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TRIANGULAR FINITE ELEMENTS WITH ROTATIONAL
DEGREES OF FREEDOM AND ENHANCED STRAIN MODES

R. PILTNER
Department of Engineering Mechanics, W317.2 Nebraska Hall,
University of Nebraska-Lincoln, Lincoln, NE 68588-0526, U.S.A.

R.L. TAYLOR

Department of Civil and Environmental Engineering, SEMM, University of California at Berkeley,

Berkeley, CA 94720, U.S.A.

Abstract

Three sets of enhanced strain functions are considered for the improvement of the three node triangu-
lar finite element with rotational degrees of freedom. In each case four enhanced strain terms are used.
The four unknowns associated with the enhanced strain terms can be eliminated by static condensation
so that nine degrees of freedom remain for the enhanced elements. Faster convergence in the energy
norm is achieved. The enhanced elements are also able to deal with nearly incompressible plane strain
problems considered provided all rotational degrees of freedom do not vanish in the boundary value

problem.

KEYWORDS: Finite element method; enhanced strain method; plane stress/strain analysis

1. Introduction

The constant strain triangle (CST) with six degrees of freedom shows poor performance for problems
with bending and for plane strain problems in the nearly incompressible limit. An improvement for
bending problems was achieved by Allman by introducing rotational degrees of freedom at the ele-
ment nodes [1,2]. However, in the nearly incompressible case the Allman element can still show lock-
ing problems (see examples in Section 5.6). Elements with rotational degrees of freedom also have

been considered, for example, in references [1 - 14].

In recent years the concept of enhanced strains introduced by Simo and Rifai [15] has been used by
several authors to improve the performance of low order finite elements (see references [15-21]).
Simo and Rifai also found that the incompatible four node displacement element QM6 described in
reference [22] can be viewed as an enhanced strain finite element with four enhanced strain terms. In
this paper the concept of enhanced strains is used to develop improved triangular finite elements with
rotational degrees of freedom. Three different possibilities of choosing the enhanced strain terms are

considered. Several numerical examples are chosen to demonstrate the improvements due to the
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enhanced strain terms.

2. Variational formulation

For our finite element approximation, we consider the following variational formulation [15]:

1
2

n=| £TE£—uT?}dV—fuT’f‘dS—JcTsidV ("
Vv S v

where the strains are decomposed into two parts according

£=¢+¢ (2)
The compatible displacement field u leads to the strains

€ =Du=Bq 3)

where B is a strain matrix and q contains the nodal displacements and rotations. The enhanced strain
field

g =B (4)

contains parameters A which will be eliminated at the element level. Carrying out the variation in (1)

we obtain
j 3(Du)’ [E(Du + e‘)] dv - j duTfdv - jsuTT dS =0 (5)
A\ \% S
j (&eH)T [E(Du +&) - 0} dv=0 (6)
Vv
j d6Tel dv=0 (7
A\

In the choice for the enhanced strains €' we are not completely free: In order to satisfy the patch test
we have to impose the restriction on €' that constant stresses 6, do no work on the enhanced strains

[15]. This requirement can be expressed in the form
[8eTeldv=0 ®)
v

or equivalently as

[edav=0 )
\%

Equation (9) represents the minimum requirement in the enhanced strain method. In general we
require in addition to (9) that the enhanced strains g are orthogonal to reference stresses G (see Table
VII in reference [21]):
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However, in the case of the triangular element with rotational degrees of freedom we do not have
many higher order stress terms. There are only two linear terms in addition to the constant stress terms
(see equation (22)). If we would require that the enhanced strains are also orthogonal to the linear
stress terms a priori, we would not be able to calculate any parameters A for the field €'. Therefore, for

the triangular enhanced strain element it will be sufficient to choose the reference stresses in the form

. [100
c'=/010|B (11)
001

andtoset 6=6". Since equation (7) is satisfied a priori with this choice of stresses, we cannot com-
pute the stress parameters B from the variational formulation. Therefore the output stresses o will be

computed from the element strains through

6=EDu+¢) (12)

3. Finite element approximations

Using triangular area coordinates &, &, and &; the compatible displacement field for the triangular

element with rotational degrees of freedom can be written as [1]:

u=u§; +urls +u3d; (13)
+ ‘]2“112 cos Yi2(0; — )€, &, + %]23 cos Ya3(03 — 02)8>8;3 + ';‘131 cos Y3 (©; — 03)83&,

v=v,§; +va&s +va&; (14)
+ %‘112 sin Y12(wy — )88 + %123 sin Y23(@3 — @2)&28; + ';‘131 sin Y31 (@) — @3)83€,

Using the relationships

cosyij=nx=y—j-_—¥i— (15)
X. _x4
sinyij=ny=— Jl ‘ (16)
ij
Yi =Y Vi Xji = Xj = Xj - an
lij=\/(xj—xi)2+()’j—)/i)2 (18)

the displacement field can be rewritten in the form



u=u g +usd; +usk; (19)
+01(—y2818 +y138381 )2 + 0y y21&1E2 — ¥328283)/2 + 03( y32E283 — y13E3E 2
v=viE +vaEs +viE; (20)

+01(x218182 = x138381 )2 + 02— X211 8 + x328283)/2 + 03( — X3282E3 + x13E3€ )2

The compatible displacement field (19)-(20) leads to a strain field € which can be written as

£°=l§a=l§Gq=Bq (21)
where
R 1y 000
B=/001x20 (22)
0-—x0-yl

and q" =[u; v; ®; Uy V) @y u3 v3 @3 ]. The strain parameters a are related to the nine nodal
degrees of freedom through the matrix G which is given in the appendix of reference [1]. From equa-
tion (22) it is seen that the strain field £° contains only five linearly independent terms. Therefore the
nine parameter Allman element has four eigenvalues equal to zero and at least one rotation parameter
has to be prescribed in a finite element mesh in order to prevent the global system of equations from

being singular.

4. Selection of enhanced strain modes

The choice of enhanced strain terms is not unique. Here we consider three different sets of enhanced

strain terms.

4.1 First set of enhanced strain functions

In order to identify a possible set of enhanced strains in area coordinates we write a complete second

order displacement field in the following form:
u=u§; +uds +u3&; (23)
+b12y218182 + b23y8a8s + bayyi3€3€)
+a12x218182 +a23x328:83 + 23113838,
v=vi§; +vabs +v3&3 (24)
+a12y218182 + a23y328:83 +a31y13838,

- bj2x21§1 82 — ba3x328:83 — b3 x13838,
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The Allman displacement field is obtained if we set

bj= (0 -w), a;=0 (25)

1
2
However, the three quadratic displacement terms lead only to two deformation modes, because for the

case that all element rotations w; are equal, the associated displacement contributions are zero. There-

fore, the deformation mode associated with the coefficient
A =bjp =by; =by (26)
is not included in the Allman field and can be used to get the first enhanced strain term. If we choose
Ay=ap, Ay=an, Aj=ay @7

we get the remaining terms in the quadratic displacement expansion. Using the coupled incompatible

displacement field

u=A1[y288 +ynbti +yi38:&; ] (28)
+A2x21 &1 82 + A3x328283 + Asx 3638,
V=01 = %2818 = x328:83 — X383 ] (29)

+ A2 y21 6180 + A3 y386:83 + Ay 13838

does not lead to strains which are orthogonal to constant stress terms. In order to make the resulting
strains orthogonal to constant stress terms one can simply replace the area coordinates &; by
Ei =E&; — 1/3. A similar approach for obtaining strains which are orthogonal to constant stresses was
proposed in reference [23] where appropriate constant strains are added to an initial set of enhanced
strains derived from an incompatible displacement field. The modification leads to the following
enhanced strain matrix:
By B2 Bz By
B = | By By By By (30)
B3 B3y B3z By

where

1

1
By = o (ayy23 +byys; +¢yy12) . By = (axX23 + byX3) +cxXp2)

2A A
B3 = EIX (agX32 +byX)3 +CyXap +a5Y32 + byyi3 +Cx¥2))
Bre =—c_y2% » Bn= szfl » Bn= "cm_z—Acyﬂ 31)
Biz=- ayz)zz » By= a’;fz . Bypy=—22 x-’zz;am:
Bia=- b’é:” » By= b;)‘:} » Ba= ___bxxl32-Abyy]3



and

2A = X31y31 — X31Y2

1 1 1 |
ax=X2|(§2—§)+X13(§3-§) , ay=Y21(§z-§)+}’13(§3 —g)
(32)
1
by =x2(§) - 3) +x32(83 - %) » by=y5( - ‘]3') +y3(83 - %)
1 1 1 1
Cx=X32(§2—§)+X13(§1 -3) - & =)’32(5.,2"'§)+)'13(§| -3)

The resulting element, denoted TE4, is frame invariant. In the numerical examples frame invariance is

verified by describing each problem in a series of different rotated frames.

4.2 Second set of enhanced strain functions

Using the local cartesian coordinates X, y which are related to the global coordinates x, y and the area

coordinates £;, &,, and £ through

_ 1
X=x-xo=(& - ?)xl + (& - %)Xz +(& - ';')X_%

(33)
F=y-¥o = € = 2y + E - 2hya + & - )ya
3 - 37" 37
we can choose the following enhanced strain matrix:
x0o00
Benh =10 ')7 00 (34)
00 xy

The resulting element, denoted TE4_1, gives improved results. However, the element is not frame
invariant. In order to make the results at least independent of the finite element user’s input data one
can choose the local cartesian coordinates depending on the geometric features of the triangle: One
could choose the local X axis to be parallel to the largest edge of the triangle. If the element has two
equal edges the x-axis is chosen to be parallel to the third edge. If all edges are equal it does not matter
which one is chosen for the alignment of the local coordinates. In the search for optimal enhanced
strain terms several other combinations of X and y terms in the B"-matrix have been tested in numer-
ical examples. Most of the other choices considered gave worse results. An exception was a set of

enhanced strain terms presented in the next sub-section.
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4.3 Third set of enhanced strain functions

The following choice of enhanced strains leads to a frame invariant element:

X 0yo0
B"=| 0 y 0 X (35)
-V XXy

The element will be denoted TE4_2.

5. Numerical examples

Several problems have been chosen in order to test the performance of the three-node elements with
four enhanced strain modes. The results are compared to analytical solutions and to results obtained
from the constant strain triangle (CST) and the original Allman element. For the element TE4 the
enhanced strain matrix (30) is used, whereas for element TE4_1 the enhanced strains (34) are used,
and element TE4_2 employs the enhanced strains (35). All elements we compare are implemented in

the finite element program FEAP (e.g. see Chapter 15 of reference [24]).

5.1 Patch test

For the patch test a rectangular domain of length a=0.24 and width b=0.12 is modeled with ten tri-
angular elements and plane stress conditions are assumed (Figure 1). The material parameters are
E =10x10°, v =0.25 and the thickness is t = 0.001. As in the test of MacNeal/Harder [25] the boun-

dary conditions for the boundary nodes are calculated from the displacement field

u=10"(x +y/2)
(36)
v=1073(y + x/2)

which satisfies the Navier-equations. The considered enhanced elements give in this test the exact
values for the stresses and strains which are given by gy =&y =Yy= 1073,
Oxx = Oyy = 1333, 1,, =400.
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Figure 1: Finite element mesh for the patch test

‘ 5.2 Curved beam

The curved beam shown in Figure 2 is fixed at the upper end and bent by a unit force applied at the
lower end in radial direction. The material parameters are E = 1000 and v =0. The exact solution is
taken from Timoshenko/Goodier [26]. The enhanced triangular elements show improved results com-
pared to the Allman element (Table 1). For the considered mesh, the displacement obtained with the
CST element is still far away from the exact solution.

NN

- Figure 2: Finite element mesh for curved beam problem
1

" Table 1: Results for the curved beam problem shown in Figure 2 (assuming plane stress conditions)
E=1000, v=0,

tip displacement

exact CST Allman | TE4 TE4_1 | TE4_ 2

5.800 2.729 5.158 5622 | 5.714 5.733




5.3 Beam bending: coarse mesh test

A beam modeled with twenty elements is subjected to two load cases (Figure 3). Warping at the left
end of the beam is possible. Plane stress conditions are assumed in the model. The results of five dif-
ferent elements for the maximum displacement at point A and the normal stress ©,, at point B are
given in Table 2. The stress at point B was calculated at an element Gauss-point. The three Gauss-
points of the triangular element were chosen as the midside points of the the three element edges. The

material parameters are E = 1500 and v = 0.25. Element TE4_2 appears to be a very flexible element

giving displacements which are larger than the exact ones.

@

Figure 3: Finite element mesh for cantilever beam problem
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Table 2: Comparison of plane stress solutions obtained with triangular elements for cantilever beam

problems.

Case 1 Case 2
element | vy OxxB Va OxxB
CST 37.14 | -1165 39.49 | -1590
Allman 86.54 | -2676 88.06 | -3624
TE4 91.64 | -2908 9295 | -3927
TE4_1 96.26 | -2936 97.92 | -3947
TE4_2 102.0 -2743 | 1024 -3676
exact 100 -3000 | 102.6 -4050
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5.4 Cook’s membrane problem

The plane stress structure shown in Figure 4 was suggested by Cook [27] as a test for membrane ele-
ments in skewed meshes. The material parameters are E = 1 and v = 1/3. The shear load is distributed
uniformly along the right edge. Table 3 gives the displacements, stresses and energy results for dif-
ferent meshes. For a comparison the results for the quadrilateral QM6 element are also included for a
16x16 mesh. Considering both stress and displacement results, element TE4 appears to give the best

overall performance in this example.
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Figure 4: Cook’s membrane problem: plane stress structure with unit load uniformly distributed along
rightedge (E=1, v=1/3).

Table 3: Results for the problem shown in Figure 4.

displacement v at C
element | N=2 N=4 N=16
CST 11.99 | 18.28 | 23.41]
Allman | 19.67 | 22.41 | 23.8]
TEA4 20.27 | 22.49 | 23.81]
TE4_1 | 20.74 | 22.64 | 23.82
TE4_2 | 21.14 | 22.64 | 23.83
QM6 23.88

maximum stress at A
element | N=2 N=4 N=16
CST 0.0760 | 0.1498 | 0.2217
Allman | 0.1523 | 0.2047 | 0.2324
TE4 0.1640 | 0.2085 | 0.2336
TE4_1 | 0.1587 | 0.2061 | 0.2326
TE4_2 | 0.1491 | 0.1973 | 0.2299
QM6 0.2364
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energy
element | N=2 N=4 N=16
CST 11.99 | 18.27 | 23.42
Allman | 19.68 | 22.44 | 23.86
TE4 20.53 | 22.71 | 23.89
TE4_1 | 21.03 | 22.85 | 23.90
TE4_2 | 21.77 | 23.12 | 23.93

QM6 23.93

5.5 Cantilever beam under a tip load: convergence study

In this example the left end of the beam is fixed and at the right end a parabolic shear distribution is
applied (Figure 5). The material parameters of the plane stress structure are E = 3.0¥107 and v = 0.25.
The results are shown in Table 4.

»

W=40000

S
A \\\\[\\ NN,
b

Figure 5: Cantilever beam and three meshes
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Table 4: Results for the problem shown in Figure 5 (Allman’s beam example).

displacement vat x =48, y=0
mesh CST Allman | TE4 TE4_1 | TE4_2
x4 0.0907 | 0.2696 | 0.3037 | 0.3348 | 0.4033
2x8 0.1984 | 0.3260 | 0.3382 | 0.3471 | 0.3652
4x16 | 03056 | 0.3472 | 0.3506 | 0.3530 | 0.3567
8x32 | 03421 | 0.3539 | 0.3548 | 0.3554 | 0.3563
16 x64 | 03531 | 0.3560 | 0.3562 | 0.3564 | 0.3566
exact 0.3566

Energy / 10?
mesh CST Allman | TE4 TE4_1 | TE4_2
1x4 3.63 10.78 12.15 13.39 16.11
2x8 7.94 13.05 13.54 13.90 14.63
4x16 | 1223 13.90 14.04 14.14 14.30
8x32 | 13.69 14.17 14.21 14.24 14.29
16x64 | 14.14 14.26 14.27 14.28 14.30

exact 14.28

5.6 Plane strain problem in the nearly incompressible case

In order to test the behavior of the enhanced triangular elements we look at a plane strain system with
one very coarse and two fine mesh discretizations (Figures 6 and 7). The numerical results are shown
in Tables 5 and 6. The material parameters are E = 1500 and v = 0.49/0.499/0.4999/0.49999. For the
coarse mesh the CST and the Allman element lock in the nearly incompressible case. It is known that
for special mesh patterns locking can be avoided for the CST element as it is the case for mesh 1 in
Figure 7. (Remark: In reference [28] Hughes and Taylor found a superior performance of linear tn-
angular bending elements in cross-diagonal mesh patterns when compared to other mesh patterns.) In
general however, the CST and the Allman element will lock also for a fine discretization as, for exam-
ple, for mesh 2 shown in Figure 7. The enhanced triangular elements do not lock except for the case
when due to symmetry conditions in the problem all rotational degrees of freedom vanish a priori. For
a problem with vanishing rotations one can add constant pressure to the triangular enhanced element.
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Figure 6: Plane strain structure with resultant shear force 2P = 300

Table 5: Results for the beam problem shown in Figure 6 assuming plane strain conditions and
different values of v in the nearly incompressible range.

displacement v at A
A CST Allman | TE4 TE4_1 | TE4_2
0.49 12.27 22.25 51.25 | 41.25 75.27
0.499 12.13 13.43 50.78 | 39.94 74.64
0.4999 12.11 12.24 50.73 | 39.81 74.58
0.49999 | 12.11 12.12 50.73 | 39.80 74.57
exact 78.375

Mesh 1

Mesh 2

Figure 7: Two fine meshes for the beam problem shown in Figure 6.
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Table 6: displacement results for the meshes shown in Figure 7.

displacement v at A (case: v=0.49999)

mesh CST | Allman | TE4 TE4_1 | TE4 2
1 76.23 76.47 78.16 77.79 78.50

N
w
]
>

9.2] 77.86 77.57 78.37

exact 78.375

6 Concluding remarks

Three different enhanced strain fields have been used to obtain improved triangular elements with
three rotational degrees of freedom. Each set of enhanced strains involves four enhanced strain
parameters which can be eliminated at the element level. Element TE4_2 appears to be the most flexi-
ble element. The disadvantage of element TE4_1 is that it is not frame invariant. and making the ele-
ment independent of the finite element user by pre-defining preferred local coordinate orientations is
not completely satisfactory although improved results can be obtained with element TE1_1. Element
TE4 shows an overall good behavior both for displacement and stress results. The enhanced strains
for element TE4 and TE4_2 not only satisfy the minimum requirement of being orthogonal to constant
stress terms but also yield frame invariant elements. There might be other invanant sets of enhanced
strains which possibly vield even better results. Since there is no unique way to choose the enhanced
strain terms, it would be interesting for future research whether some additional "quality" criteria and
conditions in addition to equation (9) can be defined in order to construct an optimal set of enhanced

strains.
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