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A B S T R A C T

Neurofibromatosis type 1 (NF1) is a common single gene disorder resulting in multi-organ involvement. In
addition to physical manifestations such as characteristic pigmentary changes, nerve sheath tumors, and skeletal
abnormalities, NF1 is also associated with increased rates of learning disabilities, attention deficit hyperactivity
disorder, and autism spectrum disorder. While there are established NF1-related structural brain anomalies,
including brain overgrowth and white matter disruptions, little is known regarding patterns of functional con-
nectivity in NF1. Here, we sought to investigate functional network connectivity (FNC) in a well-characterized
sample of NF1 participants (n=30) vs. age- and sex-matched healthy controls (n= 30). We conducted a
comprehensive investigation of both static as well as dynamic FNC and meta-state analysis, a novel approach to
examine higher-dimensional temporal dynamism of whole-brain connectivity.

We found that static FNC of the cognitive control domain is altered in NF1 participants. Specifically, con-
nectivity between anterior cognitive control areas and the cerebellum is decreased, whereas connectivity within
the cognitive control domain is increased in NF1 participants relative to healthy controls. These alterations are
independent of IQ.

Dynamic FNC analysis revealed that NF1 participants spent more time in a state characterized by whole-brain
hypoconnectivity relative to healthy controls. However, connectivity strength of dynamic states did not differ
between NF1 participants and healthy controls.

NF1 participants exhibited also reduced higher-dimensional dynamism of whole-brain connectivity, sug-
gesting that temporal fluctuations of FNC are reduced. Given that similar findings have been observed in in-
dividuals with schizophrenia, higher occurrence of hypoconnected dynamic states and reduced temporal dy-
namism may be more general indicators of global brain dysfunction and not specific to either disorder.

1. Introduction

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic
disorder caused by a mutation in the neurofibromin gene on chromo-
some 17q11.2. This tumor suppressor gene mediates cellular signaling
pathways controlling cell growth (Gutmann et al.,1991), and thus
mutations in this gene lead to growth of the eponymous neurofibromas,
benign tumors deriving from the nerve sheaths of peripheral and spinal
nerves. However, individuals with NF1 also have an increased risk of
developing malignancies, and life expectancy is reduced (see (Gutmann
et al., 2017) for an excellent primer on NF1). In addition to neurofi-
bromas, other diagnostic criteria include café-au-lait macules, axillary

or groin freckling, optic pathway gliomas, iris hamartomas, bone dys-
plasia, and having a first degree relative with NF1. Clinical presentation
varies widely between individuals, and the disorder progresses
throughout the life span.

In addition to these diverse symptoms that affect multiple organ
systems, NF1 is also associated with increased rates of learning dis-
abilities, attention deficit hyperactivity disorder (ADHD, (Hyman et al.,
2005; Lidzba et al., 2012)), and autism spectrum disorder (ASD,
(Chisholm et al., 2018; Garg et al., 2013)). Because of its single gene
etiology, NF1 is a valuable model to study neural underpinnings of
these neurodevelopmental disorders by means of functional and struc-
tural magnetic resonance imaging (MRI). Overall, gray and white
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matter volumes are increased in NF1 participants; applying diffusion
tensor imaging to study white matter microstructural changes in NF1
individuals, it has been shown that integrity of white matter fiber tracts
is disrupted, most prominently in the frontal lobe (Karlsgodt et al.,
2012). While structural connectivity can be viewed as the physical
backbone of functional connectivity, these modalities yield com-
plementary information (Damoiseaux and Greicius, 2009; Honey et al.,
2009; Skudlarski et al., 2008; van den Heuvel et al., 2009).

With regard to functional connectivity in NF1, most commonly as-
sessed during resting-state functional MRI (rs-fMRI), few studies have
been published to date. A pharmacologic intervention study in 7 chil-
dren with NF1 tested the effects of lovastatin, an inhibitor of the Ras
signaling pathway (Costa et al., 2002), on functional connectivity
within the default mode network (DMN) (Chabernaud et al., 2012).
Long-range anterior-posterior connectivity of the DMN increased and
therefore appeared to ‘normalize’ under treatment with lovastatin, al-
though the absence of a control group makes interpretation of these
findings difficult. Applying a novel graph theoretic approach, Tomson
et al. replicated these findings of reduced long-range anterior-posterior
connectivity in adolescent and adult participants with NF1 relative to
healthy controls (Tomson et al., 2015). Specifically, this study found
that the anterior brain regions identified in their study belonged to the
cognitive control domain, a functional network facilitating higher ex-
ecutive functions such as response inhibition, performance monitoring,
and working memory (Luna et al., 2015).

Given recent evidence that functional connectivity is not static over
the course of a typical rs-fMRI scan (Allen et al., 2012a; Hutchison
et al., 2013b; Matsui et al., 2018), we sought to complement these
traditional methods by capturing patterns of dynamic functional net-
work connectivity (FNC) to characterize variation across the resting
scan (Calhoun et al., 2001; Calhoun and Adali, 2012; Erhardt et al.,
2011), utilizing the same sample as in Tomson et al. Additionally, in
order to yield a comprehensive overview of resting FNC in NF1 we
conducted a meta-state analysis (Miller et al., 2016), a novel method to
investigate temporal fluctuations of whole-brain connectivity, thereby
yielding information about the dynamic fluidity and range of whole-
brain connectivity in each individual. Whereas dynamic FNC follows a
‘hard-clustering’ approach, where connectivity captured in time win-
dows is assigned to the one dynamic state it shows highest similarity
with, the meta-state approach allows for dynamic states to overlap in
time by creating a higher-dimensional state space. Further, we con-
ducted post hoc analyses to investigate whether observed functional
connectivity patterns were mediated by IQ or ADHD diagnosis.

2. Material & methods

2.1. Participants

Thirty individuals diagnosed with NF1 were recruited for this study
from the greater Los Angeles area, via Institutional Review Board (IRB)-
approved advertisements at the University of California, Los Angeles
(UCLA) and other local medical centers. Data from 30 age- and sex-
matched individuals were gathered from a pool of healthy study par-
ticipants (Poldrack et al., 2016). All study participants provided in-
formed written consent after study procedures were fully explained,
according to approval from the IRB at UCLA. All participants were
determined to meet criteria for NF1 based on the diagnostic criteria
specified by the National Institutes of Health Consensus Development
Conference through a physical examination and a clinical interview by
a physician familiar with the disorder (TR).

The Structured Clinical Interview for DSM IV (First et al., 2002) was
administered to healthy control participants in order to rule out any
major mental illness. General exclusion criteria encompassed sig-
nificant substance use in the last 6 months, a history of head injury,
IQ < 70, and insufficient fluency in English. Demographic information
of the sample is provided in Table 1.

2.2. Clinical assessment

The Wechsler Abbreviated Scale of Intelligence was administered to
all participants to estimate Full-Scale IQ (Wechsler, 1999). In order to
assess ADHD symptomatology, the Child Behavioral Checklist (CBCL,
(Achenbach, 1991)) was administered to participants younger than
18 years whereas older participants completed the Adult ADHD Self-
Report Scale (ASRS, (Kessler et al., 2005)). For the CBCL, we applied a
suggested cut-off score of 60 (‘borderline’) on the Attention Problems
Scale (Roessner et al., 2007) to identify individuals with probable
ADHD. For the ASRS, the cut-off was 4 points, i.e. one point for items
1–3 if the item score is≥ 2 and one point for items 4–6 if the item score
is ≥ 3 (Adler et al., 2006; Kessler et al., 2007, 2005). In total, 11 in-
dividuals with NF1 were flagged as having probable ADHD vs. 4
healthy participants (Table 1).

2.3. Magnetic resonance imaging data acquisition

Protocols for the rs-fMRI scans were identical for all participants,
and all scans were acquired with identical 3T Siemens Tim Trio mag-
nets with identical software. Eyes-open resting state scans were ac-
quired over 5min (152 volumes, voxel size 3× 3×4mm, repetition
time (TR)= 2 s, echo time (TE)= 30ms, flip angle 90 degrees, field-of-
view (FOV) 192mm2, matrix size 64× 64). Individuals were either
scanned at the Ahmanson-Lovelace Brain Mapping Center or at the
Staglin Center for Cognitive Neuroscience both located at UCLA (see
Supplementary Material for details); effects of scanner site were re-
gressed out prior to statistical analyses.

A T1-weighted MPRAGE high-resolution structural scan was col-
lected from each participant which was used to co-register functional
scans during the pre-processing step (sequence details: voxel size
1×1×1.2mm, TR=2.3 s, TE= 2.89ms, flip angle 9 degrees, FOV
256mm2).

Structural images were inspected for structural abnormalities prior
to the analysis of resting state scans by a clinician experienced with NF1
(TR). To further investigate gray matter morphology differences be-
tween the two groups, we performed a Freesurfer (http://surfer.nmr.
mgh.harvard.edu/) analysis of surface area, cortical thickness, and
volume (see Supplementary material).

2.4. Resting state fMRI pre-processing

A combination of FMRIB Software Library (FSL; https://fsl.fmrib.ox.
ac.uk/fsl) and Analysis of Functional NeuroImages (AFNI; https://afni.
nimh.nih.gov) tools were utilized for the preprocessing of rs-fMRI data.
The first four volumes were discarded in order to allow for equilibration
effects. Slice time correction was applied in order to correct for ac-
quisition offset between slices. Images were reoriented and FSL Motion
Correction Linear Image Registration Tool (MCFLIRT, (Jenkinson et al.,
2002)) was used for motion correction and co-registration into MNI
standard space. Skull stripping was performed and images were spa-
tially smoothed with a 5mm full-width at half-maximum (FWHM)
kernel.

Table 1
Demographics.

Healthy controls NF 1 p-value

Age (mean, SD, range) 25.5 (11.1); 10–45 27.1 (12.1); 10–46 0.6
Sex, N (% female) 14 (47) 18 (60) 0.3
Full Scale IQ, mean (SD) 113 (19.1) 97 (12.6) <0.001
ADHD flag, N (%) 4+ (13.3) 11 (36.7) 0.06
Motion, mean, in mm (SD) 0.27 (0.21) 0.16 (0.31) 0.19

NF1 – neurofibromatosis type 1; SD – standard deviation; ADHD – attention
deficit hyperactivity disorder.

+ Data not available for 3 participants.
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Analysis of the association between age and mean frame-wise dis-
placement can be found in the supplementary material.

3. Functional network connectivity analysis

3.1. Group Independent Component Analysis (ICA)

We used the Group ICA fMRI toolbox (GIFT, http://mialab.mrn.org/
software/gift) to perform spatial group independent component ana-
lysis (ICA) with a high model order of n=100 (Calhoun et al., 2001;
Calhoun and Adali, 2012). Spatial group ICA decomposes the rs-fMRI
data into spatially independent components. First, two data reduction
steps are implemented, applying principal component analysis (PCA):
(1) for each subject the number of time points was reduced from 148 to
120 principal components, and (2) subject-wise reduced data were
concatenated across the entire group and were further reduced to 100
principal components applying the expectation-maximization algo-
rithm (Roweis, 1998) as implemented in GIFT. Then, infomax ICA was
repeated 10 times in ICASSO (Himberg and Hyvärinen, 2003), a soft-
ware package designed to investigate reliability of ICA runs, in order to
ensure stability of estimation. ICA yielded 100 independent compo-
nents consisting of a spatial map with a corresponding time course.
Subject-specific spatial maps and time courses were derived using
spatial-temporal back-reconstruction (Erhardt et al., 2011). All analysis
steps are shown in Fig. 1a.

These 100 independent components were evaluated to identify
“meaningful” intrinsic connectivity networks (ICNs), i.e., independent
components that represent anatomical brain regions. These meaningful
ICNs show peak activation in gray matter with minimal overlap with
white matter, ventricles, blood vessels, and non-brain structures, and
their power spectra show highest power in the lowest frequencies (Allen
et al., 2012b, 2011). Out of 100 components, 41 were identified as ICNs
and were categorized into 9 functional domains based on their ana-
tomic location and scientific literature using the automated anatomic
labeling atlas (AAL; Tzourio-Mazoyer et al., 2002) and neurosynth.org:
subcortical (SC), salience (SAL), auditory (AUD), sensorimotor (SM),
visual (VIS), cognitive control (CC), default mode network (DMN),
limbic, and cerebellar (CB), see Fig. 2.

3.2. Postprocessing of time courses

Postprocessing of time courses was performed as implemented in
GIFT and included linear, quadratic, and cubic detrending and regres-
sion of 6 motion parameters (x-, y-, z-direction, pitch, roll, and yaw)
plus their derivatives and squares (Power et al., 2014) in order to re-
duce motion-related artifacts. Further, time courses were despiked
(spike= root mean square of the frame-wise displacement> 0.5 mm)
using AFNI's 3Ddespike and interpolated using a 3rd order spline fit to
clean neighboring data. A 5th order Butterworth filter was used for
temporal filtering (passband 0.001–0.15 Hz).

3.3. Static Functional Network Connectivity (FNC)

Based on the processed time courses, FNC can be calculated as
Pearson's correlation between all ICNs, yielding one single FNC matrix
that averages connectivity across the resting state scan, i.e., static FNC.
In the first analysis, we tested for group differences in static FNC. We
used the MANCOVAN toolbox (Allen et al., 2011) implemented in GIFT,
testing for effects of group (NF1 vs. HC), age, and sex while controlling
for scanner site as a nuisance variable and regressing out motion
parameters. We performed two types of analysis: one including all ICN-
to-ICN connections (41×41 matrix) and one in which connectivity was
averaged across domains (9× 9 matrix). Results were corrected for
multiple comparisons applying false discovery rate (FDR) correction
(q= 0.05).

Since IQ and the proportion of probable ADHD differed between

groups, we tested post hoc whether significant FNC results were
mediated by IQ and/or ADHD utilizing the mediation package in R
(https://cran.r-project.org/web/packages/mediation/vignettes/
mediation.pdf). As suggested in the approach by Imai et al. (Imai et al.,
2011, 2010a, 2010b), first two separate regression models are esti-
mated: One model for the association between the mediator and the
independent variable, i.e., group, plus a set of covariates (age and sex),
and one for the association between the dependent variable, i.e., FNC,
and the mediator, independent variable, and the set of covariates. Given
that IQ was significantly lower in NF1 participants, we modeled the
interaction of group by IQ. Based on the model fits from both models,
the average causal mediation effect (ACME) and the average direct
effect (ADE, i.e., the effect of the independent variable on the depen-
dent variable, corrected for potential mediation effects and the effect of
covariates) can be estimated (Imai et al., 2011, 2010a, 2010b). Boot-
strapping with 1000 simulations was applied in order to ensure stability
of estimations.

3.4. Dynamic functional network connectivity

Recent studies have shown that FNC has dynamic properties (Matsui
et al., 2018). With regard to rs-fMRI data, dynamic behavior of FNC can
be captured, for example, by applying a sliding window approach
(Allen et al., 2012a). In this approach, FNC is first estimated within
smaller portions of the time course (tapered windows with a size of 30
TRs= 60s). Then, these windowed FNC matrices are used to identify
recurring patterns of whole-brain connectivity via k-means clustering,
yielding distinct ‘states’ (see Fig. 1 for further details). The optimal
number of clusters can be estimated based on objective criteria like the
elbow criterion that reflects the ratio of within- to between-cluster
distances while testing for different numbers of k. The elbow criterion
suggested k=3 clusters in the current study.

We used Matlab's (Release 2016b, The MathWorks, Inc., Natick,
Massachusetts, United States) robustfit function including the factors
group, age, and sex to calculate differences in FNC for each dynamic
state separately. As in static FNC analyses, dynamic FNC analyses
controlled for scanner site and motion parameters were regressed out.
Again, we tested for effects on the individual ICN-to-ICN connections,
as well as for effects on the domain averages. Results were corrected for
multiple comparisons, applying FDR (q=0.05).

Based on the dynamic states, summary metrics can be calculated
describing the dynamic behavior for each participant across the resting
state scan: (1) the mean dwell time (MDT) represents the time an in-
dividual spends in a certain state before switching to another state; (2)
the fraction of time (FT) is the time an individual spends in one parti-
cular state relative to the entire scan time; and (3) the number of
transitions (NT) represents how often one changes between different
dynamic states. Again, the initial regression model included the factors
group, age, and sex, prior to testing significant results for mediation
effects of IQ and ADHD, as described above.

3.5. Meta-state analysis

One downside of the above-described dynamic FNC approach is that
each windowed FNC matrix is assigned to the one state it shows highest
correlation (similarity) with. This hard-clustering approach disregards
some of the information contained in each FNC window. An approach
to overcome this issue is meta-state analysis (Miller et al., 2016), in
which, rather than assigning each FNC window to only one of the 3
dynamic states, a vector is created containing the distances from each
FNC window to all of the dynamic states. This distance vector is then
parametrized in such a way that each concrete value is replaced
by± {1,2,3,4} depending on the signed quartile, based on the distances
of the entire group across the entire scan time. These meta-state vectors
can then be used to calculate summary measures of higher-order brain
dynamism that describe the dynamic fluidity and range of whole-brain
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Fig. 1. a) Analysis steps of group ICA, b) static, and c) dynamic FNC across all participants, and d) construction of meta-state.
ICA – Independent Component Analysis, FNC – Functional Network Connectivity, SC – subcortical, SAL – salience, AUD – auditory, SM – sensorimotor, VIS – visual,
CC – cognitive control domains, DMN – default mode network, CB – cerebellum.
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connectivity. The number of unique meta-states and the number of
changes of meta-states describe the dynamic fluidity of whole brain
connectivity. The dynamic range is characterized by the longest L1
distance between two distinct meta-states (the span) and the total dis-
tance one subject “explores” in the k-dimensional meta-state space.

In order to test for group differences with regard to the four meta-
state metrics (number of meta-states, meta-state changes, meta-state
span, and the total distance), we applied regression analysis including
the factors group, age, and sex. Then we tested any significant results
for mediation effects of IQ and ADHD, as described above.

4. Results

4.1. Static FNC

Across groups, the static FNC matrix exhibits increased connectivity
within each functional domain and anti-correlation between the cere-
bellum and the sensorimotor and auditory domains (Fig. 1b). Interest-
ingly, the typically described anti-correlation between DMN and cog-
nitive control domains is not observed (Fox et al., 2005).

Two ICN-to-ICN pairs exhibited significant differences between NF1
and HC participants. In particular, the middle frontal gyri (assigned to
the cognitive control domain) showed hypoconnectivity with the cer-
ebellum in NF1 relative to HC participants (p < 0.0001, mean con-
nectivity HC=0.23, mean connectivity NF1=−0.01), whereas the
cerebellum and the posterior middle temporal gyrus (multimodal as-
sociation cortex (Binder et al., 2009; Visser et al., 2012)) exhibited less
anticorrelation in NF1 participants (p < 0.0001, mean connectivity
HC=−0.26, mean connectivity NF1=−0.04). Further, intra-domain
connectivity of the cognitive control domain was increased in NF1 in-
dividuals (p=0.0008, mean connectivity HC=0.12, mean con-
nectivity NF1= 0.2).

Post hoc mediation analysis of the above significant results showed
a significant ADE of IQ only for the intra-domain connectivity in the
cognitive control domain (p=0.02, 95% confidence interval
0.018–0.15, point estimate 0.08): In other words, group has a sig-
nificant effect on connectivity of the cognitive control domain even
after correcting for covariates and potential mediation effects of IQ, in
such a way that NF1 participants showed reduced connectivity within
the cognitive control domain. However, there were no significant

results for ADHD.

4.2. Dynamic FNC

Here, we identified 3 distinct dynamic states across groups, shown
in Fig. 1c. In State 1 there is increased intra-domain connectivity of the
sensorimotor domain relative to the other two states, and strong anti-
correlated connectivity between the cerebellum and the sensorimotor
domain. Overall, 29% of all FNC windows of all participants were as-
signed to this state. In state 2, connectivity within the cognitive control
and DMN domains are slightly increased relative to the other two states,
and parts of the DMN domain exhibit anti-correlation with ICNs of the
salience, sensorimotor, and visual domains. Of all FNC windows, 40%
were assigned to this state. State 3 is characterized by reduced con-
nectivity within and between the functional domains, and anti-corre-
lation is observed between the cerebellum and the salience, auditory,
and sensorimotor domains. This somewhat hypoconnected state oc-
curred in 30% of all FNC windows.

Interestingly, the DMN and cognitive control domains, typically
described as showing antagonism (Fox et al., 2005), instead exhibited
positive connectivity with each other, basically forming one coherent
functional domain across all observed states. This observation is in
accordance with recent studies showing that connectivity between the
cognitive control domain and the DMN is variable, and not consistently
anti-correlated (Dixon et al., 2017).

Main effects of group did not survive correction for multiple com-
parisons for any of the three dynamic states, nor were there significant
main effects of age or sex.

4.3. Dynamic indices

With regard to the summary metrics describing each participant's
dynamic behavior across the resting state scan, NF1 individuals showed
significantly higher FT (p=0.019) and MDT (p=0.02) for state 3, the
hypoconnected state. No significant group differences for FT and MDT
of the other states were observed, and the number of transitions (NT)
was also not significantly different between groups. Table 2 and Fig. 3
summarize MDT, FT, and NT across the three states. The mediation
analysis of IQ and ADHD revealed no significant effects, indicating that
neither IQ nor probable ADHD influence the time spent in particular

Fig. 2. Overview of the 41 Intrinsic Connectivity Networks, summarized in 9 functional domains.
SC – subcortical, SAL – salience, AUD – auditory, SM – sensorimotor, VIS – visual, CC – cognitive control, DMN – default mode network, CB – cerebellar domains.
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dynamic states in this sample.

4.4. Meta-states

Even though NF1 participants exhibited lower values for all four
meta-state summary metrics (number of meta-states, meta-state
changes, meta-state span, and the total distance), the only significant
difference was observed in the meta-state span: the longest distance
between two distinct meta-states was significantly shorter in NF1 than
in HC participants (p=0.023), indicating a reduced range of whole-
brain connectivity. Group means for all four measures are summarized
in Table 3.

With regard to the IQ mediation analysis, the meta-state span ex-
hibited a significant ADE for NF1 participants (p=0.03, 95% CI −1.5
to −0.04, point estimate −0.8) indicating that group has a significant
effect on meta-state span even after controlling for covariates and po-
tential mediation effects of IQ. However, the ADHD mediation analysis
revealed no significant effects.

5. Discussion

Only recently have studies begun to investigate the wealth of in-
formation contained within the temporal features of resting functional

connectivity (Hutchison et al., 2013a). Here, we conducted the first
investigation of static, dynamic, and higher-dimensional functional
connectivity in one of the largest NF1 samples to date, applying new
methods that have now been shown to be highly reproducible (Abrol
et al., 2017).

5.1. Functional network connectivity

With regard to static resting connectivity, we found that con-
nectivity of the cognitive control domain in particular appears com-
promised in NF1 patients. More precisely, connectivity between frontal
brain areas within the cognitive control domain and the cerebellum is
decreased in NF1. Even though the cerebellum is often neglected in
functional MRI studies, recent evidence indicates that it is not only
involved in motor tasks but indeed co-activates with brain areas in-
volved in executive functioning (Stoodley et al., 2012; Stoodley and
Schmahmann, 2010). Moreover, Reineberg et al. (2015) found that
better performance in executive functioning tasks was associated with
increased connectivity between the cerebellum and the frontopolar
cortex. Here, however, we did not observe a significant mediation of
fronto-cerebellar connectivity by IQ.

Interestingly though, a direct effect was identified for connectivity
within the cognitive control domain, indicating that the intra-domain
hyperconnectivity in NF1 participants was still present after controlling
for covariates and possible mediating effects of IQ. Further, using a
different graph theory analytic approach, Tomson et al. found similar

Table 2
Means (and standard deviations) for mean dwell times (MDT) in number of
windows before a switch, mean fraction of time (FT; in percent) of the entire
scan time, and number of total transitions (NT) for NF1 patients and Healthy
Controls, across all states.

MDT 1 MDT 2 MDT 3 FT 1 FT 2 FT 3 NT

HC 30.83
(29.42)

40.44
(35.24)

16.51⁎
(23.46)

0.38
(0.32)

0.43
(0.32)

0.2⁎
(0.28)

2.4 (1.9)

NF 18.82
(26.91)

35.98
(38.21)

36.72⁎
(38.02)

0.21
(0.28)

0.38
(0.34)

0.41⁎
(0.38)

1.9 (1.5)

⁎ Significant group effect at p < 0.05.
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Fig. 3. Plots of a) the mean dwell time, b) fraction of time, and c) the number of transitions for NF1 patients (NF) and Healthy Controls (HC).
*Significant group effect at p < 0.05.

Table 3
Means and standard deviations for meta-state summary measures: Number of
meta-state changes, number of unique meta-states, longest distance between
meta-states (state span), and total distance covered in the meta-state space.

State changes Number of states State span Total distance

HC 16.7 (4.6) 12.63 (4.21) 5.9⁎ (0.99) 17.67 (4.71)
NF 14.67 (5.2) 10.6 (4.48) 5.0⁎ (1.59) 15.63 (5.93)

⁎ Significant group effect at p < 0.05.
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patterns of reduced anterior-to-posterior connectivity in the same
sample of NF1 participants that were not related to IQ (Tomson et al.,
2015). However, another small study found that increased connectivity
between the frontal pole and ventral anterior cingulate cortex was
correlated with cognitive and social deficits in NF1 patients (Loitfelder
et al., 2015). Future, larger-scale studies and longitudinal studies are
warranted to better understand the functional implications of altered
functional connectivity in NF1.

The analysis of dynamic FNC did not indicate significant group
differences and overall, static and dynamic FNC between distinct ICNs
appears largely unimpaired in NF1 participants in the current study.
However, it is important to bear in mind that even though this is one of
the largest neuroimaging studies of NF1 to date, it is nevertheless un-
derpowered to detect small to moderate effects. Furthermore, the re-
lationships between morphological alterations and functional con-
nectivity patterns in NF1 are not well understood; pathobiological
factors such as disruptions of white matter microstructure and cortical
neuroanatomic alterations (Duarte et al., 2014; Karlsgodt et al., 2012;
Payne et al., 2010; Violante et al., 2013) might contribute to the lack of
significance of dynamic FNC.

5.2. Dynamic indices and higher-dimensional dynamism

Despite the fact that ICN-to-ICN connectivity seems mostly intact in
NF1 patients, summary measures and higher-order metrics of whole-
brain connectivity dynamism indeed show alterations: specifically, NF1
patients spent more time in a hypoconnected dynamic state and had a
reduced dynamic range of whole brain connectivity.

Similar results of a preference for hypoconnected states, as well as a
reduction of the dynamic range of whole-brain connectivity, have been
found in studies of patients with schizophrenia and individuals at
clinical high risk for developing psychosis (Damaraju et al., 2014;
Mennigen et al., in press; Miller et al., 2016). Interestingly, a recent
study on youth with clinically-diagnosed ADHD found a distinct pattern
of increased dwell time in a state of heightened connectivity within the
DMN and increased meta-state span in ADHD youth relative to typically
developing youth (de Lacy and Calhoun, 2018). Given the increased
risk of ADHD in NF1 (Lidzba et al., 2012), one might anticipate findings
of dynamic indices and higher-dimensional dynamism to be more si-
milar to those in individuals with idiopathic ADHD. Thus, these con-
trasting findings highlight that both NF1 and ADHD are complex dis-
orders, with differing patterns of time-varying connectivity that may
result in similar downstream behavioral phenotypes.

Furthermore, since both dynamic FNC and meta-state analysis ap-
proaches have mostly been applied to individuals on the psychosis
spectrum, the globally similar pattern of findings in NF1 and the psy-
chosis spectrum might indicate a nonspecific impairment of con-
nectivity dynamism across disorders that impact overall brain health. It
is not yet known whether impairments relate to specific symptoms and/
or executive functions across different disorders. A dimensional ap-
proach to investigate distinct psychopathologies may be informative in
future studies.

5.3. Limitations

Certain limitations of this study must be noted. Even though the
sample size is relatively large for this particular rare disorder, it is
nevertheless small given current standards. Further, the current sample
encompasses individuals from a wide age range of 10 to 46; although
NF1 patients and controls were age-matched and age was included as a
variable in all statistical models, developmental effects might interfere
and/or overlap with disease-specific effects.

Here, we identified 3 dynamic states but in a recent study that ex-
amined replicability of dynamic FNC, the optimal number of clusters
was estimated to be 5 across 28 groups with 250 individuals each
(Abrol et al., 2017). However, the similarity of dynamic states in the

current study was very high, independent on the number of clusters,
and the lower k in the current sample may be due to the smaller sample
size.

Furthermore, longer resting state scans and higher spatial resolution
may allow for more stable estimations of dynamic FNC and this is a
topic of ongoing research (Abrol et al., 2017; Hindriks et al., 2016; Preti
et al., 2017).

6. Conclusion

Here, we present a comprehensive analysis of different aspects of
functional network connectivity in NF1. In particular, NF1 individuals
exhibit altered connectivity of the cognitive control domain relative to
healthy control participants. Further, higher-dimensional dynamics of
functional network connectivity are compromised in NF1 patients,
which may reflect global brain dysfunction.
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