inferred traffic models
are guaranteed to be over-approximations of the simulation traces they are derived from, mean-
ing that they can generate not only the packet sequences in the simulation traces, but also other

1TITAN stands for Trace-Inferred Traffic-Abstractions for Network-on-chip verification
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sequences that have similar traffic characteristics. The generated traffic models have several appli-
cations: (i) they enable the use of formal techniques like model checking to prove QoS properties
of NoCs; (ii) they formalize assumptions about traffic patterns under which QoS guarantees hold;
and (iii) they can be used for diagnosing the cause of poor performance observed on new software
benchmarks. To summarize, the main contributions of this chapter are:

• A technique for inferring traffic models and their associated configuration parameters from
simulation traces (Sec. 5.3)

• Experimental results demonstrating formal verification using the inferred traffic models (Sec. 5.4).
The generated results provide tighter bounds than traditional non-deterministic models with
equal efficiency, but have some limitations (Sec. 5.6). Results are presented for an industrial-
scale NoC design [81] using simulation data derived from PARSEC benchmarks [80], with
verification by UCLID [18], which uses model checking based on SMT solving [4].

The remainder of this chapter is organized as follows: basic terminology and preliminaries are
covered in Sec. 5.2, traffic model inference is presented in Sec. 5.3, experimental results are given
in Sec. 5.4, related work is discussed in Sec. 5.5, and conclusion and discussion of limitations are
in Sec. 5.6.

5.2 Preliminaries

Basic Definitions
In this chapter, a model of an NoC N is a tuple 〈I ,O,C 〉 where

• I is a finite set of input sources;

• O is a finite set of output sinks;

• C is a finite set combinational or sequential of NoC components.

Consider the NoC design of the 8× 8 mesh in Fig. 5.1a. If the entire mesh is used as a network
model N , then I is the set of 64 sources that inject traffic into the network interface port of each
router, and Ois the set of 64 sinks that receive traffic going in the opposite direction; these inputs
and outputs are shown as bold arrows in Fig 5.1a.

However, the entire mesh network is too large to formally verify if represented precisely in the
model. The size of the model is reduced by considering N to be a single router instead of the
entire mesh of 64 routers. A model of each single router in the network is denoted N with no
differentiation because all routers are identical. If the design to verify is the single router R9,
located at position (1,1) in the grid of Fig. 5.1a, then it can be represented by a model N with five
sources and sinks; one source/sink pair is for the network interface port associated with R9, and
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Router Output
Router Input N S E W NI

N X X
S X X
E X X X X
W X X X X
NI X X X X

Table 5.1: Allowed Turns in XY-routing. For a mesh network of routers that use XY-routing, only the
input-output combinations with check marks are possible.

four source/sink pairs are for the channels connecting R9 with neighboring routers. The source and
sink for the network interface are an input and output for the entire network, but the connections
to neighboring routers R1,R8,R10, and R17 are only sources and sinks because the remainder of
the mesh network other than R9 is abstracted away. Analyzing R9 in isolation therefore requires a
model for the behavior of these sources and sinks. This model is the abstract environment model
for R9, as shown in Fig. 5.1b.

Smallest Verifiable Latency Bound
The goal in this work is to verify tight latency bounds of single routers. The timestamp formulation
of Sec. 4.4 is used to check latency bounds as simple safety properties on the router model N .
The latency property to check a bound of B cycles is written in this chapter as φB. As each model
checking call verifies or disproves a single latency bound, a binary search (Algorithm 1) is imple-
mented around the model checking calls to find the tightest provable latency bound. If a bound B
is disproved, then the tightest possible bound can be no smaller than B+ 1; and if a bound B is
verified, then there is no need to check any bounds larger than B−1. At termination of the binary
search there are two checked bounds B−1 and B, such that B−1 is disproved and B is verified.

Algorithm 1: Find largest valid latency bound for router i under inferred traffic model Ti.
1: Bmin← 0 . Smallest bound that is not yet disproved
2: Bmax← 30 . Largest bound that is not yet confirmed valid
3: Bvalid ←−1 . Tightest valid bound
4: while Bmax ≥ Bmin do
5: B′← Bmin + int(Bmax−Bmin)
6: if N ‖Ti � φB′ then
7: Bvalid ← B′

8: Bmax← B′−1
9: else

10: Bmin← B′+1
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5.3 Traffic Model Inference
As noted earlier, NoC designers might wish to optimize their designs for particular kinds of soft-
ware benchmarks from a set of application domains. The PARSEC benchmarks [80] are one such
example. However, it is desirable to optimize the design not just for the specific programs in the
benchmark suite, but for all programs that generate “similar” traffic. This section describes the
form of traffic model used in this chapter, and how such a model is inferred from simulation data.
The model inference problem addressed in this section is, for each router, as follows:

Given a finite set of traffic patterns for the 64 inputs to the mesh network, create for
each router Ri a traffic model Ti that generates traffic for the router’s five inputs that is
a superset of the traffic induced on the same five channels when simulating the patterns
on the mesh network.

The traffic models used in this chapter follow the methodology of Sec. 5.3. For each single router
Ri, a customized traffic model Ti is generated using a three step process.

1. The first step (described in Sec. 5.3) is to define the form of constraints to use in the traffic
model Ti for each router Ri, while leaving the parameters of the traffic model (e.g. for
burstiness and rate constraints) unassigned.

2. The second step (described in Sec. 5.3) is to simulate benchmarks on the entire 64-router
mesh network to propagate the network-level inputs onto all the channels of the network.
Based on the induced traffic at the inputs of each router Ri, constraints are inferred.

3. The third step (described in Sec. 5.3) is to translate the inferred constraints for each router
Ri into the parameters of the traffic model Ti that is used in verification.

Form of Traffic Model
As introduced in Sec. 4.5, traffic models are used for precise modeling of the traffic injected by
sources. A traffic model T precludes injection of ill-formed flits and overly adversarial injection
rates. The traffic models applied in this chapter constrain both the rate and the destinations of
packets. As latency verification is performed on single routers in isolation (Fig. 5.2), a separate
traffic model Ti is used for each router Ri. Because the router has five inputs (N,S,E,W,NI), its
traffic model Ti generates traffic to inject on all five of the inputs. Including the traffic model,
the model checking problem for a property φ on a single router Ri with formal model N is then
N ‖Ti � φ .

For each router Ri, the traffic model Ti imposes the following constraints:

• For each of the five input channels, Boolean constraints restrict the destinations of head flits
to preclude routing paths that cannot occur in a mesh network with XY-routing.
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Figure 5.2: Traffic Model and Router Model to Verify. Router Ri with formal model N has neighbors
abstracted away into traffic model Ti. If Ri is R9, this figure is a more detailed view of Fig. 5.1b. The ingress buffers
each have a depth of 8 slots.

• For each of the five input channels, rate constraints for all traffic crossing the channel and
entering into router Ri.

Boolean constraints restrict the destinations of injected traffic on each of the five input channels.
The Boolean constraints in the traffic models of this chapter serve to impose network-level routing
onto individual channels. The CMP router in this work uses deterministic XY-routing, meaning
that a packet with destination x,y in the mesh is first routed horizontally until reaching column y,
and then routed vertically to reach its destination at x,y. From the perspective of a single router, XY
routing leads to restrictions on the destinations that packets of a channel can have. For example,
packets entering a router on north or south inputs must not exit on east or west outputs, as this
would imply that vertical routing occurred before horizontal. The allowed combinations of input
and output ports in XY-routing are shown in Tab. 5.1. In the traffic model, the Boolean constraints
are implemented using the non-deterministic choice methodology from in Sec. 4.5, so that a source
can only inject packets with destinations that are consistent with XY-routing.

The motivation for rate constraints is to avoid unrealistic over-injection of traffic. If simulations
never show a case where flits cross a channel in every cycle, then verification allowing this behavior
will be unnecessarily pessimistic. To prove tight bounds, traffic rates must be precisely constrained.
The form of rate constraints used are burstiness and average rate.

Now that the form of the traffic models is specified, the next step is to infer the values to customize
the traffic model for each router.

Inferring Traffic Model Parameters from RTL Simulations
The concrete traces used for traffic model inference are generated from RTL simulation of the
entire mesh network. The inputs patterns to the simulation come from the PARSEC benchmarks.
The PARSEC benchmarks are too large to simulate exhaustively, so random sampling is used.
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During RTL simulation, for each channel in the network, all the traffic to cross the channel is
logged to a file. An example of a trace from a log file is shown in Tab. 5.2.

Rate constraints are inferred through finding the maximum packet density for different sized time
windows in the simulation trace. For a single channel, the following example demonstrates how
to maximum packet density constraints are inferred for a single input channel to a router. As-
sume that for this channel, the RTL simulation trace shows packets crossing the channel on cy-
cles 2,6,23,29,42,50 (Tab. 5.2). For each non-dominated time window duration t, the maximum
number of packets to cross the channel is y(t). Therefore, y(t) is the maximum packet density
constraints for the trace. Since the constraint will be applied in (at most) a 30 cycle symbolic
simulation in this case, any constraints with a time window exceeding 30 cycles can be neglected
since they will not disallow any behaviors in a 30 cycle simulation that are not already disallowed
by one or more other constraints.

cycle 2 3 4 . . . 6 7 8 . . . 23 24 25 . . . 29 30 31 . . . 42 43 44 . . . 50 51 52
p H13 B T H2 B T H33 B T H37 B T H15 B T H72 B T

Table 5.2: Example of a Simulation Trace. Example of a concrete traffic trace across a channel. This trace
is an example of what would be induced by some patterns applied at the 64 inputs of the mesh network. The subscript
of each head flit shows the packet’s destination.

t y(t) Time of Occurrence in Trace
1 1 2-3, 6-7, 23-24, 29-30, 42-43, 50-51
5 2 2-7

20 3 23-43
28 4 23-51
45 5 6-51
49 6 2-51

Table 5.3: Maximum Packet Density Constraints. Packet density constraints inferred from sim-
ulation trace in Tab. 5.2. The rate constraints for this channel are represented by the vector of pairs
[(1,1),(5,2),(20,3),(28,4),(45,5),(49,6)].

Creating Traffic Model from Constraints
Once the maximum packet density constraints are inferred for each channel of each router, the
next step is to translate these into the traffic models that are suitable for verification. The Boolean
destination constraints are implemented using non-deterministic choice. The rate constraints are
implemented using regulators. The steps given here are for implementing the rate constraints of a
single input channel to a single router.
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1. The starting point is the inferred rate constraints for the channel from RTL simulation. More
precisely, the starting point is a vector of pairs (t,y(t)), where t is the shortest time during
which y(t) packets cross the channel. Consider the maximum packet density constraints in
Tab. 5.3, that were derived from the trace in Tab. 5.2. In Fig. 5.3b, these points are denoted
by the symbol ’+’, and y(t) is considered to be the function that interpolates between these
points with straight line segments.

2. Next, a set of (σ ,ρ) regulators are inferred. Each is conservative with respect to y(t). As
described in Sec. 4.5, each regulator constrains and maximum burst size using parameter σ ,
and average rate using parameter ρ . Letting B be the largest number of packets observed
within a time window size that is equal to the symbolic simulation depth (e.g. 30), the
parameters for each regulator i = 1 . . .B are chosen by first assigning burst size (σi) to i, and
then choosing the maximum ρi such that the regulator (σi,ρi) yields a function ŷ(t) which
bounds y(t). The final regulator is always (B,∞), since a burst size of B is conservative with
respect to any 30 cycle symbolic simulation without ever replenishing the token bucket.

3. The rate constraint for the channel is then modeled by the conjunction of all learned token
bucket constraints as shown in Fig. 5.3a.

The regulators generated in the above steps are (1,5), (2,14),(3,28), and (4,∞) for the constraints
in Tab. 5.3. The mechanism to implement this channel’s traffic model is shown in Fig. 5.3a. The
constraint imposed by each token bucket regulator individually, and the constraint imposed by the
conjunction of all regulators is shown in Fig. 5.3b. Each regulator in Fig. 5.3b is shown in the
figure as the continuous function ŷ(t) =

(
σ + t

ρ

)
; note that the exact constraint imposed by the

regulator is actually a step function through the same points, with each step corresponding to a
token being added to the regulator’s queue. All traffic patterns that fall below the line are modeled
by our regulator, and those above it (e.g. sending 3 packets within 5 cycles) are not.

5.4 Experimental Results
TITAN is evaluated on selected routers from the 8× 8 mesh, where each router has five input ports
and five output ports [81]. Each input port has a single buffer with a depth of 8 slots. The traffic
injected into the network during RTL simulation is generated from architectural simulation [96] of
the PARSEC benchmark suite [80]. The architectural simulation traces are provided at the packet-
level; for RTL simulation, each packet is assumed to be a single head, body, and tail flit injected
on the same cycle. RTL simulation is performed using Icarus Verilog.

Convergence of Traffic Model Inference
Each trace of architectural simulation of the PARSEC benchmarks contains hundreds of thousands
of packets injected over a span of millions of cycles, making exhaustive RTL simulation a costly
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Figure 5.3: Rate Constraints Imposed by Regulator The modeling element in (a) implements inferred
rate constraints. The switching function f routes all head packets to the upper switch output, and body and tail packets
to the lower switch output. This constrains the rate of head flits while allowing body and tail flits to follow without
regulation. The constraints imposed by each of the four token buckets in (a) are plotted in (b). All constraints are
conservative with respect to all parts of the simulation trace. The dotted black line is the overall constraint enforced
by the mechanism in (a).

proposition. Instead of exhaustive simulation, TITAN infers formal models from RTL simulation
of a small, random subset of the traces. For each router, 5 constraints are inferred. As explained in
Sec. 5.3, the constraints are on the rate of each of the five sources.

The TITAN models are inferred from 500 RTL simulations, where each simulation is a randomly
chosen sample of 5000 cycles from a randomly chosen PARSEC benchmark. It is then evaluated
whether the traffic models inferred from the first i− 1 traces remain valid for the ith trace; i.e.,
whether the ith trace could be generated by the models inferred from the first i−1 traces. Fig. 5.4
shows the fraction of all models that are valid for the first i−1 simulations and violated by the ith

simulation. As the number of simulations performed approaches 500, the vast majority of inferred
models remain valid with respect to further RTL simulations. This gives some confidence that
the models are largely representative of those that might be inferred from RTL simulation of the
exhaustive set of traces.

Latency Verification using Inferred Models
Latency verification experiments show that tighter bounds can be proved by using inferred traffic
models instead of fully non-deterministic inputs. To verify a latency property on a router Ri with
formal model N , using an inferred traffic model Ti, the overall model is as shown in Fig. 5.2; all
five input channels of the router are replaced by a bounded non-deterministic traffic model, and all
five output channels are replaced by eager sinks. A latency bound of B cycles is checking using
property φB. The router model N is symbolically simulated for 20 or 30 cycles (depending on the
solver used), and the validity of formula N ‖Ti � φB is checked for various values of B. A result



50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500

F
ra

c
ti

o
n

 o
f 

M
o

d
e
ls

 V
io

la
te

d

 Number of Simulations Performed 

Figure 5.4: Convergence of Inferred Traffic Models. Traffic models inferred from hundreds of RTL
simulations tend to be valid with respect to further simulations.

of valid means that it is not possible to exceed latency bound B while also conforming to the traffic
model Ti. The minimum verifiable bound is found using iterated SMT solving to check different
values of B (Algorithm 1). Experiments are performed to find the tightest provable latency bounds
for the routers along a diagonal of the 8× 8 mesh. Two different solvers are used; the first is
UCLID, and the second is Boolector [16].

Using UCLID for Symbolic Simulation and SMT-solving

Table 5.4 shows the tightest proved latency bound in a 20 cycle symbolic simulation for each
router along a diagonal of the 8× 8 mesh, as well as a single router with fully non-deterministic
traffic inputs. The total runtimes for each router are given, and broken down into the runtimes
for symbolic simulation, decision procedure encoding, and SAT-solving using MiniSat v2 [43].
The first router in the table is the one using fully non-deterministic inputs, and for this router a
latency bound of 15 cycles is disproved with a counterexample, while a bound of 16 cycles is
proved2. With traffic models, the proved latency bounds for some routers are smaller than the
16 cycle bound obtained with fully non-deterministic inputs. For example, on the routers at the
corners of the network (i.e. R0 at position 0,0 and R63 at position 7,7) a latency bound of 13
cycles is proved. The tighter bound exists on the corner routers because two the five input channels
are unused and inject no traffic; this is reflected in the rate constraints of traffic models T0 and
T63. For some other routers in the network (i.e. R18 and R36), the inferred traffic models are too
conservative to successfully verify any latency bounds that are tighter than what is achieved with
fully non-deterministic traffic.

2In the case of latency verification with fully non-deterministic traffic, the model checking call to check a latency
bound of B is N � φB, instead of N ‖Ti � φB as would be used with a traffic model Ti.
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i Pos
Runtimes in Seconds Min.

Symb.
Sim.

Dec. Proc.
Encod.

SAT
Solv.

Total
Latency
Proved

non-det 19 174 1399 1592 16
0 0,0 16 134 806 957 13
9 1,1 23 243 3412 3678 15

18 2,2 27 289 1712 2028 16
27 3,3 22 215 3319 3555 15
36 4,4 29 289 2292 2610 16
45 5,5 23 241 3604 3868 15
54 6,6 22 217 4386 4625 15
63 7,7 18 134 672 824 13

Table 5.4: Proving Latency Bounds using TITAN Models with UCLID. Results are for a 20 cycle
BMC, for a router with fully non-deterministic traffic, and for 8 routers using inferred TITAN traffic models from an
8×8 mesh (Fig. 5.1). The runtime is broken down into symbolic simulation, UCLID’s decision procedure encoding,
and SAT solving. The final column gives the tightest latency bound that can be proved. In some cases, TITAN models
lead to tighter provable bounds than those achieved with non-deterministic inputs.

Verification using a Strengthened Traffic Model

In 20-cycle BMC, the verified bounds using inferred traffic models are only slightly smaller than
the 16 cycle bound obtained using fully non-deterministic traffic (Tab. 5.4). Two changes are made
in an attempt to obtain better results: the BMC depth is increased to 30; and additional constraints
are added for a more precise traffic model. To facilitate the increase in BMC depth, the SMT
solver used is changed from UCLID to Boolector version 1.4.1 [16]. This change circumvents
the decision procedure encoding and SAT-solving that were the runtime bottlenecks with UCLID
(Tab. 5.4). In this modified experiment methodology, UCLID performs the 30-cycle symbolic
simulation, and then outputs the SMT problem in SMT-LIB format for solving with Boolector.

Strengthening Traffic Model with Aggregate Constraint: The traffic model Ti of each router
Ri is augmented with rate constraints on the aggregate sum of all traffic entering Ri across the five
input channels. This prevents all five inputs from sending their maximum bursts at the same time,
by enforcing that the aggregate burstiness does not exceed what is observed in RTL simulation
of the 8× 8 mesh. Just as with single-channel regulators in Sec. 5.3, aggregate regulators are
parameterized by σ and ρ terms inferred from simulation traces. However, aggregate regulators
are implemented differently than the standard token bucket regulators. Instead of a token bucket
that imposes the rate constraint on the transition relation of traffic model Ti (Fig. 4.8), the aggregate
regulator constraints are implemented as a logical property T agg

i . Property T agg
i is checked using

counters that saturate at σ , are incremented once every ρ cycles, and decremented in each cycle by
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i Pos

Standard Model Strengthened Model Strengthened vs. Standard
Ti Ti and T agg

i
Runtime Latency Runtime Latency Runtime Latency

[seconds] [cycles] [seconds] [cycles] [% change] [% change]
non-det 1621 25 1621 25 - -
0 0,0 2160 18 3083 15 +42.7% -16.7%
9 1,1 7626 23 17454 20 +128.9% -13.0%

18 2,2 5413 24 4444 24 -17.9% 0.0%
27 3,3 12060 24 16014 23 +32.8% -4.2%
36 4,4 2851 25 4880 24 +71.2% -4.0%
45 5,5 5848 24 18555 20 +217.3% -16.7%
54 6,6 6486 24 9927 23 +53.1% -4.2%
63 7,7 3372 17 4468 14 +32.5% -17.6%

Table 5.5: Proving latency bounds using TITAN models and 30-cycle BMC. Standard model uses
only the single channel regulators for each of a routers five input channels, while the strengthened model adds the
aggregate rate constraint across all five channels. The row marked non-det is a fully non-deterministic traffic model
(i.e. unconstrained), and is repeated in both columns only for comparison against the other routers. The final two
columns compare solver runtime and proved bound across the two traffic models. The SMT solver used is Boolector
1.4.1 [16].

the number of head flits3 sent from Ti to N across the five input channels of Ri. Property T agg
i

is true if the counter values are always non-negative, as a negative count is analogous to a packet
being injected when a token bucket is empty. The model checking problem for a property φ on
router Ri with aggregate rate constraints is then Eq. 5.1.

N ‖Ti � T agg
i =⇒ φ (5.1)

Evaluating Impact of Aggregate Constraint: Table 5.5 shows the tightest verified bounds for
each router in a 30-cycle BMC using two different traffic models. The first, denoted “standard
model”, is the same traffic model Ti used in Tab. 5.4, while the second, denoted “strengthened
model”, is the standard traffic model augmented by the aggregate traffic constraint T agg

i . The
strengthened traffic model increases the runtime and decreases the proved bound for all routers
except R18 at position (2,2); in R18 the strengthened traffic model (i.e. T18 and T agg

18 ) proved the
same bound in less runtime.

Relative Difficulty of Checking Different Bounds with SMT

Recall that the tightest verifiable latency bound is discovered by iterated model checking of dif-
ferent bounds within an overall binary search loop (Algorithm 1), and that property φB checks the

3The fact that the count is decremented by the number of head flits in each cycle is the reason why the aggregate
regulator is implemented as a logical property and not as a token bucket. If implemented as a token bucket, it would
not be possible to drain two tokens from the bucket during cycles when two head flits are injected into the router.
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validity of a latency bound of B cycles. Using the router R18 at position (2,2) and the standard traf-
fic model T18, an exhaustive check of all bounds is performed by individually checking properties
φ1,φ2, . . . ,φ29, and the results are shown in Fig. 5.5. It is observed that the solver runtime is lower
whenever verifying a bound that is much larger than the tightest verifiable bound, or much smaller
than the largest disprovable bound. The runtimes grow largest as the checked bound approaches
the true bound from either side, as the problem then becomes harder for the SMT solver to decide.
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Figure 5.5: SMT Solver Runtime versus Checked Latency Bound. SMT solver runtime versus
checked latency bound for router R18 at position (2,2) in the 8×8 mesh (Fig. 5.1). The SMT problem is more difficult
for the solver to decide when the checked bound is close to the true worst-case bound. The SMT solver used is
Boolector 1.4.1 [16], and the SMT problem is created from a 30-cycle symbolic simulation using UCLID.

5.5 Related Work
NoC designs can be modeled in various ways for latency verification. Synchronous dataflow (SDF)
graphs [64] are suited to modeling networks with regular traffic such as multimedia applications.
Network calculus is suited to reasoning about bursty traffic, as in the Internet. Statistical models
are suited to average-case analysis. There is much crossover between the approaches.

SDF: While several efforts have used SDF to model NoCs (e.g. [85]), such modeling is limited
to only a subset of NoCs. Assumptions of periodic sources and data-independent routing make
SDFs well-suited to modeling multimedia NoCs, but not for general-purpose chip multiprocessor
(CMP) NoCs. In a CMP, the injected traffic at each node can vary in burst size, have irregular
periods, and choose destinations non-uniformly over time. Additionally, due to the lack of support
for conditionals, SDFs are not expressive enough to model NoC designs with detailed routing and
arbitrary logic.

Network Calculus: The analysis of general-purpose CMPs is typically based on simulation or
probabilistic reasoning. Cruz [31, 32] presented network calculus as an efficient way to compute
delay bounds in a FIFO network with sources satisfying burstiness constraints. Stochastic automata
networks (SAN) [83] have also been used to model network traffic in SoCs [68]. While SANs allow
for efficient reasoning about average case results, they are not suitable for worst-case analysis,
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as is addressed in this chapter. Addressing limitations in the probabilistic analysis of stochastic
models, adversarial queuing theory has been proposed [11]. Networks with arbitrary aggregate
multiplexing may not satisfy the global FIFO property that is a precondition for tight bounds in
network calculus [91].

Statistical modeling: Various statistical traffic models have been used to characterize network
traffic. Varatkar and Marculescu [100] show that NoC traffic for a multimedia application is tem-
porally self-similar, and characterize it using a Hurst parameter. Soteriou et al. [96] model traffic
flow as a 3-tuple consisting of a Hurst parameter and parameters for hop distance and spatial injec-
tion distribution. However, these statistical models are not a formal and conservative representation
of the underlying traffic, and it has been reported that designing according to such models can be
misleading [55].

Formal Methods: The abstraction of a latency-insensitive system [20] has been explored as a
verification aid. A latency-insensitive system assumes only that component delays are multiples
of a shared clock, and can be functionally verified independent of the component delays. This
abstraction is a useful way for propagating global invariants that can greatly speed up RTL model
checking of functional properties of networks [22], and can make certain properties inductive [21].
However, such formal modeling has not previously been demonstrated to be useful for performance
(QoS) properties.

5.6 Conclusion and Discussion
The chapter proposes a new formalism to model traffic in an NoC design. An automatic technique
is given to infer the traffic model parameters using simulation traces derived from software bench-
marks. Experimental results demonstrate that this abstraction-based approach can verify latency
bounds for routers in an industrial-scale 8× 8 mesh design. Apart from the application to formal
verification, it would be interesting to explore other applications of the proposed model such as
performance diagnosis.

BMC Depth and Completeness
In this chapter, all verification is performed using BMC. The deepest BMC performed is 30 cycles.
The 30 cycle BMC depth appears to be too small to prove results, but there is reason for optimism
regarding the results that might be obtained from a deeper BMC.

The Need for a Deeper BMC

Aside from special cases where a completeness threshold is reached [27], BMC is well-known to be
an incomplete verification engine. This means that a latency bound that cannot be disproved within
30 cycles of the initial state may be disproved during later cycles. Due to the manner in which
latency is verified in this work, it is not possible to disprove any bounds greater than 29 within
a 30 cycle BMC; this would hold even if a network was deadlocked and the true latency bound
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was infinite. If the proved latency bound is (suspiciously) close to the BMC depth, it is reasonable
to guess that the BMC depth is the limiting factor in what latency bounds can be disproved, and
that the verified latency bounds are not true bounds. Many of the latency bounds in Tab. 5.4 and
Tab. 5.5 are close to the BMC depth and therefore might be disproved with a deeper BMC.

Optimism Regarding a Deeper BMC

While BMC depth is currently limited by tools and the size of the models being verified, the
inferred traffic models will become less pessimistic as the BMC depth increases. Recall that the
traffic models must be conservative with respect to all of the worst-case behaviors that can occur
within the symbolic simulation depth. So for a 30 cycle BMC, the inferred traffic model of a
channel must be conservative with respect to the maximum number of packets to cross the channel
within any 30 cycle window of RTL simulation. If the BMC depth was increased to 60 cycles, then
clearly the traffic model of the channel would need to allow more injected packets, but the number
of injected packets in any 60 cycle window is always less than (or equal to) twice the maximum
number injected in 30 cycles. In this way, the average injection rate allowed by the traffic model
becomes less adversarial as BMC depth is increased.

Limitations of Proposed Approach
The TITAN method presented in this chapter is viewed as a first step toward formal traffic model-
ing. The key idea is to create a formal model of traffic to serve as an interface specification that is
less pessimistic than fully non-deterministic traffic assumptions. While the given procedure for de-
riving traffic model parameters from simulation is a novel contribution, there are some limitations
in how such traffic models could be applied.

Open Question about Applicability of Approach

Fig. 5.4 shows that the inferred traffic models in TITAN generalize well with respect to simula-
tion traces, but there remains a valid concern about whether the inferred models are conservative
with respect to future traffic patterns. Although network calculus may suffice in special cases,
this dissertation does not give any general approach for determining whether inferred models are
representative of the traffic generated by new software benchmarks without first simulating them.
As simulating a benchmark reveals a latency bound for the exact pattern in the benchmark, this
might be viewed as obviating the need for formal latency verification using generalized models.
However, the latency bounds obtained by simulation alone are less general than the bounds verified
using the inferred model.

The significant contribution of this chapter is the notion that traffic models can serve as interface
specifications for decomposing network models when performing latency verification. This con-
tribution is considered only a first step toward model decomposition. Further applications are left
as open questions.
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Relaxing the Eager Sink Assumption

As mentioned in Sec. 5.4, when performing analysis on a single router, the environment model that
represents the rest of the network acts as an eager sink of traffic. This eager sink assumption is akin
to assuming that neighboring routers never present backpressure to the router being verified. This
assumption is optimistic and will likely not hold in practice, as significant backpressure occurs
during times of high congestion. It is theoretically possible to use a sink model that is conservative
with respect to the backpressure observed in simulation, but as the following example illustrates,
this requires a very large BMC depth.

Theory: Consider two routers: R9 and its north neighbor R17. Fig. 5.1a shows that traffic exiting
the north output of R9 enters the ingress buffer of the south input channel of R17. If the south
channel ingress buffer of R17 is full, then it is unready to receive traffic and asserts backpressure.
It is possible to measure during simulation the maximum number of consecutive cycles for which
the ingress buffer is full; let this number be x. When router R9 is then analyzed in isolation, the
channel to abstracted router R17 can then be received in the abstract environment model by a sink
satisfying bounded liveness; this sink can block traffic but must always accept waiting flits within
x cycles. This notion of bounded-liveness on sinks is used extensively in Chapter 6.

Practice: The smallest modification to an eager sink would be a sink that accepts waiting traffic
after at most 1 cycle. At a minimum, this causes a doubling of the worst-case latency through each
router; but given that nearly all latency bounds proved in this work are already greater than 50%
of the BMC depth, it is not possible to verify any meaningful bounds without increasing the BMC
depth beyond the current capacity of the tools used.

Lessons From this Chapter that Shaped Chapter 6
A variety of significant challenges were uncovered while developing the work presented in this
chapter. As explained, some of these challenges were not successfully addressed. The following
list gives an overview of how the lessons learned in this chapter’s work shaped the subsequent
compositional approach presented in Chapter 6:

• Given that in most cases latency bounds verified using traffic models are only marginally
smaller than those verified using fully-nondeterministic traffic, Chapter 6 eschews rate-
constrained traffic models and instead allows injections with arbitrary rate.

• The bounded liveness model suggested here for traffic sinks is adopted in Chapter 6.

• The compositional reasoning approach in this chapter can be viewed as decomposing both
the end-to-end latency bound property and the network model. The bound is decomposed
into individual router bounds, and the model is decomposed into individual router models.
The decomposition of the model proved challenging because neighboring routers are very
much intertwined by the traffic and blocking between them. The approach of Chapter 6
avoids decomposing the model.
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• As a corollary of not decomposing the model, the examples considered in Chapter 6 are
significantly smaller than the 64-router mesh that motivated this chapter. The largest example
there (an 8-agent ring interconnect) has a size, in number of state variables, that is roughly
equal to a single five input router from this chapter.

• To achieve greater scalability, the next chapter uses a higher level of abstraction in represent-
ing communication, with xMAS data representing entire packets instead of the individual
flits of a packet.

• The incompleteness of BMC proved problematic (Sec. 5.6), so Chapter 6 instead focuses
on proving latency properties using complete verification methods such as induction and
property directed reachability (PDR).
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Chapter 6

Compositional Proofs using Induction

This chapter presents a compositional approach to formally verify latency properties of NoC de-
signs. A major challenge to scalability is the need to verify latency bounds for hundreds to thou-
sands of cycles, which are beyond the capacity of state-of-the-art model checkers. The challenge
is addressed in this chapter using a compositional model checking approach in which the overall
latency bound problem is strengthened with a number of smaller sub-problems, termed latency
lemmas. The sub-problems strengthen the overall latency bound property, but are easier to prove
on account of being inductive. A method is presented for computing these lemmas based on the
topology of the network and a subset of relevant state, and verification using latency lemmas is
performed using both k-induction and the IC3/PDR model checking engines. The effectiveness of
this compositional technique is demonstrated on illustrative examples and a ring interconnection
network motivated by an industrial design. In the ring network, a latency bound that cannot be ver-
ified in 10,000 seconds without lemmas is proved inductively in just 75 seconds when the lemmas
are used.

6.1 Introduction
High-level modeling of NoCs [22, 21, 24, 23] and automatic abstraction [50] help to hide un-
necessary details, easing the way for formal analysis. Even so, verifying QoS properties can be
challenging for industrial NoC designs, both due to the scale of the design and the property to be
verified. Consider for instance the problem of proving an upper bound on the latency of sending a
packet from one node in the network to another. In principle, this property can be expressed in lin-
ear temporal logic (LTL), and the problem can be solved using model checking. The LTL property
expresses a bounded liveness property, written in English as “every packet from source A gets to
its destination B within N cycles.” Bounded liveness can be encoded as a safety assertion where
one adds some extra logic to track the progress of time. One can use state-of-the-art model check-
ing strategies such as k-induction [94], interpolation [71], and IC3/property-directed reachability
(PDR) [12, 42] to verify this property. However, regardless of the strategy, it is generally necessary
to analyze at least N consecutive cycles to either prove or disprove the latency bound, assuming
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that N is tight. Typical latency bounds for NoCs can be in hundreds or thousands of clock cycles,
and unrolling of model transition relation to such depth is beyond the capacity of state-of-the-art
model checking engines. Property-directed reachability [12, 42], while avoiding explicit unrolling
of the transition relation, still does not scale past tens of clock cycles, as will be shown in Sec. 6.6
and Sec. 6.7.

This chapter addresses the scalability challenge using a tried-and-tested approach in formal ver-
ification: compositional reasoning. In compositional reasoning, one breaks up the overall proof
obligation (proving a latency bound of N cycles) into a number of “smaller” proof sub-goals, which
are much easier to verify, such that if all of the sub-goals are proved, then so is the original prop-
erty. The key is to devise a decomposition that is well-suited to the verification task at hand. A
natural approach for latency bounds is to first prove smaller bounds on a packet’s progress through
the network; e.g., how much time does it spend along a particular subpath, etc. These proof sub-
goals are termed latency lemmas. Methods to discover and apply them are the core contributions
of this work in this chapter.

Specifically, this chapter shows that for some common network topologies, one can enumerate
finitely many stages that a packet can go through. Each location in the network belongs to at
least one stage at every time moment. Stages are arranged into a directed, acyclic stage graph, to
capture the order in which they can be visited by a packet. A stage graph is defined through the
use age lemmas that bound the total time between when a packet is injected into the network and
when it exits each stage. The age lemmas are in turn created through the use of progress lemmas,
which bound the number of cycles that a packet can spend in each stage. Age lemmas and progress
lemmas are collectively referred to as latency lemmas, and by proving the latency lemmas one
proves bounds corresponding to all paths through the network.

To summarize, the approach presented in this chapter makes the following novel contributions:

• A compositional approach to proving NoC latency bound properties by decomposition using
latency lemmas.

• Methods of formulating latency lemmas for xMAS models using a stage graph.

• A method for encoding packet ages that is tailored for inductive latency verification, and
experimental results demonstrating its efficacy.

• Experimental results on illustrative examples showing that the use of latency lemmas can re-
duce by 20-50x the runtime for inductively verifying latency bounds, and causes k-induction
to verify latency bounds 4-10x faster than can be achieved with the state-of-the-art IC3/PDR
technique using all of the same strengthenings. Furthermore, it is demonstrated that verifi-
cation runtime can be traded off against tightness of proved latency bounds.

• Experimental results on an industrial-style ring interconnection network showing that latency
lemmas give a speedup of greater than 50x, and in all cases allow latency bounds to be proved
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inductively with a small induction depth. For an 8-agent ring, latency is verified using k-
induction in 75 seconds with latency lemmas, and cannot be verified in 10,000 seconds
without them.

The rest of this chapter is organized as follows. Sec. 6.2 introduces basic terminology and sketches
the latency lemma approach using a simple example. Sec. 6.3 presents notation. Sec. 6.4 describes
the approach in detail, including rules for creating the stage graph. Sec. 6.5 presents methodology
used to evaluate the approach, and demonstrates efficient encoding of packet ages. Results for
illustrative examples are presented in Sec. 6.6, and for the ring network in Sec. 6.7. Related work
is given in Sec. 6.8, and conclusions are in Sec. 6.9.

6.2 Preliminaries
As introduced in Chapter 4, NoC designs are described using a high-level modeling formalism
called executable micro-architectural specifications (xMAS models) [22]. Recall that xMAS mod-
els are compositions of simple primitives (Fig. 4.2), communicating data over channels (Fig. 4.1).
In this chapter, the information that is communicated over a channel c represents either packets,
where c.data encodes various properties of the packet such as destination address and timing in-
formation (similar to Tab. 4.1), or else tokens where c.data is null.

As described in Section 4.1, a transfer from initiator to target occurs whenever the channel signals
c.irdy and c.trdy are both asserted during the same cycle. A channel c is said to be blocked (by
the target) when c.irdy is asserted and c.trdy is not. A channel c obeys a liveness bound x if
the temporal logic formula G

(
c.irdy =⇒ F≤x c.trdy

)
holds, where G is the temporal operator

“Globally” and F is “Eventually”. In other words, x is the largest number of consecutive blocked
cycles on channel c; a liveness bound of x = 0 means that a channel never blocks. Recall that
transfer attempts are persistent (Eq. 4.1), meaning that if a transfer is blocked on a channel c,
c.irdy remains asserted until the block is resolved and the eventual transfer occurs [48].

An xMAS NoC model N is a composition of the kernel primitives described in Sec. 4.1, with each
primitive implemented as combinational logic or a finite state machine. The network has an initial
state in which token queues are full and packet queues are empty. Each packet queue comprises
one or more queue slots, and every packet queue slot in the network model N is indexed by a
unique identifier i.

Modeling Conventions in this Chapter
While the methodologies of Chapters 5 and 7 are almost identical but used to solve two differ-
ent problems, the methodology in this chapter has some significant differences. For clarity, the
differences are highlighted here.

• This chapter uses bit level model checking. Instead of describing xMAS network models in
the UCLID modeling language, the models are described using Verilog, and then converted
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to And Inverter Graphs (AIGs) for verification using the SAT-based model checking tool
ABC. For models comprising bit-vector state variables, the translation is straightforward.
The only significant difference is that UCLID variables can be assigned non-deterministic
values, whereas non-determinism is created in Verilog by assigning non-deterministic state
variables from primary inputs that can take any values.

• The data values carried on (non-token) channels represent entire packets. This differs from
the convention used in Chapters 5 and 7, where data represents individual flits of a packet.

• Traffic injection rates from sources in this chapter are unconstrained.

Sketch of Latency Lemmas
The approach of this chapter, described in more detail in Sec 6.4, adds two kinds of latency lemmas,
termed progress lemmas and age lemmas. An informal sketch is given here to show how each type
of lemma is derived and applied, using a credit loop as an illustrative example.

Description of Credit Loop

The credit loop model in Fig. 6.1, adapted from work by Chatterjee et al. [21], implements credited
flow of packets from a master agent to a target agent. Credited flow control is similar to the use
of token bucket regulators, except that new tokens are not generated periodically, but are instead
generated upon completion of processing some prior packet. The network has three queues: “avail-
able tokens” in the master, and “outstanding credits” and “ingress” in the target. The ingress queue
stores packets, and the other two store tokens. The master’s source non-deterministically injects
packets on channel a. Injected packets consume one available token when propagating through
the join and onward to the ingress. Packets stored in the ingress can be consumed only if there
are outstanding credits, and if so the data sink on channel d cannot block progress for more than 5
cycles. Whenever the data sink consumes a packet from the ingress, an outstanding credit is also
consumed by the token sink. The token source simultaneously adds tokens to both the available
tokens and outstanding credits queue in every cycle when both have free space.

Progress Lemmas – Bounds on Time to Make Progress

The first step toward proving an end-to-end latency bound for the credit loop is to compute a
conservative upper bound on how long a packet might wait to advance once it is inside the ingress
queue. When computing this bound it can be assumed that the ingress queue holds at least one data
packet (i.e. n1 6= 0) and this is used a starting point to reason about different conditions for the rest
of the network state.

(a) If a token is in the outstanding credits queue, then signal d.irdy is asserted and the data sink
may at any time consume a packet from the ingress while the token sink consumes an out-
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Figure 6.1: Credit Loop Model N with Stage Graph G . The dashed arrows show the automatically-
derived correspondence between queue slots in N and stages in G . Channels in N that are drawn using bold lines
carry packets and the remainder carry tokens. The ni associated with each queue is the variable representing the
number of items stored in it. The first number above each stage in G is an upper bound on the time spent in the stage,
and the second (in parenthesis) is an upper bound on the age of a packet in the stage.

standing credit. The liveness bound of the data sink limits it to 5 cycles of blocking, so c.trdy
occurs within 5 cycles from states satisfying n2 6= 0.

(b) If the outstanding credits queue is empty, and available tokens queue is not full, then the token
source will add an outstanding credit, causing d.irdy to be asserted in the next cycle. The sink
can only block for 5 cycles once d.irdy is asserted, so in the worst case c.trdy will occur within
6 cycles from states satisfying n2 = 0∧n0 6= 2.

(c) If the outstanding credits queue is empty, and the available tokens queue is full, then no token
can ever be injected into the outstanding credits queue, and the packet in the ingress will never
advance.

It is then hypothesized that every reachable network state with an ingress packet awaiting progress
will satisfy either (a) or (b) described above. This hypothesis is formalized as the candidate induc-
tive invariant θc,STAT E (given by Eq. 6.1 for the credit loop). If θc,STAT E is valid, and all reasoning
is sound, a packet in the ingress should always make progress in, at-worst, the 6th future cycle (de-
noted by δabs = 6 in Fig. 6.1), and property θc,T IMING (Eq. 6.2) explicitly checks this on channel
c.
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Properties θc,STAT E and θc,T IMING are collectively called progress lemmas. The progress lem-
mas are conservative and generally over-approximate reachable state. As will be shown later (by
Eq. 6.35 in Sec. 6.6), the condition (n2 = 0) is unsatisfiable when the ingress contains packets, so
condition (b) from the above discussion is unachievable.

θc,STAT E := c.irdy =⇒ (n2 6= 0)∨ (n2 = 0∧n0 6= 2) (6.1)

θc,T IMING := c.irdy =⇒ F≤6c.trdy (6.2)

Age Lemmas – Bounds on Time Since Injection

If packets visit queue slots in a known order, and the progress lemmas provide a way to bound
the time spent at each slot, then it becomes possible to compute a bound on the total propagation
delay through the network. The credit loop has an obvious ordering among queue slots, as a packet
injected from the data source first occupies the tail of the ingress (or bypasses it), then the head
of the ingress, then reaches the sink. The progress lemmas assert that channel c will transfer any
waiting packet in the 6th future cycle in the worst case. This means that a packet will advance
every 7 cycles. If a packet cannot spend more than 7 cycles in either ingress slot, an age bound of
8 cycles is implied for the ingress tail slot, and 15 cycles for the ingress head slot; we call these
specialized bounds age lemmas, and formulate them using a stage graph as shown at the top of
Fig. 6.1.

It is clear that the total latency is bounded by 15 if the age lemmas can be proved, yet including the
latency lemmas makes the 15 cycle bound compositional and easier to verify using k-induction.
Proving the 15 cycle latency bound requires an induction depth of 13 frames without latency lem-
mas, versus just 8 frames with them; the reduced induction depth translates to a 2x speedup in this
illustrative example. In general, the induction depth required to prove a latency bound property
without the lemmas is proportional to the total latency, while induction depth to prove the same
bound using lemmas is proportional to the time for a packet to make progress. The speedup from
using latency lemmas is therefore more pronounced when proving large latency bounds, as will be
shown in Sec. 6.6 and 6.7.

6.3 Formalism
As sketched in the previous section, a set of conjectured latency lemmas makes it possible to
efficiently verify a bound on the end-to-end latency from any packet source in the network to any
packet sink. The model being verified is an xMAS model N . Every queue slot in the network
that stores packets (as opposed to tokens) is assigned a unique index i, and variable qi refers to the
content of the ith queue slot.
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Checking Cumulative Latencies as Age Bounds
As introduced in Sec. 4.4, a latency bound is translated to a simple safety property by checking
the age of a packet in each cycle. The age of the packet in slot i is denoted age(qi). Section 6.5
evaluates different ways of encoding age(qi) using specification variables1, and shows that the
choice of encoding significantly impacts verification runtime.

The mapping from queue slots in N to stages in G can depend on the state of N . This allows the
same queue slot to represent different stages of progress depending on certain aspects of network
state. The possible mapping from the ith queue slot to the jth stage is defined by a formula pi, j; the
ith slot maps to the jth stage whenever pi, j is true.

pi, j : Qi×W 7→ B (6.3)

• Qi is the set of states of queue slot i; qi denotes a state of Qi.

• W is the set of states for selected global variables including the number of items in any queue
and the status of reservations in networks that use reservations; w denotes a state of W .

A few special cases are worth mentioning. If a slot i never maps to stage j, then pi, j = false
regardless of qi and w. If slot i always maps to stage j, then pi, j = true regardless of qi and w.

Each stage j in the stage graph G has an associated t j that is a claimed upper bound on the age of
any packet that maps to the stage. An age lemma for the ith slot and jth stage of progress is written
as φ(i, pi, j, t j) (Eq. 6.4). For each slot i, assume the existence of a specification variable usedi that
is true in every state where slot i stores a packet. The property φ(i, pi, j, t j) checks that, whenever
the network state satisfies pi, j, any packet stored in slot i must have been injected into the network
less than t j cycles prior.

φ(i, pi, j, t j) := usedi∧ pi, j =⇒ age(qi)< t j (6.4)

In this chapter, property ΦL is true in a state of N if and only if the age lemmas hold for all
progress stages in the stage graph G .

Φ
L :=

∧
i∈[0,M−1],s j∈G

φ(i, pi, j, t j) (6.5)

Property ΦG
t denotes a global latency bound of t. The global bound differs from stage bounds in

that it is checked on packets stored in all queue slots regardless of the state of N .
1Specification variables are defined here as variables in N that record expressions over system variables but do

not influence them.
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Φ
G
t :=

∧
i∈[0,M−1]

usedi =⇒ age(qi)< t (6.6)

Auxiliary Invariants (Ψ)
An advantage of modeling microarchitectures using the xMAS formalism is automated invariant
strengthening. The automatically generated invariants are unrelated to QoS, but are essential for
verifying any type of property in xMAS networks because they prevent the verifier from exploring
unreachable states that may include deadlocked states. The set of auxiliary invariants is denoted
Ψ and comprises local invariants on queues [22, 24], persistency invariants on channels [48], and
design-specific numeric invariants ψnum [21, 23]. Note that the design-specific numeric invariants
are automatically derived in earlier works [21, 23], and added manually in this work.

Proving a Latency Bound
In this chapter, the model checking problem for proving a latency bound t is N � ΦG

t . With
auxiliary invariants the problem becomes N � ΦG

t ∧Ψ. The latency lemma approach, described
in detail in the next section, further strengthens the checked property using progress lemmas Θ and
age lemmas ΦL, such that the overall problem becomes N �ΦG

t ∧Ψ∧ΦL∧Θ. This strengthened
property is shown to be compositional, and it leads to inductive proofs with shorter induction
depths and smaller runtimes.

6.4 Latency Lemmas
A distinguishing feature of this work is to strengthen overall latency properties using precise
bounds termed age lemmas for different stages of progress arranged in a stage graph G . Com-
puting the amount of time that a packet can spend in each stage further requires computing transfer
bounds for different channels in the network. This section presents algorithms for automatically
deriving age lemmas for a subset of possible xMAS networks. The power of age lemmas is more
general than just the subset of designs that can be handled automatically, as will be demonstrated
in the ring interconnect example of Sec. 6.7. The rest of this section first presents an automated
approach for creating a stage graph, and then presents an automated approach for computing the
transfer bounds that are required for computing the ages of each stage in the stage graph.

Generating Age Lemmas (ΦL) using Stage Graph G

A stage graph is a tool for constructing age lemmas that lead to compositional proofs of overall
latency bounds. In each state of the network, every queue slot that stores a packet maps to a stage
in G . The stage that a packet maps to determines the age bound to check on the packet.
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Formally, a stage graph is an acyclic digraph G = (S,E) with vertices s0,s1, . . . ,sL−1 ∈ S called
stages. Each stage has an associated age lemma that checks a specialized bound on the age of any
packets mapping to the stage. A stage s j has an associated lemma φ(i, pi, j, t j) asserting that any
packet in slot i of N that maps to stage s j in G must have an age less than t j. The conjunction of
all age lemmas is denoted ΦL (Eq. 6.5).

Stage graph construction is automated for acyclic networks. Acyclic networks are those without
cycles in data paths, where “data path” is defined as any sequence c0,c1, . . .cN of packet channels
with each ci and ci+1 being input and output channels of the same xMAS primitive. One can
trivially check whether a network N is acyclic, for example by using depth-first search from each
packet channel. An automated approach to construct stage graphs for acyclic networks is presented
as a two step process: first creating stage graph topology, and second adding the age annotations
to the stages.

Creating Stage Graph Topology

The queue slots of an acyclic network will always have a partial ordering with respect to when a
packet can occupy them. The stage graph topology reflects this ordering. Each queue slot (i; i ∈
[0,M− 1]) in network model N maps to a stage (s j; j ∈ [1,M]) in stage graph G . The mapping
from queue slots to stages is accomplished by setting pi, j to true for combinations of i and j where
i = j− 1. A special source stage (s0) is added for all packet sources, and a sink stage (sM+1) is
added for packet sinks. These source and sink stages are nonstandard in that no packets can ever
map to them while in the network.

Edges in the stage graph reflect transitions that packets can make in N . All data sources map to a
stage s0, and all data sinks map to stage sM+1. Stages sx and sy in the stage graph G are connected
by an edge if the components (source, sink, or queue slot) mapping to sx and sy are adjacent slots
within a single queue, or if there exists a queue-free data path in N from the first component to
the second.

Assigning Age Bounds to Stages

Once the stages and edges of the stage graph are created, age bounds must be assigned to each
stage. The first step toward this is computing for each stage s j, a value d j that is the maximum
residence time of the stage. Source stage (s0) is assigned d0 = 1, and sink stage (sM+1) has dM+1 =
0; all other stages correspond to packet queue slots. For a stage (s j) corresponding to a queue slot,
the maximum residence time (d j) cannot exceed 1 greater than the maximum blocking time of the
channel that is the output of the queue containing this slot. While the maximum blocking time of
each channel is not known a priori, the next subsection gives a way to compute an upper bound on
it, and this upper bound on blocking time is denoted δabs. Therefore, d j is assigned 1+δabs.

Now that each stage in the network is assigned a residence time (d j), age bounds for each stage are
computed. The maximum age in any stage depends on the maximum residence time of that stage,
and the maximum age of a packet when it enters the stage. For each stage s j, this maximum age
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then depends on the path from s0 to s j in G for which the sum of d j is largest. This path sum is
called t j and it is the age bound of stage s j.

Global Age Bound TL from Age Lemmas

If every data packet in every reachable state of N maps to a stage in G , then the largest t j as-
sociated with any stage is a claimed global age bound for N . The largest t j among all stages is
denoted TL, and therefore ΦL =⇒ ΦG

TL
provided that coverage of G is complete. TL is therefore

a global age bound, and property ΦG
TL

is the global age bound property that is being strengthened
with the latency lemmas. TL is often conservative for several reasons:

• The channel blocking bounds that are computed are conservative, causing the residence times
of each stage to be over-approximated. This occurs in the credit loop (Sec. 6.2) where the
blocking time of packets in the ingress queue is overestimated.

• The stage graph conservatively over-approximates the connectivity of the network by ignor-
ing logical propagation conditions.

• It may be impossible for any one packet to experience all of the the worst-case progress
bounds, even if each is individually achievable.

Cyclic vs. Acyclic Networks

No automated procedure is given to construct a stage graph for cyclic networks. In such a network,
a straightforward mapping from each slot to a single stage will induce cycles in G , and this leads
to infinite age bounds even if each stage has a known finite residence time. In such a case, the
progress stages must be made more precise by refining the pi, j formulas to consider more than just
the slot that a packet occupies. Using a ring interconnect as an example, Sec. 6.7 will demonstrate
that a manual refinement can be used to obtain an acyclic stage graph from a cyclic network.

Deriving Channel Blocking Bounds and Progress Lemmas (Θ)
The preceding section shows that blocking bounds on output channels of packet queues determine
the residence times of stages in the stage graph G . A heuristic is now given to derive the blocking
bounds by propagating timing guarantees across xMAS primitives. As the heuristic generates
the blocking bounds, it also generates “progress lemmas” that formalize the assumptions made in
deriving the bounds. These progress lemmas are added to the overall verification problem to check
the assumptions.

Given a channel c, a blocking bound of x cycles is the claim of c.irdy =⇒ F≤xc.trdy. The
blocking bound of a channel c is derived by first computing for the channel a guarded bound set
rc.trdy (Eq. 6.7). Each guarded bound 〈gi,δi〉 ∈ rc.trdy is gi a predicate on network state, and δi a
bound on the number of cycles until c.trdy becomes true after any network state satisfying gi. In
other words, the guarded bound set rc.trdy can be used to make the claim of Eq. 6.8.



68

rc.trdy ≡ {〈g0,δ0〉,〈g1,δ1〉, . . . ,〈gN ,δN〉} (6.7)

g0 =⇒ F≤δ0c.trdy

g1 =⇒ F≤δ1c.trdy
...

gN =⇒ F≤δN c.trdy (6.8)

From the guarded bound set, a generalized guarded bound 〈gabs,δabs〉 is created, where gabs :=
g0 ∨ g1 ∨ ·· · ∨ gN and δabs := max(δ0,δ1, . . . ,δN). The intuition behind the generalized guarded
bound is that, whenever some guard holds, then some delay bound must also hold (Eq. 6.9).

gabs =⇒ F≤δabsc.trdy (6.9)

guard coverage holds︷ ︸︸ ︷
c.irdy =⇒ gabs ∧

guard bound holds︷ ︸︸ ︷
c.irdy∧gabs =⇒ F≤δabsc.trdy (6.10)

θc,STAT E := c.irdy =⇒ gabs (6.11)

θc,T IMING := c.irdy =⇒ F≤δabsc.trdy (6.12)
θc := θc,STAT E ∧θc,T IMING (6.13)

If the generalized guard condition holds in all states where a queue attempts to send a packet across
the channel, then the generalized bound is an unconditional channel blocking bound that can be
used for computing stage residence times. Eq. 6.10 is invariant if guard coverage is complete and
the guard bounds are correct. Property θc,STAT E (Eq. 6.11) checks that guard coverage holds when
the initiator of channel c is attempting to send a packet. Assuming that θc,STAT E is valid, then
Eq. 6.10 simplifies to property θc,T IMING (Eq. 6.12). Property θc,T IMING checks that the bound
(δabs) implied by the guards does in fact hold in the network. For each channel c, property θc
(Eq. 6.13) is ultimately checked.

Given that the stage graph approach ultimately only makes use of δabs for computing stage resi-
dence times, the motivation for proving θc,STAT E and θc,T IMING is only to formalize and validate
the assumptions made in deriving δabs. If any modifications are needed in the approach for gener-
ating the guarded bound sets, counterexamples to θc,STAT E and θc,T IMING will indicate where the
modifications are required. If property θc,STAT E fails, then a counterexample reaches a state where
c.irdy is true and gabs is false; this can be remediated by adding to the guarded bound set a new
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guarded bound 〈gi,δi〉 such that gi is true for the bad state of the counterexample. If property
θc,STAT E passes and θc,T IMING fails, then it means that there exists some 〈gi,δi〉 in the guarded
bound set such that the guard (gi) does not imply the bound (δi); this would indicate unsoundness
in the propagation rules for creating the guarded bound.

The preceding paragraphs demonstrate how to derive a conservative bound δabs for a single channel
c. The residence times for each stage in the stage graph G are created by deriving such a bound
for each channel c that is the output of a packet queue. The property checked on the network is
then Θ (Eq. 6.14). The following sections present an approach for computing a guarded bound set
for each such channel. This is done using operations for combining guarded bound sets, applied
according to the xMAS network connections. A primitive has operations to determine the guarded
bound set for each of its output signals using recurrence relations guarded bound sets of its input
signals.

Θ :=
∧

∀c∈ pkt queue outputs

θc,STAT E ∧θc,T IMING (6.14)

Recurrence Relations for Future Readiness

Guarded bound sets represent future readiness of channel initiators and targets in a way that is
analogous to how irdy and trdy signals represent their current readiness. For any signal irdy or
trdy, R(irdy) or R(trdy) denotes a symbolic representation of the guarded bound set describing its
future readiness. Just as the readiness signals irdy and trdy are defined using recurrence relations
over other readiness signals and state variables, the guarded bound sets for future readiness are
defined using recurrence relations over other guarded bound sets and state variables. The recur-
rence relations for R(irdy) and R(trdy) use the three operations MAX,PLUS, and ITE. MAX is
used when readiness depends on the latest-arriving signal among two signals described by guarded
bound sets. PLUS is used when readiness depends on the two events in sequence. ITE is used
when readiness depends on one of two guarded bound sets, and the choice is determined by some
Boolean state condition.

Guarded bound sets in symbolic form (e.g. R(trdy)) are ultimately expanded into their concrete
form (e.g. rtrdy≡{〈g0,δ0〉,〈g1,δ1〉, . . . ,〈gN ,δN〉}). The first step toward concretizing the symbolic
guarded bound sets is defining recurrence relations between inputs and outputs for each xMAS
kernel primitive. The relations for each primitive are shown in graphical form in Fig. 6.2 and
explained in the subsequent text; note that these specific relations are just one solution among
many possible, and alternative relations can be defined that are more precise or more general.

Packet Source: Because a packet source non-deterministically injects data packets onto channel
o, there is never an upper bound on when a packet transfer will be initiated on the channel. The
guarded bound is therefore the empty set {}; there is no state condition of the network for which it
is claimed that o.irdy will become true within a known time bound in the future. In other words,
there is no assurance that the source will ever again attempt to inject a packet.
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Figure 6.2: Recurrence Relations for Future Readiness of xMAS Primitives. Each box corre-
sponds to a kernel primitive, with outputs at top and inputs at bottom. Guarded bound sets for outputs are defined over
inputs and constants using operations MAX, PLUS, and ITE.

R(o.irdy) := {} (6.15)

Token Source: A token source is the initiator of a single token channel o, and from any network
state it tries to transfer a token across o in every cycle. In the guarded bound 〈>,0〉, > is a guard
that is always true, and 0 indicates that o.irdy occurs in the current cycle.

R(o.irdy) := {〈>,0〉} (6.16)

Packet Sink: A packet sink is the target of a single packet channel i. The sink provides to the
network a service guarantee to always receive a waiting packet within x cycles. This means that
i.trdy is guaranteed to be true no more than x cycles after i.irdy is true. Given that R(i.irdy) is a
(recurrence-defined) guarantee on when i.irdy will occur, R(i.trdy) is obtained by unconditionally
adding x to it.
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R(i.trdy) := PLUS(R(i.irdy),{〈>,x〉}) (6.17)

Token Sink: A token sink is the target of a token channel i. Token sinks are eager and always
ready to accept a token regardless of network state.

R(i.trdy) := {〈>,0〉} (6.18)

Queue: A queue is the target of channel i and the initiator of channel o. The queue’s recurrence
relations for future readiness use ITE to introduce a case-split depending on the number of items
stored in the queue (denoted ni). Consider for demonstration R(o.irdy), which evaluates to {〈>,0〉}
if ni 6= 0, and otherwise evaluates to PLUS(R(i.irdy),{〈>,1〉}). In the first case the queue is non-
empty, and the value {〈>,0〉} reflects that the output is currently trying to initiate a transfer. In the
second case the queue is empty, and the value PLUS(R(i.irdy),{〈>,1〉}) reflects that the output is
ready to initiate no more than 1 cycle after the input is ready to initiate a transfer. This relation
holds because any attempted transfer from the input is immediately received into the empty queue
to cause an attempted output transfer in the next cycle. Target readiness R(i.trdy) is handled
similarly, with a case split depending on whether or not the queue is currently full.

R(o.irdy) := ITE(ni 6= 0, {〈>,0〉}, PLUS(R(i.irdy) ,{〈>,1〉}) ) (6.19)
R(i.trdy) := ITE(ni 6= depth,{〈>,0〉}, PLUS(R(o.trdy),{〈>,1〉}) ) (6.20)

Merge: A merge primitive arbitrates between two input channels a and b, and is the initiator of a
single output channel o. The merge primitive uses a Boolean state variable u to store the current
priority among the two input channels. To create a round robin arbitration policy, the state of u
is inverted whenever the high priority input transfers a packet through the merge. The recurrence
relations abstract away the arbitration priority u to give a conservative bound for each input that
does not depend on the current value of u. The high priority input channel can only be blocked
for R(o.trdy) cycles before transferring a packet and causing a priority inversion; because of this,
the low priority input always attains high priority in at most PLUS(R(o.trdy),{〈>,1〉}) cycles.
Therefore, the overall progress bound for an input channel of undetermined priority is the time to
attain high priority added to the progress time once high priority is attained.

R(o.irdy) := MAX (R(a.irdy),R(b.irdy)) (6.21)
R(a.trdy) := PLUS ( PLUS (R(o.trdy),{〈>,1〉}) , R(o.trdy) ) (6.22)
R(b.trdy) := PLUS ( PLUS (R(o.trdy),{〈>,1〉}) , R(o.trdy) ) (6.23)
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Switch: A switch primitive is parameterized by a switching function f . Because no assumptions
are made on the data value of a packet arriving on the input channel i, it cannot be determined
whether the function f would route the packet to output channel a or output b. Therefore no upper
bound is asserted on the future readiness of irdy for either output channel. This can optionally be
refined using ITE to take into consideration the data value of packets on input channel i.

R(a.irdy) := {} (6.24)
R(b.irdy) := {} (6.25)
R(i.trdy) := MAX(R(a.trdy),R(b.trdy)) (6.26)

Join: A join primitive consumes a packet from input channel a and a token from channel b to
produce a single output packet on channel o. The join is only ready to produce a packet on o if
the upstream primitives of both input channels are ready to initiate. It is only ready to consume
an input packet from input a or b when the other input is ready to initiate and the output channel
is ready to receive. The future readiness of each of the three signals depends on the latest future
readiness of two other signals, and therefore the MAX operator is used on the guarded bound sets.

R(o.irdy) := MAX(R(a.irdy),R(b.irdy)) (6.27)
R(a.trdy) := MAX(R(o.trdy),R(b.irdy)) (6.28)
R(b.trdy) := MAX(R(o.trdy),R(a.irdy)) (6.29)

Fork: A fork primitive consumes a single input packet from channel i and produces one packet on
output channel a and a token on b. As in the join, the fork uses the MAX operator on the guarded
bound sets because each output signal is triggered by the latest to occur among two input signals.

R(i.trdy) := MAX(R(a.trdy),R(b.trdy)) (6.30)
R(a.irdy) := MAX(R(i.irdy),R(b.trdy)) (6.31)
R(b.irdy) := MAX(R(i.irdy),R(a.trdy)) (6.32)

Function: A function primitive transforms data, but passes irdy directly from input to output, and
passes trdy directly from output to input. Whenever the initiator of input channel i is ready, then
the function primitive is itself ready to initiate. Whenever the target of output channel o is ready to
receive, then the function is itself ready to receive.

R(i.trdy) := R(o.trdy) (6.33)
R(o.irdy) := R(i.irdy) (6.34)
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Concretizing Guarded Bound Sets

The guarded bound sets that describe bounds on future readiness (e.g. rc.trdy) are created by ex-
panding the symbolic representations of the same (e.g. R(c.trdy)) using the dependency graph of
the recurrence relations. The dependency graph is created by composing the recurrence relations
(Fig. 6.2) for each primitive in the network according to common signals. Each irdy or trdy signal
in N is an input of one primitive and an output of another; analogously, each R(irdy) or R(trdy)
depends upon the recurrence relations of one primitive, and is also depended upon by those of
another primitive. Note that circular dependencies can exist.

For each packet queue in the network, with output channel denoted c, CREATEGUARDEDBOUND-
SET (Algorithm 2) is called to extract the concretized guarded bound set rc.trdy from the depen-
dency graph. Starting from node R(c.trdy) in the dependency graph, function EXPANDSUBTREE

recursively computes guarded bound sets for each supporting node’s future readiness, and includes
a check to detect cyclic dependencies and break them by returning an empty set. The guarded
bound sets for each node are computed in the tail of the recursion, and thus computed over two
already-concretized guarded bound sets. The steps of the algorithm for combining the guarded
bound sets of a node’s left and right children are chosen according to whether the node is imple-
menting a MAX (line 18), PLUS (line 21), or ITE (line 24) operation. For MAX and PLUS, the
guarded bound sets are combined as Cartesian products augmented by the appropriate numeric op-
eration. The ITE operation does not use a Cartesian product because the guards of the two children
are made disjoint by including the ITE predicate in opposing polarities.

CREATEGUARDEDBOUNDSET returns to line 2 with a guarded bound set (rc.trdy) for target readi-
ness of channel c. Because channel c has a queue as its initiator, and only cases where channel c
is blocked are relevant, all guards are strengthened with the condition that the initiating queue is
non-empty (lines 3-5). A pruning step is then applied (line 6) to remove from the set any guarded
bounds (〈gi,δi〉) that are trivially unsatisfiable. One example of this a guard that asserts that a
single queue is both full and empty2. Finally, CREATEGUARDEDBOUNDSET returns the final
concretized guarded bound set rc.trdy, which is then used as explained at the start of this section
(Eq. 6.7) to derive residence times of stages in G .

2Some guards that are not pruned away on account of trivial unsatisfiability may still in fact be unsatisfiable in all
reachable network states.
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Algorithm 2: For channel c that is initiated by a packet queue storing number of items nx, expand
recurrence relations to obtain a concretized guarded bound set rc.trdy. The members of set rc.trdy
are guarded bounds 〈gi,δi〉, where guard gi is a condition on network state, and δi is a claimed
bound on when c.trdy will be true starting from any state satisfying gi.

1: procedure CREATEGUARDEDBOUNDSET(channel c)
2: rc.trdy← EXPANDSUBTREE(R(c.trdy),{})
3: nonEmpty := (nx 6= 0) . a queue initiating transfer on c can be assumed non-empty
4: for 〈gi,δi〉 ∈ rc.trdy do
5: 〈gi,δi〉 ← 〈gi∧nonEmpty,δi〉
6: rc.trdy← PRUNE(rc.trdy) . prune away guarded bounds where guard gi is trivially false
7: return rc.trdy . rc.trdy ≡ {〈g0,δ0〉, . . .〈gN ,δN〉}

8: function EXPANDSUBTREE(node,visited)
9: if node ∈ visited then . cycle detected when node is visited for second time

10: return {}
11: else if node is childless then . node is a constant (e.g.{〈>,1〉}) and requires no expansion
12: return node
13: else . need to expand children before creating guarded bound set
14: visited← visited∪node
15: rn←{} . initialize guarded bound set for node
16: rle f t ← EXPANDSUBTREE(le f t,visited)
17: rright ← EXPANDSUBTREE(right,visited)
18: if node = MAX(le f t,right) then
19: for 〈gi,δi〉 ∈ rle f t , 〈g j,δ j〉 ∈ rright do
20: rn← rn ∪ 〈gi∧g j,max(δi,δ j)〉 . add to guarded bound set for node

21: else if node = PLUS(le f t,right) then
22: for 〈gi,δi〉 ∈ rle f t , 〈g j,δ j〉 ∈ rright do
23: rn← rn ∪ 〈gi∧g j,δi +δ j〉 . add to guarded bound set for node

24: else if node = ITE(predicate, le f t,right) then
25: for 〈gi,δi〉 ∈ rle f t do
26: rn← rn ∪ 〈gi∧ predicate,δi〉 . add to guarded bound set for node
27: for 〈g j,δ j〉 ∈ rright do
28: rn← rn ∪ 〈g j ∧¬predicate,δ j〉 . add to guarded bound set for node

29: rn← PRUNE(rn)
30: return rn

Limitations in Deriving Blocking Bounds

This work presents recurrence relations that are found to be useful for deriving blocking bounds in
the motivating example networks, but these specific recurrence relations are not precise enough to
handle all possible networks. Property Θ (Eq. 6.14) is formulated such that its failure will indicate
when these recurrence relations are insufficient for a given network. Furthermore, a counterexam-
ple to Θ can guide the development of rules that lead to a more precise set of recurrence relations.
Some situations that would require modified recurrence relations are highlighted here.

One abstraction used in the recurrence relations is to consider only whether a queue is full or empty,
and not the number of items in the queue. A similar abstraction is made in proving deadlock free-
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dom by Verbeek et al. [102]. The significant change in this chapter’s approach relative to Verbeek’s
is that it goes beyond deadlock freedom to include numeric progress bounds in the reasoning. Yet,
like Verbeek’s work, this formulation is sound but incomplete in light of the abstraction.

A second conservative abstraction in the recurrence relations presented is that no assumptions are
made about data values of packets. This prevents the recurrence relations from giving any bounds
on readiness outputs of the switch primitive. Refinement would be needed in a network where
progress of a data packet depends on switch output3. It is suggested to handle this situation with
manual refinement, such as replacing the recurrence relations of the switch with ones that take
consider the data value of the input packet. Ongoing work by Viktorov and Gotmanov [104] aims
to overcome this limitation by propagating rules that can be automatically refined to handle cases
such as this. Counterexample-guided abstraction-refinement techniques [29] could also be used.

6.5 Experimental Methodology
The methodology used across all experiments in this chapter is described here. The xMAS models
are created within a C++ framework4, with primitives as objects. Progress lemmas and age lemmas
are added automatically, and flattened word-level Verilog is generated with all properties added as
assertions. The Verilog is bit-blasted to an and-inverter-graph5 (AIG) using the VeriABC flow [67].
Properties are verified on the AIG using the bit-level model checker ABC [15]6 on a 2.4GHz Intel
Core i5 processor with 4GB of RAM. The bounded model checking7 (BMC), property directed
reachability8 (PDR) [42], and k-induction9 calls are performed by ABC.

Evaluating Looseness of TL with Bounded Model Checking
The global age bound (TL) that is implied by the age lemmas can be loose. The tight latency bound
for a given network is not generally known, but the looseness of TL is bounded by comparison to
TFEAS, where TFEAS is the smallest number such that N � ΦG

TFEAS
cannot be disproved by BMC

within allotted resource bounds. TFEAS is found by iteratively increasing T and using BMC to
disprove each ΦG

T until reaching the first value of T that cannot be disproved; that value serves
as TFEAS. There cannot exist a tighter bound than TFEAS because ΦG

TFEAS−1 is disproved with a
counterexample. However, due to the incompleteness of BMC ΦG

TFEAS
may not be proved, and

could instead be an artifact of the BMC resource limits.
3For example, consider a network in which a data packet is one input to a join primitive and the second input

comes from a switch output. If data abstraction precludes determining whether the switch output ever becomes ready
to initiate, then no finite bound on progress can be inferred for the packet waiting at the join input.

4https://github.com/danholcomb/xmas-front-end
5http://fmv.jku.at/aiger
6Rev. d0170182dbd6; at http://www.eecs.berkeley.edu/˜alanmi/abc/
7ABC commands ”read aiger foo.aig; bmc3; write counter -n foo.cex;”
8ABC commands ”read aiger foo.aig; pdr -v;”
9ABC commands ”read aiger foo.aig; orpos; ind -avw; bmc3 -F k;” where k is the depth used by the ind command

https://github.com/danholcomb/xmas-front-end
http://fmv.jku.at/aiger
http://www.eecs.berkeley.edu/~alanmi/abc/
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Efficient Encoding of Packet Ages
The formulation of an age bound property requires that the age of a packet in slot i (denoted
age(qi)) can be checked as a simple safety property; in other words, the age of a packet can be
evaluated in a single state of N . Two different simple safety encodings for age are given in Sec-
tion 4.4, termed “timestamp encoding” and “stopwatch encoding”. While semantically equivalent,
experimental results in this section show several orders of magnitude speedup in inductive veri-
fication when using stopwatch encoding instead of timestamp encoding. The primary difference
between the encodings, and the apparent cause of the speedup, is that stopwatch encoding repre-
sents ages canonically whereas timestamp encoding does not.

The runtimes for timestamp and stopwatch encodings are compared using a network with a non-
deterministic source injecting packets into a single queue of depth 6 that is drained by a sink with a
blocking bound of 5 (i.e. Fig. 6.4 with parameters set differently). Using BMC, TFEAS is found to
be 36, and for each encoding the property ΦG

36∧Ψ is verified across different values of the largest
representable time tmax. The plot in Fig. 6.3 compares the two encodings. When tmax is increased
from 26 to 212, the runtime to prove the property with timestamp encoding increases by 13x, while
the runtime to prove the same property with stopwatch encoding increases by only 2x. Similar
relative performance for the two encodings is observed on a variety of problems. All experiments
in the remainder of this chapter implicitly use stopwatch encoding.
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Figure 6.3: Comparison of Stopwatch Age Encoding and Timestamp Age Encoding. Runtime
to prove N �ΦG

36∧Ψ with ABC’s induction engine, for different values of tmax. The verification runtime scales better
with tmax when using stopwatch encoding instead of timestamp encoding.

6.6 Illustrative Examples
Several examples highlight strengths and weaknesses of using latency lemmas. The primary
strength is a dramatic improvement in verification runtime, and the weakness is that the bounds
proved using lemmas are in some cases loose. All latency lemma reasoning including the stage
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graph construction is automated for the examples in this section. The subsequent example of a ring
interconnect in Sec. 6.7 is an xMAS extension where some manual reasoning is needed to create
an acyclic stage graph and apply latency lemmas.

Single Queue
An example of a single packet queue (Fig. 6.4) demonstrates scalability of latency lemmas in a
simple network without arbitration, routing, or flow control. The liveness bound of the sink is
fixed to 3, and the depth of the queue is varied. The progress lemmas give a bound of δabs = 3
for the queue’s output channel, and therefore each slot in the queue maps to a stage s j in G with a
residence time of d j = 4. The global bound implied by the lemmas is TL = 1+4∗depth. For each
queue depth it is found that TFEAS = TL− 1 (Fig. 6.5), indicating that TL is one cycle larger than
the tightest feasible bound. The bound TL at each queue depth is proved inductively, using two
different strengthenings of the latency property ΦG

TL
. The first property (ΦG

TL
∧Ψ) proves latency

bound TL without lemmas, strengthened only by auxiliary invariants Ψ. The second property (ΦG
TL
∧

Ψ∧ΦL ∧Θ) proves the same bound strengthened by the age lemmas (ΦL) and progress lemmas
(Θ). Without latency lemmas, the induction depth required for the proof is never less than TFEAS.
With latency lemmas, the induction depth is 4 independent of the queue depth, demonstrating the
compositionality of the approach. In a queue with depth 10, a latency bound of 41 cycles is proved
in less than 2 seconds of verification runtime with latency lemmas versus 267 seconds without.

s2!s1!s0! s3!

4(5)! 4(9)!1(1)! 0(9)!

!
bound=3!

depth=2!

0! 1!
δabs=3!

Figure 6.4: Queue network with Stage Graph G Shown Above. For the particular depth of 2 that is
shown, the global age bound implied by the lemmas (TL) is 9.

Credit Loop
The credit loop (Fig. 6.1) introduced in Sec. 6.2 is now revisited in more detail. Experiments are
performed to explore the scalability of the latency lemma approach, different verification engines,
and the tradeoff of verification runtime versus tightness of proved bounds. A credit loop has a
numeric invariant ψnum [21] (Eq. 6.35) asserting that each outstanding credit corresponds to exactly
one available token or ingress queue packet; this numeric invariant is included as part of auxiliary
invariant Ψ.

ψnum := n0 +n1 = n2 (6.35)
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Figure 6.5: Runtime versus Problem Size in Queue. Sweeping the queue depth in a network comprising
a single queue, and a sink with liveness bound of 3. The Y-axis in the lower plot has a slightly different meaning for
each of the plotted datasets: For the two properties, the Y-axis is the induction depth required to prove them; for TFEAS

and TL, the Y-axis is a latency bound (either the tightest feasible bound, or the bound proved by the lemmas).

Sweeping the Depth of Queues

As the depth of the credit loop queues are swept from 2 to 10 (Fig. 6.6), the bounds implied
by the lemmas (TL) at each depth exceed the tightest feasible bound (TFEAS) on account of the
conservativeness of the progress lemmas. As in Sec. 6.2, the bound of the sink is 5. The inclusion
of latency lemmas yields inductive latency proofs in 8 frames of unrolling and less than 11 seconds
of runtime for all depths. For a queue depth of 10, including the lemmas gives a speedup of 120x.

Comparing Proof Engines

Induction is evaluated against the PDR verification engine when the latency property is formulated
with and without the strengthening of the latency lemmas. In this experiment, the queue depths are
fixed to 6 and the sink bound is again 5. Attempts are made to prove 2 different bounds; the first is
the tightest feasible bound (TFEAS), and the second is the looser bound (TL) implied by the latency
lemmas. The results are shown in Tab 6.1. When proving tight bound TFEAS, the PDR engine gives
a 3x speedup over induction, and adding latency lemmas does not significantly impact runtime.
When proving the looser bound TL, adding latency lemmas causes a dramatic speedup in inductive
verification. The speedup is 34x compared to induction without the lemmas, and over 7x compared
to PDR with or without lemmas. The speedup is caused by the latency lemmas making the proof
compositional and hence provable in only 8 frames of unrolling.
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Figure 6.6: Runtime versus Problem Size in Credit Loop. Comparing runtime and induction depth
for proving latency bounds with and without latency lemmas while varying the depth of the queues in a credit loop
(Fig 6.1).

Precision vs Scalability

When using latency lemmas, there exists a tradeoff of inductive verification runtime against loose-
ness of proved bounds. This generalizes the speedup observed in Tab 6.1 when proving the looser
bound TL instead of tight bound TFEAS. The tradeoff is shown by proving individually each bound
from TFEAS to TL +5 (Fig. 6.7). The black vertical line indicates the tight bound T = TFEAS = 35
and the gray indicates T = TL = 43. As the latency bound increases from TFEAS to TL, the property
strengthened by the lemmas gets progressively easier to prove, as evidenced by the reduction in
both verification runtime and the number of frames needed for the proof. The points where the
plotted data cross the black and grey vertical lines correspond to the four rows in Tab. 6.1 that use
k-induction as the verification engine.

Virtual Channel
The virtual channel model in Fig. 6.8 comprises two credit loops that are independent except
for a shared channel e. Non-deterministic sources inject packets at a0 and a1; packets injected
on channel a0 are routed to d0, and a1 to d1. To appropriately route packets from each source,
function primitives “tag” the packets by appending a single 0 or 1 bit before they cross the shared
channel, and the target’s switch primitive routes incoming packets according to this tag. The
tags are removed by additional function primitives before entering their respective ingress queues.
Similar to the credit loop example, the numeric invariant ψnum (Eq. 6.36) is included in the auxiliary
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disprove
bound

34

Runtime (s) Frames Cex Engine Property
52.79 42 Y bmc ΦG

34

1045.62 200 - bmc ΦG
35

verify
bound
TFEAS
≡ 35

Runtime (s) Frames Proved Engine Property
118.79 37 Y kind ΦG

35∧Ψ

95.89 37 Y kind ΦG
35∧Ψ∧ΦL∧Θ

29.57 41 Y pdr ΦG
35∧Ψ

27.97 41 Y pdr ΦG
35∧Ψ∧ΦL∧Θ

verify
bound

TL
≡ 43

Runtime (s) Frames Proved Engine Property
150.97 37 Y kind ΦG

43∧Ψ

3.41 8 Y kind ΦG
43∧Ψ∧ΦL∧Θ

30.61 40 Y pdr ΦG
43∧Ψ

25.73 47 Y pdr ΦG
43∧Ψ∧ΦL∧Θ

Table 6.1: Comparing Verification Engines on Credit Loop. Proving latency bounds for credit loop
with queue depths of 6 and a sink blocking bound of 5. The tightest feasible bound (TFEAS) is 35 cycles and the the
bound implied by the lemmas is 43 cycles. The latency lemmas do not significantly effect runtime when proving the
tighter bound, but allow the looser bound of 43 cycles to be proved in only 3.41 seconds and 8 frames.

invariant Ψ.

ψnum := (n0 +n1 = n2)∧ (n3 +n4 = n5) (6.36)

When all queues in the virtual channel are assigned a depth of 5, and the sink bounds are 3 and 6
respectively, the stage graph G that is generated is shown in Fig. 6.8a. The global latency bound
(TL) implied by the latency lemmas is therefore 41 on account of stage s10. Latency verification
runtimes for the virtual channel network are shown in Tab. 6.2. The tightest feasible bound (TFEAS)
is discovered using BMC to be 35 cycles, and the PDR engine is faster than k-induction when prov-
ing TFEAS. When proving the looser bound (TL), strengthening the property using latency lemmas
allows the induction engine to prove the property 4x faster than any other approach at verifying the
same bound. Fig. 6.9 generalizes the tradeoff between verification runtime and tightness of proved
bound that is made possible by the latency lemmas.

Token Bucket Regulator
Traffic metering is an alternative to the credit-based flow control used in the credit loop and vir-
tual channel examples. One example of a metering circuit is a token bucket regulator, in which
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Figure 6.7: Verification Runtime versus Proved Latency Bound in Credit Loop. When proving
a latency bound property strengthened by latency lemmas, a larger latency bound (T ) leads to a reduced runtime and
reduced induction depth.

tokens are periodically added to a fixed sized bucket, and consumed whenever a packet is sent.
As discussed in Sec. 4.5 in the context of traffic modeling, the size of the token bucket limits the
burstiness of the traffic because packets must wait for tokens once the bucket is emptied. The
period at which new tokens are added to the bucket serves to constrain the average injection rate.

In this chapter, a token bucket is implemented differently than in Chapter 4 so as not to require
periodic token sources. Here a token bucket is implemented in a master agent using an eager
token source and two parallel branches of token queues (Fig. 6.10); injected packets from the
packet source consume a token from each branch of the token bucket and therefore can only be
injected when both branches have tokens in their bottommost positions. The numeric invariant
ψnum (Eq. 6.37) arises due to the parallel branches of the token bucket. The left branch is a single
queue that sets the capacity of the token bucket to σ ; this is the largest number of packets that
can be injected consecutively before the bucket becomes empty. The sequence of ρ queues with
depth 1 controls how quickly the bucket can be replenished. If a token is consumed from each
branch the source will add a new token to each branch in the next cycle, but that token will not be
usable during the next ρ cycles while it propagates through the right branch. Therefore the i+σ th

data packet cannot be sent within ρ cycles of the ith data packet; this limits the long-term average
injection rate to σ/ρ .

ψnum := n0 = n1 (6.37)
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(a) Stage graph G for virtual channel with queue depths of 5
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(b) Network model N for virtual channel

Figure 6.8: Virtual Channel Network N and Stage Graph G . (a) All packets injected on a0 are
routed toward sink d0, and packets injected on a1 are routed toward d1. (b) Stage graph for virtual channel network
with all queues assigned depth 5. The 5 slots of the upper ingress queue map to stages s1 through s5, and the 5 slots of
the lower ingress queue map to stages s6 through s10.

Experiments are performed using a token bucket configured with σ = 2 and ρ = 10, for a maximum
burst size of 2 and a long-term average injection rate of 1 packet per 5 cycles. The target’s ingress
has depth of 5, and its sink has bound of 4. The sink will drain an ingress packet at least once per 5
cycles, matching exactly the maximum sustainable injection rate of the token bucket. Because the
injection rate matches the sink rate, the ingress can only fill due to bursty traffic; the token bucket
limits the burst size to 2, thus preventing the ingress from ever filling with packets. Therefore
only the 2 slots at the head of the ingress can ever be used, and the other 3 slots are unused in all
reachable states of N .

Our reasoning using stage graph G infers a bound of TL = 26 because it is unaware of the maximum
realizable ingress capacity of 2; yet the tight bound is much smaller (TFEAS = 9) on account of it.
Since a full ingress will take 25 cycles to drain given the sink rate, proving any bound much
smaller than TL using induction will need to block off unreachable initial states where the ingress
is full. When checking a bound of 10 cycles inductively using property ΦG

10, initial states with a
full ingress lead to latency violations in 10 cycles and are then blocked off. Yet, when checking
a larger bound of (e.g.) 15 cycles, the blocking off does not occur until the 15th cycle, and this



83

disprove
bound

33

Runtime (s) Frames Cex Engine Property
90.95 40 Y bmc ΦG

33

3348.12 200 - bmc ΦG
34

verify
bound
TFEAS
≡ 34

Runtime (s) Frames Proved Engine Property
217.36 35 Y kind ΦG

34∧Ψ

166.72 35 Y kind ΦG
34∧Ψ∧ΦL∧Θ

51.53 35 Y pdr ΦG
34∧Ψ

49.07 38 Y pdr ΦG
34∧Ψ∧ΦL∧Θ

verify
bound

TL
≡ 41

Runtime (s) Frames Proved Engine Property
276.78 35 Y kind ΦG

41∧Ψ

12.23 9 Y kind ΦG
41∧Ψ∧ΦL∧Θ

66.27 35 Y pdr ΦG
41∧Ψ

47.36 44 Y pdr ΦG
41∧Ψ∧ΦL∧Θ

Table 6.2: Comparing Verification Engines on Virtual Channel. Results correspond to virtual channel
model shown in Fig. 6.8b, with all queues having depth 5, and sink bounds of 3 and 6. The tightest feasible bound
(TFEAS) is 34, and the bound implied by the latency lemmas (TL) is 41.

leads to a higher verification runtime. This trend is observed in Fig. 6.11 where the runtime and
induction depth to prove a bound of T increase as T is swept from TFEAS to TL+5. However, once
the latency bound approaches TL, the proof succeeds without needing to block off initial states
where the ingress is full. The difficulty of the proof is then equivalent to a queue of depth 5 with a
non-deterministic source, and the runtime and induction depth drop accordingly.

6.7 Non-Stallable Ring Interconnect
A ring network [38] is a topology for routing traffic amongst a number of agents. Each agent in the
ring comprises arbitration logic, a ring queue slot, and an ingress queue (Fig. 6.12). Packets reach
their destinations by circling around the ring until being admitted into their destination agent’s
ingress. The ring network is parameterized by the number of agents, depth of the ingress queues,
and the liveness bound of each agent’s sink.

A packet that is injected at agent i and destined for agent j will first occupy the ring slot of agent
i. The packet circles the ring thereafter (i.e. occupying slots 6,7,8,6, . . . in Fig. 6.12) and requests
admission to the ingress whenever arriving at agent j. If the request is denied, the packet bounces
back onto the ring to repeat the request after making a trip around the ring. Unfair arbitration
logic prioritizes traffic in the ring over traffic attempting to enter the ring from a source. This
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Figure 6.9: Runtime versus Proved Latency Bound in Virtual Channel. When sweeping the
checked latency bound, as the bound approaches TL, the induction runtime and induction depth are both reduced on
account of the latency lemmas.
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Figure 6.10: Token Bucket Traffic Metering Circuit. Parallel queues collectively constrain the burstiness
(σ ) and average rate (ρ/σ ) of traffic injected by the master.

unfair arbitration ensures that packets in the ring are never blocked, but it does permit sources to
be blocked indefinitely.

Each packet that a source injects into the ring is non-deterministically assigned a destination
address between 0 and n− 1 that indicates the agent to which it should be routed. This non-
deterministic choice is implemented using the methodology of Sec 4.5. The destination is encoded
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Figure 6.11: Verification Runtime versus Proved Latency Bound in Token Bucket. Comparing
runtime and induction depth required to prove different latency bounds in token bucket network (Fig. 6.10). The
difficulty of the problem increases as the global bound T is increased, but the latency lemmas simplify the problem
once the bound approaches TL

in a designated field of the packet data, analogous to how destinations are encoded for head flits in
Tab. 4.1. For a packet stored in queue slot i, let dst(qi) denote its destination address. The auxiliary
inductive invariant Ψ includes ψdst (Eq. 6.38) to block off unreachable states where packets in the
network have invalid destinations.

ψdst :=
∧

i∈[0,M−1]

usedi =⇒ dst(qi) ∈ [0,n−1] (6.38)

Implementation of a Ring Agent
Each agent in the ring is created in xMAS design style using modified versions of the basic xMAS
primitives (Fig. 4.2) to implement reservations and unfair arbitration. When a packet is transferred
from one ring agent to the next, the first primitive encountered is a switch that routes the packet
downward toward the admission logic if this agent is the packet’s destination, and upward to the
bypass channel otherwise. Packets that are routed to the admission logic encounter a demultiplexer
that is controlled by sequential reservation logic. The state of the sequential reservation logic and
the number of free slots in the ingress determine whether the packet is admitted or bounced. A
merge primitive then propagates onward a bounced packet or bypass packet, or no packet at all.
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Figure 6.12: Parameterized Ring Network. Ring network shown is instantiated with 3 agents and an ingress
queue depth of 2. All channels in ring network carry packets, and control is implemented using sequential reservation
logic instead of tokens.

Finally, a merge primitive unfairly gives priority to any packet propagating through the ring, and
allows the source to inject packets only if there is no competing packet on the ring.

Receive Reservation Logic
A naı̈ve ring implementation can have infinite latency even though all sinks obey bounded liveness.
A single packet on the ring may never be granted access to the ingress of its destination, despite
an unbounded number of other packets being granted access to the same ingress. Receive reser-
vations [70] are a mechanism to enforce fairness; together with bounded liveness of sinks, receive
reservations ensure that packets on the ring have finite latency bounds. The receive reservation
scheme used by the ring agents is described here:

1. Each agent can issue a single receive reservation. If an agent’s reservation is available, then
the agent issues it to any packet that is bounced (due to a full ingress queue). The next
ingress slot to become free is reserved for this packet.

2. If the agent has an outstanding receive reservation, packets without the reservation are denied
entry to the ingress queue unless more than 1 slot is free.

3. When a packet with a receive reservation returns to its destination agent after circling the
ring, it is granted entry to the ingress queue if any slots are free, and the reservation then
becomes available for other packets. If no slots are free, the reservation is renewed by the
packet and remains unavailable.
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The receive reservation logic for each agent in a 3-agent ring implements the state machine shown
in Fig. 6.13. The reservation is tracked by a state variable, denoted rsvi for agent i, that operates
as a sort of counter. When the receive logic state (rsvi) is n, it indicates that the packet with the
reservation will return in n cycles. When the state reaches 0, the next arriving packet on the ring
is the same one for which the reservation was made. The state of rsvi is ⊥ when the reservation is
available. Receive reservations are fair with respect to packets in the ring. Whenever one packet
returns the reservation (see edge return reservation in Fig 6.13), the packet trailing it on the ring
has a chance to make the reservation in the next cycle. Each packet in the ring gets a turn at making
a receive reservation in order.

The dashed edge labelled renew reservation in Fig. 6.13 is taken when a packet holding the reser-
vation returns to its destination agent and bounces on account of there not yet being any free slots
in the agent’s ingress queue. This can only occur if the sink’s blocking bound is larger than the
delay around the ring (i.e. the number of agents). It is assumed that the sink bound is smaller than
the ring delay, and therefore the dashed edge is ignored. This means that packets arriving when the
reservation state (rsvi) is 0 will always have a free ingress slot and be admitted to the ingress.

Ring_rsv_state_machine/

�!2! 1! 0!
return!

reservation!

issue reservation!

renew reservation!

reservation!
remains !
available!

Figure 6.13: Receive Reservation State Machine. The state machine shown is implemented within every
agent in a 3-agent ring. The reservation state (rsvi) is ⊥ when the reservation is available, and is 0,1, or 2 when the
reservation is outstanding. When rsvi is 0, the packet holding the reservation is the next to arrive, and when rsvi is 2,
the reservation has just been made for bounced packet that now occupies the ring slot of agent i.

Creating Age Lemmas using Stage Graph G

The location of packets in the ring network is not a precise enough indicator of progress to create
an acyclic stage graph because a packet can occupy the same slot many times as it circles the
ring. Progress of a packet circling the ring is instead marked both by changes in the location of
the packet, and changes in the reservation state of its destination agent. In an n-agent ring, every
combination of the n ring slots, the n packet destinations, and the n+ 1 reservation states, must
correspond to a stage in G , so the total number of stages for the ring slots is n× n× (n+ 1). For
clarity, the explanation here deals only with the n× (n+1) stages for packets that have agent 2 as
their destination; in implementation all destinations are considered.

Using the 3-agent ring as an example, composing the reservation state machine of Fig. 6.13 (with-
out dashed edge) with the packet’s behavior of advancing to the next ring slot in every cycle pro-
duces the state machine of Fig. 6.14. This product machine is the key to creating a stage graph for
packets in the ring. Each state in Fig. 6.14 has two labels, the first is the state of the reservation state
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Figure 6.14: Product Automaton of Receive Reservation and Occupied Ring Slot. Each state
corresponds to one reservation state and the index of a currently occupied ring slot from the 3-agent ring in Fig. 6.12.Ring_stage_graph-
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Figure 6.15: Stage Graph G for the 3-agent Ring Network. Above each stage s j is stage residence time
d j and age bound t j in parentheses

machine (Fig. 6.13) and the second is the index of a ring slot (Fig. 6.12). As a packet destined for
agent 2 moves around the ring, in every cycle it maps to some state of this product automaton. For
example, state (0,7) in Fig. 6.14 is the state that a packet in slot 7 maps to when the receive reser-
vation of agent 2 has state rsv2 = 0. The mapping from packets to states in Fig. 6.14 could serve
as an indicator of progress if only the product automaton were acyclic. An acyclic stage graph is
obtained from the product automaton by showing that there are pairs of edge-connected states in
Fig. 6.14 that no single packet can map to. When these transitions are removed, an ordering among
progress stages is revealed.
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• (0,7)→ (⊥,8) can never be made by a packet destined for agent 2 because it corresponds
to a packet bouncing at agent 2 (from slot 7 to slot 8) while agent 2 has its reservation
returned (i.e. it transitions to state rsv2 = ⊥ that indicates that a reservation is available).
The transition is impossible because bouncing and returning a reservation are exclusive;
only packets admitted to the ingress cause the reservation to return to the available state.

• (⊥,7)→ (⊥,8) can never be made by a packet destined for agent 2 because it corresponds to
a packet that bounces (from slot 7 to slot 8) while an available reservation remains available.
The transition is impossible because any packet bouncing while the reservation is available
would result in the reservation being issued to it.

Without the two transitions described above, Fig. 6.14 becomes acyclic and can be used to order
the progress stages of a packet in the ring. The product automaton of Fig. 6.14 becomes the stage
graph of Fig. 6.15 by simply removing the two unrealizable transitions, and adding stages for
sources, ingress slots, and the sink. The mapping from queue slots in the ring network to stages in
Fig. 6.15 is given by the age lemmas in Tab. 6.3.

stage s j d j
age lemma φ(i, pi, j, t j)

Fig. 6.15 i pi, j t j

s0 1 - - 1
s1 1 8 dst(q8) = 2 ∧ rsv2 =⊥ 2
s2 1 6 dst(q6) = 2 ∧ rsv2 = 2 3
s3 1 7 dst(q7) = 2 ∧ rsv2 = 1 4
s4 1 8 dst(q8) = 2 ∧ rsv2 = 0 5
s5 1 6 dst(q6) = 2 ∧ rsv2 =⊥ 6
s6 1 7 dst(q7) = 2 ∧ rsv2 = 2 7
s7 1 8 dst(q8) = 2 ∧ rsv2 = 1 8
s8 1 6 dst(q6) = 2 ∧ rsv2 = 0 9
s9 1 7 dst(q7) = 2 ∧ rsv2 =⊥ 10
s10 1 8 dst(q8) = 2 ∧ rsv2 = 2 11
s11 1 6 dst(q6) = 2 ∧ rsv2 = 1 12
s12 1 7 dst(q7) = 2 ∧ rsv2 = 0 13
s13 3 4 true 16
s14 3 5 true 19
s15 0 - - 19

Table 6.3: Age Lemmas for 3-agent Ring. The age lemmas are shown only for packets with agent 2 as their
destination. The first column is the stage in G (from Fig. 6.15) that corresponds to the age lemma described on the
row.
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Latency Verification Results for Ring Interconnect
The latency lemma approach is evaluated on a 3-agent ring and an 8-agent ring, each with ingress
depth of 2 and sink bound of 2. For the 3-agent ring, the tightest feasible bound (TFEAS) is 18, and
the bound implied by the latency lemmas (TL) is 19; for the 8-agent ring, TFEAS is 78 and TL is 79.
The runtimes and number of frames for proving a bound of TL on each ring, with and without la-
tency lemmas, are shown in Tab. 6.4 and 6.5. Property ΦG

TL
∧Ψ proves the latency bound TL without

latency lemmas, and property ΦG
TL
∧Ψ∧ΦL∧Θ proves it with the lemmas added. Strengthening

the global latency bound property with latency lemmas reduces the verification runtime for both
k-induction and PDR in both sizes of the ring networks.

The latency bound for the 8-agent ring (Tab. 6.5) is proved within 10,000 seconds by each engine
only when the lemmas are used. The induction engine is able to verify the property with the
lemmas 9x faster than PDR verifies the same, and at least 130x faster than either engine does
without lemmas.

disprove
bound

17

Runtime (s) Frames Cex Engine Property
24.12 20 Y bmc ΦG

17

868.28 200 - bmc ΦG
18

verify
bound

TL
≡ 19

Runtime (s) Frames Proved Engine Property
62.34 18 Y kind ΦG

19∧Ψ

1.31 4 Y kind ΦG
19∧Ψ∧ΦL∧Θ

88.39 12 Y pdr ΦG
19∧Ψ

6.57 14 Y pdr ΦG
19∧Ψ∧ΦL∧Θ

Table 6.4: Latency Verification Runtimes for 3-agent Ring. Proving latency bounds for 3-agent ring
with ingress depth 2 and sink bound 2. The 19 cycle bound that is implied by the lemmas exceeds TFEAS by only 1
cycle.

6.8 Related Work
One way of addressing QoS guarantees at the architectural level is to use resource reservation and
contention-free routing [47]. Analysis can be performed manually, but formal verification is still
useful for providing guarantees.

Network calculus [31] has been demonstrated as a useful tool for NoC performance analysis [107].
However, it has limited applicability and precision for networks with backpressure and complex
circular message dependencies. Network calculus formalism relies on very high-level abstrac-
tion of arbiters, often modeling them as latency-rate servers. Recent abstraction-based formal
approaches have been applied to NoC components [50], but they only address scalability problems
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disprove
bound

77

Runtime (s) Frames Cex Engine Property
3901.95 80 Y bmc ΦG

77

10,000.00 111 - bmc ΦG
78

verify
bound
≡ TL
≡ 79

Runtime (s) Frames Proved Engine Property
10,000.00 - - kind ΦG

79∧Ψ

75.28 10 Y kind ΦG
79∧Ψ∧ΦL∧Θ

10,000.00 - - pdr ΦG
79∧Ψ

662.15 73 Y pdr ΦG
79∧Ψ∧ΦL∧Θ

Table 6.5: Latency Verification Runtimes for 8-agent Ring. Proving latency bounds for 8-agent ring
with ingress depth 2 and sink bound 2. The 79 cycle bound that is implied by the lemmas exceeds TFEAS by only 1
cycle. This latency bound can be proved within 10,000 seconds only when latency lemmas are used.

arising from the size of the network, rather than from proving a large latency bound, while the
present work addresses the latter issue.

The notion of using LTL properties where all eventually properties have time bounds is also re-
ferred to as a prompt system [59]. Prior works compare liveness and safety methods for verifying
grant latencies on a particular style of weighted round robin arbiter [57].

Several works have explored (unbounded) liveness verification of communication fabrics. The
standard approach of verifying liveness using a liveness-to-safety transformation [6] does not scale
to large networks in practice [48]. Alternative approaches include reducing deadlock conditions
to a set of equations [48, 102], and proving liveness using the help of intermediate safety asser-
tions [90].

The use of latency lemmas is conceptually similar to ranking functions [99], i.e. numeric functions
of model state that measure progress toward some goal. Typically, ranking functions are useful
in proving termination or liveness properties, but they are also applicable for latency bounds. In
fact, a stage graph can be viewed as a structural description of a ranking function for the model.
Note, however, that stage graphs specify partial orders, rather than the linear orders that are typical
for ranking functions. Viktorov and Gotmanov [104] propose a theorem-proving approach to la-
tency verification in xMAS networks that is based on ranking functions. Their inference rules are
analogous to the rule-based propagation used in this work.

6.9 Conclusion
The work presented in this chapter gives a compositional approach to verifying latency bound
properties of NoC designs. The key idea is to decompose the overall proof into a finite number
of latency lemmas, based on the notion of stages that a packet can be in. These latency lemmas
are then used to strengthen the global latency bound property. The approach is fully automated for
classes of acyclic networks constructed from basic xMAS primitives, and some manual input is
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required for cyclic xMAS networks or xMAS-like networks that use an extended set of primitives.
Further automating the stage graph construction for cyclic networks is a topic for future work. The
latency lemma approach is applied to several examples including an industry-inspired ring design,
and is shown to decrease runtime for proving latency bounds, while also decreasing the induction
depth needed to prove latency bounds.
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Part III

NoC Parameter Synthesis
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Chapter 7

Buffer Sizing

The quality of network-on-chip (NoC) designs depends crucially on the size of buffers. Buffers
impose a significant area and power overhead, but are essential for ensuring high throughput and
low latency. This chapter presents a new approach for minimizing the cumulative buffer size in on-
chip networks, so as to meet throughput and latency requirements, given high-level specifications
on traffic behavior. The overall approach is to use model checking based on satisfiability modulo
theories (SMT) solvers, within an overall counterexample-guided synthesis loop.

The work in this chapter was originally published in the 2011 Design Automation and Test in
Europe (DATE) conference [14]. The approach as presented in this chapter is identical to that
used in the published version, but the experimental results are expanded. This work makes use
of the traffic models introduced in Chapter 4.5. Contrary to Chapter 5 where the traffic models
are inferred from simulation, the traffic models in this chapter are assumed to be given a priori
as a specification. The traffic model is inconsequential to the buffer sizing technique that is the
contribution of this chapter, and the same technique can be applied with any traffic model or even
fully non-deterministic packet sources. The regulated traffic model is used only to create a more
interesting sizing problem, as fully-nondeterministic traffic leads to solutions with buffers that are
drastically over-provisioned for common use cases.

7.1 Introduction
Recall that an NoC architecture consists of a network of interconnected routers, where each router
communicates with neighboring routers and a processor core or a specialized IP block. Inter-node
communication is performed by the transmission of data packets through routers, where they are
typically stored in buffers. This chapter addresses a key problem in the design and implementation
of NoCs — the minimization of total buffer size while still guaranteeing a particular quality of
service.

Buffers play a critical role in NoC design: increasing the sizes of the buffers can significantly
reduce the average latency of packets and increase the throughput. However, even with scalable
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mesh architectures where routers only exchange data with their neighbors (e.g., [58]), the size of
the ingress buffer for each input channel has a serious impact on the area and power of an NoC
router design. For example, Hu and Marculescu [53] indicate that changing the buffer size at
each input channel from 2 words to 3 words will increase the overall network area by 30%. The
buffer sizing problem is further complicated by the heterogeneity of traffic patterns in NoCs. For
example, more buffers must be allocated in heavily loaded channels. Hence, a technique is needed
to judiciously allocate buffer capacity for each channel in accordance with a given traffic model
specification.

This chapter proposes a formal technique for minimizing the cumulative buffer size while meeting
design and performance constraints with respect to specified traffic models. Given a formal NoC
model, SMT-based model checking is used to find the minimal buffer sizes that guarantee some
throughput and latency for the specified traffic model. The approach is based on counterexample-
guided synthesis, where an SMT-based model checker is repeatedly invoked both for synthesizing
buffer sizes and for checking whether the synthesized buffer sizes guarantee the performance prop-
erty for specified traffic patterns. Buffer sizings found with this approach guarantee performance
for all traffic patterns that can be generated by a traffic model, without having to explicitly enu-
merate each one.

In summary, this chapter makes the following novel contributions:

1. Proposing a new SMT-based model checking technique, based on counterexample-guided
synthesis, for minimizing the cumulative buffer size in an NoC design.

2. Showing how a formal term-level approach can effectively model NoC designs and traffic
patterns.

3. Demonstrating the effectiveness of the buffer sizing technique on NoC designs involving
arbitration and credit logic.

4. Experimental evaluation comparing two different representations of symbolically-sized buffers.

This chapter is organized as follows. Section 7.2 describes the models used for NoC designs
and defines the buffer minimization problem. The SMT-based approach is given in Section 7.3.
Experimental results are presented in Section 7.4, related literature is reviewed in Section 7.5, and
Section 7.6 concludes.

7.2 Formal Model and Problem Definition
The approach in this chapter uses a network model N and a traffic model T . The network model
uses the router core from Chapter 4.3 and stateful and stateless xMAS primitives communicating
over channels. Let B represent the set of xMAS queue components in the model N . Recalling
that each xMAS buffer is parameterized by its depth, each buffer bi ∈ B has associated size,
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which is the number of entries that can be stored in it. However, as the task of this chapter is
to determine buffer sizes, the sizes are now symbolic constants, and the problem at hand is to
determine appropriate values for these constants.

Modeling Symbolic-Sized FIFOs
New to this chapter is the use of symbolically sized queues. Symbolically sized queues require only
a minor modification to the UCLID queue implementations presented in Chapter 4.2. Recall that
queues can be implemented using as the underlying storage mechanism either fixed-size circular
buffers (Sec. 4.2) or arbitrary-sized records (Sec. 4.2). Both options are explored in this chapter. In
each queue implementation, a bit-vector state variable keeps track of the number of items stored in
the queue. When this variable is equal to the size of the queue, the queue is said to be full, and trdy
on its input channel is de-asserted to block incoming flits until slots become free. Representing
the size of the queue with a symbolic constant instead of a specific constant causes the queue to be
symbolically sized.

Some care must be taken when using symbolically sized queues that are implemented as circular
buffers. The symbolic constant is restricted to taking values that are less than or equal to the phys-
ical size of the queue. Because the physical size of the queue is fixed in the model, an upper bound
on the symbolic queue sizes must be known in advance to ensure that the circular buffer is suffi-
ciently large. When bounded model checking is used, one conservative upper bound is the BMC
depth since no more than one packet can enter the queue each cycle, but often a more practical
smaller bound can be used. No such limitation exists in the record-base queue implementation,
which can store an arbitrary finite number of elements; using a 24-bit symbolic constant for size
limits the number of items stored to 224, but in practice the sizes used never approach this.

Traffic Model Specification
Traffic patterns for NoC designs vary widely depending on the environment in which the NoC is
being used. NoC designs used in multimedia applications usually experience more regular traffic
patterns. On the other hand, traffic patterns for NoC fabrics within CMP designs are less regu-
lar. It is not unreasonable to be concerned with NoC performance for specific classes of traffic
patterns [38].

The traffic model T used in the chapter for injecting traffic into the network follows the formula-
tion Sec. 4.5. Specifically, the constraints enforced by the traffic model in this chapter are:

• Every injected head flit is immediately followed by a tail flit in the next cycle. This is
enforced using a state machine similar to the one shown in Fig. 4.7, except lacking a state to
generate body flits.

• Token bucket rate constraints are enforced. The specific rate constraints vary according to
the experiment performed.
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A new twist on traffic models in this chapter is that counterexample traffic patterns are collected
and replayed later for use in synthesis. A counterexample traffic patterns is one generated by the
traffic model T that causes a property in network model N to fail. Each counterexample pattern
pi is therefore a sequence of packets transferred across the channels from T to N . Traffic model
T is removed when replaying the pattern pi, and instead the inputs to N in each cycle are assigned
the values from the pattern pi.

QoS Performance Properties
While the approach of this chapter can size buffers to meet any performance property that can be
formulated as a safety property, the properties considered here are latency and non-blocking.

A latency property, φlatency, is parameterized by a maximum number of cycles x allowed for packet
transit. Following the timestamp encoding of Section 4.4, property φlatency is true in the ith cycle
if and only if no buffer slot stores a flit that was injected into the network before time ni− x.

A non-blocking property, φnon−block, enforces that packets are never forced to wait at the interface
between the traffic model T and the network N . Property φnon−block is true if, for each channel
c from T to N , c.irdy =⇒ c.trdy. This property is defined by Chatterjee et al. [21].

A correct NoC must satisfy property φ (Eq. 7.1) in all reachable states. The overall property
φ can be considered a throughput specification, because φnon−block specifies that traffic is always
admitted into the network N , and φlatency specifies that all traffic to enter the network will also exit
the network (and does so within a given time bound, although this is not required for throughput).

φ := φlatency∧φnon−block (7.1)

SMT-based Buffer Sizing
Given a formal NoC model N with symbolically-sized queues as described in Sec. 7.2, a traffic
model T as described in Sec. 7.2, and a performance property φ as described in Sec. 7.2, the buffer
size synthesis problem is to compute a buffer sizing S such that the composition of the sized NoC
model and T satisfies φ .

A buffer sizing S is defined as a mapping from buffers to sizes S : B→ N, where S(bi) denotes
the size of buffer bi, and its cumulative size is denoted |S|= ∑bi∈B S(bi). An NoC N with buffer
sizing S is denoted N [S], and its composition with traffic model T is denoted N [S]‖T . Thus, a
correct sizing of an NoC is one that satisfies N [S]‖T � φ .

For a sized NoC N [S], N [S]‖T � φ is decided by SMT-based bounded model checking (BMC).
The need for SMT arises from the presence of symbolic variables in the composite model N [S]‖T ,
including non-deterministic choice variables used to model traffic patterns and abstract terms or
uninterpreted functions used to model packet content. Buffer synthesis is built upon the above
SMT-based verification method, and the next section presents the overall SMT-based technique for
optimal buffer size synthesis.
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7.3 The CEBUS Approach
The counterexample-guided buffer size synthesis (CEBUS) approach finds the minimum cumula-
tive buffer sizing S such that N [S]‖T � φ , and |S| is minimized among all possible solutions.

This is accomplished by iteratively solving two problems:

1. Buffer size verification (BSV): This step tries to find a traffic pattern p that is generated by T
and disproves N [S]‖T � φ , where S is computed in the previous BSS step, or is the initial
sizing S0. If such a traffic pattern p is found, it is added to a set P of patterns to be used for
synthesis by BSS.

2. Buffer size synthesis (BSS): For an NoC model N and a set of traffic patterns P generated
by T , this step computes a buffer sizing S that has minimal cumulative size |S| among all
solutions to N [S]‖P � φ . This sizing is only correct with respect to set of traffic patterns P;
it may or may not be correct with respect to the more general T , as T can generate many
more patterns than just those in P.

As shown in Fig. 7.1, the iterations between BSS and BSV continue until the process terminates
successfully upon finding a minimal buffer sizing that ensures correctness for all traffic patterns
that can be generated by T , or else terminates unsuccessfully by finding a set P of patterns for
which no sizing can ensure correctness.
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Figure 7.1: CEBUS Procedure for Optimal Buffer Size Synthesis. Starting with a candidate sizing Si

(or initial sizing S0), find a traffic pattern pi that is generated by T and causes N [Si]‖T 2 φ . Add this traffic pattern
pi to the set P of traffic patterns and move to the next iteration by incrementing i. Then find a buffer size assignment
Si such that N [Si]‖P � φ holds. Repeat BSV using using this new sizing Si, and continue iterating around the loop
until reaching a termination condition.
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Buffer Size Synthesis
The goal of buffer size synthesis (BSS) is to find a buffer sizing S such that |S| is minimum and
N [S]‖P � φ for a set of traffic patterns P that have been generated by T . BSS is broken down into
two steps, satisfiability and minimization. The satisfiability problem is referred to as BSS-SIZE
and the minimization problem is referred to as BSS.

BSS-SIZE (N ,P,size) is the problem of determining whether there exists a sizing S smaller than
size such that N [S]‖P � φ holds. More precisely, BSS-SIZE(N ,P,size) returns an S such that
N [S]‖P � φ ∧|S| ≤ size, if one exists; otherwise, it returns ⊥.

Solving BSS-SIZE only requires a satisfiability check (instead of checking a quantified Boolean
formula) because P is a finite set of traffic patterns. The SMT formula for this is constructed as the
conjunction of BMC unrollings with the patterns in P applied, where a common set of symbolic
constants serves as the buffer sizes across all the unrollings.

∃S.
∧

pi∈P

N [S]‖pi � φ (7.2)

A solution to BSS-SIZE, if one exists, is a buffer sizing S such that N [S]‖P � φ , but this S is
not necessarily the minimum solution. In order to find the minimum sizing S such that N [S]‖P �
φ , BSS performs a binary search over size using a sequence of calls to BSS-SIZE (N ,P,size).
Algorithm 3 shows pseudo code for BSS. Intermediate variables MinBu f Size and Bu f SizeLB keep
track of the minimum buffer size seen thus far where φ holds, and the maximum buffer size such
that ¬φ , respectively; these two variables bound the range to search for a minimal solution. The
BSS procedure terminates with MinBu f Size as the minimum cumulative buffer size. At this point,
MinBu f Size = Bu f SizeLB+ 1, and there does not exist an S smaller than MinBu f Size such that
N [S]‖P � φ .

Algorithm 3: Procedure BSS(N ,P,LB): Compute minimum cumulative buffer size for NoC
model N and set of traffic patterns P.

1: MinBu f Size←UB . UB is a known upper bound on optimal size
2: Bu f SizeLB← LB . LB is a lower bound on optimal size that is already ruled out
3: while Bu f SizeLB+1 6= MinBu f Size do
4: size← (MinBu f Size−Bu f SizeLB)/2+Bu f SizeLB
5: SRES← BSS-SIZE(N ,P,size) . check existence of sizing with size total slots
6: if SRES 6=⊥ then . found correct sizing, sizing is best result yet
7: S← |SRES|
8: MinBu f Size← |S|
9: else . no sizing exists using size total buffer slots

10: Bu f SizeLB← size
11: return S . optimal buffer sizing, all smaller sizes ruled out
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Buffer Size Verification
The solution to BSS provides a minimal buffer sizing S such that N [S]‖p� φ for all traffic patterns
p ∈ P, but this sizing may not ensure correctness for all p generated by T . Buffer size verification
(BSV) addresses this by checking whether T can generate a pattern p that disproves N [S]‖T � φ

BSV (N [S],T ) is the problem of determining whether N [S]‖T 2 φ . As noted earlier, this can
be solved as a BMC problem. A solution (satisfying assignment) to this problem is a traffic pattern
p generated by T that causes ¬φ . If BSV has no solution (returns⊥) then traffic model T cannot
generate a pattern for sized NoC N [S] that will cause φ to fail. If BSV has a solution, it produces
a traffic pattern as proof that the sized NoC is insufficient for meeting the performance property;
in this case, a new sizing will need to be synthesized.

Optimal Buffer Sizing
A procedure denoted CEBUS uses a combination of BSS and BSV to find the minimum cumula-
tive buffer size for NoC model N and traffic model T . Let S0 be the initial sizing with all buffers
minimum sized, except for network interface buffers which have size of 2 to enable storing both
flits of a packet. CEBUS begins by calling BSV (N [S0],T ) to generate from T a traffic pattern
p0 such that N [S0]‖T 2 φ . Create a set of patterns P with p0 as its only member. Then CEBUS
calls BSS (N ,P,|S0|) in order to obtain the minimum buffer sizing S1 such that N [S1]‖P � φ
holds. Then call BSV again to find a traffic pattern p1 to disprove the sizing S1. If one is found,
add p1 to P and repeat BSS to find S2. When performing synthesis for the second time, the buffer
sizes from the prior synthesis round (S1) are discarded, and only the total size (|S1|) is retained as
a lower size bound in the current synthesis round. This lower bound is retained across iterations
because any size that did not permit a solution in a previous iteration can not permit a solution
in the current iteration, on account of the set of patterns P in the current iteration being a super-
set of those in the previous iteration. The CEBUS loop continues to alternate between BSS and
BSV until terminating due to one of the following reasons: 1. BSS (N ,P,|Si−1|) returns⊥, which
means no buffer size exists for the current set of traffic patterns P; or 2. BSV (N [S],T ) returns
⊥, meaning that no traffic pattern exists that causes N [S]‖T 2 φ . Algorithm 4 gives the pseudo
code for this procedure.
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Algorithm 4: Procedure CEBUS (N ,T ): Compute the optimal buffer sizing for NoC model N
and traffic model T .

1: i← 0
2: S0← initial buffer sizes
3: P← /0 . set of patterns begins empty
4: while true do
5: pi← BSV(N [Si],T ) . check for traffic pattern that disproves candidate sizing Si
6: if pi 6=⊥ then
7: P← P∪ pi . new pattern to consider in subsequent rounds of synthesis
8: i← i+1
9: Si← BSS(N ,P, |Si−1|) . find optimal sizing for current set of patterns

10: if Si =⊥ then
11: return “failure, no buffer sizing exists” . @Si such that φ for all P
12: else
13: return “success, optimal sizing Si found” . @pi generated by T such that N [Si]∧¬φ

7.4 Experimental Buffer Sizing Results
Two case studies are performed to evaluate the CEBUS approach. The first is a small exam-
ple of credit-based flow control. The larger second example is credited flow control through a
chip-multiprocessor (CMP) router. Each example verifies the performance properties described in
Section 7.2. Network and traffic models are created in UCLID [1] using the ATLAS [13] system
to manage and flatten hierarchy. The UCLID verifier performs bounded-model checking within
the CEBUS loop, using its internal SMT solver with the MiniSat SAT solver [43] as a back end.
Experiments are run on a Linux workstation with 64-bit 3.0 GHz Xeon processors and 2 GB of
RAM.

Figure 7.2: Modeling Element for Non-pipelined Delay. This modeling element is used to implement a
delay on the token return path in buffer sizing experiments.

Credit Logic
A first experimental evaluation of CEBUS is performed on credit logic. Credit logic is a common
NoC design pattern used to control channel usage within a router, as was introduced in Chapter 6.
The credit logic used in buffer sizing experiments is shown in Fig. 7.3. A master router uses
credited flow control to send flits to a target router. The master can only send flits when one or
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more tokens are stored in the available tokens queue denoted by b2, and one or more slots are free
in the ingress queue denoted by b3. A non-pipelined delay of 7 cycles (implemented as in Fig. 7.2)
is added to the channel on which tokens are returned from target to master.

T 

ingress 
(b3) 

outstanding 
credits  
(b1) 

available 
tokens  
(b2) 
 

Master 
Agent 

Target 
Agent 

7 

network 
interface 
(b0) 
 

N 

Figure 7.3: Credit Logic Model for Buffer Sizing Experiment. This example models credit-logic
commonly used in NoCs. The formal network model N includes a master and target agent, with the the four buffers
being sized labelled. A 7 cycle delay element, depicted here by a circle but implemented as in Fig. 7.2, is added to
the token return path. Traffic model T injects data into the network. The channel from T to N is specified as a
non-blocking channel.

The setup for the credit logic experiment is as follows. The traffic model T implements token
bucket regulation as in Fig. 4.8a, with parameters (σ ,ρ) = (2,9), and the latency bound checked
in property φ is 8 cycles. In the initial state of BMC, the network interface and ingress queues are
empty, and the available tokens and outstanding credits queues are filled with tokens. The traffic
model allows a burst of up to 2 packets (4 flits) to be sent. Because it takes 7 cycles for a token to
be returned and the latency bound is 8 cycles, the latency property φlatency will be violated if each
flit must wait for the returned token from the previous flit. The non-blocking property φnon−block
disallows any solutions that would achieve low latency by blocking injections from T when tokens
are not available. Upsizing the buffers ensures that flits do not need to wait too long for tokens,
and furthermore ensures that flits will never be blocked at the input.

Table 7.1 and Table 7.2 present the SAT problem sizes and UCLID runtimes for each iteration
of the CEBUS loop on the credit loop model; Table 7.1 uses the circular buffer implementation
of queues (Sec. 4.2) and Table 7.2 uses the record-based implementation (Sec. 4.2). The overall
trends are the same across the two queue implementation styles. The size of the SAT problem for
solving BSS increases with CEBUS iterations as the set P of traffic patterns grows, while the size
of the SAT problem for solving BSV is the same for all iterations. The runtime for BSV increases
at later iterations of the CEBUS loop, because there are fewer traffic patterns that can violate the
buffer sizes, as the sizes are already checked in synthesis against numerous challenging patterns.
It is likely insignificant that CEBUS required one extra iteration to converge in the record-based
queue implementation. While it is not possible to find the same sizing on different iterations of the
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CEBUS loop, it is possible to find different sizings with the same total number of buffer slots. This
occurs in iterations 2 and 3 in Tab. 7.1.

i
Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)

|Si| CNF Size Runtime (sec) CNF Size Runtime (sec)
Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

0 - - - - - - - 73k 220k 0.6 17.4 0.8 18.8
1 5 43k 130k 0.7 9.7 1.7 12.0 73k 220k 3.4 17.3 0.8 21.5
2 11 74k 223k 0.9 19.1 1.8 21.9 73k 220k 2.2 17.2 0.8 20.2
3 11 98k 294k 1.3 24.2 4.7 30.3 73k 220k 1.9 17.3 0.8 19.9
4 12 133k 399k 1.9 34.1 7.0 42.9 73k 220k 3.7 17.4 0.8 21.9
5 13 179k 538k 3.7 44.6 10.2 58.5 73k 220k 3.5 17.4 0.8 21.6
6 14 210k 630k 4.4 54.0 13.9 72.3 73k 220k 8.3 17.3 0.8 26.4

Table 7.1: Credit Loop Buffer Sizing Results using Circular Buffer Queue Style. On each
iteration i of the CEBUS loop, BSS uses a sequence of calls to BSS-SIZE in order to find the minimal sizing S that
is correct for all patterns in set P, and BSV finds a counterexample traffic pattern that demonstrates N [S]‖T 2 φ .
The column headings are as follows: i is the iteration number for the CEBUS loop; |Si| is the minimum cumulative
buffer size found by BSS in iteration i; Vars and Clauses represent the number of variables and CNF clauses in the
corresponding SAT problem(s); SAT is the time spent in satisfiability solving; Enc is the time taken encoding the word-
level input to CNF; SSim is the time taken by symbolic simulation; Total is the overall time spent in the respective
iteration. Note that the problem sizes and runtimes for BSS are the average problem sizes over all the sizes tried in the
binary search for finding the minimal size.

i
Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)

|Si| CNF Size Runtime (sec) CNF Size Runtime (sec)
Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

0 - - - - - - - 69k 206k 0.6 11.4 7.5 19.5
1 5 37k 113k 0.2 5.9 2.2 8.3 69k 206k 0.4 11.5 7.5 19.4
2 6 54k 161k 0.4 8.0 6.3 14.7 69k 206k 1.4 11.3 7.5 20.2
3 7 88k 265k 1.3 13.0 13.6 27.9 69k 206k 3.0 11.5 7.5 22.1
4 11 109k 328k 1.6 16.9 25.1 43.7 69k 206k 0.7 11.4 7.5 19.7
5 13 134k 404k 2.7 22.4 41.1 66.2 69k 206k 2.9 11.4 7.5 21.9
6 13 180k 540k 3.3 27.9 63.7 94.9 69k 206k 4.1 11.5 7.5 23.1
7 14 212k 636k 4.1 33.2 90.0 127.3 69k 206k 9.0 11.5 7.5 28.0

Table 7.2: Credit Loop Buffer Sizing Results using Record-based Queue Style. See caption of
Table 7.1 for explanation of column headings.
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Chip Multiprocessor Router
This second buffer sizing case study is a model of a chip-multiprocessor (CMP) router based on a
design by Peh [81]. This CMP design is designed to be part of an on-chip communication fabric for
connecting processors, memories, and other IP blocks to one another. Credited flow control is used
for communication between each router and its neighbors. This experiment considers interactions
between the three routers R1, R9 and R17, as shown in Fig. 7.4. The parts of the three routers
that are modeled are described here and shown in Fig. 7.4b. For each router, the 5-input, 5-output
router core is modeled as described in detail in Sec. 4.3, but the unused ports are removed from the
router core. The credit logic connecting the north output of R1 to the south input of R9 is modeled,
as is the credit logic connecting the south output of R17 to the north input of R9. The token return
path in each credit loop has a 5-cycle non-pipelined delay added.

Experiments are performed using BMC with a depth of 22. As in the credit logic example, all flit
queues are empty in the initial state of BMC, and token queues are filled. Property φ checks that
the two channels from the traffic model are non-blocking, and checks a latency bound of 8 cycles.

Traffic model T injects flits into the network interface buffers of R1 and R17. The traffic model
imposes that head flits injected into the network interface of R1 obeys token bucket regulation
with (σ ,ρ) = (1,7), and that head flits injected into network interface of R17 obey (σ ,ρ) = (1,9)
regulation. An additional constraint enforces that no more than 3 packets (6 flits) are injected
during any execution. Since the two sources can cause contention by routing packets to the same
destination, the choice of destination addresses in the traffic model now matters. The destination
addresses of head flits are generated from uninterpreted functions.

Discussion of BSV and BSS Runtimes

Table 7.3 and Table 7.4 show the problem sizes and runtimes for the CMP router buffer sizing
experiments; Table 7.3 uses the circular-buffer queue implementation style, and Table 7.4 uses the
record-based implementation style. Interesting contrasts are drawn between the BSS and BSV
problems based on these results:

• The size of the BSS problem grows linearly with the number of patterns that are used in
synthesis; this is observed in the roughly linear increase in the number of CNF clauses
and variables, and the decision procedure encoding and symbolic simulation time. This is
expected, as each new pattern requires an additional unrolling of the model transition relation
for 22 cycles (the BMC depth) from the initial state. However, the large SAT problems that
arise from BSS at later CEBUS iterations are not especially hard for the solver, and the SAT
solving runtime is a minor contributor to the overall runtime.

• The size of the BSV problem is unchanged at each iteration of the CEBUS loop as the
BSV problem is always just to disprove a single candidate buffer size. However, finding a
counterexample is increasingly difficult as CEBUS progress. Very carefully crafted patterns
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(b) Detailed View of network model N being fed by traffic model T

Figure 7.4: CMP Network Model for Buffer Sizing Experiment. Fig. 7.4a shows high level view
of network model, which is basically a subset of larger mesh (e.g. as shown in Fig. 5.1). Traffic is injected on the
network interface ports of R17 and R1 as indicated by the bold arrows. Only routers R1,R9, and R17 are modeled in
detail in N . Fig. 7.4b shows detailed view of the three routers modeled in N , and shows the eight buffers that are
being sized in experiments. Traffic model T injects traffic into N , and the two channels from T to N are specified
as non-blocking.

are necessary to disprove a sizing at later iterations. This is seen in Tab. 7.5, where the final1

BSV counterexample traffic pattern p10 has all traffic being sent to the same destination, and
all traffic injected in a single burst. By contrast, the first pattern in Tab. 7.5 appears quite
unexceptional, and was discovered quickly by the sat solver.

The CMP buffer sizing experiment also provides a good point of comparison for circular-buffer
(Table 7.3) and record-based (Table 7.4) implementations of symbolically sized queues. The prob-
lem sizes using each implementation are similar in terms of the number of SAT variables and
CNF clauses. However, the symbolic simulation runtimes are 1 to 2 orders of magnitude slower
when using the record implementation, while the decision procedure encoding is marginally faster.
Overall, the circular buffer implementation appears to be more scalable in this experiment.

1Note that BSV in the 11th and final CEBUS iteration does not produce a counterexample because the candidate
sizing (S11) is verified as correct, meaning that no pattern can be found to disprove it.
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i
Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)

|Si| CNF Size Runtime (sec) CNF Size Runtime (sec)
Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

0 - - - - - - - 180k 540k 2.4 41.7 1.8 46.0
1 10 78k 235k 1.3 18.7 3.0 23.1 180k 540k 6.7 41.6 1.8 50.2
2 12 118k 354k 1.6 29.5 7.2 38.4 180k 540k 1.4 41.6 1.8 44.9
3 14 209k 626k 3.3 56.1 11.3 70.7 180k 540k 5.0 41.4 1.8 48.3
4 15 253k 760k 3.5 76.6 13.1 93.3 180k 540k 5.9 41.3 1.8 49.0
5 15 288k 865k 5.2 83.8 23.1 112.2 180k 540k 8.6 41.6 1.8 52.1
6 16 372k 1116k 7.8 108.6 30.8 147.3 180k 540k 9.1 41.6 1.8 52.6
7 18 434k 1303k 9.5 133.3 41.8 184.7 180k 540k 73.8 41.7 1.8 117.3
8 19 486k 1459k 14.4 152.3 50.8 217.6 180k 540k 43.8 41.8 1.8 87.4
9 20 525k 1577k 16.3 172.5 61.6 250.6 180k 540k 40.4 41.5 1.8 83.8

10 21 578k 1735k 13.5 209.5 65.7 288.8 180k 540k 16.9 41.6 1.8 60.3
11 21 646k 1937k 20.1 203.6 88.6 312.4 180k 540k 113.4 41.6 1.8 156.8

Table 7.3: CMP Buffer Sizing Results using Circular Buffer Queue Style. See caption of Table 7.1
for explanation of column headings.

Discussion of BSS and BSV Counterexamples

In the CEBUS experiments using circular-buffer implementations of queues (Tab. 7.3) applied to
the CMP router, each call to BSS or BSV returns a counterexample until a termination condition
is reached. The counterexamples in BSV are traffic patterns that cause a property to fail, and the
counterexamples in BSS are buffer sizes that prevent properties from failing.

Each failed verification attempt in BSV returns as a counterexample a traffic pattern for which a
candidate buffer size is inadequate. For the ith iteration of the CEBUS loop, this counterexample
pattern is denoted pi. The counterexamples for the first 10 candidate sizes are shown in Table 7.5;
the 11th candidate size (S11) is successfully verified, as no pattern can be generated by traffic
model T to disprove it. As more iterations of the CEBUS loop are completed, the traffic patterns
become increasingly adversarial. The final counterexample traffic pattern, p10 in the 10th iteration,
overwhelms the network by sending the global maximum of 3 packets in a single burst and all
having the same destination. The packets are sent starting in the 7th cycle and not at the start of the
pattern, because the traffic model for the source of R1 has a token bucket that is replenished by a
periodic token source in the 8th cycle (See Chapter 4.5). By starting the burst in the 7th cycle, the
token bucket is reloaded while the tail flit of the first packet is injected, allowing the head flit of a
second packet to follow immediately.

The minimal buffer sizing (Si) at each iteration i of the CEBUS loop is given in Tab. 7.6. A signif-
icant fact to note is that individual buffer sizes do not monotonically increase over the iterations.
This is allowed because buffer size assignments are not retained from one iteration to the next. In-
stead, only the total buffer sizing (|Si|) is retained, and is used as a lower bound for BSS in future
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i
Buffer-Size Synthesis (BSS) Buffer-Size Verification (BSV)

|Si| CNF Size Runtime (sec) CNF Size Runtime (sec)
Vars Clauses SAT Enc SSim Total Vars Clauses SAT Enc SSim Total

0 - - - - - - - 173k 520k 2.4 29.1 65.2 96.9
1 10 54k 164k 1.1 8.4 10.8 20.4 173k 520k 2.0 29.3 65.2 96.6
2 12 79k 237k 2.2 12.8 43.6 58.7 173k 520k 2.4 29.1 65.3 96.9
3 14 149k 449k 5.3 24.4 90.5 120.3 173k 520k 7.1 29.3 65.4 101.9
4 15 183k 549k 6.5 28.7 159.4 194.7 173k 520k 7.4 28.9 65.0 101.3
5 15 235k 706k 9.8 39.4 264.5 313.7 173k 520k 22.7 29.6 65.3 117.7
6 16 278k 834k 10.2 49.0 398.2 457.4 173k 520k 78.4 29.5 65.3 173.2
7 17 334k 1002k 15.1 60.3 541.9 617.4 173k 520k 52.8 29.3 65.4 147.6
8 19 371k 1114k 17.7 65.3 805.3 888.4 173k 520k 135.1 29.1 65.2 229.5
9 19 427k 1282k 20.4 75.1 1067.1 1162.8 173k 520k 161.3 29.4 65.4 256.2

10 21 468k 1424k 23.1 84.5 1301.9 1409.5 173k 520k 230.7 29.8 65.2 325.8
11 21 503k 1593k 27.8 89.3 1567.4 1684.6 173k 520k 393.4 29.6 65.2 488.2

Table 7.4: CMP Buffer Sizing Results using Record-based Queue Style. See caption of Table 7.1
for explanation of column headings.

iterations.

7.5 Related Work
The problem of buffer minimization has been widely studied in the digital signal processing (DSP)
community. Synchronous dataflow (SDF) models [64] in particular are used to reason about the
minimum buffer size required for a feasible schedule to exist in order for the model to be deadlock-
free and to conform to timing constraints [98]. In general, this buffer minimization problem is
NP-complete [5].

Various techniques have been applied to address the NP-completeness. Poplavko et al. [85] use
an SDF model of an NoC to perform timing analysis and for rate-optimal buffer sizing. Geilen et
al. [46] use model checking to determine whether there exists a buffer sizing smaller than some
bound that admits a deadlock-free schedule; the minimal sizing is found using iterated calls to the
model checker. Stuijk et al. [98] present a dynamic programming algorithm that generates a set
of candidate buffer sizings that is guaranteed to contain all Pareto-optimal points in the buffer-size
versus throughput space; the Pareto-optimal points among the set are then found by self-timed
simulation. Wiggers et al. [106] approximate minimal buffer sizing for a given throughput using a
network-flow formulation, but the closeness of approximation is not bounded.

SDF can model only a limited class of NoCs. Assumptions of periodic sources and data-independent
routing make SDFs well-suited to modeling multimedia NoCs, but not for general-purpose chip
multiprocessor (CMP) NoCs. In a CMP, the injected traffic at each node can vary in burst size,
have irregular periods, and choose destinations non-uniformly over time. Additionally, due to
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traffic
node

Cycle
pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

p0
1 H1 T H1 T

17 H9 T

p1
1 H8 T

17 H0 T H0

p2
1 H1 T H0 T

17

p3
1 H9 T

17 H9 T H9 T

p4
1

17 H9 T H9 T

p5
1 H16 T H16

17 H0 T

p6
1 H9 T H9 T

17 H0 T

p7
1 H9 T H9 T

17 H9 T

p8
1 H9 T

17 H17 T H9 T

p9
1 H1 T H9 T

17 H9 T

p10
1 H9 T H9 T

17 H9 T

Table 7.5: Counterexample Traffic Patterns from BSV in CEBUS on CMP Design. On each
iteration i, BSV disproves a candidate size by generating from the traffic model T a pattern pi that causes a property
to fail. Some of the traffic patterns are shorter than the 22 cycle BMC depth; in these patterns a property fails before
the 22nd cycle of BMC. The subscript of each head flit is its destination address. These patterns are produced in
experiments using the circular buffer queue implementation, corresponding to the results shown in Tab. 7.3

the lack of support for conditionals, SDFs are not expressive enough to model NoC designs with
detailed routing and arbitrary logic.

Thus, analysis of general-purpose CMPs is typically based on simulation or probabilistic reason-
ing. Using a trace-driven approach, Kahng et al. [55] show that sizing buffers without considering
burstiness can cause significant error in maximum latency prediction. Using network analysis, in-
jected traffic with bounded burstiness leads to bounds on required buffer sizes [31][32]. Stochastic
automata networks (SAN) [83] have also been used to model network traffic in SoCs [68]. While
SANs allow for efficient reasoning about average case results, they are not suitable for worst-
case analysis. Addressing limitations in the probabilistic analysis of stochastic models, adversarial
queuing theory has been proposed [11]. If traffic injection is modeled as a Poisson distribution,
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i
Buffer size assignment S |S|

S(b0) S(b1) S(b2) S(b3) S(b4) S(b5) S(b6) S(b7)

0 2 1 1 1 2 1 1 1 10
1 1 1 1 1 2 2 3 1 12
2 2 1 2 1 2 2 3 1 14
3 2 1 2 1 3 2 3 1 15
4 2 1 2 1 2 2 3 2 15
5 2 1 2 1 2 2 4 2 16
6 3 1 2 1 2 2 4 2 17
7 2 2 3 2 3 2 4 1 19
8 3 2 3 1 2 2 4 2 19
9 2 3 4 2 3 2 4 1 21

10 2 3 4 2 2 2 4 2 21

Table 7.6: Buffer Sizes Produced by BSS in CEBUS for CMP Design. On each iteration i, BSS
produces a size that causes property to be satisfied. Each buffer bi corresponds to the ones shown in Fig. 7.4b. These
results are from the CMP experiment using the circular buffer queue implementation, corresponding to the results
shown in Tab. 7.3.

queuing theory provides a closed form solution to find the buffers most likely to be full [53]. For
the same total buffer budget, increasing the size of these oft-used buffers has a better impact on
latency than uniformly upsizing [53].

The approach of this chapter attempts to find some middle ground between limitations of SDF
and the lack of guarantees from simulation-based approach. In particular, the following features
differentiate this chapter’s approach from the rest:

• Reasoning about NoC models occurs at the micro-architectural level. This means that in-
stead of characterizing the network with routing probability at each node, the routing logic
of each router is modeled exactly, with sufficient details of its control flow. This level of
abstraction is similar to the Boolean Data Flow (BDF) model, while buffer minimization is
more commonly investigated for the less expressive SDF model.

• An SMT-based approach for determining the minimum buffer capacity for a NoC that satis-
fies the performance properties.

The counterexample-guided approach has been used before, for computing abstract models [28]
and for program synthesis [95]. The work described in this chapter is the first to adapt this method-
ology for synthesizing buffer sizes in NoC designs.
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7.6 Conclusion
This chapter presents a novel approach for minimizing the cumulative buffer size in on-chip net-
works, so as to meet throughput and latency requirements, given high-level specifications on traf-
fic behavior. The approach uses model checking based on satisfiability modulo theories (SMT)
solvers, within an overall counterexample-guided synthesis loop. Experimental results on models
of NoC components show the promise of the proposed technique. While this chapter has focused
on using quantifier instantiation to resolve quantifier alternation, an alternative approach to con-
sider would be using the same modeling technique with a QBF solver to address the alternating
quantifiers in a single monolithic solver call.

The ability to a give a formal guarantee of QoS for a buffer is a unique contribution compared to
prior works, yet the approach may not scale up to problems that contain more than a few tens of
queues, or problems with large latency bounds that can only be checked with a deep BMC. In such
a problem, not only does the size of the problem grow, but the number of iterations of the CEBUS
loop is also likely to grow.
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Chapter 8

Conclusions and Future Work

This dissertation presents work toward formal verification and synthesis of on-chip networks for
satisfying performance properties. An overarching theme that ties the chapters together is verifying
latency bound properties with model checking. The two applications presented for model checking
latency properties are latency verification, and synthesis of optimal buffer sizes while ensuring that
latency bounds are satisfied.

The main challenges that are addressed throughout this dissertation are the creation of appropriate
models, and techniques for scalable model checking. Both challenges arise from the scale of
the problems of interest, where a model may contain many thousands of state variables, and the
latency properties being checked can be hundreds or even thousands of cycles. Techniques are
given for using simple sequential models that are expressive enough for model checking of latency
properties, while significantly less complex than the arbitrary RTL that typically describes NoCs.
Domain-specific techniques for scalable model checking are also given, based on both SAT solving
and SMT solving.

Chapter 4 presents the modeling approach, based on the xMAS formalism developed by Chatterjee
et al. [22]. Network models in xMAS resemble a simplified RTL with unnecessary details hidden,
and are created as compositions of a set of simple xMAS primitives. The xMAS models in this
dissertation are modified to be amenable to latency verification. Furthermore, it is shown that
xMAS can be used to describe traffic models in addition to network models. The models in this
dissertation are created by hand, and a useful direction for future work is to explore automatic
generation of xMAS models from arbitrary RTL. If this is not possible, then it may be useful to
formally check latency equivalence of the original RTL and its hand-crafted xMAS representation.

Chapter 5 presents the first of two approaches for compositional latency verification. This approach
reduces both the number of variables, and the number of unrollings of the model transition relation,
by decomposing the model and the latency property along router boundaries. To allow the overall
network model to be decomposed into individual routers, inferred traffic models serve as interface
specifications between the routers. A promising direction for future work is using the inferred
traffic models for diagnosing the root causes of large latencies on new benchmarks. Whenever



112

the latency induced by a new benchmark exceeds the latency proved using models inferred from
previous benchmarks, then the new benchmark must cause one or more of the traffic models to be
violated, and the model that is violated indicates the root cause of the high latency.

Chapter 6 presents the second of two approaches for compositional latency verification. This
approach keeps the model and property whole, but strengthens the property using latency lemmas.
The latency lemmas allow the property to be proved inductively, reducing the number of unrollings
required, and achieving scalability. This approach produces very promising results, and is able to
verify a 79 cycle bound on an 8-agent ring interconnection network with more than two orders
of magnitude speedup over alternative approaches. As the generation of latency lemmas is not
automated for all possible xMAS networks, future work building upon this chapter could consider
further automating the generation of latency lemmas.

Chapter 7 presents an approach for optimal sizing of buffers while ensuring that performance
properties are met. A counterexample-guided approach is used to iteratively generate and then
verify or disprove candidate buffer sizes.

The challenging model checking problems generated in this dissertation are being used as solver
benchmark problems. The SMT problems from Chapter 5 were submitted in SMT-LIB format
for inclusion in SMT-COMP 1. The aiger files from Chapter 6 were submitted for inclusion in the
hardware model checking competition 2. The UCLID problems from Chapter 7 are being used
internally within Sanjit Seshia’s research group at UC Berkeley.

1http://www.smtcomp.org
2fmv.jku.at/hwmcc/
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