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ABSTRACT: Two-dimensional electronic−vibrational spectroscopy (2DEVS) is
a useful technique for studying the structure and dynamics of photoexcited
molecules via monitoring of the vibrational spectrum in real-time. However,
quantitative modeling or prediction of experimental spectra has been hampered by
the lack of a firm theoretical basis for this quantity. Here, we develop a useful
theory of 2DEVS and show that the time-dependent line shape of the 2DEVS
spectrum provides invaluable information on the cross-correlation function of the
solvation dynamics and vibrational spectral diffusion. The center and nodal line
slopes of each 2DEVS peak are determined by the associated cross-electronic−
vibrational frequency−frequency correlation function, which is shown to be related
to the intermolecular interactions and vibrational anharmonicities. The present
theory of 2DEVS would thus be of use for a refined understanding of the 2DEVS
spectra of reactive chemical and biological systems. We anticipate that further development of the expressions developed here will
illuminate the application of 2DEVS studies of vibronically induced energy and electron transfer in functional materials.

■ INTRODUCTION

Four-wave-mixing spectroscopy, including pump−probe and
2D electronic spectroscopy (2DES) or IR spectroscopy, has
been used extensively to investigate chemical and physical
processes of molecules and biological systems in condensed
phases.1−3 One of the most successful approaches is 2DES,4−6

which enables one to measure the time-correlation of
electronic transition frequencies reflecting changes in the
chemical structure or conformation of a given chromophore in
solution.7 2D IR (Raman) spectroscopy8,9 is a vibrational
analog of 2DES, which has also been used as an incisive
technique for extracting information on the dynamics and
structure of either a molecule in a thermal equilibrium state or
one in a nonequilibrium state generated by an external
perturbation, e.g., temperature, pressure, pH jump, or photo-
excitation.2,10−14

An exciting development in the 2DIR research community is
the site-specific incorporation of vibrational probes into
molecular, biological, or functional material systems using a
variety of organic and biochemical techniques.15 Although such
an IR probe could be invasive when it is incorporated into a
solvated molecular system via its hydrogen-bonding inter-
actions with surrounding solvent molecules or biomolecular
residues, the perturbation induced by the IR probe is often
negligibly weak compared to bulky organic fluorophores or

fluorescent proteins. The IR-probe-labeled biomolecules,
materials, and reactive systems have thus been under extensive
investigation using various time-resolved vibrational spectro-
scopic methods. Rigorous and systematic theoretical ap-
proaches, which are capable of describing the vibrational
solvatochromism, vibrational electrochromism, or the Stark
effect and dynamic fluctuations of vibrational frequencies and
transition dipole moments affected by surrounding solvent
molecules or neighboring residues in proteins and nucleic
acids, have only recently been developed and begun to be used
in the quantitative interpretation of time-resolved vibrational
spectroscopy signals.16

Recently, 2D electronic−vibrational spectroscopy
(2DEVS),17 which is another four-wave-mixing technique
utilizing both visible (or near-IR) and IR pulses, has been
shown to be of exceptional use for studying the chemical
dynamics of electronically excited molecules via probing the
time-dependent changes in vibrational structure through
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measuring time-resolved IR spectroscopic signals. In the
2DEVS experiment, the first two pulses propagating along
the same direction are pump fields in the visible frequency
domain. The third pulse in the IR region interacts with the
excited molecules to create third-order polarization. Then, the
pump−probe-type 2DEVS signal field is interferometrically
detected by a local oscillator pulse in the IR region. With the
2DEVS, one can directly measure the correlated inhomoge-
neity of the fluctuating energy gaps between electronic states
and vibrational states by analyzing a 2DEV spectrum that is
time-resolved by the waiting time between the visible (or near-
IR) pump pulse and the IR probe pulse.18 For example, the
application of 2DEVS in revealing vibronic coupling has been
explored.19,20 However, the origin of the cross-correlation
between fluctuating electronic and vibrational energy gaps has
not yet been clearly elucidated. One of the 2DEV
spectroscopic observables is the center line slope (CLS) of a
given 2DEVS peak, which has been extensively used for
qualitatively interpreting the 2DEV spectra of a number of
photochemical systems. However, quantitative modeling or
prediction of experimental spectra has been hampered by the
lack of a firm theoretical basis for this quantity. This paper
aims to provide such a foundation and to give simplified
expressions that make intuitively clear the physical origin of the
2DEVS dynamics. This framework should allow for a refined
understanding of 2DEV spectra of systems such as those
undergoing a sudden change in electronic structure as a result
of passing through a conical intersection21,22 or a keto-to-enol
transition leading to a conical intersection.23

In the present work, we first develop a theory of 2DEVS by
invoking a short-time approximation2,24 to the associated
nonlinear response function. It is then shown that the time-
dependent line shape of each 2DEV spectrum can be directly
related to the cross-correlation function of the fluctuating parts
of the electronic energy gap and vibrational energy gap of a
given chromophore in a condensed phase, which are induced
by the chromophore−solvent interactions and dynamics.
Further elaboration of the expressions developed here will
illuminate the application of 2DEVS studies of vibronically
induced energy25,26 and electron transfer.

■ RESULTS AND DISCUSSION
Molecular Hamiltonian. In general, the three radiation−

matter interactions can induce quantum transitions among four
different stationary states, including the initial ground state |g⟩.
We shall therefore consider a four-level-system as a model for
third-order response spectroscopy.27,28 The four-level-system
Hamiltonian is

ω ω ω̂ = | ⟩ℏ ⟨ | + | ⟩ℏ ⟨ | + | ⟩ℏ ⟨ |H a a b b c cag bg cg4LS (1)

where the energy of the ground state Eg is assumed to be zero.
The three ket states |a⟩, |b⟩, and |c⟩ represent any vibrationally
excited states on the electronic ground state or vibrational
states on the electronically excited state. Due to the system−
bath interaction, the energy gaps fluctuate in time, which can
be approximately described by the following Hamiltonian that
includes the bath and the system−bath interaction

̂ = ̂ + ̂ + ̂H H H Hmol 4LS B SB (2)

The system−bath (chromophore−solvent) interaction Hamil-
tonian,29 denoted as ĤSB, is assumed to be diagonal with
respect to the system eigenstates as

̂ = | ⟩⟨ | + | ⟩⟨ | + | ⟩⟨ |H V a a V b b Vq q q( ) ( ) ( ) c cag bg gSB c (3)

The bath degrees of freedom are denoted as q, and the
potential energy differences that are parametrically dependent
on q are defined as Vjg(q) = Vj(q) − Vg(q) for j = a, b, and c.
Therefore, we have

∑ ω̂ = {ℏ + + }| ⟩⟨ |

= ̂ + ̂ ′

=
H V H m m

H H

q q( ) ( )
m g a b

m mmol
, , ,c

B

0 (4)

where

∑

∑

ω

ω

̂ = {ℏ + + } | ⟩⟨ |

̂ ′ = {ℏ + }| ⟩⟨ |

=

=

H V H m m

H V m m

q q

q

( ) ( )

( )

g g
m g a b

m a b
mg mg

0 B
, , ,c

, ,c (5)

The ground-state adiabatic Hamiltonian Ĥg(q), defined as
Ĥg(q) = ℏωg + Vg(q) + HB(q), is the reference Hamiltonian, so
Ĥj(q) (for j = a, b, and c) can be written as

ω̂ = ̂ + ℏ +H H Vq q q( ) ( ) ( )j g jg jg (6)

Treating Ĥg(q) as the zero-order Hamiltonian Ĥ0, we find that
in the interaction picture the forward and backward time-
evolution operators entirely determined by Ĥj(q) (for j = a, b,
and c) are

∫

∫

ω τ τ

ω τ τ

−
ℏ

̂ = − ̅ −
ℏ

̂ −
ℏ

ℏ
̂ = ̅ ℏ ℏ

̂

+

−

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

i H t i t i H t i U

i H t i t i U i H t

exp exp( ) exp exp d ( )

exp exp( ) exp d ( ) exp

j jg g

t

jg

j jg

t

jg g

0

0

(7)

where

ω ω̅ = + ℏ ⟨ ⟩

≡ − ⟨ ⟩

= =
ℏ

̂ −
ℏ

̂

−

i
k
jjj y

{
zzz i

k
jjj y

{
zzz

V

U V V

U t U t i H t U i H t

q

q q q

q q

( )

( ) ( ) ( )

( ) ( ( )) exp ( ) exp

jg jg jg

jg jg jg

jg jg B jg

1

B (8)

The initial density operator may be written as a product of the
system and bath density operators as ρ(−∞) = ρS(−∞)
ρB(−∞). In eq 8, ⟨...⟩ represents the average over the bath
degrees of freedom.

Field−Matter Interaction Hamiltonian and Third-
Order Response Function. The third-order spectroscopy
involves three field−matter interactions.1 In the 2DEVS, all the
field−matter interactions within the electric dipole approx-
imation are given by

∑ μ̂ = − ̂ ·
=

EH t tr r( , ) ( , )
j

jInt
1

3

(9)

Here, Ej(r, t) = Ej(t) exp(ikjr − iωjt) + c.c., where Ej(t), kj, and
ωj are the temporal envelope function, wave vector, and carrier
angular frequency of the jth field, respectively, and c.c. is the
complex conjugate. Using the third-order time-dependent
perturbation theory, one can write the macroscopic third-order
(in the external field) polarization, which is proportional to the
expectation value of an electric dipole operator, in terms of
nonlinear response function and convolution integrals:1,2,29,30
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∫ ∫
∫

μ

μ μ μ μ

ρ τ τ

τ τ τ τ ρ

τ τ τ

= ⟨ ̂ ⟩ =
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2

(10)

where N is the number of chromophores and μ̂(t) is the time-
dependent dipole operator in the interaction picture. Changing
the integration variables in eq 10 and assuming that t0= −∞,
we find that

∫ ∫ ∫=

− − − − − −

∞ ∞ ∞
∂P R

E E E

t t t t t t t

t t t t t t t t t

r

r r r

( , ) d d d ( , , )

( , ) ( , ) ( , )

(3)

0
3

0
2

0
1 3 2 1

3 3 2 3 2 1 3 2 1 (11)

where the third-order response function is defined as

θ θ θ μ μ

μ μ ρ

=
ℏ

⟨[[[ ̂ + + ̂ + ]

̂ ] ̂ ] −∞ ⟩

i
k
jjj y

{
zzzt t t i t t t t t t t t

t

R( , , ) ( ) ( ) ( ) ( ), ( )

, ( ) , (0) ( )

3 2 1

3

3 2 1 3 2 1 2 1

1 (12)

The third-order response function of each molecule, which is a
fourth-rank tensor, describes the average dipole moment of the
molecule at a time of t1 + t2 + t3, which interacted with the
three applied fields Ej at t = 0, t1, and t1 + t2.
Expanding the three commutators in the definition of third-

order response function in eq 12, one can find that the
nonlinear response function consists of eight different terms:

∑θ θ θ=
ℏ

[ − * ]
α

α α
=

i
k
jjj y

{
zzzt t t i t t t t t t t t tR R R( , , ) ( ) ( ) ( ) ( , , ) ( , , )3 2 1

3

3 2 1
1

4

3 2 1 3 2 1

(13)

where θ(t) is the Heaviside step function and

μ μ μ μ ρ

μ μ μ μ ρ

μ μ μ μ ρ

μ μ μ μ ρ

≡ ⟨ ̂ ̂ + ̂ + + ̂ −∞ ⟩

≡ ⟨ ̂ ̂ + ̂ + + ̂ −∞ ⟩

≡ ⟨ ̂ ̂ ̂ + + ̂ + −∞ ⟩

≡ ⟨ ̂ + + ̂ + ̂ ̂ −∞ ⟩

t t t t t t t t t

t t t t t t t t t

t t t t t t t t t

t t t t t t t t t

R

R

R

R

( , , ) ( ) ( ) ( ) (0) ( )

( , , ) (0) ( ) ( ) ( ) ( )

( , , ) (0) ( ) ( ) ( ) ( )

( , , ) ( ) ( ) ( ) (0) ( )

1 3 2 1 1 1 2 1 2 3

2 3 2 1 1 2 1 2 3 1

3 3 2 1 1 1 2 3 1 2

4 3 2 1 1 2 3 1 2 1 (14)

The double-sided Feynman diagrams corresponding to the
four nonlinear response function components are shown in
Figure 1. From the definition of time-dependent dipole
operator in the interaction picture and using the operator
identities in eq 7, one can rewrite the four terms in eq 14 as

∑

∑

∑

∑

μ μ μ μ ω

ω ω

μ μ μ μ ω

ω ω

μ μ μ μ ω

ω ω

μ μ μ μ ω

ω ω

= {− ̅
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3 3 2 1
c

c c 3
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4 3 2 1
c

c c c 3

2 1 4 3 2 1 (15)

Using the Cumulant expansion method,1 one can obtain the
approximate line shape functions Fj(t3, t2, t1).

= {− * − * − + +

− * + + * + * + +

− + * + − * + + +

− + + * }

= {− * + − * − +

− * + + + * + + * +
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Here, the line-broadening function g(t) is given as

∫ ∫τ τ τ=
τ

g t C( ) d d ( )xy

t

xy
0

1
0

2 2
1

(17)

where the frequency−frequency correlation function (FFCF)
is

δω δω=
ℏ

⟨ ⟩ = ⟨ ⟩C t U t U t( )
1

( ) (0) ( ) (0)xy xg yg xg yg2 (18)

Figure 1. Double-sided Feynman diagrams that are associated with
the four response function components in eq 14.
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Note that the above quantum mechanical time-correlation
function Cxy(t) is a complex function of time, and its real and
imaginary parts are related to each other via a quantum
mechanical fluctuation−dissipation theorem. The fluctuation
of the electronic or vibrational transition frequency, induced by
the system−bath interaction, is responsible for the dephasing
of associated electronic or vibrational coherence created by the
interaction between an ensemble of chromophores and
ultrashort laser pulses.31

Although the third-order response function in eq 15 is exact
in the case when the distribution of difference potential Vjg (or
fluctuating part of the transition frequencies Ujg) is a Gaussian
function, the calculation of the 2DEVS signal with eq 11
requires complicated convolution integrals. It is not difficult to
carry out the integrations numerically. Still, the results may not
be useful for understanding the underlying physics nor for
interpreting the experimentally measured signals in terms of
the dephasing constants, inhomogeneous widths, spectral
diffusion, and the time-correlation between two different
transition frequency fluctuations. Therefore, it is helpful to
obtain approximate expressions for the third-order response
functions, which still contain most of the salient features about
how chromophore-solvent dynamics affect the time-evolution
of the 2DEV spectrum.
Short-Time Approximated Nonlinear Response Func-

tion. This short-time approximation to the nonlinear response
function is often valid because the electronic or vibrational
coherence of the system evolving for the first and third time
periods, t1 and t3, loses its phase rapidly due to the broad
distributions of instantaneous transition frequencies. That is to
say, only the short time (slowly varying) parts of the third-
order response over the times t1 and t3 are essential and
sufficient to approximately describe the dephasing pro-
cesses.32,33 Mathematically, this is the stationary-phase
approximation or the Laplace approximation for an integral
of the function multiplied by a highly oscillating function.
Taking a 2D Taylor expansion of the exponents in eqs 16 for t1
and t3, the 3D line shape function can be recast in the
following form.2

{
}

δ= − − Δ

+ −

F t t t f t t t t t

H t t t iQ t t

( , , ) exp ( )
1
2

( )
1
2

( )

( ) ( )

j j j j

j j

3 2 1 2
2

2 1
2 2

2 3
2

2 1 3 2 3 (19)

Here, f j(t2) describes the dephasing of the quantum
coherences or populations during t2 period, and, for j = 1−4,
they are

=

= − * − + [ ]

= − *

= −

f t f t

g t g t Re g t

f t g t

f t g t

( ) ( )

( ) ( ) 2 ( )

( ) ( )
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1 2 2 2

2 2 2

3 2 2

4 2 2 (20)

The t2-dependent δj
2(t2) in eq 19 represents the mean square

fluctuation amplitude of the transition frequency, which
determines the first coherence oscillation over t1. Note that
within the impulsive pulse approximation, δj

2(t2) determines
the spectral bandwidth of the 2D spectrum along with the first
frequency (ωt1) that is the conjugate frequency of t1. For j = 1−
4, we have

δ

δ
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δ

= + [ − ]
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1
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3
2

2 2

4
2

2 2 (21)

Similarly, Δj
2(t2) in eq 19 is the mean square frequency

fluctuation determining the bandwidth of the 2D spectrum
along with the frequency (ωt3) that is the conjugate frequency
of t3, and they are
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+ [ + − − ]

Δ = − + [ − ]

Δ = − + [ ]

t t C C C C

Re C t C t C t C t
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2
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3
2

2 2 2

4
2

2 2

(22)

The fourth term in the exponent of eq 19, Hj(t2), describes
how the excitation and detection (emission) frequencies are
temporally correlated with each other. For j = 1−4, we have
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The last term in eq 19, Qj(t2), describes spectral diffusion,
which is related to the Stokes shift of the transition frequency
due to solvation dynamics, during the second period t2. Qj(t2)
are
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In eq 24, for x, y = a, b, and c, the auxiliary function C̅(t) is
defined as

∫ τ τ̅ =C t C( ) d ( )xy

t

xy
0 (25)

Within this short-time approximation, each line shape function,
Fj(t3, t2, t1), is in the form of a rotated Gaussian function with
respect to t1 and t3, where the 2D widths and the angle of
rotation change in time t2.

2D Electronic−Vibrational Spectroscopy. 2DEVS in-
volves the first two interactions of chromophores with visible
pulses separated by τ in the time domain, and the third field−
matter interaction is with an IR pulse that is delayed by T from
the second pulse. The corresponding wavevectors can be
generally denoted as k1(vis), k2(vis), and k3(IR), respectively.
In practice, the first two visible pulses are generated by a single
pulse with a pulse shaper so that they propagate along the same
direction, i.e., kvis = k1(vis) = k2(vis), which is known as the
pump−probe geometry for coherent 2D spectroscopy.34,35

Thus, the created third-order polarization in the material
produces electromagnetic fields, and the corresponding phase-
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matching conditions determine their frequencies and prop-
agation directions, i.e., wavevectors. In the present work, we
focus on the pump−probe-type 2DEVS so that the polarization
component satisfying the following phase-matching require-
ment, ks = −kvis + kvis + kIR = kIR, is under interferometric
detection.
To extract information on the nonlinear molecular response

against the three pulses, one can measure the phase and
amplitude of the third-order signal field, which is possible by
employing a heterodyne detection method in the frequency
domain. The signal field Es is allowed to interfere with a local
oscillator (LO) pulse E0 that is another IR pulse delayed from
the kIR = k3(IR) pulse. The interference signal, which is given
by Ih(ωt, T, τ) = 2Re [E0*(ωt)Es(ωt, T, τ)], is what is measured
in the frequency (ωt) domain. Note that the Fourier transform
of the t-dependent signal electric field, Es(t, T, τ), is performed
by a grating, and the conjugate frequency was denoted as ωt.
The complex 2DEV signal field can be extracted from Ih(ωt, T,
τ), i.e.,36,37

ω τ
θ ω τ

ω
=

[ { }]
*

ω− − Δτ

E T
F t F I T e

E
( , , )

( ) ( , , )
( )t
t

i

t
s

1
h

0

t

(26)

where F and F−1 mean the Fourier and inverse Fourier
transform, respectively, and Δτ is the time delay between the
kIR pulse and the LO pulse. The full 2DEV spectrum is finally
obtained by performing a numerical Fourier transformation of
Es(ωt, T, τ) with respect to the delay time, τ, between the first
and second pulses as

∫ω ω τ ω τ ω τ̃ =τ τ

−∞

∞

E T E T i( , , ) d ( , , ) exp( )t ts s
(27)

From the theoretical expression of the third-order polarization
in eq 11, we find the polarization that is the radiation source
for the emitted signal field in the direction of kIR, as

τ τ τ
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where the two amplitude terms are
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(29)

The center frequencies of the visible and IR pulses in eq 29 are
denoted as ωvis and ωIR, and Ej(t) = εjej(t) where εj and ej(t)
are the unit vector representing the polarization direction and
the temporal envelop function of the jth pulse. Among many
terms in the third-order response function R(t3, t2, t1), only
those involving resonant electronic and vibrational transitions

induced by the incident visible and IR fields will significantly
contribute to the signal. The first term in eq 28, Ps1(t, T, τ), in
the case of the degenerate pump−probe spectroscopy with the
same pump and probe center frequencies is related to the
rephasing contribution to the signal, whereas the second term,
Ps2(t, T, τ), is often referred to as a nonrephasing
contribution.2 When this pump−probe geometry is used to
carry out 2DEVS measurements, both the rephasing and
nonrephasing terms contribute to the measured signal.

Short-Time Approximated Expression for the 2DEV
Spectrum. Since both the electronically excited and ground
states have manifolds of vibrational states, it is necessary to
include all the possible vibronic transitions to describe the
2DEV spectroscopy. For the sake of notational simplicity, let
us consider one vibrational mode even though it is a
straightforward exercise to generalize the present theory for
molecular systems with multiple normal modes. Hereafter, |g⟩
and |g′⟩ denote the vibrationally ground and first excited states
in the electronic ground state, respectively, whereas |e⟩, |e′⟩,
and |e′′⟩ are the vibrationally ground, first excited, second
excited states, respectively, in the vibrational manifold of the
electrically excited state.
In the present subsection, we shall focus on the rephasing

term Ps1(t, T, τ) only. One can perform the same line of
derivation to obtain the formal expression for the nonrephasing
term Ps2(t, T, τ). If the visible field is resonant with the
electronic transition between |g⟩ and |e⟩, there are two terms in
the R(t3, t2, t1) that satisfy the phase-matching requirement
and both electronic and vibrational resonance conditions.
Their double-sided Feynman diagrams contributing to Ps1(t, T,
τ) are shown in Figure 2. The transition pathway A
corresponds to the case that the first two field−matter
interactions with visible field bleach the electronic ground
state molecules. The third interaction of the pump-perturbed
system with the third pulse in the IR frequency domain brings

Figure 2. Double-sided Feynman diagrams. Diagrams A and B are
associated with the positive and negative 2DEV peaks at (ωt = ω̅g′g, ωτ

= ω̅e′g) and (ωt = ω̅e′e, ωτ = ω̅e′g), respectively, which are referred to as
GB and EA contributions to the 2DEV signal. Diagrams C−E
describe the Liouville space pathways representing the nonlinear
optical transitions resulting in the triplet at (ωτ = ω̅e′g) consisting of
the GB, EA, and SE peaks at (ωt = ω̅g′g, ωτ = ω̅e′g), (ωt = ω̅e′′e, ωτ =
ω̅e′g), and (ωt = ω̅e′e, ωτ = ω̅e′g).
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the system into a vibrational coherence, i.e., a superposition
state of |g⟩ and |g′⟩, which oscillates in time t with an angular
frequency of ωg′g. The expectation value of the dipolar operator
over the third-order density matrix, which corresponds to the
molecular polarization induced by the third-order field−matter
interactions by definition, oscillates in time. The third-order
polarization Ps1(t, T, τ) acts like a Hertzian dipole emitting an
electromagnetic wave whose propagation direction is parallel
to the vector of − kvis + kvis + kIR due to the principle of
momentum conservation. Comparing the double-sided Feyn-
man diagram associated with the transition pathway A with
that of R2 in Figure 1, we find that the pathway A is similar to
the ground-state bleach (GB) term in the conventional 2D
electronic or IR spectroscopy.30 However, because of the
mixed (electronic and vibrational) transitions involved in the
2DEV spectroscopy, pathway A represents the case that the
vibrational ground state is bleached by the electronic
excitation, not by an IR excitation. Hereafter, we shall refer
to this term as GB.
Transition pathway B differs from A because the system

evolves on the potential energy surface of an electronically
excited state during the waiting time T. Then, an absorptive
interaction of the IR pulse with the molecular system creates a
superposition state of |e⟩ and |e′⟩, which generates the third-
order signal electric field along the direction of −kvis + kvis +
kIR. The net effect from this polarization component associated
with pathway B on the IR beam is that a single IR photon is
absorbed (annihilated) by the molecule that was electronically
excited by the pair of visible pulses. Therefore, this
contribution from pathway B can be referred to as the
excited-state absorption (EA).
Comparing the double-sided Feynman diagrams associated

with the transition pathways A and B in Figure 2 with those in
Figure 1, we find that the two terms GB and EA correspond to
R3(t3, t2, t1) and −R3*(t3, t2, t1), respectively. Using the short-
time approximate expressions for these two components, the
third-order polarization components that are associated with
the positive 2DEV peak at (ωt = ω̅g′′g, ωτ = ω̅eg) and the
negative 2DEV peak at (ωt = ω̅e′,e, ωτ = ω̅eg) are given as

∫ ∫ ∫
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Here, μeg (μge) are the electronic transition dipole moments,
and μg′g (μgg′) and μe′e (μee′) are the vibrational transition dipole
moments of the same normal mode in the electronic ground
and excited states, respectively. From now on, the unit
polarization vectors εj are assumed to be real. To obtain the
above result in eq 30, we used a classical approximation to the
FFCFs. Within this classical approximation, the imaginary part
of the FFCF, denoted as CI(t) is related to the real part of the
FFCF CR(t) as

1,2,30

β≅ − ℏ
C t

t
C t( )

2
d
d

( )RI (31)

where β = 1/kBT, kB is the Boltzmann constant, and T is the
temperature. The real part of the quantum correlation function
is assumed to be the classical FFCF.30 In eq 30 and hereafter,
⟨...⟩c refers to the classical correlation function. These classical
or high-temperature approximations are acceptable because the
bath degrees of freedom, which are often modeled as a
collection of harmonic oscillators, can be treated as classical
quantities in the phase space instead of operators in the
Liouville space. More specifically, the fluctuations of both the
electronic and vibrational transition frequencies are induced by
the solute−solvent dynamics. The coupled bath degrees of
freedom are low-frequency modes whose frequencies are
usually smaller than approximately 200 cm−1 (= kBT/hc, where
c is the speed of light in cm/s) at room temperature. However,
if the temperature decreases, then the high-temperature
approximation breaks down. Because both the FFCFs of
electronic and vibrational transition frequencies decay due to
the fluctuation of the same set of bath degrees of freedom, such
breakdowns of high-temperature approximation would not
occur at significantly different temperatures for the vibrational
and electronic transition frequency fluctuations.
If the temporal envelops of the visible and IR pulses are

sufficiently shorter than the electronic dephasing time and the
vibrational dephasing time, respectively, then they can be
replaced with the corresponding Dirac delta functions.
However, the spectral bandwidths of these pulses are not
assumed to be infinitely broad because in practical experiments
the finite bandwidths of the visible and IR pulses are just broad
enough to cover the vibrational manifold of an electronically
excited state. Here, we ignore the vibrational coherence
evolutions during Tw, which are generated by Raman
interactions of optical chromophores with the visible pump
beams. Then, the third-order polarization amplitude in eq 30
after performing triple integrations becomes simplified as
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Using the slowly varying amplitude approximation when
solving the Maxwell equation with a radiation source given
by the above polarization, one can find that the signal electric
field amplitude Es1(t, T, τ) is proportional to Ps1(t, T, τ) as
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Es1(t, T, τ) ∝i Ps1(t, T, τ). After carrying out the 2D Fourier−
Laplace transformation of Es1(t, T, τ) with respect to τ and t,

∫ ∫ω ω τ τ ω ω τ̃ ̃ ̃ = ̃ + ̃τ τ

∞ ∞

T t t T i t iE E( , , ) d d ( , , ) exp( )t ts1
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(33)

and introducing two frequencies as ωτ ≡ ωvis − ω̃τ and ωt ≡
ωIR + ω̃t, we could obtain the waiting time (T)-dependent
2DEV spectrum
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F(x) is the Dawson integral. The auxiliary functions in eq 34
are defined as
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Similarly, one can obtain the expressions for Ẽs2
GB(ωt, T, ωτ),

Ẽs2
EA(ωt, T, ωτ), and Ẽs2(ωt, T, ωτ), which are associated with

the nonrephasing diagrams contributing to the pump−probe-
type 2DEV signal. Combining these results, we find that the
measured 2DEV spectrum, which is the sum of rephasing and
nonrephasing terms, is given by the real parts of Ẽs1

GB(ωt, T,
ωτ), Ẽs1

EA(ωt, T, ωτ), and Ẽs1(ωt, T, ωτ). That is to say, the
2DEV spectrum is given as
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This is one of the principal results in this paper. From eqs
34−37, it turns out that the 2DEV line shape is a rotated 2D
Gaussian function for ωτ and ωt. Both the angle of rotation and
the degree of elongation depend on the waiting time, which is
the subject that will be discussed in detail later in this article.
Here, it should be mentioned that due to the breakdowns of
the short-time approximation to the third-order response
function and the impulsive pulse approximation the result for
the 2DEV spectrum is not valid at very short waiting times.
Furthermore, when the incident pulses overlap in time, the
time-ordering of the field−matter interactions is not well-
defined, so a few more pathways will contribute to the
measured signal. Usually, the 2DEVS spectrum is plotted with
respect to the two Fourier frequencies for quantitatively
interpreting the time-resolved spectra, which is known as the
frequency-versus-frequency plotting convention. However,

Cina’s group shows that the time-versus-time interpretation
of the 2D electronic signals is useful and advantageous over the
frequency-versus-frequency analysis when pulse overlaps make
the interpretation of the experimental results complicated.38

Hereafter, we shall follow the frequency-versus-frequency
plotting convention and focus on the case when the above
two approximations are acceptable and when the pulses do not
strongly overlap in time.

Selection Rule of the 2DEV Spectroscopy. It is well-known
that the potential anharmonicity of a given normal mode is
needed to make the 2DIR spectroscopic signal nonzero. For
2DES, the signal becomes nonzero because of the non-Bosonic
character of the electronic transition, e.g., a two-level system.
Interestingly, 2DEVS has a different set of selection rules. The
GB and EA positively and negatively contribute to the signal,
respectively, but they can largely cancel out with each other
when the vibrational transition frequency ω̅g′g of a given
normal mode in the electronic ground state is identical or close
to ω̅e′e in the electronically excited state. However, even in the
case that ω̅g′g = ω̅e′e, if the vibronic coupling constant, i.e.,
Huang−Rhys factor, for this normal mode is nonzero, if the
vibrational transition dipoles differ from each other, i.e., μg′g ≠
μe′e, if the solvation-induced Stokes shift of the electronic
transition frequency is not negligibly small, i.e., ⟨δωegδωe′e⟩c ≠
0, or if the electronic-vibrational FFCFs, e.g., ⟨δωeg(T)
δωg′g(0)⟩c and ⟨δωeg(T) δωe′e(0)⟩c, substantially differ from
each other, then the cancellation between the GB and EA
terms is not perfect. Therefore, the observation of nonzero
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2DEV signal results from one or some combination of the
above cases. Furthermore, if molecules are electronically
coupled, creating vibronic excitons, then a second factor
enters the 2DEV spectrum. The transition moments of infrared
transitions in the excited state manifold can be very
significantly altered from their monomer values, and vibronic
transitions that are weak in the linear electronic absorption
spectrum can appear prominently in the 2DEV spectrum.39

Time-Dependent 2DEV Spectrum. From eq 35, the GB
contribution to the real part of the signal is a 2D Gaussian
function with a positive peak at ωτ = ω̅eg and ωt = ω̅g′g. The EA
contribution to Ẽs(ωt, T, ωτ), which is also a 2D Gaussian
function, peaks at ωτ = ω̅eg and ωt = ω̅e′e − βℏ(⟨δωeg(T)
δωe′e(0)⟩c − ⟨δωeg δωe′e(0)⟩c (Figure 3, features A and B). Due

to the cross FFCF, ⟨δωeg(T) δωe′e(0)⟩c, which is the spectral
diffusion process, the center frequency of the negative EA peak
shifts along the ωt axis as the waiting time increases, which is
the spectral diffusion process or solvation dynamics31

contributing to the negative EA peak in the 2DEV spectrum.
The 2D GB and EA peaks in the 2DEV spectrum, Ẽs(ωt, T,

ωτ), at short waiting times could be diagonally or anti-
diagonally elongated due to the quasi-instantaneous hetero-
geneity of local environments around chromophores, which
gives rise to the distribution of electronic and vibrational
transition frequencies. What is interesting and different from
the conventional 2DES or 2DIR spectroscopy is that the time-
correlation between the fluctuating electronic transition
frequency and the fluctuating vibrational transition frequency
can be measured through the analysis of the 2DEV spectra.
The slope of 2DEV peak indicates the following inequalities,
for the GB and EA peaks, respectively:

δω δω

δω δω

⟨ ⟩ ≠

⟨ ⟩ ≠

′

′

0

0

eg g g

eg e e

c

c (38)

As the waiting time T increases, each 2D peak becomes
symmetric with respect to ωτ and ωt. Such a waiting-time-
dependent change in the diagonally or anti-diagonally
elongated peak shape can be quantitatively characterized by
measuring the CLS of each 2DEV peak. From the approximate

2D Gaussian functions for the GB and EA peaks, the center
line slopes are given by

δω δω
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eg e e
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c

2
c
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c

2
c (39)

The results above suggest that the chromophore−solvent-
interaction-induced spectral diffusion processes of both the
electronic and vibrational transitions are correlated with each
other via the couplings of the electronic and vibrational
degrees of freedom with the same solvent (bath) modes. If the
two fluctuations are coupled to completely independent
solvent modes, then the CLS value should be zero even in
the case that the inhomogeneous distributions of the electronic
and vibrational transition frequencies are large. We will get
back to this point later in this paper.
From eq 39, the short-time CLS is determined by the ratio

of the cross-correlation amplitude to the mean square
fluctuation of the electronic transition frequency, i.e.,
⟨δωegδωg′g⟩c/⟨δωeg

2 ⟩c and ⟨δωegδωe′e⟩c/⟨δωeg
2 ⟩c, which are

usually less than unity in magnitude because the electronic
dephasing time constants are larger than the vibrational
dephasing time constants:

δω δω
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δω δω
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≤
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≤

′

′

1 1

1 1

eg g g

eg

eg e e

eg

c
2

c

c
2

c (40)

The ranges of cross-correlation amplitudes indicate that the
instantaneous heterogeneity of the local environments around
chromophores, which results in the distribution of electronic
transition frequencies, makes the CLS of a given 2DES peak
nonzero only when the two sets of bath degrees of freedom
that are responsible for the electronic and vibrational
dephasing processes are coherently coupled to these two
distinctively different molecular transition processes. Further-
more, the slope of the center line or nodal line in the 2DEV
spectrum is not necessarily positive. The magnitude and sign of
the normalized cross-correlation functions are determined by
the correlation between the solvation-induced shifts of the
electronic and vibrational transition frequencies.
If the vibrational transition frequency ω̅g′g of a given mode in

the electronic ground state is different from that ω̅e′e of the
same mode in the electronically excited state, then the positive
GB peak and the negative EA peak are aligned vertically at ωτ

= ω̅eg (peaks A and B in Figure 3). We note that the x-axis of
the 2D frequency map is ωτ. Then, the nodal line separating
the positive and negative peaks has a finite slope at short
waiting times, and its slope is approximately determined by the
average FFCFs which is {⟨δωeg(T) δωg′g(0)⟩c + ⟨δωeg(T)
δωe′e(0)⟩c}/⟨δωeg

2 ⟩c.
Although the theoretical description of 2DEVS given above

did not take into consideration the static inhomogeneous
broadening, following the same line of derivation in ref 2, one
can easily include the contributions from the static
distributions of both electronic and vibrational transition
frequencies. If the variances of the vibrational and electronic

Figure 3. Schematic diagram of the 2DEV spectrum. The positive and
negative peaks are shown in red and blue, respectively. The dashed
and solid lines are the center and nodal lines, respectively.
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transition frequency distributions are σ2 and Σ2, then the
results in eqs 35 and 36 are to be modified by performing the
following replacements:

δω δω σ

δω δω σ

δω δω

⟨ ⟩ → ⟨ ⟩+

⟨ ⟩ → ⟨ ⟩+

⟨ ⟩ → ⟨ ⟩+Σ

′ ′

′ ′

g g g g

e e e e

eg eg

2 2 2

2 2 2

2 2 2
(41)

In addition, if the static inhomogeneities of the electronic and
vibrational transition frequencies affect the cross-correlation
function, then the corresponding FFCFs in eq 39 could have
the corresponding offset values.
Vibrational Progression in the Electronically Excited

State. In the above, we considered two 2DEV peaks at ωτ =
ω̅eg. However, due to the presence of multiple vibronically
coupled states in the electronically excited state, the vibronic
transitions from |g⟩ to |e′⟩, from |g⟩ to |e′′⟩, and so on are
allowed, where the corresponding electronic transition dipole
moment is linearly proportional to the Franck−Condon
overlap. Such a series of vibronic transitions is manifested in
the linear absorption spectrum that exhibits multiple peaks due
to the vibrational progression of a strongly vibronically coupled
mode.
Now, let us consider the 2DEV peaks at ωτ = ω̅e′g, which

involves an electronic transition from |g⟩ to |e′⟩. Three different
pathways C−E are to be included to describe each triplet at ωτ

= ω̅e′g. Pathways C and D are similar to pathways A and B,
respectively, except that the initial electronic excitation
involves the transition between |g⟩ and |e′⟩ instead of that
between |g⟩ and |e⟩. They can be referred to as GB and EA
terms at ωτ = ω̅e′g. Pathway E involves an electronic transition
to |e′⟩, and the system evolves on a population state |e′⟩⟨e′|
during T. Then, the interaction with the IR pulse stimulates an
emissive transition from |e′⟩ to |e⟩, which is similar to the
stimulated emission (SE) contribution to the 2DIR signal
except that the creation of the population on a vibrationally

excited state is induced by the electronic transitions instead.
Therefore, we shall refer to the pathway E as the SE term.
Following the same line of derivation, we could obtain the

waiting time (T)-dependent triplet of 2DEV peaks at ωτ = ω̅e′g
as
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where
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The auxiliary functions in eqs 43 are defined as

Figure 4. Schematic diagram of the broadband 2DEV spectrum. If the
visible pulse were broad enough to cover more than one electronic
transition, then the measured 2DEV spectrum would exhibit multiple
groups of peaks with different intensities, frequencies, line shapes, and
center line slopes that depend on the associated electronic transition
and vibrational mode. The peaks in the blue box in this figure are
those in Figure 3.
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The additional SE term has the same sign with the GB term,
which can potentially cancel out with the negatively
contributing EA peak. Note that the peak position of the EA
term is at ωt = ω̅e′′e′, whereas that of the SE term is at ωt = ω̅e′e.
Due to the anharmonicity of the normal mode in the
electronically excited state, the vibrational transition frequency
between |e⟩ and |e′⟩ differs from that between |e′⟩ and |e′′⟩ by
the amount of Δωovertone = ω̅e′′e′ − ω̅e′e. Usually, we have ω̅e′e >
ω̅e′′e′. Consequently, the SE and EA peaks are separated from
each other along the ωt axis by the amount of anharmonic
frequency shift (Figure 3). The appearance of the triplet at (ωτ

= ω̅g′g, ωt = ω̅g′g), (ωτ = ω̅e′g, ωt = ω̅e′e), and (ωτ = ω̅e′g, ωt =
ω̅e′′e′) is an indication of vibrational progression present in the
2DEV spectrum.
The T-dependent center line slopes of the three peaks are

different from those of the two peaks at (ωτ = ω̅eg) in general
because the initial electronic coherence generated by the first
field−matter interaction has a different oscillating frequency.
From eqs 43 and 44, the corresponding CLS functions are
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Comparing the CLS changes of the peaks at (ωτ = ω̅e′g) with
those at (ωτ = ω̅e′g), one can further extract information on the
strength and distribution of the solvent modes that are coupled
to the vibrational transition of a given normal mode in the
electronically excited state.
In the above discussion, we considered just a single

vibrational mode (Qj) and one electronic transition (|e⟩).
Using broadband IR and visible pulses, one could excite
multiple vibrational modes and explore vibronic couplings on
the high-lying electronic states. In Figure 4, a schematic
representation of the broadband 2DEV spectrum is depicted.
The three vibrational modes are differently denoted as g1, g2,
and g3, and the second electronically excited state is denoted as
|f⟩. The lineshapes of 2DEV spectra would depend on a variety
of molecular properties.

Chromophore−Solvent Dynamics and Cross FFCF. To
elucidate the nature of cross-correlation of fluctuating
vibrational and electronic transition frequencies that are
induced by the chromophore−solvent dynamics, we need to
consider the theory of solvation dynamics and its interplay
with electronic and vibrational frequency fluctuations.
Often, chromophores undergoing an electronic transition

are modeled as a simple two-electronic-level system. Due to
the difference in the electronic structures (charge distribu-
tions) of the electronically excited and ground states, their
interaction energies with surrounding solvent molecules differ
from each other. Often, the intermolecular interaction
potential can be written as a sum of distinctively different
terms. For example, the interaction potentials of the electronic
ground and excited states denoted as Vg and Ve, respectively,
can be approximately written as

= + + + +V V V V V Vg e g e g e g e g e g e/ /
Coul

/
Rep

/
Ind

/
Disp

/
CT

(46)

where the terms on the right-hand side of this equation are the
Coulomb interaction, exchange-repulsion, induction, disper-
sion, and charge-transfer contributions. Depending on the level
of theory for the calculation of each term, there exist empirical,
semiempirical, and ab initio force fields with parameters
derived from fitting to the benchmark data or from first
principles. The intermolecular interaction potential is usually a
complicated function of the atomic coordinates and electronic
state of a given chromophoric molecule. Due to the difference
in the chromophore−solvent interaction energies of the
electronically excited and ground states, one can write the
fluctuating part of the electronic transition frequency as

δω
δ

=
ℏ

=
ℏ

− ⟨ ⟩
V

V Vq
q

q q( )
( ) 1

( ( ) ( ) )eg
eg

eg eg (47)

where the difference in interaction energy is defined as Veg(q)
= Ve(q) − Vg(q).
Over the past two decades, the vibrational frequency shift,

which is widely referred to as vibrational solvatochromism,
induced by the vibrational chromophore−solvent interaction
has been extensively studied to describe such vibrational
solvatochromic effects on molecular spectra quantitatively.15,16

Within the weak-coupling approximation, it was shown that
the fluctuating parts of the vibrational energy gaps of a normal
mode on the electronic excited and ground states, which are
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δωg′g(q) and δωe′e(q), respectively, can be directly related to
the intermolecular interaction potential V as40−42
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where the differential operators connecting the chromophore−
solvent interaction energies Ve/g to the frequency shifts, i.e.,
vibrational solvatochromic shift, δωg′g/e′e(q) are defined as42
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In the notation in eq 49, we assume that the normal mode of
interest is the jth one among the 3N − 6 (3N − 5) normal
modes of nonlinear (linear) molecules. The reduced mass,
vibrational angular frequency, and vibrational coordinate of the
jth normal mode are denoted as Mj, ωj, and Qj, respectively.
The cubic anharmonic coefficient is denoted as gijj. The first
and second derivatives of the intermolecular interaction
potential should be calculated at the equilibrium geometry
(Qe or Qg) of the chromophore on its electronically excited or
ground state for the calculations of the δωg′g(q) and δωe′e(q),
respectively.
From eq 48, the electronic-vibrational FFCFs in eq 39 can

be written as
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The result in eq 50 shows how the cross-correlation functions
are related to and determined by the chromophore−solvent
interaction energy.
To understand the theory in eq 50, let us consider a simple

model for the electronic and vibrational solvatochromism. If
the assumption that the chromophore−solvent interaction is
governed by the interaction between solute dipole and solvent
electric field, i.e., the Stark effect, is acceptable and valid, then
the fluctuating part of the electronic energy gap is

μ μ μδ = − − · = −Δ ·V q E q E q( ) ( ) ( ) ( )eg e g egsolvent solvent

(51)

where the electric dipole moments of the electronically excited
and ground states are denoted as μe and μg. Similarly, let us
assume the vibrational Stark effect43,44 is an acceptable
description for the vibrational frequency shift of a given
normal mode due to the chromophore−solvent interaction.
Then, we have
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where δμg and δμe are the vibrational Stark tuning rates of the
jth normal mode of the chromophore in its electronically
excited and ground state, respectively. Although the vibrational
Stark tuning rate δμg of a normal mode in the electronic
ground state can be measured by using vibrational Stark effect
spectroscopy,44 the measurement of δμe has not been
performed experimentally even though quantum chemistry
calculations of such Stark tuning rates are possible. In the
dipole−electric-field interaction model, both the electronic and
vibrational transition frequencies or their energy gaps are
modulated by the same local electric field created by
surrounding solvent molecules. However, it should be
emphasized that the corresponding susceptibility constants,
i.e., the electronic and vibrational Stark tuning rates, could be
different for different electronic transitions and vibrational
modes. Using this Stark effect approximation, we could find
that the cross FFCFs in eq 39 can be simplified as
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The quantities, Δμegδμg and Δμegδμe, are the dyadic products
of the corresponding two vectorial Stark tuning rates. The
decaying patterns of these cross-correlation functions are
mainly determined by the relaxation of the time-correlation of
the solvent electric field. Often, the solvation dynamics of an
electronically excited molecule, which is manifest by the time-
dependent fluorescence Stokes shift or photon-echo peak shift,
was described by considering the solvent electric field
interacting with solute dipole moments.31

It should be noted that the magnitude and sign of each
cross-correlation function in eq 53 is also determined by the
dyadic product, which could depend on the waiting time T.
The relative angles between the two vectors Δμeg and δμg for
⟨δωeg(T) δωg′g(0)⟩c and between Δμeg and δμe for ⟨δωeg(T)
δωe′e(0)⟩c in the molecular coordinate system depend on
different vibrational modes. Thus, the electronic and vibra-
tional frequency fluctuations could be positively or negatively
correlated with each other depending on the components in
the dyadic product.
In addition, if the chromophores rotate, undergo conforma-

tional changes, or a change in molecular structure via
photoexcitation-induced chemical reaction occurs during T,
then the corresponding electronic Stark tuning rate Δμeg will
change with the waiting time T, which in turn makes the
dyadic product become a function of T. If any of these
processes induce such changes in not only the magnitude of
Δμeg but also the relative angle between the two Stark tuning
rates, then the sign of CLS could change too. Sign changes in
the CLS have, in fact, been observed in several systems.19,29,21

Therefore, the measurement of the CLS can provide not only
the solvent correlation function, e.g., solvation dynamics or
time-correlation function of the solvent electric field, but also
molecular processes that affect the molecular structure via
chemical reactions or conformational transitions.
The short-range Coulomb interaction between chromo-

phores and surrounding solvent molecules could not be
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accurately described by the dipole−electric-field interaction.
Considering both a set of distributed partial charges and the
solvent electric potentials at the sites, the difference Coulomb
interaction energy can be written as

∑
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where qj
e and qj

e represent the atomic or distributed partial
charges of the jth site in the electronically excited and ground
states, respectively. The number of distributed sites is n. Δqj
has been referred to as the transition charge of the jth site,
which reflects the change in the electronic structure upon an
electronic transition. rj is the position of the chromophore’s jth
site. ϕsolvent(rj, q) is the solvent electric potential at the
chromophores’ jth site, which is given as
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where ε is the dielectric constant of the medium, k is the index
representing each solvent molecule, l is the index representing
each atomic site of a given solvent molecule, ckl is the atomic
partial charge of the lth atom of the kth solvent molecule, and
Rkl is the position of the atomic site of the lth atom of the kth
solvent molecule. The number of solvent molecules is M, and
the number of atoms in a given solvent molecule is m.
With the Coulomb interaction in eq 54, the fluctuating parts

of the vibrational frequencies are15,40,45
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In eq 56, lj
g/e is known as the vibrational solvatochromic charge

of the jth site, which is a measure of the susceptibility of the
vibrational frequency in response to a small change in the local
solvent electric potential at the jth site of the chromophore.
From eqs 54 and 56, one can write the cross FFCFs that

determine the line shape of the 2DEV spectrum as
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The result in eq 57 suggests that the magnitude and sign of the
cross FFCFs are determined by the products of electronic
transition charges and vibrational solvatochromic charges. The
decays of the FFCFs are described by the weighted sums of the
time-correlation functions of solvent electric potentials at
different interaction sites.
Although the interaction between the distributed charges of

a given chromophore and the electric field produced by
surrounding solvent molecules is often the dominant
contribution to the total intermolecular interaction potential
of chromophores in polar solvents, the vibrational solvato-
chromism was found to be complicated due to non-negligible
contributions from other interaction terms like exchange-
repulsive, induction, and dispersion interactions.16,42,46−48

Such difficulty in quantitatively describing the vibrational
frequency shift induced by chromophore−solvent interaction
is mainly because the vibrational frequency shift results from a
variety of short-range interactions of a given localized
vibrational mode with solvent molecules near the chromo-
phore. Therefore, to estimate the cross FFCFs quantitatively,
one might need to use other sophisticated approaches that
were reviewed in ref 18.

■ CONCLUSIONS

2DEVS is a hybrid 2D spectroscopic technique utilizing IR and
visible (or near-IR) pulses to excite chromophores electroni-
cally and subsequently to probe changes in their vibrational
structures. We developed a theory of 2DEVS, which reveals the
relationships between solvation dynamics of an electronically
excited molecule and vibrational solvatochromism of vibroni-
cally coupled modes in the electronically excited and ground
states. The CLS of each 2DEV peak is shown to be related to
the cross-correlation between the fluctuating parts of the
electronic and vibrational energy gaps. As an example,
considering a simple electric Stark effect on the frequency
shift originating from the interaction between solvent electric
field and dipole moment of the chromophore, we showed that
the solvent electric field−field correlation function weighted by
the dyadic product of the electronic and vibrational Stark
tuning rates determines the time-dependent change of the
center line slope (CLS) of a given 2DEVS spectrum. However,
the theoretical expressions given in the present work are
general enough to describe the line shapes of the 2DEV spectra
that are determined by a variety of molecular properties such
as the vibronic coupling strengths, the initial amplitudes and
signs of the cross FFCFs, the inhomogeneous distributions of
electronic, vibrational, and vibronic frequencies, potential
anharmonicities of vibronically coupled modes in the
electronically excited states, the time scales of solvation
dynamics, the correlation time of the vibrational solvatochro-
mic frequency fluctuation, chemical reactions, and so on.
Therefore, 2DEVS could be an incisive technique that would
be of great use in studying photochemical reactions and the
effects of solvent dynamics on the vibrational structures of such
chemically and biologically reactive molecules in the
condensed phases.
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