
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Anytime Recognition of Objects and Scenes

Permalink
https://escholarship.org/uc/item/38j8b41p

Author
Karayev, Sergey

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38j8b41p
https://escholarship.org
http://www.cdlib.org/

Anytime Recognition of Objects and Scenes

by

Sergey Kazbekovich Karayev

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Trevor Darrell, Chair
Professor Ken Goldberg
Professor Pieter Abbeel

Dr Mario Fritz

Fall 2014

Anytime Recognition of Objects and Scenes

Copyright 2014
by

Sergey Kazbekovich Karayev

1

Abstract

Anytime Recognition of Objects and Scenes

by

Sergey Kazbekovich Karayev

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Trevor Darrell, Chair

Humans are capable of perceiving a scene at a glance, and obtain deeper understanding
with additional time. Computer visual recognition should be similarly robust to varying
computational budgets — a property we call Anytime recognition. We present a general
method for learning dynamic policies to optimize Anytime performance in visual recognition.
We approach this problem from the perspective of Markov Decision Processes, and use
reinforcement learning techniques. Crucially, decisions are made at test time and depend
on observed data and intermediate results. Our method is applicable to a wide variety of
existing detectors and classifiers, as it learns from execution traces and requires no special
knowledge of their implementation.

We first formulate a dynamic, closed-loop policy that infers the contents of the image
in order to decide which single-class detector to deploy next. We explain effective decisions
for reward function definition and state-space featurization, and evaluate our method on
the PASCAL VOC dataset with a novel costliness measure, computed as the area under
an Average Precision (AP) vs. Time curve. In contrast to previous work, our method
significantly diverges from predominant greedy strategies and learns to take actions with
deferred values. If execution is stopped when only half the detectors have been run, our
method obtains 66% better mean AP than a random ordering, and 14% better performance
than an intelligent baseline.

The detection actions are costly relative to the inference performed in executing our
policy. Next, we apply our approach to a setting with less costly actions: feature selection
for linear classification. We explain strategies for dealing with unobserved feature values that
are necessary to effectively classify from any state in the sequential process. We show the
applicability of this system to a challenging synthetic problem and to benchmark problems
in scene and object recognition. On suitable datasets, we can additionally incorporate a
semantic back-off strategy that gives maximally specific predictions for a desired level of
accuracy. Our method delivers best results on the costliness measure, and provides a new
view on the time course of human visual perception.

2

Traditional visual recognition obtains significant advantages from the use of many features
in classification. Recently, however, a single feature learned with multi-layer convolutional
networks (CNNs) has outperformed all other approaches on the main recognition datasets.
We propose Anytime-motivated methods for speeding up CNN-based detection approaches
while maintaining their high accuracy: (1) a dynamic region selection method using novel
quick-to-compute features; and (2) the Cascade CNN, which adds a reject option between
expensive convolutional layers and allows the network to terminate some computation early.
On the PASCAL VOC dataset, we achieve an 8x speed-up while losing no more than 10%
of the top detection performance.

Lastly, we address the problem of image style recognition, which has received little re-
search attention despite the significant role of visual style in conveying meaning through
images. We present two novel datasets: 80K Flickr photographs annotated with curated
style labels, and 85K paintings annotated with style/genre labels. In preparation for Any-
time recognition, we perform a thorough evaluation of different image features for image
style prediction. We find that features learned in a multi-layer network perform best, even
when trained with object category labels. Our large-scale learning method also results in
the best published performance on an existing dataset of aesthetic ratings and photographic
style annotations. We use the learned classifiers to extend traditional tag-based image search
to consider stylistic constraints, and demonstrate cross-dataset understanding of style.

i

To my parents, Kazbek and Valeriya.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contributions . 3
1.3 Related Work . 4

1.3.1 Detection . 5
1.3.2 Classification . 6
1.3.3 Style Recognition . 11

2 Reinforcement Learning for Anytime Detection 13
2.1 Problem Definition . 13
2.2 Method . 15

2.2.1 MDP Formulation . 15
2.2.2 Learning the policy . 16

2.2.2.1 Greedy vs non-myopic . 17
2.2.3 Reward definition . 18
2.2.4 Features of the state . 19

2.2.4.1 Updating with observations 20
2.3 Evaluation . 20

3 Reinforcement Learning for Anytime Classification 25
3.1 Problem definition . 25
3.2 Method . 27

3.2.1 Reward definition . 27
3.2.2 Features of the state . 28
3.2.3 Learning the classifier . 29

3.2.3.1 Unobserved value imputation 30

iii

3.2.3.2 Learning more than one classifier 31
3.3 Evaluation . 32

3.3.1 Experiment: Synthetic . 33
3.3.2 Experiment: Scene recognition . 34
3.3.3 Experiment: ImageNet and maximizing specificity 34

4 Detection with the Cascade CNN 38
4.1 Method . 38

4.1.1 Quick-to-compute feature . 40
4.1.2 Cascade CNN . 41

4.2 Evaluation . 43

5 Recognizing Image Style 46
5.1 Method . 47

5.1.1 Data Sources . 48
5.1.1.1 Flickr Style . 48
5.1.1.2 Wikipaintings . 49

5.1.2 Learning algorithm . 49
5.1.3 Image Features . 50

5.2 Evaluation . 52
5.2.1 Experiment: Flickr Style . 52

5.2.1.1 Mechanical Turk Evaluation 52
5.2.2 Experiment: Wikipaintings . 54
5.2.3 Experiment: AVA Style . 54
5.2.4 Application: Style-Based Image Search 55

6 Conclusion 58
6.1 Future Work . 59

6.1.1 Detection and Classification . 59
6.1.2 CNN-based recognition . 60
6.1.3 Image Style . 61

A Unobserved Value Imputation: Detailed Results 63
A.1 Digits . 64
A.2 Scenes-15 . 64
A.3 Conclusion . 65

B Recognizing Image Style: Detailed Results 67

Bibliography 77

iv

List of Figures

1.1 Summary of the variety of features for object detection and classification. 6
1.2 Sequential feature selection: Cascade models . 7
1.3 Sequential feature selection: Markov Decision DAG 8
1.4 Sequential feature selection: Tree-based . 9
1.5 Sequential feature selection: General DAG . 10

2.1 A sample trace of our Anytime sequential process detection method. 14
2.2 Explanation of the Q-iteration method. 17
2.3 Summary of our closed-loop action selection method for Anytime detection. . . . 18
2.4 The PASCAL VOC is an object detection dataset presenting a challenging variety

of image and object appearance. 20
2.6 Visualizing action trajectories of different object detection policies. 23
2.7 Learned policy weights for the detection approach. 24

3.1 Summary of our dynamic feature selection approach to the classification problem. 26
3.2 Definition of the reward function for the classification approach. 28
3.3 Visualizing the discretization of the state space by the possible feature subsets. . 31
3.4 Setup of the synthetic example. 33
3.5 Evaluation of the classification approach on the synthetic example. 35
3.6 Results of the classification approach on the Scenes-15 dataset. 36
3.7 Results of the classification approach on the ILSVRC-65 dataset. 37

4.1 Summary of the R-CNN architecture. 39
4.2 Summary of our method for dynamic region selection and cascaded CNN processing. 39
4.3 Distribution of number of regions per image. 40
4.4 Explanation of the gradient back-propagation quick feature. 41
4.5 The Cascade CNN has a Reject option after computationally expensive layers,

implemented as a binary prediction for reject/keep (background/foreground for
our detection task). The goal of the Reject layer is to maintain high recall while
culling as much of the batch as possible, so that we can avoid doing as much
convolution in the next layer. 42

4.6 Results of the Cascade CNN and other Anytime methods on the PASCAL VOC
2007 dataset. 45

v

5.1 Typical images in different style categories of our datasets. 47
5.2 Correlation of PASCAL content classifier predictions with ground truth Flickr

Style labels. 53
5.3 Cross-dataset understanding of style demonstrated by applying Wikipaintings-

learned classifiers to phoitographs, and Flickr-learned classifiers to paintings. . . 55
5.4 Filtering Pinterest image search results by Flickr Style classifier scores. 56
5.5 Top five most confident predictions on the Flickr Style test set: styles 1-8. . . . 57

6.1 Architecture of the proposed Anytime CNN. 61

A.1 All missing value imputation results on the Digits dataset. 65
A.2 All missing value imputation results on the Scenes-15 dataset. 66

B.1 Top five most confident predictions on the Flickr Style test set: styles 9-14. . . 68
B.2 Top five most confident predictions on the Flickr Style test set: styles 15-20. . . 69
B.3 Confusion matrix of our best classifier on the Flickr dataset. 73
B.4 Confusion matrix of our best classifier on the Wikipaintings dataset. 76

vi

List of Tables

2.1 The areas under the AP vs. Time curve for different experimental conditions. . 22

4.1 Full table of AP vs. Time results on PASCAL VOC 2007. Best performance for
each time point is in bold. 43

5.1 Mean APs on AVA Style, Flickr Style, and Wikipaintings for single-channel fea-
tures and their second-stage combinations. 51

B.1 All per-class APs on all evaluated features on the AVA Style dataset. 67
B.2 All per-class APs on all evaluated features on the Flickr dataset. 70
B.3 Comparison of Flickr Style per-class accuracies for our method and Mech Turkers. 71
B.4 Signficant deviations between human and machine accuracies on Flickr Style. . . 72
B.5 All per-class APs on all evaluated features on the Wikipaintings dataset. 74
B.6 Per-class accuracies on the Wikipaintings dataset, using the MC-bit feature. . . 75

vii

Acknowledgments

I am fortunate to have worked with consistently amazing people during my PhD. My advisor
Trevor Darrell has always provided wise and encouraging guidance, and supported every
direction that excited me. My close collaborator and mentor Mario Fritz is responsible for
too many of “my” ideas to count. Regular meetings with Pieter Abbeel helped develop the
reinforcement learning formulation of vision problems presented in this thesis. Ken Goldberg,
Jitendra Malik, and Bruno Olshausen provided crucial inter-disciplinary North Stars to keep
in view. Aaron Hertzmann, Holger Winnemoeller, and Aseem Agarwala introduced me to the
novel recognition problem of image style, and Alyosha Efros has been tirelessly encouraging
of this line of work.

The bulk of graduate school life and learning is centered on one’s peers, and at Berkeley
I was lucky to be among the truly best. Yangqing Jia, Jon Barron, Adam Roberts, Trevor
Owens, Hyun Oh Song, Ning Zhang, Judy Hoffman, Allie Janoch, Jon Long, Jeff Donahue,
Evan Shelhamer, Georgia Gkioxari, Saurabh Gupta, Bharath Hariharan, Subhransu Maji,
Sanja Fidler, Carl Henrik Ek, Brian Kulis, Kate Saenko, Mario Christoudias, Oriol Vinyals,
Ross Girshick, Sergio Guadarrama, and so many others.

Last but not least, I am deeply indebted to the love and support of my parents. This
thesis is dedicated to them.

1

Chapter 1

Introduction

1.1 Motivation

P
ercep

tion

It is well known that human perception is both Anytime, meaning that a scene can
be described after even a short presentation, and progressive, meaning that the quality of
description increases with more time. The progressive time course of visual perception has
been confirmed by multiple studies (Fei-Fei et al. 2007; Vanrullen and Thorpe 2001), with
some studies providing evidence that enhancement occurs in an ontologically meaningful
way. For example, people tend to recognize something as an animal before recognizing it as
a dog (Macé et al. 2009). The underlying mechanisms of this behavior are not well explored,
with only a few attempts made to explain the temporal dynamics — for instance, a promising
work by Hegde 2008 has employed the framework of sequential decision processes.

C
om

p
u

ter
ap

p
lication

s

Meanwhile, automated visual recognition has achieved levels of performance that allow
useful real-world implementation. We focus on two problem formulations: image classifica-
tion, in which some property of the image – such as scene type, visual style, or even object
presence – is predicted, and object detection, in which the location and category (or iden-
tity) of all objects in a scene is predicted. Solutions to the two problems are often linked,
as classification can be a “subroutine” in a detection method. State-of-the-art methods for
classification and detection tend to be computationally expensive, insensitive to Anytime
demands, and not progressively enhanced.

CHAPTER 1. INTRODUCTION 2

A
p

p
lication

As real-world deployment of recognition methods grows, managing resource cost (power
or compute time) becomes increasingly important. For tasks such as personal robotics, it is
crucial to be able to deploy varying levels of processing to different stimuli, depending on
computational demands on the robot. A hypothetical system for vision-based advertising, in
which paying customers engage with the system to have their products detected in images on
the internet, presents another example. The system has different values (in terms of cost per
click) and accuracies for different classes of objects, and the backlog of unprocessed images
fluctuates based on demand and available server time. A recognition strategy to maximize
profit in such an environment should exploit all signals available to it, and the quality of
detections should be Anytime, depending on the length of the queue (for example, lowering
recall with increased queue pressure).

V
isu

al
F

eatu
res

&
C

lassifi
cation

For most state-of-the-art classification methods, a range of features are extracted from
an image instance and used to train a classifier. Since the feature vectors are usually high-
dimensional, linear classification methods are used most often. Features are extracted at
different costs, and contribute differently to decreasing classification error. Although it
can generally be said that “the more features, the better,” high accuracy can of course be
achieved with only a small subset of features for some instances. Additionally, different
instances benefit from different subsets of features. For example, simple binary features
are sufficient to quickly detect faces (Viola and Jones 2004) but not more varied visual
objects, while the features most useful for separating landscapes from indoor scenes (Xiao
et al. 2010) are different from those most useful for recognizing fine distinctions between bird
species (Farrell et al. 2011). Figure 1.1 presents several common visual features.

D
etection

Detection methods tend to employ the same visual features and classifiers but apply
them to many image sub-regions. Approaches can broadly be grouped into (A) per-class,
all-region, (B) all-class, all-region, and (C) all-class, proposed-region methods. State-of-
the-art all-class, proposed-region methods such as Girshick et al. 2014 and per-class, all-
region methods such as Felzenszwalb et al. 2010 are considerably slow (on the order of
seconds), performing an expensive computation on (respectively) a thousand to a million
image windows. To maximize early performance gains of these methods, scene and inter-
object contextual cues can be exploited in two ways. First, regions can be processed in an
intelligent order, with most likely locations selected first. Second, if detectors are applied
per class, then they can be sequenced so as to maximize the chance of finding objects
actually present in the image. And even the most recent all-class, all-region, Convolutional
Neural Net (CNN)-based detection methods such as He et al. 2014, which take advantage
of high-performance convolutional primitives for region processing and detect for all classes
simultaneously, can be sped up using our idea of cascaded classification.

CHAPTER 1. INTRODUCTION 3

1.2 Our Contributions

C
ostlin

ess

Computing all features, running all detectors, or processing all regions for all images is
infeasible in a deployment sensitive to Anytime needs, as each feature brings a significant
computational burden. Yet the conventional approach to evaluating visual recognition does
not consider efficiency, and evaluates performance independently across classes. We address
the problem of selecting and combining a subset of features under an Anytime cost budget
(specified in terms of wall time or total power expended or another metric) and propose a
new costliness measure of performance vs. cost.

L
earn

in
g

a
P

olicy

To exploit the fact that different instances benefit from different subsets of features, our
approach to feature selection is a sequential policy. To learn the policy parameters, we
formulate the problem as a Markov Decision Process (MDP) and use reinforcement learning
methods. The method does not make many assumptions about the underlying actions,
which can be existing object detectors and feature-specific classifiers. With different settings
of parameters, we can learn policies ranging from Static, Myopic—greedy selection not
relying on any observed feature values, to Dynamic, Non-myopic—relying on observed
values and considering future actions. The foundational machinery is laid out in Section 2.2.

P
er-class

D
etection

For per-class detection, the actions are time-consuming detectors applied to the whole
image, as well as a quick scene classifier. We run scene context and object class detectors
over the whole image sequentially, using the results of detection obtained so far to select the
next actions. Since the actions are time-consuming, we use a powerful inference mechanism
to select the best next action. In Section 2.3, we evaluate on the PASCAL VOC dataset and
obtain better performance than all baselines when there is less time available than is needed
to exhaustively run all detectors. This work was originally presented in Karayev et al. 2012
and all work is open source1.

Im
age

C
lassifi

cation

Classification actions are much faster than detectors, and the action-selection method
accordingly needs to be fast. Because different features can be selected for different instances,
and because our system may be called upon to give an answer at any point during its
execution, the feature combination method needs to be robust to a large number of different
observed-feature subsets. In Chapter 3, we consider several value-imputation methods and
present a method for learning several classifiers for different clusters of observed-feature
subsets. We first demonstrate on synthetic data that our algorithm learns to pick features
most useful for the specific test instance. We demonstrate the advantage of non-myopic over
greedy, and of dynamic over static on this and the Scene-15 visual classification dataset.
Then we show results on a subset of the hierarchical ImageNet dataset, where we additionally
learn to provide the most specific answers for any desired cost budget and accuracy level.
This work was originally presented in Karayev, Fritz, and Darrell 2014 and all work is open
source2.

1Available at https://github.com/sergeyk/timely_object_recognition
2Available at https://github.com/sergeyk/anytime_recognition

https://github.com/sergeyk/timely_object_recognition
https://github.com/sergeyk/anytime_recognition

CHAPTER 1. INTRODUCTION 4

C
ascad

e
C

N
N

We additionally investigate a novel approach for speeding up a state-of-the-art CNN-
based detection method, and propose a general technique for accelerating CNNs applied
to class imbalanced data. We employ the classic idea of the cascade by inserting a reject
option between expensive convolutional layers. When a CNN processes batches of images,
which is standard for many applications, the reject layers allows “thinning” of the batch as
it progresses through the network, thus saving processing time. This method is applicable to
both all-class, proposed-region methods such as Girshick et al. 2014 and all-class, all-region
methods such as He et al. 2014. We demonstrate results — along with a variety of strong
baselines – on the former method, and show that the Cascade CNN method obtains a nearly
10x speed-up with only marginal drop in accuracy. All work is reported in Chapter 4.

R
ecogn

izin
g

S
tyle

Lastly, in Chapter 5 we present two novel datasets and first results for an underexplored
research problem in computer vision – recognizing visual style. In preparation for an Anytime
approach, we evaluate several different features (including CNNs) for the task, and explore
content-style correlations in our datasets. Our large-scale learning gives state-of-the-art
results on an existing dataset of image quality and photographic style, and provides a strong
baseline on our contributed datasets of 80K photos and 85K paintings labeled with their
style and genre. In a demonstration of cross-dataset understanding of style, we show how
results of a search by content can be filtered by style. This work was originally presented in
Karayev et al. 2014, and all code is open source3.

F
u

tu
re

D
irection

s

This thesis provides an effective foundation for Anytime visual recognition, and points the
way to interesting further developments. Our MDP-based formulation of learning a feature-
selection policy is empirically effective, but heuristic in nature. The recently developed
framework of adaptive submodularity (Golovin and Krause 2011) could provide theoretical
near-optimality results for some policies, but developing an appropriate objective for our task
is not straightforward. We showed our Cascade CNN model to be effective for a region-based
detection task – but the model was not trained end-to-end with the threshold layers. An
even more interesting future development would add an Anytime loss layer that combines
classification output from multiple levels of the network in a cost-sensitive way. We expand
on these ideas in Chapter 6.

1.3 Related Work

Our work spans across several sub-fields of computer vision. Here we cover the necessary
background, ordered by applicability to each chapter of this thesis.

3Available at https://github.com/sergeyk/vislab

https://github.com/sergeyk/vislab

CHAPTER 1. INTRODUCTION 5

1.3.1 Detection

F
eatu

res

Classically, the best recent performance has come from detectors that use gradient-based
features to represent objects as either a collection of local patches or as object-sized windows
(Dalal and Triggs 2005; Lowe 2004). Classifiers are then used to distinguish between featur-
izations of a given class and all other possible contents of an image window. For state-of-the-
art performance, the object-sized window models are augmented with parts (Felzenszwalb
et al. 2010), and the bag-of-visual-words models employ non-linear classifiers (Vedaldi et al.
2009). In Chapter 2, we employ the widely used Deformable Part Model detector (Felzen-
szwalb et al. 2010).

C
N

N
s

Most recently, best performance is obtained not with hand-designed features but with
those learned on large-scale labeled datasets such as ImageNet (Deng et al. 2009) by a deep
convolutional neural network (CNN) such as AlexNet (Krizhevsky, Sutskever, and Hinton
2012b). This has prompted attempts to apply these computationally expensive methods to
detection (Erhan et al. 2014; Sermanet and Eigen 2014). The R-CNN method of Girshick
et al. 2014 in particular is powerful but slow, requiring costly processing of many windows.
Recent work from He et al. 2014 (SPP-net) sustained the high performance of R-CNN while
decreasing the running time by an order of magnitude. Our work in Chapter 4 is evaluated
in the R-CNN framework, but applies to the SPP-net method also.

W
in

d
ow

s

Window proposal is most often done exhaustively over the image space as a “sliding
window”, or inexhaustively with a bottom-up segmentation approach (Uijlings et al. 2013).
Some approaches use “jump windows” (hypotheses voted on by local features) (Vedaldi
et al. 2009; Vijayanarasimhan and Grauman 2011), or a bounded search over the space
of all possible windows (Lampert, Blaschko, and Hofmann 2008). In all state-of-the-art
systems, the window proposal step is conceptually separate from the feature extraction and
classification.

U
sin

g
feed

b
ack

None of the best-performing systems treat window proposal and evaluation as a closed-
loop system, with feedback from evaluation to proposal. Some work has been done on
this topic, mostly inspired by ideas from biological vision and attention research (Butko
and Movellan 2009; Vogel and Freitas 2008). One application to the problem of visual
detection picks features with maximum value of information in a Hough-voting framework
(Vijayanarasimhan and Kapoor 2010). Another uses nearest-neighbor lookups of image
windows to sum offset vectors onto objects (Alexe, Heess, and Ferrari 2012).

M
u

lti-class
con

text

Most detection methods train individual models for each class. Work on inherently multi-
class detection focuses largely on making detection time sublinear in the number of classes
through sharing features (Fan 2005; Torralba, Murphy, and Freeman 2007). Inter-object
context has also been shown to improve detection (Torralba, Murphy, and Freeman 2004).
A post-processing extension to detection systems uses structured prediction to incorporate
multi-class context as a principled replacement for non-maximum suppression (Desai, Ra-
manan, and Fowlkes 2011). In a standard evaluation setup, inter-object context plays a
role only in post-filtering, once all detectors have been run. In contrast, our work leverages
inter-object context in the action-planning loop.

CHAPTER 1. INTRODUCTION 6

S
cen

e
con

text

The most common source of context for detection is the scene or other non-detector cues;
the most common scene-level feature is the GIST (Oliva and Torralba 2001) of the image.
We use this source of scene context in our evaluation. A critical summary of the main
approaches to using context for object and scene recognition is given in (Galleguillos and
Belongie 2010). For the commonly used PASCAL VOC dataset (Everingham et al. 2010),
GIST and other sources of context are quantitatively explored in (Divvala et al. 2009).

1.3.2 Classification

✓

Recognition actions have different costs and benefits

Cl
as

si
fic

at
io

n
De

te
ct

io
n

Figure 1.1: Summary of the variety of features for object detection and classification. In
reading order for classification: SIFT (Lowe 2004), HOG (Dalal and Triggs 2005), CNN
(Krizhevsky, Sutskever, and Hinton 2012b), Self-Similarity (Shechtman and Irani 2007),
Haar basis functions (Viola and Jones 2004), basis functions learned with sparse coding
(Olshausen and Others 1996). In reading order for detection: person, bicycle, and car
templates for the Deformable Part Model (Felzenszwalb et al. 2010). (The features depicted
were not computed on the images depicted.)

CHAPTER 1. INTRODUCTION 7

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

�1 �1 �1

R or RK

Figure 1.2: Sequential feature selection: Cascade. In addition to the feature computation
actions, the classifier is augmented with a rejection action. The cascade is Anytime in a
limited way, as only the rejection answer can be given before all features are evaluated. The
fixed order of the cascade is not robust to the fact that different images benefit from different
features.

V
isu

al
featu

res

The field of computer vision has built up a small arsenal of features extracted from whole
images or fixed-size patches. These features differ in computational cost and target different
sources of data – for instance, the Haar wavelets feature of Viola and Jones 2004 was designed
for sequential appication in face recognition datasets, while the HOG feature of Dalal and
Triggs 2005 was designed for template matching in pedestrian-detection datasets. Figure 1.1
presents a sampling of the most used ones. Recently, middle layers of CNN’s trained on large
image categorization datasets have provided a generally applicable feature that obtains top
performance on a multitude of datasets (Donahue et al. 2013a).

F
eatu

re
selection

The simplest way to limit the number of features used at test time is to L1-regularize.
This method does not explicitly consider feature cost, nor is it able to evaluate features one
by one, or to give an answer before all features are computed. In Figures 1.2, 1.3, 1.4, 1.5
and in the paragraphs below we explain more advanced methods, all of them treating feature
selection as a sequential process. A note about the figures: the rounded rectangles represent
feature sets, with shaded features φ representing selected features.

CHAPTER 1. INTRODUCTION 8

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

RK

RK RK RK

�1 �2 �3 �4

�1 �2 �3 �4

�1 �2 �3 �4

RK

RK

�1 �2 �3 �4 RKRK

Figure 1.3: The MD-DAG method (Benbouzid, Busa-Fekete, and Kegl 2012) augments
the traditional cascade with an additional Skip action, which allows learning a more robust
policy, but does not fully cover the space of possible policies (the initial ordering sets the
limit).

C
ascad

ed
m

eth
o

d
s

A well-known method to evaluate features sequentially is the cascaded boosted classifier
of Viola and Jones 2004 (updated by Bourdev and Brandt 2005 with a soft threshold), which
is able to quit evaluating an instance before all features are computed—but feature cost was
not considered. The cost-sensitive cascade of Chen et al. 2012 optimizes stage order and
thresholds to jointly minimize classification error and feature computation cost. Figure 1.2
represents this model. Xu, Weinberger, and Chapelle 2012 and Grubb and Bagnell 2012
separately develop a variant of gradient boosting for training cost-sensitive classifiers; the
latter prove near-optimality of their greedy algorithm with submodularity results. Their
methods are tightly coupled to the stage-wise regression algorithm. Cascades are not dy-
namic policies: they cannot change the order of execution based on observations obtained
during execution, which is our goal.

CHAPTER 1. INTRODUCTION 9

�1

�2

�3

�4

�1

�2

�3

�4

�1

�2

�3

�4

�1 �2 �3 �4

�1 �2 �3 �4 R

R

�1 �2 �3 �4

�1 �2 �3 �4 R

R

Figure 1.4: Tree-based methods find a tree-structured policy for computing features. Clas-
sification answers are given only at the leaf nodes. The tree structure can be found by direct
optimization of some problem, such as cost-senstive classification, as in Xu, Weinberger, and
Chapelle 2012, or induced by a tangential problem, as in Deng et al. 2011, who use the
confusion matrix to set the structure of their Label Tree.

D
yn

am
ic

m
eth

o
d

s

In contrast, Label trees guide an instance through a tree of classifiers; their structure
is determined by the confusion matrix or learned jointly with weights (Deng et al. 2011).
Xu et al. 2013 learn a cost-sensitive binary tree of weak learners using an approach similar
to the cyclic optimization of (Chen et al. 2012). The state space of such tree methods is
visualized in Figure 1.4. A fully general DAG – instead of a tree – over the state space is
proposed by Gao and Koller 2011 under the name of active classification, and visualized in
Figure 1.5. Their method myopically selects the next feature based on expected information
gain given the values of the already selected features. Since it is based on locally weighted
regression, active classification is highly costly at test time. Ji and Carin 2007 also formulate
cost-sensitive feature selection generatively, as an HMM conditioned on actions, but select
actions myopically, again at signficant test time cost.

CHAPTER 1. INTRODUCTION 10

�1

�2

�3

�4

RK

�1 �2 �3 �4

�1 �2 �3

�1 �2 �3

�4

�4 �1 �2 �3 �4

�1 �2 �3 �4

�1

�2

�3

�4

�1 �2 �3 �4

RK RK

RK

Figure 1.5: In this work and in methods such as Gao and Koller 2011, the policy is a general
DAG over selected-feature subsets, which allows actions to be taken in an entirely flexible
order. In our work, we are also able to give the classification answer from all states, making
our work truly Anytime.

R
ein

forcem
en

t
L

earn
in

g

Just like active classification, our method and the three methods below can learn any
possible policy. Dulac-Arnold et al. 2012 present an MDP-based solution to “datum-wise
classification”, with an action space comprised of all features and labels, recently extended
to region-based processing (Dulac-arnold, Thome, and Cord 2014). This independently-
conducted work is closely related to ours, with differences in defining the action space and
learning mechanism. He, Hal III, and Eisner 2012 formulate an MDP with features and a
single classification step as actions, but solve it via imitation learning of a greedy policy.
Trapeznikov, Saligrama, and Castanon 2013 provides another variation on this formulation.
Another notable work is the method of Benbouzid, Busa-Fekete, and Kegl 2012, graphically
presented in Figure 1.3, which formulates an MDP that simply extends the traditional se-
quential boosted classifier with an additional skip action, significantly limiting the space of
learnable policies. This “MD-DAG” method is able to learn only a subset of all possible
policies.

M
isc

Less directly related – but exciting for its novelty – is the work of (Weiss, Sapp, and Taskar
2013), who apply simple introspection to structured models for a significant speedup of
human pose estimation. Another exciting direction is theoretical analysis based on adaptive
submodularity (Golovin and Krause 2011). In vision, there is an application of such results to
detection with humans in the loop (Chen et al. 2014). In robotics, an adaptively submodular
objective was successfully formulated for the problem of grasping (Javdani et al. 2012).

CHAPTER 1. INTRODUCTION 11

F
eatu

re
C

om
b

in
ation

For SVM-based classifiers, Multiple Kernel Learning (MKL) provides a way to train
classifiers using an automatically weighted combination of kernels (Lanckriet et al. 2004). It
has been shown that MKL is outperformed by boosting single-kernel classifiers (Gehler and
Nowozin 2009). Of course, if all classifiers are linear, then combining outputs of classifiers
trained on different feature channel with another classifier is equivalent to training one
classifier on all features at once.

V
alu

e
Im

p
u

tation

The imputation problem is faced in the collaborative filtering literature, working on prob-
lems such as the Netflix Prize (Koren, Bell, and Volinsky 2009). Matrix factorization meth-
ods, commonly based on the Singular Value Decomposition (SVD), are often employed. Our
problem is significantly different in that at training time, all values are fully observed — and
the final task is classification, not simple imputation. Imputation approaches have also been
explored in genomics work, where the real-world data is often missing a large portion of the
observations (Hastie et al. 1999).

1.3.3 Style Recognition

Most research in computer vision addresses recognition and reconstruction, independent
of image style. A few previous works have focused directly on image composition, particularly
on the high-level attributes of beauty, interestingness, and memorability.

A
esth

etic
R

atin
g

Most commonly, several previous authors have described methods to predict aesthetic
quality of photographs. Datta et al. (Datta et al. 2006), designed visual features to represent
concepts such as colorfulness, saturation, rule-of-thirds, and depth-of-field, and evaluated
aesthetic rating predictions on photographs; The same approach was further applied to a
small set of Impressionist paintings (Li and Chen 2009). The feature space was expanded
with more high-level descriptive features such as “presence of animals” and “opposing colors”
by Dhar et al., who also attempted to predict Flickr’s proprietary “interestingness” measure,
which is determined by social activity on the website (Dhar, Berg, and Brook 2011). Gygli
et al. (Gygli, Nater, and Gool 2013) gathered and predicted human evaluation of image
interestingness, building on work by Isola et al. (Isola et al. 2011), who used various high-
level features to predict human judgements of image memorability. In a similar task, Borth
et al. (Borth et al. 2013) performed sentiment analysis on images using object classifiers
trained on adjective-noun pairs.

A
V

A
an

d
A

ttrib
u

tes

Murray et al. (Murray, Marchesotti, and Perronnin 2012) introduced the Aesthetic Visual
Analysis (AVA) dataset, annotated with ratings by users of DPChallenge, a photographic
skill competition website. The AVA dataset contains some photographic style labels (e.g.,
“Duotones,” “HDR”), derived from the titles and descriptions of the photographic challenges
to which photos were submitted. Using images from this dataset, Marchesotti and Peron-
nin (Marchesotti and Perronnin 2013) gathered bi-grams from user comments on the website,
and used a simple sparse feature selection method to find ones predictive of aesthetic rating.
The attributes they found to be informative (e.g., “lovely photo,” “nice detail”) are not
specific to image style.

CHAPTER 1. INTRODUCTION 12

V
isu

al
A

rt

Features based on image statistics have been successfully employed to detect artistic
forgeries (Lyu, Rockmore, and Farid 2004). Such work focuses on extremely fine-scale dis-
crimination between two very similar classes, and has not been applied to broader style
classification. Several previous authors have developed systems to classify classic painting
styles, including (Keren 2002; Shamir et al. 2010). These works consider only a handful of
styles (less than ten apiece), with styles that are visually very distinct, e.g., Pollock vs. Daĺı.
These datasets comprise less than 60 images per style, for both testing and training. Mensink
and Gemert 2014 provide a larger dataset of artworks, but do not consider style classification
as its own problem.

S
tyle

vs.
C

on
ten

t

Separate from the application domain of vision, some machine learning research has
attempted to separate style from content (Tenenbaum and Freeman 2000). In particular,
Neural Network researchers have provided interesting recent results: Taylor and Hinton 2009
use a Restricted Boltzmann Machine to separately consider style and content for the problem
of human gait recognition, and Graves 2013 uses a Long Short-Term Memory recurrent neural
network to generate realistic handwriting in a multitude of styles.

13

Chapter 2

Reinforcement Learning for Anytime
Detection

2.1 Problem Definition

D
efi

n
ition

s

We deal with a dataset of images D, where each image x contains zero or more objects.
Each object is labeled with exactly one category label k ∈ {1, . . . , K}. The multi-class,
multi-label classification problem asks whether x contains at least one object of class k.
We write the ground truth for an image as C = {C1, . . . , CK}, where Ck ∈ {0, 1} is set to
1 if an object of class k is present. The detection problem is to output a list of bounding
boxes (sub-images defined by four coordinates), each with a real-valued confidence that it
encloses a single instance of an object of class k. The answer for a single class k is given
by an algorithm detect(x, k), which outputs a list of sub-image bounding boxes B and their
associated confidences.

E
valu

ation
m

etric

Performance is evaluated by plotting precision vs. recall across dataset D (by progres-
sively lowering the confidence threshold for a positive detection). The area under the curve
yields the Average Precision (AP) metric, which has become the standard evaluation for
recognition performance on challenging datasets in vision (Everingham et al. 2010). A com-
mon measure of a correct detection is the PASCAL overlap: two bounding boxes are con-
sidered to match if they have the same class label and the ratio of their intersection to their
union is at least 1

2
. Multi-class performance is evaluated by averaging the individual per-class

AP values. In a specialized system such as the advertising case study from Chapter 1, the
metric generalizes to a weighted average, with the weights set by the values of the classes.

P
olicy

Our goal is a multi-class recognition policy π that takes an image x and outputs a list
of multi-class detection results by running detector and global scene actions sequentially.
The policy repeatedly selects an action ai ∈ A, executes it, receiving observations oi, and
then selects the next action. The set of actions A can include both classifiers and detectors:
anything that would be useful for inferring the contents of the image.

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 14

C3C2C1

adet1 adet2 adet3

agist

C3C2C1

adet1 adet2 adet3

agist

t = 0.1

t = 0.3

t = 0
C3C2C1

adet1 adet2 adet3

agist

scene context

2

machine translation and information retrieval. For ex-
ample, until recently speech recognition and machine
translation systems based on n-gram language models
outperformed systems based on grammars and phrase
structure. In our experience maintaining performance
seems to require gradual enrichment of the model.

One reason why simple models can perform better in
practice is that rich models often suffer from difficulties
in training. For object detection, rigid templates and bag-
of-features models can be easily trained using discrimi-
native methods such as support vector machines (SVM).
Richer models are more difficult to train, in particular
because they often make use of latent information.

Consider the problem of training a part-based model
from images labeled only with bounding boxes around
the objects of interest. Since the part locations are not
labeled, they must be treated as latent (hidden) variables
during training. While it is possible that more complete
labeling would support better training, it could also
result in inferior training if the labeling used subop-
timal parts. Automatic part labeling has the potential
to achieve better performance by automatically finding
effective parts. More elaborate labeling is also time con-
suming and expensive.

The Dalal-Triggs detector [10], which won the 2006
PASCAL object detection challenge, used a single filter
on histogram of oriented gradients (HOG) features to
represent an object category. The Dalal-Triggs detector
uses a sliding window approach, where a filter is applied
at all positions and scales of an image. We can think
of the detector as a classifier which takes as input an
image, a position within that image, and a scale. The
classifier determines whether or not there is an instance
of the target category at the given position and scale.
Since the model is a simple filter we can compute a score
as � · �(x) where � is the filter, x is an image with a
specified position and scale, and �(x) is a feature vector.
A major innovation of the Dalal-Triggs detector was the
construction of particularly effective features.

Our first innovation involves enriching the Dalal-
Triggs model using a star-structured part-based model
defined by a “root” filter (analogous to the Dalal-Triggs
filter) plus a collection of part filters and associated
deformation models. The score of one of our star models
at a particular position and scale within an image is the
score of the root filter at the given location plus the
sum over parts of the maximum, over placements of
that part, of the part filter score on its location minus
a deformation cost measuring the deviation of the part
from its ideal location. Both root and part filter scores
are defined by the dot product between a filter (a set
of weights) and a subwindow of a feature pyramid
computed from the input image. Figure 1 shows a star
model for the person category. One interesting aspect
of our models is that the features for the part filters are
computed at twice the spatial resolution of the root filter.

To train models using partially labeled data we use a
latent variable formulation of MI-SVM [3] that we call

(a) (b) (c)

Fig. 1. Detections obtained with a single component
person model. The model is defined by a coarse root filter
(a), several higher resolution part filters (b) and a spatial
model for the location of each part relative to the root
(c). The filters specify weights for histogram of oriented
gradients features. Their visualization show the positive
weights at different orientations. The visualization of the
spatial models reflects the “cost” of placing the center of
a part at different locations relative to the root.

latent SVM (LSVM). In a latent SVM each example x is
scored by a function of the following form,

f�(x) = max
z2Z(x)

� · �(x, z). (1)

Here � is a vector of model parameters, z are latent
values, and �(x, z) is a feature vector. In the case of one
of our star models � is the concatenation of the root
filter, the part filters, and deformation cost weights, z is
a specification of the object configuration, and �(x, z) is
a concatenation of subwindows from a feature pyramid
and part deformation features.

We note that (1) can handle very general forms of
latent information. For example, z could specify a deriva-
tion under a rich visual grammar.

Our second class of models represents each object
category by a mixture of star models. The score of one
of our mixture models at a given position and scale
is the maximum over components, of the score of that
component model at the given location. In this case the
latent information, z, specifies a component label and
a configuration for that component. Figure 2 shows a
mixture model for the bicycle category.

To obtain high performance using discriminative train-
ing it is often important to use large training sets. In the
case of object detection the training problem is highly un-
balanced because there is vastly more background than
objects. This motivates a process of searching through

3

Fig. 2. Detections obtained with a 2 component bicycle model. These examples illustrate the importance of
deformations mixture models. In this model the first component captures sideways views of bicycles while the second
component captures frontal and near frontal views. The sideways component can deform to match a “wheelie”.

the background to find a relatively small number of
potential false positives.

A methodology of data-mining for hard negative ex-
amples was adopted by Dalal and Triggs [10] but goes
back at least to the bootstrapping methods used by [38]
and [35]. Here we analyze data-mining algorithms for
SVM and LSVM training. We prove that data-mining
methods can be made to converge to the optimal model
defined in terms of the entire training set.

Our object models are defined using filters that score
subwindows of a feature pyramid. We have investigated
feature sets similar to HOG [10] and found lower dimen-
sional features which perform as well as the original
ones. By doing principal component analysis on HOG
features the dimensionality of the feature vector can be
significantly reduced with no noticeable loss of informa-
tion. Moreover, by examining the principal eigenvectors
we discover structure that leads to “analytic” versions of
low-dimensional features which are easily interpretable
and can be computed efficiently.

We have also considered some specific problems that
arise in the PASCAL object detection challenge and sim-
ilar datasets. We show how the locations of parts in an
object hypothesis can be used to predict a bounding box
for the object. This is done by training a model specific
predictor using least-squares regression. We also demon-
strate a simple method for aggregating the output of
several object detectors. The basic idea is that objects of

some categories provide evidence for, or against, objects
of other categories in the same image. We exploit this
idea by training a category specific classifier that rescores
every detection of that category using its original score
and the highest scoring detection from each of the other
categories.

2 RELATED WORK

There is a significant body of work on deformable mod-
els of various types for object detection, including several
kinds of deformable template models (e.g. [7], [8], [21],
[43]), and a variety of part-based models (e.g. [2], [6], [9],
[15], [18], [20], [28], [42]).

In the constellation models from [18], [42] parts are
constrained to be in a sparse set of locations determined
by an interest point operator, and their geometric ar-
rangement is captured by a Gaussian distribution. In
contrast, pictorial structure models [15], [20] define a
matching problem where parts have an individual match
cost in a dense set of locations, and their geometric
arrangement is constrained by a set of “springs” connect-
ing pairs of parts. The patchwork of parts model from [2]
is similar, but it explicitly considers how the appearance
model of overlapping parts interact to define a dense
appearance model for images.

Our models are largely based on the pictorial struc-
tures framework from [15], [20]. We use a dense set of
possible positions and scales in an image, and define a

bicycle detector

person detector

Ts

Ts

Ts

Td

Td

Td

tim
e

Figure 2.1: A sample trace of our method. At each time step beginning at t = 0, potential
actions are considered according to their predicted value, and the maximizing action is
picked. The selected action is performed and returns observations. Different actions return
different observations: a detector returns a list of detections, while a scene context action
simply returns its computed feature. The belief model of our system is updated with the
observations, which influences the selection of the next action. The final evaluation of a
detection episode is the area of the AP vs. Time curve between given start and end times.
The value of an action is the expected result of final evaluation if the action is taken and
the policy continues to be followed, which allows actions without an immediate benefit to
be scheduled.

A
ction

s

Each action ai has an expected cost c(ai) of execution. Depending on the setting, the
cost can be defined in terms of algorithmic runtime analysis, an idealized property such as
number of flops, or simply the empirical runtime on specific hardware. We take the empirical
approach: every executed action advances t, the time into episode, by its runtime. The
specific actions we consider in the following exposition are detector actions adeti , where deti
is a detector class Ci, and a scene-level context action agist, which updates the probabilities
of all classes. Although we do not showcase this here, note that our system easily handles
multiple detector actions per class.

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 15

A
n

ytim
e

m
etric

As shown in Figure 2.1, the system is given two times: the setup time Ts and deadline
Td. We want to obtain the best possible answer if stopped at any given time between the
setup time and the deadline. A single-number metric that corresponds to this objective is
the area captured under the curve between the start and deadline bounds, normalized by
the total area. We evaluate policies by this more robust metric and not simply by the final
performance at deadline time for the same reason that Average Precision is used instead of
a fixed Precision vs. Recall point in the conventional evaluations. Additionally, maximizing
this single-number metric corresponds to maximizing Anytime performance.

2.2 Method

2.2.1 MDP Formulation

To model the action selection policy π(x) : X 7→ 2A, we employ the Markov Decision
Process (MDP) to model a single episode of selecting actions for some instance x.

Definition 1. The feature selection MDP consists of the tuple (S,A, T (·), R(·), γ):

• State s ∈ S stores the selected action subset Aπ(x), resulting observations, and total
cost CAπ(x).

• The set of actions A.

• The state transition distribution T (s′ | s, a) can depend on the instance x.

• The reward function R(s, a, s′) 7→ R is manually specified, and depends on the actions
taken and the instance x.

• The discount γ determines amount of lookahead in selecting actions: if 0, actions are
selected greedily based on their immediate reward; if 1, the reward accrued by subsequent
actions is given just as much weight as the reward of the current action.

T
rajectories

an
d

rew
ard

A recognition episode takes an image I and proceeds from the initial state s0 and action
a0 to the next pair (s1, a1), and so on until (sJ , aJ), where J is the last step of the process
with t ≤ Td. At that point, the policy is terminated, and a new episode can begin on a
new image. We call this a trajectory ξ = (s0, a0, s1, r1, . . . , aI−1, sI , rI), where I is the total
number of actions taken (and therefore features selected), s0 is the initial state, ai ∼ π(a | si)
is chosen by the policy π(a | s), and si+1 ∼ T (s | si, ai), which can depend on x. The total
expected reward (value) of an MDP episode is written as

Vπ(s0) = Eξ∼{π,x}r(ξ) = Eξ∼{π,x}

[
I∑
i=0

γi ri

]
(2.1)

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 16

Q
-V

alu
e

fu
n

ction

We seek π that maximizes Equation 2.1. If we had a function accurately predicting
the value of taking an action in a state, we could define the policy as simply taking the
action with maximum value from any state. We specify this function Q(s, a) : S ×A 7→ R,
where S is the space of all possible states, to assign a value to a potential action a ∈ A
given the current state s of the decision process. We can then define the policy π as simply
arg maxai∈A\OQ(s, ai). The Q-function is defined and learned recursively:

Qπ(sj, a) = Esj+1 [R(sj, a) + γQπ(sj+1, π(sj+1))] (2.2)

2.2.2 Learning the policy

F
u

n
ction

ap
proxim

ation

Although the action space A is manageable, the space of possible states S is intractable,
and we must use function approximation to represent Q(s, a): a common technique in rein-
forcement learning (Sutton and Barto 1998). We featurize the state-action pair and assume
linear structure:

Qπ(s, a) = θ>π φ(s, a) (2.3)

where φ : S × A 7→ Rds is the state featurization function, ds is the dimensionality of the
state feature vector, and θπ is a vector of weights that defines the policy π.

P
olicy

fu
n

ction

Specifically, the policy is defined as

π(a | s) =
1

Z
exp

(
1

τ
θTφ(s, a)

)
(2.4)

where Z is the appropriate normalization and τ is a temperature parameter that controls
the level of exploration vs. exploitation in the policy. As τ → 0, π(a | s) becomes highly
peaked at arg maxaQ(s, a); it becomes uniform as τ → ∞. In training, this parameter is
turned down gradually.

S
am

p
lin

g
Q

-fu
n

ction

While we can’t directly compute the expectation in Equation 2.2, we can sample it by
running actual episodes to gather < s, a, r, s′ > samples, where r is the reward obtained by
taking action a in state s, and s′ is the following state. We then learn the optimal policy
by repeatedly gathering samples with the current policy, minimizing the error between the
discounted reward to the end of the episode as predicted by our current Q(sj, a) and the
actual values gathered, and updating the policy with the resulting weights. This method
is akin to fitted Q-iteration, a variant of generalized policy iteration (Ernst, Geurts, and
Wehenkel 2005; Sutton and Barto 1998). Figure 2.2 shows a step of this process.

G
ath

erin
g

trajectories

During training, we gather samples starting from either a random feasible state, with
probability ε, or from the initial empty state otherwise. Both ε and τ parameters decay
exponentially with the number of training iterations. Training is terminated if πθi+1

returns
the exact same sequence of episodes ξ on a validation set as πθi . During test time, ε is set
to 0.05.

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 17

�()

�()

�()

�1

�2

�3

�4

�4 R(s0)

�4

�1

�2

�3

�3 R(s00)

actionstate reward

�1

�2

�3

�4

�2 R(s000)

�(s, a4)
.

Q(s, a4)

other episodes

Q(s, a4)

Q(s0, a3)

Q(s00, a2)

value

✓ =

Figure 2.2: We sample Qπ(s, a) = Es′ [R(s′) + γQπ(s′, π(s′))] = θTφ(s, a) by running the
policy over many images. Once an episode is complete, the Q-value at each (s, a) can be
determined. To update the policy, simply minimize the prediction error of θ, and repeat.

B
lo

ck-co
d

in
g

To formulate learning the policy as a single regression problem, we could represent the
features in block form, where φ(s, a) is a vector of size F |A|, with all values set to 0 except
for the F -sized block corresponding to a. An implementation detail: instead of block-coding
φ(s, a), we learn F separate θf ’s for the features φ(s): one for each action a To prevent
overfitting, we use L2-regularized regression. The weight α of the regularization term is tied
across the F separate regressions and is tuned by cross-validation on 3 folds.

D
etails

We run 15 iterations of accumulating samples by running 350 episodes, starting with a
baseline policy which will be described in Section 2.3, and cross-validating the regularization
parameter at each iteration. Samples are not thrown away between iterations.

2.2.2.1 Greedy vs non-myopic

G
reed

y

Note from Equation 2.2 that the γ ∈ [0, 1] parameter of the MDP controls the level of
discounting of rewards of future action in computing the value Equation 2.1. In the baseline
greedy setting, with γ = 0, rewards gained by future actions are not counted at all in
determining the value of the current action. The value function is determined entirely by
the immediate reward, and so only completely greedy policies can be learned in this case.
This setting is used as baseline.

N
on

-m
yop

ic

In the non-myopic setting, with γ = 1, rewards gained by future actions are valued
exactly as much as reward gained by the current action in determining its value. However,
a slightly lower value of γ mitigates the effects of increasing uncertainty regarding the state
transitions over long episodes. We set this meta-parameter of our approach through cross-
validation, and find that a mid-level value (0.4) works best.

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 18

action selection
maximize expected value

Belief
State

Action

Observations

Belief
State

Image

Action

Time

etc
Observations

belief state update
with observations,
leverage context

execute action
“black box”

receive observations

Figure 2.3: Our closed-loop method consists of selecting an action based on the belief state,
executing action almost as a “black box,” which makes our method very general, and then
updating the state with the received observations.

Our sequential method is visually summarized in Figure 2.3.

2.2.3 Reward definition

A
P

of
state

The policy’s performance at time t is determined by all detections that are part of the set
of observations oj at the last state sj before t. Recall that detector actions returns lists of
detection hypotheses. Therefore, the final AP vs. Time evaluation of an episode is a function
eval(h, Ts, Td) of the history of execution h = s0, s1, . . . , sJ . It is precisely the normalized
area under the AP vs. Time curve between Ts and Td, as determined by the detections in
oj for all steps j in the episode.

A
d

d
itive

rew
ard

s

Note from Figure 2.5a that this evaluation function is additive per action, as each action
a generates observations that may raise or lower the mean AP of the results so far (∆ap) and
takes a certain time (∆t). We can accordingly represent the final evaluation eval(h, Ts, Td)
in terms of individual action rewards:

∑J
j=0R(sj, aj). Specifically, as shown in Figure 2.5a,

we define the reward of an action a as

R(sj, a) = ∆ap(tjT −
1

2
∆t) (2.5)

where tjT is the time left until Td at state sj, and ∆t and ∆ap are the time taken and AP
change produced by the action a. (We do not account for Ts here for clarity of exposition.)

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 19

2.2.4 Features of the state

S
tate

We refer to the information available to the decision process as the state s. The state
includes the current estimate of the distribution over class presence variables P (C) =
{P (C0), . . . , P (CK)}, where we write P (Ck) to mean P (Ck = 1) (class k is present in the
image). Additionally, the state records that an action ai has been taken by adding it to the
initially empty set O and recording the resulting observations oi. We refer to the current
set of observations as o = {oi|ai ∈ O}. The state also keeps track of the time into episode
t, and the setup and deadline times Ts, Td.

O
p

en
vs

C
losed

L
o

op

An open-loop policy, such as the common classifier cascade (Viola and Jones 2004), takes
actions in a sequence that does not depend on observations received from previous actions.
In contrast, as presented in Figure 2.3, our goal is to learn a dynamic, or closed-loop, policy,
which would exploit the signal in scene and inter-object context for a maximally efficient
path through the actions. Recall from Equation 2.3 that our policy is determined by a linear
function of the features of the state.

D
yn

am
ic

featu
res

Since we want to be able to learn a dynamic policy, the observations o that are part of
the state s should play a role in determining the value of a potential action. We include the
following quantities as features φ(s, a):

P (Ca) The prior probability of the class that corresponds to the detec-
tor of action a (omitted for the scene-context action).

P (C0|o) . . . P (CK |o) The probabilities for all classes, conditioned on the current set
of observations.

H(C0|o) . . . H(CK |o) The entropies for all classes, conditioned on the current set of
observations.

Additionally, we include the mean and maximum of [H(C0|o) . . . H(CK |o)], and 4 time
features that represent the times until start and deadline, for a total of F = 1 + 2K + 6
features.

A
u

gm
en

ted
M

D
P

Our system as any system of interesting complexity, runs into two related limitations of
MDPs: the state has to be functionally approximated instead of exhaustively enumerated;
and some aspects of the state are not observed, making the problem a Partially Observed
MDP (POMDP), for which exact solution methods are intractable for all but rather small
problems (Roy and Gordon 2002). Our initial solution to the problem of partial observability
is to include features corresponding to our level of uncertainty into the feature representation,
as in the technique of augmented MDPs (Kwok and Fox 2004).

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 20

2.2.4.1 Updating with observations

C
lass

correlation
s

The bulk of our feature representation is formed by probability of individual class oc-
currence, conditioned on the observations so far: P (C0|o) . . . P (CK |o). This allows the
action-value function to learn correlations between presence of different classes, and so the
policy can look for the most probable classes given the observations. However, higher-order
co-occurrences are not well represented in this form. Additionally, updating P (Ci|o) presents
choices regarding independence assumptions between the classes.

U
p

d
ate

m
eth

o
d

s

We evaluate two approaches for updating probabilities: direct and MRF. In the direct
method, P (Ci|o) = score(Ci) if o includes the observations for class Ci and P (Ci|o) = P (Ci)
otherwise. This means that an observation of class i does not directly influence the estimated
probability of any class but Ci. The MRF approach employs a pairwise fully-connected
Markov Random Field (MRF), as shown in Figure 2.1, with the observation nodes set to
score(Ci) appropriately, or considered unobserved.

L
earn

in
g

M
R

F

The graphical model structure is set as fully-connected, but some classes almost never
co-occurr in our dataset. Accordingly, the edge weights are learned with L1 regularization,
which obtains a sparse structure (Lee, Ganapathi, and Koller 2006). All parameters of
the model are trained on fully-observed data, and Loopy Belief Propagation inference is
implemented with an open-source graphical model package (Jaimovich and Mcgraw 2010).

D
etails

An implementation detail: score(Ci) for adeti is obtained by training a probabilistic
classifier on the list of detections, featurized by the top few confidence scores and the total
number of detections. Similarly, score(Ci) for agist is obtained by training probabilistic
classifiers on the GIST feature, for all classes.

2.3 EvaluationWe deal with varied inputs

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2013 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Latent Task Adaptation with Large-scale Hierarchies

Anonymous ICCV submission

Paper ID ****

Abstract

Recent years have witnessed the success of large-scale
image classification systems that are able to identify objects
among thousands of possible labels. However, it is yet un-
clear how such general classifiers (such as the ones trained
on ImageNet) can be optimally adapted to specific tasks,
each of which only covers a semantically related subset of
all the objects in the world. It is inefficient and suboptimal
to retrain classifiers whenever a new task is given, and is
inapplicable when tasks are not given explicitly, but implic-
itly specified as a set of image queries. In this paper we
propose a novel probabilistic model that jointly identifies
the underlying task and performs prediction with a linear-
time probabilistic inference algorithm, given a set of query
images from a latent task. We present efficient ways to es-
timate parameters for the model, and an open-source dis-
tributed toolbox to train classifiers in a large scale. Empir-
ical results based on the ImageNet data showed significant
performance increase over several baseline algorithms.

1. Introduction
Recent years have witnessed a growing interest in ob-

ject classification tasks involving specific object categories,
such as fine-grained object classification [6, 12] and home
object recognition in visual robotics. Existing methods in
the literature generally describe algorithms that are trained
and tested on exactly the same task, i.e. we assume the train-
ing data and testing data share the same set of object labels.
A dog classifier is trained and tested on dogs, and a cat clas-
sifier done on cats.

However, two observations may render this “one classi-
fier per task” approach suboptimal. First, it’s often known
to be beneficial to use images of related tasks to build a bet-
ter model for the general visual world [18], which serves as
a better regularization for the specific task as well. Large-
scale learning is also shown promising by the recent efforts
on the ImageNet challenge [2, 16, 21, 13]. Second, object
categories in the real world are often organized in, or at least
well modeled by, a nested taxonomical hierarchy (e.g. Fig-

feline

dog

vehicle

golden retriever tabby cat garbage truck
(ice bear) (dungeness crab) (boathouse)

Figure 1: Top: Visualization of specific object classification
tasks of interest in daily life, which are often subtrees in a
large scale object taxonomy, e.g. the ImageNet hierarchy.
Bottom: Adapting the ImageNet classifier allows us to per-
form accurate prediction (bold), while the original classifier
prediction (in parentheses) suffers from a higher confusion.

ure 1), with classification tasks corresponding to intermedi-
ate subtrees in this hierarchy. While it is reasonable to train
separate classifiers for specific tasks, this quickly become
infeasible as there are a huge number of possible tasks -
any subtree in the hierarchy may be a latent task one may
encounter.

Thus, it would be beneficial to have a system which
learns a large number of object categories in the world, and
which is able to quickly adapt to specific incoming classi-
fication tasks once deployed. We are particularly interested
in the scenario where tasks are not explicitly given, but im-
plicitly specified with a set of query images, or a stream of
query images in an online fasion. This has practical impor-
tance: for example, one may want to have a single mobile
app that adapts to plant recognition on a field trip after a few
image queries, and that shifts to grocery recognitions when
one stops by the grocery store. This is a new challenge be-

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

IC
C

V
#****

IC
C

V
#****

IC
C

V
2013

S
ubm

ission
#****.

C
O

N
FID

E
N

TIA
L

R
E

V
IE

W
C

O
P

Y.D
O

N
O

T
D

IS
TR

IB
U

TE
.

L
atentTask

A
daptation

w
ith

L
arge-scale

H
ierarchies

A
nonym

ous
IC

C
V

subm
ission

PaperID

A
bstract

R
ecent

years
have

w
itnessed

the
success

of
large-scale

im
age

classification
system

s
thatare

able
to

identify
objects

am
ong

thousands
ofpossible

labels.
H

ow
ever,itis

yetun-
clear

how
such

generalclassifiers
(such

as
the

ones
trained

on
Im

ageN
et)

can
be

optim
ally

adapted
to

specific
tasks,

each
ofw

hich
only

covers
a

sem
antically

related
subsetof

allthe
objects

in
the

w
orld.

Itis
inefficientand

suboptim
al

to
retrain

classifiers
w

henever
a

new
task

is
given,

and
is

inapplicable
w

hen
tasks

are
notgiven

explicitly,butim
plic-

itly
specified

as
a

set
of

im
age

queries.
In

this
paper

w
e

propose
a

novel
probabilistic

m
odel

that
jointly

identifies
the

underlying
task

and
perform

s
prediction

w
ith

a
linear-

tim
e

probabilistic
inference

algorithm
,given

a
setofquery

im
ages

from
a

latenttask.
W

e
presentefficientw

ays
to

es-
tim

ate
param

eters
for

the
m

odel,
and

an
open-source

dis-
tributed

toolbox
to

train
classifiers

in
a

large
scale.E

m
pir-

icalresults
based

on
the

Im
ageN

etdata
show

ed
significant

perform
ance

increase
over

severalbaseline
algorithm

s.

1.Introduction
R

ecent
years

have
w

itnessed
a

grow
ing

interest
in

ob-
jectclassification

tasks
involving

specific
objectcategories,

such
as

fine-grained
objectclassification

[6,12]
and

hom
e

object
recognition

in
visual

robotics.
E

xisting
m

ethods
in

the
literature

generally
describe

algorithm
s

thatare
trained

and
tested

on
exactly

the
sam

e
task,i.e.w

e
assum

e
the

train-
ing

data
and

testing
data

share
the

sam
e

setofobjectlabels.
A

dog
classifieris

trained
and

tested
on

dogs,and
a

catclas-
sifierdone

on
cats.

H
ow

ever,tw
o

observations
m

ay
render

this
“one

classi-
fier

per
task”

approach
suboptim

al.
First,it’s

often
know

n
to

be
beneficialto

use
im

ages
ofrelated

tasks
to

build
a

bet-
term

odelforthe
generalvisualw

orld
[18],w

hich
serves

as
a

better
regularization

for
the

specific
task

as
w

ell.
L

arge-
scale

learning
is

also
show

n
prom

ising
by

the
recentefforts

on
the

Im
ageN

etchallenge
[2,16,21,13].

Second,object
categoriesin

the
realw

orld
are

often
organized

in,oratleast
w

ellm
odeled

by,a
nested

taxonom
icalhierarchy

(e.g.Fig-

feline

dog

vehicle

golden
retriever

tabby
cat

garbage
truck

(ice
bear)

(dungeness
crab)

(boathouse)

Figure
1:Top:V

isualization
ofspecific

objectclassification
tasks

of
interestin

daily
life,w

hich
are

often
subtrees

in
a

large
scale

object
taxonom

y,
e.g.

the
Im

ageN
et

hierarchy.
B

ottom
:

A
dapting

the
Im

ageN
etclassifierallow

s
us

to
per-

form
accurate

prediction
(bold),w

hile
the

originalclassifier
prediction

(in
parentheses)suffers

from
a

higherconfusion.

ure
1),w

ith
classification

tasks
corresponding

to
interm

edi-
ate

subtrees
in

this
hierarchy.W

hile
itis

reasonable
to

train
separate

classifiers
for

specific
tasks,

this
quickly

becom
e

infeasible
as

there
are

a
huge

num
ber

of
possible

tasks
-

any
subtree

in
the

hierarchy
m

ay
be

a
latenttask

one
m

ay
encounter.

T
hus,

it
w

ould
be

beneficial
to

have
a

system
w

hich
learns

a
large

num
berofobjectcategories

in
the

w
orld,and

w
hich

is
able

to
quickly

adaptto
specific

incom
ing

classi-
fication

tasks
once

deployed.W
e

are
particularly

interested
in

the
scenario

w
here

tasks
are

notexplicitly
given,butim

-
plicitly

specified
w

ith
a

setof
query

im
ages,or

a
stream

of
query

im
ages

in
an

online
fasion.T

his
has

practicalim
por-

tance:
for

exam
ple,one

m
ay

w
antto

have
a

single
m

obile
app

thatadaptsto
plantrecognition

on
a

field
trip

aftera
few

im
age

queries,and
thatshifts

to
grocery

recognitions
w

hen
one

stops
by

the
grocery

store.
T

his
is

a
new

challenge
be-

1

, classes, and recognition actions

We deal with varied inputs

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

ICCV
#****

ICCV
#****

ICCV 2013 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Latent Task Adaptation with Large-scale Hierarchies

Anonymous ICCV submission

Paper ID ****

Abstract

Recent years have witnessed the success of large-scale
image classification systems that are able to identify objects
among thousands of possible labels. However, it is yet un-
clear how such general classifiers (such as the ones trained
on ImageNet) can be optimally adapted to specific tasks,
each of which only covers a semantically related subset of
all the objects in the world. It is inefficient and suboptimal
to retrain classifiers whenever a new task is given, and is
inapplicable when tasks are not given explicitly, but implic-
itly specified as a set of image queries. In this paper we
propose a novel probabilistic model that jointly identifies
the underlying task and performs prediction with a linear-
time probabilistic inference algorithm, given a set of query
images from a latent task. We present efficient ways to es-
timate parameters for the model, and an open-source dis-
tributed toolbox to train classifiers in a large scale. Empir-
ical results based on the ImageNet data showed significant
performance increase over several baseline algorithms.

1. Introduction
Recent years have witnessed a growing interest in ob-

ject classification tasks involving specific object categories,
such as fine-grained object classification [6, 12] and home
object recognition in visual robotics. Existing methods in
the literature generally describe algorithms that are trained
and tested on exactly the same task, i.e. we assume the train-
ing data and testing data share the same set of object labels.
A dog classifier is trained and tested on dogs, and a cat clas-
sifier done on cats.

However, two observations may render this “one classi-
fier per task” approach suboptimal. First, it’s often known
to be beneficial to use images of related tasks to build a bet-
ter model for the general visual world [18], which serves as
a better regularization for the specific task as well. Large-
scale learning is also shown promising by the recent efforts
on the ImageNet challenge [2, 16, 21, 13]. Second, object
categories in the real world are often organized in, or at least
well modeled by, a nested taxonomical hierarchy (e.g. Fig-

feline

dog

vehicle

golden retriever tabby cat garbage truck
(ice bear) (dungeness crab) (boathouse)

Figure 1: Top: Visualization of specific object classification
tasks of interest in daily life, which are often subtrees in a
large scale object taxonomy, e.g. the ImageNet hierarchy.
Bottom: Adapting the ImageNet classifier allows us to per-
form accurate prediction (bold), while the original classifier
prediction (in parentheses) suffers from a higher confusion.

ure 1), with classification tasks corresponding to intermedi-
ate subtrees in this hierarchy. While it is reasonable to train
separate classifiers for specific tasks, this quickly become
infeasible as there are a huge number of possible tasks -
any subtree in the hierarchy may be a latent task one may
encounter.

Thus, it would be beneficial to have a system which
learns a large number of object categories in the world, and
which is able to quickly adapt to specific incoming classi-
fication tasks once deployed. We are particularly interested
in the scenario where tasks are not explicitly given, but im-
plicitly specified with a set of query images, or a stream of
query images in an online fasion. This has practical impor-
tance: for example, one may want to have a single mobile
app that adapts to plant recognition on a field trip after a few
image queries, and that shifts to grocery recognitions when
one stops by the grocery store. This is a new challenge be-

1

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

IC
C

V
#****

IC
C

V
#****

IC
C

V
2013

S
ubm

ission
#****.

C
O

N
FID

E
N

TIA
L

R
E

V
IE

W
C

O
P

Y.D
O

N
O

T
D

IS
TR

IB
U

TE
.

L
atentTask

A
daptation

w
ith

L
arge-scale

H
ierarchies

A
nonym

ous
IC

C
V

subm
ission

PaperID

A
bstract

R
ecent

years
have

w
itnessed

the
success

of
large-scale

im
age

classification
system

s
thatare

able
to

identify
objects

am
ong

thousands
ofpossible

labels.
H

ow
ever,itis

yetun-
clear

how
such

generalclassifiers
(such

as
the

ones
trained

on
Im

ageN
et)

can
be

optim
ally

adapted
to

specific
tasks,

each
ofw

hich
only

covers
a

sem
antically

related
subsetof

allthe
objects

in
the

w
orld.

Itis
inefficientand

suboptim
al

to
retrain

classifiers
w

henever
a

new
task

is
given,

and
is

inapplicable
w

hen
tasks

are
notgiven

explicitly,butim
plic-

itly
specified

as
a

set
of

im
age

queries.
In

this
paper

w
e

propose
a

novel
probabilistic

m
odel

that
jointly

identifies
the

underlying
task

and
perform

s
prediction

w
ith

a
linear-

tim
e

probabilistic
inference

algorithm
,given

a
setofquery

im
ages

from
a

latenttask.
W

e
presentefficientw

ays
to

es-
tim

ate
param

eters
for

the
m

odel,
and

an
open-source

dis-
tributed

toolbox
to

train
classifiers

in
a

large
scale.E

m
pir-

icalresults
based

on
the

Im
ageN

etdata
show

ed
significant

perform
ance

increase
over

severalbaseline
algorithm

s.

1.Introduction
R

ecent
years

have
w

itnessed
a

grow
ing

interest
in

ob-
jectclassification

tasks
involving

specific
objectcategories,

such
as

fine-grained
objectclassification

[6,12]
and

hom
e

object
recognition

in
visual

robotics.
E

xisting
m

ethods
in

the
literature

generally
describe

algorithm
s

thatare
trained

and
tested

on
exactly

the
sam

e
task,i.e.w

e
assum

e
the

train-
ing

data
and

testing
data

share
the

sam
e

setofobjectlabels.
A

dog
classifieris

trained
and

tested
on

dogs,and
a

catclas-
sifierdone

on
cats.

H
ow

ever,tw
o

observations
m

ay
render

this
“one

classi-
fier

per
task”

approach
suboptim

al.
First,it’s

often
know

n
to

be
beneficialto

use
im

ages
ofrelated

tasks
to

build
a

bet-
term

odelforthe
generalvisualw

orld
[18],w

hich
serves

as
a

better
regularization

for
the

specific
task

as
w

ell.
L

arge-
scale

learning
is

also
show

n
prom

ising
by

the
recentefforts

on
the

Im
ageN

etchallenge
[2,16,21,13].

Second,object
categoriesin

the
realw

orld
are

often
organized

in,oratleast
w

ellm
odeled

by,a
nested

taxonom
icalhierarchy

(e.g.Fig-

feline

dog

vehicle

golden
retriever

tabby
cat

garbage
truck

(ice
bear)

(dungeness
crab)

(boathouse)

Figure
1:Top:V

isualization
ofspecific

objectclassification
tasks

of
interestin

daily
life,w

hich
are

often
subtrees

in
a

large
scale

object
taxonom

y,
e.g.

the
Im

ageN
et

hierarchy.
B

ottom
:

A
dapting

the
Im

ageN
etclassifierallow

s
us

to
per-

form
accurate

prediction
(bold),w

hile
the

originalclassifier
prediction

(in
parentheses)suffers

from
a

higherconfusion.

ure
1),w

ith
classification

tasks
corresponding

to
interm

edi-
ate

subtrees
in

this
hierarchy.W

hile
itis

reasonable
to

train
separate

classifiers
for

specific
tasks,

this
quickly

becom
e

infeasible
as

there
are

a
huge

num
ber

of
possible

tasks
-

any
subtree

in
the

hierarchy
m

ay
be

a
latenttask

one
m

ay
encounter.

T
hus,

it
w

ould
be

beneficial
to

have
a

system
w

hich
learns

a
large

num
berofobjectcategories

in
the

w
orld,and

w
hich

is
able

to
quickly

adaptto
specific

incom
ing

classi-
fication

tasks
once

deployed.W
e

are
particularly

interested
in

the
scenario

w
here

tasks
are

notexplicitly
given,butim

-
plicitly

specified
w

ith
a

setof
query

im
ages,or

a
stream

of
query

im
ages

in
an

online
fasion.T

his
has

practicalim
por-

tance:
for

exam
ple,one

m
ay

w
antto

have
a

single
m

obile
app

thatadaptsto
plantrecognition

on
a

field
trip

aftera
few

im
age

queries,and
thatshifts

to
grocery

recognitions
w

hen
one

stops
by

the
grocery

store.
T

his
is

a
new

challenge
be-

1

, classes, and recognition actions

Figure 2.4: The PASCAL VOC is an object detection dataset presenting a challenging variety
of image and object appearance.

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 21

D
ataset

We evaluate our system on the multi-class, multi-label detection task, as previously
described. Each detection episode takes an image and outputs detections with associated
times, based on the order of actions taken. We evaluate on a popular detection challenge
task: the PASCAL VOC 2007 dataset (Everingham et al. 2010). Example images from
the dataset are shown in Figure 2.4. This datasets exhibits only a modest amount of class
co-occurrence: the “person” class is highly likely to occur, and less than 10% of the images
have more than two classes.

M
etric

The final evaluation pools all detections up to a certain time, and computes their multi-
class AP per image, averaging over all images. This is done for different times to plot the
AP vs. Time curve over the whole dataset. Our method of averaging per-image performance
follows (Desai, Ramanan, and Fowlkes 2011).

D
etector

For the detector actions, we use one-vs-all cascaded deformable part-model detectors
on a HOG featurization of the image (Felzenszwalb, Girshick, and McAllester 2010), with
linear classification of the list of detections as described in the previous section. There are 20
classes in the PASCAL challenge task, so there are 20 detector actions. Running a detector
on a PASCAL image takes about 1 second.

T
rain

in
g

We learn weights on the training and validation sets, and run our policy on all images
in the testing set. With pre-computed detections on the PASCAL VOC 2007 dataset, our
training procedure takes about 4 hours on an 8-core Xeon E5620 machine.

S
ettin

gs

We test three different settings of the start and deadline times. In the first one, the
start time is immediate and execution is cut off at 20 seconds, which is enough time to
run all actions. In the second one, execution is cut off after only 10 seconds. Lastly, we
measure performance between 5 seconds and 15 seconds. These operating points show how
our method behaves when deployed in different conditions. The results are given in rows of
Table 2.1.

Ts
tjT Td

�t

�
ap �ap(tjT �

1

2
�t)

(a) Graphical representation of the reward func-
tion.

(b) AP vs. Time curves for Random, Ora-
cle, the Fixed Order baseline, and our best-
performing policy.

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 22

Table 2.1: The areas under the AP vs. Time curve for different experimental conditions.

Bounds Random Fixed Order RL RL w/ GIST Oracle

(0,20) 0.250 0.342 0.378 0.382 0.488

(0,10) 0.119 0.240 0.266 0.267 0.464

(5,15) 0.257 0.362 0.418 0.420 0.530

B
aselin

es

We establish the first baseline for our system by selecting actions randomly at each step.
As shown in Figure 2.5b, the Random policy results in a roughly linear gain of AP vs. time.
This is expected: the detectors are capable of obtaining a certain level of performance; if
half the detectors are run, the expected performance level is half of the maximum level. To
establish an upper bound on performance, we plot the Oracle policy, obtained by re-ordering
the actions at the end of each detection episode in the order of AP gains they produced. We
consider another baseline: selecting actions in a fixed order based on the value they bring to
the AP vs. Time evaluation, which is roughly proportional to their occurrence probability.
We refer to this as Fixed Order.

O
u

rs

Then there are instantiations of our method, as described in the previous section : RL
w/ Direct inference and RL w/ MRF inference. As the MRF model consistently out-
performed Direct by a small margin, we report results for that model only. In additional
to the detector actions, we include a scene-level GIST feature that updates the posterior
probabilities of all classes. This is considered one action, takes about 0.3 seconds, and brings
another boost in performance. The results are shown in Table 2.1.

T
rajectories

In Figure 2.5b, we can see that due to the dataset bias, the fixed-order policy performs well
at first, as the person class is disproportionately likely to be in the image, but is significantly
overtaken by our model as execution goes on and more rare classes have to be detected. It is
additionally informative to consider the action trajectories of different policies in Figure 2.6.
In contrast to the fixed order policy, our method is clearly dynamic, jumping from action to
action based on the observations obtained from previous actions.

L
earn

ed
w

eigh
ts

As an illustration, we visualize the learned weights on features as described in Sec-
tion 2.2.4 in Figure 2.7. The weights are reshaped such that each row shows the weights
learned for an action, with the top row representing the scene context action and then next
20 rows corresponding to the PASCAL VOC class detector actions. We note that the GIST
action is learned to never be taken in the greedy (γ = 0) setting, but is learned to be taken
with a higher value of γ.

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 23

Figure 2.6: Visualizing the action trajectories of different policies. Action selection traces are
plotted in orange over many episodes; the size of the blue circles correspond to the increase
in AP obtained by the action. We see that the Random policy selects actions and obtains
rewards randomly, while the Oracle policy obtains all rewards in the first few actions. The
Fixed Order policy selects actions in a static optimal order. Our RL w/ MRF policy does
not stick a static order but selects actions dynamically to maximize the rewards obtained
early on.

CHAPTER 2. REINFORCEMENT LEARNING FOR ANYTIME DETECTION 24

P (C|o) H(C|o)

GIST action

GIST action

timeP (Ca)

R
L

G
reed

y

(a) Greedy

P (C|o) H(C|o)

GIST action

GIST action

timeP (Ca)

R
L

G
reed

y

P (C|o) H(C|o)

GIST action

GIST action

timeP (Ca)

R
L

G
reed

y

(b) Reinforcement Learning

Figure 2.7: Learned policy weights θπ (best viewed in color: red corresponds to positive,
blue to negative values). The first row corresponds to the scene-level action, which does not
generate detections itself but only helps reduce uncertainty about the contents of the image.
Note that in the greedy learning case, this action is learned to never be taken, but it is shown
to be useful in the reinforcement learning case.

25

Chapter 3

Reinforcement Learning for Anytime
Classification

M
otivation

In the previous chapter, running a detector was a very costly action. In other settings,
such as classification problems, we may want to efficiently select a subset of fast features to
compute. For Anytime performance, we should be able to effectively classify any subset of
features our policy selects.

3.1 Problem definition

Definition 2. The test-time efficient multi-class classification problem consists of

• N instances labeled with one of K labels: D = {xn ∈ X , yn ∈ Y = {1, . . . , K}}Nn=1.

• F features H = {hf : X 7→ Rdf}Ff=1, with associated costs cf .

• Budget-sensitive loss LB, composed of cost budget B and loss function `(ŷ, y) 7→ R.

The goal is to find a feature selection policy π(x) : X 7→ 2H and a feature com-
bination classifier g(Hπ) : 2H 7→ Y such that such that the total budget-sensitive loss∑LB(g(π(xn)), yn) is minimized.

B
u

d
get

The cost of a selected feature subsetHπ(x) is CHπ(x). The budget-sensitive loss LB presents
a hard budget constraint by only accepting answers with CH ≤ B. Additionally, LB can be
cost-sensitive: answers given with less cost are more valuable than costlier answers. As
discussed in Chapter 1, the motivation for the latter property is Anytime performance; we
should be able to stop our algorithm’s execution at any time and have the best possible
answer.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 26

C
ost

Feature costs cf can be specified flexibly, with options including theoretical analysis,
number of flops, wall clock runtime, total CPU time, or exact power expenditure. We believe
that a deployment in a modern datacenter is most likely to optimize for power expenditure.
In the absence of reliable ways to measure power, we use total CPU time to define the cost:
if an operation is performed in parallel on multiple cores, its cost is considered to be the
total cpu time on all cores.

S
h

ared
featu

res

The features hf can be classifier outputs, possibly multi-class; following convention, we
refer to such features as weak learners. For a weak learner hf , the cost cf is composed of
the cost of an underlying feature extraction φhf (x) and the cost of subsequent classification.
Once hf is computed, its underlying feature φ is considered to be free for all other features
h′f that share it, if any, such that c′f < cf . Note that in state-of-the-art object recognition
systems, complex features and feature encodings are often followed by linear classifiers, and
feature extraction cost dominates the total cost.

�1

�2

�3

�4

�1

�2

�3

�4

�4

�1

�2

�3

�4

�1

�2

�3

�4

�2�3

RK RK RK RK

Figure 3.1: We model the problem of state traversal as a Markov Decision Process. For every
state, we learn to select action of maximum expected value. The state is updated with the
result of the selected action. We train a classifier on subsets of features, to give answer at
any time.

T
rain

vs.
test

At training time, our computation is unbudgeted, and we can compute all features to
have fully-observed training instances. At test time, there is a budget and so the instances
we classify will only be partially-observed, as determined by the feature selection policy.
Figure 3.1 shows the sequential process we are learning.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 27

3.2 Method

M
D

P
su

m
m

ary

We model the feature selection policy π(x) : X 7→ 2A following the reinforcement
learning approach as described in Section 2.2.1. The set of actions A is exactly the set
of features H. The policy learning approach remains the same, including implementation
details. In summary, we learn the θ by policy iteration. First, we gather (s, a, r, s′) samples by
running episodes (to completion) with the current policy parameters θi. From these samples,
Q̂(s, a) values are computed, and θi+1 are given by L2-regularized least squares solution to
Q̂(s, a) = θTφ(s, a), on all states that we have seen in training.

C
lassifi

er

Three things are different: the reward definition, the state featurization function, and the
additional dependence on a classifier. We defer discussion of learning the feature combi-
nation classifier g(Hπ) : 2H 7→ Y to Section 3.2.3. For now, we assume that g can combine
an arbitrary subset of features and provide a distribution P (Y = y). For example, g could
be a Naive Bayes (NB) model trained on the fully-observed data.

3.2.1 Reward definition

L
oss

vs.
cost

The budget-sensitive loss LB enforces Anytime performance by valuing early gains more
than later gains. To formalize this, consider Figure 3.2, which shows the entropy and the 0-1
loss of g at every point in a sequential feature selection episode for some instance x. For the
best Anytime performance, we want to capture the most area above the loss vs. cost curve,
up to max budget B. Recall from (2.1) that the value of an episode ξ is defined as the sum
of obtained rewards. If the reward of a single action is defined as the area above the curve
that is captured as a direct result, then the value of the whole episode exactly corresponds
to LB.

In
fogain

However, there is a problem with using loss directly: only the first action to “tip the
scale” toward the correct prediction gets a direct reward (in the figure, it is the first action).
A smoother reward function is desirable: if the classifier g can give a full distribution P (Y =
y | Hπ(x)) and not just a prediction ŷ ∈ Y , we can maximize the information gain of the
selected subset instead of directly minimizing the loss of g(π(x)):

I(Y ;Hπ(x)) = H(Y)−H(Y |Hπ(x)) = (3.1)

=
∑
y∈Y

P (y) logP (y)−∑
y,Hπ(x)

P (y,Hπ(x)) logP (y | Hπ(x))

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 28

0 2 4 6 8 10
Cumulative cost

0.0

0.2

0.4

0.6

0.8

1.0

Entropy

Loss

a = hf

IHs
(Y ; hf)

cf

Bs

IHs(Y ; hf)(Bs �
1

2
cf)

Figure 3.2: Definition of the reward function. To maximize the total area above the entropy
vs. cost curve from 0 to B, we define the reward of an individual action as the area of the
slice of the total area that it contributes. From state s, action a = hf leads to state s′ with
cost cf . The information gain is IHs(Y ;hf) = H(Y ;Hs)−H(Y ;Hs ∪ hf).

D
efi

n
ition

To the extent that g is unbiased, maximizing information gain corresponds to minimizing
loss, and ensures that we not only make the right classification decision but also become
maximally certain. Therefore, as graphically presented in Figure 3.2, we define the reward
of selecting feature hs with cost cf with the set Hs computed to be IHs(Y ;hf)(Bs − 1

2
cf).

Although we do not evaluate in this regime, note that this definition easily incorporates a
setup cost in addition to deadline cost by only computing the area in between setup and
deadline costs.

3.2.2 Features of the state

The featurization function φ(s) extracts the following features from the state:

• Bit vector m of length F : initially all bits are 1 and are set to 0 when the corresponding
feature is computed.

• For each hf , a vector of size df representing the values; 0 until observed.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 29

• Cost feature c ∈ [0, 1], for fraction of the budget spent.

• Bias feature 1.

S
tatic

vs
D

yn
am

ic

These features define the dynamic state, presenting enough information to have a closed-
loop (dynamic) policy that may select different features for different test instances. The
static state has all of the above features except for the observed feature values. This enables
only an open-loop (static) policy, which is exactly the same for all instances. Policy learned
with the static state is used as a baseline in experiments.

3.2.3 Learning the classifier

C
lassifi

ers

We have so far assumed that g can combine an arbitrary subset of features and provide
a distribution P (Y = y)—for example, a Gaussian Naive Bayes (NB) model trained on the
fully-observed data. However, a Naive Bayes classifier suffers from its restrictive indepen-
dence assumptions. Since discriminative classifiers commonly provide better performance,
we’d like to use a logistic regression classifier. Nearest Neighbor methods also provide
a robust classifier for partially observed data, but are slow for large datasets. We consider
them in this exposition and in preliminary experiments reported in Appendix A, but do not
use them in final policy learning experiments due to this problem.

M
issin

g
featu

res

Note that at test time, some feature values are missing. If the classifier is trained exclu-
sively on fully-observed data, then the feature value statistics at test time will not match,
resulting in poor performance. Therefore, we need to learn classifier weights on a distribution
of data that exhibits the pattern of missing features induces by the policy π, and/or try to
intelligently impute unobserved values.

Input: D = {xn, yn}Nn=1; LB
Result: Trained π, g

π0 ← random;
for i← 1 to max iterations do

States, Actions, Costs, Labels ← GatherSamples(D, πi−1);
gi ← UpdateClassifier(States, Labels);
Rewards ← ComputeRewards(States, Costs, Labels, gi,LB, γ);
πi ← UpdatePolicy(States, Actions, Rewards);

end
Algorithm 1: Because reward computation depends on the classifier, and the distribution
of states depends on the policy, g and π are trained iteratively.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 30

Join
t

learn
in

g

At the same time, learning the policy depends on the classifier g, used in the computation
of the rewards. For this reason, the policy and classifier need to be learned jointly: Algo-
rithm 1 gives the iterative procedure. In summary, we start from random π and g, gather a
batch of trajectories. The batch is used to update both g and π. Then new trajectories are
generated with the updated π, rewards are computed using the updated g, and the process
is repeated.

3.2.3.1 Unobserved value imputation

F
orm

u
lation

Unlike the Naive Bayes classifier, the logistic regression classifier is not able to use an
arbitrary subset of features Hπ, but instead operates on feature vectors of a fixed size. To
represent the feature vector of a fully observed instance, we write x = [h1(x), . . . , hf (x)]. In
case that Hπ ⊂ H, we need to fill in unobserved feature values in the vector.

F
orm

u
lation

We can think of the policy as a test-time feature selection function o(x, b) : X ×R 7→ BF ,
where B ∈ {0, 1}, and b ∈ [0, 1] is given and specifies the fractional selection budget. Applied
to x, o(x, b) gives the binary selection vector o which splits x it into observed and unobserved
parts such that xm = [xo,xu]. Xc denotes the fully observed N ×F training set. We assume
that we have only sequential access to the missing-feature test instances xm.

M
ean

im
p

u
tation

A basic strategy is mean imputation: filling in with the mean value of the feature. We
simply replace the missing value in Xm with their row mean in Xc. Because our data is
always zero-mean, this amounts to simply replacing the value with 0.

xπ =

[
hi(x) :

{
hi(x) if hi ∈ Hπ(x)

h̄i otherwise

]
(3.2)

G
au

ssian
Im

p
u

tation

If we assume that x is distributed according to a multivariate Gaussian x ∼ N (0,Σ),
where Σ is the sample covariance XTX and the data is standardized to have zero mean,
then it is possible to do Gaussian imputation. Given a feature subset Hπ, we write:

xπ =

[
xo

xu

]
∼ N

(
0,

[
A C

CT B

])
(3.3)

where xo and xu represent the respectively observed and unobserved parts of the full feature
vector x, A is the covariance matrix of (here and elsewhere, the part of Xc corresponding
to) xo, B is the covariance matrix of xu, and C is the cross-variance matrix that has as many
rows as the size of xo and as many columns as the size of xu (Roweis 1999). In this case,
the distribution over unobserved variables conditioned on the observed variables is given as
xu | xo ∼ N

(
CTA−1xo, B−CTA−1C

)
.

C
om

p
lexity

After computing the complete covariance matrix Σ, which takes O(N3) time, we need to
make N ′ test-time predictions. In the course of the predictions, we may need to compute at
most min(N ′, 2F) unique matrix inversions (again in O(N3)). The size of the matrices being
inverted is proportional to the budget b, making this method slower for larger budgets.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 31

k-N
N

Im
p

u
tation

an
d

P
red

iction

Instead of assuming anything, we could go directly to the source of the covariances—
the actual feature values for all points in the training set. The family of Nearest Neighbor
methods takes this approach. The algorithm for imputation is simple: find the nearest
neighbors in the observed dimensions, and use their averaged values to fill in the unobserved
dimensions. For Xm, we find the k nearest neighbors with the highest dot product similarity
xcTxm or lowest Euclidean distance ‖xc − xm‖, using only the features that are observed
in xm. For imputation, the unobserved values are set to the average across these nearest
neighbors for that dimension. Similarly, we do classification by returning the mode label
of the nearest neighbors.

C
om

p
lexity

Finding the nearest neighbors by dot product similarity is O(NF ′2), and Euclidean dis-
tance is the same with an additional constant term. F ′S is the number of observed dimen-
sions, which grows proportionally with budget b, making this method more expensive with
increased budget.

3.2.3.2 Learning more than one classifier

�1

�2

�3

�4

�1 �2 �3 �4

�1 �2 �3

�1 �2 �3

�4

�4 �1 �2 �3 �4

�1 �2 �3 �4

�1

�2

�3

�4

�1 �2 �3 �4

B = 7B = 4B = 2

Figure 3.3: The action space A of the MDP is the the set of features H, represented by the φ
boxes. The primary discretization of the state space can be visualized by the possible feature
subsets (larger boxes); selected features are colored in the diagram. The feature selection
policy π induces a distribution over feature subsets, for a dataset, which is represented by
the shading of the larger boxes. Not all states are reachable for a given budget B. In the
figure, we show three “budget cuts” of the state space.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 32

S
u

b
set

clu
sterin

g

As illustrated in Figure 3.3, the policy π selects some feature subsets more frequently
than others. Instead of learning only one classifier g that must be robust to all observed
feature subsets, we can learn several classifiers, one for each of the most frequent subsets.
This is done by maintaining a distribution over encountered feature subsets during training.

We use hierarchical agglomerative clustering, growing clusters bottom-up from the ob-
served masks. In the case of training K classifiers, we need to find K clusters such that
the masks are distributed as evenly as possible into the clusters. The distance measure for
the binary masks is the Hamming distance; standard K-Means clustering technique is not
applicable to this distance measure. Each one of K classifiers is trained with the Liblinear
implementation of logistic regression, with L2 regularization parameter K-fold cross-validated
at each iteration.

3.3 Evaluation

S
ettin

gs

We evaluate the following sequential selection baselines:

• Static, greedy: corresponds to best performance of a policy that does not observe
feature values and selects actions greedily (γ = 0).

• Static, non-myopic: policy that does not observe feature values but uses the MDP
machinery with γ = 1 to consider future action rewards.

• Dynamic, greedy: policy that observed feature values, but selects actions greedily.

Our method is the Dynamic, non-myopic policy: observed feature values, and full
lookahead.

M
etrics

We evaluate two forms of test-time efficient performance measure: the area under the
curve and the performance at max budget. (Note that all methods are trained only for the
former measure.)

C
lassifi

er

In preliminary experiments, Logistic Regression always performed better than the Gaus-
sian Naive Bayes classifier, and so only the former is used in the experiments below. We
evaluated classification with Gaussian vs. Mean imputation, and with different number
of classifiers (1, 3, and 6) clustered by feature subsets. We found that Gaussian imputation
performed better than mean imputation, but not substantially, and at additional cost. Al-
though increased number of classifiers sometimes increased performance, it also made our
method prone to overfitting. In the final accounting, K = 1 classifiers worked best on all
tasks. Results of detailed experiments on imputation and clustering are given in Appendix A.
For policy experiments, we report only the best achieved imputation method.

D
etails

For details on the reinforcement learning implementation, see Section 2.2.1 and Sec-
tion 2.3. We largely rely on classifier implementations in the scikit-learn package (Pe-
dregosa et al. 2011). With pre-computed features, our training procedure takes only a few
hours on an 8-core Xeon E5620 machine for each of the experiments below.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 33

3.3.1 Experiment: Synthetic

d0

�3

0

3

d 1

�3

0

3

d
3

�3

0

3

Feature Number Cost
di: sign of dimension i D 1
qo: label of datapoint,
if in quadrant o

2D 10

Figure 3.4: See text for explanation.

S
etu

p

Following Xu et al. 2013, we first show that the policy works as advertised in a challenging
synthetic example. In D-dimensional space, the data has a label for each of the 2D orthants,
and is generated by a unit-variance Gaussian in that orthant (See top left of Figure 3.4 for
the 3D case). There are D cheap features that simply return the sign of the data point’s
coordinate for the corresponding dimension. For each orthant, there is also an expensive
feature that returns the data point’s label if the point is located in the corresponding orthant,
and random noise otherwise.

R
esu

lts

The optimal policy on a new data point is to determine its orthant with cheap features,
and then take the corresponding expensive action. Note that both dynamic features and
non-myopic learning are crucial to the optimal policy, which is successfully found by our
approach. Figure 3.5 shows the results of this optimal policy, a random policy, and of
different baselines and our method, trained given the correct minimal budget.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 34

3.3.2 Experiment: Scene recognition

S
etu

p

The Scene-15 dataset (Lazebnik-CVPR-2006) contains 4485 images from 15 visual
scene classes. The task is to classify images according to scene. Following (Xiao et al.
2010), we extracted 14 different visual features (GIST, HOG, TinyImages, LBP, SIFT, Line
Histograms, Self-Similarity, Textons, Color Histograms, and variations). The features vary
in cost from 0.3 seconds to 8 seconds, and in single-feature accuracy from 0.32 (TinyImages)
to .82 (HOG). Separate multi-class linear SVMs were trained on each feature channel, using
a random 100 positive example images per class for training. We used the liblinear

implementation, and K-fold cross-validated the penalty parameter C. The trained SVMs
were evaluated on the images not used for training, resulting in a dataset of 2238 vectors of
210 confidence values: 15 classes for each of the 14 feature channels. This dataset was split
60-40 into training and test sets for our experiments.

R
esu

lts

Figure 3.6 shows the results, including learned policy trajectories. For all evaluated
budgets, our dynamic, non-myopic method outperforms all others on the area under the
error vs. cost curve metric. Our results on this dataset match the reported results of
Active Classification (Gao and Koller 2011) (Figure 2) and Greedy Miser (Xu, Weinberger,
and Chapelle 2012) (Figure 3), although both methods use an additional powerful feature
channel (ObjectBank)1.

3.3.3 Experiment: ImageNet and maximizing specificity

S
etu

p

The full ImageNet dataset has over 10K categories and over a million images (Deng et
al. 2010). The classes are organized in a hierarchical structure, which can be exploited for
novel recognition tasks. We evaluate on a 65-class subset introduced in “Hedging Your Bets”
(Deng et al. 2012). In this evaluation, we consider the situation where the initial feature
computation has already happened, and the task is to find a path through existing one-vs-
all classifiers: features correspond to Platt-scaled SVM confidences of leaf-node classifiers
(trained on SIFT-LLC features), and each has cost 1 (Deng et al. 2010). Following (Deng
et al. 2012), accuracy is defined on all nodes, and inner node confidences are obtained by
summing the probabilities of the descendant nodes.

R
esu

lts

We combine our sequential feature selection with the “Hedging Your Bets” method for
backing off prediction nodes using the ImageNet hierarchy to maintain guaranteed accuracy
while giving maximally specific answers, given a cost budget. The results are given in Fig-
ure 3.7. As the available budget increases, the specificity (defined by normalized information
gain in the hierarchy) of our predictions also increases, while accuracy remains constant.
Visualizing this on the ILSVRC-65 hierarchy, we see that the fraction of predictions at the
leaf nodes grows with available computation time. This formulation presents a novel angle
on modeling the time course of human visual perception.

1Detailed results for this and other experiments are on the project page (see front page for the link).

http://sergeykarayev.com/recognition-on-a-budget/

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 35

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

0 1 2 3 4

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

0 1 2

Number in action sequence

d0
d1
d2
q0
q1
q2
q3
q4
q5
q6
q7

A
ct

io
n

random optimal

static, non-myopic dynamic, non-myopic

0 2 4 6 8 10 12 14
Cost

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

Optimal

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

Optimal Random Static,
greedy

Static,
non-myopic

Dynamic,
greedy

Dynamic,
non-myopic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.318

0.000

0.617

0.453

0.610

0.444 0.455

0.355

0.618

0.452

0.331

0.000

Area under Error vs. Cost curve

Final Error

Figure 3.5: Evaluation on the synthetic example (best viewed in color). The sample feature
trajectories of different policies at top: the opacity of the edges corresponds to their preva-
lence during policy execution; the opacity of the nodes corresponds to the amount of reward
obtained in that state. Note that the static, non-myopic policy correctly learns to select
the cheap features first, but is not able to correctly branch, while our dynamic, non-myopic
approach finds the optimal strategy. The plots in the bottom half give the error vs. cost
numbers.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 36

0 1 2 3 4 5 6
Cost

0.0

0.2

0.4

0.6

0.8

1.0

E
rr

or

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

All features (cost 29.6)

Random Static,
greedy

Static,
non-myopic

Dynamic,
greedy

Dynamic,
non-myopic

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.447

0.301 0.293
0.256

0.371 0.356

0.219
0.175

0.195

0.145

Area under Error vs. Cost curve

Final Error

(a) Error given by policies learned for a budget =
5.

5 10 15 20 25 30
Max Budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
re

a
u

n
d

er
th

e
E

rr
or

v
s.

C
os

t
cu

rv
e

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

(b) Areas under error vs. cost curves of
policies learned at different budgets.

0 1 2 3 4 5

Number in action sequence

gist
hog2x2

tiny image
lbp

lbphf
denseSIFT

line hists
gistPadding

sparse sift
ssim

texton
geo map8x8

geo texton
geo color

A
ct

io
n

(c) Trajectory of our static policy.

0 1 2 3 4

Number in action sequence

gist
hog2x2

tiny image
lbp

lbphf
denseSIFT

line hists
gistPadding

sparse sift
ssim

texton
geo map8x8

geo texton
geo color

A
ct

io
n

(d) Trajectory of our dynamic policy.

Figure 3.6: Results on Scenes-15 dataset (best viewed in color). Figure (a) shows the error
vs. cost plot for policies learned given a budget of 5 seconds. Figure (b) aggregates the area
under the error vs. cost plot metrics for different policies and budgets, showeing that our
approach outperforms baselines no matter what budget it’s trained for. Figures (d) and (e)
shows the branching behavior of our dynamic policy vs the best static policy.

CHAPTER 3. REINFORCEMENT LEARNING FOR ANYTIME CLASSIFICATION 37

10 20 30 40 50 60
Max Budget

0.75

0.80

0.85

0.90

0.95

1.00

A
re

a
u

n
d

er
th

e
E

rr
or

v
s.

C
os

t
cu

rv
e

Random

Static, greedy

Static, non-myopic

Dynamic, greedy

Dynamic, non-myopic

(a) Areas under error vs. cost curves for policies
learned at different budgets. (No specificity back-
off is performed here).

0 5 10 15 20 25 30

Cost

0.0

0.2

0.4

0.6

0.8

1.0

Accuracy (target 0.9)

Specificity at target accuracy

(b) Holding prediction accuracy constant,
we achieve increased specificity with in-
creased cost (on Dynamic, non-myopic
policy, budget = 36).

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

Cost: 1

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

Cost: 9

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

Cost: 17

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

vehicle

boat

carcat

object

bird

animal

dog

Cost: 26
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) We visualize the fraction of predictions made at inner vs. leaf nodes of ILSVRC-65 at
different cost points of an Anytime policy: with more computation, accurate predictions are
increasingly made at the leaf nodes.

Figure 3.7: Results on the ILSVRC-65 dataset (best viewed in color). Figure (a) shows
our dynamic approaches outperforming static baselines for all practical cost budgets. When
our method is combined with Hedging Your Bets (Deng et al. 2012), a constant prediction
accuracy can be achieved at all points in the Anytime policy, with specificity of predictions
increasing with the cost of predictions. Figures (b) and (c) show this for the dynamic, non-
myopic policy learned for budget = 26. This is analogous to human visual performance,
which shows increased specificity at longer stimulus times.

38

Chapter 4

Detection with the Cascade CNN

M
otivation

With the rise of Convolutional Neural Networks (CNNs) for visual recognition, the state-
of-the-art in detection has shifted. Whereas in Section 2.1, a detector model was trained
per class, and evaluated densely on the image, currently best-performing methods train
one detector for all classes, and evaluate on a subset of possible image regions (Girshick
et al. 2014). The method is still computationally expensive, taking about 10 seconds per
image even with multi-threaded matrix and convolution operations. The strategy to speed
detection up, however, has to change.

4.1 Method

R
-C

N
N

We take the R-CNN ibid. method as our point of departure. As summarized in Figure 4.1,
R-CNN starts with external region-of-interest proposals (ROIs), which are transformed to
canonical size, and classified with a CNN, obtaining multi-class scores for each region. After
all batches of ROIs have been scored, they are post-processed with non-maximal suppression
and other bounding box refinement to obtain the final detections.

O
u

r
m

eth
o

d

As summarized in Figure 4.2, we begin with the same ROI proposals, but first score all
proposals with a quick-to-compute feature. We then select a batch of highly-scoring ROIs
and classify them with the CNN – which is additionally sped up with cascaded structure.
After the batch is scored, we optionally re-score the remaining ROIs, and repeat the process
until either time or regions are depleted. The quick-to-compute feature is used to select
batches of regions in a way that orders the regions most likely to contain ground truth
objects earlier than other regions. This process of region selection does not reject regions
flat out, but reorders them to be processed later.

CHAPTER 4. DETECTION WITH THE CASCADE CNN 39

R
egion

ord
er

We found that simply sorting the regions by score and taking batches in that sorted
order results in poor performance, and can be worse than taking regions in an entirely
random order, as the highest scoring regions may be highly overlapping with each other,
and only result in one detection after non-maximal suppression and other post-processing of
detections. Instead, we put regions in random order, set a threshold for the quick-to-compute
feature such that only half of the unprocessed regions score above it, take a batch of the
above-threshold regions in their order, update the threshold, and repeat.

Crop & Warp CNN Classify Post-process

Figure 4.1: R-CNN architecture: image regions are cropped, resized, and each one fed
through a CNN. The classifier outputs are post-processed to give the final detections.

Fast feature

Fast feature

Fast feature

Fast feature

1. Pick top regions

3. Pick top regions

4. Repeat

2. Classify
(with Cascade-CNN)

5. Post-process,
if out of time

Figure 4.2: Our method scores each region of interest with a fast feature (we evaluate several),
allowing us to pick promising regions first. The regions are classified with the original CNN,
or a sped-up Cascade-CNN. The properties of the regions can play a role in selecting the
next batch of regions.

CHAPTER 4. DETECTION WITH THE CASCADE CNN 40

0 1000 2000 3000 4000 5000

mean 2001, sd 693

Figure 4.3: Distribution of number of regions per image.

4.1.1 Quick-to-compute feature

R
egion

statistics

For the first source of information, we consider statistics about ROI location and over-
lap with other regions. For each ROI, we compute: its normalized location, its scale
(
√

width× height), aspect ratio (log
√

width/height), and normalized counts of overlapping
regions, at several PASCAL overlap thresholds (0, 0.2, 0.6). This simple feature works
suprisingly well for filtering regions to process first.

P
ixel

grad
ien

t

In concatenation, we also consider the pixel gradient, back-propagated throgh a classi-
fication CNN applied to the whole image. This feature corresponds to a kind of saliency
map, giving an estimate of the importance of each pixel to the final classification of the
image. Our method is independently developed, but agrees with the concurrently published
work of Simonyan, Vedaldi, and Zisserman 2014 quite closely. Images are resized to square
and classified with an “AlexNet” Krizhevsky, Sutskever, and Hinton 2012b CNN fine-tuned
on the PASCAL VOC classification dataset with multi-label loss. (Unlike the ILSVRC, the
PASCAL VOC is a multi-label prediction task, with at times multiple correct labels for an
image.) At test-time, the gradient at the top is with respect to the indicator function of
the max-scoring class, and is back-propagated all the way to the pixels, where it is summed
across channels. A couple of example images are shown in Figure 4.4. We compute an
integral image on this pixel gradient map, allowing near-instant computation of sums in ar-
bitrary regions. For each region to be evaluated, we compute the image-normalized gradient
sum, sums for each of four corners, and ratio of in-region vs. out-of-region sums.

CHAPTER 4. DETECTION WITH THE CASCADE CNN 41

Fast features

system on product data gathered for TO-1, and expose the learned models in an API. To extend
our API to the localization use case, we will first deploy our current implementation of localization
with deep learning, based on proposing subregions of an image based on automatic semantic
segmentation [8]. This method is currently state-of-the-art for detection on the PASCAL dataset,
but is computationally expensive.

We will explore speed-ups based on using Markov Decision Processes for dynamic selection of
image regions, as previously implemented for other object detection systems by the PI [10].
Additionally, we have an exciting new technique of backpropagating the gradient from the top
classification layers down to pixels of the image, effectively localizing the recognized object as in
Figure 7. This novel method is highly promising for accurate localization at no extra
computaitonal cost.

Figure 7. Preliminary result of performing cat localization with deep learning models under our
framework, where red areas represent most probably cat locations. Robust localization are
observed even with highly occluded scenarios (e.g. the example on the right).

Task: Design and develop order-of-magnitude speed-up for training the deep network.
We will attack specific research challenges in sequence:

1. To maintain efficient communication between multiple GPUs across multiple machines.
While Google Brain [5] showed the possibility to utilize multiple CPUs to do distributed
computation, GPU computation poses higher challenges since network and I/O emerges to
be new computational bottlenecks. It would also be both a research and industry challenge
to make such large systems energy efficient.

2. To have non-blocking communication to maximize computation resource usage, we will
analyze and extend the current asynchronous stochastic optimization approaches in the
context of deep convolutional networks. We will also explore the research challenge of a
self-evolving framework: each machine learns the latency of multiple components of its
computation (disk I/O, GPU computation, network) at runtime and adaptively updates its
communication and computation policy.

3. To allow more efficient model selection we will combine conventional searching
algorithms together with deep learning problems to conduct efficient parameter search in a
complex, high-dimensional hyperparameter space. Earlier research results such as

system on product data gathered for TO-1, and expose the learned models in an API. To extend
our API to the localization use case, we will first deploy our current implementation of localization
with deep learning, based on proposing subregions of an image based on automatic semantic
segmentation [8]. This method is currently state-of-the-art for detection on the PASCAL dataset,
but is computationally expensive.

We will explore speed-ups based on using Markov Decision Processes for dynamic selection of
image regions, as previously implemented for other object detection systems by the PI [10].
Additionally, we have an exciting new technique of backpropagating the gradient from the top
classification layers down to pixels of the image, effectively localizing the recognized object as in
Figure 7. This novel method is highly promising for accurate localization at no extra
computaitonal cost.

Figure 7. Preliminary result of performing cat localization with deep learning models under our
framework, where red areas represent most probably cat locations. Robust localization are
observed even with highly occluded scenarios (e.g. the example on the right).

Task: Design and develop order-of-magnitude speed-up for training the deep network.
We will attack specific research challenges in sequence:

1. To maintain efficient communication between multiple GPUs across multiple machines.
While Google Brain [5] showed the possibility to utilize multiple CPUs to do distributed
computation, GPU computation poses higher challenges since network and I/O emerges to
be new computational bottlenecks. It would also be both a research and industry challenge
to make such large systems energy efficient.

2. To have non-blocking communication to maximize computation resource usage, we will
analyze and extend the current asynchronous stochastic optimization approaches in the
context of deep convolutional networks. We will also explore the research challenge of a
self-evolving framework: each machine learns the latency of multiple components of its
computation (disk I/O, GPU computation, network) at runtime and adaptively updates its
communication and computation policy.

3. To allow more efficient model selection we will combine conventional searching
algorithms together with deep learning problems to conduct efficient parameter search in a
complex, high-dimensional hyperparameter space. Earlier research results such as

Gradient back-propagation

111

Architecture

CONV

LOCAL CONTRAST NORM

MAX POOLING

FULLY CONNECTED

LINEAR

CONV

LOCAL CONTRAST NORM

MAX POOLING

CONV

CONV

CONV

MAX POOLING

FULLY CONNECTED

Total nr. params: 60M

4M

16M

37M

442K

1.3M

884K

307K

35K

Total nr. flops: 832M

4M

16M

37M

74M

224M

149M

223M

105M

RanzatoKrizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

category
prediction

input

Region properties

• Location, aspect ratio, scale

• Counts of unevaluated overlapping
regions (at different thresholds)

• Counts of evaluated overlapping
regions

Figure 4.4: As a quick feature, we back-propagate the gradient from the top classification
layer all the way to the input pixels. This induces a kind of saliency map on the image,
which is useful signal for selecting image sub-regions to classify with the CNN.

4.1.2 Cascade CNN

M
otivation

Despite the intentions of the region-proposal mechanism (Uijlings et al. 2013), most ROIs
that are scored in R-CNN do not contain any object of interest. As in the classic cascade of
Viola and Jones 2004, it would be useful to quickly reject these regions, without expending
the full amount of computation on them. The problem is that the deep neural network
architecture is trained to always run all the way through. We need to introduce a new
primitive to enable early termination.

M
eth

o
d

The Cascade CNN, shown in Figure 4.5, augments the CNN network with an “Early
Reject” option: after some layers, the network decides whether to keep processing the input
with the next layer. Each reject layer is implemented as a fully-connected layer following a
linear rectification, trained with dropout using logistic loss on foreground/background labels.
We first train an AlexNet-architecture network (Krizhevsky, Sutskever, and Hinton 2012b)
on the ImageNet classification dataset. This network is augmented with the Reject layers,
its loss replaced with a multi-label cross-entropy loss, and fine-tuning on the PASCAL VOC
training set is performed until loss stop decreasing (roughly 50000 iterations). In training,
all instances pass through all Reject layers. After training, we set the reject thresholds to
maintain at last 80% recall at each stage, using a large sample of regions from images in the
validation set containing positive and negative examples in equal proportion.

CHAPTER 4. DETECTION WITH THE CASCADE CNN 42

Im
p

lem
en

tation

In the efficient implementation of CNNs we use (Caffe), there is a simple loop over each
batch element in both CPU and GPU convolution code. We modify this loop to simply not
perform convolution on those elements that were rejected earlier in the cascade. 1 Since most
of the time is spent in the convolutional layers, we introduce a reject option after pool1,
pool2, and conv3. The last classification layer still outputs the full multi-class scores for
the surviving regions.

T
im

in
g

To estimate the saving on time by using the rejectors we timed the time spend to process
1000 regions (10 batches or 100) and the time expended in each of the first 3 layers:

• 1700 ms to process all the layers

• 270 ms (15%) in layer 1 (This includes conv1, relu1, pool1, norm1)

• 360 ms (20%) in layer 2 (This includes conv2, relu2, pool2, norm2)

• 285 ms (15%) in layer 3 (This includes conv3, relu3)

Therefore the expected “lifetimes” of regions rejected after layer 1, layer 2, and layer 3 are
0.15, 0.35, and 0.5 of the total time taken per region.

conv pool conv pool fully-connected

1 of K label

fully-connected

binary label binary label

fully-connected

+ recall % + recall % + accuracy

Figure 4.5: The Cascade CNN has a Reject option after computationally expensive layers,
implemented as a binary prediction for reject/keep (background/foreground for our detection
task). The goal of the Reject layer is to maintain high recall while culling as much of the
batch as possible, so that we can avoid doing as much convolution in the next layer.

1While memory remains occupied in this scheme, we do not consider this a problem.

CHAPTER 4. DETECTION WITH THE CASCADE CNN 43

4.2 Evaluation

D
ataset

We evaluate on the standard object detection benchmark: the PASCAL VOC Evering-
ham et al. 2010. In all cases, the CNN region classifiers are trained on the PASCAL VOC
2007 trainval set. The parameters of our methods are set by training or cross-validation on
the VOC 2007 val set. We evaluate on the VOC 2007 test set. The result plots and details
are shown in Figure 4.6 and Table 4.1.

Im
p

lem
en

tation

The scoring function for the quick-to-compute features is trained by a logistic regression
classifier onto the max PASCAL overlap with any ground truth window on the validation
dataset. The classifier is optimized by stochastic gradient descent, and its regularization
parameter is cross-validated. The R-CNN software was used as available in June 2014. 2

That software relies on Selective Search Uijlings et al. 2013 region proposals. Different images
are proposed different numbers of regions. Figure 4.3 shows the distribution of number of
regions on the validation set, with the parameters of the R-CNN. An additional parameter
is the size of each batch of regions that goes through the CNN. We set batch size to 100
regions, and observe that it takes on average 500 ms to process them with the CNN. In all
experiments, we use Ubuntu 12.04, Intel i5 3.2GHz CPU, and NVIDIA Tesla K40 GPU.

Table 4.1: Full table of AP vs. Time results on PASCAL VOC 2007. Best performance for
each time point is in bold.

Time allotted (ms) 0 300 600 1300 1800 3600 7200 10000

Original 0 0.000 0.176 0.211 0.244 0.368 0.496 0.544

Random 0 0.000 0.295 0.381 0.426 0.504 0.536 0.544

C-CNN 0 0.327 0.430 0.493 0.510 0.528 0.528 -

Region Selection w/ Gradient 0 0.000 0.424 0.469 0.490 0.526 0.542 0.544

C-CNN, Region Selection w/ Gradient 0 0.198 0.442 0.502 0.517 0.528 0.528 -

The experimental settings are

Original
The original order of the Selective Search regions of interest. This order is influenced
by the hierarchical segmentation of their method, and so has sequences of highly over-
lapping regions.

Random
A completely blind permutation of the original order.

2https://github.com/rbgirshick/rcnn

https://github.com/rbgirshick/rcnn

CHAPTER 4. DETECTION WITH THE CASCADE CNN 44

Region Selection
The region statistics feature is always used. Additionally, we consider the Pixel Gra-
dient feature, with setup time of the gradient forward-back propagation of 20 ms.

Cascade CNN
The Cascade CNN model, as described in Section 4.1.2. The first experiment (C-CNN)
takes batches of regions in a random order. The next two experiments also make use
of the Region Selection methodology with the quick-to-compute feature.

A
n

alysis

Since the time to process a full batch with a non-Cascade CNN is 500 ms, there are no
results for non-cascaded baselines at 300 ms. At this time, the Cascade CNN without any
region ordering is best. A reason for why C-CNN with Region Selection is not as good at
this point is that the region selection presents better region candidates, with fewer rejection
opportunities, and thus has less coverage of the image. At 600 ms, C-CNN method have
had more than one batch go through, and the Region Selection is giving it a lead over the
simple C-CNN. Both method are better than the baseline non-cascaded methods for this
entire duration.

CHAPTER 4. DETECTION WITH THE CASCADE CNN 45

0 2000 4000 6000 8000 10000

Time allotted (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

m
A

P

VOC mean AP vs Time Allotted

Original

Random

C-CNN

Region Selection w/ Gradient

C-CNN, Region Selection w/ Gradient

(a) Plotting Mean AP vs. Time Allotted allows comparison performance at a given time budget.
For example, at 1300 ms, random region selection gets about 0.42 mAP, while our best method
(C-CNN with gradient-based region selection) obtains 0.50 mAP.

0 5 10 15 20 25 30 35 40
Speedup

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
A

P

Original

Random

C-CNN

Region Selection w/ Gradient

C-CNN, Region Selection w/ Gradient

(b) Plotting mean AP vs. speed-up factor allows comparison of speed-ups at a given mAP point.
For example, we can see that we should obtain mAP of 0.40 at around 20x speedup with our
method.

Figure 4.6: Results of the Cascade CNN and other Anytime methods on the PASCAL VOC
2007 dataset.

46

Chapter 5

Recognizing Image Style

M
otivation

Deliberately-created images convey meaning, and visual style is often a significant com-
ponent of image meaning. For example, a political candidate portrait made in the lush
colors of a Renoir painting tells a different story than if it were in the harsh, dark tones of
a horror movie. Distinct visual styles are apparent in art, cinematography, advertising, and
have become extremely popular in amateur photography, with apps like Instagram leading
the way. While understanding style is crucial to image understanding, very little research in
computer vision has explored visual style.

D
efi

n
ition

We define several different types of image style, and gather a new, large-scale dataset
of photographs annotated with style labels. This dataset embodies several different aspects
of visual style, including photographic techniques (“Macro,” “HDR”), composition styles
(“Minimal,” “Geometric”), moods (“Serene,” “Melancholy”), genres (“Vintage,” “Roman-
tic,” “Horror”), and types of scenes (“Hazy,” “Sunny”). These styles are not mutually
exclusive, and represent different attributes of style. We also gather a large dataset of visual
art (mostly paintings) annotated with art historical style labels, ranging from Renaissance
to modern art. Figure 5.1 shows some samples. Analyzing style of non-photorealistic media
is interesting as much of our present understanding of visual style arises out of thousands of
years of developments in fine art, marked by distinct historical styles.

CHAPTER 5. RECOGNIZING IMAGE STYLE 47

HDR Macro

Vintage Noir

Minimal Hazy

Long Exposure Romantic

(a) Flickr Style: 80K images covering 20 styles.

Baroque Roccoco

Northern Renaissance Cubism

Impressionism Post-Impressionism

Abs. Expressionism Color Field Painting

(b) Wikipaintings: 85K images for 25 genres.

Figure 5.1: Typical images in different style categories of our datasets.

5.1 Method

A
p

proach

We test existing classification algorithms on these styles, evaluating several state-of-the-
art image features. Most previous work in aesthetic style analysis has used hand-tuned
features, such as color histograms. We find that deep convolutional neural network (CNN)
features perform best for the task. This is surprising for several reasons: these features were
trained on object class categories (ImageNet), and many styles appear to be primarily about
color choices, yet the CNN features handily beat color histogram features. This leads to
one conclusion of our work: mid-level features derived from object datasets are generic for
style recognition, and superior to hand-tuned features. We compare our predictors to human
observers, using Amazon Mechanical Turk experiments, and find that our classifiers predict
Group membership at essentially the same level of accuracy as Turkers. We also test on the
AVA aesthetic prediction task (Murray, Marchesotti, and Perronnin 2012), and show that
using the “deep” object recognition features improves over the state-of-the-art results.

CHAPTER 5. RECOGNIZING IMAGE STYLE 48

A
p

p
lication

s
an

d
co

d
e

First, we demonstrate an example of using our method to search for images by style.
This could be useful for applications such as product search, storytelling, and creating slide
presentations. In the same vein, visual similarity search results could be filtered by visual
style, making possible queries such as “similar to this image, but more Film Noir.” Second,
style tags may provide valuable mid-level features for other image understanding tasks.
For example, there has increasing recent effort in understanding image meaning, aesthetics,
interestingness, popularity, and emotion (for example, (Gygli, Nater, and Gool 2013; Isola
et al. 2011; Joo et al. 2014; Khosla, Sarma, and Hamid 2014)), and style is an important
part of meaning. Finally, learned predictors could be a useful component in modifying the
style of an image. All data, trained predictors, and code (including results viewing interface)
are available at http://sergeykarayev.com/recognizing-image-style/.

5.1.1 Data Sources

M
otivation

Building an effective model of photographic style requires annotated training data. To our
knowledge, there is only one existing dataset annotated with visual style, and only a narrow
range of photographic styles is represented (Murray, Marchesotti, and Perronnin 2012). We
would like to study a broader range of styles, including different types of styles ranging from
genres, compositional styles, and moods. Morever, large datasets are desirable in order to
obtain effective results, and so we would like to obtain data from online communities, such
as Flickr.

5.1.1.1 Flickr Style

S
ou

rce

Although Flickr users often provide free-form tags for their uploaded images, the tags
tend to be quite unreliable. Instead, we turn to Flickr groups, which are community-curated
collections of visual concepts. For example, the Flickr Group “Geometry Beauty” is de-
scribed, in part, as “Circles, triangles, rectangles, symmetric objects, repeated patterns”,
and contains over 167K images at time of writing; the “Film Noir Mood” group is described
as “Not just black and white photography, but a dark, gritty, moody feel...” and comprises
over 7K images.

At the outset, we decided on a set of 20 visual styles, further categorized into types:

• Optical techniques: Macro, Bokeh, Depth-of-Field, Long Exposure, HDR

• Atmosphere: Hazy, Sunny

• Mood: Serene, Melancholy, Ethereal

• Composition styles: Minimal, Geometric, Detailed, Texture

• Color: Pastel, Bright

• Genre: Noir, Vintage, Romantic, Horror

http://sergeykarayev.com/recognizing-image-style/

CHAPTER 5. RECOGNIZING IMAGE STYLE 49

For each of these stylistic concepts, we found at least one dedicated Flickr Group with
clearly defined membership rules. From these groups, we collected 4,000 positive examples
for each label, for a total of 80,000 images. Example images are shown in Figure 5.1a.

D
ealin

g
w

ith
N

oise

The derived labels are considered clean in the positive examples, but may be noisy in
the negative examples, in the same way as the ImageNet dataset (Deng et al. 2009). That
is, a picture labeled as Sunny is indeed Sunny, but it may also be Romantic, for which it
is not labeled. We consider this an unfortunate but acceptable reality of working with a
large-scale dataset. Following ImageNet, we still treat the absence of a label as indication
that the image is a negative example for that label. Mechanical Turk experiments described
in subsubsection 5.2.1.1 serve to allay our concerns.

5.1.1.2 Wikipaintings

S
ou

rce

We also provide a new dataset for classifying painting style. To our knowledge, no
previous large-scale dataset exists for this task – although very recently a large dataset of
artwork did appear for other tasks (Mensink and Gemert 2014). We collect a dataset of
100,000 high-art images – mostly paintings – labeled with artist, style, genre, date, and
free-form tag information by a community of experts on the Wikipaintings.org website.
Our dataset presents significant stylistic diversity, primarily spanning Renaissance styles to
modern art movements.We select 25 styles with more than 1,000 examples, for a total of
85,000 images. Example images are shown in Figure 5.1b.

5.1.2 Learning algorithm

M
u

lti-C
lass

L
ogistic

R
egression

via
S

G
D

We learn to classify novel images according to their style, using the labels assembled in the
previous section. Because the datasets we deal with are quite large and some of the features
are high-dimensional, we consider only linear classifiers, relying on sophisticated features to
provide robustiness. We use an open-source implementation of Stochastic Gradient Descent
with adaptive subgradient (Agarwal et al. 2012). The learning process optimizes the function

min
w
λ1‖w‖1 +

λ2
2
‖w‖22 +

∑
i

`(xi, yi, w)

We set the L1 and L2 regularization parameters and the form of the loss function by validation
on a held-out set. For the loss `(x, y, w), we consider the hinge (max(0, 1 − y · wTx)) and
logistic (log(1 + exp(−y · wTx))) functions. We set the initial learning rate to 0.5, and
use adaptive subgradient optimization (Duchi, Hazan, and Singer 2011). Our setup is of
multi-class classification; we use the One vs. All reduction to binary classifiers.

CHAPTER 5. RECOGNIZING IMAGE STYLE 50

5.1.3 Image Features

M
otivation

In order to classify styles, we must choose appropriate image features. We hypothesize
that image style may be related to many different features, including low-level statistics
(Lyu, Rockmore, and Farid 2004), color choices, composition, and content. Hence, we test
features that embody these different elements, including features from the object recognition
literature. We evaluate single-feature performance, as well as second-stage fusion of multiple
features.

L*a*b color histogram. Many of the Flickr styles exhibit strong dependence on color.
For example, Noir images are nearly all black-and-white, while most Horror images are very
dark, and Vintage images use old photographic colors. We use a standard color histogram
feature, computed on the whole image. The 784-dimensional joint histogram in CIELAB
color space has 4, 14, and 14 bins in the L*, a*, and b* channels, following Palermo et
al. (Palermo, Hays, and Efros 2012), who showed this to be the best performing single
feature for determining the date of historical color images.

GIST. The classic gist descriptor (Oliva and Torralba 2001) is known to perform well for
scene classification and retrieval of images visually similar at a low-resolution scale, and thus
can represent image composition to some extent. We use the INRIA LEAR implementation,
resizing images to 256 by 256 pixels and extracting a 960-dimensional color GIST feature.

Graph-based visual saliency. We also model composition with a visual attention feature
(Harel, Koch, and Perona 2006). The feature is fast to compute and has been shown to
predict human fixations in natural images basically as well as an individual human (humans
are far better in aggregate, however). The 1024-dimensional feature is computed from images
resized to 256 by 256 pixels.

Meta-class binary features. Image content can be predictive of individual styles, e.g.,
Macro images include many images of insects and flowers. The mc-bit feature (Bergamo and
Torresani 2012) is a 15,000-dimensional bit vector feature learned as a non-linear combination
of classifiers trained using existing features (e.g., SIFT, GIST, Self-Similarity) on thousands
of random ImageNet synsets, including internal ILSVRC2010 nodes. In essence, MC-bit
is a hand-crafted “deep” architecture, stacking classifiers and pooling operations on top of
lower-level features.

CHAPTER 5. RECOGNIZING IMAGE STYLE 51

Table 5.1: Mean APs on three datasets for the considered single-channel features and their
second-stage combination. As some features were clearly worse than others on the AVA Style
dataset, only the better features were evaluated on larger datasets.

Fusion x Content DeCAF6 MC-bit L*a*b* Hist GIST Saliency random

AVA Style 0.581 0.579 0.539 0.288 0.220 0.152 0.132

Flickr 0.368 0.336 0.328 - - - 0.052

Wikipaintings 0.473 0.356 0.441 - - - 0.043

Deep convolutional net. Current state-of-the-art results on ImageNet, the largest image
classification challenge, have come from a deep convolutional network trained in a fully-
supervised manner (Krizhevsky, Sutskever, and Hinton 2012a). We use the Caffe (Jia
2013) open-source implementation of the ImageNet-winning eght-layer convolutional net-
work, trained on over a million images annotated with 1,000 ImageNet classes. We inves-
tigate using features from two different levels of the network, referred to as DeCAF5 and
DeCAF6 (following (Donahue et al. 2013b)). The features are 8,000- and 4,000-dimensional
and are computed from images center-cropped and resized to 256 by 256 pixels.

Content classifiers. Following Dhar et al. (Dhar, Berg, and Brook 2011), who use high-
level classifiers as features for their aesthetic rating prediction task, we evaluate using object
classifier confidences as features. Specifically, we train classifiers for all 20 classes of the
PASCAL VOC (Everingham et al. 2010) using the DeCAF6 feature. The resulting classifiers
are quite reliable, obtaining 0.7 mean AP on the VOC 2012. We aggregate the data to train
four classifiers for “animals”, “vehicles”, “indoor objects” and “people”.

Fusion. These aggregate classes are presumed to discriminate between vastly different
types of images – types for which different style signals may apply. For example, a Romantic
scene with people may be largely about the composition of the scene, whereas, Romantic
scenes with vehicles may be largely described by color. To enable our classifiers to learn
content-dependent style, we can take the outer product of a feature channel with the four
aggregate content classifiers.

CHAPTER 5. RECOGNIZING IMAGE STYLE 52

5.2 Evaluation

5.2.1 Experiment: Flickr Style

S
etu

p

We learn and predict style labels on the 80,000 images labeled with 20 different visual
styles of our new Flickr Style dataset, using 20% of the data for testing, and another 20% for
parameter-tuning validation. There are several performance metrics we consider. Average
Precision evaluation (as reported in Table 5.1 and in Table B.2) is computed on a random
class-balanced subset of the test data (each class has equal prevalence). We compute confu-
sion matrices (Figure B.3, Figure B.4) on the same data. Per-class accuracies are computed
on subsets of the data balanced by the binary label, such that chance performance is 50%.
We follow these decisions in all following experiments.

S
in

gle
featu

res

The best single-channel feature is DeCAF6 with 0.336 mean AP; feature fusion obtains
0.368 mean AP. Per-class APs range from 0.17 [Depth of Field] to 0.62 [Macro]. Per-class
accuracies range from 68% [Romantic, Depth of Field] to 85% [Sunny, Noir, Macro]. The
average per-class accuracy is 78%. We show the most confident style classifications on the
test set of Flickr Style in Figure 5.5 through Figure B.2.

A
n

alysis

Upon inspection of the confusion matrices, we saw points of understandable confusion:
Depth of Field vs. Macro, Romantic vs. Pastel, Vintage vs. Melancholy. There are also
surprising sources of mistakes: Macro vs. Bright/Energetic, for example. To explain this
particular confusion, we observed that lots of Macro photos contain bright flowers, insects,
or birds, often against vibrant greenery. Here, at least, the content of the image dominates
its style label. To explore further content-style correlations, we plot the outputs of PASCAL
object class classifiers (one of our features) on the Flickr dataset in Figure 5.2. We can
observe that some styles have strong correlations to content (e.g., Hazy occurs with vehicle,
HDR doesn’t occur with cat).

F
u

sion

We hypothesize that style is content-dependent: a Romantic portrait may have different
low-level properties than a Romantic sunset. We form a new feature as an outer product of
our content classifier features with the second-stage late fusion features (“Fusion × Content”
in all results figures). These features gave the best results, thus supporting the hypothesis.

5.2.1.1 Mechanical Turk Evaluation

S
etu

p

In order to provide a human baseline for evaluation, we performed a Mechanical Turk
study. For each style, Turkers were shown positive and negative examples for each Flickr
Group, and then they evaluated whether each image in the test set was part of the given
style. We treat the Flickr group memberships as ground truth as before, and then evaluate
Turkers’ ability to accurately determine group membership. Measures were taken to remove
spam workers, as described below. For efficiency, one quarter of the test set was used, and
two redundant styles (Bokeh and Detailed) were removed. Each test image was evaluated
by 3 Turkers, and the majority vote taken as the human result for this image.

CHAPTER 5. RECOGNIZING IMAGE STYLE 53

D
e
ta

ile
d

P
a
st

e
l

M
e
la

n
ch

o
ly

N
o
ir

H
D

R

V
in

ta
g
e

Lo
n
g
 E

x
p
o
su

re

H
o
rr

o
r

S
u
n
n
y

B
ri

g
h
t

H
a
zy

B
o
ke

h

S
e
re

n
e

T
e
x
tu

re

E
th

e
re

a
l

M
a
cr

o

D
e
p
th

 o
f

Fi
e
ld

G
e
o
m

e
tr

ic

M
in

im
a
l

R
o
m

a
n
ti

c

animal

indoor

person

vehicle

0.04 -0.00 -0.02 -0.06 -0.05 -0.04 -0.04 -0.01 -0.07 -0.02 -0.05 0.11 0.01 0.03 0.02 0.22 0.06 -0.06 -0.04 -0.03

0.07 0.05 -0.06 -0.01 -0.05 0.04 -0.06 -0.04 -0.10 0.06 -0.10 0.03 -0.06 0.05 -0.06 0.07 0.00 0.11 0.05 0.00

-0.05 0.06 0.10 0.09 -0.04 0.07 -0.07 0.14 -0.07 -0.00 -0.05 0.02 -0.05 -0.06 0.02 -0.10 0.04 -0.07 -0.09 0.10

-0.00 -0.07 -0.04 -0.03 0.12 -0.05 0.17 -0.08 0.18 -0.00 0.11 -0.07 0.06 -0.05 -0.06 -0.08 -0.05 0.01 -0.00 -0.04

-0.30 -0.10 0.00 0.22 0.30

Figure 5.2: Correlation of PASCAL content classifier predictions (rows) against ground truth
Flickr Style labels (columns). We see, for instance, that the Macro style is highly correlated
with presence of animals, and that Long Exposure and Sunny style photographs often feature
vehicles.

D
etails

Test images were grouped into 10 images per Human Interface Task (HIT). Each task
asks the Turker to evaluate the style (e.g., “Is this image VINTAGE?”) for each image. For
each style, we provided a short blurb describing the style in words, and provided 12-15 hand-
chosen positive and negative examples for each Flickr Group. To defend against spammers,
each HIT included 2 sentinels: images which were very clearly positives and similar to the
examples. HITs were rejected when Turkers got both sentinels wrong. Turkers were paid
0.10 per HIT, and were allowed to perform multiple hits. Manual inspection of the results
indicate that the Turkers understood the task and were performing effectively. A few Turkers
sent unsolicited feedback indicating that they were really enjoying the HITs (“some of the
photos are beautiful”) and wanted to perform them as effectively as possible.

R
esu

lts

Results are presented in Table B.3 and Table B.4. In total, Turkers achieved 75% mean
accuracy (ranging from 61% [Romantic] to 92% [Macro]) across styles, in comparison to 78%
mean accuracy (ranging from 68% [Depth of Field] to 87% [Macro]) of our best method. Our
algorithm did significantly worse than Turkers on Macro and Horror, and significantly better
on Vintage, Romantic, Pastel, Detailed, HDR, and Long Exposure styles. We additionally
used the Turker opinion as ground truth for our method’s predictions. In switching from
the default Flickr to the MTurk ground truth, our method’s accuracy hardly changed from
78% to 77%. However, we saw that the accuracy of our Vintage, Detailed, Long Exposure,
Minimal, HDR, and Sunny style classifiers significantly decreased, indicating machine-human
disagreement on those styles.

CHAPTER 5. RECOGNIZING IMAGE STYLE 54

A
n

alysis

Some of this variance may be due to subtle difference from the Turk tasks that we
provided, as compared to the definitions of the Flickr groups, but may also due to the Flickr
groups’ incorporating images that do not quite fit the common definition of the given style.
For example, there may be a mismatch between different notions of Romantic and vintage,
and how inclusively these terms are defined. Regardless, the high agreement seen in study
validates our choice of data source.

5.2.2 Experiment: Wikipaintings

S
etu

p
an

d
R

esu
lts

With the same setup and features as in the Flickr experiments, we evaluate 85,000 images
labeled with 25 different art styles. Detailed results are provided in Table B.5 and Table B.6.
The best single-channel feature is MC-bit with 0.441 mean AP; feature fusion obtains 0.473
mean AP. Per-class accuracies range from 72% [Symbolism, Expressionism, Art Nouveau]
to 94% [Ukiyo-e, Minimalism, Color Field Painting]. We did not perform a Mechanical
Turk analysis of this dataset, as the Wikipainting community-of-experts labels were deemed
inherently less noisy than Flickr Groups.

5.2.3 Experiment: AVA Style

S
etu

p
an

d
R

esu
lts

AVA (Murray, Marchesotti, and Perronnin 2012) is a dataset of 250K images from
dpchallenge.net. We evaluate classification of aesthetic rating and of 14 different pho-
tographic style labels on the 14,000 images of the AVA dataset that have such labels. For
the style labels, the publishers of the dataset provide a train/test split, where training im-
ages have only one label, but test images may have more than one label (ibid.). Our results
are presented in Table B.1. For style classification, the best single feature is the DeCAF6

convolution network feature, obtaining 0.579 mean AP. Feature fusion improves the result
to 0.581 mean AP; both results beat the previous state-of-the-art of 0.538 mean AP (ibid.).
Our results beat 0.54 mAP using both the AVA-provided class-imbalanced test split, and
the class-balanced subsample that we consider to be more correct evaluation, and for which
we provide numbers.

L
ow

-level
featu

res

In all metrics, the DeCAF and MC-bit features significantly outperformed more low-level
features on this dataset. For this reason, we did not evaluate the low-level features on the
larger Flickr and Wikipaintings datasets (the AVA experiment was chronologically first).

CHAPTER 5. RECOGNIZING IMAGE STYLE 55

5.2.4 Application: Style-Based Image Search

C
ross-d

ataset
style

Style classifiers learned on our datasets can be used toward novel goals. For example,
sources of stock photography or design inspiration may be better navigated with a vocabulary
of style. Currently, companies expend labor to manually annotate stock photography with
such labels. With our approach, any image collection can be searchable and rankable by
style. To demonstrate, we apply our Flickr-learned style classifiers to a new dataset of 80K
images gathered on Pinterest (also available with our code release); some results are shown in
Figure 5.4. Interestingly, styles learned from photographs can be used to order paintings, and
styles learned from paintings can be used to order photographs, as illustrated in Figure 5.3.

Bright,
Energetic

Serene

Ethereal

Minimalism

Impressionism

Cubism

Flickr
Style Painting Data Flickr Data Painting

Style

Figure 5.3: Cross-dataset style. On the left are shown top scorers from the Wikipaintings
set, for styles learned on the Flickr set. On the right, Flickr photographs are accordingly
sorted by Painting style. (Figure best viewed in color.)

CHAPTER 5. RECOGNIZING IMAGE STYLE 56
B

ri
gh

t
P

a
st

el
E

th
er

ea
l

N
o
ir

V
in

ta
ge

(a) Query: “dress”.

D
o
F

R
om

a
n
ti

c
S

u
n

n
y

G
eo

m
et

ri
c

S
er

en
e

(b) Query: “flower”.

Figure 5.4: Example of filtering image search results by style. Our Flickr Style classifiers are
applied to images found on Pinterest. The images are searched by the text contents of their
captions, then filtered by the response of the style classifiers. Here we show three out of top
five results for different query/style combinations.

CHAPTER 5. RECOGNIZING IMAGE STYLE 57
B

o
ke

h
B

ri
g
h
t

D
ep

th
of

F
ie

ld
D

et
ai

le
d

E
th

er
ea

l
G

eo
m

et
ri

c
H

az
y

H
D

R

Figure 5.5: Top five most confident predictions on the Flickr Style test set: styles 1-8.

58

Chapter 6

Conclusion

M
ain

C
on

trib
u

tion

We note a significant problem that has received little research attention: Anytime visual
recognition. The problem is motivated by the properties of human visual perception and by
the need to effectively schedule computationally expensive state-of-the-art computer vision
methods for different computational budgets. We approach the problem from the perspective
of reinforcement learning, and successfully learn fully general policies for selecting detector
and classifier actions. To evaluate our approaches, we introduce a new metric of Anytime
performance, based on the area under the performance vs. cost curve. In all experiments, we
show that having a dynamic state (and thus allowing “closed-loop” policies) and planning
ahead increases performance.

D
etection

We present a method for learning closed-loop policies for multi-class object detection,
given existing object detectors and classifiers and a metric to optimize. The method learns
the optimal policy using reinforcement learning, by observing execution traces in training.
As with most reinforcement learning problems, the reward function is defined manually, with
domain knowledge. Here, we derive it for the novel detection AP vs. Time evaluation that
we suggest is useful for evaluating efficiency in recognition. If detection on an image is cut
off after only half the detectors have been run, our method does 66% better than a random
ordering, and 14% better than an intelligent baseline. In particular, our method learns to
take action with no intermediate reward in order to improve the overall performance of the
system.

C
lassifi

cation

For the classification task, we need to use a different inference mechanism and additionally
need to train classifiers for partially-observed sets of features. We investigate methods such
as different forms of imputation and classifier clustering for this task, and adjust the reward
function and the featurization of the state. Using our method, we show improved Anytime
performance on a synthetic classification task and two benchmark visual recognition tasks.
Furthermore, on a hierarchically-structured dataset, we show that accuracy of predictions
can be held constant for all budgets, while the specificty of predictions increases.

CHAPTER 6. CONCLUSION 59

A
n

ytim
e

C
N

N
D

etection

Even the most recent state-of-the-art CNN-based detection methods are computationally
expensive. We first consider approaches which can effectively reorder the sequence of regions
to maximize the chance that correct detections will be found early, based on inference from
relatively lightweight features. We show that basic strategies, such as simply reordering the
boxes such that they do not have a degenerate spatial layout, provides a surprising boost,
and that very simple features such as region and gradient statistics can effectively prioritize
regions. Our main contribution is the Cascade CNN model, which adds a novel Reject
layer between convolutional layers in the architecture. C-CNN obtains an 8x speedup of the
R-CNN detection method with only a 10% degradation of state-of-the-art performance on
PASCAL VOC detection.

R
ecogn

izin
g

S
tyle

We have also made significant progress in defining the problem of recognizing image style.
We provide a novel dataset of several types of visual style – including for visual art – not
previously considered in the literature. In preparation for an Anytime approach, we evaluate
several types of visual features on the dataset, and demonstrate state-of-the-art results in
prediction of both style and aesthetic quality (on an existing dataset). We confirm that our
results are comparable to human performance, show that style is highly content-dependent,
and demonstrate an image search application where results are queried by content and filtered
by style.

6.1 Future Work

6.1.1 Detection and Classification

D
ecision

C
ost

Computation devoted to scheduling actions is far less significant than the computation
due to running the actions in all of our work, and our framework does not explicitly consider
this decision-making cost. However, a welcome extension would explicitly model the decision
cost by drawing on existing theoretical work on meta-reasoning (such as Hay, Russell, and
Sheva 2012). Interesting extensions could try to balance the cost of inference vs. the expected
gain in efficiency.

N
N

M
eth

o
d

s

Nearest-neighbor methods are well suited to settings with partially observed sets of fea-
tures, and so could be a good addition to our work on Anytime classification. However, naive
NN methods are too slow for our purposes, and we did not evaluate them. Locality-sensitive
hashing methods such as Kulis 2009 may be an effective solution. In particular, the original
method of Gao and Koller 2011 could potentially be extended with hashing to maintain its
model-free advantages over a rigidly parametrized model at an acceptable speed.

CHAPTER 6. CONCLUSION 60

P
ercep

tion

Beyond the aspects of practical deployment of vision systems that our work is motivated
by, we are curious to further investigate our model as a tool to study human cognition and
the time course of visual perception. Only a few attempts have been made to explain this:
for example, via sequential decision processes in Hegde (2008). While we have not made any
claims about the biological mechanism of perception, our work in reinforcement learning-
based feature selection as well as convolutional neural networks has explanatory potential if
more tightly integrated in future work.

A
d

ap
tive

S
u

b
m

o
d

u
larity

The most intriguing future direction is in theoretical analysis of our Anytime method.
Our MDP-based formulation is empirically successful, but fundamentally heuristic. Adaptive
submodularity (Golovin and Krause 2011), a recently developed framework for obtaining
famous near-optimality results of Nemhauser, Wolsey, and Fisher 1978 in the context of
learning policies. Just as that work proved that greedy selection can be near-optimal if
some conditions of the set function are satisfied, Golovin and Krause 2011 prove that greedy
policies can also be near-optimal under certain conditions. Unfortunately, designing an
appropriate objective function for our task of visual recognition is not straightforward.

S
u

b
m

o
d

u
lar

Id
eas

Information gain, a component of our reward function, can be shown to not be submod-
ular Krause and Guestrin 2005, so the easy solution has a roadblock. The most promising
way forward is pointed by recent work on active learning and robotic grasping. In Golovin,
Krause, and Ray 2010, an adaptively submodular objective based on hypothesis space prun-
ing is developed for an active learning task. In Javdani et al. 2012, robotic grasping is linked
to a submodular set cover problem — and another set cover analogy is developed in Chen
et al. 2014 for the problem of picking computer vision detections to evaluate with an oracle.
An adaptively submodular objective for the general classification problem seems close. Al-
ternatively, we could show that our reward function is empirically submodular – but that is
not as interesting.

6.1.2 CNN-based recognition

C
ascad

e
C

N
N

The general structure of the Cascade CNN general structure of simply “thinning” input
batches as they travel through the network is agnostic to the underlying mechanism. Al-
though in our work we evaluate on the R-CNN method on the PASCAL dataset, the Cascade
CNN can be applied to the SPP-net method of He et al. 2014, or the part-based method
of Zhang et al. 2014. In fact, the Cascade CNN can be applied to any existing CNN that
predicts in a class-imbalanced domain where speed is important — speech recognition, for
example.

E
n

d
-to-en

d

Although, the Cascade CNN is shown to be a strong method for speeding up CNN-based
detection approaches, its layers were trained in a stage following the initial network training,
not in an end-to-end fashion that is the hallmark of deep learning models. Furthermore, the
thresholds were set in a separate process, using a special validation set. Future work should
train and set thresholds of the Reject layers at the same time as the other layers are trained,
not after the fact.

CHAPTER 6. CONCLUSION 61

conv pool conv pool fully-connected

1 of K label

fully-connected fully-connected

Anytime combination
+ accuracy

+ expected budget

Figure 6.1: The proposed Anytime CNN augments traditional networks with fully-connected
prediction layers after every computationally-expensive layer. All prediction layers feed
into an Anytime combination layer that computes accuracy and back-propagates from cost-
sensitive loss. Compare this architecture to Figure 4.5.

A
n

ytim
e

loss

More interestingly, networks could be augmented with an “Anytime loss” layer that com-
bines classification output from multiple levels of the network in a cost-sensitive way. This
would allow optimizing classification networks for arbitrary distributions of cost budgets.
Figure 6.1 shows the idea: the new layer combines the outputs of all fully-connected layers,
which are regularly placed throughout the network. The Anytime loss computes the expected
accuracy of each prediction, takes into account the computational cost up to that layer of
the network, and back-propagates according to the budget (for example, if no answers are
allowed after 50 ms, and it takes 60 ms to get through the network fully, then the final fully
connected layer predictions are never counted). This setup allows for modeling a distribution
over budgets.

6.1.3 Image Style

A
n

ytim
e

While we collected two datasets and showed first results on the challenging new task of
recognizing image style, we did not evaluate Anytime performance of our features. Part of
the reason was that one of the most interesting outcomes of this work was the success of
features trained on object categorization datasets, and in particular the CNN-based feature.
Although we make a separate Anytime contribution to the CNN in Chapter 4, it would still
be interesting to evaluate Anytime performance of other visual features on the style datasets.

CHAPTER 6. CONCLUSION 62

F
eatu

res

We propose several possible hypotheses to explain the success of general multi-layer
features on the style dataset, despite not having been trained on the style task. Perhaps
the network layers that we use as features are extremely good as general visual features for
image representation in general. Another explanation is that object recognition depends on
object appearance, e.g., distinguishing red from white wine, or different kinds of terriers,
and that the model learns to repurpose these features for image style. Understanding and
improving on these results is fertile ground for future work.

63

Appendix A

Unobserved Value Imputation:
Detailed Results

We evaluate reconstruction and classification error on two datasets: Digits and Scenes-15.
Two feature selection policies are considered: Random and Clustered. For each policy, we
consider Independent and Block-wise selection patterns.

We find that mean imputation with classifier retraining is a reasonably well-performing
approach. Nearest Neighbor methods perform best but are the most expensive. Gaussian
imputation method performs very well, but is also expensive. Training additional classifiers
for clusters of observed feature subsets did not improve performance.

Feature selection had four experimental conditions.

• In Random, Independent selection, each feature was selected independently, and
the total number of possible masks for a given budget was not bounded, such that
each test instance could have a unique mask (if the number of test instances N was
less than the total number of possible feature subsets 2F .

• In Random, Block-wise selection, there was no bound on the number of possible
masks for a given budget, but features were selected by blocks.

• In Clustered, Independent selection, each feature was selected independently, but
there were at most K possible masks for a given budget.

• In Clustered, Block-wise selection, there were at most K possible masks for a
budget, and features were selected by blocks.

All datasets were first standardized by subtracting the row mean and dividing by the row
standard deviation.

APPENDIX A. UNOBSERVED VALUE IMPUTATION: DETAILED RESULTS 64

A.1 Digits

The Digits dataset contains 8x8 grayscale images of hand-written digits 1-10. Each of
the 10 classes has 200 samples, for a total of 2000 images and 64 features.

The dataset was split 60-40 into training and testing sets. The number of clusters for
clustered selection was 10. For block-wise feature selection, the number of blocks was set to
8.

Figure A.1 shows the results; here we summarize the conclusions:

• Mean imputation has highest reconstruction and classification error.

• Dot product-based kNN imputation performs worse than Gaussian imputation for both
reconstruction and classification, and is slower.

• Euclidean distance-based kNN imputation performs best, but is slowest.

• Training additional classifiers for clusters of observed subsets slightly decreased classi-
fication error, but only if the number of clusters was high.

• These results hold for all policy experimental conditions.

A.2 Scenes-15

The Scene-15 dataset (Lazebnik-CVPR-2006) contains 4485 images from 15 visual
scene classes. The task is to identify classify images according to scene.

Following (Xiao et al. 2010), we extracted 14 different visual features (GIST, HOG,
TinyImages, LBP, SIFT, Line Histograms, Self-Similarity, Textons, Color Histograms, and
variations). Separate multi-class linear SVMs were trained on each feature channel, using a
random 100 positive example images per class for training. We used the liblinear implemen-
tation, and cross-validated the penalty parameter C.

The trained SVMs were evaluated on the images not used for training, resulting in a
dataset of 2238 vectors of 210 confidence values: 15 classes for each of the 14 feature channels.
This dataset was split 60-40 into training and test sets for our experiments. The number of
clusters for clustered selection was 10. For block-wise feature selection, the number of blocks
was set to 5.

Figure A.2 shows the results. The conclusions are much the same as for the Digits
dataset, with the following additional observations:

• Gaussian imputation is more costly than kNN on this data; the feature dimensions is
more than twice that of the Digits data.

• For block-wise feature selection, mean imputation with retraining is as good as any
other approach, and of course by far the fastest.

APPENDIX A. UNOBSERVED VALUE IMPUTATION: DETAILED RESULTS 65

(a) Random, independent feature selection.

(b) Random, block-wise (8 blocks) feature selection.

(c) Clustered (10 clusters), independent feature selection.

(d) Clustered (10 clusters), block-wise (8 blocks) feature selection.

Figure A.1: All missing value imputation results on the Digits dataset.

A.3 Conclusion

On both datasets, and for all feature selection approaches, we find that mean imputation
(with a classifier trained on imputed data) is a well-performing approach. Nearest Neighbor
and Gaussian methods perform best but are the most expensive; Gaussian scales poorly with
number of features, while NN scales poorly with size of training set. Training additional clas-
sifiers for clusters of observed feature subsets also did not signficantly improve performance
on these datasets.

APPENDIX A. UNOBSERVED VALUE IMPUTATION: DETAILED RESULTS 66

(a) Random, independent feature selection.

(b) Random, block-wise (8 blocks) feature selection.

(c) Clustered (10 clusters), independent feature selection.

(d) Clustered (10 clusters), block-wise (8 blocks) feature selection.

Figure A.2: All missing value imputation results on the Scenes-15 dataset.

67

Appendix B

Recognizing Image Style: Detailed
Results

Table B.1: All per-class APs on all evaluated features on the AVA Style dataset.

Fusion DeCAF6 MC-bit Murray L*a*b* GIST Saliency

Complementary Colors 0.469 0.548 0.329 0.440 0.294 0.223 0.111

Duotones 0.676 0.737 0.612 0.510 0.582 0.255 0.233

HDR 0.669 0.594 0.624 0.640 0.194 0.124 0.101

Image Grain 0.647 0.545 0.744 0.740 0.213 0.104 0.104

Light On White 0.908 0.915 0.802 0.730 0.867 0.704 0.172

Long Exposure 0.453 0.431 0.420 0.430 0.232 0.159 0.147

Macro 0.478 0.427 0.413 0.500 0.230 0.269 0.161

Motion Blur 0.478 0.467 0.458 0.400 0.117 0.114 0.122

Negative Image 0.595 0.619 0.499 0.690 0.268 0.189 0.123

Rule of Thirds 0.352 0.353 0.236 0.300 0.188 0.167 0.228

Shallow DOF 0.624 0.659 0.637 0.480 0.332 0.276 0.223

Silhouettes 0.791 0.801 0.801 0.720 0.261 0.263 0.130

Soft Focus 0.312 0.354 0.290 0.390 0.127 0.126 0.114

Vanishing Point 0.684 0.658 0.685 0.570 0.123 0.107 0.161

mean 0.581 0.579 0.539 0.539 0.288 0.220 0.152

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 68
H

or
ro

r
L

on
g

E
x
p

os
u
re

M
ac

ro
M

el
an

ch
ol

y
M

in
im

al
N

oi
r

Figure B.1: Top five most confident predictions on the Flickr Style test set: styles 9-14.

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 69
P

as
te

l
R

om
an

ti
c

S
er

en
e

S
u
n
n
y

T
ex

tu
re

V
in

ta
ge

Figure B.2: Top five most confident predictions on the Flickr Style test set: styles 15-20.

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 70

Table B.2: All per-class APs on all evaluated features on the Flickr dataset.

Fusion x Content DeCAF6 MC-bit

Bokeh 0.288 0.253 0.248

Bright 0.251 0.236 0.183

Depth of Field 0.169 0.152 0.148

Detailed 0.337 0.277 0.278

Ethereal 0.408 0.393 0.335

Geometric Composition 0.411 0.355 0.360

HDR 0.487 0.406 0.475

Hazy 0.493 0.451 0.447

Horror 0.400 0.396 0.295

Long Exposure 0.515 0.457 0.463

Macro 0.617 0.582 0.530

Melancholy 0.168 0.147 0.136

Minimal 0.512 0.444 0.481

Noir 0.494 0.481 0.408

Pastel 0.258 0.245 0.211

Romantic 0.227 0.204 0.185

Serene 0.281 0.257 0.239

Sunny 0.500 0.481 0.453

Texture 0.265 0.227 0.229

Vintage 0.282 0.273 0.222

mean 0.368 0.336 0.316

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 71

Table B.3: Comparison of Flickr Style per-class accuracies for our method and Mech Turkers.

MTurk acc., Flickr g.t. Our acc., Flickr g.t. Our acc., MTurk g.t.

Bright 69.10 73.38 73.63

Depth of Field 68.92 68.50 81.05

Detailed 65.47 75.25 68.44

Ethereal 76.92 80.62 77.95

Geometric Composition 81.52 77.75 80.31

HDR 71.84 82.00 76.96

Hazy 83.49 80.75 81.64

Horror 89.85 84.25 81.64

Long Exposure 73.12 84.19 76.79

Macro 92.25 86.56 88.39

Melancholy 67.77 70.88 71.25

Minimal 79.71 83.75 78.57

Noir 81.35 85.25 85.88

Pastel 66.94 74.56 75.47

Romantic 60.91 68.00 66.25

Serene 69.49 70.44 76.80

Sunny 84.48 84.56 79.94

Vintage 68.77 75.50 67.80

Mean 75.11 78.12 77.15

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 72

Table B.4: Signficant deviations between human and machine accuracies on Flickr Style.

Our acc., Flickr g.t. Our acc., MTurk g.t. % change from Flickr to MTurk g.t.

Vintage 75.50 67.80 -10.19

Detailed 75.25 68.44 -9.05

Long Exposure 84.19 76.79 -8.79

Minimal 83.75 78.57 -6.18

HDR 82.00 76.96 -6.15

Sunny 84.56 79.94 -5.46

Serene 70.44 76.80 9.03

Depth of Field 68.50 81.05 18.32

Our acc., Flickr g.t. MTurk acc., Flickr g.t. Acc. difference

Horror 84.25 90.42 -6.17

Macro 86.56 91.71 -5.15

Romantic 68.00 61.04 6.96

Pastel 74.56 66.87 7.69

HDR 82.00 72.79 9.21

Long Exposure 84.19 73.83 10.35

Detailed 75.25 63.30 11.95

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 73

B
o
ke

h

B
ri

g
h
t

D
e
p
th

_o
f_

Fi
e
ld

D
e
ta

ile
d

E
th

e
re

a
l

G
e
o
m

e
tr

ic
_C

o
m

p
o
si

ti
o
n

H
D

R

H
a
zy

H
o
rr

o
r

Lo
n
g
_E

x
p
o
su

re

M
a
cr

o

M
e
la

n
ch

o
ly

M
in

im
a
l

N
o
ir

P
a
st

e
l

R
o
m

a
n
ti

c

S
e
re

n
e

S
u
n
n
y

T
e
x
tu

re

V
in

ta
g
e

p
ri

o
r

Bokeh

Bright

Depth_of_Field

Detailed

Ethereal

Geometric_Composition

HDR

Hazy

Horror

Long_Exposure

Macro

Melancholy

Minimal

Noir

Pastel

Romantic

Serene

Sunny

Texture

Vintage

0.39 0.02 0.11 0.03 0.02 0.01 0.01 0.01 0.03 0.01 0.11 0.03 0.02 0.04 0.06 0.05 0.01 0.00 0.01 0.04 0.05

0.06 0.22 0.04 0.10 0.02 0.05 0.06 0.01 0.04 0.04 0.07 0.01 0.05 0.01 0.03 0.02 0.04 0.06 0.04 0.04 0.05

0.20 0.05 0.12 0.03 0.02 0.03 0.03 0.02 0.04 0.03 0.08 0.05 0.04 0.06 0.04 0.04 0.03 0.01 0.03 0.05 0.05

0.06 0.08 0.03 0.35 0.01 0.07 0.03 0.01 0.04 0.03 0.05 0.01 0.04 0.02 0.01 0.02 0.02 0.03 0.06 0.03 0.05

0.02 0.01 0.00 0.01 0.46 0.00 0.00 0.09 0.05 0.02 0.02 0.05 0.04 0.05 0.04 0.02 0.01 0.02 0.04 0.04 0.05

0.01 0.05 0.00 0.05 0.01 0.40 0.06 0.02 0.02 0.05 0.01 0.01 0.12 0.08 0.01 0.00 0.01 0.00 0.06 0.02 0.05

0.02 0.03 0.01 0.03 0.01 0.03 0.53 0.03 0.02 0.11 0.01 0.01 0.00 0.01 0.00 0.01 0.07 0.03 0.01 0.01 0.05

0.01 0.00 0.01 0.01 0.06 0.01 0.04 0.55 0.01 0.05 0.00 0.03 0.04 0.02 0.01 0.01 0.06 0.06 0.01 0.01 0.05

0.01 0.01 0.02 0.04 0.06 0.01 0.04 0.01 0.45 0.01 0.01 0.04 0.01 0.17 0.01 0.03 0.00 0.01 0.03 0.04 0.05

0.01 0.02 0.01 0.01 0.02 0.03 0.07 0.04 0.02 0.59 0.01 0.01 0.03 0.03 0.00 0.00 0.03 0.05 0.02 0.01 0.05

0.11 0.03 0.03 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.65 0.00 0.04 0.00 0.03 0.00 0.00 0.00 0.04 0.01 0.05

0.03 0.01 0.02 0.02 0.09 0.04 0.03 0.06 0.10 0.02 0.01 0.14 0.04 0.15 0.04 0.04 0.03 0.02 0.05 0.07 0.05

0.01 0.01 0.00 0.01 0.02 0.09 0.00 0.07 0.01 0.03 0.03 0.01 0.56 0.02 0.02 0.00 0.01 0.02 0.07 0.01 0.05

0.01 0.00 0.01 0.01 0.05 0.03 0.01 0.03 0.12 0.01 0.00 0.04 0.03 0.57 0.00 0.01 0.00 0.00 0.02 0.03 0.05

0.07 0.02 0.03 0.03 0.06 0.03 0.01 0.03 0.02 0.01 0.05 0.04 0.05 0.02 0.26 0.12 0.02 0.01 0.01 0.12 0.05

0.04 0.02 0.02 0.06 0.03 0.02 0.03 0.04 0.06 0.03 0.01 0.04 0.03 0.05 0.11 0.22 0.04 0.03 0.03 0.09 0.05

0.04 0.02 0.02 0.05 0.03 0.02 0.08 0.09 0.01 0.08 0.03 0.01 0.05 0.02 0.02 0.01 0.25 0.09 0.04 0.02 0.05

0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.08 0.01 0.08 0.00 0.01 0.04 0.02 0.01 0.02 0.05 0.55 0.01 0.00 0.05

0.03 0.04 0.02 0.05 0.08 0.07 0.04 0.02 0.05 0.02 0.06 0.03 0.06 0.03 0.01 0.02 0.04 0.01 0.29 0.04 0.05

0.05 0.02 0.03 0.05 0.06 0.03 0.02 0.03 0.05 0.00 0.01 0.04 0.02 0.05 0.12 0.09 0.01 0.01 0.03 0.28 0.05

0.00 0.65 1.00

Figure B.3: Confusion matrix of our best classifier (Late-fusion × Content) on the Flickr
dataset.

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 74

Table B.5: All per-class APs on all evaluated features on the Wikipaintings dataset.

Fusion x Content MC-bit DeCAF6

Abstract Art 0.341 0.314 0.258

Abstract Expressionism 0.351 0.340 0.243

Art Informel 0.221 0.217 0.187

Art Nouveau (Modern) 0.421 0.402 0.197

Baroque 0.436 0.386 0.313

Color Field Painting 0.773 0.739 0.689

Cubism 0.495 0.488 0.400

Early Renaissance 0.578 0.559 0.453

Expressionism 0.235 0.230 0.186

High Renaissance 0.401 0.345 0.288

Impressionism 0.586 0.528 0.411

Magic Realism 0.521 0.465 0.428

Mannerism (Late Renaissance) 0.505 0.439 0.356

Minimalism 0.660 0.614 0.604

Nave Art (Primitivism) 0.395 0.425 0.225

Neoclassicism 0.601 0.537 0.399

Northern Renaissance 0.560 0.478 0.433

Pop Art 0.441 0.398 0.281

Post-Impressionism 0.348 0.348 0.292

Realism 0.408 0.309 0.266

Rococo 0.616 0.548 0.467

Romanticism 0.392 0.389 0.343

Surrealism 0.262 0.247 0.134

Symbolism 0.390 0.390 0.260

Ukiyo-e 0.895 0.894 0.788

mean 0.473 0.441 0.356

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 75

Table B.6: Per-class accuracies on the Wikipaintings dataset, using the MC-bit feature.

Style Accuracy Style Accuracy

Symbolism 71.24 Impressionism 82.15

Expressionism 72.03 Northern Renaissance 82.32

Art Nouveau (Modern) 72.77 High Renaissance 82.90

Nave Art (Primitivism) 72.95 Mannerism (Late Renaissance) 83.04

Surrealism 74.44 Pop Art 83.33

Post-Impressionism 74.51 Early Renaissance 84.69

Romanticism 75.86 Abstract Art 85.10

Realism 75.88 Cubism 86.85

Magic Realism 78.54 Rococo 87.33

Neoclassicism 80.18 Ukiyo-e 93.18

Abstract Expressionism 81.25 Minimalism 94.21

Baroque 81.45 Color Field Painting 95.58

Art Informel 82.09

APPENDIX B. RECOGNIZING IMAGE STYLE: DETAILED RESULTS 76

A
b
st

ra
ct

_A
rt

A
b
st

ra
ct

_E
x
p
re

ss
io

n
is

m

A
rt

_I
n
fo

rm
e
l

A
rt

_N
o
u
v
e
a
u
_(

M
o
d
e
rn

)

B
a
ro

q
u
e

C
o
lo

r_
Fi

e
ld

_P
a
in

ti
n
g

C
u
b
is

m

E
a
rl

y
_R

e
n
a
is

sa
n
ce

E
x
p
re

ss
io

n
is

m

H
ig

h
_R

e
n
a
is

sa
n
ce

Im
p
re

ss
io

n
is

m

M
a
g
ic

_R
e
a
lis

m

M
a
n
n
e
ri

sm
_(

La
te

_R
e
n
a
is

sa
n
ce

)

M
in

im
a
lis

m

N
a
v
e
_A

rt
_(

P
ri

m
it

iv
is

m
)

N
e
o
cl

a
ss

ic
is

m

N
o
rt

h
e
rn

_R
e
n
a
is

sa
n
ce

P
o
p
_A

rt

P
o
st

-I
m

p
re

ss
io

n
is

m

R
e
a
lis

m

R
o
co

co

R
o
m

a
n
ti

ci
sm

S
u
rr

e
a
lis

m

S
y
m

b
o
lis

m

U
ki

y
o
-e

p
ri

o
r

Abstract_Art

Abstract_Expressionism

Art_Informel

Art_Nouveau_(Modern)

Baroque

Color_Field_Painting

Cubism

Early_Renaissance

Expressionism

High_Renaissance

Impressionism

Magic_Realism

Mannerism_(Late_Renaissance)

Minimalism

Nave_Art_(Primitivism)

Neoclassicism

Northern_Renaissance

Pop_Art

Post-Impressionism

Realism

Rococo

Romanticism

Surrealism

Symbolism

Ukiyo-e

0.27 0.06 0.03 0.01 0.00 0.02 0.13 0.00 0.04 0.00 0.00 0.01 0.00 0.09 0.02 0.00 0.00 0.03 0.01 0.01 0.00 0.00 0.21 0.03 0.01 0.04

0.03 0.44 0.08 0.02 0.00 0.06 0.03 0.00 0.04 0.00 0.01 0.00 0.00 0.03 0.01 0.00 0.00 0.05 0.05 0.02 0.00 0.00 0.11 0.01 0.01 0.04

0.03 0.25 0.16 0.02 0.00 0.02 0.04 0.00 0.04 0.00 0.02 0.03 0.00 0.04 0.03 0.00 0.00 0.04 0.04 0.03 0.00 0.00 0.18 0.03 0.00 0.04

0.00 0.01 0.00 0.48 0.01 0.00 0.00 0.01 0.04 0.01 0.01 0.01 0.01 0.00 0.03 0.00 0.01 0.01 0.09 0.07 0.01 0.01 0.11 0.07 0.00 0.04

0.00 0.00 0.00 0.02 0.49 0.00 0.00 0.02 0.01 0.03 0.01 0.00 0.05 0.00 0.00 0.03 0.03 0.00 0.01 0.12 0.06 0.09 0.03 0.01 0.00 0.04

0.03 0.09 0.04 0.00 0.00 0.65 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.04

0.04 0.03 0.03 0.02 0.00 0.00 0.52 0.00 0.08 0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.01 0.02 0.05 0.01 0.00 0.00 0.13 0.02 0.00 0.04

0.00 0.00 0.01 0.03 0.01 0.00 0.01 0.52 0.01 0.08 0.01 0.00 0.05 0.00 0.00 0.01 0.09 0.00 0.02 0.03 0.01 0.02 0.07 0.02 0.00 0.04

0.01 0.03 0.01 0.05 0.01 0.00 0.06 0.00 0.35 0.01 0.02 0.01 0.00 0.01 0.04 0.00 0.01 0.00 0.14 0.04 0.01 0.01 0.13 0.03 0.01 0.04

0.00 0.01 0.00 0.02 0.09 0.00 0.00 0.09 0.03 0.35 0.00 0.00 0.10 0.00 0.01 0.03 0.08 0.00 0.02 0.06 0.02 0.02 0.06 0.03 0.00 0.04

0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.03 0.00 0.54 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.13 0.13 0.01 0.02 0.01 0.06 0.00 0.04

0.00 0.03 0.01 0.05 0.00 0.00 0.01 0.00 0.04 0.00 0.01 0.39 0.01 0.02 0.02 0.03 0.01 0.01 0.06 0.06 0.01 0.02 0.16 0.04 0.01 0.04

0.00 0.01 0.00 0.01 0.13 0.00 0.00 0.05 0.03 0.07 0.00 0.00 0.43 0.00 0.01 0.03 0.03 0.00 0.01 0.06 0.04 0.04 0.04 0.01 0.00 0.04

0.02 0.08 0.02 0.01 0.00 0.14 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.62 0.01 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.04

0.00 0.02 0.01 0.04 0.01 0.01 0.04 0.00 0.08 0.00 0.01 0.03 0.01 0.01 0.37 0.01 0.01 0.03 0.08 0.04 0.00 0.01 0.16 0.03 0.01 0.04

0.00 0.00 0.00 0.01 0.06 0.00 0.02 0.01 0.02 0.01 0.01 0.01 0.03 0.00 0.00 0.52 0.02 0.00 0.01 0.06 0.06 0.05 0.06 0.03 0.00 0.04

0.00 0.01 0.00 0.03 0.05 0.00 0.01 0.06 0.03 0.05 0.00 0.02 0.03 0.00 0.01 0.01 0.52 0.01 0.03 0.05 0.00 0.02 0.07 0.01 0.00 0.04

0.02 0.06 0.03 0.07 0.00 0.03 0.03 0.00 0.05 0.00 0.00 0.02 0.01 0.04 0.02 0.01 0.00 0.38 0.02 0.02 0.00 0.00 0.18 0.01 0.01 0.04

0.01 0.02 0.01 0.02 0.00 0.00 0.01 0.00 0.09 0.00 0.16 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.48 0.07 0.01 0.00 0.05 0.04 0.00 0.04

0.00 0.01 0.00 0.03 0.03 0.00 0.00 0.01 0.03 0.01 0.08 0.01 0.01 0.00 0.01 0.03 0.02 0.00 0.06 0.47 0.00 0.09 0.06 0.05 0.00 0.04

0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.01 0.06 0.02 0.00 0.00 0.04 0.56 0.11 0.03 0.02 0.00 0.04

0.00 0.00 0.00 0.04 0.05 0.00 0.00 0.02 0.01 0.02 0.05 0.01 0.01 0.00 0.01 0.03 0.03 0.00 0.02 0.13 0.06 0.40 0.05 0.04 0.00 0.04

0.01 0.03 0.02 0.01 0.00 0.00 0.04 0.01 0.04 0.00 0.00 0.02 0.01 0.00 0.04 0.01 0.01 0.02 0.04 0.04 0.00 0.01 0.58 0.04 0.00 0.04

0.01 0.03 0.01 0.08 0.02 0.00 0.01 0.01 0.04 0.00 0.06 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.04 0.11 0.02 0.05 0.06 0.38 0.00 0.04

0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.05 0.02 0.81 0.04

0.00 0.81 1.00

Figure B.4: Confusion matrix of our best classifier (Late-fusion × Content) on the Wikipaint-
ings dataset.

77

Bibliography

Agarwal, Alekh, Olivier Chapelle, Miroslav Dudik, and John Langford (2012). “A Reliable
Effective Terascale Linear Learning System”. In: Journal of Machine Learning Research.
arXiv: arXiv:1110.4198v3.

Alexe, Bogdan, Nicolas Heess, and Vittorio Ferrari (2012). “Searching for objects driven by
context”. In: NIPS.

Benbouzid, Djalel, Robert Busa-Fekete, and Balazs Kegl (2012). “Fast classification using
sparse decision DAGs”. In: ICML.

Bergamo, A. and L. Torresani (2012). “Meta-class features for large-scale object catego-
rization on a budget”. In: CVPR. isbn: 978-1-4673-1228-8. doi: 10.1109/CVPR.2012.
6248040.

Borth, Damian, Rongrong Ji, Tao Chen, and Thomas M Breuel (2013). “Large-scale Visual
Sentiment Ontology and Detectors Using Adjective Noun Pairs”. In: ACM MM. isbn:
9781450324045.

Bourdev, Lubomir and J Brandt (2005). “Robust Object Detection via Soft Cascade”. In:
CVPR. isbn: 0-7695-2372-2. doi: 10.1109/CVPR.2005.310.

Butko, N J and J R Movellan (2009). “Optimal scanning for faster object detection”. In:
CVPR, pp. 2751–2758. doi: 10.1109/CVPR.2009.5206540.

Chen, Minmin, Zhixiang Xu, Kilian Q. Weinberger, Olivier Chapelle, and Dor Kedem (2012).
“Classifier Cascade for Minimizing Feature Evaluation Cost”. In: AISTATS.

Chen, Yuxin, Hiroaki Shioi, Cesar Antonio Fuentes Montesinos, Lian Pin Koh, Serge Wich,
and Andreas Krause (2014). “Active Detection via Adaptive Submodularity”. In: ICML.

Dalal, N and B Triggs (2005). “Histograms of Oriented Gradients for Human Detection”.
In: CVPR. Ieee, pp. 886–893. isbn: 0-7695-2372-2. doi: 10.1109/CVPR.2005.177.

Datta, Ritendra, Dhiraj Joshi, Jia Li, and James Z Wang (2006). “Studying Aesthetics in
Photographic Images Using a Computational Approach”. In: ECCV.

Deng, Jia, W. Dong, R. Socher, L.-J. Li, K. Li, and Li Fei-Fei (2009). “ImageNet: A Large-
Scale Hierarchical Image Database”. In: CVPR.

http://arxiv.org/abs/arXiv:1110.4198v3
http://dx.doi.org/10.1109/CVPR.2012.6248040
http://dx.doi.org/10.1109/CVPR.2012.6248040
http://dx.doi.org/10.1109/CVPR.2005.310
http://dx.doi.org/10.1109/CVPR.2009.5206540
http://dx.doi.org/10.1109/CVPR.2005.177

BIBLIOGRAPHY 78

Deng, Jia, Alexander C Berg, Kai Li, and Li Fei-fei (2010). “What Does Classifying More
Than 10,000 Image Categories Tell Us ?” In: ECCV, pp. 71–84.

Deng, Jia, Sanjeev Satheesh, Alexander C Berg, and Li Fei-fei (2011). “Fast and Balanced:
Efficient Label Tree Learning for Large Scale Object Recognition”. In: NIPS. 1, pp. 1–9.

Deng, Jia, Jonathan Krause, Alexander C Berg, and Li Fei-fei (2012). “Hedging Your Bets:
Optimizing Accuracy-Specificity Trade-offs in Large Scale Visual Recognition”. In: CVPR.

Desai, Chaitanya, Deva Ramanan, and Charless Fowlkes (2011). “Discriminative models for
multi-class object layout”. In: IJCV. Ieee, pp. 229–236. isbn: 978-1-4244-4420-5. doi:
10.1109/ICCV.2009.5459256.

Dhar, Sagnik, Tamara L Berg, and Stony Brook (2011). “High Level Describable Attributes
for Predicting Aesthetics and Interestingness”. In: CVPR.

Divvala, S K, D Hoiem, J H Hays, A.a. Efros, and M Hebert (2009). “An empirical study
of context in object detection”. In: CVPR. Ieee, pp. 1271–1278. isbn: 978-1-4244-3992-8.
doi: 10.1109/CVPR.2009.5206532.

Donahue, Jeff, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and
Trevor Darrell (2013a). DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition. Tech. rep. arXiv: arXiv:1310.1531v1.

— (2013b). DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recogni-
tion. Tech. rep. arXiv: arXiv:1310.1531v1.

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradient Methods for On-
line Learning and Stochastic Optimization”. In: Journal of Machine Learning Research.

Dulac-arnold, Gabriel, Nicolas Thome, and Matthieu Cord (2014). “Sequentially Generated
Instance-Dependent Image Representations for Classification”. In: ICLR. arXiv: arXiv:
1312.6594v3.

Dulac-Arnold, Gabriel, Ludovic Denoyer, Philippe Preux, and Patrick Gallinari (2012). “Se-
quential approaches for learning datum-wise sparse representations”. In: Machine Learn-
ing 89.1-2, pp. 87–122. issn: 0885-6125. doi: 10.1007/s10994-012-5306-7.

Erhan, Dumitru, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov (2014).
“Scalable Object Detection using Deep Neural Networks”. In: CVPR.

Ernst, Damien, Pierre Geurts, and Louis Wehenkel (2005). “Tree-Based Batch Mode Rein-
forcement Learning”. In: Journal of Machine Learning Research 6, pp. 503–556.

Everingham, M, L Van Gool, C K I Williams, J Winn, and A Zisserman (2010). The PASCAL
VOC Challenge 2010 Results. http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html.

Fan, Xiaodong (2005). “Efficient Multiclass Object Detection by a Hierarchy of Classifiers”.
In: CVPR. Ieee, pp. 716–723. isbn: 0-7695-2372-2. doi: 10.1109/CVPR.2005.140.

http://dx.doi.org/10.1109/ICCV.2009.5459256
http://dx.doi.org/10.1109/CVPR.2009.5206532
http://arxiv.org/abs/arXiv:1310.1531v1
http://arxiv.org/abs/arXiv:1310.1531v1
http://arxiv.org/abs/arXiv:1312.6594v3
http://arxiv.org/abs/arXiv:1312.6594v3
http://dx.doi.org/10.1007/s10994-012-5306-7
http://dx.doi.org/10.1109/CVPR.2005.140

BIBLIOGRAPHY 79

Farrell, Ryan, Om Oza, Vlad I. Morariu, Trevor Darrell, and Larry S. Davis (2011). “Birdlets:
Subordinate categorization using volumetric primitives and pose-normalized appearance”.
In: ICCV. isbn: 978-1-4577-1102-2. doi: 10.1109/ICCV.2011.6126238.

Fei-Fei, Li, Asha Iyer, Christof Koch, and Pietro Perona (2007). “What do we perceive in
a glance of a real-world scene?” In: Journal of vision 7.1, p. 10. issn: 1534-7362. doi:
10.1167/7.1.10.

Felzenszwalb, Pedro F, Ross B Girshick, and David McAllester (2010). “Cascade object
detection with deformable part models”. In: CVPR. IEEE, pp. 2241–2248. isbn: 978-1-
4244-6984-0. doi: 10.1109/CVPR.2010.5539906.

Felzenszwalb, Pedro F, Ross B Girshick, David McAllester, and Deva Ramanan (2010). “Ob-
ject detection with discriminatively trained part-based models.” In: PAMI 32.9, pp. 1627–
1645. issn: 1939-3539. doi: 10.1109/TPAMI.2009.167.

Galleguillos, Carolina and Serge Belongie (2010). “Context based object categorization: A
critical survey”. In: Computer Vision and Image Understanding 114.6, pp. 712–722. issn:
10773142. doi: 10.1016/j.cviu.2010.02.004.

Gao, Tianshi and Daphne Koller (2011). “Active Classification based on Value of Classifier”.
In: NIPS.

Gehler, Peter and Sebastian Nowozin (2009). “On Feature Combination for Multiclass Object
Classification”. In: ICCV.

Girshick, Ross, Jeff Donahue, Trevor Darrell, and Jitendra Malik (2014). “Rich feature hi-
erarchies for accurate object detection and semantic segmentation”. In: CVPR. arXiv:
arXiv:1311.2524v3.

Golovin, Daniel and Andreas Krause (2011). “Adaptive Submodularity: A New Approach
to Active Learning and Stochastic Optimization”. In: Journal of Artificial Intelligence
Research.

Golovin, Daniel, Andreas Krause, and Debajyoti Ray (2010). “Near-Optimal Bayesian Active
Learning with Noisy Observations”. In: CoRR abs/1010.3.

Graves, Alex (2013). “Generating Sequences With Recurrent Neural Networks”. In: CoRR
abs/1308.0850. url: http://arxiv.org/abs/1308.0850.

Grubb, Alexander and J Andrew Bagnell (2012). “SpeedBoost: Anytime Prediction with
Uniform Near-Optimality”. In: AISTATS.

Gygli, Michael, Fabian Nater, and Luc Van Gool (2013). “The Interestingness of Images”.
In: ICCV.

Harel, Jonathan, Christof Koch, and Pietro Perona (2006). “Graph-Based Visual Saliency”.
In: NIPS.

http://dx.doi.org/10.1109/ICCV.2011.6126238
http://dx.doi.org/10.1167/7.1.10
http://dx.doi.org/10.1109/CVPR.2010.5539906
http://dx.doi.org/10.1109/TPAMI.2009.167
http://dx.doi.org/10.1016/j.cviu.2010.02.004
http://arxiv.org/abs/arXiv:1311.2524v3
http://arxiv.org/abs/1308.0850

BIBLIOGRAPHY 80

Hastie, Trevor, Robert Tibshirani, Gavin Sherlock, Patrick Brown, David Botstein, and
Michael Eisen (1999). “Imputing Missing Data for Gene Expression Arrays Imputation
using the SVD”.

Hay, Nicholas, Stuart Russell, and Beer Sheva (2012). “Selecting Computations: Theory and
Applications”. In: UAI. arXiv: arXiv:1207.5879v1.

He, He, Daume Hal III, and Jason Eisner (2012). “Cost-sensitive Dynamic Feature Selection”.
In: ICML-W.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2014). “Spatial Pyramid Pooling
in Deep Convolutional Networks for Visual Recognition”. In: ECCV. arXiv: arXiv:1406.
4729v1.

Hegde, Jay (2008). “Time course of visual perception: Coarse-to-fine processing and beyond”.
In: Progress in Neurobiology.

Isola, Phillip, Jianxiong Xiao, Antonio Torralba, and Aude Oliva (2011). “What makes an
image memorable?” In: CVPR. Ieee. isbn: 978-1-4577-0394-2. doi: 10.1109/CVPR.2011.
5995721.

Jaimovich, Ariel and Ian Mcgraw (2010). “FastInf : An Efficient Approximate Inference
Library”. In: Journal of Machine Learning Research 11, pp. 1733–1736.

Javdani, Shervin, Matthew Klingensmith, J Andrew Bagnell, Nancy S Pollard, and Sid-
dhartha S Srinivasa (2012). Efficient Touch Based Localization through Submodularity.
Tech. rep. arXiv: arXiv:1208.6067v2.

Ji, Shihao and Lawrence Carin (2007). “Cost-Sensitive Feature Acquisition and Classifica-
tion”. In: Pattern Recognition.

Jia, Yangqing (2013). Caffe: an Open Source Convolutional Architecture for Fast Feature
Embedding. http://caffe.berkeleyvision.org/.

Joo, Jungseock, Weixin Li, Francis Steen, and Song-Chun Zhu (2014). “Visual Persuasion:
Inferring Communicative Intents of Images”. In: CVPR.

Karayev, Sergey, Mario Fritz, and Trevor Darrell (2014). “Anytime Recognition of Objects
and Scenes”. In: CVPR.

Karayev, Sergey, Tobias Baumgartner, Mario Fritz, and Trevor Darrell (2012). “Timely
Object Recognition”. In: NIPS.

Karayev, Sergey, Matthew Trentacoste, Helen Han, Aseem Agarwala, Trevor Darrell, Aaron
Hertzmann, and Holger Winnemoeller (2014). “Recognizing Image Style”. In: BMVC.

Keren, Daniel (2002). “Painter Identification Using Local Features and Naive Bayes”. In:
ICPR.

Khosla, A., A. Das Sarma, and R. Hamid (2014). “What Makes an Image Popular?” In:
WWW.

http://arxiv.org/abs/arXiv:1207.5879v1
http://arxiv.org/abs/arXiv:1406.4729v1
http://arxiv.org/abs/arXiv:1406.4729v1
http://dx.doi.org/10.1109/CVPR.2011.5995721
http://dx.doi.org/10.1109/CVPR.2011.5995721
http://arxiv.org/abs/arXiv:1208.6067v2
http://caffe.berkeleyvision.org/

BIBLIOGRAPHY 81

Koren, Yehuda, Robert Bell, and Chris Volinsky (2009). “Matrix Factorization Techniques
for Recommender Systems”. In: pp. 42–49.

Krause, Andreas and Carlos Guestrin (2005). “Near-optimal Nonmyopic Value of Information
in Graphical Models”. In: UAI.

Krizhevsky, Alex, Ilya Sutskever, and Geoff E. Hinton (2012a). “ImageNet Classification
with Deep Convolutional Neural Networks”. In: NIPS.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012b). “ImageNet Classification
with Deep Convolutional Neural Networks”. In: NIPS.

Kulis, Brian (2009). “Learning to hash with binary reconstructive embeddings”. In: Advances
in Neural Information Processing Systems, pp. 1–9.

Kwok, Cody and Dieter Fox (2004). “Reinforcement Learning for Sensing Strategies”. In:
IROS.

Lampert, Christoph H, Matthew B Blaschko, and Thomas Hofmann (2008). “Beyond sliding
windows: Object localization by efficient subwindow search”. In: CVPR. doi: 10.1109/
CVPR.2008.4587586.

Lanckriet, Gert R G, Nellow Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I
Jordan (2004). “Learning the Kernel Matrix with Semidefinite Programming”. In: JMLR
5, pp. 27–72.

Lee, Su-In, Varun Ganapathi, and Daphne Koller (2006). “Efficient Structure Learning of
Markov Networks using L 1 -Regularization”. In: NIPS.

Li, Congcong and Tsuhan Chen (2009). “Aesthetic Visual Quality Assessment of Paintings”.
In: IEEE Journal of Selected Topics in Signal Processing 3.2, pp. 236–252. issn: 1932-
4553. doi: 10.1109/JSTSP.2009.2015077.

Lowe, David G (2004). “Distinctive Image Features from Scale-Invariant Keypoints”. In:
International Journal of Computer Vision 60.2, pp. 91–110. issn: 0920-5691. doi: 10.
1023/B:VISI.0000029664.99615.94.

Lyu, Siwei, Daniel Rockmore, and Hany Farid (2004). “A Digital Technique for Art Authen-
tication”. In: PNAS 101.49.

Macé, Marc J-M, Olivier R Joubert, Jean-Luc Nespoulous, and Michèle Fabre-Thorpe (2009).
“The time-course of visual categorizations: you spot the animal faster than the bird.” In:
PloS one 4.6, e5927. issn: 1932-6203. doi: 10.1371/journal.pone.0005927.

Marchesotti, Luca and Florent Perronnin (2013). “Learning beautiful (and ugly) attributes”.
In: BMVC.

Mensink, Thomas and Jan van Gemert (2014). “The Rijksmuseum Challenge: Museum-
Centered Visual Recognition”. In: ICMR.

http://dx.doi.org/10.1109/CVPR.2008.4587586
http://dx.doi.org/10.1109/CVPR.2008.4587586
http://dx.doi.org/10.1109/JSTSP.2009.2015077
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1371/journal.pone.0005927

BIBLIOGRAPHY 82

Murray, Naila, Luca Marchesotti, and Florent Perronnin (2012). “AVA: A Large-Scale Database
for Aesthetic Visual Analysis”. In: CVPR.

Nemhauser, G L, L A Wolsey, and M L Fisher (1978). “An analysis of approximations for
maximizing submodular set functions”. In: Mathematical Programming 14, pp. 265–294.

Oliva, Aude and Antonio Torralba (2001). “Modeling the Shape of the Scene: A Holistic
Representation of the Spatial Envelope”. In: IJCV 42.3, pp. 145–175.

Olshausen, B A and Others (1996). “Emergence of simple-cell receptive field properties by
learning a sparse code for natural images”. In: Nature 381.6583, pp. 607–609. issn: 0028-
0836.

Palermo, Frank, James Hays, and Alexei A Efros (2012). “Dating Historical Color Images”.
In: ECCV.

Pedregosa, Fabian et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12, pp. 2825–2830.

Roweis, Sam (1999). “Gaussian Identities”.

Roy, Nicholas and Geoffrey Gordon (2002). “Exponential Family PCA for Belief Compression
in POMDPs”. In: NIPS.

Sermanet, Pierre and David Eigen (2014). “OverFeat: Integrated Recognition , Localization
and Detection using Convolutional Networks”. In: ICLR. arXiv: arXiv:1312.6229v4.

Shamir, Lior, Tomasz Macura, Nikita Orlov, D. Mark Eckley, and Ilya G. Goldberg (2010).
“Impressionism, Expressionism, Surrealism: Automated Recognition of Painters and Schools
of Art”. In: ACM Trans. Applied Perc. 7.2.

Shechtman, Eli and Michal Irani (2007). “Matching Local Self-Similarities across Images
and Videos”. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1–8. doi: 10.1109/CVPR.2007.383198.

Simonyan, Karen, Andrea Vedaldi, and Andrew Zisserman (2014). “Deep Inside Convolu-
tional Networks: Visualising Image Classification Models and Saliency Maps”. In: ICLR.
arXiv: arXiv:1312.6034v2.

Sutton, Richard S and Andrew G Barto (1998). Reinforcement Learning: An Introduction.
MIT Press.

Taylor, Graham W and Geoffrey E Hinton (2009). “Factored Conditional Restricted Boltz-
mann Machines for Modeling Motion Style”. In: ICML.

Tenenbaum, J B and W T Freeman (2000). “Separating style and content with bilinear
models.” In: Neural computation 12.6, pp. 1247–83. issn: 0899-7667.

Torralba, Antonio, Kevin P Murphy, and William T Freeman (2004). “Contextual Models
for Object Detection Using Boosted Random Fields”. In: MIT Computer Science and
Artificial Intelligence Laboratory Technical Report.

http://arxiv.org/abs/arXiv:1312.6229v4
http://dx.doi.org/10.1109/CVPR.2007.383198
http://arxiv.org/abs/arXiv:1312.6034v2

BIBLIOGRAPHY 83

Torralba, Antonio, Kevin P Murphy, and William T Freeman (2007). “Sharing visual features
for multiclass and multiview object detection.” In: PAMI 29.5, pp. 854–869. issn: 0162-
8828. doi: 10.1109/TPAMI.2007.1055.

Trapeznikov, Kirill, Venkatesh Saligrama, and David Castanon (2013). “Multi-Stage Classi-
fier Design”. In: Machine Learning 92.2-3, pp. 479–502. arXiv: arXiv:1205.4377v2.

Uijlings, J R R, K E A Van De Sande, T Gevers, and A W M Smeulders (2013). “Selective
Search for Object Recognition”. In: IJCV.

Vanrullen, Rufin and Simon J Thorpe (2001). “The Time Course of Visual Processing:
From Early Perception to Decision-Making”. In: Journal of Cognitive Neuroscience 13.4,
pp. 454–461.

Vedaldi, Andrea, Varun Gulshan, Manik Varma, and Andrew Zisserman (2009). “Multiple
kernels for object detection”. In: ICCV, pp. 606–613. doi: 10.1109/ICCV.2009.5459183.

Vijayanarasimhan, Sudheendra and Kristen Grauman (2011). “Large-Scale Live Active Learn-
ing: Training Object Detectors with Crawled Data and Crowds”. In: CVPR.

Vijayanarasimhan, Sudheendra and Ashish Kapoor (2010). “Visual Recognition and Detec-
tion Under Bounded Computational Resources”. In: CVPR, pp. 1006–1013.

Viola, Paul and Michael J Jones (2004). “Robust Real-Time Face Detection”. In: IJCV 57.2,
pp. 137–154.

Vogel, Julia and Nando de Freitas (2008). “Target-directed attention: Sequential decision-
making for gaze planning”. In: ICRA, pp. 2372–2379. doi: 10 . 1109 / ROBOT . 2008 .

4543568.

Weiss, David, Benjamin Sapp, and Ben Taskar (2013). “Dynamic structured model selec-
tion”. In: ICCV.

Xiao, Jianxiong, James Hays, K A Ehinger, A Oliva, and Antonio Torralba (2010). “SUN
database: Large-scale scene recognition from abbey to zoo”. In: CVPR.

Xu, Zhixiang, Kilian Q Weinberger, and Olivier Chapelle (2012). “The Greedy Miser: Learn-
ing under Test-time Budgets”. In: ICML.

Xu, Zhixiang, Matt J Kusner, Kilian Q Weinberger, and Minmin Chen (2013). “Cost-
Sensitive Tree of Classifiers”. In: ICML. arXiv: arXiv:1210.2771v2.

Zhang, Ning, Jeff Donahue, Ross Girshick, and Trevor Darrell (2014). “Part-based R-CNNs
for Fine-grained Category Detection”. In: ECCV.

http://dx.doi.org/10.1109/TPAMI.2007.1055
http://arxiv.org/abs/arXiv:1205.4377v2
http://dx.doi.org/10.1109/ICCV.2009.5459183
http://dx.doi.org/10.1109/ROBOT.2008.4543568
http://dx.doi.org/10.1109/ROBOT.2008.4543568
http://arxiv.org/abs/arXiv:1210.2771v2

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Our Contributions
	Related Work
	Detection
	Classification
	Style Recognition

	Reinforcement Learning for Anytime Detection
	Problem Definition
	Method
	MDP Formulation
	Learning the policy
	Greedy vs non-myopic

	Reward definition
	Features of the state
	Updating with observations

	Evaluation

	Reinforcement Learning for Anytime Classification
	Problem definition
	Method
	Reward definition
	Features of the state
	Learning the classifier
	Unobserved value imputation
	Learning more than one classifier

	Evaluation
	Experiment: Synthetic
	Experiment: Scene recognition
	Experiment: ImageNet and maximizing specificity

	Detection with the Cascade CNN
	Method
	Quick-to-compute feature
	Cascade CNN

	Evaluation

	Recognizing Image Style
	Method
	Data Sources
	Flickr Style
	Wikipaintings

	Learning algorithm
	Image Features

	Evaluation
	Experiment: Flickr Style
	Mechanical Turk Evaluation

	Experiment: Wikipaintings
	Experiment: AVA Style
	Application: Style-Based Image Search

	Conclusion
	Future Work
	Detection and Classification
	CNN-based recognition
	Image Style

	Unobserved Value Imputation: Detailed Results
	Digits
	Scenes-15
	Conclusion

	Recognizing Image Style: Detailed Results
	Bibliography

