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values and Ω = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5 Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
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ABSTRACT OF THE DISSERTATION

Passive and Semi-Active Control of Civil Structures
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Shant Aram Danielian

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2023

Professor Faryar Jabbari, Chair

During the 20th century, over 1200 major earthquakes occurred, causing damage estimated

to be upwards to $1 trillion worldwide. On average, 10,000 people have died annually from

1900 to 1999. Several studies have shown that nearly three-quarters of earthquake fatalities

occurred due to building collapse. Consequently, an earthquake-resistant design philosophy

was adopted by the earthquake engineering community. Two common strategies to reduce

the displacement and acceleration response of the structure include base isolation, which

separates the structure from the ground, and incorporating vibration suppression devices

within the structure. For this dissertation, several different types of devices such as tuned

mass dampers, inerters, and semi-active devices have been used in a variety of settings to

provide further reduction of the response of civil structures. A tuned mass damper (TMD)

is an auxiliary mass attached to the structure using spring and damper in parallel. The

stiffness and damping are selected such that the first mode vibrations of the structure are

reduced. Several studies have shown that TMDs are effective in reducing the response of a

structure yet require a large mass and footprint to house the TMD. Inerters are devices that

provide a force proportional to the relative acceleration of the two ends. They provide an

apparent mass that is several times larger than the physical mass of the device. Both TMDs

and inerters are broadly classified as passive devices since they require no power to operate.

On the other hand, semi-active devices are those that require a small power source usually
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provided by an on-site battery. These devices can alter the stiffness or damping properties

of the structure. For this dissertation, a semi-active resettable spring (SRS) was used. This

device provides continuous stiffness, while also dissipating energy by resetting its unstretched

length. Both inerters and SRSs have been incorporated individually in tuned mass damper

systems. Yet, a hybrid system incorporating both devices has not been studied before.

One objective of this dissertation was to determine the effectiveness of incorporating a SRS

and inerter within a tuned mass damper system, known as a semi-active tuned mass damper

inerter (SATMDI). Single and multi-story structures were considered, and the results showed

that the SATMDI can provide additional reductions to the displacement and acceleration

responses, while also significantly reducing the required footprint to house the control system.

The selection of the stiffness and damping of a TMD is what is known as the tuning strategy.

Several different tuning strategies for TMDs have been proposed that assume harmonic or

white noise base excitations. Other strategies use the modal properties of the structure within

the tuning strategy. Researchers have studied systems where an inerter is incorporated within

a TMD, known as a tuned mass damper inerter (TMDI). The tuning strategies for TMDIs

are based on those used for TMDs. In this dissertation, an alternative tuning strategy for a

tuned mass damper inerter (TMDI) is proposed. This tuning strategy is also based on that

of a TMD, yet instead uses the modal properties of the structure to tune the TMDI. The

results of this alternative tuning strategy show that significant improvements in reducing

the displacement and acceleration responses can be achieved for a significantly smaller TMD

mass and inerter. Moreover, the footprint required to house the TMDI is much smaller as

compared with other tuning strategies.

Base-isolation has been shown to be effective in reducing the response of a structure by

separating the structure from the ground. The isolators provide lateral flexibility, reducing

the amount of energy transferred to the structure. While these devices provide adequate

protection, there is some evidence to suggest otherwise. To remedy this, researchers have
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proposed hybrid systems, where TMDs are attached to the base. In particular, a non-

traditional TMD (NT-TMD), which attaches the spring, mass, and damper in series has been

proposed. It has been shown that the NT-TMD can provide reductions in the displacement,

while also reducing the footprint to house the NT-TMD. In this dissertation, a novel NT-

TMD is introduced, known as a non-traditional semi-active TMD (NT-SATMD). The results

of this work show that the NT-SATMD can provide the same level of performance as a

NT-TMD for a significantly smaller mass. Moreover, the footprint required to house the

NT-SATMD is comparable to that of a NT-TMD.

The single and multi-story structures considered assume only lateral motion, which occurs

if the distribution of the mass and/or stiffness of the structure is uniform. In cases where

this is not possible, an eccentricity is developed between the center of resistance and center

of mass, coupling the lateral and rotational motion. Buildings that have this property are

called asymmetric. In this dissertation, the SRS has been used to reduce the lateral and

rotational response of an asymmetric structure. A parametric study over a wide range

of structure periods was considered in addition to studying rotational stiff, flexible, and

strongly coupled structures. Two strategies for determining the optimal placement for the

devices were proposed, both leading to roughly the same performance. It was found that

distributing the semi-active devices such that it produces an eccentricity equal in magnitude,

but opposite in sign to the structure’s eccentricity lead to the greatest reductions in the

flexible and stiff edges. Guidelines and limitations on the selection of the device distribution

were also provided for design purposes.
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Chapter 1

Introduction

1.1 Background and Motivation

It is generally accepted that strong earthquakes cause significant structural and economic

damage if proper precautions are not taken. From 1900 to 1999, a total of 1248 major

earthquakes occurred, causing damage estimated to be upwards of $1 trillion worldwide [21].

On average 10,000 people have died annually during that same time span [12]. Some con-

temporary examples include the 1988 Armenian earthquake which killed 25,000 people and

caused damage in excess of $200 million [61], the 1994 Northridge earthquake that killed

60 people and caused $311 million in damages [29], and the 2019 Ridgecrest earthquake

causing nearly $4 billion in damages [14]. Investigations into earthquake fatalities have

shown that three-quarters of deaths occurred due to building collapse [22]. Consequently, an

earthquake-resistant design philosophy has been adopted by the earthquake engineering com-

munity worldwide. To this aim, various types of earthquake protection strategies have been

proposed. The most common are to increase the structural stiffness, isolate the structure

from the ground, or use vibration suppression devices. Several hybrid systems combining the
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three strategies have also been implemented. The first strategy alters the natural frequency

of the structure by increasing the stiffness. Thus, the natural frequency of the structure is

higher than the predominate earthquake frequency. The second strategy completely sepa-

rates the structure from the ground by using base-isolators, thereby minimizing the amount

of energy transferred to the structure in the event of a strong earthquake. The third strat-

egy reduces the response of the structure by using devices that dissipate energy from the

structure or alter the structural properties in real-time.

From the three strategies stated above, base-isolation is most widely used in practice, due

to its simplicity in design, installation, and maintenance. Base-isolators consists of rubber

and steel layers, where the rubber provides horizontal flexibility while the steel layers are

used to prevent bulging due to vertical loading [74]. The application of base-isolators are

commonly used for critical structures, such as hospitals or power plants. This is because of

the monetary cost to manufacture and install the base-isolators, which is justified due to the

level of importance of the structure to remain operational after a strong earthquake [24].

Vibration suppression devices can be categorized as passive, active, or semi-active. As the

name suggests, passive devices provide vibration suppression without the use of external

energy. Some examples include base-isolation or tuned mass dampers. On the other hand,

active devices are those which require external power source to operate. Active devices can

be used over a wider range of operation since their properties can be adjusted in real-time.

However, it is difficult to ensure the power requirements in the event of a strong earthquake.

Semi-active devices are those which combine principles from both passive and active control.

The parameters of the device can be adjusted using significantly less power than active

control. Moreover, semi-active devices provide a fail-safe, where in the event of power loss,

they can still provide some passive control. Due to the limitations of active control, passive

and semi-active control are considered in this dissertation.

There are numerous examples of structures implementing passive control. A well-known
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example is the Taipei 101 structure. In this structure, a tuned mass damper (TMD) is used

to reduce vibrations caused by wind or earthquakes [82]. The TMD consists of a mass that

is suspended by cables with viscous dampers attached for energy dissipation. The TMD is

typically placed where the response is largest, that is, near the top of the structure. The

TMD requires a tuning strategy for selecting the stiffness and damping of the TMD so

to minimize a specific response (e.g., displacement or acceleration) of the structure. The

performance of TMDs has been extensively studied [78, 13, 42, 111]. The study done by

Villaverde and Koyoma [111] showed that the performance of TMDs was subject to the

ground motion characteristics and only had a narrow frequency band where suppression was

achieved. Considerably large masses are necessary to provide sufficient response reduction. In

addition, the TMD system may also require a large stroke, that is, the relative displacement

between the TMD and structure. The footprint requirement to house the TMD can also

lead to issues when choosing to implement or retrofit in a structure.

In 1997, a device comprised of a spring in parallel with flywheels and a geared rod was

patented in Japan by Okumura Atsushi [77]. The resisting force provided by the device

is proportional to the relative acceleration between the terminal ends. In other words, the

device provides an inertial force that is multiple times larger than the actual mass of the

device. The term “inerter” was first coined by Smith in 2002 [93]. Since then, three physical

realizations of inerters were developed, namely, ball-screw inerters [44], rack-and-pinion [93],

[94] and fluid inerters [113]. Applications of inerters have also been studied in various

settings within civil [92, 35, 129, 119], mechanical [114, 115], and aerospace engineering

[67, 66]. In these various contexts, inerters were combined with other mechanical elements,

such as springs and dampers. Three different types of configurations have been proposed: (1)

tuned inerter dampers (TID) proposed by Lazar et al. [62], (2) tuned mass damper inerter

(TMDI) put forward by Marian et al. [70] and (3) tuned viscous mass dampers (TVMD)

first introduced by Saito et al. [88]. For this dissertation, the first two configurations will be

studied.
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Semi-active devices were developed to combine the best components of passive and active

control, or at least, mitigate their less desirable qualities. Semi-active devices avoid using

large external energy, while performing better than passive control. Typically, semi-active

devices do not add mechanical energy to the structural system, and so stability is guaranteed

[10]. Due to the low power requirements and large force capacity, semi-active devices are

an attractive alternative to active control. Several different implementations of semi-active

control have been proposed. Examples include variable-orifice fluid dampers [53, 120], con-

trollable friction devices [1, 2] and variable-stiffness [11, 48, 75]. For this dissertation, the

semi-active resettable spring first proposed by Bobrow et al. [11] will be used extensively.

Applications of this device within tuned mass damper systems has been studied by Chey et

al. [19]. In that study, a portion of the structure was used as the mass of the TMD. This was

done by isolating the upper stories with rubber bearings and connected with the semi-active

resettable spring. A parametric study was conducted over a wide range of ground motions

showcasing the efficacy of using the semi-active device within a tuned mass damper system.

The term hybrid control refers to combining a passive and active device or passive and

semi-active device. A hybrid system using active devices supplements and improves the

performance of a passive control system, whereas passive control is used with active control

to alleviate some of energy needs [102]. One of the earliest examples is the active tuned

mass damper (AMD), which incorporates an active actuator within a passive TMD system

[76]. Later studies then combined an AMD within another TMD system, known as hybrid

mass damper (HMD) [47]. Other hybrid systems have also been proposed where the passive

control is taken to be base-isolation and either other passive [106, 121, 26], active [124] or

semi-active devices [127, 122] incorporated in various configurations. Due to having multiple

devices operating, hybrid control systems can provide higher performance levels while also

easing some of the restrictions and limitations that exist with each control device acting

separately.
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The research proposed in this dissertation studies the control of single-story, multi-story,

and asymmetric structures. The latter structure is one where an imbalance in the stiffness

and/or mass distribution causes the structure to rotate under lateral ground motion. This

rotation is due to an eccentricity between the center of mass and the center of rigidity of the

structure. For single and multi-story structures, a novel configurations of the semi-active re-

settable spring (SRS) within other existing control systems are proposed and studied. Each

new system is evaluated to determine the effectiveness in reducing the structural response

under ground motions. One such configuration is to incorporate an SRS within a TMDI

system. In addition, an alternative tuning strategy is proposed for a TMDI system in a

damped multi-story structure. With regards to base-isolated structures, a novel hybrid sys-

tem incorporating SRS within a TMD system will be proposed. For asymmetric structures,

the effects of including SRSs within the structure will be studied extensively. Guidelines for

the use and placement of SRSs will also be proposed.

1.2 Objectives and Scope

The primary objective of this research is to evaluate the effectiveness of the semi-active

resettable spring (SRS) in a variety of existing control strategies. Performance will be evalu-

ated by comparing the response of the controlled system to that of the uncontrolled system,

typically being a structure without any control devices used. Two sets of ground motions

representing rock-site and pulse-like earthquakes will be used. Basic statistical methods will

be used to evaluate the performance. The structural system considered in this work will

focus on the response of moment resisting frames and the scope will cover the following:

1. To investigate the efficacy of semi-active resettable springs within a TMDI system in

reducing the response of single and multi-story structures.
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2. To investigate the efficacy of using a semi-active resettable spring within a hybrid

base-isolation and TMD system and propose an ad-hoc tuning strategy.

3. To introduce an alternative tuning strategy for a TMDI within a multi-story structure.

4. To study the effects and distribution of resettable semi-active springs in controlling the

seismic response of a one-story asymmetric structure.

1.3 Outline

Following this chapter, Chapter 2 presents a literature review, which introduces the control

devices and systems used in this dissertation. These include the semi-active resettable spring

(SRS), inerter, tuned mass damper (TMD), and base-isolation systems (BISs). Combinations

of these, also known as hybrid control systems, will also be introduced. In Chapter 3, a brief

introduction on the two ground motion sets used in this work is presented. The general

characteristics and properties of the ground motions are discussed.

In Chapter 4, several different types of control strategies for lightly damped one-story struc-

tures are introduced. The control strategies incorporate SRSs, inerters, TMDs and BISs.

In particular, the tuned mass damper inerter (TMDI) and semi-active TMDI (SATMDI)

are introduced. The latter of which is a novel configuration proposed in this work. Tuning

strategies for each control system are introduced. Hybrid control is also considered, where

the response of a one-story structure equipped with a BIS is studied. The control strategy

is to attach a traditional TMD (T-TMD) or non-traditional TMD (NT-TMD) to a BIS.

The NT-TMD is one where the spring, mass, and damper are in series, that is, the damper

grounds the TMD mass. A new configuration is also proposed, where the SRS is used to

ground the mass of a traditional TMD system. Tuning strategies for each of the hybrid con-

trol systems are presented. For each of the control strategies in this chapter, the response of
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the system under the two ground motion sets is studied.

In Chapter 5, the TMDI and SATMDI systems are applied to a lightly damped multi-

story structure. Modified tuning strategies for the TMDI and SATMDI are introduced. In

addition, an alternative tuning strategy is proposed for the TMDI system. Comparisons

between each control strategy were performed for a three-story structure under the two

ground motion sets.

In Chapter 6, SRSs are used in the bracing of an asymmetric structure, that is, a structure

which has an eccentricity caused by an imbalance in the mass and/or stiffness. An extensive

parametric study was done studying the optimal placement and stiffness distribution of

the SRSs. Two methods are proposed and the limitations of each are discussed. General

guidelines for implementation are also discussed.

In Chapter 7, a summary and the contributions of this dissertation are presented. Future

work and possible avenues for further research are also proposed based on the work presented

herein and preliminary results.
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Chapter 2

Literature Review

2.1 Introduction

Reducing the response of structures under strong earthquakes has been the primary focus of

researchers concerned with mitigating the damage caused by strong earthquakes. Typically,

the displacement and acceleration responses are related to the damage in the structural and

non-structural components of a building. Some common approaches include strengthening

the structure by adding additional bracing or incorporating energy dissipating devices. This

dissertation focuses on using passive and semi-active devices to reduce the response of the

structure. In Chapter 2, a review of the vibration suppression devices and various configura-

tions are presented. These devices included the semi-active resettable spring, inerter, tuned

mass dampers, and base-isolation. Hybrid systems combining one or more of the vibration

suppression devices is also introduced.
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2.2 Vibration Suppression Devices

2.2.1 Semi-active Resettable Springs

Semi-active devices combine the benefits of active and passive control, while attempting to

mitigate their drawbacks. Semi-active devices avoid the large power requirements of active

control, while also being able to modify their mechanical properties in real-time, leading

to perform better than passive control. Moreover, similar to passive systems, semi-active

devices provide a fail-safe in the event of power loss. Since energy can only be extracted

from the building, semi-active devices will not cause instability to the structural system [10].

Semi-active devices have been extensively studied in theoretical, numerical, and experimental

contexts [11, 10, 48, 125, 64, 63].

In a semi-active control system, the mechanical properties of the device can be altered in real-

time through the use of sensors, feedback measurements, and a control law which modifies

the mechanical properties of the device [63, 64]. The control forces developed are based on

the structure response, or at least, the structure response local to the device. In the latter

case, the control law would be considered decentralized [48]. Studies have shown that using

semi-active devices have significantly better performance than passive systems, and at times,

performance comparable to active systems [28]. Semi-active control was first used in civil

structures by Hrovat et al. in 1983 [43]. Since then several researchers have investigated

the performance of semi-active devices in the seismic protection of single and multi-story

structures [30, 10, 28, 71, 72, 126].

The nonlinear nature of semi-active devices requires careful selection on the control law so

to employ the full capabilities of the device when used in practice. Several nonlinear control

laws have been developed, for example, bang-bang control, clipped optimal control [50],

resetting logic [10, 11, 48], fuzzy control [20], and genetic algorithm [3].
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In this dissertation, the semi-active resettable spring (SRS) will be used. This device was

first introduced by Bobrow et al. [11]. The device components are a double-acting cylinder,

piston, and valve. A schematic of the device is shown in Figure 2.1a. When the valve is

piston
cylinder

valve

(a)

Mm

x
k

(b)

Figure 2.1: (a) Schematic of resettable semi-active spring (SRS), (b) single-degree-of-freedom
system with attached resettable semi-active spring.

closed, the cylinder compresses the fluid through piston movement. After the value opens,

the energy stored in the fluid is dissipated by heat and fluid slushing. For a single-degree-

of-freedom system, as shown in Figure 2.1b, the energy dissipated when the value opens is

given by the equation

E(t) =
1

2
kd(x(t)− xr)

2 (2.1)

where kd is the SRS stiffness, x is the displacement of the mass, and xr is a piece-wise

constant denoting the zero force position of the SRS [11]. The control law or resetting logic

is then chosen so to extract the maximum energy, that is, when Ė(t) = 0. More explicitly,

Ė(t) = ẋ(t)kd(x(t)− xr) (2.2)

To extract energy from the system, E(t) ̸= 0, which from (2.1), requires x(t) ̸= xr. Thus,

Ė(t) = 0 whenever ẋ = 0 and the control law is defined as

set xr = x whenever ẋ = 0 (2.3)
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The term reset indicates that the stored energy of the SRS is dissipated after opening the

valve. Based on the work by Bobrow et al. [11, 10], the stored energy is released when the

velocity of the piston is zero (see (2.3)). Since the time it takes for the stored energy to

dissipate is short [63], the SRS provides constant stiffness to the system. Therefore, the SRS

acts as a spring element that resets its unstretched length at local maximum strain energy. A

typical force-displacement graph showing a single cycle (three resets) is presented in Figure

2.2. The area enclosed is the work absorbed by the SRS, that is, the total energy dissipated

in one cycle. Based on the prior discussion, the SRS behaves similar to a spring element,

𝐹

𝑥

1st reset

2nd reset

3rd reset

Area = energy 

dissipated by 

semi-active

resettable spring

1
2

34

5

6

Figure 2.2: Generic force-displacement curve of SRS showing one cycle (three resets).

where kd is the SRS stiffness and xr is the piece-wise constant defined by (2.3). The SRS

stiffness has been shown [11] to be

kd =
4Aβ

s
(2.4)
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where A is the piston area, β is the bulk modulus of the fluid, and s is the stroke of the

piston. By selecting the bulk modulus, stroke, and stiffness, a piston area can be calculated.

Prior experimental studies have verified the effectiveness of SRSs in both small-scale [11, 48]

and full-scale [125, 63] testing. Due to the relatively easy and inexpensive construction,

multiple SRSs can be used in parallel to satisfy large force and stiffness requirements.

The control law for the SRS is a resetting technique often denoted as 1-4, since all four

quadrants of the force-displacement diagram are engaged. The control force provided by the

SRS is given by

F = kd(x− xr) (2.5)

where kd is the stiffness of the device and xr is a piece-wise constant defined in (2.3). To

understand the effect the SRS has on a dynamical system, consider the single-degree-of-

freedom system shown in Figure 2.1b. The equation of motion is givenmẍ+kx+kd(x−xr) =

0, and so the SRS adds kd amount of stiffness in addition to having a forcing function equal

to kdxr, where xr is defined by equation (2.3). It is worth noting that although the additional

stiffness provided by the SRS increases the natural frequency of the system, resonance is not

possible due to the additional term kdxr. This term acts as a type of forcing function on the

system driving the system to equilibrium, that is, to zero displacement [10].

2.2.2 Inerters

In 1997, Okumura Atsushi was issued a patent in Japan for a device comprised of a spring

in parallel with flywheels and a geared rod [77]. This so-called gyro-mass consisted of two

disks which rotated the gears in such a way that the force generated was proportional to the

relative acceleration of the terminal ends. Defining x1 and x2 to be the displacement of each

terminal (see Figure 2.3b), this relationship between force and acceleration can be expressed

12



by

F = md(ẍ2 − ẍ1) (2.6)

where

md =
J

r2
(2.7)

and where J is the moment of inertia of the disks, r is the distance from the center of the

disk to the point of attachment of the rod, and md is the apparent (or virtual) mass created

by the device. In 2002, Smith [93] proposed a rack-and-pinions device (see Figure 2.3a),

which he called the inerter. Similar to the gyro-mass device, the inerter produces a force

proportional to the relative acceleration of the terminal ends, defined by

F = b(ẍ2 − ẍ1) (2.8)

where b is called the inertance. So far, three variants of physical realizations have been

developed, namely, rack-and-pinion [93, 94], ball-screw [44], and fluid inerters [113], the

schematic of each shown in Figure 2.3. Rack-and-pinion inerters [77, 93] and ball-screw

inerters [44] provide inertance through linear motion of a rod which is converted to rotational

motion of the flywheel through gearing. On the other hand, some fluid inerters achieve their

inertance through fluid movement to cause the flywheel to rotate. In 2009, Glover et al. [94]

was the first to patent a fluid based inerter, known as a hydraulic inerter. In 2011, Wang [113]

proposed another variant of a hydraulic inerter, while in 2013 Swift et al. [100] introduced

the helical inerter. The latter realization generated inertance from fluid moving through a

helical channel. This realization is unique in that the fluid movement generates the inertance

as opposed to flywheel rotation. Experimental studies have been done studying the helical

design and nonlinear behavior accounting for fluid friction and viscosity [99, 18, 25].
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piston and rod

cylinder
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Figure 2.3: Schematic diagram of three physical realizations of inerter (a) rack-and-pinion,
(b) ball-screw, and (c) fluid inerter.

Several applications of inerters to civil structures has been investigated. Wang et al. [112]

studied the performance of structures equipped with inerters under ground motion and traffic

loads. Other studies have been conducted evaluating the performance of inerters in reducing

the response of multi-story structures under ground motion [103, 130, 131]. In the context

of TMD systems, inerters have been used to either reduce [70] or replace [62] the mass of

the TMD. To alleviate some of the mass requirements, an inerter is included within a TMD

system, known as a tuned mass damper inerter (TMDI) [62], while the tuned inerter damper

(TID) [70] entirely replaces the TMD mass by the inerter. Each of these systems will be

discussed in detail in Section 2.3.
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2.3 Tuned Mass Damper Systems

2.3.1 Tuned Mass Dampers

The key concept of tuned mass dampers is to attach an additional mass to the structure

using mechanical devices, such as springs and dampers, so to mitigate or entirely eliminate

vibrations from the structural system, as shown in Figure 2.4. This is achieved by transferring

the energy of the structure through the spring to the mass and dissipates the energy through

the damper. The spring and damper properties are selected (or tuned) to reduce the response

of the structure under wind or seismic excitations. In contrast, when considering a single-

degree-of-freedom system, the TMD can also be used to change the phase of the system.

Namely, by transforming a lightly damped first mode vibration into two coupled more heavily

damped modes of vibration. A similar idea extends to multi-story structures [87]. The first

mt
ct

kt

ms

cs

ks

Figure 2.4: Tuned mass damper attached to single-degree-of-freedom system.

to introduce the idea of a TMD was Frahm in 1909. Frahm implemented a TMD to reduce

the rolling motion of ships and hull vibrations [31]. The approach was to attach a small

mass to the structure by a spring to reduce vibrations under harmonic loading. This idea

was extended by Ormondroyd and Hartog by adding a viscous damper in parallel to the

spring to dissipate energy [78, 27]. The tuning strategy for the spring and damper was

first derived by Hartog, using what is now known as fixed-point theory [27]. The name of

the approach comes from the fact that the frequency response curves of a single-degree-of-

freedom system equipped with a TMD pass through two fixed points for any choice in the

damping constant. The approach is to select a spring stiffness such that the two points have
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equal magnitude, while the damping constant is selected so that the slope at both points is

zero, that is, at peak values. It is worth noting that the structure is under harmonic force

applied to the structure itself. By solving the algebraic equations, the following formulations

for the optimal frequency and damping ratio have been found to be [78]

f =
1

1 + µ
and ζt =

√
3µ

8(1 + µ)
(2.9)

where f = ωt/ωs is known as the frequency ratio, ωs and ωt are the natural frequencies of the

structure and TMD under rigid motion, respectively, and µ = mt/ms where mt is the TMD

mass and ms is the mass of the structure. The term ζt denotes the damping ratio of the

TMD system. Since the early work of Ormondroyd and Hartog, several other researchers

have developed new formulations for the frequency and damping ratio of the TMD. For

example, Warburton [118] derived the frequency and damping ratio for a structure under

white-noise base excitation

f =

√
1− µ/2

1 + µ
and ζt =

√
µ(1− µ/4)

4(1 + µ)(1− µ/2)
(2.10)

while Sadek et al. [87] selected the frequency and damping ratios such that the first two

natural frequencies and damping ratios of the system are equal. Through extensive numerical

work and curve fitting, the following equations were found for a single-degree-of-freedom

system

f =
1

1 + µ

(
1− ζ

√
µ

1 + µ

)
and ζt =

ζ

1 + µ
+

√
µ

1 + µ
(2.11)

where ζ is the critical damping ratio of the single-degree-of-freedom system. Note that the

work by Sadek et al. accounted for damping of the structure, while Hartog’s and Warbur-

ton’s approach assumes no structural damping. More contemporary work by Leung and

Zhang [65] used particle swarm optimization to select the frequency and damping ratios.
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Explicit formulas were found from curve fitting for a damped structure under white noise

base excitation,

f =

√
1− µ/2

1 + µ
+(−4.9453+20.2319

√
µ−37.9419µ)

√
µζ+(−4.8287+25.0000

√
µ)
√
µζ2 (2.12)

and

ζt =

√
µ(1− µ/4)

4(1 + µ)(1− µ/2)
− 5.3024ζ2µ (2.13)

Other variants of TMDs have also been proposed. One example is a non-traditional TMD

(NT-TMD) first introduced by Ren [85]. In this configuration, instead of the spring and

damper in parallel, the damper grounds the TMD, that is, the spring, mass, and damper are

in series. Xiang and Nishitami [121] applied the NT-TMD to base-isolated structures (BISs).

In each of those studies, the NT-TMD was shown to be more effective than a standard TMD

system. In this work, an SRS will be incorporated within a TMD system, such that it will

ground the TMD mass, thereby classifying it as non-traditional TMD system.

2.3.2 Tuned Mass Dampers with Inerters

Although TMDs have been shown to be effective in reducing the response of a structure

under wind and ground motion, the need for a large mass and/or large stroke inhibits

implementation in several scenarios [98]. One way researchers have mitigated the large mass

requirement of TMDs is to incorporate inerters within the tuned mass damper system. The

first variant of a inerter based TMD was proposed by Saito et al. [88], which arranged

the inerter and damper in parallel, while the spring was in series, shown in Figure 2.5a.

This configuration was known as a Tuned Viscious Mass Damper (TVMD). Another type of

physical realization was introduced by Ikago et al. [44] which used a ball-screw mechanism

to convert translational motion to rotational motion through the flywheel. For this physical
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Figure 2.5: Schematic diagram of three physical realizations of inerter (a) ball-screw, (b)
rack-and-pinion, and (c) fluid inerter.

realization, several studies have been done on the seismic performance, modal properties,

and experimental testing [45, 6, 59]. Lazar et al. [62] proposed a different variant of an inerter

based TMD known as the tuned inerter damper (TID), as shown in Figure 2.5b. In this

configuration, the inerter entirely replaces the TMDmass. The tuning strategy used Hartog’s

approach, with the difference being that three fixed points in the frequency response curve

would need to be accounted for. Modal analysis was performed for a multi-story structure

and found that the TID performed as well as a TMD having an equivalent inertance, yet the

TID was placed at the lower level of the structure as opposed to the upper story. Moreover,

it was found that not only did the TID suppress vibration in the first mode of the structure,

but in all modes [62].

Marian et al. [70] also introduced another variant called the tuned mass damper inerter

(TMDI), as shown in Figure 2.5c. In this configuration, the inerter is used to supplement
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additional mass, thereby requiring less physical mass as opposed to a standard TMD system.

Similar to the TID system, the TMDI has the inerter grounded, while in multi-story struc-

tures it would be attached to the floor below. The tuning strategy followed Warburton’s

approach, where white-noise base excitation was assumed, and the structure was undamped.

For a single-degree-of-freedom system, the following frequency, and damping ratios where

derived

f =
1

1 + β + µ

√
β(µ− 1) + (2− µ)(1 + µ)√

2(1 + µ)
(2.14)

ζt =

√
β + µ

√
β(3− µ) + (4− µ)(1 + µ)

2
√

2(1 + β + µ)[β(1− µ) + (2− µ)(1 + µ)]
(2.15)

where β = b/m1 is denoted as the inertance ratio. Note that by setting β = 0 the frequency

and damping ratio found by Warburton’s tuning strategy (see 2.10) are recovered. Damped

multi-story structures were also considered by running a numerical optimization minimizing

a cost function related to the displacement of the upper story [70, 33]. The results of the

studies found that by the TMDI provides a significant reduction in the required physical

(or real) mass, yet for very large TMD masses, the standard TMD outperforms the TMDI,

aligning with engineering intuition.

2.4 Base-isolation Systems

The earliest known development of base isolation was in 1868 by the Scottish engineer David

Stevenson, where he published the paper “Notice of Aseismatic Arrangements, adapted to

Structures in Countries subject to Earthquake Shocks” [69]. The key concept Stevenson

recognized was by separating the structure from the ground, much of the force (or shock)
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from the ground motion will be negated. In other words, creating a break in the continuity

of the rigid parts of the structure prevents the propagation of the shock to the structure [69].

The designed mechanism was a rolling-bearing device, called an aseismatic joint, comprised

of metal balls set between two plates with hallowed out cups [15]. Figure 2.6 shows a section

of the lamp table equipped with the aseismatic joint. For unknown reasons, Stevenson did

Figure 2.6: Schematic of lamp table with aseismatic joint.

not patent his invention, and instead, Jules Touaillon was the first to be issued a US patent

in 1870 [105]. Only two weeks after Touaillon patented his device, A.F. Cooper patented

a system which incorporated rubber bearings with the intention of reducing the force (or

shock) due to ground motion [15]. Figures 2.7a and 2.7b show Touaillon and Cooper’s

patent designs, respectively. The key concept each of these inventors recognized was that

by separating the structure from the ground, a significant portion of the force produced by

the ground motion can be negated. This is accomplished by allowing the base to absorb

much of the displacement demand. The function of the base-isolator is then to support

the structure while providing significant lateral flexibility. Consequently, the fundamental

frequency of the system is significantly increased, which leads to increased deformation of

the base-isolator. Several examples of isolators have since been developed, for example,

friction devices [73, 117], elastometric rubber bearings [56], lead-rubber bearings [23, 86].

For analysis, the elastometric or lead-rubber bearings can be modelled as either a linear

or nonlinear spring and damper in parallel [91]. Kelly [57] provided an introduction to the
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(a) (b)

Figure 2.7: Base-isolated structure using (a) Touaillon [105] and (b) Cooper’s patent design
[69].

dynamic behavior of base-isolated structures using a simplified two-degree-of-freedom model,

where the system is assumed to remain in the elastic region.

There have been several applications of base-isolation worldwide, including U.S., Europe,

Japan, and New Zealand [74]. The first base-isolated structure in the U.S. (and first in the

world to use high-damping natural rubber) was the Foothills Communities Law and Justice

Center, located in Rancho Cucamonga, California [74]. The largest base-isolated structure

in the world is the West Japan Postal Computer Center, located in Sanda, Kobe Prefecture.

This is a six-story structure supported on 120 elastometric isolators, with several additional

steel and lead-core rubber bearings isolators [74]. A notable example is the University of

Southern California (USC) teaching hospital, which was the only hospital in Los Angeles

to have minimal damage during the 1994 Northridge earthquake, giving testament to the

effectiveness of base-isolation [107]. While the base-isolation systems(BISs) have generally
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Figure 2.8: Base-isolation of USC teaching hospital [107].

provided adequate protection, there is some evidence to suggest otherwise. Some concerns

include localized buckling of the isolator or collapse of the structure due to excessive lateral

displacement [74]. In addition, it has been shown that BISs are insufficient to protect struc-

tures against near-source, pulse-like earthquakes [52, 97]. Similar studies have shown that

near-fault ground motions can cause excessive base displacements [38, 40, 55, 58]. Moreover,

utility connections must also be flexible enough to not be damaged [58] and the distance

between adjacent buildings must also be considered to avoid structural pounding [4]. Due to

these drawbacks of BISs, researchers began developing hybrid control strategies combining

a BIS with other energy dissipative devices, with the most common approach of connecting

a tuned mass damper (TMD) to a BIS.
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2.5 Hybrid Control Systems

The term hybrid control in civil engineering typically refers to the combination of either

passive and active control or passive and semi-active control [102]. The idea of hybrid control

is to supplement passive devices with other devices so to increase the performance of the

overall system. In [97], an exhaustive review of control schemes for various civil structures

was done. In that paper, 40 buildings and ten bridges used active or hybrid control strategies,

some of which include, semi-active TMD, variable orifice dampers, variable friction dampers.

As mentioned prior, BISs are prone to excessive displacements under long-period and long-

duration ground motions. A hybrid system comprised of a TMD and BIS has been shown

to be effective in mitigating large displacements. Studies [106, 104, 79, 80] have shown that

TMDs used in conjunction with BISs are effective in reducing displacement at the base of

the structure. However, attaching a TMD to a BIS results in reduced isolator displacement,

adequate performance requires large stroke and/or TMD mass [7]. The work of Xiang et

al. [121] proposed attaching a non-traditional TMD [85] to a BIS. The results of that study

showed that the NT-TMD greatly reduces, stroke, yet large masses are still necessary for

sufficient response reduction. In summary, although a TMD system does reduce the response

of a structure, the drawbacks are that it typically requires a large footprint in the building,

that is, a stroke, and/or a large mass so to properly reduce the response.

2.6 Summary

In this chapter, several control devices used in reducing the response of a structure were

introduced. Some of these devices provide energy dissipation, such as the semi-active re-

settable spring (SRS) or increase the apparent mass of the system by using an inerter. In

addition, the tuned mass damper (TMD) system and base-isolation systems (BISs) were
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presented. Incorporating an inerter within a TMD system in several different configurations

was introduced. Lastly, hybrid control systems, which attach a TMD system to a BIS to

mitigate the displacement of the base structure were shown. One such hybrid control system

was the non-traditional TMD (NT-TMD), which arranges the spring, mass, and damper in

series, where the damper grounds the TMD mass. The NT-TMD was shown to be effective

in reducing the BIS displacement while also having a significantly reduced stroke.

In this dissertation, the control of a single-story structure is studied using the control devices

presented in this chapter. A new type of TMDI system which incorporates the SRS device,

called the semi-active TMDI (SATMDI) is presented, and the performance is compared with

the TMDI system. For BISs, a new configuration of a TMD system using the SRS device is

introduced. This configuration, called the NT-SATMD, attaches an SRS to a TMD system,

where the SRS grounds the TMD mass. Tuning strategies for both of the new configurations

is also introduced.

For multi-story structures, an alternative tuning strategy for the TMDI system based on the

work of Sadek et al. [87] is proposed. This new tuning strategy is compared with a TMDI

having a tuning strategy based on white noise input. In addition, the SATMDI system is

used within a multi-story structure and the performance is evaluated.
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Chapter 3

Ground Motions

3.1 Introduction

The ground motions used in this study were taken from the Pacific Earthquake Engineering

Research (PEER) Ground Motion Selection Project [54]. The goal of that study was to

introduce techniques for selecting sets of ground motions to be used in a variety of structural

and geotechnical systems located in earthquake-prone regions of California. The results were

four different ground motion sets, two which were used in this work, namely, the broad-band

rock-site and pulse-like ground motion sets. These two sets were selected based on having

larger magnitudes, near-fault, and pulse characteristics. Each set of ground motions comes in

three components. For this work, only the normal component was considered as it typically

has the largest magnitude. In this chapter, we will briefly introduce the defining properties

of the two ground motion sets used in this dissertation.
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3.2 Broad-band Rock-site Ground Motion Set

The broad-band rock-site ground motion set contains 40 unscaled three-component ground

motions. The ground motions were selected such that their response spectra match median

and log standard deviations for a magnitude 7 earthquake at a distance of 10 km. Since the

ground motions were meant to represent rock sites for the response analysis, the site Vs30 was

assumed to be 760 m/s. Figure 3.1 shows the spectral acceleration of each ground motion

and the median value.
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Figure 3.1: Spectral acceleration of 40 rock-site ground motions and median response spec-
trum.

3.3 Pulse-like Ground Motion Set

The pulse-like ground motion set contains 40 unscaled three-component ground motions

containing strong velocity pulses of varying periods. The directivity effects of the near-fault

ground motions cause strong velocity pulses. In particular, the ground motions have strong

velocity pulses in the strike-normal direction, as shown by the the work done by Baker [8].
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The pulse-period varies across the 40 ground motions since the relative period between the

structure and pulse-period affects the structural response. The pulse-periods ranged from 1

to 12.9 seconds having a mean of 5.5 seconds. Figure 3.2 shows the spectral acceleration of

each ground motion and the median value.
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Figure 3.2: Spectral acceleration of 40 pulse-type ground motions and median response
spectrum.

3.4 Summary

In this chapter, two ground motion sets, known as the rock-site and pulse-like ground motion

sets, were introduced. These ground motion sets were selected based on having near-fault

or pulse-like characteristics, the latter of which is known to cause significant increase in the

response of the structure. Spectral acceleration plots of each ground motion set were also

presented.
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Chapter 4

Control of Single-story Structures

4.1 Introduction

Vibration control of civil engineering structures is an integral part of the design process,

particularly structures subjected to earthquakes. Well known approaches include base iso-

lation, [96, 84], energy dissipation, [101, 30], and tuned mass dampers (TMDs) [31, 42].

Tuned mass dampers have seen extensive use in civil structures, due to their simplicity and

robustness. Since the early work of Ormondroyd and Hartog [78], there has been a variety

of applications of TMDs to civil structures, such as bridge decks [16], tall buildings [128],

and wind turbine towers [5]. Extensive analytical and experimental investigations have been

conducted to measure the effectiveness of TMDs in vibration control [87, 116]. However,

vibration control of the structure has been shown to be insufficient if the mass ratio of the

TMD mass to the structure is significantly lower than 1% [7].

In Section 4.2, a new configuration of a TMD is introduced using a passive device and reset-

table semi-active spring (SRS). The passive device is taken to be an inerter, first introduced

by Smith [93], and the SRS is a resettable spring element, put forward by Bobrow et al.
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[11, 48]. The inerter is placed between the ground and the TMD, while the SRS is placed

between the structure and TMD. This configuration will be known as a Semi-Active Tuned

Mass Damper Inerter (SATMDI).

4.2 Semi-Active Tuned Mass Damper Inerter (SAT-

MDI)

This section will investigate the use of a SATMDI in reducing displacement and acceleration

responses of a single-story structure. The relative displacement between the structure and

TMD, otherwise known as the stroke, will be compared between the SATMDI and TMDI

systems. The response values will be normalized by the uncontrolled system, that is, a

structure with no TMD system attached. The amount of virtual mass provided by the

inerter, and stiffness provided by the SRS will also be studied.

Performance between the SATMDI and TMDI was evaluated using the median (50th per-

centile). To measure the dispersion (or variation) in the responses, the median absolute

deviation (MAD) was used. The results of this investigation will show that the SATMDI

provides equal or better performance in reducing the the responses of the structure for a

TMD system with a significantly smaller physical mass and can be housed in less area than

a traditional TMD. Thus, the SATMDI will provide performance comparable to that of a

large mass TMD, yet potentially without the additional costs and design complications for

implementing a large mass TMD.
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4.2.1 Equations of Motion

The equations of motion for the system shown in Figure 4.1 are given as,

ms 0

0 mt + b


ẍ1

ẍ2

+

ct + cs −cs

−cs cs


ẋ1

ẋ2

+

ks + kt −kt

−kt kt


xs

xt



+

 kd −kd

−kd kd


xs

xt

−

kd −kd

kd kd


xsr

xtr

 = −

ms

mt

 ẍg. (4.1)

In the above equations, ms and mt are the masses of structure and TMD, respectively, while

mt

ct

ktms

cs

ks

b

kd

xt
xs

Figure 4.1: Semi-Active Tuned Mass Damper Inerter proposed in this paper.

b is taken to be the inertance (virtual mass) provided by the inerter. In addition, ct and

cs are the damping coefficients of the structure and TMD, respectively, ks and kt are the

stiffness of the structure and TMD, respectively, and kd is the stiffness provided by the SRS.

The displacement of the structure and TMD is measured relative to the ground displacement

and denoted as xs and xt, respectively. The terms xsr and xtr are the values xs and xt at

the last reset time, that is,

set

xsr

xtr

 =

xs

xt

 whenever ẋs − ẋt = 0. (4.2)
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The ground acceleration is denoted by ẍg. In this configuration, the inerter is attached

directly to the ground, adding b amount of virtual mass to the the TMD system. This

configuration is done to illustrate the effect an inerter has when incorporated within a TMD

system. For multi-degree-of-freedom systems the inerter would instead be attached to the

floor below, which has been studied by previous researchers [33].

Similar to previous work [31, 42], equation (4.1) is non-dimensionalized to reveal pertinent

the parameters of the system, shown in (4.3).

 1
µ+β

0

0 1
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ẍ2
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−ω2
t ω2

t


xs

xt
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−

 ω2
d −ω2

d

−ω2
d ω2

d


xsr

xtr

 = −

 1
µ+β

µ
µ+β

 ẍg. (4.3)

The mass ratio µ and the inertance ratio β are defined as

µ =
mt

ms

and β =
b

ms

(4.4)

where the definition for β is consistent with previous studies for an inerter in TMD [70, 62].

We denote ωs, ωt, and ωd as

ωs =

√
ks
ms

, ωt =

√
kt + kd
mt + b

and ωd =

√
kd

mt + b
. (4.5)

It is worth noting that setting b = kd = 0, reduces to the dimensionless ratios first defined by

Hartog [78], where ωs and ωt were called the natural frequencies of the structure and TMD,
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respectively. We also denote ζs and ζt, structure and TMD damping ratios, as

ζs =
ct

2msωs

and ζt =
cs

2mtωt

. (4.6)

4.2.2 Tuning Strategy for SATMDI

The tuning strategy for a SATMDI system is based on the tuning strategy of a TMDI

subject to white noise base excitation. This was due to its ease of use to demonstrate the

effectiveness of the SATMDI system. A similar approach was done in [19], which incorporated

a SRS within a TMD system using closed-form equations developed in [87].

As typically done in literature [70, 19, 27], consider the dimensionless frequency ratio f

expressed by

f =
ωt

ωs

(4.7)

where ωs and ωt are defined by in (4.5). To gauge the effect the SRS, we define the stiffness

ratio κ, which is the ratio of the SRS stiffness to the total TMD stiffness,

κ =
kd

kt + kd
. (4.8)

For κ = 1, the SRS would completely replace the TMD spring, that is, kt = 0. For κ = 0,

the SRS provides no stiffness, and for 0 < κ < 1, both the TMD spring and SRS contribute

to the total stiffness. For this study, fixed values of κ ranging from 0 to 1 with increments

of 0.25 are selected. The stiffness ratio values chosen are not optimized and are only used to

show feasibility of the SATMDI system.

To tune the SATMDI, the equations from Marian et al. [70] are adopted to find the frequency

32



ratio f and damping ratio ζt, given by equations (4.9) and (4.10), respectively.

f =
1

1 + β + µ

√
β(µ− 1) + (2− µ)(1 + µ)√

2(1 + µ)
(4.9)

ζt =

√
β + µ

√
β(3− µ) + (4− µ)(1 + µ)

2
√

2(1 + β + µ)[β(1− µ) + (2− µ)(1 + µ)]
(4.10)

The above closed-form equations for the frequency and damping ratios were derived for an

undamped single-degree-of-freedom system under white noise base excitation. The structure

considered in this paper is lightly damped yet using equations (4.9) and (4.10) to tune the

SATMDI will be adequate to show the effectiveness of using an SRS within a TMDI system.

4.2.3 Results

Using the two ground motion sets presented in Chapter 3, peak responses of the displacement,

acceleration and stroke were found. The structure mass and stiffness were chosen to achieve

a natural period of T = 1 second. The mass ratios used were µ = 0, 0.01, 0.05. To gauge the

performance of the TMD systems, the following reduction factors are introduced,

RD =
Peak displacement of controlled structure

Peak displacement of uncontrolled structure
(4.11)

RA =
Peak acceleration of controlled structure

Peak acceleration of uncontrolled structure
(4.12)
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RS =
Peak stroke of the SATMDI system

Peak stroke of the TMDI system
(4.13)

and are called the displacement, acceleration, and stroke reduction factors, respectively. In

(4.11) and (4.12) the controlled structure refers to the structure equipped with a SATMDI

or TMDI system. The uncontrolled structure refers to the structure without either control

device. Having RD < 1 or RA < 1 would indicate that the controlled system is effective in

reducing the structure displacement and acceleration. When RS < 1, the SATMDI system

has less stroke than the TMDI system. The median of the reduction factors over ground

motions from each set is used to compare the systems.

Figures 4.2-4.7 show the median displacement, acceleration, and stroke reduction factors for

the rock-site and pulse-like ground motion set. Each figure displays the results using mass

ratios µ = 0, 0.01, and 0.05.
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Figure 4.2: Rock-site ground motion set for displacement reduction factor R̄D where (a)
µ = 0, (b) 0.01, and (c) 0.05.
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Figure 4.3: Pulse-like ground motion set for displacement reduction factor R̄D where (a)
µ = 0, (b) 0.01, and (c) 0.05.
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Figure 4.4: Rock-site ground motion set for acceleration reduction factor R̄A for (a) µ = 0,
(b) 0.01, and (c)0.05.

0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85
=0 (TMDI)

=0.25

=0.5

=0.75

=1

(a)

0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

(b)

0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

(c)

Figure 4.5: Pulse-like ground motion set for acceleration reduction factor R̄A for (a) µ = 0,
(b) 0.01, and (c)0.05.
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Figure 4.6: Rock-site ground motion set for stroke reduction factor R̄S for (a) µ = 0, (b)
0.01, and (c)0.05.

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

=0.25

=0.5

=0.75

=1

(a)

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Figure 4.7: Pulse-like ground motion set for Stroke reduction factor R̄s for (a) µ = 0, (b)
0.01, and (c)0.05.
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4.2.4 Discussion

Figures 4.2 and 4.3 show that the SATMDI and TMDI are effective in reducing the displace-

ment response for all mass ratios and each ground motion set. By increasing the inertance β,

the responses decrease. Similarly, by increasing the mass ratio, the responses decrease. For

the rock-site ground motion set, Figures 4.2a-4.2c show that increasing the stiffness ratio

κ when β < 0.4 leads to worse performance, while the reverse occurs for β > 0.4. The

pulse-like ground motion set has a similar behavior, yet instead of the reversal in perfor-

mance, the lines coalesce. The reason the SATMDI performs worse as the stiffness ratio is

increased can be explained by the tuning strategy of the TMDI system and the resetting of

the SRS. The TMDI was tuned to minimize displacement while the spring remains linear.

For the SATMDI, the force provided by the SRS is nonlinear. In particular, the force van-

ishes at reset (see (2.5)), which adversely affects the displacement response. For the rock-site

ground motion set, only after increasing the inertance past 0.4 is there an improvement in

performance. The results presented are consistent with those found in a previous study [19]

incorporating an SRS within a TMD system, where a portion of the structure is used as the

TMD mass, that is, where the mass ratio µ > 0.4.

For the acceleration (Figures 4.4 and 4.5), the SATMDI provides better performance than

the TMDI. Specifically, there is considerable reductions in acceleration for the pulse-like

ground motion set when using a SATMDI system. As for the stroke (Figures 4.6 and 4.7), as

much as a 50% reduction occurs for small values of inertance, yet for larger inertance there

is less improvement. This behavior is also present for the displacement and acceleration

responses as the inertance is increased. Thus, the reductions in the response are mainly due

to a larger inerter than those provided from the SRS device.

The reductions in the acceleration and stroke of the SATMDI can be attributed to the energy

dissipative property of the SRS. Since the SRS is placed between the structure and TMD,
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energy transfer can occur from the structure to the SRS, providing reduced acceleration. A

similar effect occurs for the stroke. In fact, it has been shown [11, 48] for an SRS placed

between two masses where the control law is given by (4.2) that the SRS does not provide

direct reductions in the displacement of a single mass. Since the control law is based on the

relative velocity of the ends, the relative displacement between the masses is reduced. Thus,

an SRS placed between a structure the TMD mass, it is the stroke that is directly reduced,

while reducing the structure displacement indirectly.

From the results shown, for inertance values greater than 0.4, there is considerable reduc-

tions in the acceleration of the structure. This is especially important in the event of a

strong ground motion, where the occupants and/or delicate equipment within the structure

experience reduced forces. For inertance values between 0.2-0.4, there is a good balance

between reducing the displacement, acceleration, and stroke responses. For smaller values of

inertance there is a large reduction in the stroke. Therefore, depending on which response

is critical, the SATMDI parameters can be chosen to accommodate the requirement.

When µ = 0, there is an addition benefit, where the inerter replaces the TMD mass. The

displacement, acceleration, and stroke responses show marginally improved performance than

nonzero µ. Therefore, by using an SRS within a TMDI system where µ = 0, the SATMDI

has nearly equal or better performance in reducing displacements, while having additional

reductions in the acceleration and stroke. More importantly, by replacing the TMD mass

by the inerter, the SATMDI acts as a miniaturized large mass TMD, yet can be housed in

a smaller area of the structure due to the reduced mass and stroke. Thus, the SATMDI can

provide the performance of a large mass TMD, yet at a potentially reduced monetary cost

and retrofitting complications.
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4.3 Base-isolation

Base-isolation systems (BISs) have been extensively used in practice to mitigate the damage

in structures caused by strong earthquakes. This is accomplished by providing sufficient

lateral flexibility at the base level to absorb the displacement demand. This results in

several large base-isolators. To ease the displacement demand, tuned mass dampers (TMDs)

have been attached to the base structure in various configurations. In the following sections,

two common approaches are presented. In addition, a new configuration incorporating a

SRS is proposed.

4.3.1 Traditional and Non-traditional Tuned Mass Dampers

Several researchers [106, 104, 85, 121] have studied various configurations of TMD systems

attached to the base structure to reduce the response. This study investigated the use of a

traditional TMD (T-TMD) and non-traditional TMD (NT-TMD) attached to a BIS, shown

in Figures 4.8a and 4.8b, respectively. The T-TMD and NT-TMD was compared to the

new one proposed in this paper, called the non-traditional SATMD (NT-SATMD), shown in

Figure 4.8c.

For each system in Figure 4.8, the center of mass displacement of the superstructure, base,

and TMD are denoted by xs, xb, and xt, with each having mass ms,mb, and mt, respectively.

The superstructure stiffness and damping are denoted as ks and cs, and the stiffness and

damping of the BIS are denoted as kb and cb. The stiffness and damping of the TMD system

are denoted as kt and ct, while kd denotes the stiffness of the SRS. The ground displacement

is denoted as xg.
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Figure 4.8: Idealized 3DOF system using lead-plug rubber bearings as the base isolation
system equipped with a (a) T-TMD, (b) NT-TMD, and (c) NT-SATMD system.

4.3.2 Equations of Motion of T-TMD and NT-TMD

The equations of motion for the T-TMD and NT-TMD are shown in (4.14) where u =[
usb ub ut

]T
and r =

[
0 1 1

]T
, and a dot denotes a derivative with respect to time.

The mass and stiffness matrices for each system are defined in (4.15), while the damping

matrix for the T-TMD is given in (4.16), and for NT-TMD in (4.17).

Mü+Cu̇+Ku = −Mrẍg (4.14)

M =


ms ms 0

ms ms +mb 0

0 0 mt

 ,K =


ks 0 0

0 kb + kt −kt

0 −kt kt

 (4.15)

CT−TMD =


cs 0 0

0 cb + ct −ct

0 −ct ct

 (4.16)

40



CNT−TMD =


cs 0 0

0 cb 0

0 0 ct

 (4.17)

4.3.3 Non-traditional Semi-Active Tuned Mass Damper

The non-traditional semi-active tuned mass damper (NT-SATMD) is show in Figure 4.8c.

In this arrangement, the linear spring and damper, TMD mass, and SRS are placed in series.

The parallel spring and damper attach the TMD mass to the base structure, while the SRS

is placed between the TMD mass and ground. In the following sections, the equations of

motion and tuning strategy are presented for the NT-SATMD.

4.3.4 Equations of Motion of NT-SATMD

The equations of motion for a BIS equipped with an NT-SATMD (Figure 4.8c) is shown in

(4.18) where the mass, damping, and stiffness matrices are given by (4.15) and (4.16). The

sparse stiffness matrix associated with the SRS is defined in (4.19).

Mü+Cu̇+ (K +Kd)u−Kdur = −Mrẍg (4.18)

Kd =


0 0 0

0 0 0

0 0 kd

 (4.19)
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The piece-wise constant ur is defined by (4.20) and is analogous to the control law in (2.3),

yet since there is ground motion, the velocity across the SRS must be considered. The

approach is similar to prior studies [11, 48] using an SRS within a multi-story structure.

In the context of this paper, the velocity across the SRS is the velocity of the TMD mass

relative to the ground, that is, u̇t = ẋt − ẋg.

set ur = u whenever u̇t = 0 (4.20)

In (4.18), setting kd = 0, reduces to the equations of motion for a BIS equipped with a

T-TMD system [106], while further setting kt = ct = 0 the equations of motion of a BIS is

recovered [74].

As typically done in previous studies of TMDs [74, 121], non-dimensionalizing (4.18) gives

the critical parameters of the system used in the tuning strategy for the TMD. This leads

to the following dimensionless mass, stiffness, and damping matrices.

M =


1 1 0

1
1+µb

1 0

0 0 1

 (4.21)

K =


ω2
s 0 0

0 ω2
b + ω2

t

(
µt

1+µb

)
−ω2

t

(
µt

1+µb

)
0 −ω2

t

(
µt

1+µb

)
ω2
t

 ,Kd =


0 0 0

0 0 0

0 0 ω2
d

 (4.22)

CNT−SATMD =


2ωsζs 0 0

0 Y −Z

0 −Z Z

 (4.23)
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where

Y = 2ωbζb + 2ωtζt

(
µt

1 + µb

)
, (4.24)

Z = 2ωtζt

(
µt

1 + µb

)
. (4.25)

The dimensionless parameters in (4.21)-(4.25) are given by

µb =
mb

ms

, µt =
mt

ms

(4.26)

ωs =

√
ks
ms

, ζs =
cs

2msωs

(4.27)

ωb =

√
kb

ms +mb

, ζb =
cb

2(ms +mb)ωb

(4.28)

ωt =

√
kt + kd
mt

, ζt =
ct

2mtωt

, ωd =

√
kd
mt

. (4.29)

For this study, the mass of the super and base structures were taken as ms = 1× 106 kg and

mb = 5× 105 kg, respectively. The stiffness of the super and base structures are selected to

achieve natural periods of Ts = 1 and Tb = 4 seconds, and with damping ratios ζs = 0.02

and ζb = 0.05. The choices on the damping ratios were to model a lightly damped structure

having a moderately damped BIS.

43



0.02 0.04 0.06 0.08 0.1
7t

0

5

10

15

20

25

30

35

!
1;

2;
3

(r
ad

/
se

c)

NT-SATMD (!3)
NT-SATMD (!2)
NT-SATMD (!1)
NT-TMD (!3)
NT-TMD (!2)
NT-TMD (!1)
T-TMD (!3)
T-TMD (!2)
T-TMD (!1)

(a)

0.02 0.04 0.06 0.08 0.1
7t

0

0.1

0.2

0.3

0.4

1 1
;2

;3

NT-SATMD (13)
NT-SATMD (12)
NT-SATMD (11)
NT-TMD (13)
NT-TMD (12)
NT-TMD (11)
T-TMD (13)
T-TMD (12)
T-TMD (11)

(b)

Figure 4.9: Selection of (a) damping ratio ζt and (b) stiffness ratio κ for mass ratios (µt)
ranging from 0.01-0.1.

The terms in (4.26) are the mass ratios of the base and TMD, respectively. In (4.27)-(4.28),

the parameters ωs and ζs are the natural frequency and damping ratio of the fixed base

structure without a BIS, while ωb and ζb are the natural frequency and damping ratio of

the BIS where the superstructure and BIS experience rigid motion. For (4.29), ωt and

ζt are the natural frequency and damping ratio of the TMD system, assuming the BIS

and superstructure remains stationary. The non-dimensional parameters ωs, ωb, and ωt are

typically referred to as the natural frequencies super and base structure, and TMD [74, 106].

These are not the actual natural frequencies of the system, but is merely done to simplify

exposition. Similar dimensionless parameters can be derived for the T-TMD and NT-TMD

systems, but are left out for brevity. The actual natural frequencies and damping ratios

versus the µt are shown in Figure 4.9. Based on these results, the natural frequencies of each

system are relatively equal, while the damping ratios vary greatly. This is a consequence of

the tuning strategy of each system, which will be described in detail in the following section.
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4.3.5 Tuning Strategy for NT-SATMD

When tuning a TMD system, the dimensionless frequency ratio f [106], defined as

f =
ωt

ωb

(4.30)

is used where ωb and ωt are defined in (4.28) and (4.29). Based on the tuning strategy of

NT-TMD applied to BISs [121], the frequency ratio for this study is taken to be

f =
1

√
µt

(4.31)

For T-TMD systems, the frequency ratio is found to be less than one due to the results of

a closed-form equation [27, 9] or by the constraints set when solving numerically [89, 87].

For a NT-TMD, the numerical optimization done by Xiang et al. [121] instead set the upper

bound on the frequency ratio to be 1/
√
µt, which was done to find the global minimum of

the maximum magnitude of frequency transfer function of acceleration. It was found that

setting the frequency ratio to be as large as possible led to the greatest response reductions.

For base-isolated structures, it is possible to set f = 1/
√
µt. The frequency ratio is greater

than one for µt < 1, which leads to having a larger spring stiffness for a NT-TMD and NT-

SATMD as compared with the T-TMD systems. This can seen by writing kt+kd in terms of

kb using (4.28) and (4.29) in (4.30), where the frequency ratio is squared. A portion of the

stiffness for the NT-SATMD is provided by the SRS. Since the energy absorbed increases

for larger stiffness (see (2.1)), by having a larger stiffness for the TMD system, the SRS can

become more beneficial.

The damping ratio ζt is taken from the work of Sadek et al. [87], defined in (4.32), since it
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allows for simple damper tuning with desirable performance.

ζt = Φ

(
ζ1

1 + µ
−

√
µ

1 + µ

)
(4.32)

where µ is defined as

µ =
mt

ϕT
1Mϕ1

(4.33)

where M is the mass matrix and ϕ1 is the fundamental mode shape normalized to have

unit participation factor. The first modal damping ratio of the system is denoted by ζ1 and

Φ is the amplitude of the normalized first mode shape at the location of the TMD. Prior

studies [19] used an SRS with the resetting technique defined in (2.3). In that study, the SRS

was placed between the structure and the TMD mass, and the damping ratio was selected

using (4.32). Figure 4.10a shows the damping ratio for the T-TMD (black), NT-TMD (red),

NT-SATMD (black), as a function of the mass ratio µt.

To capture the effect of the SRS, the dimensionless ratio, κ, so forth called as the stiffness

ratio, is defined as

κ =
kd

kt + kd
(4.34)

For κ = 1, the SRS replaces the linear spring, while for κ = 0, the SRS is not used. For

0 < κ < 1, both the linear spring and SRS are engaged. The selection of stiffness ratio was

to minimize the peak displacement of the base structure subject to a series of harmonic base

excitations having input frequencies varying from 0.3ωb to 2ωb. The MATLAB Optimization

Toolbox was used to find the stiffness ratio κ. The surrogate optimization function was

employed due to having a computationally expensive objective function. Moreover, the

objective function may be non-convex, yet surrogate optimization is derivative-free and can

be used [37]. The mass ratios µt ranged from 0.01-0.1, and the base structure mass is taken
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as 5% of the superstructure, which are comparable to other studies [121, 39].

0.02 0.04 0.06 0.08 0.1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

NT-SATMD,T-TMD

NT-TMD

(a)

0.02 0.04 0.06 0.08 0.1

0.38

0.4

0.42

0.44

0.46

0.48

(b)

Figure 4.10: Selection of (a) damping ratio ζt and (b) stiffness ratio κ for mass ratios (µt)
ranging from 0.01-0.1.

Figure 4.10b shows the results of the optimization to find the stiffness ratio. Selecting the

frequency ratio in (4.31) and damping ratio in (4.32) results in a nearly linear relationship

between the stiffness ratio, κ, and mass ratio, µt, even though the SRS is a nonlinear device.

This allows for an easier TMD design process since the selection of the frequency, damping,

and stiffness ratios can be easily calculated. Previous studies [19] which incorporated a SRS

within a TMD system chose stiffness ratios from 0 to 1 in varying increments, and similarly,

used the tuning strategy of Sadek et al [87]. The results of that study showed that the

using an SRS within a TMD system provided greater reductions in the displacement and

acceleration responses as compared to a passive TMD system.

4.3.6 Results

To gauge the performance of each TMD system, the displacement and acceleration of the

super and base structure are considered. The relative displacement between the super and

base structure, and relative displacement between the base and TMD mass, otherwise known

as the stroke, are considered. The ratio of each of these, to the uncontrolled values, are
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denoted by

RD =
Peak displacement (controlled)

Peak displacement (uncontrolled)
(4.35)

RA =
Peak acceleration (controlled)

Peak acceleration (uncontrolled)
(4.36)

RS =
Peak stroke (SA or passive control)

Peak stroke (passive control)
(4.37)

and are called the displacement, acceleration, and stroke reduction factors, respectively.

The controlled system refers to a structure with a BIS having a TMD attached, whereas

the uncontrolled refers to a structure with only a BIS. For the T-TMD, NT-TMD, and

NT-SATMD peak displacements and accelerations are normalized by the peak displacement

and acceleration of the BIS system. For the stroke reduction factor, the peak stroke of the

NT-TMD and NT-SATMD are normalized by the peak stroke of the T-TMD. To compare

the performance of each TMD system under each ground motion set, the mean reduction

factors, R̄D, R̄A, and R̄S were used.

Figures 4.11-4.13 show the mean peak displacement reduction factors for the super and

base structure, and relative displacement under the rock-site and pulse-like ground motions.

Figures 4.14 and 4.15 show the mean peak acceleration reduction factors for the super and

base structure under the rock-site and pulse-like ground motions. Figure 4.16 shows the

stroke reduction factor under the rock-site and pulse-like ground motion sets. Each of these

plots vary with mass ratios of 0.01-0.1 for the T-TMD, NT-TMD, and NT-SATMD systems.
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Figure 4.11: Structure displacement, R̄D of us for (a) rock-site and (b) pulse-like ground
motion sets.
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Figure 4.12: Base displacement, R̄D of ub for (a) rock-site and (b) pulse-like ground motion
sets.

4.3.7 Discussion

Figures 4.11-4.13 show the mean super and base structure, and relative displacement reduc-

tion factors for the rock-site and pulse-like ground motion sets. For either set of ground

motions, the T-TMD and NT-TMD systems’ performance improves for larger µt. For the

NT-SATMD, the performance is nearly constant across all mass ratios (see Figures 4.11 and

4.12). In other words, the NT-SATMD effectiveness in reducing displacements is indepen-

dent of the selection of the mass ratio. Moreover, the NT-SATMD is better in reducing

the structure and base displacements for mass ratios less than 0.06. As for the relative dis-

placement between the super and base structure (Figure 4.13), there is a small increase as

compared with the BIS. Since the BIS already significantly reduces the relative displacement

[74], this increase is negligible.
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Figure 4.13: Relative displacement, R̄D of usb for (a) rock-site and (b) pulse-like ground
motion sets.

Figures 4.14 and 4.15 show the mean super and base structure acceleration reduction factors

for the rock-site and pulse-like ground motion sets. Similar to the displacement, the NT-

SATMD is nearly constant for all mass ratios µt, with the only exception being the base

acceleration for the pulse-like ground motion set. Specifically, for µt = 0.01, there is a

spike occurring, and should be avoided by selecting µt ≥ 0.02. The spike in acceleration

is a consequence of the tuning strategy used, that is, choosing f = 1/
√
µt. As described

earlier, since f ≥ 1, the stiffness of the NT-SATMD is larger than the T-TMD. This leads

to a greater amount of force transmitted from the ground to the base. A similar result was

found in previous work [30] using the SRS in a bracing system that added stiffness to a

single-degree-of-freedom system. Note that the rock-site ground motion set (Figure 4.15a)

also exhibits a spike at µt, yet due to the characteristics of the ground motion set, it is not

as pronounced. The spike in the acceleration of the pulse-like ground motion set can also be

attributed to the velocity pulse and generally intense ground motions used [30].
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Figure 4.14: Structure acceleration, R̃A of us for (a) rock-site and (b) pulse-like ground
motion sets.

50



Figure 4.16 shows the stroke reduction factors for the rock-site and pulse-like ground motion

sets. Both the NT-TMD and NT-SATMD provide considerable reductions in the stroke

for small mass ratios. Increasing the the mass ratio has a diminishing effect on reducing

stroke. The increase in R̄S can be attributed to the T-TMD having less stroke for larger

masses. Yet, even with µt = 0.1, the NT-TMD provides nearly 70% reductions, while the

NT-SATMD provides nearly 60%. The results are a direct consequence of the configurations

of the NT-SATMD and NT-TMD, that is, by having the TMD mass grounded by either the

SRS or damper, the displacement of the TMD mass is reduced, and in turn reducing the

relative displacement between the base structure and TMD.

The main contribution of this section is demonstrating that using an NT-SATMD has an

equal (or better) performance in reducing the super and base structure displacements for

a mass ratio three to five times smaller. Observing Figure 4.12a (rock-site ground motion

set), the NT-SATMD for µt = 0.02 has an equal level of performance as a NT-TMD with

µt = 0.06. This is shown by the green line. Similarly, by considering Figure 4.12b, the NT-

SATMD with µt = 0.02 has equal performance as the NT-TMD with µt = 0.08− 0.1 under

the pulse-like ground motion set. Moreover, the stroke of the NT-SATMD for µt = 0.02

and a NT-TMD for µt = 0.06 are within 5% as shown by difference between the green

line and the black. Assessing the performance of three control systems having equal mass

ratios (µt = 0.02), the NT-SATMD has greater reductions in the super and base structure
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Figure 4.15: Base acceleration, R̄A of ub for (a) rock-site and (b) pulse-like ground motion
sets.
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Figure 4.16: Stroke, R̄s, for (a) rock-site and (b) pulse-like ground motion sets.

displacements (see Figures 4.11 and 4.12). The acceleration performance is approximately

the same for the three control systems (see Figures 4.14 and 4.15).

The negative effect of using a NT-SATMD is having an increase of no more than 2.5% in

the relative displacement between the super and base structure (Figures 4.13a and 4.13b).

In addition, the super and base structure accelerations (Figures 4.14 and 4.15) are also

larger for some choices in µt. To address the former negative effect, since the BIS already

greatly reduces the relative displacement between the super and base structure [74], the

small increase will likely have no considerable effect. For the latter effect, using mass ratios

µt ≥ 0.02 also avoids the large base structure accelerations for pulse-like ground motions.

For a NT-SATMD where µt = 0.02, there is considerably smaller super and base structure

displacements as compared with a T-TMD having a large mass (µt ≥ 0.05). By having a

reduced stroke, the footprint required to house the NT-SATMD is much smaller than a T-

TMD. As for comparing the NT-SATMD with µt = 0.02 to a NT-TMD with µt = 0.06, the

NT-SATMD has equal performance in reducing the displacements as a NT-TMD. Moreover,

the stroke of a NT-SATMD with µt = 0.02 is comparable to that of a NT-TMD with

µt = 0.06. Given that the NT-SATMD has equal or better performance with a smaller mass,

there is potentially reduced monetary costs in construction and installation.
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4.4 Summary

In this chapter, a new type of hybrid control system for BIS was introduced. A resettable

semi-active spring (RSS) was used to ground a TMD mass that is attached to the base

structure of a BIS. In this configuration, called the NT-SATMD, the performance was com-

pared against a NT-TMD and T-TMD. When comparing equal level mass ratios, the results

showed that the NT-SATMD outperforms the T-TMD and NT-TMD in reducing the super

and base structure displacements. More interestingly, the NT-SATMD can provide equal

(or better) performance in reducing the super and base structure displacements with a mass

that is considerably smaller. For a small mass (µt = 0.02), the NT-SATMD provides nearly

equal performance of a large mass (µt = 0.06) NT-TMD, and better performance than a

large mass T-TMD. Consequently, using an NT-SATMD provides equal or better reductions

in the structure responses, while also being housed in a smaller area of the structure, which

can potentially lead to cheaper costs in the construction and installation.
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Chapter 5

Control of Multi-story Structures

5.1 Introduction

In this chapter, the control techniques presented in Chapter 4 are extended to multi-story

structures. The control systems considered are the tuned mass damper inerter (TMDI) and

the semi-active tuned mass damper inerter (SATMDI). The equations of motion for each

configuration and the tuning strategies of each will be presented. The performance of each

control system in reducing the response will be compared. In addition, an alternative tuning

strategy for the TMDI will also be introduced and studied.

5.2 Tuned Mass Damper with Inerter

In Figure 5.1 a multi-story structure with a TMDI attached at the top story is shown. In this

configuration, the inerter is attached to the floor below, which is consistent with literature

on the application of TMDs to reduce the response of multi-story structures. In the following

subsections the equations of motion and tuning strategy for a TMDI will be presented.
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Figure 5.1: Multi-story structure with TMDI attached

5.2.1 Equations of Motion

To model a multi-story structure, a simplified shear-building model is adopted. The basic

assumptions include that each floor is rigid, the mass of each floor is lumped at the center of

mass, the motion in each lateral direction is decoupled, and that the system remains linear

elastic. Due to these assumptions, the building can be modeled as a column with masses
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lumped at each floor height. The equations of motion are then found by applying equilibrium

of each floor along the horizontal direction. This leads to the following equations of motion,

written in matrix form as,

Mü+Cu̇+Ku = −Mmrẍg (5.1)

In the above equation, the mass, damping, and stiffness matrices are defined by

M =



m1 0 0 · · · · · · · · · 0

0 m2 0 · · · · · · · · · 0

0 0 m3 · · · · · · · · · 0

...
...

...
. . . · · · · · · ...

0 0 0 · · · mn−1 + b 0 −b

0 0 0 · · · 0 mn 0

0 0 0 · · · −b 0 mt + b



, (5.2)

C =



c1 + c2 −c2 0 · · · · · · · · · 0

−c2 c2 + c3 −c3 0 · · · · · · 0

0 −c3 c3 + c4 −c4 0 · · · 0

...
...

...
. . . · · · · · · ...

...
...

... · · · . . . · · · ...

0 0 0 · · · −cn cn + ct −ct

0 0 0 · · · 0 −ct ct



, (5.3)
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K =



k1 + k2 −k2 0 · · · · · · · · · 0

−k2 k2 + k3 −k3 0 · · · · · · 0

0 −k3 k3 + k4 −k4 0 · · · 0

...
...

. . . . . . . . . · · · ...

...
...

...
. . . . . . . . .

...

0 0 0 · · · −kn kn + kt −kt

0 0 0 · · · 0 −kt kt



, (5.4)

and

Mm = diag(m1,m2, . . . ,mn,mt) (5.5)

where mi, ci, and ki for i = 1, 2, . . . , n are the mass, damping, and stiffness of each story.

Moreover, mt, ct and kt are the mass, damping, and stiffness of the TMD system, while b

is the inertance. The vector u stores the displacement of each mass relative to the ground,

that is,

u =

[
u1 x2 u3 · · · un ut

]T
(5.6)

where ui = xi − xg for i = 1, 2, . . . , n, t. The vector r, typically called the influence vector,

is unit column vector. Note that when b = 0 equations (5.1) reduces to a multi-story

structure with a traditional TMD system. It has been shown that the traditional TMD

system suppresses the first mode of the structure, which in practice, contributes most to

the displacement response of the structure under ground acceleration [83]. By including

the inerter within the TMD system, the system remains linear and the total mass of the

TMD system increases by b amount. Yet, unlike the single-story structure, the mass matrix

is non-diagonal, leading to additional coupling between the TMD mass and the structure.
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Since the structure remains linear, standard optimization techniques can be implemented in

selecting the frequency and damping ratios. In the upcoming section on the tuning strategy

of the TMDI, it will be more suited to consider the equations of motion in state-space form,

ż = Az+Bẍg (5.7)

where z is the state vector defined as

z =

u
u̇

 (5.8)

and A and B are the system and input matrices, defined by

A =

 0n+1 In+1

−M−1K −M−1C

 (5.9)

B =

 0n+1

M−1Mm

 (5.10)

where 0n+1 and In+1 are the zero and identity matrices, respectively.

5.2.2 Tuning Strategy for TMDI

The tuning strategy used in this section is based on the work done by Pietrosanti et al. [81],

which assumed a white noise base excitation. The TMDI parameters were then selected to

minimize the variance of the displacement response. A similar approach was also done by

Marian and Giaralis [70, 34], yet a non-stationary input that is compatible, in the mean
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sense, to the Eurocode 8 spectrum was used. This thesis chose the former approach for its

simplicity and to be consistent with the tuning strategy done in Chapter 3 for a single-story

structure.

As mentioned prior, the tuning strategy of the TMDI system will assume the ground accel-

eration to be a stationary stochastic process, namely, Gaussian white noise. This input has

zero mean with finite variance. Moreover, each time instant is identically distributed and

statistically independent and hence uncorrelated. By having zero mean, the response z(t)

can be described by the covariance matrix [81], defined by

Gzz = E[zzT ] (5.11)

where E[·] denotes the expected value operator. It has been shown [123] that since z(t) is

stationary, the covariance matrix, Gzz, satisfies the differential equation

Ġzz = AGzz +GzzA
T + 2πBBT (5.12)

Setting equation (5.12) equal to the zero gives the Lyapunov equation

AGzz +GzzA
T + 2πS0BBT = 0, (5.13)

which can be solved numerically for the covariance matrix Gzz. Similar to other tuning

strategies for TMDs and TMDIs, the first mode (or fundamental mode) is considered, which

corresponds to minimizing the variance of the displacement of the top story, denoted by σ2
un
.

Similar to single-degree-of-freedom systems, the frequency ratio, f , is defined as

f =
ωt

ω1

(5.14)
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where ω1 is the fundamental natural frequency and

ωt =

√
kt

(mt + b)
(5.15)

In addition, the TMDI damping ratio, ζt, is defined by

ζt =
ct

2mtωt

(5.16)

In the same fashion to other studies [87, 81] of TMD and TMDI systems the mass ratio µ is

given by

µ =
mt

ϕT
1Mϕ1

(5.17)

where ϕ1 is the fundamental mode shape normalized to have unit participation factor and

M is the mass matrix of the structure only. The participation factor is a measure of how

strongly a given mode contributes to the dynamic behavior of the system [110], and is defined

by

Γ1 =
ϕT

1Mr

ϕT
1Mϕ1

(5.18)

where ϕ1 is the first mode, M is the mass matrix of the structure only, and r is the influence

vector. Let us also define the inertance ratio, β, to be

β =
b

ϕT
1Mϕ1

(5.19)

The parameters defining the optimization problem are given by µ, β, f, ζt and ζ1, where ζ1 is

the first mode damping ratio. For a chosen µ and β and fixed ζ1, the optimization problem
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can be stated as

min
f, ζt

σ2
un

subject to 0 ≤ f ≤ 1

0 ≤ ζt ≤ 1

(5.20)

where the constraints on f and ζt were selected based on physical considerations. The results

of optimization are given in Figures 5.2a and 5.2b for mass ratios, µ between 0.01 to 0.1 and

inertance ratios, β, between 0 to 5.

5.2.3 Alternative Tuning Strategy for TMDI

In this section, an alternative tuning strategy is proposed for the TMDI system. This strategy

was first introduced by Villaverde and Koyama [111] and further refined by Sadek et al. [87].

It is worth noting that this alternative tuning strategy has not previously been applied to

TMDI systems. The work in the following sections will introduce the tuning strategy and

discuss the performance of the alternative tuning strategy as compared with the white noise

input from the prior section.

The alternative tuning strategy relies on determining the roots of the characteristic equation,

det(λI−A) = 0 (5.21)

In this case, the state matrix A is defined for a multi-story structure equipped with the

TMDI system. Due to the damping of the structure, t has been shown [111], the roots of
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the characteristic equation come in complex conjugate pairs

λi,i+1 = −ωiζi ± iωi

√
1− ζ2i , i = 1, 3, . . . ,m− 1 (5.22)

The notation λi,i+1 indicates that the eigenvalues come in pairs, where where ωi and ζi are

the natural frequency and damping ratio in the ith mode, and m is the number of degrees

of freedom of the structure equipped with the TMDI system. Since i only takes on odd

values, the second mode natural frequency and damping ratio would correspond to ω3 and

ζ3, respectively.

Villaverde [111] first showed that for a TMD to be effective, the damping ratios in the two

complex modes, ζ1 and ζ3, should be approximately equal to the average of the damping

ratios of the structure and TMD, that is,

ζ1 ≈ ζ3 ≈
ζ1,s + ζt

2
(5.23)

where ζ1,s is the first mode damping ratio of the structure without a TMD and ζt is the

damping ratio of the TMD. From extensive analytical work [111, 109], it was shown that the

TMD should be in resonance with the structure, that is, f = 1, and the damping ratio in

the first two modes should satisfy equation (5.23). However, numerical results performed by

Sadek et al. [87] showed that such a requirement was only effective for TMDs having mass

ratios smaller than 0.005. In fact, for larger mass ratios, the damping ratios in the first two

modes were larger than what was found using (5.23).

To remedy the shortcoming of requiring small mass ratios, the optimal values of f and ζt

for a given mass ratio µ were selected such that the first two modes natural frequency and

damping ratios were equal [87]. This was accomplished by computing the eigenvalues of the

state matrix and by using equation (5.22), the first and second mode natural frequency and

damping ratios are determined. The optimal values for f and ζt are when ω1 ≈ ω3 and
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ζ1 ≈ ζ3, for a given µ and ζ1,s. Note that for a multi-story structure equipped with a TMDI

system, this same procedure was performed while also providing a given inertance ratio, β.

Figures 5.3a and 5.3b show the optimal values for f and ζt for different mass and inertance

ratios where ζ1,s = 0.02.

5.2.4 Results

In section 5.2.2, a tuning strategy for the TMDI system based on white noise input was

introduced. The approach selected the frequency ratio f and damping ratio ζt so to minimize

the variance of the displacement response of the top-story. Figures 5.2a and 5.2b show the

results of the optimization. Section 5.2.3 introduced an alternative tuning strategy for the

TMDI. This alternative tuning strategy has not been considered for TMDI systems prior to

this work. The alternative tuning strategy selects the frequency ratio f and damping ratio

ζt when the first two modes natural frequency and damping ratios are approximately equal.

The results of the optimization are shown in Figures 5.3a and 5.3b.

(a) (b)

Figure 5.2: (a) The frequency ratio f and (b) damping ratio ζt for various values mass ratios
µ and inertance ratios β.
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(a) (b)

Figure 5.3: (a) The frequency ratio f and (b) damping ratio ζt for various values mass ratios
µ and inertance ratios β where ζ1,s = 0.02.

The result of each optimization show that the tuning strategies produce vastly different re-

sults in the selection of the frequency and damping ratios. In particular, the white noise

tuning strategy produces larger frequency ratios for large inertance values, while the alter-

native tuning strategy has much smaller frequency ratios (see Figures 5.2a and 5.3a). This

would imply that the TMDI spring stiffness is larger for the white noise tuning, while it

is much smaller for the alternative tuning strategy. This relationship between the TMDI

spring stiffness and frequency ratio can be determined by substituting (5.15) into (5.14)

and solving for the TMDI spring stiffness kt. When considering the damping ratios for the

white noise and alternative tuning strategies, shown in Figures 5.2b and 5.3b, respectively,

the alternative tuning strategy produces much larger damping ratios over most mass and

inertance ratios, as compared with the white noise tuning strategy.

Using the two ground motion sets presented in Chapter 3, peak responses of the displace-

ment and acceleration of each floor were found. The stroke of each TMDI system was also

computed. The system considered was a three-story structure having a fundamental period

of T = 0.5 seconds and first mode critical damping ratio ζ1 = 0.02. Moreover, the structure

64



has a soft top story, where the stiffness of the top-story was approximately 60% less stiff than

the stiffness of the stories below. This is similar to what is done in practice, where column

stiffness of each floor decreases for each additional story. Moreover, it has been shown in

prior work that TMDIs perform significantly better when with soft top story [33, 90]. This is

since greater flexibility at the top-story allows for more energy dissipation to be provided by

the TMDI system. The mass ratios considered ranged from 0.01 to 0.1 at various inertance

ratios. To gauge the performance of each TMDI system, the following reduction factors are

introduced,

RD =
Peak displacement of controlled structure

Peak displacement of uncontrolled structure
(5.24)

RA =
Peak acceleration of controlled structure

Peak acceleration of uncontrolled structure
(5.25)

RS =
Peak stroke of the TMDI with alternative tuning

Peak stroke of the TMDI with white noise tuning
(5.26)

and are called the displacement, acceleration, and stroke reduction factors, respectively. In

(5.24) and (5.25) the controlled structure refers to the structure equipped TMDI system. The

uncontrolled structure refers to the structure without any control device. Having RD < 1

or RA < 1 would indicate that the controlled system is effective in reducing the structure

displacement and acceleration. When RS < 1, the TMDI system with the alternative tuning

strategy has less stroke than the TMDI system using the white noise tuning strategy. The

mean of the reduction factors over ground motions from each set is used to compare the

tuning strategies.

Figures 5.4-5.5 show the displacement reduction factor of the first floor under the rock-site
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and pulse-like ground motion sets. Similarly, Figures 5.6-5.7 and Figures 5.8-5.9, show the

displacement reduction factor for the second and third floors, respectively. For each figure,

the left plot corresponds to the alternative tuning strategy, while the right plot corresponds

to the white noise tuning strategy. Figures 5.10-5.11 show the acceleration reduction factor

of the first floor under the rock-site and pulse-like ground motion sets. Similarly, Figures

5.12-5.13 and Figures 5.14-5.15, show the acceleration reduction factor for the second and

third floors, respectively. Figure 5.16 shows the stroke reduction factor under the rock-site

and pulse-like ground motion sets.
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Figure 5.4: First floor displacement reduction factor for (a) alternative tuning strategy and
(b) white nose tuning strategy under the rock-site ground motion set.

5.2.5 Discussion

Figures 5.4-5.9 show the displacement reduction factors under both tuning strategies and

show that each strategy provides reductions in the response. Yet, the alternative tuning

strategy outperforms the white noise tuning strategy in reducing the response of the top-
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Figure 5.5: First floor displacement reduction factor for (a) alternative tuning strategy and
(b) white nose tuning strategy under the pulse-like ground motion set.
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Figure 5.6: Second floor displacement reduction factor for (a) alternative tuning strategy
and (b) white nose tuning strategy under the rock-site ground motion set.

story. When considering the top-floor, Figures 5.8a, 5.9a and Figures 5.8b and 5.9b, show

that increasing the inertance for a fixed mass ratio decreases the displacement response. As
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Figure 5.7: Second floor displacement reduction factor for (a) alternative tuning strategy
and (b) white nose tuning strategy under the pulse-like ground motion set.
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Figure 5.8: Third floor displacement reduction factor for (a) alternative tuning strategy and
(b) white nose tuning strategy under the rock-site ground motion set.

shown in Figure 5.8a and 5.9a, the alternative tuning strategy provides up to 45% reduction

in displacement for small mass ratios, while the white nose tuning strategy provides no
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Figure 5.9: Third floor displacement reduction factor for (a) alternative tuning strategy and
(b) white nose tuning strategy under the pulse-like ground motion set.
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Figure 5.10: First floor acceleration reduction factor for (a) alternative tuning strategy and
(b) white nose tuning strategy under the rock-site ground motion set.

more than 18%. In fact, a TMDI with a mass ratio of 0.01 and inertance of 0.1 has better

performance tuned using the alternative strategy, than with one with a larger mass and
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Figure 5.11: First floor acceleration reduction factor for (a) alternative tuning strategy and
(b) white nose tuning strategy under the pulse-like ground motion set.
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Figure 5.12: Second floor acceleration reduction factor for (a) alternative tuning strategy
and (b) white nose tuning strategy under the rock-site ground motion set.

inertance using the white noise tuning strategy. This performance increase can be attributed

to the fact that for small mass ratios and large inertance, the TMDI is tuned to have a larger

damping ratio as opposed to one with the white noise tuning strategy. This can be seen by
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Figure 5.13: Second floor acceleration reduction factor for (a) alternative tuning strategy
and (b) white nose tuning strategy under the pulse-like ground motion set.
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Figure 5.14: Third floor acceleration reduction factor for (a) alternative tuning strategy and
(b) white nose tuning strategy under the rock-site ground motion set.

comparing the damping ratios of each tuning strategy (see Figures 5.2b and 5.3b).

For the lower floors of the structure, there is a similar behavior in the performance of the
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Figure 5.15: Third floor acceleration reduction factor for (a) alternative tuning strategy and
(b) white nose tuning strategy under the pulse-like ground motion set.

TMDI with white nose tuning strategy, whereby increasing the inertance leads to better

performance (Figures 5.6, 5.7 and Figures 5.8, 5.9). Yet, for the TMDI with the alternative

tuning strategy, worse performance is found for larger inertance values, as shown in Figures

5.4a,5.6a and 5.5a and5.7a. For inertance value less than one, the pattern of decreased

response for increased inertance occurs. This behavior is likely due to the coupling effects of

the TMDI to the lower floors and the tuning strategy. Because of the increase in performance,

this requires further inquiry to investigate why the performance drop occurs at the lower

stories for higher inertance values.

The acceleration response reduction factor for the first, second, and third floor under the

two ground motion set are shown in Figures 5.10-5.15. The behavior of the alternative

tuning strategy is similar to the displacement response. The top story follows the pattern

of increased inertance decreases the response. Moreover, increasing the mass ratio also

decreases the response, yet is more pronounced for smaller inertance values. In addition,

the lower stories also have a similar behavior to the displacement response, whereby larger
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Figure 5.16: Stroke reduction factors for (a) rock-site and (b) pulse-like ground motion sets.

inertance values leads to poorer performance.

The stroke reduction factor for each ground motion set is shown in Figure 5.16. Based on

these figures, the TMDI with the alternative tuning strategy provides reduction in stroke

for mass ratios less than 0.05 for the rock-site ground motion set, while reductions are

only present for mass ratios less than 0.03 for the pulse-like ground motion set. Moreover,

increasing the inertance increases the stroke reduction factor, indicating that the TMDI

under the white noise tuning strategy performs better for larger inertance values. This trend

is present for both ground motion sets.

For larger mass ratios the stroke reduction factor increases, indicating that the TMDI under

white noise tuning performs better. This behavior can be explained by the tuning strategy,

where for smaller mass ratios, the spring stiffness would be larger for the alternative tuning

strategy as opposed to the white nose tuning strategy. This can be shown when considering

the frequency ratio, f , of each tuning strategy (see Figures 5.2a and 5.3a). By considering the

overall system response reduction, inertance values less than one are desirable. Moreover,
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small mass ratios can be used to achieve significant reductions in all three floors of the

structure, while also considerably reducing the stroke.

5.3 Semi-active Tuned Mass Damper with Inerter

In this section, the SATMDI system is incorporated within the three-story structure consid-

ered in the prior sections. Similar to the single-story structure equipped with the SATMDI,

the SRS is placed in parallel to the spring and damper. The SATMDI is tuned using the

alternative tuning strategy presented in Section 5.2.3 since the performance of the TMDI

using the alternative tuning strategy was significantly better than that using white noise.

Comparisons between the displacement, acceleration, and stroke responses are made between

the SATMDI and TMDI systems.

5.3.1 Equations of Motion

The equations of motion for a multi-story structure with SATMDI system is given as

Mü+Cu̇+ (K+Kd)u−Kdur = −Mmrẍg (5.27)

where M,Mm,C,K, and r are defined in equations (5.2)-(5.6). Using the same spring

analogy as before where the SRS is placed parallel to the spring and damper of the TMDI
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system, the stiffness matrix associated with the SRS is given by

Kd =



0 0 0 · · · · · · · · · 0

0 0 0 0 · · · · · · 0

0 0 0 0 0 · · · 0

...
...

. . . . . . . . . · · · ...

...
...

...
. . . . . . . . .

...

0 0 0 · · · 0 kd −kd

0 0 0 · · · 0 −kd kd



, (5.28)

where kd is the stiffness provided by the SRS. The reset vector ur is defined by

set ur = u whenever u̇t − u̇n = 0 (5.29)

Similar to before, the equations of motion in state-space form will be used, that is,

ż = Az+ Fzr +Bẍg (5.30)

where z is the state vector defined as

z =

u
u̇

 (5.31)

and A and B are the system and input matrices, defined by

A =

 0n+1 In+1

−M−1(K+Kd) −M−1C

 (5.32)
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B =

 0n+1

M−1Mm

 (5.33)

where 0n+1 and In+1 are the zero and identity matrices, respectively. Two new terms have

also been introduced, which accounts for the additional stiffness and reset term, namely, F

and zr, defined by

F =

 0n+1 0n+1

M−1Kd 0n+1

 (5.34)

and

zr =

ur

u̇r

 (5.35)

5.3.2 Results

The comparison between the SATMDI and TMDI was done using the response reduction

factors presented in the prior section. The structure under consideration was the same

three-story structure as before, yet a SATMDI was used instead of the TMDI system. The

alternative tuning strategy was considered as it provided greater performance in the TMDI

system. In addition, the percent stiffness, denoted by κ, is defined by the percentage of

stiffness provided by the SRS device. For this work, κ values range from 0.25 to 1 with

increments of 0.25 were considered. Note that for κ < 1, the SRS and linear spring are both

used, while for κ = 1, the SRS entirely replaces the linear spring.

Figures 5.17-5.20 show the displacement reduction factors for each floor under the rock-

site ground motion set. Each figure represents a different κ values corresponding to the
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percentage of stiffness provided by the SRS. Figures 5.21-5.24 show the acceleration reduction

factor for each κ value selected. Figures 5.25-5.28 show the displacement reduction factors

for each floor under the pulse-like ground motion set. Figures 5.29-5.32 show the acceleration

reduction factor for each κ value selected. The figures are shown at the end of the chapter.

5.3.3 Discussion

Figures 5.17-5.20 show the displacement reduction factors for κ = 0.25, 0.5, 0.75 and 1,

respectively, under the rock-site ground motion set. Based on these results, incorporating an

SRS within a TMDI system provides little to no benefit for κ values less than one, while for

κ = 1, there is a significant decrease in performance. These findings are also present under

the pulse-like ground motion set (see Figures 5.25-5.28). For κ = 1, the SRS replaces the

linear spring, which alters the tuning strategy negatively due to the force provided by the

SRS vanishing at reset (see Figure 2.2). Since the force in the SRS takes time to increase,

the amount of energy transferred from the top-story to the TMDI system is decreased. This

in turn causes the decrease in performance. If both the linear spring and SRS are present,

there is enough force developed in the linear spring to allow force transfer, which leads to

minimal loss in performance, as seen in figures corresponding to κ = 0.25, 0.5, and 0.75.

When considering the acceleration response in Figures 5.21-5.24 for rock-site and Figures

5.29-5.32 for the pulse-like ground motion set at for various κ values, a similar behavior

occurs. Once again, there is little to no benefit in the acceleration response for κ values

less than one, while for κ = 1 there is a significant drop in performance. When considering

the stroke reduction factor (Figure 5.33 and 5.34), the SATMDI provides moderate to large

reduction for small mass ratios. Yet, increasing the inertance decreases the performance.

This implies that a large inerter nullifies the effect of the SRS device due to the significant

decrease in the stroke and thereby the amount of energy dissipated by the SRS. For smaller
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inertance ratios the SRS provides an additional reduction to the stroke. Moreover, increasing

the stiffness percent κ decreases the response, yet similar to the displacement and acceleration

responses, κ = 1 decreases performance. Overall, the SRS should be used within the TMDI

system for κ < 1 since there are no significant losses in the response performance, yet with

a significant reduction in stroke. Therefore, the SRS can be used in situations where the

footprint of the TMDI system is severely limited.

5.4 Summary

In this chapter the TMDI and SATMDI systems were applied to a multi-story structure.

Analysis was performed on a three-story structure with a fundamental period of T = 0.5

seconds and a first mode critical damping ratio of ζ1 = 0.02. For TMDI systems, an alterna-

tive tuning strategy based on the work of Sadek et al. [87] was introduced and implemented

within a TMDI system. The results showed that the alternative tuning strategy provides

superior performance as compared with the white noise tuning strategy. In fact, significant

reductions in the displacement, acceleration, and stroke responses were found for small mass

ratios and inertance values. Yet, for larger mass ratios, the stroke using the alternative

tuning strategy was significantly larger than that of the white noise tuning strategy. Since

there is little performance increase in larger mass ratios, these negative effects can be easily

avoided.

The SATMDI system was also studied, which incorporated an SRS device within a TMDI

system. Due to the superior performance, only the alternative tuning strategy was used.

Based on the results of this chapter, the SRS provides little to no benefit in reducing the

response of the structure for κ values less than one. Yet, for κ = 1, there is a sharp decrease

in performance as compared with the TMDI system. This was attributed to the control

law of the SRS, where the reset sets the device force to zero, negatively affecting the tuning
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strategy. The stroke response for κ value was shown to be significantly reduced using an SRS

within a TMDI system. From these findings, the SRS can be used as an auxiliary device

where the footprint of the TMDI system is limited. Moreover, κ values should always be less

than one to avoid the negative effects of incorporating an SRS within a TMDI system.
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Figure 5.17: First, second, and third floor displacement reduction factors for SATMDI (κ =
0.25) (a),(c),(e) and TMDI (b),(d),(f) using the rock-site ground motion set.
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Figure 5.18: First, second, and third floor displacement reduction factors for SATMDI (κ =
0.5) (a),(c),(e) and TMDI (b),(d),(f) using the rock-site ground motion set.
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Figure 5.19: First, second, and third floor displacement reduction factors for SATMDI (κ =
0.75) (a),(c),(e) and TMDI (b),(d),(f) using the rock-site ground motion set.
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Figure 5.20: First, second, and third floor displacement reduction factors for SATMDI (κ =
1) (a),(c),(e) and TMDI (b),(d),(f) using the rock-site ground motion set.
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Figure 5.21: First, second, and third floor acceleration reduction factors for SATMDI (κ =
0.25) (a),(c),(e) and TMDI (b),(d),(f) using the rock-site ground motion set.
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Figure 5.22: First, second, and third floor acceleration reduction factors for SATMDI (κ =
0.5) (a),(c),(e) and TMDI (b),(d),(f) using the rock-site ground motion set.
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Figure 5.23: First, second, and third floor acceleration reduction factors for SATMDI (κ =
0.75) (a),(c),(e) and TMDI (b),(d),(f) using the rock-site ground motion set.
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Figure 5.24: First, second, and third floor acceleration reduction factors for SATMDI (κ = 1)
(a),(c),(e) and TMDI (b),(d),(f) using the rock-site ground motion set.
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Figure 5.25: First, second, and third floor displacement reduction factors for SATMDI (κ =
0.25) (a),(c),(e) and TMDI (b),(d),(f) using the pulse-like ground motion set.
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Figure 5.26: First, second, and third floor displacement reduction factors for SATMDI (κ =
0.5) (a),(c),(e) and TMDI (b),(d),(f) using the pulse-like ground motion set.
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Figure 5.27: First, second, and third floor displacement reduction factors for SATMDI (κ =
0.75) (a),(c),(e) and TMDI (b),(d),(f) using the pulse-like ground motion set.
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Figure 5.28: First, second, and third floor displacement reduction factors for SATMDI (κ =
1) (a),(c),(e) and TMDI (b),(d),(f) using the pulse-like ground motion set.
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Figure 5.29: First, second, and third floor acceleration reduction factors for SATMDI (κ =
0.25) (a),(c),(e) and TMDI (b),(d),(f) using the pulse-like ground motion set.
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Figure 5.30: First, second, and third floor acceleration reduction factors for SATMDI (κ =
0.5) (a),(c),(e) and TMDI (b),(d),(f) using the pulse-like ground motion set.
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Figure 5.31: First, second, and third floor acceleration reduction factors for SATMDI (κ =
0.75) (a),(c),(e) and TMDI (b),(d),(f) using the pulse-like ground motion set.
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Figure 5.32: First, second, and third floor acceleration reduction factors for SATMDI (κ = 1)
(a),(c),(e) and TMDI (b),(d),(f) using the pulse-like ground motion set.
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Figure 5.33: Stroke reduction factor for κ values of (a) 0.25, (b), 0.5, (c) 0.75, and (d) 1.0
under the rock-site ground motion set.
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Figure 5.34: Stroke reduction factor for κ values of (a) 0.25, (b), 0.5, (c) 0.75, and (d) 1.0
under the pulse-like ground motion set.
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Chapter 6

Asymmetric structures equipped with

Semi-active Resettable Springs

6.1 Introduction

Assessment of damage after seismic events has revealed that asymmetry structures have poor

performance compared with symmetric structures. Asymmetry arises from uneven distribu-

tion of the mass and/or stiffness; it is advised (and promoted) to avoid such circumstances.

Architectural, or functional, requirements may force a structural design with eccentricity

about one or both horizontal directions. With this backdrop, researchers have focused on

mitigation strategies to protect asymmetric structures from damaging seismic torsional re-

sponse. One approach, summarized herein, is the implementation of supplemental energy

dissipating devices to control the response of the structure during seismic excitation.

Several studies have investigated the effectiveness of base isolation [49], active control [17],

and passive control [36, 60] for mitigating torsional response of asymmetric buildings. These

methods are usually costly and may lead to power or response control restrictions. On the
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other hand, semi-active devices are cost effective and provide efficient structural control;

they typically require little power to function. The most common semi-active device studied

by researchers is magnetorheological (MR) dampers. Several control algorithms have also

been introduced to better provide control of the seismic response of asymmetric structures

[71, 72, 51]. In contrast with MR dampers, resettable semi-active springs (SRS) [11, 48] have

shown superior performance. SRSs focuses on stiffness control rather than viscous damping

control in MR dampers. Control algorithms for the utilization SRSs for seismic response

reduction of symmetric structures were studied by several research groups (e.g., on SDOFs

[30] and on MDOFs [126], among others). A control algorithm for utilizing SRSs towards

seismic response mitigation of asymmetric structures is presented herein.

This investigation considers how SRSs affect the seismic response of asymmetric structures.

Two recommendations for control strategies using SRSs to mitigate seismic response of asym-

metric structures efficiently are recommended. The suggested structural control strategy is

general and not geared towards a single structural period and SRS placement [72]. This

study aims to identify the key parameters that impact the seismic response of asymmetric

structures equipped with SRSs and show how the distribution of SRSs within the struc-

ture affects the response. Limitations of each are discussed with suggested implementation

guidelines. The analytical and experimental implementation of the proposed methods for

the utilization of SRSs towards mitigating torsional response structures is outside the scope

of the current research. The intent here is to maintain focus on the control strategies for

SRSs.

6.2 Characteristics of semi-active resettable spring

The semi-active resettable spring (SRS) used in this study was first introduced by Bobrow

et al. [11]. The device itself is a piston and cylinder with a valve connecting the two sides
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of the cylinder and a rod extending through the cylinder to give equal areas on both sides

of the piston. The device is used to vary or increase the stiffness of the system in real-time.

Fardadi et al. [30] investigated the seismic response of a SDOF system using a SRS whereby

the stiffness is added through a bracing system, shown in Figure 6.1. To quantify the amount

valve

piston & cylinder

Figure 6.1: Frame with bracing joined by a semi-active resettable spring.

of stiffness provided by the SRS, the brace-to-frame factor is introduced, denoted by BFS,

and defined as

BFS =
stiffness of the brace

stiffness of the frame
. (6.1)

For BFS = 1, the bracing doubles the stiffness of the frame and when BFS = 0 the SRSs are

not been engaged. Since there will be multiple SRSs within the structure, the total stiffness

of SRSs in a single direction over the total stiffness of the structure in that same direction

is used to compute the BFS factor. The effect the BFS factor has on the response of the

structure will be investigated in the proceeding section.

Three control laws were implemented in prior work [30], denoted as 1-4, 1&3, and 2&4, refer-

ring to the active quadrant of the figure representing the bracing system’s load-displacement

curve. From the three control laws, it was found that control law 1-4 was most effective

in reducing displacement of the frame. The approach used in control law 1-4 relies on a

resetting technique, whereby the energy stored in the device is released when it has reached
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its maximum local strain energy, i.e., when the velocity across the device is zero [11, 48].

A physical interpretation of the semi-active resettable device using control law 1-4 is by

considering the device as a spring element, and is engaged when the valve is closed. When

the device is reset, the valve opens and quickly extracts energy (through heat loss and fluid

slushing), which is analogous to resetting the unstretched length of the spring. Since the

reset time is short, the valve is closed for much of the seismic event, and so the device con-

tinuously adds stiffness to the system. The term reset indicates that the stored energy of

the device is dissipated after opening the valve. Using this equivalent spring analogy, the

reset locations xr can be defined by

set xr = x whenever ẋ = 0 (6.2)

The control law in (6.2) will be modified to account for lateral and rotational motion of the

SRSs within the structure.

6.3 System and Equations of Motion

6.3.1 System under consideration

The structural system under consideration is a linearly elastic idealized singly-story building

consisting of a rigid deck supported on columns (see Figure 4.8b). The mass of the deck

is assumed to be uniformly distributed and thus the center of mass (CM) coincides with

the geometric center of the deck. The column stiffness and positions are chosen such that

asymmetry is in only one direction, which results in a flexible and stiff edge of the structure

(see Figure 6.2a). The center of rigidity (CR) is located at a distance, ex, from the CM

along the x-direction. The structure is asymmetric only in the x-direction and therefore is

a two-degree-of-freedom system, namely, lateral displacement and torsional displacement,
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denoted as uy and uθ, respectively. Similar to the CR, the center of supplemental stiffness

(CSS), is selected by choosing the SRS stiffness and positions such that edx is the distance

CSS is away from the CM.

CM    CSS  CR

𝑒ௗ௫

𝑒௫

a

b

stiff edgeflexible edge

(a) (b)

Figure 6.2: Plan and elevation view of one-way asymmetric structure with SRSs installed.

6.3.2 Equations of Motion

The governing equations of motion of the system are given by

Mü+Cu̇+Ku+Kdu−
∑
j

Kdxjusxj −
∑
j

Kdyjusyj = −Müg (6.3)

whereM,C, andK are the mass, damping, and stiffness matrices of the system, respectively.

Moreover, u = [uy auθ]
T is the displacement vector, üg = [ügy 0]

T is the ground acceleration

vector, ügy is the ground acceleration in the y-direction. The mass matrix can be expressed

as

M =

m 0

0 m
(
ρ
a

)2
 (6.4)
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where m is the lumped mass of the deck and ρ is the radius of gyration about the vertical

axis through the CM, that is,

ρ =

√
a2 + b2

12
= a

√
1 + α2

12α2
(6.5)

where a and b are the plan dimensions of the building and the aspect ratio α = a/b. To

construct the stiffness matrix, K, let kxi represent the lateral stiffness and yi the distance

from the CM of the ith column along the x-axis. Let kyi denote the lateral stiffness and xi

the distance from the CM of the ith column along the y-axis. The lateral stiffness along the

y-direction is defined as

Ky =
∑
i

kyi (6.6)

and torsional stiffness of the system about the CM is given by

Kθ =
∑
i

kxiy
2
i +

∑
i

kyix
2
i (6.7)

The distance from the CM to the CR in the x-direction, known as the eccentricity, is ex-

pressed as

ex =
1

Ky

∑
i

kyixi (6.8)

Using the result [41] that Kθ = Kθr + e2xKy, where Kθr is the torsional stiffness about the

CR, the stiffness matrix of the system can be expressed as

K = Ky

 1 ex
a

ex
a

(
ex
a

)2
+ 1

a2
Kθr

Ky

 (6.9)
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Assuming that the system is classically damped, the mass and stiffness matrices, M and K,

can be used to write the damping matrix as

C = a0M+ a1K (6.10)

where a0 and a1 are constants of proportionality. The constants a0 and a1 depend on the

two damping ratios of the system, denoted as ζ1 and ζ2. In a similar fashion to constructing

the stiffness matrix of the system, the stiffness matrix associated with the SRSs, Kd, can be

expressed as

Kd = Kdy

 1
(
edx
a

)
(
edx
a

) (
edx
a

)2
+ 1

a2
Kdθr

Kdy

 (6.11)

where the lateral stiffness provided by the SRSs in the y-direction, Kdy, is

Kdy =
∑
j

kdyj (6.12)

and semi-active resettable spring (SRS) eccentricity, edx, is defined as

edx =
1

Kdy

∑
j

kdyjxdj (6.13)

The torsional stiffness of the SRSs about the CM is given by

Kdθ =
∑
j

kdyjx
2
dj +

∑
j

kdxjy
2
dj (6.14)

As with the system stiffness matrix, equation (6.11) used the result Kdθ = e2dxKdy + Kdθr,

where Kdθr is the torsional stiffness of the SRSs about the CSS. Defining the semi-active
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resettable spring (SRS) radius of gyration, ρd, as

ρd =

√
Kdθr

Kdy

, (6.15)

Note that this naming convention on ρd is similar to previous work which used fluid viscous

dampers [36] or viscoelastic elements [60]. The stiffness matrix of the SRSs shown in (6.11)

can be written as

Kd = Kdy

 1
(
edx
a

)
(
edx
a

) (
edx
a

)2
+
(
ρd
a

)2
 (6.16)

The stiffness matrix associated with the jth device in the x and y-directions are expressed

as

Kdxj =

0 0

0 kdxj
(ydj

a

)2
 and Kdyj =

 kdyj kdyj
(xdj

a

)
kdyj

(xdj

a

)
kdyj

(xdj

a

)2
 , (6.17)

where kdxj and kdyj are the stiffness provided by the jth device in the x and y-directions,

respectively. Also, xdj is the distance of the jth device in the y-direction with respect to the

CM and ydj is the distance of the j
th device in the x-direction with respect to the CM. Note

that the sparsity of Kdxj is a result of having motion only in the y-direction, where the SRSs

in the x-direction are only engaged when there is rotation (see Figure 6.2b). Similarly, the

reset location vector for the jth device in the x-direction, urxj, is determined by the control

law

set urxj = u whenever u̇θ = 0. (6.18)
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The reset location vector for the jth device in the y-direction, usyj, is given by the control

law

set uryj = u whenever u̇y + xdju̇θ = 0. (6.19)

By normalizing the equations of motion (6.3), the critical system parameters are identified.

The normalized system mass, stiffness, damping and SRS stiffness matrices are written as,

M =

1 0

0 1+α2

12α2

 (6.20)

K = ω2
y

 1 ēx

ēx ē2x +
1+α2

12α2 Ω
2

 (6.21)

C = a0

1 0

0 1+α2

12α2

+ a1ω
2
y

 1 ēx

ēx ē2x +
1+α2

12α2 Ω
2

 (6.22)

Kd = ω2
dy

 1 ēdx

ēdx ē2dx + ρ̄2d

 (6.23)

where α = a/b is the aspect ratio, ωy =
√

Ky/m is the uncoupled translational natural

frequency, Ω = ωθ/ωy is the ratio of uncoupled torsional to translational natural frequency,

ωθ =
√
Kθr/mρ2 is the uncoupled torsional frequency, ēx = ex/a is the normalized eccen-

tricity, ēdx = edx/a is the normalized SRS eccentricity, and ρ̄d = ρd/a is the normalized SRS

radius of gyration. The preceding parameters have been used extensively in prior studies
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and their physical interpretation discussed in earlier studies [41]. The mass, damping, and

stiffness matrices shown in equations (6.20)-(6.22) are identical to prior studies which studied

one-way asymmetric structures equipped with fluid viscous dampers [36, 68] or viscoelastic

dampers [60]. For this study, equations (6.11)-(6.19) were introduced to account for the

SRSs within the structure. Their development was analogous to that of using a fluid viscous

damper [36], instead accounting for the addition stiffness provided by the SRSs.

Equations (6.20)-(6.23) show that there are two sets of parameters to consider. The first

is for the uncontrolled system, which includes the aspect ratio, α, the uncoupled natural

frequency ωy, the normalized eccentricity, ēx, and the ratio of the torsional to lateral natural

the frequencies, Ω. The final parameter, Ω, has a useful physical interpretation, namely,

for Ω < 1, the structure is considered torsionally-flexible, while for Ω > 1, the structure

is torsionally-stiff. For Ω = 1, both the uncoupled natural frequencies are equal, and the

structure is considered strongly coupled.

The second set of parameters correspond to the semi-active resettable spring (SRS), which

comprise of the uncoupled natural frequency of the SRSs, ωdy, the normalized SRS eccen-

tricity, ēdx, and the normalized SRS radius of gyration, ρ̄d. The parameter ēdx indicates

how the SRSs are distributed within the structure. A zero value indicates they are evenly

distributed, while a negative or positive value indicates most of the additional stiffness is

distributed toward the flexible or stiff edges, respectively (see Figure 6.2). Since the SRSs

are only located within the plan of the structure, the limiting values of ēdx are -0.5 and 0.5.

These values correspond to all of the SRSs located on the flexible or stiff edges. The SRS

radius of gyration, ρ̄d, indicates how far apart the SRSs are located from the CSS. When all

the SRSs are placed at the CSS, they provide zero resistance to rotation, since Kdθr = 0,

while for positive values the SRSs provide resistance to rotation. Note that to study various

cases, the locations of columns and SRSs in this study are not restricted to the structure

edges.
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6.4 Parametric study

6.4.1 System parameters

The values for Ty = 2π/ωy were selected to range from 0.05-3 seconds to represent many low

and mid-rise structures. The aspect ratio was selected as α = 2. The normalized eccentricity

was taken to be ēx = 0.2, representing an eccentricity that is 20% of the horizontal plan

dimension. The three cases of Ω to represent torsionally-flexible (Ω = 0.5), strongly coupled

(Ω = 1), and torsionally-stiff (Ω = 2) structures were also considered. The constants a0

and a1 were selected so that the damping ratios in the two modes were 5% of the critical

damping, that is, ζ1 = ζ2 = 0.05.

The additional stiffness provided by the SRSs in the y-direction is taken to be equal to that

of the uncontrolled structure, that is, Kdy = Ky. In terms of the brace-to-frame factor,

BFS = 1. In Section 6.4.5, the effect the BFS factor has on the response of the structure

is investigated for Ty = 1 and the three Ω values. Three values of the normalized SRS

eccentricity are considered, ēdx = 0, 0.2,−0.2. The first corresponds to one where the stiffness

is equally distributed. The second and third values of ēdx are for when the normalized SRS

eccentricity is equal in magnitude yet being either on the same or opposite sides of the

normalized eccentricity ē. For each of the aforementioned three cases, the normalized SRS

radius of gyration was fixed at ρ̄d = 0.2. In addition, several values of ρ̄d are also considered

to represent small, medium, and large layouts of the SRSs within the structure for a fixed

normalized SRS eccentricity ēdx = −0.2.
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6.4.2 Response parameters

For asymmetric structures, larger deformations will be present at the edges, as opposed to

the CM, since the peak lateral and rotational displacements may not occur simultaneously.

Thus, the flexible and stiff edge responses are examined. To measure the effectiveness of

using SRSs within an asymmetric structure, the following normalized response parameters

for the flexible and stiff edges are introduced:

Rf =
Peak flexible edge displacement (controlled)

Peak flexible edge displacement (uncontrolled)
(6.24)

Rs =
Peak stiff edge displacement (controlled)

Peak stiff edge displacement (uncontrolled)
(6.25)

The controlled system refers to a structure with SRSs installed, whereas the uncontrolled

refers to the corresponding structure without any SRSs. Since each set of ground motions

(pulse and rock-site) comprise of 40 fault-normal ground motion records, the mean values

of the normalized reduction parameters are compared and are denoted by R̄f and R̄s. This

study investigated both rock-site and pulse-like ground motions, the forthcoming figures show

only the rock-site responses and the pulse-like responses were left out for brevity. Although

the results are not explicitly shown, the coming discussion for rock-site responses also applies

to pulse-like.

6.4.3 Semi-active resettable spring eccentricity

Figure 6.3 shows the normalized response parameters, R̄f and R̄s, versus the structure period,

Ty, for ēdx = 0, 0.2 and −0.2. The normalized SRS radius of gyration for each case is

ρ̄d = 0.2 and where Ω = 0.5. Figures 6.4 and 6.5 show the same results for Ω = 1 and
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Ω = 2, respectively. The results show that adding SRSs within an asymmetric structure can

significantly reduce the edge displacements. Yet, the amount of reduction depends on the

period of the structure and the normalized SRS eccentricity, ēdx. There is a common trend

among all the figures where for very stiff structures (Ty < 0.15 seconds) that the addition

of the SRS provides considerably less reduction as compared with more flexible structures

(Ty > 0.15 seconds). This can be due to the high column stiffness required to achieve such

low fundamental periods where the additional stiffness provided by the SRSs has less of an

impact on the reduction of the edge displacements.

For strongly coupled (Ω = 1) and torsionally-stiff (Ω = 2) system, the flexible edge has the

largest reductions when ēdx = −0.2 and the smallest reductions for ēdx = 0.2. This trend in

ēdx is reversed for the stiff edge. For laterally stiff structures, that is, when Ty < 0.25 seconds,

the stiff edge displacements are larger than the uncontrolled asymmetric structure. For a

torsionally-flexible system (Ω = 0.5), a similar trend in R̄f occurs for various ēdx, yet for R̄s

with the symmetric distribution of SRSs (ēdx = 0), leads to the largest reductions. Overall,

increasing the normalized SRS eccentricity leads to larger reductions. For positive values of

ēdx, the stiff edge is most benefited, while for negative values of ēdx the flexible edge is. A

similar result is found when incorporating fluid viscous dampers in asymmetric structures

[36]. It is worth noting that as the structure becomes more torsionally stiff, the effects of

the ēdx on reducing edge displacements becomes less pronounced.

6.4.4 Semi-active resettable spring radius of gyration

Figures 6.6-6.8 show the normalized reduction parameters, R̄f and R̄s, versus the structure

period, Ty, for increasing values of SRS radius of gyration ρ̄d. The normalized SRS eccen-

tricity is fixed at ēdx = −0.2. It is clear from observing the figures that larger values of ρ̄d

leads to greater reductions in the edge displacements. The effect of increasing ρ̄d is most
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Figure 6.3: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 0.5.
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Figure 6.4: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 1.

0 0.5 1 1.5 2 2.5 3

T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 R
f

7edx = 0
7edx = 0:2
7edx = !0:2

(a)

0 0.5 1 1.5 2 2.5 3

T

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

7 R
s

7edx = 0
7edx = 0:2
7edx = !0:2

(b)

Figure 6.5: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 2.
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pronounced for torsionally-flexible structures (Ω = 0.5) with decreasing effects as Ω is in-

creased. When the structure is torsionally-stiff (Ω = 2), the benefit to increasing ρ̄d of the

SRSs is negligible. This can partly be due the small rotations present whereby much of the

structure motion is translational. When using SRSs along the y-direction, it may arise that

0 0.5 1 1.5 2 2.5 3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a)

0 0.5 1 1.5 2 2.5 3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(b)

Figure 6.6: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 0.5.
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Figure 6.7: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 1.

the SRS location is restricted by architectural demands. In this case, it will be beneficial to

include SRSs along the direction perpendicular to the lateral direction. Although, adding

these SRSs will not change ēdx it will lead to larger ρ̄d. When including SRSs in the per-

pendicular direction, care must be taken to not introduce eccentricities since the stiffness of

the system is being changed. This can be accomplished by distributing the total additional
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Figure 6.8: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 2.

stiffness evenly between SRS on opposite side of the CM.

6.4.5 Brace-to-frame factor

Figures 6.9 shows the normalized reduction parameters R̄f and R̄s, versus the brace-to-frame

factor, BFS, for Ω = 1. The figure shows results for ēdx = 0, 0.2,−0.2 where ρ̄sd = 0.2 and

Ty = 1 second. The results show that in increasing the BFS factor has a decreasing effect on

the flexible and edge responses. A general trend occurs where much of the reduction in the

response is due to the initial 20% additional stiffness provided by the SRSs, while increasing

the BFS factor from 20% to 100% provides little additional improvement. A similar trend is

also present for Ω = 0.5 and 2. These results are similar to those found using fluid viscous

dampers [36] where increasing the damping constant reduces the response.
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Figure 6.9: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 1.

6.5 Towards an optimal distribution

6.5.1 Semi-active resettable spring eccentricity and radius of gy-

ration

There is a general trend in the response of the flexible edge, namely, the largest reductions

in the flexible edge occur when ēdx is negative. Increasing the SRS radius of gyration, ρ̄d,

also decreases the flexible edge displacement. These findings are similar to those found when

using fluid viscous dampers [36, 60]. Due to geometric constraints, both the normalized

SRS eccentricity and SRS radius of gyration cannot simultaneously take their respective

maximum values.

The stiffness distribution can be selected such that both the normalized SRS eccentricity

and SRS radius of gyration are the largest possible under the column layout constraints.

To demonstrate this process, consider two SRSs placed on opposite ends of the structure in

the y-direction. Define the stiffness distribution, denoted by κ, to be the percent of stiffness

provided to the stiff side SRS, and where 1 − κ is the percent provided by the flexible side

SRS. For κ = 0, all the additional stiffness is provided by the flexible side SRS and where
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κ = 1, the stiff side SRS provides all the additional stiffness. By varying κ, both the SRS

eccentricity and SRS radius of gyration can be changed.

To determine the optimal stiffness distribution, one can plot ē2dx and ρ̄2d against κ. The

squared quantities are considered since the normalized SRS eccentricity is negative, while

the SRS radius of gyration can only take on positive values. Figures 6.10 show the two
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Figure 6.10: Plot of ē2dx (red) and ρ̄2d (blue) versus the stiffness distribution κ.

points of intersection of ē2dx and ρ̄2d. Values of κ < 0.5 corresponds to negative normalized SRS

eccentricity whereas κ > 0.5 corresponds to positive eccentricity, and κ = 0 for when ēdx = 0.

For two SRSs, one can show analytically (see Sections 6.5.2) that the two intersection points

occur at κ = (1 ±
√
0.5)/2 for any Ω. Using this distribution value leads to ē∗dx = −0.177

for Ω = 0.5, ē∗dx = −0.255 for Ω = 1, and ē∗dx = −0.354 for Ω = 2. The flexible and

stiff edge displacement responses using this strategy are shown in Figures 6.11-6.13. Based

on these results, selecting the normalized SRS eccentricity to be ēdx leads to moderately

better performance for Ω = 1 and Ω = 2, while being slightly worse for Ω = 0.5. This

approach significantly reduces the flexible edge displacements, yet it comes at the cost of

larger displacements for the stiff edge.
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Figure 6.11: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 0.5
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Figure 6.12: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 1
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Figure 6.13: Mean normalized flexible (a) and stiff (b) edge displacements for various ēdx
values and Ω = 2

116



6.5.2 Establishing κ = (1±
√
0.5)/2

Consider the structure shown in Figure 4.8b where two SRSs are equal distance from the

CM, but on opposite sides of the structure. The SRSs are placed only in the y-direction. Let

κ be the stiffness distribution of the available stiffness Kdy. For this case, take Kdy = Ky,

that is, where BFS = 1. Then kd1 = (1 − κ)Ky and kd2 = κKy. The normalized SRS

eccentricity is now

ēdx =
edx
a

=
∑
j

kdyjxdj

=
1

aKy

(−(1− κ)Ky(γa) + κKy(γa))

(6.26)

where the factor γ is in (0, 0.5]. Simplifying the above equation gives

ēdx = γ(2κ− 1) (6.27)

Similarly, the normalized SRS radius of gyration is given by

ρ̄2d =
(ρ
a

)2

=
Kdt − e2dxKy

Ky

1

a2

=
(1− κ)Ky(γa)

2 + κKy(γa)
2 − edxKy

Ky

1

a2

= γ2 − ē2dx

= γ2
(
1− (2κ− 1)2

)
(6.28)

Setting ē2dx = ρ̄2d gives κ = (1±
√
0.5)/2.
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6.5.3 N-number of SRSs along the lateral direction

Consider n SRSs placed along the y-direction with stiffness values defined by

kd1 = κ1Ky

kd2 = κ2Ky

...

kdn = κnKy

(6.29)

where
∑

κi = BFS and Kdy = BFSKy. Then we can write the normalized SRS eccentricity

as

ēdx =
1

aKy

(κ1Kyγ1a+ · · ·+ κnKyγna) =
∑

κiγi (6.30)

where γi ∈ [−0.5, 0.5] are provided. The normalized SRS radius of gyration is also given by

ρ̄2d =
1

a2
κ1Ky(γ1a)

2 + · · ·+ αnKy(γna)
2 − e2dxKy

Ky

=
∑

κiγ
2
i −

(∑
κiγi

)2

.

(6.31)

Setting ē2dx = ρ̄2d leads to following equation in κ1, . . . , κn,

∑
κiγ

2
i − 2

(∑
κiγi

)2

= 0 (6.32)

Solving for the roots κ1, . . . , κn provides the optimal distribution of stiffness given each SRS

placement location γi. It is worth noting that since we have an underdetermined system, i.e.,

1 equation with n − 1 unknowns, there may be several or no choices of κi given γ1, . . . , γn

that satisfy the above equation. This means that based on layout of the columns and SRSs

the finding the optimal distribution from finding the intersection of ē2dx and ρ̄2d is not unique

or may not be possible.
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6.5.4 Modal characteristics

It has been shown in prior work that the flexible edge modal displacement is largest in the

first mode, while the stiff edge modal displacement is largest in the second mode [68]. Due

to the eccentricity, both the lateral and rotation components are coupled. In fact, increasing

the eccentricity leads to a stronger degree of coupling [60]. Since the SRS provides additional

stiffness to the system, the mode shapes can be altered. The concept of mode shapes can

be used due to the homogeneity [46] property of these class of nonlinear devices, that is,

the additional stiffness is continuously provided. For a symmetric system, the flexible and

stiff edges would have equal displacement since no rotation occurs. With this in mind, the

stiffness provided by the SRS is selected such that the first modal displacements of the

stiff and flexible edges are equal. By varying the stiffness distribution, the normalized SRS

eccentricity, ēdx, is changed. Figure 6.14 shows the modal displacements of the flexible and

stiff edges for Ω = 0.5, 1, and 2. For each system, the intersection of the modal displacements
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Figure 6.14: Modal displacements of flexible and stiff edges for (a) Ω = 0.5 (torsionally
flexible), (b) Ω = 1 (strongly coupled), and (c) Ω = 2 (torsionally stiff).

of the flexible and stiff edges occurs at ēdx = −0.2. This result should not come as a surprise,

since it is precisely the normalized SRS eccentricity which decouples the stiffness matrix (see

equations (6.3), (6.21), and (6.23)). The results shown prior that this choice in normalized

SRS eccentricity leads to significant reductions in both the flexible and stiff edges for the

three cases of Ω.
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6.6 Limitations and guidelines

In the prior sections, two approaches to determine the optimal distribution of SRSs were

proposed. Both approaches lead to similar results for the flexible edge displacements. Yet,

each approach has limitations. For the first method which selected the point of intersection

of the curves ē2dx and ρ̄2d it was shown that an optimal stiffness distributed was found to

be κ = (1 −
√
0.5)/2 for the stiff side SRS and 1 − κ for the flexible side SRS. Although

this method did produce satisfactory results, the approach may become cumbersome or

impossible when the number of SRS increases. It can be shown (see Section 6.5.3), that for

n number of SRSs in the y-direction, to solve for the optimal stiffness distribution requires

solving for the roots of

∑
κiγ

2
i − 2

(∑
κiγi

)2

= 0 (6.33)

where γi is between [−0.5, 0.5] and γia is the distance the ith SRS is from the CM. Note that

the roots of the equation are κi where
∑

κi = 1. The above equation can be treated as an

underdetermined system of n − 1 equations, which can have several or no solutions. Thus,

incorporating several SRSs in the direction of interest can pose difficulties if the architectural

restrictions (i.e., the choices of γi) prevent a feasible distribution of stiffness.

The second method instead considered the modal displacement of the edges. The idea of

mode shapes can only be considered for elastic structures. For this approach, the first

mode flexible and stiff edge displacements were made equal by varying the normalized SRS

eccentricity ēdx. It was found that this occurred when ēdx = −0.2. It was stated earlier that

this choice of ēdx leads to decoupling the stiffness matrix of the system, namely, K +Kdy,

which occurs because ω2
y ēx = ω2

dyēdx. This result was also a consequence on the brace-to-

frame (BFS) factor equaling one, since ω2
dy = BFSω2

y. Note that the selection of the BFS

factor and ēdx is not unique, and any combination will be sufficient as long as the product
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equals (or is close to) ēx. Note that ēdx > −0.5 otherwise all the SRSs would be concentrated

on the flexible side, leading to detrimental effects in the stiff edge displacements. Moreover,

the closer ēdx is to zero and/or for larger eccentricities ēx, leads to large BFS factors to

decouple the stiffness matrices. Thus, if limitations exist on the bracing system housing the

SRS, the uncontrolled structure eccentricity may be large enough such that an optimal value

of ēdx cannot be selected. If there is no restriction the sizing of the bracing system, then no

matter the degree of eccentricity of the structure, a optimal distribution of stiffness can be

achieved.

Based on the prior discussion, some guidelines are as follows: (1) use as few SRSs as allowed

in the lateral direction of interest, (2) select the ēdx to be equal to, and opposite the side

of the normalized eccentricity, ēx, (3) if proper selection of ēdx is not possible, select the

largest value of ēdx possible and consider using SRSs in the x-direction, since increasing the

normalized SRS radius of gyration reduces edge displacements.

6.7 Summary

In this investigation several parameters were identified which relate to the added stiffness

provided by the SRS and the stiffness distribution. From these, the normalized SRS eccen-

tricity and normalized SRS radius of gyration played a key role in the response of the flexible

edge displacements. The effects of these parameters on the edge displacements were investi-

gated. It was shown that including SRSs in a one-way asymmetric structure leads to reduced

edge displacements. Significant reductions were possible, but depend on the distribution of

the SRSs.

Two approaches for determining the optimal distribution of semi-active resettable springs

(SRSs) in a one-way asymmetric structure were proposed. The first approach was to de-
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termine the maximum value the normalized SRS eccentricity and normalized SRS radius of

gyration can take on accounting for geometric and column layout constraints. The second

was based on modal analysis. Both approaches lead to finding an appropriate distribution

of SRSs within the structure. However, each approach had its own limitations. The results

of this study are summarized as follows:

1. The addition of the SRSs in an elastic one-way asymmetric structure provided upwards

to 80% reductions in edge displacements for structures that are torsionally-flexible,

strongly coupled, and torsionally-stiff with fundamental periods Ty > 0.15 seconds.

For laterally-stiff structures (Ty < 0.15 seconds) the reductions are moderate.

2. Reductions in the flexible edge occur when the normalized SRS eccentricity is on the

opposite side of the normalized eccentricity, and vice versa for the stiff edge. Increasing

the normalized SRS eccentricity leads to further reductions in the edge displacement.

3. Distributing the SRSs such that they are farthest away from the CSS leads to greater

reductions. In other words, increasing the normalized SRS radius of gyration leads to

larger reductions in the edge displacements, yet the improvement is not as pronounced

for strongly coupled and torsionally-stiff systems. For one-way asymmetric structures,

additional reductions can be achieved by incorporating SRSs in the direction perpen-

dicular to the lateral motion.

4. The first approach to distribute the SRSs was based on the observation that increasing

the normalized SRS eccentricity or normalized SRS radius of gyration leads to larger

reductions in edge displacement. Due to column layouts restrictions, ēdx and ρ̄d cannot

both take on their respective maximum values simultaneously. By introducing the

stiffness distribution κ, it was shown that the intersection of the curves ē2dx and ρ̄2d

leads to the maximum value both parameters can be simultaneously. This approach

leads to the greatest reductions in the flexible edge displacement, yet it comes at
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significantly increasing the stiff edge displacement. The results of this approach are

akin to that found for fluid viscous dampers [36].

5. The second approach used modal analysis. The additional stiffness provided by the

SRSs allowed altering the mode shapes of the system. The stiffness distribution was

selected so that the modal displacements of the flexible and stiff edges were equal

in the first mode. This approach led to decoupling the stiffness matrix of the system.

Although this approach performed slightly worse in reducing the flexible edge displace-

ment, it also provides considerable reductions in reducing the stiff edge displacement.

In other words, this approach leads to an overall reduction in both edges as opposed

to only the flexible edge.
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Chapter 7

Conclusion and Future Work

7.1 Summary of Thesis

In this thesis, existing control devices were implemented in a variety of settings to provide

further reduction of the response of civil structures. Two sets of ground motion having

broad-band and pulse-like characteristics were used as inputs. For a single-story structure,

a semi-active resettable spring (SRS) and inerter were used within a TMD system and were

called semi-active tuned mass damper inerter (SATMDI) and tuned mass damper inerter

(TMDI). The tuning strategy for the TMDI used closed-form equations based on having a

white noise input. The results showed that for large inertance values, the SATMDI provides

moderate reduction in the displacement response, while providing significant reduction in

the acceleration and stroke responses. It was shown that a SATMDI system whereby the

inerter replaced the TMD mass entirely provided the highest performance among the three

mass ratios selected.

Base-isolation enhancement of a single-story structure was also presented. A novel configura-

tion of a SRS and TMD was proposed. In this new configuration, the SRS grounds the TMD
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mass instead of being parallel to the spring and damper. This new configuration was called

a non-traditional semi-active tuned mass damper (NT-SATMD) and was compared against

a traditional (T-TMD) and non-traditional (NT-TMD) tuned mass dampers. The NT-TMD

configuration is where the damper grounds the TMD mass instead of being parallel to the

spring. An ad-hoc tuning strategy was proposed for the NT-SATMD which combined tuning

strategies from the T-TMD and NT-TMD systems. The results of the study showed that

the NT-SATMD provided equal or better performance in reducing the base and superstruc-

ture displacements for a significantly smaller mass ratio. Yet, the NT-SATMD increased

the relative displacement between 1− 5% yet due to the base-isolation system (BIS) provid-

ing significant reductions, this increase was deemed acceptable. The acceleration responses

were mildly improved using the NT-SATMD, yet were still inferior to the NT-TMD under

pulse-like ground motions.

Multi-story structures equipped with a TMDI and SATMDI were also considered. For a

TMDI system, an alternative tuning strategy was proposed which involved selecting the

stiffness and damping of the TMDI system based on the first and second modes natural fre-

quencies and damping ratios. The alternative tuning strategy was compared with one based

on white noise input. The system considered was a three-story structure with a fundamental

period of T = 0.5 seconds and having a first mode critical damping ratio of ζ1 = 0.02. The

results showed that the alternative tuning strategy provides significant improvement in re-

ducing the top-story displacement and acceleration. For the lower stories, smaller inertance

values produced better results as opposed to larger inertance. In addition, the alternative

tuning strategy provided better performance for small mass ratios as compared with the

white noise tuning strategy. As for the stroke response, it was shown that for small mass

ratios a significant reduction in the stroke was achieved across all inertance values. Yet,

increasing the mass ratio led to worse performance.

Asymmetric structures equipped with SRSs were also considered in this study. The structure
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considered was single-story structure having a stiffness eccentricity producing a flexible and

stiff edge. A parametric study over a wide range of structure periods was considered. In

addition, torsionally stiff, flexible, and strongly coupled structures were also studied. Two

strategies for determining the optimal placement of the SRSs were proposed, both leading to

roughly the same performance. The first approach found that selecting a SRS distribution so

that the SRS eccentricity was opposite in sign to the structure’s eccentricity and largest as

possible in magnitude. In addition, by increasing the SRS radius of gyration, better perfor-

mance was found. These two quantities cannot both take on simultaneously maximum values

due to geometric constraints. The optimal stiffness distribution was chosen that produced

the largest possible SRS eccentricity and SRS radius of gyration. An analytical result was

found for two SRSs in a single directions. The second approach led to decoupling the stiffness

matrix by selecting the SRS stiffness distribution so that the modal displacements of the stiff

and flexible edges were equal. This lead to selecting a SRS eccentricity that was equal in

magnitude to the structure’s eccentricity, but opposite in sign. Guidelines and limitations

on the selection of the stiffness distribution were also provided for design purposes.

7.2 Further work and Other Applications

7.2.1 Further Explore Alternative Tuning Strategy for TMDI

An alternative tuning strategy for a TMDI system was introduced which showed significant

reductions in the top-story displacement and acceleration responses. It was found that

smaller mass ratios provided better performance as compared with the TMDI using the white

noise tuning strategy. In addition, for smaller mass ratios, the stroke was also considerably

reduced. For the investigation shown prior, only a single three-story structure was studied.

It will be beneficial to investigate how the alternative tuning strategy will perform over a

126



wide range of fundamental periods. Moreover, the modal properties and how they affect the

tuning strategy will also been investigated. This is inspired by the work done by Sadek et al.

[87] where the mode shape played a role in the selection of the frequency and critical damping

ratio of the TMD. Closed-form equations similar to those found in the prior study will be

sought for. This may or may not be possible depending on how the frequency and critical

damping ratios will change shape as the modal characteristics of the structure change.

7.2.2 Equipment or Artifact Isolation

Damage to delicate scientific equipment or historical artifacts in structures has been observed

in many cases during severe ground motions. This type of damage can cause considerable

monetary costs or irreparable loss to historical and artistic heritage. For this reason, there

has been increased attention in recent years to mitigate equipment and artifact damage

under seismic events. Previous studies [108] have implemented base isolation and active

control to mitigate (or eliminate) damage to artifacts with promising results. Yet, due to

the high-power requirements of active control, and the potential for power outages during

seismic events, this control strategy may not be sufficient or practical. To address this issue,

we will investigate the use of a SRS within base isolation to reduce damage to equipment or

artifacts under seismic events. We suspect to have promising results, since the use of SRS

within a BIS system has been shown to be effective in reducing the response of buildings.

Preliminary analysis has been performed on a four-story structure where the equipment is

isolated on the first floor. An SRS device is placed in series to the parallel spring and damper

representing the stiffness and damping provided by the BIS. Figure 7.1 shows a schematic

of the system analyzed. The control laws considered were the 1&3, 2&4, and 1-4, which

were introduced in Section 2.2.1. For this preliminary analysis, the SAC Phase 2 Project

[95] ground motion suites were used. Each suite has ten different histories (five in each

orthogonal direction) of recorded and generated ground motions. The suites were selected to
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represent the magnitude and distance characteristics of the seismic hazard in Los Angeles,

CA. The first suite (low) represents ground motions having a 50% probability of exceedance

in 50 years, the second suite (medium) represents a 10% probability of exceedance in 50

years, and the third suite (high) a 2% probability of exceedance in 50 years. This study only

evaluated fault-normal ground motions.
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Figure 7.1: Four-story structure with equipment isolated using a BIS and SRS device.

Figures 7.2, 7.3, and 7.4 show the displacement and absolute acceleration normalized by the

corresponding BIS responses over all twenty-five ground motions using control laws 1-4, 2&4,

and 1&3, respectively. The horizontal axis represents the percent stiffness provided by the

SRS device. To avoid excessive outliers, the median values were considered. Based on these

preliminary results, control law 1-4 (Figure 7.2) provides the greatest amount of displacement

reduction but provide negligible absolute acceleration reduction. For equipment isolation,

it is the absolute acceleration which is of more concern [32]. When considering control
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Figure 7.2: Median reduction factors for the displacement and absolute maximum accelera-
tion under all ground motion suites using control law 1-4.

law 2&4 (Figure 7.3) there is considerable reduction in the acceleration, yet nearly none

for displacement. When the SRS provides all the stiffness of the BIS system, it causes an

significant increase in the displacement response and thus should be avoided. For control law

1&3 (Figure 7.4), there is more of balance between the displacement and absolute acceleration

reduction. In fact, the greatest reductions occur when the SRS replaces the the BIS stiffness.

Based on these preliminary findings, the alternative control laws for the SRS when incor-

porated in the BIS can yield large reductions in the displace or absolute acceleration. A

more thorough parametric study is warranted to gain insight into the best performance us-

ing the various control laws. Moreover, hazard analysis can be performed based on the SAC

2 ground motions used. A reliability analysis can also be done to study how variation in the

stiffness, damping, or stiffness percent can affect the performance of the isolation system.
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Figure 7.3: Median reduction factors for the displacement and absolute maximum accelera-
tion under all ground motion suites using control law 2&4.
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Figure 7.4: Median reduction factors for the displacement and absolute maximum accelera-
tion under all ground motion suites using control law 1&3.
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