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Estimating the contribution of CD4 T cell
subset proliferation and differentiation to
HIV persistence

Daniel B. Reeves 1,2,13 , Charline Bacchus-Souffan3,13, Mark Fitch4,
Mohamed Abdel-Mohsen 5, Rebecca Hoh6, Haelee Ahn7, Mars Stone 8,
Frederick Hecht 7, Jeffrey Martin 9, Steven G. Deeks 6,
Marc K. Hellerstein 4, Joseph M. McCune10, Joshua T. Schiffer 1,11,12,13 &
Peter W. Hunt7,13

Persistence of HIV in people living with HIV (PWH) on suppressive anti-
retroviral therapy (ART) has been linked to physiological mechanisms of
CD4+ T cells. Here, in the same 37 male PWH on ART wemeasure longitudinal
kinetics of HIV DNA and cell turnover rates in five CD4 cell subsets: naïve (TN),
stem-cell- (TSCM), central- (TCM), transitional- (TTM), and effector-memory
(TEM). HIV decreases in TTM and TEM but not in less-differentiated subsets. Cell
turnover is ~10 times faster than HIV clearance in memory subsets, implying
that cellular proliferation consistently creates HIV DNA. The optimal mathe-
matical model for these integrated data sets posits HIV DNA also passages
between CD4 cell subsets via cellular differentiation. Estimates are hetero-
geneous, but in an average participant’s year ~10 (in TN and TSCM) and ~104 (in
TCM, TTM, TEM) proviruses are generated by proliferation while ~103 proviruses
passage via cell differentiation (per million CD4). In simulations, therapies
blocking proliferation and/or enhancing differentiation could reduce HIVDNA
by 1-2 logs over 3 years. In summary, HIV exploits cellular proliferation and
differentiation to persist during ART but clears faster in more proliferative/
differentiated CD4 cell subsets and the same physiological mechanisms sus-
taining HIV might be temporarily modified to reduce it.

The persistence of chromosomally-integrated HIV DNA inCD4+T cells
is the primary barrier preventing people living with HIV (PWH) from
achieving viral remission after stopping antiretroviral therapy (ART)1,2.
HIV persistence has been associated to physiological mechanisms of
CD4 cells3,4 (e.g., homeostatic5–7 and antigen-driven proliferation8,
cellular differentiation/maturation9, and death). To help elucidate
persistencemechanisms, it is critical to compareHIVDNA andCD4 cell
dynamics as directly as possible.

To that end it is important to consider that integrated HIV
DNA can be found in multiple CD4 cell subsets6,9–11 (categorized by
surface markers12–14) which have different physiological functions

(phenotypes) and maturational levels. For instance, at certain time
points, higher proportions of HIV DNA have been found in more
mature memory and effector CD4 cells, suggesting they are pre-
ferentially infected and/or expand HIV DNA through cellular
proliferation6,15–17. On the other hand, longitudinally across individuals,
HIV DNA appears to accumulate over time in less mature subsets that
turn over less frequently18. However, no study to date has measured
both CD4 cell turnover and HIV kinetics across subsets in the same
individuals.

Mathematical modeling has continually proven useful to under-
stand the kinetics and kinetic heterogeneity of HIV levels within a
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person over time during suppressive ART19–22. In addition, modeling
studies have sometimes inferred cellular rates usingHIV as amolecular
tag23,24. Our methodology builds upon a rigorous body of work using
dynamical systems and population mixed effects modeling to quanti-
tatively describe viral dynamics and recently, for multiple simulta-
neous data types25–27.

Previously, most CD4 cell subsets have been shown to turn over
several times per year in individuals without HIV28,29. These rates have
been compared to HIV DNA decay rates (generally >4 year half-
lives30–32), with the implication that HIV DNA in the reservoir must be
replenished consistentlywhileCD4cells areborn anddie. Yet, a further
complication is that genetically intact proviruses generally decay fas-
ter than defective ones22,33,34, suggesting extrinsic factors like immune
selection35,36 may also influence viral persistence. Overall, the precise
balance of processes that support reservoir maintenance remain
incompletely characterized.

Here we measured cellular turnover in each of five resting CD4
cell subsets and changes in integrated HIV DNA levels within these
subsets over 3 years in the same participants. We directly compared
HIV DNA kinetics and cellular turnover rates within each subset and
identified how these rates contribute to overall slow HIV DNA clear-
ance. By selecting themost parsimoniousmechanisticmodel for these
combined data, we inferred the degree to which cellular proliferation
and differentiation contribute to maintenance of integrated HIV DNA
levels during suppressive ART. Finally, we simulated temporary mod-
ulations of proliferation and differentiation to highlight how minor
changes in these processes might result in meaningful changes to HIV
kinetics.

Results
Study cohort
The HOPE cohort consists of 37 PWH on suppressive ART (clinical and
demographic information in Supplementary Table 1), 24 of whom
underwent a 45-day deuterium labeling study to measure CD4+ T cell
turnover rates and were reported previously17 in a cross-sectional
study. Here, we report a prospective 3-year longitudinal analysis of
levels of integrated HIV DNA in distinct maturational CD4 cell subsets
fromall 37HOPE participants and integrated these datawithmeasured
CD4 cell subset turnover rates. Follow up began 1–10 years after
achieving viral suppression. Levels of integrated HIV DNA per million
CD4+ T cells tended to be stable over time within individuals but

differed between individuals by several orders of magnitude (Supple-
mentary Fig. 1).

Quantifying HIV DNA in CD4+ T cell subsets
From these longitudinal samples, resting (HLA-DR-) CD4+ T cells were
isolated and sorted by flow cytometry into six CD4 cell subsets (sort
schematic in Supplementary Fig. 2): naïve (TN), stem-cell memory
(TSCM), central memory (TCM), transitional memory (TTM), effector
memory (TEM) cells, and a putative terminally differentiated (TTD)
population. As we observed contamination with TN in TTD, the present
analysis was focused on the first five sorted populations, each of which
was sorted with high purity17.

CD4+ T cell subset frequency was calculated as the ratio of subset
cells per resting CD4 cells (Fig. 1A). TN and TCM were most common,
each with a median across participants and time of ~25% of all resting
CD4 cells. The infection frequency was then calculated as the number
of integrated HIV DNA copies per million resting cells within each
subset (Fig. 1B). Typically, ~1 in 1000 resting TTM and TEM harbored
integrated HIV DNA, whereas the other subsets less commonly har-
bored HIV DNA16. Finally, by multiplying the subset frequency by the
infection frequency, we derived the subset HIV DNA level which
reflects the relative contribution of each subset to the measured HIV
DNA, i.e., the number of integrated HIV DNA copies in a given subset
per million total CD4 cells (Fig. 1C). Although not the highest in
infection frequency, given its high subset frequency, TCM contributed
the highest median HIV DNA levels, with ~100 infected TCM for every
million CD4 cells. Median HIV DNA levels were generally lower but not
significantly different in other memory phenotypes (TTM and TEM).
Considerable variability was noted within each subset and for each
data type.

HIV infected cells decay faster than non-infected cells in TTM and
TEM (but not other) subsets
To determine if HIV DNA cleared differently in each subset, we used a
statistical framework (log-linear mixed effects model) to assess chan-
ges in subset infection frequencyover the 3-year studyperiod (Fig. 2A).
Although the decay rates were heterogeneous (and even positive, i.e.,
growing, in certain individuals), the average integrated DNA levels
within TN, TSCM, and TCM did not significantly change over time (t test
p >0.05 against null hypothesis of no change), while those within TTM

and TEM decayed slowly but significantly over time (t test p < 1e-8)

Fig. 1 | Definitions and representation of study data. From 37 PWH in the HOPE
cohort, samples were taken at 1–3 time points over a 3-year period. Resting
CD4+ T cells were sorted into five phenotypic subsets including naïve (TN), stem-
cell memory (TSCM), central memory (TCM), transitional memory (TTM), and
effector memory cells (TEM). Three measurements were observed or calculated
(panel headings): (A) subset frequency—the proportion of cells in each subset

relative to total resting CD4 cells (“other” represents resting cells not among the
five sorted subsets), (B) subset infection frequency—integrated HIV DNA in each
subset per million subset cells, and (C) subset HIV DNA—the number of HIV DNA
copies in a given subset permillion CD4 cells. Colored dots indicate values from all
participant time points and black diamonds represent means across all dots.
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(Fig. 2B). Accordingly, TN and TCM rates were significantly different
from TTM and TEM rates (pairwise t tests p < 0.005 according to Bon-
ferroni correction for multiple comparisons). Estimated median half-
lives were 81 and 59 months for TTM and TEM, respectively. A declining
subset infection frequency implies that HIV-infected cells decay faster
than non-HIV-infected cells in that subset, suggesting anactive process
whereby HIV-infected cells are selectively removed.

Measuring cellular turnover via deuterium labeling
We used deuterated water labeling37 performed on 24 of the 37
HOPE participants to estimate cellular turnover rates in each subset17.
In these experiments, the cellular turnover rate is derived from
modeling the proportion of cells that take up a deuterium label
during a 45-day labeling period (model schematic in Supplementary
Fig. 3). More specifically, the fraction of cells that divided during
exposure to deuterated water is calculated37–39. Although what is
initially measured from deuterium incorporation into genomic DNA
is S-phase cell division, or proliferation40, we instead use the term
turnover rate here because this rate represents the combination of all
mechanisms that impact levels of deuterium in a subset, including
migration/trafficking and/or differentiation. For instance, labels in a
given subset can rise due tomaturationof a labeled progenitor cell or
fall due to furthermaturation41. Cellular turnover rates ranged across
subsets fromslowest (TNmedian0.2/year) tomost rapid (TEMmedian
2.6/years) (Fig. 2C). Turnover rates were generally more rapid in
more differentiated subsets, with the greatest differences between
TN to TSCM and TCM to TTM (pairwise t-test p-values in Fig. 2C). A
turnover rate of 1 per year corresponds to a half-life of 8.3months, so
these CD4 subsets have median half-lives of 35, 5.3, 4.3, 3.4, and

3.1 months, respectively. Considerable variability was noted within
each subset.

CD4+ T cell turnover is often but not always accompanied by
HIV DNA turnover in certain subsets
In all subsets except TN, the cellular turnover rate was roughly anorder
of magnitude faster than the rate of decay of HIV-infected cells
(compare Fig. 2B, C). This suggests that cellular turnover of HIV-
infected cells does not usually result in removal of HIV DNA. We
therefore estimated the percentage of cellular turnover events that
might also be accompanied by HIV turnover rather than HIV clearance
(Methods). For the five subsets respectively, we calculated medians of
112, 94, 99, 96, and 94% (Fig. 2D). In TN, this number is greater than
100% suggesting some increases in HIV DNA in this subset; however,
there was very high variability across participants making the median
less reliable. Additionally, the much lower cellular turnover rates
invoke lower signal compared to noise in the deuterium labeling
measurements, potentially reducing precision. In the TCM subset, we
estimate that cellular turnover almost always results in HIV turnover,
so HIVDNAdoes not necessarily decline. Finally, in TSCM, TTM, and TEM,
94–96% of cellular turnover can be associated with HIV turnover. That
is, roughly 5% of cellular turnover events are accompanied by clear-
ance of HIV DNA in these subsets (see example for TEM in Fig. 2E).
Together, these results indicate that most, but not all, events that
increase cell numbers—cellular proliferation and other mechanisms
contributing to turnover—are accompanied by concomitant increases
in HIV DNA. Any slight imbalance towards cell number increases
without HIV increases could drive decay of HIV DNA in certain
CD4 subsets.

Fig. 2 | The kinetics of subset HIV frequency vary by subset and are generally
slower than cellular turnover. A Longitudinal kinetics of HIV subset infection
frequency in each cell subset: thin lines and dots are individual trajectories and
thick solid lines represent the estimated average slopes from a log-linear mixed
effectsmodel.B Box plots of participants’ decay rates—note that some are positive,
meaning that HIV frequency increased. P-values indicate one-sided t-test against
null hypothesis of no clearance. For scale, the decay rate equivalent to the QVOA
reservoir benchmark 44 month half-life30 is denoted with the dashed gray line.
C Cellular turnover rates derived from deuterated water labeling in 24 of these 37
individuals. P values indicated paired two-sided t-tests with non-equal variance.

Magnitudes of cellular turnover rates (in non-TN subsets) aremuch higher thanHIV
decay rates—note difference in y-axis scales in (C) versus (B). D The % of cellular
turnover that is accompanied by HIV turnover (Methods). Values close to 100%
indicate that HIV is typically repopulated when cells turn over. In (B–D) box plots
indicate median (center line), interquartile range (box), 1.5x interquartile range
(whiskers), andoutliers (gray diamonds). Eachdot (N = 24) represents an individual.
E Cartoon example for TEM: in a year, there is frequent cellular turnover, which is
infrequently (~5% of events) accompanied by elimination of HIV-infected cells,
resulting in the observed slight decay of HIV DNA.
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Mechanistic modeling of subset HIV DNA suggests differentia-
tion rapidly passages HIV through CD4+ T cell subset matura-
tion pathways
CD4+ T cell subsets are connected to one another by known steps of
lineage maturation14. Previously, in this cohort, we found HIV DNA
integrated into identical human chromosomal sites among TCM and
TTM and TTM and TEM subsets, a strong sign that differentiation of HIV-
infected cells can occur17. Moreover, HIV DNA frequencies and levels
were found to correlate between certain subsets (Supplementary
Fig. 4). Yet, the relative degree to which differentiation into a given
CD4 cell subset versus proliferation within that subset contributes to
HIV DNA persistence remains unclear. Therefore, we next sought to
model HIV DNA levels with a mechanistic model that included specific
rules of cellular proliferation, death, and differentiation.

We developed a variety of models inclusive of different mechan-
istic processes and degrees of complexity (Table 1, see Methods for
equations and text describing assumptions). The list of models
encodes scenarios in which HIV DNA levels are governed by one or
more mechanisms including slow decay, proliferation, and cell differ-
entiation between subsets. A schematic and table of definitions illus-
trates the rates we consider (Fig. 3A, B). We then tested these models
forfit against levels of subsetHIVDNA (e.g., Fig. 1C). Importantly, this is
a different data type than in Fig. 2 and provides a common denomi-
nator ofmillionCD4+T cells for each subset. Inourmodel, the levels of
HIV DNA are linked across subsets, allowing proliferation and differ-
entiation rates to be directly compared.

Models were ranked by their accuracy (fit to data) but also
penalized for complexity using information criterion. The selected
model (Fig. 3C, Supplementary Movie 1) ranked best by both Akaike
and Bayesian information criteria42 (AIC and BIC, Table 1). In this best
model, each subset level of HIV DNAHs has a repopulation rate θs that
encapsulates the balance of cell proliferation and death. Cellular dif-
ferentiation passages HIV DNA between subsets i to j with rate ϕi:j .
Because we did not include the terminally differentiated subset (TTD)
due to TN experimental contamination, we could not estimate TEM

clearance and differentiation rates simultaneously. Therefore, we
explicitly note a combination of the two phenomena (see * in Fig. 3C).
We also constrained parameter estimation to ensure rates for each
subset were no larger than observed cellular turnover rates for that
subset (Supplementary Fig. 5A, B). When this constraint on parameter
space was relaxed, some models performed slightly better, but our
initial best model remained second only to a model with the same
structure but including biologically unrealistic rates (Table 1).

Therefore, for the remainder of the analysis, we proceeded with this
more conservative model.

Qualitative features of model selection provide several mechan-
istic results. First, all models lacking differentiation had significantly
poorer fit compared to the optimal model (ΔAIC> 2, Table 1). A model
that attempted to explain HIV levels through differentiation without
cell proliferation was substantially worse than the optimal model
(ΔAIC= 85). The selected model includes passaging of HIV DNA along
CD4 maturation pathways (i.e., linearly from least to most differ-
entiated subsets) but additionally was improved by the addition of
“skip” differentiation from TN to TCM, and from TCM to TEM. A simpler
model with purely linear differentiation TN > TSCM >TCM>TTM >TEM

was ranked 3rd but did not provide as strong a fit to data (Table 1).
Together, these findings suggest differentiation is necessary but not
sufficient to precisely describe HIV DNA dynamics in CD4 cell subsets
over time.

To potentially broaden the applicability of thismodel, we provide
a table of initial conditions,meanand standarddeviation of population
rates, and estimated variability of HIV DNA data (Supplementary
Table 2).

Sensitivity analysis on model selection
To assess whether the sparse 3-year sampling could have resulted in
observations favoring a model with skip differentiation, we simulated
the best-fit version of the model with linear differentiation, added
appropriate noise, and sampled time points per the 3-year study
scheme (Supplementary Fig. 6). We then refit this model to the linear-
and skip-differentiationmodels. As expected, the linear differentiation
model fit these data better than the skip-differentiation model (ΔLL =
1.5,ΔAIC = 10 compared to skip-differentiationmodel). This sensitivity
analysis illustrates how model selection can be self-consistent, such
that data generated with a given model contains enough information
to recover the same model via model selection. In addition, it sup-
ported that the skip differentiation model was not innately favored
based on noise or the sampling scheme.

Estimating HIV DNA decay half-lives in the model inclusive of
cellular differentiation
With some exceptions,model fits were excellent across highly variable
subset trajectories (see 18 of 37 fits for participants with three time
points, Fig. 4A). The overall population trends for each subset show
that, notwithstanding some degree of heterogeneity, the average
integratedHIVDNA level decays permillion CD4+T cells in 4/5 subsets

Table 1 | Results of information theoretic mathematical model selection on integrated HIV DNA per million CD4+ T cells

Rank Model ΔLL N rates ΔAIC ΔBIC

1 Differentiation with skips: subsets can proliferate and die and are connected from least to most differentiated but additional
connections are possible (e.g., TN > TCM).)

0 11 0 0

2 Constrained differentiation with skips: same as 1 but with limits on maximal differentiation rates (no greater than cell
turnover) based on biological plausibility.

10.5 11 10.5 10.4

3 Linear differentiation: subsets can proliferate and die and are connected from least to most differentiated. 25.4 9 17.4 10.9

4 Carrying capacity: integrated HIV DNA in each subset is assumed to have an equilibrium value such that levels away from this
value return through logistic growth/shrinking.

28.7 10 24.7 21.4

5 Linear differentiation linked to proliferation: a mathematical formulation in which some proportion of proliferation leads to
differentiation.

44.9 10 40.9 37.6

6 No differentiation: subsets can only proliferate and die. 84 5 60 40.6

7 Constrained linear differentiation: same as #3 but with limits on maximal differentiation rates based on biological plausibility. 75 9 67 60.5

8 Carrying capacity 2: same as #4 with a different mathematical form for equilibration. 73.2 10 69.2 65.9

9 Only differentiation: subsets have no proliferation/death or net repopulation rates. 113.1 4 85.1 62.5

10 Forced clearance: repopulation rates must be negative, and no differentiation is included. 136.4 5 112.4 93

Constrained differentiation with skips was chosen as the optimal model (see bolded rank 2) as best BIC given biologically realistic parameters. Δ denotes differences from the absolute best
model (rank 1). N rates is included to indicate model complexity (more estimated rates is more complex).
LL log likelihood, AIC Akaike information criterion, BIC Bayesian information criterion.
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with a half-life of: 4.3 years in TN, 2.6 years in TSCM, 3.2 years in TCM and
3.7 years in TEM (Fig. 4B). At the same time, HIV DNA levels in TTM

appeared to increase (which implies no half-life).When HIV DNA levels
in all subsets were summed, the net half-life across all subsets was
calculated to be 5.4 years. Although these data are not inclusive of all
CD4 cell subsets capable of harboring HIV genomes, and individuals
have different timeframes of ART (i.e., see trajectories in Supplemen-
tary Fig. 1), these half-life estimates are within ranges of previously-
estimated HIV DNA decay22,32,43.

Quantifying the contribution of cell proliferation, death, and
differentiation to integrated HIV DNA persistence
To compare and contrast the mechanisms underlying HIV persistence
in the bestmodel, we next directly applied the cellular turnover data to
estimate the absolute number of integrated HIV DNA copies (per
million CD4+ T cells) that enter and leave each subset pool during a
typical year due to proliferation, differentiation in and out, and death
(Methods, Fig. 3A, B).

In a typical year in the average individual, we calculated (Methods)
that 1–10 HIV DNA copies per million CD4 T cells are generated by
proliferation of TN and TSCM while 100–1000 copies are generated by
proliferation in TCM, TTM, and TEM (Fig. 5B). Meanwhile, similar num-
bers ofHIVDNA copies are removedby death (Fig. 5D). Thesenumbers
imply that HIV DNA persists in a rapid and dynamic near-equilibrium
state (Supplementary Movie 1). At the same time, few HIV DNA copies
per million CD4+ T cells enter TN and TSCM (Fig. 5A), and 1–10 copies
exit those subsets (Fig. 5C) due to differentiation. On average, ten
copies enter, and 100 copies leave TCM due to differentiation (Fig. 5C).
The unequal differentiation in and out then requires a slight imbalance
favoring proliferation over death (Fig. 5B vs. Fig. 5D) to maintain TCM

near equilibrium. TTM differentiation was almost balanced (mean ~100

copies in, ~70 copies out in Fig. 5A vs. Fig. 5C).We could not distinguish
TEM outward differentiation from death using these data since term-
inally differentiated cells were not studied in this analysis. Consider-
able variability was noted across participants within each subset.

Next, we compared mechanisms relative to one another by cal-
culating the percentage of creation (differentiation in and prolifera-
tion) and removal (differentiation out and death) events from each
mechanism and for each cell subset (Fig. 5E). Proliferation was the
dominant mechanism contributing to the persistence of integrated
HIVDNA inTN, TCM, andTTM.However, differentiation inwardmayplay
an important role in maintaining HIV genomes in TSCM and TEM. Dif-
ferentiation outward was an important mechanism particularly for TN

and TCM, in which removal was projected to occur more through dif-
ferentiation than death. TEM are known to proliferate frequently and
had the highest cellular turnover rates. However, the absolute con-
tribution of proliferation estimatedherewas lower thandifferentiation
in. If HIV DNA dynamics mirror cellular dynamics measured with
deuterated water experiments, this suggests that cellular turnover of
HIV-infected TEM may particularly be influenced by differentiation.

In summary themodel portrays typicalHIVDNA levels as a rapidly
proliferating, dying, and differentiating population that, in aggregate,
maintains a nearly equilibrated system such that integrated HIV DNA
only decays slowly and only in more mature CD4 subsets (Supple-
mentaryMovie 1). Importantly, proliferation remains the predominant
mechanism in the generation of integrated HIV DNA. TN and TSCM

contain less HIV DNA; therefore, the absolute HIV DNA creation and
removal in those subsets is orders of magnitude smaller than that
found in memory subsets. Proliferation is of particular impact in the
context of TCM andTTM:when coupledwith differentiation outward (to
one or more subsets), these subsets contribute meaningfully to HIV
DNA persistence in the rapidly dying/differentiating TEM pool (Fig. 5F).

Fig. 3 | Modeling subset HIV DNA dynamics via physiological mechanisms of T
cells including proliferation, differentiation, and death. Model schematic (A)
and definitions (B) of model rates for a single subset. Net effect rates Θ describes
the total kinetic rate summing all modeledmechanisms governing HIV DNA so can
be positive or negative for each subset. The turnover rate represents the positive
contribution to cellular turnover, estimated via the labeling study. Our mathema-
tical model estimates the repopulation (θ) and differentiation (φ) rates in and out
of each subset. Therefore, we can calculate the proliferation (α) and death (δ) rates
for each subset from turnover and differentiation.C Themost parsimoniousmodel

of all combined subset HIV DNA levels included infected cell proliferation (dots
flashing), death (dots falling and fading), and differentiation between certain sub-
sets (dots moving). This image is a screenshot of the Supplementary Movie 1 which
visualizes the system over time. The differentiation pattern that was most parsi-
monious included a general flow from least to most mature subsets, but also some
“skip” patterns, i.e., TN-to-TCM and TCM-to-TEM. With no further measured subset
past TEM, death and differentiation out could not be distinguished for TEM so we
combined the two phenomena (see *).
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Modeling cell-associated HIV RNA
We also fit models with no differentiation, linear differentiation, and
our favored model with skip differentiation to cell-associated HIV
RNA (caRNA) levels measured in the same participants

(Supplementary Fig. 7). For these data, the model without differ-
entiation was optimal via AIC. In line with observations for HIV DNA,
caRNA levels per million CD4 T cells appeared to increase slightly in
TCM and decrease in TEM in these participants. But unlike for DNA,

Fig. 4 | Modeling including proliferation and differentiation recapitulates
individual subset HIV DNA kinetics. AModel fits (solid lines) of subset HIV DNA
levels (dots/dashed lines) for all participants having 3 longitudinal measurements

(N = 18). B Population model (solid lines) estimates of subset HIV DNA (copies per
million CD4 T cells) to all longitudinal participant data (dots with thin lines).

Article https://doi.org/10.1038/s41467-023-41521-1

Nature Communications |         (2023) 14:6145 6



RNA increased in TTM. Together, these data suggest that RNA levels
are less tightly connected across subsets, potentially because RNA is
generated by DNA and additional variability in this process reduces
correlations.

In silico knockout demonstrates the theoretical capacity of
reservoir reduction through reduced cell proliferation and/or
enhanced cell differentiation
Mechanistic modeling provides the valuable ability to project the
dynamics of HIV DNA persistence in the context of perturbed CD4+ T
cell subset proliferation and/or differentiation. Thus, we used the
model to simulate three therapeutic scenarios over a period of three
years: ART alone (Fig. 6A), ART with anti-proliferative therapy that
reduces cellular proliferation for all subsets by a factor of 2 (Fig. 6B),
and ART with enhanced differentation therapy that increases differ-
entiation for all subsets by a factor of 2 (Fig. 6C). We calculated
changes in HIV DNA per million CD4+ T cells over time. For ART
alone, (as observed in the raw experimental data) we projected a
relatively minimal median change and wide variability inclusive of
increases and decreases in all subsets. For ART and anti-proliferative
therapy, median HIV DNA across subsets dropped by 300 copies (or
~90%)withmost simulations resulting in overall decrease. For ART and
enhanced differentiation therapy, median HIV DNA across sub-
sets dropped by 200-300 copies (or ~80–90%) with slightly more
simulations inclusive of no change or increase versus anti-proliferative
therapy.

Discussion
Here, we addressed the mechanistic basis for HIV persistence during
ART in different phenotypic subsets of CD4 +T cells. We measured
both longitudinal levels of integrated HIV DNA and cellular turnover
rates in five resting CD4 cell subsets in ART-suppressed people living
with HIV (PWH). In agreement with previous studies in adults and
children6,15,17,44, HIV DNA in these individuals was most commonly
found in central, transitional, and effector memory subsets (TCM, TTM,
and TEM). Although total levels of naïve CD4 T cells (TN) were as high, if
not higher than those with a memory phenotype, TN were much less
frequently found to harbor integrated HIV DNA, consistent with

observations that memory subsets are easier to infect45,46 and/or that
HIV DNA accumulates more quickly within them7.

We documented that HIV decays more rapidly in differentiated
CD4 cell subsets (TTM and TEM) vs. less mature subsets (TCM and TN).
This explains why HIV DNA appears to accumulate in less-
differentiated subsets, as observed in a prior cross-sectional study17.
It is possible that proliferation and/or differentiation in these subsets
promotes HIV expression and immune recognition47, leading to pre-
ferential removal of latently infected cells48. However, TCM also com-
monly proliferated, so more experiments are needed to refine
mechanisms in each subset.

Deuterium labeling data from these PWH demonstrated that
turnover rates of predominantly uninfected memory CD4 cells were
approximately tenfold faster than HIV DNA decay rates. Therefore, we
concluded that HIV-infected cells must frequently die and repopulate
by cellular proliferation (and/or differentiation). Additionally, TN

turned over substantially less frequently, such that in this subset cel-
lular longevity of latently infected cells is a potential mechanism of
reservoir persistence. Most importantly, HIV-infected cells must be
slightly balanced towards death during cellular turnover to allow for
the HIV DNA decay we observed in the most differentiated subsets.

Cellular differentiation naturally occurs in the context of home-
ostasis of the total CD4+ T cell population13,14,49. However, the con-
tribution ofCD4 cell differentiation toHIVpersistencehasmostly been
discerned indirectly9 and the magnitude of differentiation, especially
as compared to cellular proliferation, has not been quantified. We also
observed strong associations between HIV levels in different cell sub-
sets over time. Therefore, we tested mathematical models of HIV DNA
levels that directly linked subsets and found that models inclusive of
differentiation allowed for the best agreement with the data,
strengthening the evidence that integrated HIV DNA is passaged from
one subset to another through physiologic pathways of CD4 T cellular
differentiation.

Our optimal model included “skips” in which HIV DNA was pas-
saged from TN to TCM and TCM to TEM without going through inter-
mediate TSCM and TTM subsets. There may be a mechanistic
explanation for why apparent “skipping” is a better fit than linear dif-
ferentiation. Indeed, it is hard to reconcile the speed of antigenic

Fig. 5 | Absolute and relative contribution to HIV reservoirs by cell prolifera-
tion, death, and differentiation. A–D Absolute contributions to HIV subset DNA
by differentiation in, proliferation, differentiation out, and death of each subset.
E Relative contribution of each mechanism to each subset. Positive (persistence)
and negative (clearance) contributions are treated separately for % calculations.

Differentiation out and death of TEM are grouped together because the lack of
terminally differentiated cells in this analysis precluded identificationof both rates.
In A–E, estimate for each individual (N = 24) are shown as colored dots and black
diamonds indicate means across individuals. F The absolute contribution of each
mechanism averaged across all individuals.
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response with amodel in which TCMmust become TTM (with 3months
half-lives) before becoming TEM. As different viral infections are con-
trolled by phenotypically different CD8+T cell subsets50, itmay be that
certain CD4 cell subsets respond to different antigens.

On an absolute scale, cellular proliferation was confirmed to be
the dominant mechanism of reservoir persistence51, accounting (using
the best model) for 10–10,000s of new HIV DNA copies per million
CD4 cells in a given year. The upper end of this range is comparable to
estimates of total reservoir sizes such that, in 1 year, individual cells
carrying integrated HIV DNA may be completely refreshed while HIV
DNA levels remain nearly constant. In addition to proliferation, the
persistence of HIV DNA was also found to be driven by cell differ-
entiation. An implication is that differentiation does not necessarily re-
activate HIV expression and result in immune recognition. The overall
picture from themodel is one in which all subsets proliferate (and TCM

in particular proliferate and differentiate rapidly), creating HIV DNA
and passaging it onto more mature progeny.

Though we did not study HIV provirus clonality, the best model
helps to mechanistically explain past observations of clonal HIV pro-
viruses detected in different CD4 cell subsets9–11,52. Other recent data
showed predominantly unique HIV sequences isolated from TN,
whereas those retrieved from TEM were mainly clonal53,54. Previously,
we reported on HIV clonality in some HOPE study participants17. Oli-
goclonality was generally higher in more mature subsets and these
subsets also had the highest degree of sharing of the same clonotypes.
The present modeling provides some mechanistic insight for these
observations: we estimate that much of the integrated HIV DNA found
in TEM and TTM was likely generated upon cell proliferation and/or
passaged onward from the highly proliferative (and therefore highly
clonal) progenitor TCM subset. Thus, these subsets are both highly
likely (in absolute terms) to be clonal and to share clones in common.
However, while TN is still predominantly sustained by proliferation,
their lower proliferation rates mean TN is relatively less clonal than
other subsets.

Armed with the mechanistic model55, we simulated in silico
therapeutics and found that continually reducing cellular prolifera-
tion (anti-proliferative therapy7) or enhancing differentiation (akin to
“rinse and replace”56) during suppressive ART could substantially
reduce HIV DNA levels relative to the use of ART alone. These
approaches achieve reduction in HIV DNA differently. It is assumed
that the natural (slow) HIV DNA clearance rate in each subset arises
from a balance of cell proliferation and death. Anti-proliferative
therapies imbalances each subset individually, and HIV DNA clear-
ance is projected to be faster in subsets with higher natural death
(turnover) rates. Alternatively, enhancing differentiation does not
increase clearance in each subset but rather pushes HIV DNA into the
most differentiated compartments, in which HIV DNA clears more
rapidly.

In all our simulations, sustained therapy for several years was
required tomeaningfully reduceHIVDNA,whichpresents both clinical
and experimental challenges for validation. Nevertheless, a human
study on IL-15 superagonist N-803, an anti-cancer drug that might
promote differentiation57, achieved a small but significant reduction in
inducible HIV proviruses58. Individuals taking Dasatinib, a different
anti-cancer agent that restricts antigen-driven and homeostatic pro-
liferation of CD4+ T cells in PWH59, also appeared to have lower HIV
DNA levels than those taking ART alone, but whether this effect is
driven by anti-proliferation requires more research60.

Predictions about anti-proliferative or pro-differentiation therapy
from the in silicomodels should be interpreted carefully. For instance,
larger HIV clones found during ART were observed to be less likely to
reactivate when ART was stopped (with a continuous relationship
between probability and size61), perhaps because they are either
genetically defective62–65 or integrated within epigenetically silenced
locations (graveyards)35,36,66. This could suggest thatmore proliferative
clonotypes, which in turn might be more affected by anti-proliferative
therapy, may be less relevant for predicting viral rebound. Because
we did not have viral rebound data, we did not explore models that

Fig. 6 | Simulations of modulated HIV persistence mechanisms. Projections of
subset HIV DNA levels in all resting CD4+ T cell subsets during three theoretical
therapeutic interventions: A ART alone, (B) ART and anti-proliferative therapy:
2-fold reduction in cell proliferation in all subsets, and (C) ART and enhanced

differentiation therapy: 2-fold increase in cell differentiation in and out of all
subsets. Box plots indicate median (center line), interquartile range (box), 1.5x
interquartile range (whiskers), and outliers (open circles). Each line (N = 24)
represents a simulation using parameters from each individual.
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included viral reactivation67–69 (also precluding simulation of latency
reversal agents70).

There are also experimental caveats to this work. CD4 cell subset
categorization is inherently imperfect because identifying cells by cell
surface markers requires defining thresholds and dichotomizing what
is likely a continuumofcellmaturation states71. Inparticular, TNmaybe
heterogeneous to the point of resembling other phenotypes72. We
could not distinguish the loss of HIV genomes in TEM through cell
death or migration or differentiation outward because we did not
successfully sort high-purity terminally differentiated cells.

On themodeling side, our absolutely best scoredmodel admitted
rates that were not necessarily biologically plausible. By constraining
these rates, we derived a reasonable model that still fits data accu-
rately. Going forward, it would be ideal to collect more temporally
resolved data to refine these rates. Other simplifications include that
we did not model HIV DNA influx into TN cells -- although small num-
bers of recent thymic emigrants and/or bone marrow progenitors can
be infected73,74. Cellular trafficking to other anatomic compartments
and the role of resident memory CD4+ T cells75 were not explicitly
modeled; on the other hand, the composite movement of cells in and
out of tissues are likely balanced over the multi-year study time-
scales in our study. Finally, on a conceptual level, cell differentiation
and proliferation are fundamentally single cell/lineage properties,
whereas we interpreted estimated rates as frequencies of cellular
processes averaged over cell populations, which inherently minimizes
within-host stochastic effects.

A strength of this study is the direct comparison of CD4 cell
turnover andHIVDNAdecay in the sameparticipants and subsets. Still,
most CD4 cells during ART are not HIV-infected, so it is unclear whe-
thermeasured turnover rates precisely represent thoseofHIV-infected
cells. HIV-infected cells that persist may be particularly biased toward
cell survival and/or proliferation76,77, or more likely to express sig-
natures indicating resistance to immune-mediated killing35,36,66. Our
modeling does not reach this level of genetic precision, but our
observations of proportional DNA decay in more differentiated CD4
cell subsets (TTM and TEM) indicate that survival mechanisms are likely
insufficient to overcome clearance mechanisms in these subsets.

Finally, it would be desirable to estimate mechanistic contribu-
tions specifically to the persistence of intact proviruses, which are
much more rare but known to clear more rapidly than defective HIV
proviruses in the first years of ART33,34,62,65,78. Depth remains a challenge
in many HIV reservoir studies, and filtering HIV DNA into both subsets
andby intactness has admitted very lowproviral counts16.Wehope this
limitation can be overcome in the future.

In summary, by examining HIVDNA levels and cellular turnover in
CD4+ T cell subsets, we found that HIV DNA decays faster in differ-
entiated CD4 cell subsets and quantified how both cellular prolifera-
tion and differentiation contribute to HIV persistence. Our simulations
suggest that the samemechanisms thatHIV exploits for its persistence
might also be leveraged for its elimination.

Methods
Inclusion and ethics
All participants were over 18 years old and provided written informed
consent for inclusion before they participated in the study. The study
(NCT00187512) is anobservational, prospective studyofHIV-1 infected
volunteers designed to provide a specimen bank of samples with
carefully characterized clinical data. The study was conducted in
accordance with the Declaration of Helsinki, and the protocol was
approved by the University of California San Francisco Committee on
Human Research.

Study participant characteristics
Thirty-seven persons living with HIV (PWH) on ART were recruited
between 2015 and 2019 from the clinic-based SCOPE and OPTIONS

cohorts at Zuckerberg San Francisco General Hospital. Study partici-
pants returned yearly for 1-3 time points of follow up. The SCOPE
cohort enrolls PWH with chronic HIV, whereas the OPTIONS cohort
enrolls PWH< 12 months (before 2003) and <6 months (after 2003)
followingHIV antibody seroconversion. Viral suppressionbyARTwas a
requirement for study entry. Duration of viral suppression was esti-
mated based on clinic records (typically assessed every 3–6 months).
HIV acquisition timing for each participantwas estimated aspreviously
described79.

Isolation of CD4+ T cell subpopulations
All participants underwent leukaphereses performed as outpatients.
PBMC were isolated and viably cryopreserved. Frozen PBMC were
thawed and CD4 T cells enriched with the EasySep™ Human CD4 +T
Cell Negative Selection Enrichment Kit (Stemcell). Cells were stained
with Live/Dead Fixable Aqua (Life Technologies) and the following
monoclonal antibodies cocktail: anti-CD3-FITC, anti-CD4-Alexa-
Fluor700, anti-CCR7-PE-Cyanine7, anti-CD27-APC, anti-HLA-DR-APC
H7, anti-CD57-Brilliant Violet 421, and anti-CD95-PE (BectonDickinson)
as well as anti-CD45RA-ECD (Beckman Coulter). HLA-DR- CD4+ T cell
subpopulations were sorted on a FACS ARIA II flow cytometer (BD
Biosciences) at >97% purity. Dry pellets were snap-frozen at −80 °C.
Flow cytometry data were analyzed on FACSDiva v8.0.1 (BD Bios-
ciences) and FlowJo v8.7 (Tree Star). Sorting schema is provided in
Supplementary Fig. 2.

Integrated HIV DNA quantification
Total DNAwas extracted using the Allprep DNA/RNA/miRNAUniversal
Kit (Qiagen). Integrated HIV DNA copies were quantified with a two-
step PCR reaction80 using isolated genomic DNA for PCR amplification
instead of whole cell lysates. Integrated HIV DNA was pre-amplified
with two Alu primers and a primer specific for the HIV LTR region, in
addition to primers specific for the CD3 gene to determine cell counts.
Nested qPCR was then used to amplify HIV and CD3 sequences from
the first round of amplification. Specimens were assayed with up to
500 ng cellular DNA in triplicate and copy number was determined by
extrapolation against a 5-point standard curve (3–30,000 copies),
using extracted DNA from ACH-2 cells.

Cell-associated HIV RNA quantification
Total RNAwas extracted using the Allprep DNA/RNA/miRNAUniversal
Kit (Qiagen) with on-column DNase treatment (Qiagen RNase-Free
DNase Set). HIV RNA levels were quantified with a qPCR TaqMan assay
using LTR-specific primers F522-43 (5′ GCC TCA ATA AAG CTT GCC
TTG A 3′; HXB2 522-543) and R626-43 (5′GGGCGCCAC TGC TAG AGA
3′; 626-643) coupled with a FAM-BQ probe (5′ CCA GAG TCA CAC AAC
AGACGGGCACA 3) on a StepOne Plus Real-time PCR System (Applied
Biosystems, Inc.)81. Up to 500ng of total RNA per sample were char-
acterized in triplicate, and copy numbers were determined by extra-
polation against a 7-point standard curve (1–10,000 copies). The input
cell number in each PCR well was estimated using independent qPCR
measurement of the cellular housekeeping human RPLP0 gene.

Estimating the slope of subset infection fraction
To estimate the slope of HIV subset infection frequency (per million
cells of each resting subset), we assumed that the longitudinal kinetics
of each subset infection frequency f X followed an independent
exponential model:

_f X =ΔX f X ð1Þ

So that each subset (denoted by X ) has a rate of change per year
(or log-linear slope)ΔX . UsingMONOLIX25, we estimated thefive values
ofΔX . Importantly, we did not assume this rate was negative, such that
increases (rather than clearance) were possible. Then, for subsets with
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negative values of this rate, the half-life in years could be estimated
as hl = � ln 2ð Þ=ΔX .

Calculating the percentage of cellular turnover events that
result in HIV repopulation
In Fig. 2D, we used each subset infection frequency decay rate ΔX and
its matching cellular turnover rate TX to calculate the percentage of
cellular turnover events resulting in HIV repopulation. Assuming the
net decay can be accounted for as a balance of turnover and repopu-
lation ΔX = rX �TX , the repopulation percentage is rX=ΔX or:

rX
ΔX

=
ΔX +TX

ΔX
ð2Þ

Normalized correlations between subset levels
Further evidence for connections between subsets emerged from a
correlation analysis (Supplementary Fig. 4). For both subset fre-
quencies and subset HIV DNA data, values were normalized to each
individual’s longitudinal average value (i.e., ef X ðtÞ= f X ðtÞ= f X

� �
t). This

procedure prevents spurious correlations (Simpson’s paradox) related
to large or small absolute reservoir sizes. Then, pairwise Spearman
correlations were computed using the SciPy Stats package.

Mechanistic mathematical models for subset HIV DNA
Our general model of the connected system of HIV DNA in each subset
is governed by a systemof differential equations that splits the kinetics
of HIV DNA into the processes of proliferation, death, and differ-
entiation between subsets. Others have used similar equations82. Each
model can be written in vector form as:

_Hs = FðHsjθs,ϕk:s,ϕs:kÞ ð3Þ

Where subset HIV DNA in each subset is the vector
Hs = fHN ,HS,HC ,HT ,HEg, and the clearance and differentiation rates
are written with the vectors as θs and ϕi:j , respectively. Differentiation
couldbe generally fromdifferent compartments into others so it is not
necessarily the same sized vector in eachmodel. Themodels tested are
numbered as follows:

Model 1 assumes each subset is independent and decays or grows
independently (similar to the model used for subset infection fre-
quency in Eq.(1)):

_Hs =θsHs ð4Þ

Based on past observations of a net decrease in HIV DNA over
years of ART, Model 2 tested the hypothesis that all subset HIV DNA
decays independently by using the same structure as Model 1 but
forcing ψs <0.

Model 3 assumes a linear differentiation model whereby each
subset had a decay term and differentiation terms in and out from
most proximal subsets. There are, therefore, four differentiation
terms: ϕ= fϕN:S,ϕS:C ,ϕC:T ,ϕT :Eg.

_Hs =θsHs +ϕi:sHs � ϕs:jHs ð5Þ

Model 4 assumed a more complex differentiation pattern derived
from the significant correlations between subsets observed in Sup-
plementary Fig. 4. In this model, there are 6 differentiation terms, the
same four linear differentiation rates as inModel 3, and two additional
skip terms: ϕN:C and ϕC:E .

For models including differentiation, we generally assumed that
the differentiation rate of HIV DNA into naïve cells from some
unknown/unobserved compartment was zero: ϕ?:N =0. This assump-
tion is based on TREC content observations suggesting thymic

emigrants are not carrying HIV DNA frequently, if at all17. We also
assumed differentiation out from TEM was zero:ϕE:? =0. There may be
other terminally differentiated cells that TEM can transition into, but
these were not observed in the study. Therefore, the clearance rate of
TEM effectively covers death and differentiation out and is denoted ψE

rather than θE to make this explicit in Fig. 3.
As another approach, Model 5 assumes each subset was inde-

pendent and followed a logistic growth term with a carrying capacity.
This tests the hypothesis that decay was not occurring and that HIV
DNA levels in each subset had a rough equilibrium:

_Hs = rsHsð1� Hs=KsÞ ð6Þ

Yet another approach (Model 6) more explicitly tested the
hypothesis that proliferation and differentiation were linked. We
assumed that some fraction ζ 2 ½0,1� of repopulation events are asso-
ciated with differentiation:

_Hs =θsHsð1� ζ s:s + 1Þ+ θs�1Hs�1ð1� ζ s�1:sÞ ð7Þ

As a final note,multiphasic decay is well documented for HIV DNA
clearance after initiation of ART32,83. However, these phases are gen-
erally equilibrated within a year or two of ART initiation, which was
irrelevant to our data.

Model fitting and selection with population non-linear mixed
effects modeling (pNLME)
Model fit and selection was performed using MONOLIX25 software,
which employs a population nonlinear mixed-effects (pNLME)
approach. We assumed assay variability (noise) was log normal.
Repopulation parameters were generally assumed to be normally
distributed (allowing for negative values), and differentiation rates
were generally assumed to be lognormally distributed. Population
parameters were found to be uncorrelated, but across individuals,
certain parameters were strongly correlated (Supplementary Fig. 5C).
This finding suggests that thosewith higher rates in one subset tend to
also have higher rates in others. Individual best fit parameters for each
participant using the optimal model are collected in Supplemen-
tary Data 1.

Imputing turnover rate to define mechanistic components
The underlying assumption of the repopulation rate is that it is a bal-
ance of proliferation and death, θs =αs � δs. To estimate these com-
ponent rates, we use the cellular turnover data (Fig. 3B). We begin with
a general equation for the i-th HIV DNA subset level from the best
model and use a quasistatic assumption _Hi =0 to indicate that cellular
turnover mitigates a balance inward and outward of each subset. Yet,
this balance has an absolute value Ti such that in some subsets,
although net zero change occurs, there is more inward and outward
flow. We therefore set inward and outward mechanisms (from Eq. (5))
equal and split repopulation into proliferation and death, leaving:

Σjϕ
in
j:i
Hj +αiHi = ðΣkϕ

out
i:k + δiÞHi: ð8Þ

The turnover rateTi (per year) then canbe factoredout of the rhs
as Ti =Σkϕ

out
i:k + δi, such that the death rate can be defined as the

turnover rate minus the differentiation rate out:

δi =Ti � Σkϕ
out
i:k ð9Þ

And similarly solving Σjϕ
in
j:i
T j +αiT i =TiT i, leads to:

αi =Ti � Σjϕ
in
j:i
T j=Ti ð10Þ

Which we approximate by using the values of Tið0Þ.
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Tracking equations to distinguish mechanistic contributions
After imputing the turnover rates to define the mechanistic compart-
ments, the HIV DNA created at any time t (instantaneously in the
interval Δt) due to each mechanism was computed. This computation
occurs independently after solving the differential equations. Thus,
the proliferation and death terms follow

Hpro
s tð Þ=αsHs tð ÞΔt,Hdeath

s ðtÞ= δsHsðtÞΔt, ð11Þ

While the differentiation terms follow:

Hdiff�in
s tð Þ=

X
k

ϕksHkðtÞΔt,Hdiff�out
s ðtÞ=

X
k

ϕskHsðtÞΔt: ð12Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used to generate figures is available at https://github.com/dbrvs/
HOPE-modeling and in Supplementary Data 1.

Code availability
All model code is freely available at https://github.com/dbrvs/HOPE-
modeling. Python and in particular the Seaborn package were used to
generate all figures.
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