
UCLA
Recent Work

Title

Review on “Integrated Structured Light Architectures” (Lemons 2021)

Permalink

https://escholarship.org/uc/item/38j3m5zx

Author

Diamond, Mark

Publication Date

2023-12-11

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38j3m5zx
https://escholarship.org
http://www.cdlib.org/


Review on “Integrated Structured Light Architectures” (Lemons 2021)  

By Mark Diamond 

Abstract: The proof-of-concept of a novel 7-beam composite laser array with individually controlled beams is described and its 
programmability of polarization states is examined in further detail with regards to the states of the Poincaré sphere. 
 
INTRODUCTION 
 The researchers propose a new laser architecture that allows for generation and real-time manipulation of the light intensity 
profiles at a destination in any desired pattern varying in space and time. They aim to create a composite laser structure that is 
programable in several degrees of freedom, including amplitude, linear momentum, spin angular momentum (SAM), and orbital 
angular momentum (OAM). By being able to manipulate all these parameters of light in a laser beam, further areas of research may be 
opened up for study that weren’t possible due to limitations in the controlling all the properties of the source laser.[1] 
 
Currently existing methods of achieving structured light often lack several key properties for fully custom light shaping, cutting out a 
large range of possible light structures that can be made, thus hindering many other possible applications requiring structured light 
beams.[1] 
 
Therefore, the researchers propose a general configurable laser architecture with all of these degrees of freedom able to be programed 
and adapted. The architecture is an array of laser beams, each with separate controls for amplitude, carrier envelope, relative phase, 
and polarization. When combined these individually-controlled beamlines can create a wide variety of light structures. 

 
Fig. 1. The various degrees of freedom (a) and architecture of the laser configuration (b). (Ref [1], Fig. 1). 

 
As shown in Fig. 1.b, an initial laser beam is split into N separate beamlines, which each undergo individual modulation states of 
phase         , polarization state (Pi), timing (Δti), and amplitude (A).[1] The beams are then recombined and are sent through a feedback 
loop that keeps the initial beamlines in sync. 
 
METHODS 
 One section of the paper talks about polarization topography, which is the idea of changing the polarization states of each 
individual laser beam to form a composite varying polarization across the full beam. Three experimental examples of this are shown 
below in Fig. 2. 

 
Fig. 2. Experimental polarization array states of 6-beam configuration, with Stokes projections (S1, S2, S3) below. (Ref [1], Fig. 4). 

 
The elliptical arrows across each diagram represent the spin angular momentum distribution across the beam, While the color 
gradients are the far-field projected beam intensities of each configuration. The researchers chose to keep all of the beamlines at the 
same phase and amplitude, and only varied the polarizations of each.[1] As can be seen, the polarization states at the center of each 
intensity region have greater magnitudes than at points with less intensity, caused by constructive and destructive interference between 
the beamlines. Likewise, the polarization states also experience this interference, as can be seen by larger or smaller elliptical arrows. 
 
The spin angular momentum directions were calculated with the experimentally measured Stokes parameters, shown in the three 
circles labeled S1, S2, and S3. Stokes parameters are physical intensity distributions that result from the light undergoing specific 



series’ of polarizing events for each parameter.[2] As such, the researchers were directly captured and measured the Stokes parameter 
projections through a polarizing optical system.[1] 
 
The Poincaré sphere is a graphical representation that helps to visualize polarization states by mapping properties of the polarization 
ellipses to the surface of a sphere in spherical coordinates.[3] The first property is the eccentricity, which is the measure of how “flat” 
the ellipse is. An eccentricity of 0 corresponds to a perfect circle, while an eccentricity of 1 corresponds to simply a flat line.[2] The 
second property is the angle, θ, that the major axis makes with the horizontal axis, referred to as “tilt” by the paper. Note that this half 
the value that Eq. (2) gives.  
 
The eccentricity (e) and tilt (θ	) of the ellipse is given by the paper as:[1] 

 
The Stokes parameters, S1, S2, and S3, are cartesian coordinates, and therefore represent transformations of the ellipse properties 
between the spherical and the cartesian space.[3] Finally, the paper mentions that the third Stokes parameter, S3, determines the 
chirality of the polarization (left-handed or right-handed). It is at this point that the paper ends its explanation on its method of 
calculating the polarization states of the beamlines. 
 
However, a much more visual and intuitive method of verifying the polarization states shown in the results would be to actually use 
the Poincaré sphere instead in order to derive the equations stated in the paper. Fig. 3 below shows the Poincaré sphere. 

         
Fig. 3. Poincaré sphere, showing spherical coordinate angles (a) and mapped polarization states (b). (Ref [3], Fig. 1, 2). 

 
The first thing to note is the relationship between the cartesian Stokes parameters, S1, S2, and S3, and the spherical coordinates 
represented by the azimuth angle, 2ψ, and ellipticity angle, 2χ, shown in Fig. 3.a. The azimuth angle is measured from the S1 axis in 
the direction shown, and the ellipticity angle is measured from the S1 - S2 plane. As the full-intensity polarization states are located on 
the surface of the sphere, this discussion will not consider the radius component, R, and will take the Poincaré sphere to be a 
normalized unit sphere (R=1). Points on the interior of the sphere indicate partial destructive interference and a corresponding 
decreased beam intensity and polarization state.[3] 
 
The relationship between the Stokes parameters and 2ψ and 2χ are given by the following equations:[3] 

 

In order to build the relationship between the Stokes parameters and the ellipse properties of eccentricity and tilt in Eq. (1) and Eq. (2), 
we square Eq. (3) and simplify using trigonometric identities, as shown below: 

                                    

Note that the second term in Eq. (6) is simply equal to Eq. (4) squared, or 𝑆!!. 

                  

a. b. 



Conveniently, Eq. (7) is equal to the                term in the eccentricity equation, Eq. (1). Therefore, we can substitute, like so: 

 

Therefore, it is found that the eccentricity is only a function of 2χ, the ellipticity angle, hence the name. Graphically, this means that 
any and all changes in the eccentricity of the polarization ellipse corresponds to a movement of polarization state along the lines of 
longitude of the Poincaré sphere, such as the green circle shown in Fig. 3.b. 
 
Plugging in 2χ	=	0°, it is found that e = 1, indicating that points along the equator of the Poincaré sphere (equivalently, the S1 - S2 
plane, with S3 = 0) have ellipses that are completely flat. In other words, they are linearly polarized. Conversely, when 2χ	=	90°, e = 
0, which indicates perfectly circular polarizations at the north and south poles of the sphere (where S1 = S2 = 0, and S3 = 1). These 
conversions can be verified by looking back at Eq. (3) through Eq. (5). 
 
Now, the azimuth angle, 2ψ, will be explored. The azimuth angle on the Poincaré sphere is related to the tilt of the polarization ellipse, 
θ, given by Eq. (2). Taking Eq. (2) and substituting Eq. (3) and Eq. (4), we have: 
 

 

As it turns out, one half of the azimuth angle, 2ψ/2, is actually the tilt angle itself, θ. Graphically, this means that as the polarization 
state moves across lines of latitude on the Poincaré sphere, such as along the blue circle in Fig. 3.b, the tilt of the polarization ellipse 
corresponds exactly to its azimuth angle divided by 2. For example, at 2ψ	=	0°, the tilt angle is 0°, meaning that the polarization state 
is either a horizontal line or an ellipse with a horizontally-aligned major axis. Likewise, if 2ψ	=	45°, the tilt is 22.5° and so the 
polarization state is a diagonal line or diagonally-aligned ellipse at 22.5° to the horizontal. 
 
Finally, the S3 Stokes parameter simply determines the chirality of the polarization ellipse. In other words, if S3 is positive, then 2χ is 
positive, and the polarization is “right handed,” moving in a clockwise direction looking into the beam propagating towards the 
viewer. This places the polarization state on the top hemisphere of the Poincaré sphere. If it is negative, the polarization is “left 
handed,” or counterclockwise, and its state is on the bottom hemisphere of the Poincaré sphere.[3] 
 
From this mathematical discussion, any point on the Poincaré sphere can be easily calculated, visually located, and interpreted given 
the Stokes parameters. 

 
RESULTS AND INTERPRETATION 
 The researchers concluded that they were able to generate a programable light beam to have any custom polarization profile 
they wanted, giving their proof-of-concept for a 7-beam laser arranged in a 6-beam hexagonal pattern surrounding a center beam. Each 
beamline can be programed to vary intensity, phase, and polarization states. As Fig. 2 shows, the Stokes parameters were measured, 
calculated, and plotted over the far-field intensity distribution, showing a customizable and predictable relationship between the 
beamline parameters and the total resulting beam properties. 
 
Using the Poincaré sphere method described in the previous section, we can verify these results quite easily and graphically by simply 
visually inspecting the Stokes parameter values at a chosen point, and plotting them as cartesian coordinates with the Poincaré sphere. 
Then, using Fig. 3, the shape of polarization ellipse is predicted. 
 
CONCLUSIONS 
 The results of this study show that an extremely large number of configurations can be created with even just a few 
independently-programed beamlines in a composite laser array. By varying the polarization states, an arbitrary phase-front of a laser 
can be created at-will and dynamically manipulated. Possible further research on this subject may include work into deterministically 
finding the correct configuration of the beamlines given the desired total output beam properties, and developing a program to control 
such a system. 
 
These findings have the potential to unlock many more fields of optical research that requires specific light structures not previously 
able to attain easily, or even at all. The researchers highlight certain fields, including optical quantum communications, image processing, 
and nonlinear topological photonics, in which it is hoped that this research can enable new and insightful breakthroughs. 
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