
UC Berkeley
UC Berkeley Previously Published Works

Title
Evaluation of PGAS Communication Paradigms with Geometric Multigrid

Permalink
https://escholarship.org/uc/item/38j1x0qd

ISBN
9781450332477

Authors
Shan, Hongzhang
Kamil, Amir
Williams, Samuel
et al.

Publication Date
2014-10-06

DOI
10.1145/2676870.2676874

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38j1x0qd
https://escholarship.org/uc/item/38j1x0qd#author
https://escholarship.org
http://www.cdlib.org/

Evaluation of PGAS Communication Paradigms with
Geometric Multigrid

Hongzhang Shan, Amir Kamil, Samuel Williams, Yili Zheng, Katherine Yelick
Computational Research Division

Lawrence Berkeley National Laboratory, Berkeley, CA 94720
hshan, akamil, swwilliams, yzheng, kayelick@lbl.gov

ABSTRACT
Partitioned Global Address Space (PGAS) languages and
one-sided communication enable application developers to
select the communication paradigm that balances the per-
formance needs of applications with the productivity desires
of programmers. In this paper, we evaluate three different
one-sided communication paradigms in the context of geo-
metric multigrid using the miniGMG benchmark. Although
miniGMG’s static, regular, and predictable communication
does not exploit the ultimate potential of PGAS models,
multigrid solvers appear in many contemporary applications
and represent one of the most important communication
patterns. We use UPC++, a PGAS extension of C++, as
the vehicle for our evaluation, though our work is applica-
ble to any of the existing PGAS languages and models. We
compare performance with the highly tuned MPI baseline,
and the results indicate that the most promising approach
towards achieving performance and ease of programming is
to use high-level abstractions, such as the multidimensional
arrays provided by UPC++, that hide data aggregation and
messaging in the runtime library.

1. INTRODUCTION
Partitioned Global Address Space (PGAS) languages sup-
port efficient one-sided communication and offer program-
ming abstractions similar to shared memory, while also ex-
posing locality to the programmer. This enables users to de-
velop applications and tailor the communication paradigm
to suit their performance and productivity needs. At one ex-
treme, programmers can aggregate communication in MPI’s
message-passing style to maximize performance on current
high-performance computing (HPC) platforms. At the other
extreme, programmers can use fine-grained messaging to
reap the productivity benefits of shared memory program-
ming by not having to distinguish whether accesses are lo-
cal or remote. Between these two extremes, there exists a
wide programing design space in which users may explore
the tradeoffs. Ultimately, quantifying the performance ben-
efits and qualitatively assessing the ease of programming
requires empirical data obtained by running experiments on
today’s HPC systems.

In this paper, we explore this design space using a compact
geometric multigrid (MG) benchmark called miniGMG [31,
30, 23], which is designed to proxy the multigrid solvers in
adaptive mesh-refinement (AMR) applications. As a stan-
dalone benchmark, it provides an excellent testbed for un-
derstanding the implications of dramatic changes to pro-

gramming models and communication paradigms. Its com-
munication is primarily between nearest neighbors with a
static set of neighbors and predictable message sizes. Al-
though MPI’s traditional message-passing approach is well-
suited for this kind of regular communication, the process of
manually packing and unpacking the communicated data is
complex, labor intensive, and potentially error prone due to
the necessity of calculating the intersections and unions of
subdomains with a variable-depth ghost zone. Conversely,
PGAS languages often excel with irregular and dynamic ap-
plications and can be quite productive to use. Here, we eval-
uate the productivity and performance of the PGAS model
in the context of a regular application.

Although the tradeoffs could be evaluated in any of the
myriad PGAS languages and libraries, we use UPC++ [34]
as our vehicle for evaluating different communication
paradigms in the context of miniGMG. UPC++ is a library-
based PGAS extension of C++; unlike UPC [5], it does not
need special compiler support. Instead, it is developed based
on C++ templates and runtime libraries. This compiler-free
approach enables it to be easily ported across different plat-
forms and interoperate well with other parallel programming
models.

We develop three new implementations of miniGMG us-
ing different communication paradigms in UPC++, namely
bulk, fine-grained and array. The bulk version has essen-
tially the same communication patterns as the MPI version
with the caveat that the traditional two-sided message pass-
ing is replaced with one-sided communication. The fine-
grained version expresses communication productively and
naturally in the data granularity of the algorithm without
manual message aggregation. The array version leverages
the multidimensional array constructs in UPC++ to express
communication in terms of high-level algorithmic operations
by allowing entire ghost zones to be copied with a simple se-
quence of calls.

We study the performance characteristics of four miniGMG
implementations (three in UPC++ and one in MPI) on two
supercomputers – a Cray XC30 and an IBM Blue Gene/Q.
Our results show that in most cases, the UPC++ bulk ver-
sion performs similarly to the highly tuned MPI code and
better than the other two UPC++ versions. Conversely,
the UPC++ fine-grained version, whose communication is
dominated by 8-byte short messages, performs poorly when
using only one core per socket to inject messages. How-

ever, by decomposing the application problem among mul-
tiple processes on a socket (instead of threads), the perfor-
mance gap with the bulk version can be sharply reduced.
As the memory capacity per core is expected to shrink in
manycore architectures, smaller size messages are likely to
be more pervasive on upcoming power-efficient computers.
In our experience, using higher-level data abstractions, such
as multidimensional arrays, provides both programming ease
and portable performance because the communication opti-
mizations required for realizing full performance potential
(e.g., message aggregation) are implemented by the runtime
software rather than by the user. We believe this is the
most promising programming approach for end users, en-
abling maximum code reuse across applications.

2. RELATED WORK
Many studies have been done on the performance of PGAS
languages and libraries. However, most previous studies
have focused on comparing the performance of bulk mes-
saging using PGAS languages to MPI rather than evaluating
the different communication paradigms supported by PGAS
languages. To name a few such studies, T. El-Ghazawi and
F. Cantonnet [12] examined the performance and potential
of UPC using the NAS Parallel Benchmarks. H. Shan et
al. [25] demonstrated the performance advantage of one-
sided communication over two-sided MPI at scale for two
applications, MILC and IMPACT-T. J. Zhang et al. [33]
studied the performance of the N-Body problem in UPC. J.
Mellor-Crummey et al. [22] examined the performance of the
Challenge Benchmark Suite in CAF 2.0. P. Ghosh et al. [17]
explored the ordering of one-sided messages to achieve better
performance. GPI-2 is an open-source PGAS communica-
tion library similar to GASNet [15] and ARMCI [1] and has
been used in a number of computational applications and
performance studies [26, 21, 19, 18].

Gerstenberger et al. [16] showed that MPI one-sided com-
munication can be implemented efficiently on Cray Gemini
interconnects using the DMAPP API, whereas our study
focuses on an application with different computation and
communication characteristics (miniGMG has much lower
surface to volume ratio than MILC, which is the only com-
parable benchmark in that paper), uses higher-level data
abstractions (multidimensional arrays vs. plain buffers),
and evaluates the performance on more recent interconnects
(Cray Aries and IBM BGQ).

Other studies have focused on high-level programming ab-
stractions, such as the multidimensional arrays in UPC++.
K. Datta et al. [10] studied the performance and potential of
Titanium, the language on which the UPC++ array library
is based. They argued that Titanium provides greater ex-
pressive power than conventional approaches, enabling con-
cise and expressive code and minimizing time to solution
without sacrificing performance. T. Wen and P. Colella
compared an implementation of the Chombo adaptive mesh
refinement framework using Titanium arrays to the origi-
nal Fortran/C++/MPI version [29]. They showed that the
Titanium version was much more succinct and productive
at the cost of somewhat worse performance than the origi-
nal implementation. A similar performance and productiv-
ity study was done by B.L. Chamberlain et al. [7] in ZPL,
which in turn inspired the Titanium array library. Multi-

dimensional array is also supported by Global Array [13].
However, only limited algebraic operations are directly sup-
ported. A. T. Tan et al. [28] studied the implementation of
an automatic taskification on shared-memory systems for a
domain-specific embedded language NT 2, which provides a
Matlab-like syntax for parallel numerical computations in-
side a C++ library.

The novelty of our work is that we compare the bulk, fine-
grained, and array implementations together. To our best
knowledge, this is the first time that the three different
PGAS communication paradigms have been evaluated in the
context of a single application.

3. MINIGMG
miniGMG [31, 30, 23] is a compact geometric multigrid
benchmark designed to proxy the multigrid solvers in AMR
MG applications built using BoxLib [4] and Chombo [9]. As
it is a standalone benchmark, it provides an excellent testbed
for understanding the implications of dramatic changes to
programming models and communication paradigms.

progress within each V-cycle	

Figure 1: The truncated V-cycle (U-cycle) used in
miniGMG for solving the elliptic PDE Lhuh = fh,
where superscripts denote grid spacings and GSRB
is the Gauss-Seidel Red-Black smoother.

3.1 Geometric Multigrid
Geometric multigrid is a recursive solver for elliptic PDEs
on structured grids. In the PDE Lhuh = fh, the vectors
u and f are elements of a structured rectahedral grid while
the linear operator L is simply a stencil operating on the el-
ements of the grid. The superscript h denotes the grid spac-
ing. As shown in Figure 1, a truncated multigrid V-cycle
(or U-cycle) recursively smooths (Gauss-Seidel Red-Black)
and coarsens (restriction) the current grid and operator un-
til further coarsening is impractical. At this point, the MG
solver computes a solution to the resultant coarse grid prob-
lem (L8hu8h = f8h) using an iterative solver like BiCGStab.
Once a solution to the the coarse grid problem has been cal-
culated, it is interpolated and used as a correction to the
finer grid problems. The multigrid solver iterates over mul-
tiple V-cycles until some convergence criterion is met.

3.2 Parallelization in miniGMG
As shown in Figure 2, miniGMG uses the same straight-
forward domain decomposition at every level. This ensures
that restriction and interpolation are entirely local opera-
tions, since a given process owns all grid spacings of data
in a prescribed spacial subdomain. In Figure 2, the fine-
grid domain of 83 cells is decomposed among eight MPI or

(a)	
 (b)	

Figure 2: Domain decomposition in miniGMG is
preserved across restrictions. When the fine-grid
in (a) is restricted, the volume of the resultant grid
(b) is reduced by a factor of eight while the surface
area is reduced by a factor of four.

UPC++ ranks, each of which owns a 43 subdomain. Af-
ter one level of restriction, each rank owns a 23 subdomain.
This implies that:

• the amount of work (stencils) decreases by a factor of
eight on each subsequent level
• ranks communicate with the same set of neighbors at

every level
• the amount of data exchanged between ranks decreases

by a factor of four on each subsequent level

Together, these characteristics bound both the number of
stencils and the volume of interprocess data movement in
the MG solver to O(N) and O(N0.66), respectively. On the
other hand, the communication overhead is in O(logN), so
that low-overhead communication paradigms are important
for performance at all levels in miniGMG.

3.3 Communication in miniGMG
In miniGMG, communication within the V-cycle takes the
form of nearest-neighbor ghost-zone or halo exchanges for
the smooth and restriction operations. In MPI, these take
the familiar form highlighted in Figure 3(a):

1. the local rank packs a copy of the surface of its subdo-
main (box) into a series of 1D MPI buffers

2. the local rank initiates MPI_Isend operations
3. remote ranks post MPI_Irecv and MPI_Waitall oper-

ations and wait for data
4. remote ranks unpack the 1D buffers into the ghost

zones of their 3D subdomains

Although this method ensures pairwise synchronization and
aggregates data to amortize overhead, the development of
a high-performance implementation is error prone, as one
must deal with unions of subdomains, deep ghost-zone ex-
changes, and communication with edge and corner neigh-
bors. For simplicity, we focus on experiments that only re-
quire the exchange of one-element-deep ghost zones with six
neighbors in three dimensions.

3.4 miniGMG Configuration
In this paper, we configure miniGMG to solve a second-
order, variable-coefficient, finite-volume discretization of the
Helmholtz operator (Lu = aαu−b∇·β∇u = f) on a cubical
domain, parallelized with one cubical subdomain per rank.
We use a V-cycle truncated when subdomains reach 43 cells,
at which point we switch to a matrix-free BiCGStab itera-
tive solver. In addition to ghost-zone exchanges, BiCGStab

requires global dot products, and we use MPI_Allreduce to
compute them in all implementations. For timing consis-
tency, we perform a total of ten V-cycles in each experiment.

4. UPC++ OVERVIEW
UPC++ is a library for C++ that leverages standard C++
language features to provide a PGAS programming model.
In this section, we give a brief overview of UPC++, focus-
ing on the features used in our miniGMG implementations,
including shared objects, dynamic global memory manage-
ment, communication, and multidimensional arrays. A more
complete discussion of UPC++ can be found in [34].

The memory model of UPC++ is PGAS: each rank has its
own private address space as well as a partition of the glob-
ally shared address space. UPC++ provides both low-level
PGAS programming primitives similar to UPC and high-
level parallel programming features inspired by other PGAS
languages such as Titanium [32], Chapel [6], Phalanx [14],
and X10 [8]. A notable syntactic distinction is that all PGAS
extensions in UPC++ are implemented by standard C++
templates, functions, or macros and thus require no change
in the C++ compiler. For example, shared objects in UPC
are expressed through the shared type qualifier while in
UPC++ they are expressed through the shared_var and
shared_array templates. From the application user’s per-
spective, the programming experience is very similar.

The majority of today’s HPC applications are programmed
with a mixture of MPI, OpenMP, CUDA, and/or OpenCL.
The library approach of UPC++ helps to provide good in-
teroperability with these existing programming systems and
enables an incremental transition path for algorithms that
fit the PGAS model.

As depicted in Figure 4, our UPC++ implementation in-
cludes two main components: a set of template header files
and a runtime library. In UPC++ header files, we use a com-
bination of C++ programming techniques such as generic
programming, operator overloading, and template metapro-
gramming to implement PGAS features. User code written
in UPC++ can be conceptually thought of as being trans-
lated to runtime function calls through language hooks pro-
vided by the C++ standard.

Table 1 summarizes the basic UPC++ programming idioms.
All UPC++ extensions are packaged in the upcxx names-
pace to avoid naming conflicts with other libraries. For
brevity, the code examples in this paper assume that the
upcxx namespace is being used.

4.1 Shared Objects
UPC++ has two categories of shared objects: single-
location shared variables (shared_var) and block-cyclically
distributed arrays of shared objects (shared_array). Re-
gardless of their physical location, shared objects are acces-
sible by any UPC++ rank.

Shared data types are implemented as generic templates pa-
rameterized over the object type and can work with both
built-in and user-defined data types (e.g., structs). Since
it is common to access members of a struct individually and
the C++ standard does not allow overloading of the class

i (unit stride)	
 i (unit stride)	
 i (unit stride)	
 i (unit stride)	
 i (unit stride)	
 i (unit stride)	

(a)	
 (b)	
 (c)	

send
buffers

recv
buffer

box 2
(remote)

box 0
(local)

box 3
(remote)

1 3 2 4 box 1
(remote)

1

2

3

4 recv
buffer

box 2
(remote)

box 0
(local)

box 3
(remote)

2 box 1
(remote)

box 2
(remote)

box 0
(local)

box 3
(remote)

box 1
(remote)

2

1 1

Figure 3: Communication styles explored in this paper: (a) point-to-point MPI and bulk UPC++, (b)
fine-grained UPC++ based on puts of contiguous data, (c) multidimensional arrays with automatic message
aggregation and active messages. Collectively, these implementations span the performance and productivity
design space.

C++ Compiler UPC++
Program

UPC++
Template

Header Files

Linker

UPC++ idioms
are translated

to C++

Object file w.
runtime calls

Executable

GASNet

System Libs

UPC++
Runtime

Figure 4: UPC++ software architecture and com-
pilation workflow. By including UPC++ template
header files in the user application, UPC++ pro-
gramming idioms are “translated” to regular C++
code and runtime function calls by the standard
C++ compiler and preprocessor. The object code
from the C++ compiler is linked with the UPC++
runtime, which is implemented on top of the GAS-
Net communication library.

member operator “.”, UPC++ introduces new syntax for
referencing a member of a shared object. Given an ob-
ject and a member name, the memberof operation creates
a global reference to the given member of the object, which
can be used as either an l-value or an r-value. The following
is an example of how to use memberof:

struct Box {
int i, j, k;
global_ptr <double > data;

};
shared_array <Box > boxes;
boxes.init (128* ranks ());
memberof(boxes[0], i) = 1; // boxes [0].i = 1;

4.2 Global Memory and Communication

Table 1: Basic PGAS primitives in UPC++

Programming Idiom UPC++

Number of ranks ranks()

My ID myrank()

Shared variable shared_var<Type> v

Shared array shared_array<Type> A(count)

Global pointer global_ptr<Type> p

Memory allocation allocate<Type>(rank, count)

Data transfer copy<Type>(src, dst, count)

Synchronization barrier() & async_wait()

Global memory is represented by the generic global pointer
type global_ptr<T>, which points to one or more shared ob-
jects of type T. A global pointer encapsulates both the rank
and the local address of the shared object referenced by the
pointer. Pointer arithmetic with global pointers in UPC++
works the same way as arithmetic on regular C++ pointers.
Memory in the global address space can be allocated and
freed using the UPC++ allocate and deallocate function
templates.

Communication in UPC++ applications may appear in two
forms: 1) explicit data transfer using one-sided copy func-
tions; 2) implicit communication when shared objects ap-
pear in an expression. For example, if a shared object is
used as an l-value, then a put operation occurs. On the
other hand, if a shared object is read from, then a get oper-
ation occurs.

UPC++ also supports non-blocking data movement using
the async_copy function template:

async_copy(global_ptr <T> src ,
global_ptr <T> dst ,
size_t count);

The src and dst buffers are assumed to be contiguous. A
call to async_copy merely initiates data transfer, enabling
overlapping of communication with computation or other
communication. The user can query the completion status

of a non-blocking copy using async_try or wait for com-
pletion using async_wait. UPC++ also allows a user to
register an async_copy operation with an event (similar to
an MPI_Request) and synchronize all operations in an event

at some later point.

4.3 Multidimensional Domains and Arrays
The bulk copy and async_copy functions described above
can only be used to transfer contiguous data from source to
destination. They do not eliminate the need to pack and
unpack data into contiguous buffers in the ghost-exchange
process described in §3, since most ghost zones are non-
contiguous. As a result, a ghost-zone exchange using copy

or async_copy must be a two-sided process, where the sender
packs data and initiates a transfer and the receiver un-
packs the data after the transfer is completed. Significant
programmer effort is required to implement and coordinate
packing and unpacking, negating the productivity benefits
of the one-sided PGAS model.

In order to address these limitations, UPC++ includes a
multidimensional domain and array library based on that of
Titanium. Full details on the array library can be found in
[20]. Here, we provide an overview of the features that are
used in miniGMG.

The UPC++ domain and array library includes the follow-
ing components:

• points are coordinates in N -dimensional space
• rectangular domains consist of a lower-bound point, an

upper-bound point, and a stride point
• arrays are constructed over a rectangular domain and

indexed by points

An array consists of memory in a single memory space to
hold its elements, as well as a descriptor that encodes the
location of that memory and the layout of the array. An
array is represented using a C++ template

template <class T, int N, class L = local >
class ndarray;

where T is the element type, N is the dimensionality, and L
is an optional locality specifier that may be local or global.
The former specifies that the elements are located in local
memory, while the latter allows the elements to be located in
a remote space. The ndarray template overrides the element
access operator “[]”, allowing multidimensional arrays to be
accessed with point indexes. In the case of a global array,
the element access operator allows an array to be accessed
remotely in a one-sided fashion.

A multidimensional array can be constructed over any rect-
angular domain, so that an array’s index space matches
the logical domain in the application. The library allows
different views to be created of the same underlying data,
providing reinterpretation operations such as restrictions to
a smaller domain, slicing to a smaller dimensionality, and
permuting or translating the domain of an array. Most im-
portantly, the library provides a copy operation, invoked
as A.copy(B), which copies data from array B to array A.
The two arrays need not be located in the same memory
space, and their underlying domains need not be equal. The
library automatically computes the intersection of their do-
mains, obtains the subset of the source array restricted to

that intersection, packs elements if necessary, sends the data
to the rank that owns the destination, and copies the data
to the destination array, unpacking if necessary. The en-
tire operation is one-sided, with active messages performing
remote operations, using an implementation similar to the
GASNet Vector, Indexed, and Strided (VIS) extensions [3].
Copying a ghost zone requires the single statement

A.constrict(ghost_domain).copy(B);

where ghost_domain is the domain of the ghost zone. The
library also provides a non-blocking async_copy counterpart
to the copy method.

A final feature in the array library that is relevant to the
miniGMG application is that it allows an array descriptor
to be created over an existing piece of memory. This en-
ables an application to create descriptors to take advantage
of the copy operations without changing the rest of the pro-
gram. Thus, a programmer can improve the productivity of
the communication code without touching the computation
piece of an application.

5. MINIGMG IN UPC++
In this section, we describe in detail the three miniGMG
implementations in UPC++, namely bulk, fine-grained, and
array. These three versions differ in how the ghost zone
exchange operation is implemented.

5.1 Shared Features
All three implementations use non-blocking one-sided oper-
ations to transfer data from sender to receiver. To avoid race
conditions, synchronization is necessary at the beginning of
the communication phase to ensure that the destination tar-
gets are available, as well as at the end to signify that data
transfer has completed. UPC++ does not currently provide
point-to-point synchronization operations, so global barriers
are used instead. This is in contrast to the MPI implemen-
tation, which relies on the semantics of two-sided message
transfer to synchronize between sender and receiver.

The MPI version of miniGMG uses the MPI_Allreduce col-
lective operation for computing dot-products and checking
convergence of the result. The UPC++ versions also use this
same operation, since we measured no performance gain in
using the equivalent UPC++ collective. The template- and
library-based implementation strategy of UPC++ allows it
to interoperate very well with MPI and other programming
models such as OpenMP and CUDA. UPC++ also requires
no changes in the computation part of the miniGMG code.
Our experience indicates that for many legacy applications,
the developers can reuse the majority of the existing code
and only rewrite the parts that match the PGAS model or
that can otherwise benefit from UPC++ features.

5.2 Bulk Version
As a first step, we implemented a version of miniGMG in
UPC++ that follows the same communication structure as
the MPI code, but with one-sided rather than two-sided data
transfer. We refer to this as the bulk version of the code.
All data that need to be transferred from one rank to a
neighboring rank are manually packed into a single message.
Communication buffers are allocated in the shared address

space, allowing the sender to perform one-sided puts using
the non-blocking async_copy function template. Upon com-
pletion of the transfer and synchronization, incoming data
are manually unpacked into the destination ghost zones.

5.3 Fine-Grained Version
Compared to the bulk-message implementation, the fine-
grained version of miniGMG in UPC++ makes full use of the
global address-space abstraction. All box data are stored in
the shared address space. When ghost-zone data are needed,
a UPC++ rank can simply locate the neighboring box ID
and use it to reference the data directly without worrying
whether the data are local or remote. The following code is
a generalization of the operations that copy the ghost data
from one box to another:

for (int k = 0; k < dim_k; k++)
for (int j = 0; j < dim_j; j++) {

int roff = recv_i + (j+recv_j)* rpencil +
(k+recv_k)* rplane;

int soff = send_i + (j+send_j)* spencil +
(k+send_k)* splane;

async_copy(sbuf+soff , rbuf+roff , dim_i);
}

For each contiguous piece of data, the code computes the
offsets into the send and receive boxes before making a call
to async_copy. The resulting code is equivalent to the
shared-memory version, with async_copy taking the place
of memcpy. Non-contiguous data is just a special case with
dim i equal to 1. Figure 3(b) illustrates this communica-
tion algorithm. The UPC++ runtime takes care of accessing
both remote and local data, and the tedious and error-prone
packing and unpacking steps are no longer needed. The data
layout of a 3-D box has only one contiguous dimension in
memory (dimension i in the code above), so message sizes
in the fine-grained version of miniGMG can vary from one
double-precision floating-point number to the whole box size
in dimension i.

The ease in both reasoning about and implementing an al-
gorithm with fine-grained communication comes at a cost
of performance. Its communication is dominated by 8-byte
messages, so its performance is more sensitive to message
rate and network latency than bandwidth. However, the
fine-grained communication paradigm enables faster appli-
cation development with less code, and performance can al-
ways be improved through incremental optimizations. Fu-
ture innovations in network hardware and runtime systems
may also help close the gap between fine-grained and bulk
communication.

5.4 Array Version
We implemented a third version of miniGMG to take ad-
vantage of the multidimensional array support in UPC++.
Each box is represented as a multidimensional array, with
a domain corresponding to the box’s position in the global
index space. In order to minimize the changes required, the
code creates array descriptors over the memory that is al-
ready allocated for each box and only uses these descriptors
for the ghost-zone exchange.

In the setup phase of the algorithm, for each box in the
ghost-zone exchange, views are created of the send and re-
ceive arrays restricted to the subset of the data involved in

the exchange. After a simple circular domain shift to handle
the boundaries, the code to create these views is as follows:

rectdomain <3> ghost_domain = dst.domain () *
src.domain (). shrink(ghost_zone_depth);

send_arrays[PT(level , id, dir , i, j, k)] =
src.constrict(ghost_domain);

recv_arrays[PT(level , id, dir , i, j, k)] =
dst.constrict(ghost_domain);

The first statement computes the ghost domain as the in-
tersection of the destination domain and the interior of the
source domain. The latter two statements construct views of
the two boxes restricted to the ghost domain, storing them
in six-dimensional arrays according to the level number in
the V-cycle, grid ID, neighbor direction, and box number in
each dimension. Then in the ghost-zone exchange itself, a
single call is required to copy each ghost zone:

ndarray <double , 3, global > recv =
recv_arrays[PT(level , id, dir , i, j, k)];

recv.async_copy(send_arrays[PT(level , id, dir ,
i, j, k)]);

From the user point of view, an entire ghost zone is trans-
ferred in each copy, as illustrated in Figure 3(c). No packing
or unpacking is required in the user code, and the resulting
code is even simpler than the fine-grained version.

6. EXPERIMENTAL SETUP
In this section, we describe the computing platforms we use
to evaluate the different versions of miniGMG, as well as the
configurations we use to run our experiments.

6.1 Systems
The first of our two experimental platforms is the Cray XC30
(Edison) system located at NERSC [11]. It is comprised
of 5,576 compute nodes, each of which contains two 12-
core Intel Ivy Bridge processors running at 2.4 GHz, and
is connected by Cray’s Aries (Dragonfly) network. Each
core includes private 32KB L1 and 256KB L2 caches, and
each processor includes a shared 30MB L3 cache. Nominal
STREAM [27] bandwidth to DRAM exceeds 40 GB/s per
processor. In all experiments, we disable HyperThreading
and use only eight cores per processor, which often maxi-
mizes performance on this machine. We compile all code
with the default (icc) backend compiler.

The second platform is the IBM Blue Gene/Q (Mira) lo-
cated at Argonne National Laboratory [24]. Mira is com-
posed of 49,152 compute nodes, each of which includes 16
multithreaded PowerPC A2 cores for user code and one ad-
ditional core for operating system services. Each core runs
at 1.6 GHz, supports four threads, and can simultaneously
issue instructions from two different threads. Unlike Ivy
Bridge, at least 32 threads per node are required to effi-
ciently utilize the A2 processor; we run with the full 64
threads supported by each node. The cache hierarchy is
very different from the Ivy Bridge processor in that each
core has only a private 16KB L1 cache, while all cores on a
node share a 32MB L2 cache. The STREAM bandwidth is
approximately 26GB/s, so we expect an XC30 socket run-
ning miniGMG to significantly outperform a Blue Gene/Q
socket in computation time. Nodes are interconnected us-
ing IBM’s high-performance proprietary network in a 5D

torus, and the observed performance for collectives such as
MPI_Barrier and MPI_Allreduce is substantially superior to
the XC30. We compile all code with the mpixlc_r compiler.

6.2 Parallelization and Scaling Experiments
In all cases, we run weak-scaling experiments for miniGMG
with a fixed problem size of 1283 cells per socket. In or-
der to differentiate the injection rates of MPI and GASNet,
we explore two parallelization configurations: one process
per socket and eight processes per socket, with an MPI or
UPC++ rank mapped to each process. When using only
a single process per socket, each process owns a 1283 box,
but with eight processes per socket, each process has one
643 box. This ensures that the work, off-node communica-
tion, and solve time are roughly the same, but the latter
is capable of higher injection rates. Within each process,
we use OpenMP to parallelize the operations on a box. On
the XC30, we run either one 8-thread process per socket or
eight single-threaded processes. Similarly, we run either one
64-thread process per socket or eight 8-threaded processes
per socket on the Blue Gene/Q. We use only one box per
process to ensure that “communication” time is not skewed
by intraprocess data copies. In miniGMG, the solver is run
four times — we consider the first three to be warmups and
only report performance for the last solve.

7. EXPERIMENTAL RESULTS
In this section, we quantify the performance differences of
the four miniGMG variants on our two evaluation machines
and compare observed performance with the ideal behavior
of the multigrid algorithm.

7.1 Communication Characterization
In miniGMG, data decomposition is extremely regimented
and preserved across all levels in the V-cycle. A simple 7-
point variable-coefficient operator (stencil) necessitates com-
munication with six neighbors, and at each level, a process
communicates with the same six neighbors. In the multigrid
algorithm, the dimension of each subdomain is reduced by
a factor of two at each level, so the total volume of inter-
process communication decreases by a factor of four at each
level. Although the volume of communication is determin-
istic, the choice of communication paradigm (e.g. bulk vs.
fine-grained) dictates the actual size of each message. Fig-
ure 5 presents a histogram of the frequency of message sizes
as seen by GASNet for each communication paradigm for
both one process per socket and eight processes per socket.
As expected, the MPI and bulk UPC++ implementations
send large message sizes ranging from 128 bytes to 128KB
in factors of four. At each level of the ten V-cycles, we ex-
pect the implementation to send nine messages to each of
six neighbors. However, the coarse-grid BiCGStab solver
can require significantly fewer messages depending on the
convergence rate, so fewer 128-byte messages are sent.

In comparison, the fine-grained implementation’s message
characteristics are more nuanced. As fine-grained communi-
cation of contiguous data is naturally aggregated, we expect
two different scenarios — communication of a pencil in a
i− j or i−k plane of a box or communication of an element
in a j − k plane of a box. The latter results in a flood of
8-byte (one double value) messages, while the former results

in message sizes equal to the subdomain dimension — 4, 8,
16, 32, 64, or 128 elements, with eight bytes per element.
The number of messages increases with box size, since a 42

plane requires four 32-byte (4-double) messages while a 1282

plane requires 128 1KB (128-double) messages.

Importantly, when moving from one 1283 process per socket
to eight 643 processes per socket, each process sends only a
quarter of the 8-byte messages. Given 98% of the communi-
cation consists of these small 8-byte messages, the overhead
of fine-grained messaging must be minimal in order to ensure
that performance with one process per socket is comparable
to eight processes per socket in the fine-grained case.

Message distribution in the array version generally matches
the MPI/bulk implementations until messages become very
small at which point the differences in protocol become ap-
parent. Specifically, the behavior in miniGMG of the array
implementation can be categorized into three modes:

1. If both source and destination are contiguous and have
the same layout, it performs a one-sided put to directly
transfer the data.

2. If both source and destination are non-contiguous but
the amount of data (plus array metadata) fits in a
medium active message (AM) [2], then a single medium
AM is initiated.

3. If both source and destination are non-contiguous and
the data plus metadata do not fit into a medium AM,
then the following procedure occurs:

(a) A short AM is sent to the destination to allocate
a temporary buffer.

(b) A one-sided put transfers the array data into the
remote buffer.

(c) A medium AM transfers the array metadata. The
temporary buffer is deallocated after unpacking is
completed in the AM handler.

Therefore, for messages larger than the AM medium thresh-
old (960 bytes on the Cray machine and 4096 bytes on the
IBM machine in our experiments), the array version gener-
ally behaves as the MPI and bulk versions, with some addi-
tional small messages for metadata (at 144 bytes in Figure
5). For messages smaller than the threshold, the array ver-
sion also has the same numbers as the bulk version, but the
message size is shifted to also include the metadata.

7.2 Performance Comparison
Figure 6 presents miniGMG time to solution as a function
of platform and parallelization at an overall concurrency of
512 sockets. We observe that the bulk UPC++ implemen-
tation consistently delivers performance comparable to the
MPI implementation, which comes as no surprise as it sim-
ply trades point-to-point synchronization for small-scale bar-
riers. On the other hand, the fine-grained implementation
significantly underperforms the MPI code, and the array ver-
sion is also generally slower. Though the time breakdown
shows that across all configurations, the time spent in lo-
cal computation remains the same, the time spent waiting
on synchronization (interprocess barriers, local async_wait,
processing incoming AM’s) and the time actually spent send-
ing data (puts) become an impediment to performance for
the fine-grained and array implementations.

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

1.E+07	

4	 16	 64	 256	 1024	 4096	 16384	 65536	

N
um

be
r	
of
	 M

es
sa
ge
s	
Se
nt
	

Message	 Sizes	 (Bytes)	

	 1	 Process/Socket,	 128^3	 cells/process	

Bulk/MPI	

Fine-‐Grained	

Array	

1.E+00	

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

1.E+06	

1.E+07	

4	 16	 64	 256	 1024	 4096	 16384	

N
um

be
r	
of
	 M

es
sa
ge
s	
Se
nt
	

Message	 Sizes	 (Bytes)	 	

8	 Processes/Socket,	 64^3	 cells/process	

Bulk/MPI	

Fine-‐Grained	

Array	

Figure 5: Histograms of the frequency of message sizes sent per process in miniGMG across the communica-
tion styles for eight sockets. For fine-grained communication, when eight processes per socket are used, each
process sends only one-quarter (three million fewer) of the 8-byte messages sent by each process when using
one process per socket.

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

MPI	 Bulk	 Fine	 Array	 MPI	 Bulk	 Fine	 Array	

1	 Process/	 Socket	 8	 Processes/	 Socket	

m
in
iG
M
G
	 S
ol
ve
	 T
im

e	
(s
ec
on

ds
)	

Cray	 XC30	 (512	 sockets)	

Collec?ves	
Sync/Wait	
Send	 Data	
Pack/Unpack	
Computa?on	

0.0	

2.0	

4.0	

6.0	

8.0	

10.0	

12.0	

14.0	

MPI	 Bulk	 Fine	 Array	 MPI	 Bulk	 Fine	 Array	

1	 Process/	 Socket	 8	 Processes/	 Socket	

m
in
iG
M
G
	 S
ol
ve
	 T
im

e	
(s
ec
on

ds
)	

IBM	 BG/Q	 (512	 sockets)	

Collec?ves	
Sync/Wait	
Send	 Data	
Pack/Unpack	
Computa?on	

Figure 6: miniGMG solver times for the Cray XC30 (left) and the IBM BGQ (right). For fine-grained
communication, the performance benefit of running with eight processes per socket and sending 4× fewer
8-byte messages per process outweighs the penalty of doubling the total number of messages sent per socket.

When using fine-grained communication, moving from one
process per socket to eight processes per socket doubles the
number of 8-byte messages sent per socket, but it reduces
the number of messages sent per process by a factor of four.
If the overhead for sending small messages is high, then the
benefit of reducing the number of messages per process is
high. Conversely, if the per-message overhead is low, then
doubling the total number of messages per socket can impede
performance. It is quite possible that the XC30 is in the for-
mer scenario while the BGQ is somewhere in between. The
array implementation also suffers from high overhead for
sending data when there is only a single process per socket,
but improves when there are eight processes. Ultimately,
as it can aggregate messages, it incurs lower overhead for
sending data than the fine-grained implementation. Nev-
ertheless, the array implementation is about 15-80% slower

than the MPI implementation on the Cray XC platform and
up to 40% slower on the IBM BG/Q.

The performance loss in the array version can be attributed
to two factors. The first is the additional messaging re-
quired when the data are not contiguous and the volume
is larger than the AM medium limit. Internal experiments
have demonstrated that performance can be improved by
20% by increasing the AM medium limit to 64KB. Unfor-
tunately, this limit cannot be changed by environment vari-
ables and requires a recompile of GASNet. The second fac-
tor is that the array version does not use multithreading to
parallelize packing and unpacking, in order to avoid the ad-
ditional overheads in the multithreaded version of GASNet.
As a result, moving from one process per socket to eight pro-
cesses improves performance considerably. Efficient thread-

ing of packing and unpacking in the array code is a topic of
current and future research.

Overall, on a per-socket basis, the XC30 delivers about twice
the performance as the BGQ despite having roughly 50%
more streaming bandwidth from DRAM. Ultimately, the Ivy
Bridge processor makes better use of the memory interface
while the BGQ system makes better use of its network.

7.3 Ideal Multigrid Behavior
For optimal multigrid efficiency, the time spent in each level
must decrease exponentially. Any inefficiencies or unex-
pectedly high overheads can impede performance. Figure 7
shows the time spent in computation and the ghost-zone ex-
change at each level of the V-cycle in miniGMG, using 4096
processes with eight processes per socket. The amount of
data communicated to each neighbor on each level is the
square of the grid size (e.g. 642 doubles on level 0). As
expected, there is an eightfold reduction in compute time at
each level on each platform. On the other hand, there are
substantial differences in overhead and effective bandwidth
across implementations and platforms that result in com-
munication dominating the run time for all levels coarser
than 323. The ideal factor of four reduction in commu-
nication only occurs on the first level or two for the MPI
implementation, after which time approaches an asymptotic
overhead limit. Interestingly, the one-sided bulk UPC++
implementation of the MPI algorithm consistently under-
performs the MPI implementation even for large messages
— likely an artifact of the barriers required for each ex-
change. Since the fine-grained implementation sends many
small messages, each of which incurs some overhead, the ef-
fective bandwidth is substantially degraded across all levels
as seen on the BGQ.

Ultimately, the MPI time per exchange approaches an asymp-
totic limit — the overhead or α in an α−β model. However,
despite the overhead of barriers in each exchange, the perfor-
mance of the UPC++ implementations continue to improve.
It is likely that if the coarse-grained global synchronizations
were replaced with fine-grained point-to-point synchroniza-
tion, the UPC++ implementations would deliver better per-
formance on the coarser levels. In essence, this would be
nothing more than a GASNet-based implementation of MPI.

Looking forward to exascale-class processors, we expect the
local compute time to be dramatically reduced. If such in-
creases in raw compute performance are not accompanied
by both increases in bandwidth and substantial reductions
in overheads, the resulting performance will fall far below
the potential for exascale machines.

7.4 Scalability
miniGMG is designed to proxy the multigrid solvers in weak-
scaled applications. Figure 8 presents weak-scaled miniGMG
time to solution as a function of scale and communication
implementation when moving from one socket to 4096 for
both the Cray XC30 (top) and the IBM BGQ (bottom).
Ideally, the code should provide a constant time to solution
in weak scaling.

With one process per socket, as shown in the left of Fig-
ure 8, the performance of the fine-grained and array im-

plementations are impeded by the overhead associated with
millions of 8-byte puts, global synchronizations (barriers),
and async_wait (which includes the processing of incoming
AM’s). However, as previously discussed, running multiple
processes per socket mitigates much of the effect. In the
resultant regime of eight processes per socket, as shown in
the right of Figure 8, performance for the XC30 is quite
similar across implementations up to 4096 processes (512
sockets). Beyond this point, the performance of the PGAS
implementations become highly sensitive to the performance
of the synchronization mechanism (barriers) and scalability
is diminished. Conversely, the extremely fast barriers on
the BGQ ensure the bulk and array implementations deliver
performance comparable to the MPI implementation at all
scales. Unfortunately, the fine-grained implementation con-
sistently performs worse on the BGQ.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the performance and productivity
tradeoffs of different communication paradigms supported
by PGAS languages in the context of miniGMG, a geo-
metric multigrid solver. As communication in miniGMG
is primarily point-to-point with a static set of neighbors
and predictable message sizes, it was no surprise that the
bulk implementation delivered the best performance of the
PGAS implementations and performance comparable to
MPI’s point-to-point implementation. Unfortunately, like
MPI, it required manual, labor-intensive, and error-prone
packing and unpacking of messages, but unlike MPI, it re-
quired the addition of barriers for synchronization.

Conversely, a fine-grained messaging style offered simple and
fast code development, but due to the flood of small mes-
sages, delivered by far the lowest performance when there
was a single process per socket. Although increasing the
number of processes per socket increases the total number
of messages sent per socket, it decreases the number of mes-
sages sent per process, providing better overall performance.

We improved on the performance of fine-grained communi-
cation using higher-level multidimensional array constructs
to automatically aggregate communication. The array-based
implementation delivered performance closer to the bulk im-
plementation while actually providing greater productivity
than the fine-grained version, demonstrating that high-level
programming interfaces can deliver on both the productivity
and performance promises of PGAS languages.

Our future work will focus on a few areas. First, we ob-
served that the fine-grained implementation’s performance
is significantly worse on the IBM machine than the Cray ma-
chine. We will investigate whether this is a GASNet issue or
something inherent in the architecture. Second, for appli-
cations like miniGMG with simple communication patterns,
global barriers provide more synchronization than is neces-
sary. Instead, we plan to add fine-grained synchronization
features such as synchronization variables, signaling puts,
and phasers. In addition, automating the aggregation of
communication is as important as efficient synchronization
mechanisms. We are working on modifying the communica-
tion software to detect communication patterns at runtime
and coalesce fine-grained messages dynamically. We are also
in the process of adding a new API for array communica-

0.000001	

0.000010	

0.000100	

0.001000	

0.010000	

0.100000	

1.000000	

0(64^3)	 1(32^3)	 2(16^3)	 3(8^3)	 4(4^3)	

Ti
m
e	
Pe

r	 O
pe

ra
+o

n	
(s
)	

Grid	 Level	 and	 Corresponding	 Box	 Sizes	

Cray	 XC30	

MPI	
Bulk	
Fine-‐Grained	
Array	
ComputaDon	

0.000001	

0.000010	

0.000100	

0.001000	

0.010000	

0.100000	

1.000000	

0(64^3)	 1(32^3)	 2(16^3)	 3(8^3)	 4(4^3)	

Ti
m
e	
Pe

r	 O
pe

ra
+o

n	
(s
)	

Grid	 Level	 and	 Corresponding	 Box	 Sizes	

IBM	 BG/Q	

MPI	
Bulk	
Fine-‐Grained	
Array	
ComputaDon	

Figure 7: Individual ghost-zone exchange time (only) for each level of the V-cycle for our four communication
implementations running on the Cray XC30 (left) and the IBM BGQ (right). In all cases, the results are for
4096 processes with eight processes per socket. For reference, we also include the time spent in computation
at each level to highlight the transition from compute-limited to communication-limited regimes.

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

1	 8	 64	 512	 4096	

Ru
nn

in
g	
Ti
m
es
	 (s
)	

No.	 of	 Processes	 (x	 8	 OpenMP)	

Fine-‐Grained	
Array	
Bulk	
MPI	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

8	 64	 512	 4096	 32768	

Ru
nn

in
g	
Ti
m
es
	 (s
)	

No.	 of	 Processes	 (x	 1	 OpenMP)	

Fine-‐Grained	
Array	
Bulk	
MPI	

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

1	 8	 64	 512	 4096	

Ru
nn

in
g	
Ti
m
es
	 (s
)	

No.	 of	 Processes	 (x	 64	 OpenMP)	

Fine-‐Grained	
Array	
Bulk	
MPI	

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

8	 64	 512	 4096	 32768	

Ru
nn

in
g	
Ti
m
es
	 (s
)	

No.	 of	 Processes	 (x	 8	 OpenMP)	

Fine-‐Grained	
Array	
Bulk	
MPI	

Figure 8: With sufficient concurrency on a socket, weak-scaled miniGMG time to solution for the Cray
XC30 (top) and the IBM BGQ (bottom) using the UPC++ implementations is comparable to the MPI
implementation. The figures on the left show performance for one process per socket while those on the right
show eight processes per socket.

tion that will enable the runtime to aggregate multiple array
copies, preallocate remote buffers, and minimize the amount
of metadata that needs to be transferred. Finally, we will

investigate applications that depart from miniGMG’s pre-
dictable, static, and limited-radix communication pattern.
Applications that dynamically determine which neighbors

to communicate with or how much data needs to be ex-
changed may better highlight the potential of PGAS and
the UPC++ technologies described in this paper.

Acknowledgments
Authors from Lawrence Berkeley National Laboratory were
supported by DOE’s Advanced Scientific Computing Re-
search under contract DE-AC02-05CH11231. This research
used resources of the Argonne Leadership Computing Facil-
ity at Argonne National Laboratory and the National En-
ergy Research Scientific Computing Facility (NERSC) at
Lawrence Berkeley National Laboratory, which are supported
by the Office of Science of the U.S. Department of En-
ergy under contracts DE-AC02-06CH11357 and DE-AC02-
05CH11231, respectively.

9. REFERENCES
[1] Aggregate Remote Memory Copy Interface.

http://hpc.pnl.gov/armci/.

[2] Bonachea, D. GASNet specification. Tech. Rep.
CSD-02-1207, University of California, Berkeley,
October 2002.

[3] Bonachea, D. Proposal for extending the UPC
memory copy library functions and supporting
extensions to GASNet. Tech. Rep. LBNL-56495,
Lawrence Berkeley National Lab, October 2004.

[4] BoxLib website. https://ccse.lbl.gov/BoxLib.

[5] The Berkeley UPC Compiler. http://upc.lbl.gov.

[6] Chamberlain, B., Callahan, D., and Zima, H.
Parallel programmability and the Chapel language.
International Journal of High Performance Computing
Applications 21, 3 (2007), 291–312.

[7] Chamberlain, B. L., Choi, S.-E., Deitz, S. J.,
and Snyder, L. The high-level parallel language ZPL
improves productivity and performance. In In
Proceedings of the IEEE International Workshop on
Productivity and Performance in High-End Computing
(2004).

[8] Charles, P., Grothoff, C., Saraswat, V.,
Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., and Sarkar, V. X10: An object-oriented
approach to non-uniform cluster computing. In
Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems,
languages, and applications (2005), OOPSLA ’05.

[9] Chombo website.
http://seesar.lbl.gov/ANAG/software.html.

[10] Datta, K., Bonachea, D., and Yelick, K.
Titanium performance and potential: an NPB
experimental study. In Proc. of Languages and
Compilers for Parallel Computing (2005).

[11] Edison Cray XC30.
http://www.nersc.gov/systems/edison-cray-xc30/.

[12] El-Ghazawi, T., and Cantonnet, F. UPC
performance and potential: A NPB experimentental
study. In Supercomputing2002 (SC2002) (November
2002).

[13] Global Arrays Toolkit.
http://www.emsl.pnl.gov/docs/global/.

[14] Garland, M., Kudlur, M., and Zheng, Y.
Designing a unified programming model for

heterogeneous machines. In Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis (2012),
SC ’12.

[15] GASNet home page.
http://gasnet.cs.berkeley.edu/.

[16] Gerstenberger, R., Besta, M., and Hoefler, T.
Enabling highly-scalable remote memory access
programming with mpi-3 one sided. In Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis (New
York, NY, USA, 2013), SC ’13, ACM, pp. 53:1–53:12.

[17] Ghosh, P., R.Hammond, J., Ghosh, S., and
Chapman, B. Performance analysis of the NWChem
TCE for different communication patterns. In The 4th
International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance
Computer Systems (PMBS13) (September 2013).

[18] GPI website.
http://www.gpi-site.com/gpi2/benchmarks/.

[19] Grünewald, D. BQCD with GPI: A case study. In
HPCS (2012), W. W. Smari and V. Zeljkovic, Eds.,
IEEE, pp. 388–394.

[20] Kamil, A., Zheng, Y., and Yelick, K. A local-view
array library for partitioned global address space C++
programs. In ACM SIGPLAN International Workshop
on Libraries, Languages and Compilers for Array
Programming (2014).

[21] Machado, R., Lojewski, C., Abreu, S., and
Pfreundt, F.-J. Unbalanced tree search on a
manycore system using the GPI programming model.
Computer Science - R&D 26, 3-4 (2011), 229–236.

[22] Mellor-Crummey, J., Adhianto, L., III, W.
N. S., and Jin, G. A new vision for Coarray Fortran.
In In Proceedings of the 3rd Conference on Partitioned
Global Address Space Programming Models, PGAS
’09, pages 5:1-5:9, New York, NY, USA (2009).

[23] miniGMG compact benchmark.
http://crd.lbl.gov/groups-depts/ftg/projects/

current-projects/xtune/miniGMG.

[24] Mira IBM Blue Gene/Q. http://www.alcf.anl.gov/
user-guides/mira-cetus-vesta.

[25] Shan, H., Austin, B., Wright, N. J., Strohmaier,
E., Shalf, J., and Yelick, K. Accelerating
applications at scale using one-sided communication.
In The 6th International Conference on Partitioned
Global Address Space Programming Models (October
2012).

[26] Simmendinger, C., Jägersküpper, J., Machado,
R., and Lojewski, C. A PGAS-based
implementation for the unstructured CFD solver
TAU. In Proceedings of the 5th Conference on
Partitioned Global Address Space Programming
Models, PGAS ’11 (2011).

[27] STREAM benchmark.
http://www.cs.virginia.edu/stream/ref.html.

[28] Tan, A. T., Falcou, J., Etiemble, D., and Kaiser,
H. Automatic Task-based Code Generation for High
Performance Domain Specific Embedded Language. In
7th International Symposium on High-Level Parallel
Programming and Applications (HLPP 2014) (2014).

[29] Wen, T., and Colella, P. Adaptive mesh

refinement in Titanium. In The 19th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS05) (April 2005).

[30] Williams, S., Kalamkar, D. D., Singh, A.,
Deshpande, A. M., Van Straalen, B.,
Smelyanskiy, M., Almgren, A., Dubey, P., Shalf,
J., and Oliker, L. Implementation and optimization
of miniGMG - a compact geometric multigrid
benchmark. Tech. Rep. LBNL 6676E, Lawrence
Berkeley National Laboratory, December 2012.

[31] Williams, S., Kalamkar, D. D., Singh, A.,
Deshpande, A. M., Van Straalen, B.,
Smelyanskiy, M., Almgren, A., Dubey, P.,
Shalf, J., and Oliker, L. Optimization of geometric
multigrid for emerging multi- and manycore
processors. In Proc. of the International Conference
on High Performance Computing, Networking, Storage
and Analysis (2012), SC ’12, IEEE Computer Society
Press.

[32] Yelick, K., Semenzato, L., Pike, G., Miyamoto,
C., Liblit, B., Krishnamurthy, A., Hilfinger, P.,
Graham, S., Gay, D., Colella, P., and Aiken, A.
Titanium: A high-performance Java dialect.
Concurrency: Practice and Experience 10, 11-13
(September-November 1998).

[33] Zhang, J., Behzad, B., and Snir, M. Optimizing
the Barnes-Hut algorithm in UPC. In SC ’11
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis (2011).

[34] Zheng, Y., Kamil, A., Driscoll, M. B., Shan, H.,
and Yelick, K. UPC++: A PGAS extension for
C++. In 28th IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (2014).

