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ABSTRACT OF THE DISSERTATION

Unraveling the sensory systems of cells and regulation of gene expression:

characterization, dissemination, and evolution of iModulons

by

Kevin William Rychel

Doctor of Philosophy in Bioengineering

University of California San Diego, 2023

Professor Bernhard Ø. Palsson, Chair

Organisms use a complex transcriptional regulatory network (TRN) to sense their

environments and alter their phenotypes in response, which is integral to their adaptation and

survival. Transcriptomic datasets, which measure the complete activity of the TRN as expression

values for each gene, have accumulated online in large numbers, and represent a goldmine of

biological information. However, the large number of variables and uncharacterized global TRN

structure present a significant challenge for interpreting these datasets. A recently developed

machine learning method, iModulon analysis, can determine the global structure of TRNs by

identifying co-regulated signals in compendia of diverse transcriptomic data. The output of this

method is a set of independently modulated gene sets (iModulons) for the given organism, which

xvi



can be characterized to discover transcriptional regulation mechanisms and other biological

insights. Characterized iModulons enable a low dimensional, knowledge-enriched representation

of the transcriptome, dramatically simplifying the analysis of the sensory and regulatory systems

of cells. Here, we establish and expand the usefulness of iModulons in three aims: (1) we

characterize the TRN of Bacillus subtilis, a model soil and gut bacterium, obtaining novel

insights on a variety of functions including sporulation; (2) we develop iModulonDB.org, and

online knowledgebase of iModulons, and we populate it with over ten characterized organisms

from across the phylogenetic tree of life to create a widely applicable scientific knowledgebase;

and (3) we combine iModulon analysis with DNA sequencing and other technologies to

understand the evolution of stress tolerance for both oxidative and temperature stress. This body

of work stands upon decades of bottom-up characterization of transcriptional regulators and

analyzes years’ worth of accumulating datasets to elucidate a new perspective on cellular

function from the top-down. It reveals that a global understanding of the transcriptome in low

dimensions is both possible and useful, and provides an online resource so that the scientific

community can continue to mine it for new insights. Stress resistance mechanisms presented in

Aim 3 are relevant to the evolution of pathogens and common biomanufacturing challenges.

Taken together, this work establishes iModulons as a powerful and accessible tool for the

understanding of gene expression.
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 Chapter 1. Introduction 

 1.1 A Brief History of Systems Biology 

 Figure 1.1  : Development of global systems understanding  in biology.  (a)  The first half of the first 
 completely sequenced genome  [1]  , with colored bars  representing genes. All genes can be enumerated in 
 full, heralding a new age of biological research.  (b)  Figure from the first genome-scale metabolic model 
 [2]  , in which the many fluxes of the chemical networks  along the top and right images can be easily 
 interpreted by mapping to a lower-dimensional set of variables in the graph on the lower left. A major 
 goal of systems biology is to interpret large datasets at the genome-scale, which is achieved here.  (c) 
 Depiction of the three relevant levels of systems biology, with the molecules, ‘omics types, inputs, and 
 outputs shown. Genomics and metabolites are modeled in (a) and (b), and raw data for the 
 transcriptomics is shown in (d), but revealing a more complete understanding of the transcriptional 
 regulatory network (TRN) in the center is the goal of this dissertation.  (d)  Image of one of the first 
 microarray transcriptomes  [3]  , which is challenging  to analyze due to the high number of variables and 
 complexity of the underlying system. 

 1 

https://www.zotero.org/google-docs/?3WLs8T
https://www.zotero.org/google-docs/?QGlzut
https://www.zotero.org/google-docs/?2OFlhH


 When the first full genome was sequenced in 1995  [1]  (  Figure 1.1a  ), humans could, for the first 

 time, begin to understand life at a “systems” level. Each part of the system of an organism (the genes) 

 could be enumerated, and the way they function together could be understood from a new, global 

 perspective. Understanding life in this way is of fundamental scientific interest, and the pursuit of 

 genome-scale understanding has transformed the field of biology. 

 Edwards and Palsson built the first genome-scale metabolic model soon after the first genome, in 

 1999  [2]  (  Figure 1.1b  ). By arranging each of the known  enzymatic reactions encoded in a genome into a 

 chemical network reconstruction and applying flux balance analysis  [4]  , global properties of the 

 metabolic network could be revealed for the first time. Compared to its large number of reactions, the 

 network itself took on a smaller number of states, which could be elucidated and interpreted. 

 Genome-scale metabolic modeling has grown dramatically in the decades since this advance  [5]  , and its 

 applications have shown to be wide-reaching, including for the design of chemical production strains, 

 identification of drug targets, and understanding of human disease  [6]  , which motivates the continued 

 development of genome-scale frameworks for interpreting biological systems. 

 Thus, two “levels” of biology were described from a global perspective. However, the 

 understanding of biological systems is still incomplete. There exist additional levels between the genome 

 and the metabolome, which have taken longer for the field to develop good models for  (Figure 1.1c)  . 

 Each of the reactions in metabolic models are subject not only to changes in flux, as the early models 

 describe, but also to changes in overall expression. The RNA and protein levels within cells change 

 drastically based on sensory inputs, enabling the diverse function and adaptation of life we observe. To 

 complete our global understanding of the cell, we must elucidate the transcriptional regulatory network 

 (TRN) within it. 

 Also in the late 1990s, the first gene expression microarrays were developed. Called at the time a 

 “new type of map,”  [3]  , they were able to quantify  the expression of each gene at the genome-scale 

 (Figure 1.1d)  . We could now obtain a global view of  RNA expression, one of the key middle layers of 

 biological systems  (Figure 1.1c)  . Transcriptomic technology  continued to improve, with RNA 
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 sequencing (RNAseq) arising in 2008  [7]  . With these approaches, we could measure expression changes 

 and quantify the complete output of the TRN. However, given the large number of gene variables and the 

 striking complexity of the system, a good global model for analyzing this data remained elusive. 

 This dissertation presents a method for analyzing and interpreting transcriptomic data, which 

 more broadly reveals a global, quantitative understanding of the sensory and regulatory systems of cells. 

 It also seeks to connect results from this method across all three levels of biology described here. It 

 advances systems biology by providing a widely applicable, scalable, and human interpretable 

 perspective on the TRN, filling in the gaps in our understanding of biology. 

 1.2 Transcriptional Regulation & Data 

 Decades of research in transcriptional regulation have built up a large body of literature on its 

 basic and specific functions. Upstream of each gene lies a promoter region, which may have binding 

 sites for RNA polymerase and various transcription factors (TFs). TFs and other regulators activate or 

 repress transcription of a gene based on cellular states  [8]  , and together all regulators and their  target 

 genes comprise the TRN. By deleting or over-expressing TFs and measuring the changes in gene 

 expression, and by identifying TF binding sites via chromatin immunoprecipitation, past research has 

 defined regulons for each characterized TF  [9]  . A  regulon is the set of all genes whose expression levels 

 are expected to be controlled by the corresponding regulator based on a combination of experimental 

 results. The field has taken a bottom-up approach, characterizing each regulator one at a time. 

 Knowledge about each characterized regulon has been curated in useful databases such as BioCyc  [10]  , 

 RegulonDB  [11]  , and  Subti  Wiki  [12]  , which enable researchers  to easily find information about their 

 genes and regulators of interest. 

 Despite the wealth of knowledge, it remains difficult to analyze new transcriptomic data. The 

 typical approach is to identify differentially expressed genes (DEGs) between conditions of interest  [13]  , 

 which requires researchers to parse hundreds or thousands of DEGs for any comparison. It is therefore 

 3 

https://www.zotero.org/google-docs/?pA1yCE
https://www.zotero.org/google-docs/?ZYIghK
https://www.zotero.org/google-docs/?Cx0Wlc
https://www.zotero.org/google-docs/?1QAgpx
https://www.zotero.org/google-docs/?zYtcuH
https://www.zotero.org/google-docs/?WrSmLq
https://www.zotero.org/google-docs/?jV2mHh


 difficult to interpret these results and nearly impossible to gain a global understanding from this method. 

 A framework is needed which captures the structure of the underlying TRN and groups genes by their 

 co-regulation. This would enable much more clarity in interpretation and quickly reveal a goldmine of 

 information hidden in transcriptomic data. 

 Efforts to model the TRN have had some success, but significant room for improvement 

 remains. Utilization of existing regulator annotations can be used to define a quantitative TRN, but these 

 structures are often biased against uncharacterized genes and fail to accurately capture and predict 

 transcriptomic data  [14], [15]  . Clustering and statistical  inference methods do not share those limitations, 

 but more effort is needed to establish a particular method which matches biological reality, robustly 

 scales to large datasets, and is accessible to a wide range of researchers  [16], [17]  . A method that fits  this 

 description is put forward in this dissertation. 

 Figure 1.2  : A “tsunami” of publicly available bacterial  RNAseq profiles is available from the Sequence 
 Read Archive (SRA)  [18]  . This graph shows the number  of accumulated results from searching SRA for 
 all public bacterial RNAseq data. The dotted vertical line represents the start date of this PhD 
 dissertation. 

 While computational biologists have worked towards interpretation and modeling of 

 transcriptomic datasets, the cost of their generation has dropped significantly and they have begun to 

 accumulate in large numbers. The Sequence Read Archive (SRA) has experienced “explosive growth… 

 a tsunami” of new publicly available transcriptomic data in the past decade  (Figure 1.2)  [18]  . The large 

 amount of available data presents an unprecedented opportunity: we can decipher the TRN from the 
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 top-down, by looking for patterns across all existing data for a strain. Since the bottom-up methods 

 (characterizing regulators one at a time) have not been able to quantitatively capture the global structure 

 at this level of biology, this new perspective is very promising. It would also be of wide interest to the 

 many researchers who have contributed data to online databases, as new perspectives and insights can be 

 revealed by re-analyzing their data at this scale. 

 To summarize, problems facing the transcriptomic analysis scientific community include: (i) the 

 intractability of interpreting large numbers of DEGs, (ii) a lack of a quantitative structure that fits with 

 both our existing knowledge of the TRN and real transcriptomic data, and (iii) a tsunami of available 

 data has not been analyzed in a consistent way to reveal its top-down structure. 

 1.3 iModulons address transcriptomic analysis changes 

 In 2019, Sastry et al. published the first iModulon structure  [19]  , which addresses the challenges 

 described above. iModulons are  i  ndependently  modul  ated  sets of genes which are computed from large 

 transcriptomic compendia using the machine learning algorithm independent component analysis (ICA) 

 [20]  . ICA is a blind source separation algorithm originally  developed to identify the independent signals 

 underlying radar or mixed sound inputs, but can be applied to transcriptomic data to quantify underlying 

 regulatory signals. The transcriptomic compendium used in the first iModulon paper is called 

 PRECISE-278 (Precision RNAseq Compendium for Independent Signal Extraction with 278 samples). 

 In this section, we will describe the general mathematical framework, some intuition on the underlying 

 machine learning, and briefly summarize the early successes of iModulons. 
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 1.3.1 Introduction to iModulons 

 Figure 1.3  : The iModulon analysis workflow identifies  structure in transcriptomic datasets, which 
 facilitates interpretation.  (a)  A simple representation  of the iModulon workflow adapted from  [21]  , 
 which highlights the ICA equation  X  ~  M  *  A  . The columns  in  M  are iModulon gene weights, analogous 
 to TF binding strengths, and the rows of  A  are iModulon  activities, which represent the inferred TF 
 activity in each sample.  (b)  A more detailed overview  of the workflow, where entities in gray circles 
 represent primary inputs (green text), secondary inputs (brown), or outputs (blue). The core ICA 
 matrices are shown in blue boxes, and algorithms are shown in white boxes. Raw in-house or public data 
 is processed to generate  X  , which is decomposed with  ICA into  M  and  A  . The  M  columns are then 
 thresholded and compared against known regulons when available, and  A  rows are interpreted and 
 compared using differential iModulon activity (DiMA) analysis. 

 The iModulon workflow  (Figure 1.3a)  begins with a  compendium of high quality transcriptomic 

 e  x  pression data,  X  . ICA then decomposes this matrix  into two matrices, the  m  odule matrix  M  and the 

 a  ctivity matrix  A  . Each iModulon has an associated  column in  M  , representing its relationship to each 

 gene, and a row in  A  , representing its activity in  each sample. By thresholding the  M  matrix weights,  we 

 can obtain a set of genes, termed iModulon member genes, which are comparable to regulons. The  M 

 matrix therefore defines a quantitative structure for the TRN, an answer to problem (i) from  Section  1.2  . 

 On the other hand, the  A  matrix summarizes the expression  of all iModulon member genes in a single 
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 value for each sample. It represents a dimensionally reduced version of the original  X  expression data, 

 which facilitates interpretation (question (ii) in  Section 1.2  ). ICA is a matrix decomposition algorithm, 

 so  X ~ M * A  . We can therefore use matrix multiplication  and quantify the explained variance of 

 iModulons, which in total typically falls between 60% and 90%. iModulon analysis is machine 

 learning-based, which means that it improves with more data, meeting the need in problem (iii). 

 In the original iModulon paper  [19]  , it was shown  that iModulons are a highly informative 

 framework for TRN investigation and summarization (See  Section 1.3.4  ). Each iModulon represents an 

 independent signal in the transcriptome, which can be categorized as regulatory, biological, genomic, or 

 uncharacterized. 

 (i) Regulatory iModulons have gene sets which are statistically enriched for the regulons of 

 known regulators, and they made up 61 of the 92 original  E. coli  iModulons. Note that regulons are 

 defined by a variety of experimental methods  [11]  ,  whereas iModulons are computed from 

 transcriptomic data alone. This strong agreement lends credibility to the iModulon approach. The 

 activity level of a regulatory iModulon is an inferred activity level for the regulator itself, which is very 

 useful for gaining insights into the cellular state and sensory systems. The exact gene set of a regulatory 

 iModulon may differ from the known regulon, which provides hypothetical relationships that can be 

 further investigated and used to refine regulon annotations. 

 (ii) Biological iModulons have gene sets with similar functions, but no known shared regulator. 

 This is an opportunity for discovery, as the shared function and apparent co-regulation indicates that at 

 least one underlying regulator is likely present. 

 (iii) Genomic iModulons respond to changes to the genome that exist in some strains in the 

 dataset. For instance, gene deletions appear as strong downregulation events in transcriptomes, and this 

 is captured by iModulons. 

 (iv) Uncharacterized iModulons do not lend themselves to easy interpretation, and may be real 

 transcriptional signals that require further inspection, or capture technical noise. 
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 1.3.2 Independent Component Analysis 

 How does ICA identify these meaningful biological signals? Detailed discussions of the 

 underlying machine learning are available  [20], [22],  [23]  , but a simplified description is provided here. 

 We can imagine a dataset  X  as an  n  -dimensional cloud  of samples, where  n  represents the number of 

 genes on the order of thousands. Each column of  M  represents a direction in gene space, and each row in 

 A  represents the locations of each sample when projected  onto that direction. For each component, ICA 

 will begin with a random direction, project each sample onto it to obtain a possible  A  value for each 

 sample, and then compute a measure of gaussianity or multi-information for the distribution of samples 

 (in our case, the measure used is the ‘log-cosh’ function  [24], [25]  ). After computing this value, ICA will 

 then search nearby angles of rotation and also calculate their associated gaussianity. Because of the 

 central limit theorem of statistics, it is predicted that noisy, non-biological signals will be gaussian, and 

 the important iModulon signals will be non-gaussian. ICA therefore uses gradient descent to minimize 

 gaussianity, and records each minimum as an iModulon. 

 Some readers may be familiar with principal component analysis (PCA), a similar but more 

 common algorithm for matrix decomposition and dimensionality reduction  [26]  . The differences 

 between the two methods can be useful for understanding ICA. Though PCA is typically computed with 

 singular value decomposition, its results are equivalent to the following method: in the  n-  dimensional 

 cloud of data, begin by choosing the direction with the maximum explained variance. Then, searching 

 only through orthogonal directions to the first one, choose the next direction with the highest explained 

 variance. Continue choosing orthogonal directions until all variance in the data is explained. The key 

 differences are that PCA seeks to maximize explained variance whereas ICA seeks to minimize the 

 gaussianity of each component, and PCA constrains each component to be orthogonal to all others. 

 PCA is useful for visualizing a dimensionally reduced dataset because of its high explained 

 variance and orthogonality constraints. However, the components are typically dense, which would yield 

 many member genes if passed through our thresholding method, and the genes in the components do not 
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 match well with known regulons. This is largely because the first component, with the highest explained 

 variance, is a combination of many regulatory effects. The orthogonality constraint forces further 

 components to also fail to match individual regulatory signals. Meanwhile, ICA has the flexibility to 

 identify signals regardless of their explained variance, and the minimal gaussianity constraint is much 

 more amenable to identifying the biological effects of interest. ICA’s signals are also typically sparser 

 (containing a fewer number of genes), which is more realistic for prokaryotic TRNs  [27]  . 

 1.3.3 Assumptions and Limitations of ICA of Transcriptomes 

 ICA assumes that: (i) the dataset is composed of a linear combination of sources; (ii) sources are 

 statistically independent from one another; and (iii) the distributions of source activities are not gaussian 

 [23]  .  We now discuss how each one of these assumptions  applies to TRN inference. 

 (i) Linear combination of sources: In this framework, each regulator or genomic alteration exerts 

 control over its associated genes, and the sum total of all regulator-mediated changes defines the change 

 to the TRN. The transcriptomes we analyze are pre-processed with the logarithm of transcripts per 

 million, which preserves biological signals while enabling the use of linear methods  [28], [29]  . However, 

 not all regulators will have a linear effect on their genes, and some regulatory interactions at complex 

 promoters will violate the linear additivity of iModulon effects. We find in this dissertation that 

 non-linear effects are often captured by multiple correlated iModulons (e.g.  Section 4.2.6.2  ,  Figure 

 4.5c  ), which still enables interpretation in low dimensions.  However, it is important to be aware that 

 complex regulation may lead to unusual artifacts in iModulon structures. 

 (ii) Sources are statistically independent: Unlike other TRN inference methods, ICA does not 

 seek to directly describe a network in which targets of one regulator explicitly regulate another regulator, 

 though real TRNs do exhibit that behavior. For instance, master regulators like RpoS in  E. coli  should be 

 correlated in the  M  structure with downstream and  interacting regulators, but the assumptions of ICA 

 prevent this. Instead, we do observe meaningful correlations in the  A  matrix vectors. Other TRN 

 inference methods that directly take the hierarchical regulatory structure into account require that 
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 modelers supply the algorithm with additional information about the interactions (e.g.  [30]  ). This runs 

 counter to being able to infer the TRN from data alone, which negates a major strength of this method. 

 (iii) Distributions of source activities are not gaussian: In other words, each iModulon must be 

 differentially activated by some condition in the dataset. Take for instance the CecR regulon in  E.  coli  , a 

 set of genes that responds to antibiotics  [31]  . In  an early version of PRECISE (PRECISE-124), the genes 

 in this regulon were never perturbed by any condition, so their expression was normally distributed and 

 they were not included in any iModulons. In a later version (PRECISE-278), a condition knocked out the 

 regulatory gene  cecR  , which caused an upregulation  of the CecR regulon genes in that condition. This 

 regulon’s expression distribution was now non-gaussian, and therefore the CecR iModulon was detected 

 [19]  . It is important to include many diverse conditions  in the input data, which enables identification of 

 more features in the TRN. 

 It is also worthwhile to note a few other limitations. iModulons do not capture all variance in the 

 original datasets, which leaves ~10% – 40% of the variance as error. However, given ICA’s ability to 

 find consistent co-regulated signals, it is highly likely that the variance that is not explained is mostly 

 noise or does not contain clear enough patterns to be interpreted. Also, ICA is stochastic, which led to 

 the development of additional steps in the algorithm to ensure that the iModulons found are consistent 

 across runs  [19]  . The algorithm is also sensitive  to the choice of dimensionality, and a study developed 

 an algorithm to tune this parameter  [32]  . Finally,  it is difficult to threshold the  M  matrix for certain 

 iModulons whose weight distributions are not bimodal, which results in some uncertainty about the 

 genes which lie near the threshold. 

 In summary, iModulon interpretation is limited when transcriptional regulatory signals are 

 non-linear, strongly interacting, or not activated in the underlying data. They do not capture all variance 

 in the data, and parameter tuning is sometimes imperfect. Nonetheless, this framework has been shown 

 to be highly informative, as the following section and remainder of this dissertation will demonstrate. 
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 1.3.4 iModulons Show Promise as a Tool for Discovery 

 Prior to the work of this dissertation, we had significant evidence that iModulon analysis was a 

 useful way to gain a transcriptome-wide summary of gene expression and reveal important new 

 biological insights. Saelens et al. compared 42 similar methods of TRN inference, and found ICA to be 

 the best at recovering known regulatory signals  [17]  .  ICA was also applied by others to analyze a variety 

 of yeast and human cancer datasets  [33]–[37]  , and  found to be the most robust factorization algorithm 

 across a variety of datasets  [38]  . 

 Sastry et al.’s analysis of PRECISE-278 revealed several important validations  [19]  . iModulons 

 matched well with known regulons in 61 of 92 cases. The activity of 13 metabolic iModulons matched 

 expectations under supplementation conditions with associated metabolites. The iModulons for CysB 

 and MetJ matched TF binding sites better than previously defined regulons. The PurR regulon was 

 bifurcated by iModulons, and the different subsets also had different promoter motifs. Two new high 

 confidence regulons (YiaJ and YieP) were defined. The fear-greed tradeoff, which governs growth and 

 stress responses (discussed further in  Section 4.2.8.1  and  5.2.3  ), was quantified. Finally, the 

 transcriptomic effects of mutations in various regulators were revealed. Taken together, the results 

 showed that iModulons can provide a vast range of insights which can be validated in the laboratory. 

 In  E. coli  , iModulons were also used to study respiration  [39]  ,  oxyR  regulatory mutations  [40]  , 

 heterologous gene expression  [41]  , two-component systems  [42]  , and antibiotics  [43]  . A follow-up study 

 on a gene that was unexpectedly included in one of the PurR iModulons revealed that there is a second 

 regulator that responds to purine levels, named  punC  [44]  . Importantly, the same pipeline was run on 

 several different  E. coli  transcriptomic compendia,  with similar iModulons resulting in each case. The 

 findings of that study indicate that iModulons capture the real underlying TRN, and not dataset-specific 

 patterns  [45]  . iModulons had a strong impact on our  understanding of transcriptional regulation in  E. 

 coli  , which motivated the work in this dissertation. 
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 1.4 Aims of this Dissertation 

 iModulon analysis has been established as a useful tool in  E. coli  , but three goals needed to be 

 met to facilitate wider adoption and application of this method. Firstly, it remained to be shown whether 

 iModulon analysis would be as effective at describing the TRN in another model organism.  Bacillus 

 subtilis,  an important gram-positive bacterium with  an excellent candidate dataset, was selected for this 

 purpose. Secondly, iModulon analysis is only useful to those who can view and analyze iModulons, 

 which was difficult before the work of this dissertation. An online resource was needed to allow easy 

 access to this data and knowledge. Thirdly, iModulon analysis reveals a new perspective on the TRN, 

 which showed promise for analyzing the effects of changes to the genome. With prior methods, it was 

 difficult to study the evolution of regulation, leaving systems-level adaptation mechanisms unclear. In 

 order to better understand evolutionary mechanisms, it was important to integrate results from 

 iModulons and the other levels of biology introduced in the beginning of the introduction (  Figure 1.1c  ). 

 1.5 Dissertation Outline 

 We begin in  Chapter 2  by applying iModulon analysis  to a transcriptomic compendium for 

 Bacillus subtilis  , which establishes that the workflow  is applicable to a model gram-positive organism 

 and reveals many interesting insights into the structure and function of the TRN, particularly with respect 

 to the regulation of sporulation. 

 In  Chapter 3  , we develop iModulonDB, an interactive  online knowledgebase which enables 

 wide accessibility to iModulon structures. This platform makes iModulons findable, accessible, and 

 reusable, which is necessary for their broad adoption as a major transcriptomic analysis method. As of 

 the writing of the publication associated with Chapter 3, the knowledgebase contained three organisms 

 (including  B. subtilis,  the results from the analysis  in Chapter 2). We include an additional section 

 (  Section 3.6  ), which briefly summarizes the expansion  of iModulonDB to include eight additional 

 organisms in projects that I co-authored. 
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 In  Chapters 4 and 5  , we apply iModulon analysis to interpret transcriptomic changes in 

 laboratory evolution strains and combine it with other systems biology approaches.  Chapter 4  focuses 

 on oxidative stress tolerance, while  Chapter 5  focuses  on thermal stress associated with high 

 temperatures. By connecting DNA mutations, RNA iModulon activities, and metabolic shifts, these 

 chapters make iModulons interoperable. They reveal highly detailed mechanisms of stress tolerance, 

 from a new perspective of global transcriptomic reallocation. The tolerance strategies are interesting for 

 fundamental stress biology, and are also likely to influence biomanufacturing by providing design 

 variables for the design of more stress-resistant cellular factories. 

 Taken together, this dissertation establishes iModulon analysis as a widely applicable, scalable, 

 and interoperable method for understanding transcriptomic data. It reveals dozens of new insights about 

 diverse biological systems, including sporulation, motility, stress tolerance, and redox metabolism. It 

 stands upon decades of bottom-up characterization of cells and analyzes years’ worth of accumulating 

 datasets to reveal a new perspective on the sensory and regulatory systems of cells from the top-down. It 

 reveals that a global understanding of the transcriptome in low dimensions is now both possible and 

 useful as we build toward a more complete understanding of life. 
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 Chapter 2. Machine learning uncovers independently 

 regulated modules in the  Bacillus subtilis  transcriptome 

 The transcriptional regulatory network (TRN) of  Bacillus  subtilis  coordinates cellular functions 

 of fundamental interest, including metabolism, biofilm formation, and sporulation. Here, we use 

 unsupervised machine learning to modularize the transcriptome and quantitatively describe regulatory 

 activity under diverse conditions, creating an unbiased summary of gene expression. We obtain 83 

 independently modulated gene sets that explain most of the variance in expression and demonstrate that 

 76% of them represent the effects of known regulators. The TRN structure and its condition-dependent 

 activity uncover putative or recently discovered roles for at least five regulons, such as a relationship 

 between histidine utilization and quorum sensing. The TRN also facilitates quantification of 

 population-level sporulation states. As this TRN covers the majority of the transcriptome and concisely 

 characterizes the global expression state, it could inform research on nearly every aspect of 

 transcriptional regulation in  B. subtilis  . 

 2.1 Background 

 Cells interpret dynamic environmental signals to govern gene expression through a complex 

 transcriptional regulatory network (TRN).  Bacillus  subtilis  , a model gram-positive soil and gut 

 bacterium, is one of the most widely studied species in microbiology, providing a rich background for 

 understanding its TRN. This generalist organism is a model for processes such as sporulation  [46]  , 

 biofilm formation  [47]  , and competence  [48]  — all  of which are key to understanding pathogenesis in 

 other bacteria, such as  Staphylococcus aureus  and  Clostridium difficile  .  B. subtilis  is also commonly 

 engineered for industrial production purposes  [49]  ,  which creates demand for practical knowledge about 

 how it responds to stimuli and alters its gene expression. 
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 In 2012, Nicolas et al.  [50]  generated a transcriptomic microarray data set of  B. subtilis  with 269 

 expression profiles under 104 conditions, which included growth over time in various media, carbon 

 source transitions, biofilms, swarming, various nutritional supplements, a variety of stressors, and a time 

 course for sporulation. The wide scope and high quality of this data set have led to its broad adoption. It 

 is now the expression compendium featured on  Subti  Wiki,  an online resource for  B. subtilis  that is one of 

 the most widely used and complete databases for any organism  [12]  .  Subti  Wiki contains detailed 

 biological descriptions and binding sites for hundreds of transcriptional regulators; however, binding 

 sites alone cannot explain the condition-specific transcriptomic responses of bacteria to dynamic 

 environmental conditions  [14], [15]  . 

 Independent component analysis (ICA) is an unsupervised statistical learning algorithm that was 

 developed to isolate statistically independent voices from a collection of mixed signals  [20]  . ICA applied 

 to transcriptomic matrices simultaneously computes independently modulated sets of genes (termed 

 iModulons) and their corresponding activity levels in each experimental condition  [19]  . iModulons can 

 be interpreted as data-driven regulons, though they rely on observed expression changes instead of 

 transcription factor binding sites. The condition-dependent activity level of iModulons indicates how 

 active the underlying regulator is. Since the number of iModulons is substantially fewer than the number 

 of genes, they are a significantly easier way to analyze systems-level cell behavior. 

 ICA has been shown to extract biologically relevant transcriptional modules for a variety of 

 transcriptomic datasets, especially in yeast and human cancer  [33]–[37]  . It was the best out of 42 

 methods at recovering known co-regulated gene modules in a comprehensive examination of TRN 

 inference methods  [17]  . ICA also obtained the most  robust modules across datasets compared to similar 

 factorization algorithms  [38]  . We previously applied  this approach to a large, high-quality  Escherichia 

 coli  RNAseq compendium and extracted 92 iModulons,  two-thirds of which exhibited high overlap with 

 known regulons  [19]  . This analysis provided many insights  into the  E. coli  TRN, including the addition 

 of genes to known regulons (validated through chromatin immunoprecipitation), bifurcation of the 

 purine synthesis regulon, the characterization of new regulons, and identification of clear associations 
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 between regulator mutations and activities. We have also applied ICA to transcriptomes of evolved 

 strains to understand evolutionary trade-offs and regulatory adaptations in naphthoquinone-based aerobic 

 respiration  [39]  , and to characterize the function  of the transcription factor OxyR, which responds to 

 peroxide  [40]  . 

 Without using ICA, others have attempted to infer the TRN of  B. subtilis  . Arietta-Ortiz et al. 

 [30]  used an “Inferelator” approach which utilized  prior knowledge of the TRN along with 

 transcriptomics (including the Nicolas et al. data) to obtain a global network, infer activity levels, and 

 predict new TF-gene interactions. In addition, Fadda et al.  [51]  used genomic regulatory motifs of major 

 regulators to infer a TRN, and Leyn et al.  [52]  combined  a variety of available data types to infer 

 regulons in  B. subtilis  as well as 10 related  Bacillales  species. These approaches have been valuable for 

 expanding our understanding of the TRN and can be especially helpful in complex processes like 

 sporulation where transcriptomics can be supplemented with other data types. However, prior methods 

 suffer from a bias toward the known aspects of the TRN, which can pose a barrier for new discovery or 

 unbiased validation of past data. They are also not as easily applicable to organisms with very 

 incomplete TRN annotations. This motivates the development of fully unsupervised approaches like 

 ICA. 

 Given our success with ICA applied to RNAseq data from a model gram-negative bacterium, we 

 sought to determine what it can uncover about a microarray data set from a model gram-positive 

 bacterium. Though RNAseq data exists for  B. subtilis  ,  the Nicolas et al. data set has a comparatively 

 wider diversity of conditions and a more established reputation for data quality. We have shown that the 

 condition space is more important than the technology used  [19], [45]  , which makes this a good choice 

 of data set. Using the wealth of TRN knowledge available on  Subti  Wiki, this analysis uncovers many 

 insights. We determine the main functions and regulators that control a large fraction of the 

 transcriptome, and we characterize the iModulon accuracy in relation to the known TRN. iModulon 

 activities reveal relationships and stimuli that have been present in the data but never specifically 

 investigated; it is therefore a powerful hypothesis-generating tool. We specifically present eight 
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 unexpected iModulon activations and hypotheses about their mechanisms. We characterize sporulation, 

 which led us to the identification of three major transcriptomic stages in the process, including 

 iModulons for the known sigma factor cascade. Finally, we present three transcriptional units with a little 

 prior characterization that warrant further study. 

 2.2 Results 

 2.2.1 Independent Component Analysis Reveals the Structure of the  B. subtilis 

 Transcriptome 

 We performed ICA on the Nicolas et al.  [50]  data set  (see  Section 2.4  ) and obtained 83 robust 

 iModulons. These 83 iModulons constitute the statistically independent gene expression signals found 

 across the conditions used in the generation of this data. Together, they contain 36.25% of the genome 

 and explain 72% of the variance in gene expression. The distribution of the number of genes in each 

 iModulon follows a power law, similar to the power law for the connectivity of TFs in literature 

 regulatory networks  [53], [54]  . 

 Unlike regulons, which are sets of coregulated genes based on a variety of experimental results 

 in the literature, iModulons are derived solely from the measured transcriptome through an unbiased 

 method (  Figure 2.1a  ). However, the known regulon structure  of the TRN is largely recapitulated by the 

 iModulons. 63 of the 83 iModulons were successfully mapped to a known regulator, and an additional 3 

 are likely to be co-regulated by unknown mechanisms. The iModulon-derived TRN covers 2235 

 gene/iModulon relationships, of which 1536 are known gene/regulator interactions and 699 are new. Our 

 TRN structure contained seven iModulons that exhibited perfect overlap with annotated regulons and 

 whose activity levels match expectations, such as MalR. This illustrates that independent signals such as 

 transcription factor binding, which dictate gene expression, lead to observable signals in the TRN from 

 condition to condition, and ICA was able to identify them. Graphical summaries of all iModulons, 
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 including their gene sets, activities, and overlap with regulons are presented online at  iModulonDB.org 

 under “  B. subtilis  Microarray” (See  Chapter 3  )  [21]  . 

 Figure 2.1  : Overview of the iModulons of  B. subtilis.  (a)  Given a matrix of gene expression data,  X  , 
 ICA identifies independently modulated sets of genes (iModulons) in the transcriptome which are linked 
 to genes through the matrix  M  . Three iModulons are  symbolically represented; the red iModulon 
 consists of four genes, and the green and blue iModulons consist of five genes. The condition-dependent 
 activities of the iModulons are stored in matrix  A  .  The bar chart indicates the activity levels of the 
 iModulons under different conditions, where the colors indicate different experiments. The three 
 matrices are related as  X   =   M  *  A  .  (b)  Graphical representation  of the definitions of precision and recall 
 of a given iModulon and the corresponding regulon (example numbers are shown).  (c)  Scatter plot of 
 precision and recall of the enrichments for the 63 (out of 83) iModulons that were matched to a regulon. 
 Histograms in the margins demonstrate the high precision of most enrichments.  (d)  Donut chart of 
 iModulon functions. The outermost ring lists specific functions and the center ring lists broad functions, 
 with the number of iModulons in the broad category shown in white. The innermost ring shows the 
 regulon confidence quadrant of the corresponding iModulon, as defined in c.  (e, f)  An example 
 iModulon that was enriched for FadR.  (e)  Venn diagram  of the FadR iModulon genes and the FadR 
 regulon (non-coding RNAs have been omitted).  (f)  Activity  level found in a row of  A  for four 
 experiments (separated by vertical gray lines) from the data set. Activity levels increase during growth in 
 the absence of glucose (M9 media, gray; LB media, light brown), remain low during growth in the 
 presence of glucose (dark green, dark brown), and spike upon glucose (Glc) starvation (green). “Exp”, 
 “Tran” and “Stat” refer to exponential, transition, and stationary phase, respectively. 
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 iModulons are given a short name, usually based on their enriched regulator. If multiple 

 regulators control an iModulon, their names are separated by “+” to indicate the intersection of the 

 regulons, or “/” to indicate the union of the regulons. In some cases, a different name was chosen based 

 on the primary regulator, gene prefix, or most representative gene in the set. 

 The relationship between iModulons and regulators can be characterized by two measures: (1) 

 precision (the fraction of iModulon genes captured by the enriched regulon) and (2) recall (the fraction 

 of the regulon contained in the iModulon) (  Figure  2.1b  ). These two measures can be used to classify 

 iModulons into six groups (  Figure 2.1c  ). (1) The well-matched  group (n = 26) has precision and recall 

 greater than 0.65. It includes several regulons with local regulators that are associated with specific 

 metabolites. (2) The subset iModulons (n = 22) exhibit high precision and low recall. They contain only 

 part of their enriched regulon, perhaps because the regulon is very large and only the genes with the most 

 transcriptional changes are captured. This group contains global metabolic regulators such as CcpA and 

 CodY, as well as the stress sigma factors. (3) A third group, deemed unknown-containing (n = 4), has 

 low precision but high recall. These iModulons contain some co-regulated genes along with unannotated 

 genes which may have as-yet-undiscovered relationships to the enriched regulators, or at least be 

 co-stimulated by the conditions in the data set. (4) The remaining enriched iModulons are called the 

 closest match (n = 11) because neither their precision nor recall met the cutoff, but the grouping had 

 statistically significant enrichment levels and appropriate activity profiles. The difference in gene 

 membership between these iModulons and their regulons provide excellent targets for discovery. The 

 iModulons with no enrichments comprise the last two groups: (5) new regulons (n = 3) are likely to be 

 real regulons with unexplored transcriptional mechanisms, while (6) the remaining uncharacterized 

 iModulons were likely to be noise due to large variance within conditions or the fact that they contain 

 one or fewer genes. 

 Functional categorization of iModulons provides a systems-level perspective on the 

 transcriptome (  Figure 2.1d  ). Metabolic needs account  for approximately one-third of the iModulons, 

 while comparatively fewer iModulons deal with stressors, lifestyle choices such as biofilm formation 
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 and sporulation, and mobile genetic elements like prophages. Some iModulons have multiple biological 

 functions, such as one which synthesizes both nicotinamide and biotin. These iModulons may result 

 from co-stimulation of the different functions by all conditions probed in the data set (e.g., both 

 nicotinamide and biotin synthesis were always stimulated together by minimal media, so the algorithm 

 could not separate them into unique signals). 

 The FadR iModulon provides an example of the information encoded by the iModulon gene 

 membership (  Figure 2.1e  ) and activities (  Figure 2.1f  ).  All genes within this iModulon are regulated by 

 FadR, so this enrichment has 100% precision. Three genes that are annotated as belonging to the FadR 

 regulon were not captured in the iModulon —  lcfA  ,  rpoE  , and  fadM  . However, all three have additional 

 regulation separate from that of FadR  [55], [56]  ,  which may lead them to have a divergent expression 

 from the rest of the iModulon. The activity levels (  Figure 2.1f  ) reflect expectations: FadR genes are 

 repressed by FadR in the presence of long-chain acyl-coA, and FadR itself is repressed by CcpA in the 

 presence of fructose-1,6-bisphosphate  [56]  , which  causes the expression to rise as nutrients (specifically 

 sugars and fats) are depleted, and to be particularly strong immediately following glucose exhaustion. As 

 this example illustrates, the precision and recall are sensitive to developments in regulon annotations; 

 they improve as regulon annotations become more complete  [57]  . 

 2.2.2. iModulons Generate Hypotheses 

 iModulon activities can often be explained by prior knowledge, as was the case with FadR. 

 However, they can also present surprising relationships that lead to the generation of hypotheses or 

 strengthen arguments for recently proposed mechanisms. In the subsequent sections, we list eight such 

 examples. 
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 Figure 2.2  : iModulons generate hypotheses. Error bars:  mean ± standard deviation; black dots indicate 
 separate samples; vertical gray lines separate different experiments in the data set. Unless otherwise 
 stated, “Other” category includes all conditions except sporulation and those shown, with the number of 
 samples included in parentheses.  (a)  Tryptophan synthesis  (TRAP) iModulon activity, which is 
 unexpectedly elevated by ethanol. The experiment was carried out in Belitsky minimal medium (BMM). 
 The “Other” category excludes carbon source transition experiments, in which this iModulon exhibits 
 technical noise.  (b)  Histidine utilization (HutP)  iModulon activity, which is strongest in quorum 
 conditions.  (c)  LexA iModulon activity is elevated  by DNA damage (mitomycin and peroxide) and in 
 swarming.  (d)  Pulcherrimin (PchR) iModulon activity  increases when growth is expected to slow, 
 especially in the stationary phase in rich (LB) media containing glucose (Glc). “Exp”, “Tran” and “Stat” 
 refer to exponential, transition, and stationary phase, respectively.  (e)  Venn diagram of gene presence in 
 the PhoP+SigA regulon and related iModulons. Numbers indicate the amount of genes or non-coding 
 RNAs in each subset. Although the iModulons are significantly enriched for the intersection of the PhoP 
 and SigA regulons, they have been named PhoP-1 and PhoP-2 for simplicity.  (f, g)  Bar graphs of PhoP 
 iModulon activity demonstrating the use of PhoP-1 for early biofilm growth (“Colony” refers to 
 individual colonies on a plate after 16 h) and PhoP-2 for extreme phosphate starvation (“Low Phos” 
 indicates phosphate starvation for 3 h).  (h, i)  The  arginine synthesis (AhrC) iModulon.  (h)  Venn diagram 
 of the arginine synthesis (AhrC) iModulon and regulon; the regulon contains additional arginine-related 
 genes (  artPQR  and  ytzD  ) that are not known to be regulated  by AhrC.  (i)  AhrC iModulon activity in 
 osmotic stress conditions. This iModulon is surprisingly downregulated by salt shock. N = 3 samples for 
 all conditions shown. 

 2.2.2.1 Ethanol May Stimulate Tryptophan Synthesis 

 The tryptophan synthesis iModulon (  trpEDCFB  ) was strongly  activated under ethanol stress 
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 (  Figure 2.2a  ), a response that has not been previously documented in bacteria. This iModulon is 

 regulated by the  trp  attenuation protein (TRAP), which  represses its genes in the presence of tryptophan 

 [58]  . Therefore, this activation indicates that ethanol  is probably depleting intracellular tryptophan 

 concentrations. Exploring the tryptophan synthesis pathway reveals a hypothetical mechanism for this 

 depletion: flux from the precursor chorismate may be redirected to replenish folate that has been 

 damaged by ethanol oxidation byproducts  [59]  . If this  hypothesis is accurate, it may inform research on 

 the tryptophan deficiency and neurotransmitter metabolism problems observed in human alcoholic 

 patients  [60], [61]  , especially given that  B. subtilis  is an important folate producer in the gut microbiome 

 [62], [63]  . 

 2.2.2.2 Histidine May Be Utilized by Quorums 

 The HutP iModulon for histidine utilization (  hutHUIGM  )  is controlled by an antiterminator that 

 derepresses it in the presence of excess histidine, as well as by the master regulators CcpA and CodY; 

 therefore, its activation indicates that histidine is plentiful while other amino acids are not and that 

 carbon sources are poor  [64]  . Surprisingly, it was  by far most strongly activated in confluent biofilms 

 and swarming cells (  Figure 2.2b  ). Independent colonies  from the same experiment do not exhibit 

 activation, which leads us to rule out the media composition as the reason for these activity levels. The 

 connection between these lifestyle conditions and histidine metabolism has not been studied in  B. 

 subtilis  , but it has been observed in  A. baumannii  ,  where histidine degradation was shown to be 

 upregulated in proteomic studies of biofilms, and histidine supplementation stimulated increased biofilm 

 production  [65]  . Two recent studies discovered that  biofilm-inhibiting antimicrobials worked by 

 suppressing histidine synthesis in  Staphylococcus  xylosus  [66], [67]  . One proposed mechanism 

 implicated the production of extracellular DNA, which is an important component of both  A. baumannii 

 and  B. subtilis  biofilms  [68]  . Given that this iModulon  is also activated by swarming cells, an alternative 

 hypothesis may be that HutP is involved with quorum sensing or surfactant production: both activating 

 conditions have a quorum and high surfactant production, while independent colonies do not. 
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 2.2.2.3 DNA Damage May Stimulate Swarming 

 The LexA iModulon regulates the SOS response for DNA protection and repair. It is strongly 

 activated by three conditions (  Figure 2.2c  ). LexA  stimulation by mitomycin and hydrogen peroxide is 

 expected since those conditions damage DNA  [69], [70]  .  Unexpectedly, this iModulon is also activated 

 in swarming cells despite a lack of DNA damaging agents in that condition. We propose a potential 

 mechanism for this activation: recent research has indicated that certain cells in a culture will tend to 

 accumulate reactive oxygen species and DNA damage. Those cells will produce Sda (a developmental 

 checkpoint protein) and form a subpopulation separate from those that produce biofilm  [71]  . The LexA+, 

 biofilm− population would no longer be producing EpsE, which catalyzes a step in the biofilm synthesis 

 process and also suppresses swarming  [72]  . In addition,  this connection may be mediated by interactions 

 between RecA and CheW, which have been observed in  Salmonella enterica  [73]  . Therefore, we predict 

 that DNA damage encourages swarming motility based on iModulon activation and this mechanism. 

 2.2.2.4 An Iron Chelator May Signal the Stationary Phase 

 The PchR iModulon produces, extrudes, and imports pulcherrimin, an iron chelator  [74]  . Over 

 all of the exponential to stationary phase growth experiments, we observe increases in PchR activation 

 (  Figure 2.2d  ). We also see PchR activation in late-stage  biofilm, glucose exhaustion, and phosphate 

 starvation experiments. These results agree with a recent study that found pulcherrimin to be an 

 important intercellular signal for the stationary phase that also helps exclude competing bacteria from 

 established biofilms  [75]  . The regulation mechanisms  of iModulons like this one can be the subject of 

 future research. 

 2.2.2.5 Phosphate Limitation Stimulates Tiers of Regulation 

 The PhoP regulon controls phosphate homeostasis. It appears as two separate iModulons 

 (  Figure 2.2e–g  ). PhoP-1 encodes high-affinity phosphate  uptake transporters. Phosphate is used to 

 produce (and is effectively stored in) teichoic acid, which is a major component of the cell wall. As a 
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 colony grows, it must uptake phosphate to produce more cell walls — indeed, teichoic acid intermediates 

 are the major stimulus for PhoP activity  [76]  . It  is therefore unsurprising that PhoP-1 is strongly 

 activated in independent colonies, which are exponentially growing in close quarters with low local free 

 phosphate concentrations. PhoP-2 contains PhoP-1 as well as 13 other genes which encode more extreme 

 phosphate recovery strategies:  phoABD  , which salvages  phosphate monoesters but produces reactive 

 alcohols,  glpQ  , which degrades extracellular teichoic  acid, and  tuaBCDEFGH  , which replaces teichoic 

 acid with phosphate-free teichuronic acid. PhoP-2 is only active under phosphate starvation, consistent 

 with the extreme strategy it encodes. Perhaps the affinities of the promoters of the PhoP-2 specific genes 

 are lower than that of the PhoP-1 genes, which could lead to this graded response. 

 2.2.2.6 The Arginine Synthesis iModulon Provides Two Important Insights 

 The arginine synthesis iModulon provides two interesting insights. Its genes include 

 argGHCJBDF  and  carAB  , which are known to be repressed  in the presence of arginine by AhrC  [77]  . 

 The first insight is that it also contains  artPQR  (  Figure 2.2h  ), which are arginine importers not known  to 

 be transcriptionally regulated by AhrC – given that they are part of the same independent signal in the 

 transcriptome, they likely share this regulation. 

 In addition, the iModulon was unexpectedly downregulated in salt shock, but not after growth in 

 salt (  Figure 2.2i  ); this has not been explored in  previous studies. Here, the putative mechanism is less 

 clear. It may involve the production of osmoprotective solutes such as proline  [78]  , which might perturb 

 metabolic networks in such a way that arginine concentrations increase and then downregulate these 

 genes. After proline stores have been established, arginine concentrations appear to be restored. There is 

 also evidence of a proline/arginine metabolic link in another iModulon: the RocR/PutR iModulon 

 combines the utilization of both amino acids into one signal. Exploration of this relationship may help to 

 understand broader changes in amino acid metabolism and its regulation under stress conditions. 
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 2.2.2.7 The CcpA Regulon Is Captured By Two iModulons 

 The CcpA iModulons regulate carbon catabolites in different phases of growth (  Figure A.1  ), 

 which may suggest divergent preferences for carbon catabolites determined by growth phase and 

 starvation state; the same catabolites that are preferred during exponential growth are preferred during 

 germination. CcpA-1 contains mostly sugar metabolism enzymes (ribose, sucrose, mannose, trehalose, 

 lichenan, etc.) while CcpA-2 contains a mix of genes including those for inositol consumption, 

 tricarboxylic acid permeability, and acetyl-CoA utilization. CcpA-1 thus represents the relatively more 

 preferred alternative carbon sources. 

 2.2.2.8 Correlations Between iModulon Activity and Regulator Expression Reveal Mode of 

 Regulation 

 Regulatory proteins are often subject to ligand binding or kinase activity, which switches them 

 between active and inactive states. Therefore, the gene expression of a given transcription factor does not 

 usually correlate with the expression of its targets; this is the case with MalR, which is activated through 

 phosphorylation by MalK only when malate is present  [79]  . Since iModulons combine co-regulated gene 

 expression into easy-to-evaluate activity levels, we can attempt to correlate regulator expression with 

 iModulon activity. As expected, many of these correlations are low. For example, MalR activation occurs 

 through a post-transcriptional binary switch, so there is no correlation between MalR gene transcription 

 and iModulon activity (  Figure A.2a  ). A major exception  to this is the sigma factors, which are often 

 only regulated at the expression level. In these cases, we observe much higher correlations between 

 expression and activity, such as with the motility sigma factor, SigD (  Figure A.2b  ). High correlations 

 are also observed when the regulator undergoes positive feedback, in which case it is a member of its 

 own iModulon (  Figure A.2c  ). 

 The Thi-box is a riboswitch that is conserved in all domains of life and regulates the expression 

 of genes for thiamine synthesis and transport. In  B. subtilis  , this sequence is upstream of a transcriptional 
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 terminator, which it deactivates in the absence of thiamine  [80], [81]  . We would therefore expect the 

 Thi-box sequence to be constitutively expressed, and its downstream genes to respond to thiamine levels 

 – there would be no correlation between Thi-box RNA expression and the activity levels of its genes. 

 Instead, this relationship had a unique shape which was consistent for all 5 Thi-boxes (  Figure A.2d  ).  We 

 believe that this may be explained by differential degradation of the short Thi-box RNA sequence. Under 

 minimal media conditions, the thi-box sequence does not bind thiamine, so RNA polymerase reads 

 through it and produces a long, relatively stable RNA molecule, which is measured as both high Thi-box 

 expression and high Thi-box iModulon activity. Under rich media conditions, the binding of thiamine 

 terminates transcription, preventing Thi-box iModulon activity and producing a short, less stable RNA 

 molecule. Interestingly, this short sequence may be degraded quickly in flasks (evidenced by a lack of 

 apparent Thi-box expression) but appears to remain in biofilms for long enough that it could be 

 measured in this experiment. Little is known about differential RNA degradation in biofilms, but this 

 result motivates further study of that phenomenon. 

 2.2.3 Six iModulons Capture the Major Transcriptional Steps of Sporulation 

 The data set we analyzed contained an eight-hour sporulation time course, which yielded six 

 major sporulation iModulons that were activated sequentially over the first 6 hours (  Figure 2.3a  ). The 

 identification of these gene sets by ICA indicates coherent expression across the transcriptome, and more 

 dramatic transcriptional variation compared to excluded genes. The conclusions drawn from these 

 iModulons are limited by the complexity of sporulation  [46], [82]  and the stochasticity of its onset  [83]  . 

 Because of this, we observe many genes shared between consecutive iModulons. Nonetheless, the 

 following analysis demonstrates that they still provide valuable information, including identifying 20 

 uncharacterized proteins whose annotations did not previously reflect a putative relationship to 

 sporulation. 
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 Figure 2.3  : Sporulation iModulons reveal the tendency  of certain conditions to sporulate.  (a)  Heatmap 
 color indicates the change in iModulon activity over the previous hour.  (b–e)  Line plots of the 
 sporulation progression for selected conditions, with thick lines indicating mean activity and thin lines 
 indicating individual samples. Activity levels were divided by the standard deviation. The black line 
 surrounded by a shaded gray region is the average of all conditions not shown in any plot ± standard 
 deviation (n = 200 samples).  (b)  Three time points  of sporulation, showing Spo0A activation at 
 sporulation onset (2 h, green), cumulative expression up to the fourth step (SigG) for an intermediate 
 time point (4 h, orange), and expression of all stages at 8 h (red).  (c)  Minimal media supplemented with 
 these carbon sources leads to expression of all sporulation iModulons.  (d)  Three conditions reached the 
 intermediate steps of sporulation.  (e)  Anaerobic conditions  exhibit unusual activity. “Aerobic” is the 
 control condition. 

 The gene sets and regulators of the sporulation iModulons roughly match the known sporulation 

 progression. The Spo0A iModulon contains mostly genes known to be activated by high levels of 

 Spo0A~P, including the sigma factors for upcoming sporulation steps, chromosome preparation 

 machinery, and septal wall formation. It is rapidly activated between hours 1 and 2 of the time course 

 (  Figure 2.3a  ). Next, the SigE iModulon carries out  functions in the mother cell for engulfment of the 

 forespore. After SigE, a dual SigE/G iModulon is activated, which regulates early spore coat formation 
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 by both the mother and forespore cells. The SigG iModulon follows; it contains germination receptors, 

 metabolic enzymes, and stress resistance genes. Finally, the SigK regulon is split into two iModulons 

 with functions including coat maturation and mother cell lysis. The difference between the two SigK 

 iModulons may partially be explained by the action of the TF GerE, which represses members of SigK-1 

 and activates a large fraction of SigK-2. This is consistent with the known temporal regulation of the 

 SigK regulon  [84]  . Notably, SigF is the only absent  sigma factor; we believe it was not identified 

 because its genes are expressed simultaneously with the SigE, SigG, and SigE/G iModulons, and 

 because many SigF genes are also under SigG control  [85]  . Nonetheless, these functions and regulators 

 largely match expectations based on literature, providing an  a priori  validation of the set of known 

 sporulation steps. 

 The activity levels of the sporulation iModulons can be viewed as markers of progress through 

 sporulation: high Spo0A activity indicates that new spores are forming, and high SigK-2 indicates that 

 some spores are completing the process. Therefore, we can understand how far along other conditions 

 are based on their sporulation activity levels (  Figure  2.3c–e  ). Most conditions have a very low level of 

 activation, but the “glutamate + succinate” and pyruvate supplements to minimal media conditions both 

 have elevated expression across all sporulation iModulons, which indicates that the poor carbon sources 

 in these conditions stimulated sporulation (  Figure  2.3c  ). Indeed, pyruvate has been shown to regulate 

 sporulation  [86], [87]  . Some other conditions appear  to have made it partway through the process: 

 confluent biofilms, the stationary phase in minimal media, and growth at cold temperature all reached 

 the third of six steps. This is appropriate for these conditions based on previous studies  [88]–[90] 

 (  Figure 2.3d  ). 

 With one exception, the progression from one sporulation iModulon to the next is cumulative: 

 we do not see strong activation of step 2 unless step 1 is active, and so on. This agrees with prior 

 observations  [91]  . The only exception to this rule  is elevated SigG activity by cells in anaerobic 

 conditions (  Figure 2.3e  ). This connection is also  evident from gene presence: a flavohemoglobin 

 required for anaerobic growth,  hmp  , is part of the  iModulon despite no known connection to SigG. 
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 Previous studies have also acknowledged that some SigG-dependent genes are required for anaerobic 

 survival  [92]  . However, it is known that ectopic activation  of SigG is limited by negative feedback  [93], 

 [94]  and unlikely to occur in vegetative cells  [95]  .  We, therefore, propose further experiments to 

 determine the role of SigG-dependent genes in anaerobiosis. 

 2.2.4 Changes in iModulon Activity Reveal Global Transcriptional Shifts During 

 Sporulation 

 Figure 2.4  : Global reallocation during sporulation.  Heatmap color indicates a change in iModulon 
 activity over the previous hour. Selected iModulons were hierarchically clustered according to the 
 Pearson R correlation between sporulation activity derivatives. 
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 In complex processes such as sporulation, the entire cellular transcriptome undergoes 

 system-wide changes beyond those directly related to the process at hand. While much effort has been 

 put into understanding metabolic changes at the onset of sporulation  [46], [89], [91]  , metabolic and 

 lifestyle-related regulatory activity are difficult to summarize concisely with previous methods. Because 

 ICA provides a simple method for tracking transcriptome-wide changes, we analyzed activity level 

 fluctuations for the sporulation time course (  Figure  2.4  ). Three major stages are involved: a 

 self-preserving metabolic response to amino acid starvation in the first hour, a community-wide lifestyle 

 reallocation in the second hour, and progression through sporulation in the remaining time points. 

 In the first hour, many amino acid synthesis iModulons (tryptophan, cysteine, arginine, leucine, 

 and threonine) and one amino acid utilization iModulon (histidine) are rapidly activated. This is likely 

 the result of amino acid starvation by the sporulation media, which derepresses these iModulons through 

 TFs including CodY. CodY also derepresses the fructosamine consumption iModulon  [96]  at this time. 

 The AbrB iModulon is derepressed; it responds to nutrient limitation through a variety of functions, 

 including cannibalism  [97]  , that herald the stationary  phase and prolong entry into sporulation. 

 In the second hour, Spo0A is strongly activated in a process that has been widely studied; this 

 marks the onset of sporulation  [98]  . Also, the histidine  utilization of the first hour is compensated by 

 histidine synthesis in the second hour. Zinc, an important cofactor for sporulation proteins  [99], [100]  , is 

 taken up. Various colony, biofilm, and antimicrobial iModulons are activated to support the forming 

 spores (DegU, ComA, Eps, Alb). ComK, the competence iModulon, is expressed as an alternative 

 response to starvation. ComK’s brief activation at this time point is consistent with the short competence 

 window observed before commitment to sporulation  [48]  .  We also observe the activation of ResD, which 

 is typically associated with anaerobic conditions  [101], [102]  , and Rex, which regulates overflow 

 metabolism, providing interesting connections to the potential anaerobic activity of SigG discussed in 

 the previous section. 

 As sporulation continues, fewer non-sporulation iModulons are activated. The notable 

 exceptions are AcoR and FruR, which are both activated around the fourth hour. Both acetoin and 
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 polymeric fructose function as extracellular energy stores  [103], [104]  , so perhaps they are used at this 

 stage to provide a final energy source for the completion of sporulation. Overall, these results 

 demonstrate an application of ICA for observing transcriptome-wide changes and lay out the major 

 population dynamics and metabolic changes that underscore spore formation. 

 2.2.5 Some Poorly Characterized iModulons May Perform Important Functions 

 Figure 2.5  : The activity levels of uncharacterized  iModulons agree with their putative functions. Bars 
 and lines indicate means, black dots indicate individual samples, and error bars indicate one standard 
 deviation. The “Other” category includes all conditions except the ones in the plot, with the number of 
 samples included in parentheses. Vertical gray lines separate different experiments in the data set.  (a) 
 The activity levels of the Ybc iModulon indicate that it may be a response to heat shock or germination. 
 The Belitsky minimal media (BMM) control occurs at 37 °C.  (b)  The activity levels of the Yrk iModulon 
 (putative sulfur carriers) suggest that it is a response to diamide. The three conditions on the right were 
 taken from LB cultures 10 min after exposure to the labeled stressor.  (c)  The activity levels of the  WapA 
 iModulon indicate activation by nutrient limitation (glucose exhaustion and the three growth phases of 
 M9 media) and suppression by osmotic stress, both in the short (light blue time course) and long term 
 (bars). “Exp”, “Tran”, and “Stat” refer to exponential, transition, and stationary phase, respectively. 

 Given the vast number of uncharacterized genes in bacterial genomes, ICA can help to narrow 

 the search for new and important regulons by identifying groups of genes with transcriptional 

 coregulation and their corresponding activity levels. We have identified three iModulons that warrant 

 further study. The first, the  ndhF-ybcCFHI  operon,  may be involved in heat shock and germination 

 (  Figure 2.5a  ). Another, the  yrkEFHI  operon, contains  putative sulfur carriers that are very likely to assist 

 in the cellular response to diamide stress (  Figure  2.5b  ). Finally, the WapA iModulon reveals additional 

 genes which may contribute to an interspecies competition strategy (  Figure 2.5c  ). The other 

 uncharacterized iModulons which are not likely to be noise are prophage elements, whose regulatory 
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 mechanisms and effect on phenotype warrant further study. 

 The  ndhF-ybcCFHI  operon was identified as its own  iModulon (  Figure 2.5a  ).  ndhF  is known to 

 be a subunit of NADH dehydrogenase, but the  ybc  genes  have not been characterized at all. Peptide 

 homology suggests that  ybcC  may form a protein that  binds to  ndhF  , and that  ybcF  may be carbonic 

 anhydrase. The activity levels of this group of genes demonstrate very strong activation under heat 

 shock, as well as repression during cold shock and unusually high germination activity. Perhaps this is a 

 new category of heat-responsive genes; since heat shock is a complex response [91], a small operon like 

 this may have been overlooked in previous studies. We can hypothesize mechanisms through which this 

 operon might benefit the cell: heat shock should upregulate  ndhF  to help to power the heat stress 

 response,  ybcC  might be a chaperone for  ndhF  , and  maybe  ybcF  assists in raising the pH after a 

 temperature increase lowers it. We propose gene knockout experiments to validate that these genes play 

 a role in the survival of heat shock. 

 Another uncharacterized iModulon is the  yrkEFHI  operon.  None of these genes have been 

 characterized, but two of them are putative sulfur carriers, and one is a putative sulfurtransferase. This 

 iModulon exhibits consistently low activity except in the two conditions with ten or fifteen minutes of 

 diamide exposure (  Figure 2.5b  ). Since diamide oxidizes  thiols to disulfides, it would make sense for 

 sulfur carriers to be necessary in this condition. Future experiments can be performed to confirm this 

 reasoning and identify transcriptional regulatory mechanisms. 

 Also, the WapA iModulon contains several uncharacterized genes that may be coregulated by 

 YvrHb, DegU, and WalR and participate in a unique, recently discovered interspecies competition 

 mechanism  [105]  . This system protrudes fibers from  the cell wall to deliver the WapA tRNase to enemy 

 bacteria, potentially compromising cell wall integrity for greater nutrient availability. We observe 

 activation of this iModulon under starvation conditions and repression under cell wall stress (  Figure 

 2.5c  ), consistent with its putative function. 
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 2.3 Discussion 

 Here, we decomposed the existing, high-quality  B. subtilis  expression data set  [50]  using ICA. 

 This decomposition identified 83 iModulons in the transcriptome whose overall activity can explain 72% 

 of the variance in gene expression across the wide variety of conditions used to generate the data set. 

 Sixty-six of the iModulons correspond to specific biological functions or transcriptional regulators. We 

 analyzed the gene sets and activity levels of the iModulons and presented findings that either agree with 

 existing knowledge or generate hypotheses that could be tested in future studies. The remaining 17 

 iModulons are independent signals with no coherent biological meaning. 

 Through the application of ICA, we were able to identify well-studied gene sets with high 

 accuracy (such as the MalR and FadR iModulons), and uncover insights that suggest candidate 

 underlying mechanisms. We discovered unexpected relationships between stress, metabolism, and 

 lifestyle: ethanol appears to stimulate tryptophan synthesis, histidine utilization may be a feature of 

 quorum sensing, DNA damage may induce swarming, and the iron chelator pulcherrimin could help to 

 signal the stationary phase. The tiered response to phosphate limitation was captured as two separate 

 iModulons, which may provide evidence for variable promoter affinity across the known regulon. ICA 

 accurately decomposed sporulation into a small set of steps which allow sporulation progress to be 

 tracked; this revealed unexplained, unusual activity for SigG in anaerobic conditions. The global 

 transcriptional response to sporulation in metabolism and lifestyle governance was summarized 

 concisely in three stages by iModulon activities. Finally, three iModulons contain mostly uncharacterized 

 gene sets, which represent a promising area for further research. Overall, we have demonstrated that ICA 

 produces biologically relevant iModulons with hypothesis-generating capability from microarray data in 

 this model gram-positive organism. 

 The iModulon genes and activity profile data, along with graphical summaries are available for 

 examination by microbiologists with specific interests about functions in  B. subtilis  that are not detailed 

 in this dissertation. We also have an online resource,  iModulonDB.org  (  Chapter 3  ), where users can 
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 search and browse all iModulons from this data set and view them with interactive dashboards  [21]  . 

 Code for the analysis pipeline used here is available on github (  https://github.com/SBRG/precise-db  ). 

 There is a strong potential for protein identification, transcription factor discovery, metabolic network 

 insights, function assignment, and mechanism elucidation derived from this iModulon structure of the 

 TRN. 

 As with all machine learning approaches, the results from ICA improve as it is provided with 

 more high-quality data  [19]  . Future research may append  unique conditions to this data set and observe 

 the changes to the set of iModulons it finds. Perhaps multi-purpose iModulons will be divided into their 

 biologically accurate building blocks, the noise will be removed, and new regulons will emerge as the 

 signal-to-noise ratio improves. With enough additional data, ICA could potentially characterize the entire 

 TRN in great detail, a goal that has been the subject of research for over half a century. Ultimately, this 

 could be the foundation for a comprehensive, quantitative, irreducible TRN. 

 2.4 Methods 

 2.4.1 Data Acquisition and Preprocessing 

 We obtained normalized, log2-transformed tiling microarray expression values from Nicolas et 

 al.  [50]  (GEO accession number GSE27219), which span  5875 transcribed regions (4292 coding 

 sequences and 1632 previously unannotated RNAs) and 269 sample profiles (104 conditions). The strain 

 used, BSB1, is a prototrophic derivative of the popular laboratory strain, 168. Three samples (S3_3, 

 G + S_1, and Mt0_2) were removed so that the Pearson R correlation between biological replicates was 

 not < 0.9, except in the case of sporulation hour 8, where n = 2 and R = 0.89. To obtain more easily 

 interpretable activity levels, we centered the data by subtracting the mean in the M9 exponential growth 

 condition from all gene values. This is consistent with our prior work in  E. coli  , where a similar 

 34 

https://www.zotero.org/google-docs/?Drp4We
https://github.com/SBRG/precise-db
https://www.zotero.org/google-docs/?g6BzLx
https://www.zotero.org/google-docs/?QJutE6


 condition was chosen for this purpose. All activities are therefore relative to a known, consistent baseline 

 condition. 

 2.4.2 Independent Component Analysis 

 Independent component analysis decomposes a transcriptomic matrix (  X  ) into independent 

 components (  M  ) and their condition-specific activities  (  A  ):  X  =  M  ∗  A  . Note that the  M  matrix was 

 previously called  S  [19]  ; it has been changed to avoid  confusion with other nomenclature. 

 We processed the quality-checked, centered data (  X  )  with the Scikit-Learn (v0.19.0) 

 implementation of FastICA  [24]  using 100 iterations,  a convergence tolerance of 10  -7  , log(cosh(x)) as  the 

 contrast function, and parallel search. We calculated enough components to reconstruct 99% of the 

 variance as determined by PCA. 

 After 100 iterations of ICA, the  M  matrices were pooled  and clustered with Scikit-Learn 

 DBSCAN  [24]  (epsilon = 0.1, minimum size = 50) in  order to find robust components which appear in 

 each random restart. Since identical components can have opposite signs, we defined distance for this 

 algorithm using a sign-agnostic method: 

 d  x,y  = 1 - |ρ  x,y  | 

 where d  x,y  is the distance and ρ  x,y  is the Pearson  correlation between components x and y. Components 

 belong to a cluster if d  x,y  <0.1 with all other components  in the cluster. To ensure repeatability, all signs in 

 a cluster were inverted if necessary so that the highest weighted gene would have a positive sign. The 

 centroids of each cluster defined the weightings in M and were used to calculate A. 

 This process was repeated 100 times (for a total of 10,000 ICA runs), and components that did 

 not arise in every run were discarded. The result contained 83 robust components. 

 We normalized each component in the  M  matrix such  that the maximum absolute gene weight 

 was 1. We performed the inverse normalization on the  A  matrix to conserve the same values. Therefore, 

 each unit in  A  is equivalent to a unit log change  in expression if the iModulon were to contain only one 

 gene. 
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 2.4.3 iModulon Threshold Determination 

 The distribution of  M  matrix weights of each gene  for a given component consists of a large 

 number of near-zero values along with a small number of genes at the tails. To define the gene set of the 

 iModulon, we need to choose a threshold value that separates the normally distributed near-zero genes 

 from the more meaningful, non-gaussian tails. To do so, we used Scikit Learn’s implementation of the 

 D’Agostino K2 test, which quantifies the skew and kurtosis of the distribution as a measure of 

 gaussianity  [24], [106]  . We iteratively remove the  gene with the highest absolute value in the component 

 and calculate the K2 value until the value falls below a K2 cutoff value (1300). All genes that were 

 removed are members of the iModulon gene set, and the non-removed genes are sufficiently normally 

 distributed around zero to be considered noise. In all cases discussed in this chapter, all member genes 

 have positive weights, which allows for easier representation as a set of genes and a simple interpretation 

 of activity. 

 The cutoff value of 1300 was determined by a sensitivity analysis. Over a range of cutoffs (200 - 

 2200), we computed the top regulator enrichments and F1 scores as described in  Section 2.4.4  . The 

 cutoff with the highest mean F1 score was selected. In seven cases, this cutoff was not appropriate 

 because it removed all genes from the iModulon (5/7) or captured non-important genes (2/7), so the 

 threshold was adjusted to 500 or increased slightly as necessary. In the two cases (MalR and Rex) in 

 which the threshold was increased, we observed the tails of the distribution starting a bit higher than 

 their computed thresholds, and the full tail corresponds to a regulon. For this reason, it was appropriate 

 to raise the thresholds in those cases. 

 2.4.4 Regulator Enrichment 

 Regulon information was obtained from  Subti  Wiki  [12]  .  For each iModulon, we obtained all 

 regulators that regulate any gene in their gene sets. We also used all combinations of regulators, denoted 

 by “+” between regulator names, to capture regulons with more than one regulator. For each of those 
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 individual regulators and regulator combinations, we obtained a regulon set, a list of all genes that share 

 that regulation. Next, we computed p-values for each regulon’s overlap with the iModulon gene set using 

 the two-sided Fisher’s exact test (FDR < 10  −5  )  [24],  [107]  . We also computed F1 scores, which are the 

 harmonic averages of precision and recall. 

 After the sensitivity analysis (  Section 2.4.3  ) determined  the appropriate cutoff, significant 

 enrichments for each iModulon were then manually curated. In most cases, the most significant 

 enrichment was chosen. Some iModulons appeared to be a combination of two or more significantly 

 enriched regulons, so their assigned regulator was a union of both, denoted by “/” between regulator 

 names. 

 Our regulator enrichments have very high precision and recall scores, but they have an inherent 

 bias because the threshold for iModulon membership was chosen to maximize them. Our method of 

 selecting the threshold improves with the completeness of the TRN annotations, and would be 

 ineffective for an organism with a very incomplete TRN. We could work around that limitation with 

 approaches using other gene groupings, such as functional, category, or motif enrichments, or by 

 developing approaches that compare iModulons across organisms, such as comparing iModulon size 

 distributions, or leveraging homology with model organisms. 

 2.4.5 Differential Activation Analysis 

 We fit a log-normal distribution to the differences in iModulon activities between biological 

 replicates for each iModulon. For a single comparison, we computed the absolute value of the difference 

 in the mean iModulon activity and compared it against the iModulon’s log-normal distribution to 

 determine a p-value. We performed this comparison (two-tailed) for a given pair of conditions across all 

 iModulons at once and designated significance as FDR < 0.01. 
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 2.4.6 Data and Code Availability 

 All data generated or analyzed during this study are included in the published article (and its 

 Supplementary Information Files). The original data set is from Nicolas, et al.  [50]  (GEO accession 

 number GSE27219; Supplementary Data from  http://genome.jouy.inra.fr/basysbio/bsubtranscriptome/  ). 

 Interactive online dashboards for all iModulons and all data are available at https://iModulonDB.org 

 under the data set name “  B. subtilis  Microarray”.  Code for the analysis pipeline used here is available on 

 GitHub (  https://github.com/SBRG/precise-db  ). 
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 Chapter 3. iModulonDB: a Knowledgebase of Microbial 

 Transcriptional Regulation Derived from Machine 

 Learning 

 Independent component analysis (ICA) of bacterial transcriptomes has emerged as a powerful tool for 

 obtaining coregulated, independently-modulated gene sets (iModulons), inferring their activities across a 

 range of conditions, and enabling their association to known genetic regulators. By grouping and 

 analyzing genes based on observations from big data alone, iModulons can provide a novel perspective 

 into how the composition of the transcriptome adapts to environmental conditions. Here, we present 

 iModulonDB (  iModulonDB.org  ), a knowledgebase of microbial  transcriptional regulation computed 

 from high-quality transcriptomic datasets using ICA. Users select an organism from the home page and 

 then search or browse the curated iModulons that make up its transcriptome. Each iModulon and gene 

 has its own interactive dashboard, featuring plots and tables with clickable, hoverable, and downloadable 

 features. This site enhances research by presenting scientists of all backgrounds with co-expressed gene 

 sets and their activity levels, which lead to improved understanding of regulator-gene relationships, 

 discovery of transcription factors, and the elucidation of unexpected relationships between conditions 

 and genetic regulatory activity. The original release of iModulonDB covered three organisms (  E. coli  ,  S. 

 aureus  , and  B. subtilis  ) with 204 iModulons, and it  was later expanded to cover eleven organisms and 

 1,717 iModulons. 

 3.1 Background 

 The transcriptional regulatory network (TRN) governs gene expression in response to 

 environmental stimuli, which is of fundamental interest in biology. The TRN functions by employing 

 condition-responsive regulators, such as transcription factors (TFs), to regulate the transcription of 
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 genes. Understanding these regulators and their effects in bacteria informs many important applications, 

 including bioproduction  [49]  and antibiotic resistance  [109]  . There are several organism-specific 

 databases of gene-regulator relationships  [11], [12],  [110]  , but knowledge of regulator binding alone is 

 insufficient to explain the complex responses reflected in transcriptomic datasets  [15], [111]  . Thus, there 

 is a need for data-driven approaches to TRN elucidation, which can detect the most important 

 transcriptional signals in a gene expression dataset, identify their major gene constituents, and quantify 

 their condition-dependent activity levels. 

 With the growing availability of bacterial transcriptomes, machine learning is emerging as a 

 powerful tool for TRN elucidation. The falling price of RNA sequencing has led to a rapid growth in 

 online transcriptomic databases  [112], [113]  , creating  a strong need for the development of analytical 

 tools that can harness its scale to transform raw data into biologically meaningful information  [114]  .  For 

 transcriptomic data, this knowledge comes in the form of 1) identifying which regulons are active in 

 each condition probed in the dataset, 2) generating hypotheses about gene function and regulation, and 3) 

 revealing novel relationships and patterns in bacterial lifestyles. In comparison, traditional methods such 

 as chromatin immunoprecipitation (ChIP) assays  [115]  ,  can be time-consuming and expensive, making 

 them cumbersome for high-throughput discovery or hypothesis generation. They also do not yield the 

 condition-specific strength of binding, which can be inferred by machine learning. Another strength of 

 data-driven approaches is that they can be applied to any organism, regardless of prior information. 

 Ultimately, a comprehensive, quantitative TRN would be the result of this pursuit. 

 Independent component analysis (ICA) addresses the goals described above. It is a blind source 

 separation algorithm that identifies statistically independent signals underlying a dataset, and 

 decomposes the original matrix into source (or module,  M  ) and activity (  A  ) matrices  [22], [23]  . The 

 module matrix  M  defines relationships between genes  and the identified signals, while the activity 

 matrix  A  describes the intensity of each signal in  each sample. A comparison of 42 TRN inference 

 methods demonstrated that ICA was the best at recovering known gene modules  [17]  . Additional studies 

 found that ICA-derived gene modules were robust across datasets  [38]  . It has been used for a variety of 
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 organisms in the past, especially yeast and human cancer cells  [33]–[37]  . 

 We recently applied ICA to high quality transcriptomic datasets for three species of bacteria: 

 Escherichia coli  [19]  ,  Staphylococcus aureus  [116]  ,  and  Bacillus subtilis  [117]  . In our work with  E.  coli  , 

 we termed the independent signals “iModulons”, for  i  ndependently  modul  ated gene sets. We used the 

 same codebase (  www.github.com/SBRG/precise-db  ) to  generate all three transcriptome decompositions. 

 We then assigned categories, functions, and regulators to each iModulon. The regulator assignments 

 were based on existing knowledge of transcription factor binding sites  [11], [12], [110], [116]  , or,  in 

 some cases, a boolean combination of several regulons. By comparing our decompositions to known 

 regulons described in other databases, we were able to identify potentially mislabeled or previously 

 unknown TF-gene associations and verify them with ChIP-exo binding profiles. For example, we 

 discovered five new binding sites for MetJ in  E. coli  [19]  . The observed iModulon activity levels also 

 provided additional evidence for newly discovered regulatory roles or point to new hypotheses. For 

 instance, we observed that the iron chelator pulcherrimin was active in stationary phase signaling in  B. 

 subtilis  (  Section 2.2.2.4  )  [117]  . This observation  was recently externally validated  [75]  . More broadly, 

 each decomposition explained 65-80% of the variance in the transcriptomic data sets, indicating that the 

 functions and regulators identified captured most of the transcriptional functions of the TRNs under the 

 conditions where the data was obtained. 

 Several other studies have utilized iModulons to obtain valuable results. Our original  E. coli 

 study led to the discovery of a regulon putatively controlled by the uncharacterized TF  ydhC  [19]  , which 

 has since been characterized and renamed  [118]  . iModulons  were also used to characterize the function 

 of the TF OxyR  [40]  , and to quantify the stress responses  to heterologous gene expression  [41]  . 

 Additionally, iModulons captured the transcriptional effect of genomic alterations in adaptive laboratory 

 evolution to naphthoquinone-based aerobic respiration  [39]  . 

 In previous publications, curated iModulon dashboards were presented as static supplemental 

 PDFs. While these are useful for disseminating basic information on specific iModulons, they suffered 

 from several problems: 1) labeling of genes and inclusion of tables were limited by page space; 2) the 
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 inability to interact via hovering and clicking slowed analysis; 3) information was static and could not be 

 updated; 4) access to the underlying data was limited and required coding experience; and 5) 

 dissemination required sharing large PDFs instead of simple URL links. Given the potential for 

 iModulons to enhance a wide range of research, we sought to address these issues with an online 

 knowledgebase. 

 Here, we present the iModulon database (iModulonDB;  iModulonDB.org  ), an interactive web 

 tool for accessing high quality transcriptomic datasets and their curated iModulons. Users begin by 

 selecting their organism and dataset of interest, and then may either browse the iModulons identified 

 through curated tables or search for the genes and regulators of interest to them. Each gene and 

 iModulon has an interactive analytics dashboard featuring hoverable, clickable, and downloadable tables 

 and graphs. iModulonDB presents the relationships between genes and iModulons, the inferred activities 

 of regulators across diverse conditions, and the concordance between our data-driven gene modules and 

 literature-defined regulons, such as those available on RegulonDB  [11]  . Compared to the previous PDF 

 dashboards, the new website enables global usage of this information and provides much more depth. 

 iModulonDB meets the emerging need for an online, data-driven TRN resource; it obtains co-regulated 

 gene sets based only on transcriptomic observations, which will help a broad audience of microbiologists 

 and systems biologists to investigate genes or iModulons of interest. 

 3.2 Materials and Methods 

 3.2.1 Data Generation and Acquisition 

 E. coli  PRECISE-278  [19]  and  Staph  PRECISE  [116]  were  generated using RNA sequencing 

 (RNAseq), as described in their respective publications. The  Bacillus subtilis  dataset  [117]  is a 

 well-known microarray dataset originally published by Nicolas, et al.  [50]  , and is already featured  as the 

 expression compendium on the popular database  Subti  Wiki  [12]  . Despite using older, established data, 
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 the  Bacillus  decomposition still provides novel insights (  Chapter 2  ), which demonstrates the efficacy of 

 ICA. All raw data is available on GEO or SRA. 

 3.2.2 Quality Control and Preprocessing 

 Prior to running ICA, we ensure that transcriptomic data passes stringent quality control as 

 described in each dataset’s original publication  [19],  [116], [117]  . For RNAseq data, genes shorter than 

 100 nucleotides or with under 10 fragments per million-mapped reads are removed. We then compute 

 transcripts per million (TPM) using DESeq2  [28]  . The  final expression compendium is log-transformed 

 log  2  (TPM + 1) before analysis – this is the form of  the data available for download on iModulonDB. For 

 both RNAseq and microarray data, biological replicates with R  2   < 0.9 between final expression values 

 are removed to reduce technical noise. Before computing iModulons, we choose a reference condition 

 (such as exponential growth on M9 minimal media) and subtract its expression from all other samples; 

 this results in activity levels for each iModulon relative to a known baseline. 

 3.2.3 Computing Robust iModulons 

 We perform ICA as described in the original publications  [19], [116], [117]  using the 

 Scikit-learn  [24]  implementation of the FastICA algorithm  [119]  . To ensure robustness (since ICA is a 

 stochastic gradient search algorithm), we perform ICA multiple times with random seeds for each dataset 

 and cluster their  M  matrices using the Scikit-learn  implementation of the DBSCAN algorithm  [120]  . We 

 keep independent components that appear in more than 50% of the ICA runs. The code used to compute 

 robust independent components is publicly available (  github.com/SBRG/precise-db  ). Note that previous 

 publications used  S  to refer to the  M  matrix, but  it has since been renamed to avoid confusion with the 

 stoichiometric matrix  S  [4]  . 

 ICA produces a set of independent components, each of which contains a weight for each gene 

 in the expression dataset. Most gene weights are near zero for a given independent component, so the 
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 genes with large positive or negative weights are considered to be in the iModulon. To transform an 

 independent component into an iModulon, we iteratively remove the highest absolute weighted genes 

 from an iModulon until the D’Agostino K  2  statistic  of normality  [106]  of the remaining distribution  falls 

 below an organism-specific cutoff, and take all removed genes to be iModulon members. See the original 

 publications (and  Chapter 2  ) for additional details  [19], [116], [117]  . 

 3.3 Results 

 3.3.1 A Web-based Analytics Platform for Data-Driven TRNs 

 We developed iModulonDB (  iModulonDB.org  ) to enhance  the field of microbial genetic 

 regulation by presenting TRNs based on observed signals in transcriptomic datasets. This site provides 

 biologists with the ability to easily navigate large datasets and quickly find gene modules through a 

 search tool or by browsing curated annotations. The inferred activity levels of each iModulon, which are 

 readily available on the site, provide valuable, novel insights into cellular function. We hope that 

 iModulonDB will become an important part of the database ecosystem, providing a machine 

 learning-derived perspective that also links to other databases for synergetic TRN characterization. 

 Figure 3.1  demonstrates the relationship between the  content of an iModulon page (bottom left) and the 

 original decomposition (top), as well as the types of insights that may be gleaned from this analysis 

 (bottom right). 
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 Figure 3.1  : General outline of the iModulonDB pipeline.  Analysis begins with transcriptomic data  X 
 (upper left), which is quality controlled for high biological replicate correlation. ICA is used to obtain 
 iModulons, which have gene weights for each gene in the matrix  M  and activity levels for each condition 
 in the matrix  A  (upper right).  M  weights are analogous  to the strength of transcription factor binding 
 upstream of genes and  A  activities are analogous to  condition-dependent transcription factor activities, 
 which may depend on processes such as ligand binding. Note that  X  ≈  M * A  . The iModulons are 
 curated by assigning functions, categories, and regulators, as shown in the example MalT iModulon 
 dashboard. A representative screenshot of the interactive graphs is shown (middle; larger version with 
 labels included in  Figure 3.3  ), covering genes and  activities as well as the concordance between this 
 gene set and its curated regulator. The three rows of the dashboard result in the three categories of novel 
 insights described (bottom). 

 iModulonDB originally contained the three datasets listed in  Table 3.1  . It covered 204 

 iModulons, 180 of which were characterized. The  E.  coli  dataset is the largest; it includes 278 expression 

 profiles with various gene knock-outs and evolved strains. This leads to its high dimensionality and 

 lowest explained variance. The presence of genomic alterations also results in the most genomic 

 iModulons  [121]  , reducing the fraction of iModulons  with known regulators. The  S. aureus  dataset is 

 comparatively smaller, and is explained very well by its iModulons. Nearly all iModulons could be 
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 characterized, but the dearth of existing TRN annotations for this organism makes it more difficult to 

 align certain iModulons to regulators. For  B. subtilis  ,  both mRNAs and non-coding RNAs were included 

 in the decomposition. This leads to a high number of “genes” and 17 uncharacterized (noisy) iModulons. 

 However, 95% of characterized iModulons were associated with a known set of regulators. Overall, the 

 decompositions successfully produced iModulons that align well with our existing knowledge of 

 transcriptional regulation in these species. 

 Table 3.1  : Representative statistics of the three  datasets originally in iModulonDB. ‘Genes’ and 
 ‘Samples’ refer to the dataset size. Note that in  B. subtilis,  non-coding RNAs were included in the  tiling 
 array, which leads to the high gene count. ‘Conditions’ are unique experimental conditions, not counting 
 biological replicate samples. ‘Dimensionality’ is the number of orthogonal principal components needed 
 to explain 99% of the variance in the data. The ‘Characterized iModulons’ row lists values and 
 percentages of iModulons that can be categorized and named (excluded iModulons may result from 
 noise or contain genes for which little information is available). ‘iModulons with Regulators’ are the 
 subset of characterized iModulons that are mapped to regulators (excluded iModulons may be effects of 
 genomic alterations or biological enrichments with no known regulators). ‘Explained Variance’ is the 
 fraction of variance explained by reconstructing the original matrix using only iModulon member genes 
 and activities. SBRG: Systems Biology Research Group. 

 E. coli  [19]  S. aureus  [116]  B. subtilis  [117]  Total 

 Dataset 
 Description 

 RNA sequencing at 
 SBRG 

 RNA sequencing at 
 SBRG 

 Tiling Microarray, 
 Nicolas,  et al.  [50] 

 Genes  3923  2820  5875  12618 

 Samples  278  108  265  651 

 Conditions  163  54  104  321 

 Dimensionality  200  73  95  368 

 Total iModulons  92  29  83  204 

 Characterized 
 iModulons  86 (93.5%)  28 (96.6%)  66 (79.5%)  180 (88.2%) 

 iModulons with 
 Regulators  58 (63.0%)  19 (65.5%)  63 (75.9%)  140 (68.6%) 

 Explained 
 Variance  68%  76%  72% 
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 3.3.2 Dataset Pages Show Lists of iModulons, Constituting a Data-Driven TRN 

 Figure 3.2  : Representative screenshot of the dataset  page for  E. coli  PRECISE-278.  (A)  Details of the 
 dataset, including a link to the relevant publication.  (B)  List of iModulons for this dataset, along with 
 some curated details and statistics. Click a row to access the appropriate iModulon page. Screenshot 
 includes the first 13 iModulons on the table, which all happen to be in the category ‘Carbon Source 
 Utilization’. 

 Users begin by selecting one of our decompositions from the home page. This brings them to a 

 dataset page (  Figure 3.2  ). The left sidebar (  Figure  3.2A  ) lists basic features of the dataset, including 

 organism details, dimensions, and a link to the relevant publication. The page also contains a curated 

 table of all the iModulons identified (  Figure 3.2B  ).  iModulons are given a name, regulator, function, and 

 category. When multiple regulators capture the iModulon better than a single one, they may be combined 

 using “or” (/) or “and” (+) set operators. For example, the ExuR/FucR iModulon contains genes 

 regulated by either ExuR or FucR, while the GutM+SrlR iModulon contains only genes regulated by 

 both GutM and SrlR (see the original publications  [19], [116], [117]  for more details). If multiple 

 iModulons are linked to the same regulator, which indicates subsets of a large regulon, then a hyphen 

 and numeral is added to the iModulon name (e.g. Fur-1). Some iModulons are enriched for a function or 

 47 

https://www.zotero.org/google-docs/?VUgeh7


 genomic alteration instead of a regulator, so they are named accordingly. Three statistics are also 

 included in the table: 1) N, the number of genes; 2) precision, the fraction of iModulon genes regulated 

 by the enriched regulator(s); and 3) recall, the fraction of regulated genes in the iModulon. Users may 

 sort the table by any of its columns, or click on a row to learn about the iModulon. 

 Some common iModulon categories are: carbon source utilization, amino acid and nucleotide 

 biosynthesis, metal homeostasis, stress response, and lifestyle (such as biofilm production). There are 

 also iModulons categorized as ‘uncharacterized’, which may indicate undiscovered genetic or regulatory 

 relationships  [121]  . 

 3.3.3 iModulon Pages Present Information-Dense Interactive Analytic Dashboards 

 After selecting an iModulon, users are taken to its iModulon page (  Figure 3.3  ). A gray box on 

 this page (  Figure 3.3A  ) lists the curated features:  function, category, and regulator. If available, the 

 regulator entry will contain links to other databases (RegulonDB in  E. coli  [11]  or  Subti  Wiki in  B. 

 subtilis  [12]  ). If a regulator is assigned, the precision  and recall of the enrichment is shown. 

 The gene table (  Figure 3.3B  ) contains information  about all gene members of the iModulon. By 

 default, the gene table is sorted by the associated gene weight from the  M  matrix (although users may 

 click any column to sort by a different feature). Most columns contain information from external 

 databases (EcoCyc in  E. coli  [122]  , AureoWiki in  S.  aureus  [123]  , and  Subti  Wiki in  B. subtilis  [12]  ), 

 such as gene product descriptions, operons, and associated regulators. If the iModulon has been assigned 

 regulator(s), then the regulator names will appear as columns in the table, with green checks if the gene 

 is known to be associated with that regulator and red X’s if not. This table is valuable for understanding 

 the iModulon, as browsing the gene function list helps to understand the function of the iModulon as a 

 whole. The boolean transcription factor columns are also a tool for discovery, since the genes marked 

 with red ‘X’s may be controlled by the regulator despite the lack of a known association. Rows are also 

 links to gene pages. 
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 Figure 3.3  : Representative screenshot of the iModulon  page for MalT from  E. coli  PRECISE-278.  (A) 
 Details, including a link to its regulator’s page on RegulonDB.  (B)  Gene table, listing the members  of 
 this iModulon and their annotations, plus whether or not they are annotated as being regulated by the 
 iModulon’s regulator, MalT.  (C)  Histogram showing  the distribution of gene weights. Vertical bars 
 represent the thresholds between member genes and non-member genes. All member genes are 
 positively weighted in this example.  (D)  Scatter plot  of gene weights versus their expression in the 
 baseline condition, color coded by COG. The horizontal line represents the weight threshold.  (E) 
 Activity bar graph for this iModulon. Vertical lines separate projects within the dataset, bars represent 
 mean activity of conditions, and individual black dots represent samples.  (F-G)  This row only exists  if 
 the iModulon has a curated regulator.  (F)  Venn diagram  comparing this set of iModulon genes (left) to 
 the set of genes annotated as being regulated by MalT (right).  (G)  Scatter plot comparing the expression 
 of MalT to the iModulon activity for all conditions. A broken line is used to indicate that there is a 
 minimum expression of MalT before the correlation is observed. 
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 The gene histogram (  Figure 3.3C  ) shows the distribution of weights associating this iModulon 

 with all genes. It has a typical shape with a high number of non-member genes near zero and a small 

 number of member genes outside of the vertical threshold lines. All bars can be hovered over to see a list 

 or number of genes. If the iModulon is assigned multiple regulators, the histogram is color-coded by 

 regulon – regulated genes with weights near zero may have other regulators such that those genes are not 

 part of this independent signal in the transcriptome. Each element in the legend can be clicked to show or 

 hide regulated genes. 

 The gene scatter plot (  Figure 3.3D  ) places the weights  on the Y axis and the gene start site on 

 the X axis. If genes share similar X axis positions, they are near each other and may be part of the same 

 operon. Each point is color-coded by cluster of orthologous groups (COG; computed via eggNOG  [124], 

 [125]  ), hovering over a point displays additional  information, and clicking takes you to the 

 corresponding gene page. This plot allows you to visualize COG categories and view gene annotations 

 for both member and non-member genes. 

 The activity bar graph (  Figure 3.3E  ) displays the  activity level of the iModulon (with respect to 

 a reference condition) across all expression profiles. iModulon activities are a measure of relative 

 transcription factor activity, which can be a very valuable resource that is difficult to obtain using other 

 methods. Bars represent conditions and dots represent individual samples within that condition. 

 Hovering over a bar displays some relevant metadata about culture conditions, and clicking it may take 

 you to a paper with more details if it exists (for example, the  E. coli  dataset contains expression  profiles 

 from multiple projects, and each project has its own paper). Clicking the wrench next to ‘Activity’ brings 

 up a menu to select which metadata details are included in the hover box, and allows the selection of a 

 metadata category to color the bars with. The graph can also be zoomed in and scrolled horizontally, or 

 viewed in full screen mode. 

 If the iModulon has a matched regulator, then a ‘Regulation’ row will appear at the bottom of 

 the dashboard (  Figure 3.3F-G  ), which quantifies the  concordance between our transcriptomics-derived 

 groupings (iModulons) and the gene groupings (regulons) available in literature and on other databases 
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 [11], [12]  . It contains a venn diagram comparing the set of iModulon genes against the regulon (  Figure 

 3.3F  ), which can be hovered over to quickly see agreements  and discrepancies between iModulons and 

 regulon annotations. If the regulator is also encoded by a gene in the expression compendium, then there 

 will be a scatter plot or series of scatter plots showing the iModulon activity and regulator gene 

 expression across the conditions (  Figure 3.3G  ). Each  point can be hovered over to see the name of the 

 sample it represents. For some regulators, such as sigma factors and self-regulating TFs, a high 

 correlation may be observed in this plot. When post-transcriptional modifications such as 

 phosphorylation and ligand binding affect the iModulon activity, we see low correlations between the 

 expression of the regulator and the activity of the genes it regulates (See  Section 2.2.2.8  ). Regulators  are 

 not necessarily part of their own iModulons. The computation of these correlations is described in the 

 original dataset publications  [19], [116], [117]  .  In some cases, the correlation is best captured using a 

 broken line (as in  Figure 3.3G  ) to signify that a  minimum expression level of the regulator must be 

 reached before a correlation is observed. 

 3.3.4 Gene Pages Connect Users to iModulons of Interest 

 Gene pages enable users to quickly find iModulons relevant to their research. Similar to the 

 iModulon and dataset pages, the left sidebar on this page will list the gene’s identifier, gene name, gene 

 product, operon, COG category, and known regulator(s), as well as a link to a relevant database (EcoCyc 

 in  E. coli  [122]  , Aureowiki in  S. aureus  [123]  , and  Subti  Wiki in  B. subtilis  [12]  ). The dashboard contains 

 two elements: 1) a table of iModulons and 2) an expression profile. The expression profile shows log  2 

 TPM expression values across each dataset. 

 The iModulon table (included in  Figure 3.4B  ) lists  the iModulons in order of weight, with the 

 strongest iModulon associations at the top of the list. If the gene is in an iModulon, a green check will 

 appear next to it (red X otherwise). The table also includes additional details for each iModulon. Here, a 

 user can easily find iModulons containing genes of interest, and navigate to the iModulon page to learn 
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 more. If a gene is not in any iModulon, the gene is not a strong part of any independent signals in the 

 dataset. 

 3.3.5 Other Major Features: About, Search, and Download 

 As many researchers are not familiar with iModulons, we have included a thorough “About” 

 page with a YouTube video on ICA, an illustrated walkthrough of our pipeline, details on how to read 

 our dashboards, and links to all relevant publications. We also include an email address 

 (  iModulonDB@ucsd.edu  ) where users can send feedback  or request that we work with their dataset. 

 After choosing a dataset, users may click the “Search” link in the toolbar from any page to 

 access our search functionality. This tool allows the users to search through genes and/or iModulons. For 

 genes, results matching queried gene names, gene IDs, and gene products will be displayed. Similarly for 

 iModulons, matching iModulon names, associated regulators, and iModulon functions will generate 

 search results. Results are separated into iModulon and gene sections. 

 Each of the main three pages (dataset, iModulon, and gene) has a download menu in the toolbar. 

 From there, all data is available for download in bulk or parts. The bulk data includes the original 

 log-tpm data, the two ICA-generated matrices, the gene annotations and literature TRN used, the 

 metadata on all samples, and the curated iModulon table. For individual iModulons, the gene weights 

 and activity levels are available along with the gene table as it appears in the dashboard. Likewise, gene 

 pages support the download of all iModulon associations to that gene, its expression levels for each 

 sample, and the iModulon table as it appears in the dashboard. We encourage data download and custom 

 analysis. 

 3.3.6 Case Study: How to Use iModulonDB to Enhance Research 

 This section includes an example of a researcher who could gain valuable information from 

 iModulonDB, and how they might do so.  Figure 3.4  illustrates  the process. 
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 Figure 3.4  : Flowchart of an example analysis for the  gene  ilvE.  (A)  The user searches for their gene of 
 interest,  ilvE  . This returns the gene as a result,  which can be clicked to access its gene page (B).  (B)  The 
 iModulon table on the gene page shows that this gene is the member of the Leu/Ile iModulon. Clicking 
 that row in the table brings the user to the iModulon page (C).  (C)  Two features of the iModulon page 
 are shown: the gene table and activity bar graph (see  Figure 3.3  for details). The activity bar graph 
 includes an example tooltip, which appears when the bar is hovered over with a mouse. In this case, the 
 bar with the tooltip is a repressing condition labeled with LB media, which is expected to repress the 
 function of this iModulon.  (D)  The insights gained  are summarized in the boxes: the co-regulated genes 
 are enumerated, and the activating or repressing conditions in our dataset can be determined. 

 Researcher X has chosen a gene of interest. They are studying the branched chain amino acid 

 (BCAA) synthesis enzyme encoded by  ilvE  in  E. coli  as a potential drug target. They want to know 

 which conditions activate  ilvE  expression, and what  other genes are co-expressed with this gene. 

 Researcher X can navigate to the  E. coli  dataset on  iModulonDB, and then choose “Search” in the 

 toolbar and enter “ilvE” (  Figure 3.4A  ).  ilvE  will  appear as a gene page result, which links to the  ilvE 

 gene page (  Figure 3.4B  ). From there, they can see  some basic information about the gene, a link to its 

 EcoCyc page  [122]  , and its expression across our compendium.  They will also find the iModulon table, 

 which shows that it is a member of the “Leu/Ile” iModulon. As expected, the function of the iModulon is 

 BCAA biosynthesis. Clicking the “Leu/Ile” row in the iModulon table will take them to the 

 corresponding iModulon page (  Figure 3.4C  ) where they  can see all of the genes (including  ilvE  ) in this 

 independent signal of the dataset, as well as its activity across all conditions. The iModulon is annotated 
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 as being regulated by ile-tRNA, ilvY, or leu-tRNA. IlvY is a transcription factor with a page on 

 RegulonDB  [11]  , so users can follow that link to learn  more about its regulon. 

 Along with linking to relevant pages on other databases, iModulonDB provides Researcher X 

 with some novel information (  Figure 3.4D  ). The first  would be the particular gene grouping of this 

 iModulon – it covers the synthesis of all three BCAAs plus threonine as a single unit of the 

 transcriptome, instead of three separate regulons or several operons as they may find on other databases. 

 This grouping is observed from transcriptomic data, and likely results from a combination of genetic 

 factors that respond to separate but metabolically related metabolites. It is useful to understand the cell as 

 manipulating all of these genes together as a unit, which may affect how the researcher implements their 

 drug targeting. The other major insight would be gained by probing the activity profile; for example, 

 hovering over the tallest bars shows that this iModulon is activated under iron starvation and reactive 

 oxygen species (ROS) stress and hovering over the most negative bars indicates deactivation under rich 

 media conditions or under osmotic stress from NaCl. Searching the literature for explanations would 

 reveal that ROS and iron starvation damage the iron-sulfur clusters needed for member enzymes  [126] 

 and create BCAA-limiting conditions (See  Section 4.2.8.2  ),  while the amino acids in rich media turn off 

 these genes through their well-studied mechanisms  [127]  . Direct or indirect repression of these genes  by 

 osmotic stress has not been studied and may be worth investigating. All of this information would help 

 Researcher X determine whether  ilvE  and the function  encoded by the Leu/Ile iModulon are good 

 potential drug targets. 

 Not all iModulons need to be found through gene pages. Users may be more interested in a 

 general process or specific regulator, which can also be searched for on the search page. Alternatively, 

 users can start by selecting an iModulon from the dataset page. They may stumble upon a surprising 

 gene grouping or unexpected condition/iModulon activation pair, which could lead to valuable new 

 hypotheses worth testing. This knowledgebase would also be very valuable for someone studying a 

 completely uncharacterized gene, as its presence in an iModulon gives clues to its function. Another way 

 to use this knowledgebase is simply to follow along with the existing publications  [19], [116], [117]  .  For 
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 E. coli  and  B. subtilis  , expected and unexpected activating conditions for each iModulon were listed in 

 supplementary tables, which may serve as a starting place for hypothesis generation. 

 3.3.7 Design and Implementation 

 iModulonDB is implemented and deployed using a simple web application stack and 

 combination of user interface technologies. The server side is entirely hosted by GitHub Pages 

 (  pages.github.com  ) with HTTPS enforced. It relies  on local computations performed in Python 3.7 with 

 Jupyter notebooks (  jupyter.org  ). The client side is  implemented using a combination of HTML, CSS, and 

 JavaScript. Bootstrap 4.5 (  getbootstrap.com  ) is used  to manage page layout and ensure mobile 

 compatibility. Interactive tables were made using Tabulator (  tabulator.info  ), and plots are implemented  in 

 HighCharts using a non-commercial license (  highcharts.com  ).  Other JavaScript packages used include: 

 jQuery (  jquery.com  ), Popper.js (  popper.js.org  ), URLSearchParams  (  developer.mozilla.org  ), and 

 PapaParse (  papaparse.com  ). 

 3.4 Discussion 

 iModulonDB is a data-driven bacterial TRN knowledgebase that meets the need for 

 unsupervised, observation-based gene groupings and inferred genetic regulator activities. Its interactive 

 graphical user interface with search and download functionality facilitates usage by scientists with 

 computational and non-computational backgrounds alike. The platform provides a novel perspective on 

 bacterial genomes based on big data observations, and also connects to (and largely agrees with) 

 databases that report established gene groupings based on past literature. It originally included data for 

 three organisms based on three publications and contains 204 iModulons, and was later expanded to 

 accommodate new datasets and organisms (See  Section  3.6  ). This work demonstrates the potential for 

 iModulonDB to improve our understanding of bacterial TRNs for a wide variety of organisms. 
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 3.5 Data Availability 

 iModulonDB is freely available online at  https://iModulonDB.org  and can be accessed with a 

 JavaScript-enabled browser. The download links in the toolbars enable download of all data and 

 facilitate custom analysis. 

 3.6 Continued Growth of iModulonDB 

 iModulonDB expanded rapidly after its original publication, as shown in  Figure 3.5  . To 

 facilitate rapid growth, a pipeline was set up  [128]  to scrape all available RNAseq data from the SRA 

 database  [18], [113]  . Thus, data from past research  could be reused and reanalyzed through the iModulon 

 framework, which revealed important insights at this new scale. In some cases, additional samples were 

 generated in-house in order to supplement the available datasets and probe specific questions. 

 As of the completion of this dissertation, iModulonDB contains 11 organisms, which span the 

 phylogenetic tree of life (  Figure 3.4A  )  [129]  . In  addition to the original three organisms, iModulonDB 

 covers  Acinetobacter baumannii  [130]  ,  Mycobacterium  tuberculosis  [131]  ,  Pseudomonas aeruginosa 

 [132], [133]  ,  Pseudomonas putida  [134]  ,  Salmonella  enterica  [135]  ,  Sulfolobus acidocaldarius  [136]  , 

 Streptococcus pyogenes  [137]  , and  Vibrio natriegens  [138]  . These diverse organisms include several 

 major human pathogens (  A. baumannii, M. tuberculosis,  P. aeruginosa, S. aureus, S. enterica,  and  S. 

 pyogenes  ), important bioindustrial species (  P. putida,  E. coli,  and  B. subtilis  ), and even an archeal 

 extremophile (  S. acidocaldarius  ). 
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 Figure 3.5  : iModulonDB rapidly expanded in its first  two years after publication.  (A)  Phylogenetic tree 
 representing each of the species currently in iModulonDB, which span the bacterial web of life and 
 includes an archaeal species as well. Adapted from  [139]  using data from  [129]  .  (B-E)  Growth of  (B) 
 datasets (16), organisms (11),  (C)  total iModulon  pages (1717),  (D)  total samples analyzed (5456), and 
 (E)  unique monthly users (367). The best fit line  in (E) shows an increase of approximately 7 users per 
 month, representing steady growth and adoption. 
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 The papers associated with these datasets include a wealth of fascinating insights. Here, we 

 highlight a few examples. iModulons provide nuance to the boundaries of biosynthetic gene clusters 

 (BGCs) by revealing coregulated genes, addressing an important shortcoming of existing BGC 

 algorithms with applications for new molecule discovery  [132]  . Stationary phase transcriptional 

 allocation was revealed in  P. putida  , and comparisons  between stationary phase expression and 

 expression under various carbon sources informs growth preferences with potential industrial impact 

 [134]  . iModulon structures for different  Salmonella  strains exhibited different gene sets for 

 virulence-associated regulators, providing insights into the genetic and transcriptional basis for virulence 

 [135]  . Finally, iModulons revealed the expression  changes underlying competency and facilitated 

 discovery of new competency-related genes, an important process to enhance genetic engineering  [138]  . 

 With all of these structures readily available on iModulonDB, any researcher can easily discover new 

 details previously hidden within these complex datasets and perform follow-up investigations. 

 In addition to the new organisms, iModulonDB also added a significantly expanded  E. coli 

 dataset, PRECISE-1K, and an even larger ‘K-12’ dataset that includes all available high quality RNAseq 

 data for  E. coli  K-12  [140]  .  Chapters 4  and  5  describe  detailed analyses of subsets of samples from 

 PRECISE-1K. The updated iModulons maintain most of the iModulons from PRECISE-278, but 

 increase the total number from 93 to 201. The similarity in structure highlights the robustness of ICA, 

 while the new and refined signals demonstrate that it does improve with additional data. 

 The growth in various metrics of database size and adoption are shown in  Figure 3.5B-E  . 

 iModulonDB usage has grown steadily since its inception, and was accessed by 367 unique users in 

 March of 2023 (  Figure 3.5E  ). The sustained and increasing  usage of iModulonDB suggests that it has 

 become a valuable resource to the research community. iModulonDB will continue to be expanded, with 

 several new organisms being analyzed as of this writing. 
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 Chapter 4. Laboratory Evolution, Transcriptomics, and 

 Modeling Reveal Mechanisms of Paraquat Tolerance 

 Relationships between the genome, transcriptome, and metabolome underlie all evolved 

 phenotypes. However, it has proved difficult to elucidate these relationships because of the high number 

 of variables measured. A recently developed data analytic method for characterizing the transcriptome 

 can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we 

 demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic 

 rewiring. We use adaptive laboratory evolution to generate  E. coli  strains that tolerate high levels  of the 

 redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine 

 resequencing, iModulons, and metabolic models to elucidate six interacting stress tolerance mechanisms: 

 1) modification of transport, 2) activation of ROS stress responses, 3) use of ROS-sensitive iron 

 regulation, 4) motility, 5) broad transcriptional reallocation toward growth, and 6) metabolic rewiring to 

 decrease NADH production. This work thus reveals the genome-scale systems biology of ROS tolerance. 
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 Figure 4.1  : Graphical abstract of  Chapter 4  . Adaptive  laboratory evolution (ALE) is applied to generate 
 paraquat-tolerized strains, and then a multilevel genome-scale systems analysis is applied, which 
 includes iModulon analysis, analysis of mutations, metabolic modeling, and phenotypic characterization 
 experiments. The result of the analysis of these strains is a set of novel stress tolerance mechanisms 
 which protect the evolved strains from paraquat and oxidative stress. 

 4.1 Background 

 Omics technologies have enabled global understanding of cellular states at each level of the 

 central dogma of biology. In particular, the falling cost of nucleotide sequencing has led to a dramatic 

 increase in available genomic and transcriptomic datasets, allowing researchers to probe nucleotide 

 changes in DNA and condition-dependent expression changes in RNA at unprecedented scale  [141]  . 

 With genome-scale metabolic models, we can also gain a global perspective on metabolic fluxes, and 

 how they change based on genetic or expression perturbations  [5], [126], [142]  . Each tool on its own has 

 been successful in gaining novel biological insights, but an even deeper understanding can be achieved if 

 they are made interoperable. Many approaches to integrate multiple omics data types are being 

 developed  [143]  , but the high number of variables  and employment of complex “black-box” 
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 computational tools presents a problem for elucidating a clear, genome-scale understanding of biological 

 systems across multiple levels of genomic, transcriptional, metabolic, and phenotypic changes. 

 Adaptive laboratory evolution (ALE) is an experimental procedure in which a microbial starting 

 strain is grown in a selected condition for many generations, propagating when flasks reach a targeted 

 density during repeated batch growth. This allows selection to enrich for mutant strains with improved 

 fitness under the chosen condition  [144]  . A tolerization  ALE uses this procedure with increasing stressor 

 concentrations, pushing cells to amplify stress tolerance mechanisms  [145]  , thereby generating unique 

 strains which are stress tolerance specialists. ALE strains are an excellent starting point for developing 

 multi-omic approaches because they have a well-defined phenotype which arises from an average of 

 only ~22 mutations (according to a database of such mutations, ALEdb  [146]  ). ALE mutations are 

 highly informative for improving gene annotations, identifying fundamental biological principles and 

 tradeoffs, designing bioproduction strains, and understanding antimicrobial resistance  [144], [147]  . 

 However, it is difficult to interpret effects of mutations on regulators and enzymes without adding 

 characterization from the transcriptome and metabolome. 

 The transcriptional regulatory network (TRN) employs transcription factors (TFs) which sense 

 features of the cellular state and regulate the expression of genes in response. As transcriptomic data has 

 been generated in rapidly growing numbers and deposited into online databases, it has become 

 increasingly important to develop scalable methods which enable their interpretation. However, the 

 typical method for transcriptional analysis, differentially expressed gene (DEG) analysis, is cumbersome 

 for complex transcriptomic adjustments due to the high number of DEGs, and it does not easily capture 

 the large-scale structure of the TRN. We seek to integrate signals from the TRN with mutations in the 

 genome via biologically meaningful relationships, which is difficult if we do not first effectively 

 decrease the number of transcriptomic variables. 

 A recently developed approach addresses this challenge by using independent component 

 analysis (ICA) of large compendia of transcriptomic data to group genes into independently modulated 

 sets (iModulons). The expression level of each group (iModulon activity) is computed in each sample, 
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 allowing systematic, large-scale analysis of the transcriptomic effect of adaptation to a new growth 

 condition. Each iModulon is manually curated with predicted regulators and functions, bridging between 

 the quantitative TRN and existing literature. iModulon activity levels can be used to infer the activity of 

 their underlying regulators, and thus enable quantitative interrogation of the cell’s sensory systems. This 

 approach has provided valuable insights into the TRNs of  Escherichia coli  [19], [140]  and several other 

 organisms  [116], [131]–[136], [148]  .  iModulon analysis  is supported by a developed codebase and 

 online knowledgebase (  iModulonDB.org  )  [21], [128]  ,  which are publicly available. iModulons have 

 already shown promise for analyzing transcriptional reallocation in tandem with mutations, which 

 revealed important examples of the interplay between the genome and the transcriptome  [39], [40], 

 [149]–[151]  , but more work needs to be done to explain  larger fractions of transcriptomic variance by 

 systematically characterizing iModulon changes. 

 Downstream of the genome and gene expression, the state of the metabolic network is 

 fundamental in determining cellular phenotypes. We have developed genome-scale metabolic and 

 expression (ME) models, which compute optimal steady-state fluxes for all known reactions in a cell 

 given mathematical constraints and an objective function  [5], [152]  . These models can be constrained 

 with growth rates, uptake and secretion rates from metabolomic data, and transcriptomic data  [149], 

 [150]  . Recent work has also incorporated the effects  of biochemical stresses  [126], [153], [154]  , enabling 

 understanding of the cellular response to stress. Since ME models integrate phenotypic, metabolic, and 

 transcriptional or proteomic data, they can be useful for supporting or refuting separate predictions made 

 by analyzing genomic alterations. 

 The goal of the present Chapter was to gain a genome-scale, multilevel, “white-box” 

 understanding of a particular phenotype by leveraging ALE, genome sequencing, iModulons and ME 

 modeling. Thus, we needed to select a well-defined phenotype of interest. We did so by employing ALE 

 to generate  E. coli  strains which are specialized  to tolerate a common herbicide, the redox-cycling 

 compound paraquat (PQ). PQ is a redox-cycling compound, meaning that it can generate large amounts 

 of reactive oxygen species (ROS) by stripping electrons  from cellular electron carriers, such as NADH 
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 and NADPH, and reducing oxygen; this generates destructive superoxide ROS and regenerates the 

 oxidizing agent to re-initiate the cycle  [155]–[157]  .  The ROS are particularly damaging to 

 iron-containing enzymes and DNA. They decrease activity of important pathways, challenge the 

 integrity of the genome, and inhibit growth  [126],  [157]–[161]  . 

 Though the ROS response of  E. coli  is well understood  and ROS are often delivered in the 

 laboratory by PQ  [159]  , some questions remain about  how high levels of tolerance can be achieved: (i) 

 In addition to the known proteins, which transporters and enzymes are involved in PQ cycling? (ii) What 

 transcriptional alterations, specifically with respect to stress responses, metal homeostasis, and redox 

 balance, are optimal? (iii) How can cells balance a tradeoff between generating NAD(P)H for energy and 

 decreasing its production to prevent stress generation? Through our unique combination of systems 

 biology techniques, we are able to shed new light on these questions. Their answers are informative for 

 the fundamental biology of stress and metabolism, and for applications in pathology, antimicrobial 

 design, and biomanufacturing. 

 This work provides a blueprint for combining ALE, mutational analysis, transcriptomics, 

 computational biology, and phenotypic characterizations for stress-tolerant ALE strains, which 

 emphasizes the rich insights provided by iModulon analysis. We begin by characterizing the strains and 

 presenting an overview of the genomic and transcriptional changes. We then show that the effects of 

 large DNA changes and TF mutations are easily quantified in the transcriptome. We also find an 

 unexpected non-TF mutation that regulates motility regulons in our strains. Next, we disentangle the 

 large fraction of the transcriptome which responds to changes in stress and growth phenotypes. Finally, 

 we propose and model a metabolic mechanism for PQ tolerance which involves several interesting 

 mutations and broad transcriptional reallocation. We show that the evolved strains employ a 

 multi-pronged strategy of: (i) modifying membrane transport, (ii) using the SoxS and OxyR regulons to 

 ensure stress readiness, (iii) allowing ROS-sensitive iron-sulfur (Fe-S) clusters to play a larger role in 

 regulation of metal homeostasis, (iv) increasing motility, (v) shifting transcriptional allocation toward 

 growth, and (vi) using fermentation to avert the PQ cycle. Taken together, these results elucidate a 
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 detailed, coherent, multilevel understanding of an important cellular phenotype by combining several 

 cutting edge technologies in big data analytics and computational biology. 

 4.2 Results 

 4.2.1 Laboratory Evolution Increased Tolerated PQ Levels by 1000% 

 We evolved strains aerobically in minimal media with glucose under increasing PQ stress 

 (  Figure 4.2A  ). Our starting strain (0_0) was a derivative  of  E. coli  K-12 MG1655 which had been 

 pre-evolved to grow in minimal media with glucose  [162]  . By using this media-adapted starting strain, 

 the subsequent ALEs were enriched for mutations which improve stress tolerance, since the mutations 

 that promote rapid growth under the culture conditions were already fixed. ALE was performed by 

 steadily increasing PQ concentrations, first in three parallel first generation ALEs (1_0, 2_0, 3_0) and 

 followed by eleven second generation ALEs (1_1, 1_2, …, 2_1, etc.) (  Figure 4.2A-B  ). Parallelizing 

 ALE replicates generated diverse strains and allowed for identification of common mutation targets 

 which are more likely to be causal. 

 After evolution, growth rates for each endpoint under different PQ concentrations were 

 measured (  Figure 4.2C  ). The starting strain’s growth  was severely impaired by low PQ concentrations, 

 with no growth at 250 μM PQ. The evolved strains showed a dramatic increase in the concentration of 

 PQ they can tolerate while still growing; some endpoint strains tolerated 2500 μM. There was a fitness 

 cost to the PQ tolerance, however: the strains no longer grew as well in the absence of PQ as the starting 

 strain. This observation is consistent with the tradeoffs of the PQ tolerization mechanisms. 
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 Figure 4.2  : ALE increases PQ tolerance via changes  to the genome and transcriptome.  (A)  Tolerization 
 ALE process, showing mutant strains (cells with various appearances) in media with increasing stress 
 concentrations (red). Example replicates are shown: 1_0 in the first generation and 1_1 in the second 
 generation.  (B)  Points represent ALE flasks colored  by their PQ concentration. The first generation of 
 ALEs (strains 1_0, 2_0, and 3_0) are shown with each flask’s growth rate. “Cumulative cell divisions” 
 are estimated from the growth rate and time elapsed. Stars represent flasks that underwent DNA 
 sequencing, and newly mutated genes are shown. Black colored genes are discussed in detail.  (C) 
 Growth rate for each strain at each PQ concentration. The starting strain cannot grow at 250 µM PQ, 
 whereas some evolved strains reach up to 2500 µM PQ. Evolved strains grow slower than the starting 
 strain in the absence of PQ.  (D)  Treemap of mutations  in all strains, grouped by gene with intergenic 
 mutations assigned to nearest genes. UC: Uncharacterized.  (E)  Fraction of SNP types in this study 
 compared with all public ALE studies on ALEdb (aledb.org; mean ± 95% confidence interval). Each 
 label corresponds to four of the twelve possible substitutions; for instance, “GC→AT” includes “G→A”, 
 “G→T”, “C→A” and “C→T” substitutions. This study is enriched for mutations which decrease the GC 
 content of the genome.  (F-G)  Comparison between the  mean transcriptomes of the parent strain at 250 
 µM PQ vs. all evolved strains at 250 and 750 µM PQ.  (F)  DEG analysis, showing an intractably large 
 number of DEGs.  (G)  Differential iModulon activity  (DiMA) analysis, which compresses the differential 
 transcriptomic changes into 42 DiMAs. DiMAs are colored by their category from panel (H). For more 
 information about each iModulon, explore the PRECISE-1K  E. coli  dataset at iModulonDB.org.  (H) 
 Treemap of the explained variance of each iModulon in the transcriptome of the evolved strains. The 
 map is first broken into three parts: the colorful region, composed of iModulons that are differentially 
 activated after the evolution and categorized, the light gray region composed of iModulons that do not 
 show a significant trend with evolution, and the dark gray region, representing the error in the iModulon 
 decomposition. 
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 4.2.2 Adaptive Mutations Reflect Effects of PQ 

 Throughout the PQ ALE, a total of 222 mutations were observed, representing 111 unique 

 sequence changes. Each mutation was assigned to its closest gene in the case of intergenic mutations, 

 and 72 total genes were affected. Mutations were then categorized by their likely effects (  Figure 4.2D  ). 

 The largest category of mutated genes was central and energy metabolism-related (35%), which reflect 

 the metabolic effects of PQ on redox balance. Transporters were also frequently mutated (16%), likely to 

 prevent influx or promote efflux of PQ or other ROS. Iron and iron-sulfur (Fe-S) clusters are sensitive to 

 oxidative stress  [159]  , so we observed changes to  iron regulators and Fe-S cluster synthesis genes (16%). 

 Three large deletions, Del-1, Del-2, and E14 removal, were also notable (5%). Other mutations which 

 were less convergent across endpoint strains (26%) were observed in ribosomal subunits, tRNAs, and  lon 

 protease, as well as across other parts of the metabolic network. 

 We performed DNA sequencing on several midpoint strains during the ALEs (  Figure 4.2B  ), 

 which provided insight into the most effective growth strategies since mutations tend to fix in the order 

 of fitness benefit  [163]  . We note that  emrE  and  aceE  are among the first genes to be affected in all three 

 of our first generation strains. 

 An interesting pattern arose in the observed single nucleotide polymorphisms (SNPs): compared 

 to other ALE projects available on ALEdb  [146]  , they  are highly enriched for changes from guanine or 

 cytosine to adenine or thymine (Figure 4.2E  ;  Fisher’s  exact test p = 9.38*10  -5  ). This enrichment was 

 consistent with direct damage to DNA by ROS, since guanine is the most easily oxidized nucleotide 

 [158], [164], [165]  .  Thus, these mutations might not  only improve cellular fitness through genomic and 

 transcriptomic changes, but also by physically tolerizing cellular DNA to oxidation  . 

 4.2.3 iModulons Enable Analysis of Complex Transcriptomic Changes 

 To identify transcriptomic adaptations, we performed RNAseq on the starting strain at 0 and 250 

 μM PQ, and on each evolved strain at 0, 250, and 750 μM PQ. In a comparison between the stressed 
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 samples for the pool of all evolved strains vs. the starting strain, we found 1,774 differentially expressed 

 genes (DEGs) (  Figure 4.2F  ), making detailed analysis  using traditional transcriptomic methods 

 challenging. Therefore, we applied iModulon analysis to enable interpretation. 

 The data was included in a large compendium of  E.  coli  RNAseq data generated from a single 

 wet lab protocol (PRECISE-1K  [140]  ). By leveraging  over 1,000 samples across diverse conditions, this 

 dataset facilitated machine learning of global transcriptomic patterns. Following our pipeline  [128]  , we 

 performed ICA on the full dataset. The result was a set of 201 iModulons, independently modulated gene 

 sets which have similar expression patterns, along with their activities in each sample. Together, the 

 iModulons constitute a quantitative regulatory structure which maps well to the known TRN, and can be 

 used to reduce the dimensionality of the dataset. The set of PRECISE-1K iModulons was characterized 

 in a separate study  [140]  , and the iModulon structure,  including interactive plots, search, and download 

 functionality, is available at iModulonDB.org under  E. coli  PRECISE-1K  [21]  . 

 iModulons enabled a global characterization of changes in the transcriptome. The evolved 

 strains’ gene expression under PQ stress against the starting strain had only 42 statistically significant 

 differential iModulon activities (DiMAs) (  Figure 4.2G  ).  These 42 iModulons made the analysis of the 

 large-scale changes in the transcriptome tractable, and their observed activity changes could be related to 

 the mutations fixed under ALE. We categorized the DiMAs and assigned mechanistic hypotheses which 

 explain their changes. Explained variance for all categories of significant and insignificant iModulons 

 are shown in  Figure 4.2H  . 

 4.2.4 A Multilevel Approach on Explaining iModulon Activities Revealed the 

 Effects of Mutations and Phenotypes of Evolved Strains 

 Modifications to the genome can affect the transcriptome in several ways: large deletions and 

 amplifications can directly alter the expression of genes involved, mutations in TFs can change the 

 expression of their associated regulons, and the transcriptome can adjust due to changes in metabolites or 
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 other sensed processes that result from mutations. The latter type of alteration can be complicated by the 

 fact that gene expression also regulates metabolite concentrations and sensed processes. In  Figure 4.3A  , 

 we summarize how each of these types of relationships were observed in the evolved strains. iModulons 

 play a central role in each highlighted mechanism, as evidenced by the full second column in  Figure 

 4.3A  . Their utility is a key outcome of this work.  The combined analysis of genomic and transcriptional 

 changes led us to six key cellular mechanisms of PQ tolerance (  Figure 4.3B  ). Together, these 

 mechanisms constitute a summary of the systems biology of PQ-generated ROS stress tolerance. 
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 Figure 4.3  : Multilevel approach reveals mechanisms  of PQ tolerance.  (A)  Knowledge graph 
 summarizing multilevel relationships between mutations, iModulons, metabolism, and phenotypes. Pie 
 charts appearing in the two left columns indicate prevalence of given changes to the genome and 
 transcriptome (legend in panel B), where wedges indicate strains. The protruding wedges correspond to 
 the first generation of ALEs, with the wedges counterclockwise to them being their second generation 
 descendants. For genes, green indicates the strain has mutations affecting it or its promoter. For 
 iModulons, colors indicate the difference between the iModulon activity in the strain at 750 μM PQ and 
 the starting strain at 250 μM PQ, normalized to the standard deviation of the iModulon activity across all 
 of PRECISE-1K. Dashed lines represent relationships for which there is little existing literature.  (B) 
 Phenotypic changes target specific processes involved in PQ and ROS stress. Lowercase letters indicate 
 elements from the rightmost column of (A). Entities which glow are reduced, and red indicates 
 stress-related molecules. 
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 4.2.5 Large Amplifications and Deletions in the Genome Affect Membrane 

 Transport 

 Figure 4.4  : Consequences of deletions and amplifications  affecting membrane transport are found in 
 both genomes and transcriptomes.  (A)  Genome coverage  in strain 1_0, which is representative of strains 
 containing the  emrE  amplification, in the region of  the amplification. Genes in the iModulon are labeled. 
 (B)  Genome coverage of strain 3_0 in the region of  Del-1. Del-1 iModulon genes are shown in black, 
 with flanking non-deleted, non-iModulon genes in gray, and transporters in bold.  (C-E)  iModulon 
 activities for selected genomic iModulons. Bars indicate mean ± 95% confidence interval. Individual 
 samples are color-coded by PQ concentration. Upstream + and Δ indicate insertions and deletions, 
 respectively.  (F)  Color-coded table showing all observed  mutations related to transporter genes. Purple x: 
 amplification; green: upstream insertion (+) or deletion (Δ); blue: indicated SNP; orange: frameshift 
 mutation within gene; red delta: complete gene deletion. The red area on the right indicates transporters 
 deleted in the major 3_0 deletion. 

 ‘Genomic iModulons’ are transcriptomic modules which capture the effect of large changes to 

 the genome, so they are of primary interest for obtaining genome-to-transcriptome relationships. In the 

 PQ tolerant strains, the major genomic iModulons happen to all be associated with alterations in 

 membrane transport. 
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 The first mutation in each of the first-generation strains affected  emrE  , a multidrug efflux pump 

 which pumps out PQ  [166]  . In 1_0, 2_0, and their subsequent  evolutions, genome coverage was 

 increased approximately 42-fold in the region containing  emrE  (  Figure 4.4A  ). This amplification was 

 likely mediated by the flanking DLP12 prophage insertion sequence (IS) genes, specifically the IS3 

 transposase elements  insEF3  [167]  . ICA of the transcriptome  recovered the amplified genes as an 

 independent signal in the dataset, which we named the  emrE  Amp iModulon (called ROS TALE Amp-1 

 in PRECISE-1K  [140]  on  iModulonDB.org  [21]  ). This  iModulon showed elevated activity levels in all 

 affected strains regardless of PQ concentration (  Figure  4.4C  ). Thus, this case illustrates three levels in 

 our multilevel approach (  Figure 4.3A  ): it relates  a likely mutational mechanism (transposase-mediated 

 amplification) to a corresponding transcriptomic signal (  emrE  Amp iModulon) and beneficial phenotype 

 (PQ efflux). 

 In the 3_0 strain and its subsequent evolutions, we do not observe the  emrE  amplification. 

 However, the mutation caller predicted a 9-base pair (bp) insertion 39 bp upstream of  emrE  in these 

 strains, consistent with IS1 insertions that can affect transcription or translation  [168]  . We do not observe 

 an iModulon signal in the transcriptome of these strains (  Figure 4.4C  ). However, we do have evidence 

 that increased expression of  emrE  provides an evolutionary  benefit. Therefore, we hypothesize that this 

 mutation would increase translation of EmrE. 

 The 3_0 strain and its descendants have a large deletion containing 26 genes (  Figure 4.4B  ). The 

 deletion may have been mediated by the  insH11  transposase  at its 3’ end. Similarly to the  emrE  Amp 

 iModulon discussed in the text, the Del-1 iModulon captured the effect of this change in the genome on 

 the composition of the transcriptome. It showed a strong decrease in activity in the strains harboring the 

 deletion (  Figure 4.4D  ). The deleted segment contained  a variety of genes, making it difficult to deduce 

 its benefit to ROS tolerization. However, we note that it contained four transporter genes:  yhhJ, pitA  , 

 dtpB,  and  arsB  . Removal of one or several of these  transporters may have decreased PQ influx or helped 

 to prevent influx of other oxidized molecules that resulted from oxidative damage. 
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 In addition to the transporters in the Del-1 iModulon, other deleted genes may have been 

 important for the PQ tolerance of the 3_0 strain and its subsequent evolutions (  Figure 4.4B  ). These 

 include universal stress response regulators  uspBA  ,  reductases  gor, arsC,  and  yhiN  , or ribosome-related 

 genes  rbbA, rsmJ,  and  rlmJ  .  yhhJ  and  yhiN  are uncharacterized  genes with putative assignments, and 

 these results support their potential role in PQ stress. 

 The  oppABCDF  operon was a common target of mutations.  Nine of the eleven 

 second-generation strains acquired the same 1,199 bp deletion of the  insH21  IS5 element upstream of  it, 

 and one strain, 1_1, deleted the entire operon and its surrounding genes. The deletion was captured by an 

 iModulon (Del-2). The activity of this iModulon shows a downregulation in the deleted strain, and little 

 change between the evolved strains with and without the upstream deletion (  Figure 4.4E  ). Since 

 oppABCDF  is known to be a promiscuous tripeptide transporter  that prefers positively charged substrates 

 [169]  , it should be considered as a possible route  of entry for PQ. The prevalence of the upstream 

 deletion suggests that such a deletion provides improved tolerance, and there is an apparent benefit to a 

 complete deletion of the entire operon. This leads us to predict that the upstream deletion negatively 

 impacts  oppABCDF  translation, as has been suggested  in past studies  [170], [171]  . 

 In addition to the genome-transcriptome-phenotype associations we analyze in depth, mutations 

 on their own can predict putative new functions for their target genes. Therefore, we include all 

 transporters mutated in this study in  Figure 4.4F  so that further research can explore their affinities for 

 PQ and other oxidized compounds, as well as the effects of the observed SNPs. 

 4.2.6 Mutations in TFs Alter the Regulation of Stress Responses and Iron 

 Homeostasis 

 ‘Regulatory iModulons’ are iModulons which are statistically enriched with genes from a 

 specific regulon, and their activity level quantifies the activity of the underlying TF. Thus, iModulon 

 analysis reveals the effects of TF mutations in a convenient way. 
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 Figure 4.5  : Mutations regulate stress response, iron  metabolism, and motility iModulons in novel ways. 
 Bars indicate mean ± 95% confidence interval.  (A)  OxyR iModulon activity is correlated with PQ in 
 starting and evolved strains (Pearson R = 0.47, p = 6.2*10  -5  ), except for the three strains which mutated 
 oxyR. PQ colors in the legend also apply to panels (B, D, E-F, H).  (B-D)  Scatter plot of Fur-1 and Fur-2 
 iModulon activities with bar plots sharing axes. Light gray dots indicate other samples from 
 PRECISE-1K. In  (C)  , samples are colored by relevant  mutations, and shapes indicate PQ concentrations 
 according to the legends. A black arrow connects the starting strain samples between 0 and 250 μM PQ. 
 In bar plots, point colors indicate PQ concentrations and label colors match with the scatter plots. The 
 red trend line is a logarithmic curve fit to all samples in PRECISE-1K. Samples with the P18T mutation 
 are above the trend line, indicating a preference for Fur-2.  (E)  Distances from each sample in this  study 
 to the trend line in (B), more clearly showing the preference for Fur-2 induced by P18T.  (F)  feoA 
 expression, which is representative of the  feoABC  operon. Genes are upregulated by the  fur  P18T 
 mutation.  (G)  Knowledge graph linking fur mutation  to negative feedback which averts stress.  (H)  FliA 
 iModulon activities by  pitA  mutation, showing an upregulation  in the case of the frameshift  pitA*  , but 
 not in the case of  pitA  deletion.  (I)  Growth curves  for strains with and without the  pitA*  mutation as  the 
 only difference. The mutation contributes to higher final ODs under no stress, and shorter lag and faster 
 growth under stress.  (J)  DiMA for strains 0_0 and  1_0 with and without the  pitA  frameshift mutation 
 under PQ stress. Points indicate the mean of all relevant samples (individual conditions in duplicate; n=6 
 per axis). The strains with the mutation significantly activate FliA, one of the motility iModulons. The 
 point near FliA is FlhDC-2, the other major motility iModulon.  (K)  Representative images of swarming 
 in the 0_0 strain with (bottom) and without (top) the  pitA*  frameshift. Additional plots:  Figure B.1  ; 
 Images for all swarming experiments:  Figure B.2  . 
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 4.2.6.1 Fixed OxyR Activity is Achieved by Three Mutations 

 The OxyR iModulon contains oxidative stress response genes, and its regulator, OxyR, responds 

 to oxidative stress  [172]  . Thus, we expected its activity  level to correlate with PQ level. We found that 

 for most strains, this is the case (p = 6.2*10  -5  ).  However, we observed three separate  oxyR  mutations 

 which all fix OxyR iModulon activity levels at a level just below that of the stressed starting strain 

 (  Figure 4.5A  ), regardless of PQ concentration. We  speculate that this level may be ideal because it 

 enables quick detoxification of ROS, while higher levels would be proteomically expensive and/or 

 induce growth-limiting levels of  oxyS  (which is regulated  by OxyR and leads to growth arrest  [173]  ). 

 Previous iModulon work in other ALEs found that fixing OxyR in the active conformation provided a 

 fitness benefit  [40]  . Without the OxyR iModulon to  quantify OxyR activity, it would have been much 

 more difficult to define the effect of these mutations. 

 4.2.6.2 Iron Uptake Adaptation Involves Fur Mutations and ROS-sensitive Iron-Sulfur Clusters 

 Fur, the ferric uptake regulator, regulates two main iModulons whose activities have a non-linear 

 activity relationship which has been described in detail previously  [43]  (  Figure 4.5B-D  ). Fur-1 mostly 

 contains genes for siderophore synthesis and transport (  Figure B.1A  ) which are derepressed under more 

 extreme iron starvation conditions. Fur-2 contains ferrous iron transport genes, as well as siderophore 

 transport and hydrolysis systems, which are derepressed more easily under relatively higher iron 

 concentrations. The activities of the two iModulons form a logarithmic curve (  Figure 4.5C  ), which 

 captures the nonlinear effect of Fur on the composition of the transcriptome. 

 ROS demetallates iron enzymes and oxidizes iron(II) to iron(III)  [126], [174]  . Thus, PQ would 

 induce higher intracellular iron concentrations that could be sensed by Fur and cause repression of both 

 iModulons (black arrow,  Figure 4.5C  )  [175]  . This hypothesis  is consistent with the starting strain’s 

 behavior. After evolution, a decrease in oxidative stress leads to a general upregulation of the Fur-1 and 

 Fur-2 iModulons (p = 0.031 and 0.034, respectively). 
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 The evolved strains exhibit a great degree of variation along the Fur curve (  Figure 4.5C  ). Since 

 many different factors could perturb iron concentrations for each culture (e.g. local ROS concentrations, 

 trace element mixture variability, enzyme metallation levels, etc.), and Fur is highly sensitive to those 

 concentrations, we believe that this variation is to be expected. 

 The mutation  fur  P18T was observed in three separate  strains (1_2, 1_4, and 3_4). Strains with 

 this mutation tend to be above the trend line in the Fur scatterplot (  Figure 4.5E  ), suggesting a higher 

 preference for expressing Fur-2 relative to Fur-1. The strains with this mutation specifically upregulated 

 the  feoABC  genes, which are members of Fur-2 (  Figure  4.5F, B.1A  ).This transporter system may be 

 highly beneficial under ROS conditions because it directly couples demetallation of an Fe-S cluster to 

 iron transport, allowing for rapid decreases in iron acquisition when ROS levels are high  [176]  . 

 Two other mutations were also observed in  fur  . H71Y  in 1_3 tends to decrease expression of 

 both iModulons, perhaps by strengthening Fur binding. This would potentially have the benefit of 

 preventing iron toxicity. However, this strategy was not utilized by any other strains and it may have also 

 hampered iron homeostasis in situations where local iron concentrations are low. The other mutation, 

 A53G in 3_2, did not have a detectable effect on the transcriptome. 

 4.2.6.3 IscR Mutations Modify the Balance of Iron-Sulfur Synthesis Regulons 

 IscR regulates two separate iron-sulfur (Fe-S) cluster synthesis systems which have iModulons, 

 Isc and Suf  [177]  . Isc is associated with housekeeping  Fe-S synthesis, whereas Suf is robust to iron 

 starvation and ROS stress  [178]–[181]  . Across our  strains, we observed 5 mutations in  iscR  , and each 

 associated with a particular region in a scatter plot of Suf and Isc iModulon activities (  Figure B.1B-D  ). 

 Interestingly, most mutations do not strongly upregulate the ROS-tolerant Suf system (  Figure B.1D  ), 

 and they either increase or decrease the expression of the Isc system (  Figure B.1B  ). 

 The particular regions in  Figure B.1C  that were selected  by the strains are somewhat 

 unexpected.  iscR  C104S has been previously reported  [126], [182]  . The mutation is in IscR’s own Fe-S 

 binding site, which causes it to maintain an unbound state that should de-repress Isc and activate Suf 
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 [181], [182]  . We observe a strong upregulation of Isc in these strains, with more modest increases in Suf 

 iModulon activity. The other most common mutation,  iscR  V55L, seems to downregulate Isc while also 

 keeping Suf near basal levels. Given that ROS stress induces Fe-S cluster damage and Suf is 

 significantly better at handling ROS stress  [180]  ,  we would initially expect mutations which upregulate 

 Suf to be more effective under the ALE conditions and therefore be enriched in these strains. We only 

 see one mutation,  iscR  V87A, which seems to achieve  that. 

 One possible explanation for this unexpected outcome is that the proteomic cost of the systems, 

 particularly Suf, selects against strains which allocate too many resources towards Fe-S synthesis; this 

 explanation has been modeled in a ME flux balance analysis  [126]  . However, another possibility relates 

 to the control of electron flux described in  Sections  4.2.9–4.2.11  : many redox enzymes, including some 

 in respiration and the TCA cycle, contain Fe-S clusters  [183]  . Damage to these enzymes by high ROS 

 slows oxidative metabolism. This would charge fewer electron carriers and therefore slow the PQ cycle, 

 allowing the cell to recover. It would therefore be better to express less Suf so that Fe-S synthesis would 

 remain sensitive to ROS — using Isc or less of both systems would strengthen the coupling between 

 ROS and respiration as a means of controlling the PQ cycle (  Figure B.1E  ). Thus, like the  fur  P18T 

 mutation (  Section 4.2.6.2  ), this mutation enables  a negative feedback loop, which aids in slowing 

 oxidative metabolism and PQ cycling when stress is high (  Figure B.1E  ). 

 While discussing Fe-S clusters, it is also worth noting that every strain mutated the putative Fe-S 

 cluster repair gene  ygfZ  . This provides evidence for  its putative role in Fe-S cluster homeostasis and 

 motivates further study. 

 4.2.6.4 SoxS Activity Does Not Change With Adaptation, Suggesting a Key Role in Stress 

 Readiness 

 Interestingly, there was a lack of mutations affecting  soxS  , the regulator of processes that remove 

 the ROS superoxide  [184]  . SoxS iModulon activity is  highly correlated with PQ in the starting and all 

 evolved strains (  Figure B.1F  ; Pearson R = 0.72, p  = 5.5*10  -15  ). The lack of mutations suggests that  ROS 
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 readiness is preserved by using wild-type  soxS  . Despite the downregulation of general stress responses 

 (  Section 4.2.8  ), this specific stress response is  preserved. 

 4.2.7 An Unexpected Mutation in  pitA  Regulates Motility 

 A frameshift in the phosphate transporter  pitA  led  to a motile phenotype. This mutation occurred 

 in 1_0 and its derivatives, and these strains also exhibited strong activation of motility-associated 

 iModulons such as FliA (  Figure 4.5H  ). There is no  obvious connection between phosphate transport and 

 motility, and the mutated strains were likely able to use the other phosphate transport system,  pstABCS  , 

 to meet their phosphorus needs  [185]  . Interestingly,  the 3_0 strain deleted  pitA  as part of Del-1 (  Figure 

 4.4B  ), and it did not exhibit the motility phenotype.  Thus, to understand this mutation, we generated two 

 new strains: 0_0::  pitA  * and 1_0::  pitA  , which added  the mutation on its own to the starting strain and 

 removed it in favor of the original  pitA  sequence  in the evolved strain, respectively. We found that the 

 mutation provided a growth advantage under PQ stress (  Figure 4.5I  ). We also transcriptomically 

 profiled the strains under the same conditions used for our other strains, and found that, particularly 

 under PQ stress, the mutation exclusively perturbs the motility iModulons (  Figure 4.5J  ). The change  to 

 the transcriptome was also reflected in the phenotype, as the mutant strains swarmed on agar plates while 

 the wild-type  pitA  strains did not (  Figure 4.5K, B.2  ).  The detailed mechanism of action linking the  pitA 

 mutant to motility remains to be elucidated. 

 An upregulation of anaerobic iModulons such as Fnr-3 in the ALE  pitA  mutants (  Figure B.1G-I  ) 

 suggests a possible benefit for motility, in that it may be correlated with beneficial fermentation 

 phenotypes discussed later (  Section 4.2.9–4.2.11  ).  The gene  aer  , which is upregulated as part of the  FliA 

 iModulon, mediates aerotaxis and would therefore allow cells to swim away from locally high 

 concentrations of ROS  [186], [187]  . In addition to  its role in chemotaxis,  aer  helps to upregulate the 

 Entner-Doudoroff pathway and anaerobic metabolism  [188]  , a tendency which can be observed in the 

 iModulon activities of our strains. Each of the anaerobic iModulons, Fnr-3 in particular, is slightly 

 upregulated by the strains with  pitA*  (  Figure B.1G-I  ).  An increase in anaerobic metabolism would help 
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 to prevent PQ cycling as described in  Section 4.2.9  and  4.2.10  . Thus, a decrease in oxidative metabolism 

 is also achieved by the cells through this very non-conventional mechanism. An added benefit may lie in 

 the expression of  fliZ  , a member of the FliA iModulon,  which is known to antagonize RpoS and would 

 therefore be expected to promote growth  [189]  . 

 This section illustrates the usefulness of our multilevel approach. After connecting mutations to 

 their effects and predicting causes for DiMAs, we were left with an orphan mutation (  pitA  ) and an 

 unexplained DiMA (FliA). We predicted that the mutation caused the DiMA, and then we generated new 

 strains to validate the prediction. The recapitulation of the expected iModulon change and swarming 

 phenotype lends credibility to the iModulon method of elucidating mutational effects. 

 4.2.8 Shifting from Stress to Growth Explains Activity of Several iModulons 

 Regulatory iModulons can be used not only to understand the direct effects of mutations as 

 described above, but also effects of changes to the processes that TFs sense. We have divided these types 

 of changes in the PQ tolerant strains into two categories: those that respond to stress and growth (21% of 

 the variance in the transcriptome;  Figure 4.2H  ), and  metabolic changes (10%). In this section we 

 describe the former. 

 4.2.8.1 The ‘Fear-Greed Tradeoff’ Shifts Towards Greed with Evolution 

 An important global tradeoff in the  E. coli  transcriptome  is between growth and general stress 

 readiness, which is governed by complex regulation  [190], [191]  . We previously identified a ‘fear-greed 

 tradeoff’ between the RpoS and Translation iModulons, in which the activity levels of the two 

 iModulons have a negative correlation; faster growing cells exhibit low RpoS and high Translation 

 activity  [19], [40], [43], [192], [193]  . The starting  strain without stress is ‘greedy’, but it becomes 

 ‘fearful’ upon addition of PQ, as expected (  Figure  4.6A-B  ). The evolved strains, on the other hand, 

 largely remain ‘greedy’ in the presence of PQ; they strongly downregulate RpoS (  Figure 4.6A  ) and have 

 higher translation activity than the stressed starting strain (  Figure 4.6B  ). Translation activity is decreased 
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 relative to the starting strain in the absence of PQ, likely because of tradeoffs towards ROS stress 

 readiness in the tolerized phenotype. 

 Figure 4.6  : Changes to stress and growth explain the  changes to activity in several iModulons. Mean 
 iModulon activities ± 95% confidence interval; all plots use the legend in (D). P-values are false 
 discovery rate corrected p-values from a comparison of stressed transcriptomes (250 and/or 750 μM PQ) 
 between 0_0 and evolved strains.  (A)  RpoS activity,  the general stress response, is downregulated (p = 
 0.017).  (B)  The Translation iModulon, ribosomes and  translation machinery, is upregulated (p = 0.023). 
 (C)  The ppGpp iModulon, a large iModulon with many  growth-related functions, follows a similar 
 pattern to the Translation iModulon (p = 0.027).  (D)  The Leucine iModulon, which responds to leucine 
 concentrations downstream of an Fe-S-dependent synthesis pathway, is downregulated after evolution, 
 suggesting improved Fe-S metabolism (p = 0.0017).  (E)  The Biotin iModulon is downregulated after 
 evolution. Biotin also depends on Fe-S-dependent synthesis (q = 0.017).  (F-I)  Ribose (p = 0.011), Purine 
 (p = 0.036), Cysteine-1 (p = 0.025), and Copper (p = 0.034) iModulon activities behave differently in 
 starting and evolved strains.  (J)  Knowledge graph  connecting decreased oxidative stress to each of the 
 iModulon changes shown. 

 The ppGpp iModulon contains a large set of growth-related genes regulated by the master 

 regulator ppGpp  [194]  . It follows a similar pattern  to the Translation iModulon, suggesting that ppGpp 
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 concentrations decline after evolution (  Figure 4.6C  ). In addition to the Translation and ppGpp 

 iModulons, a few other differentially activated iModulons with more specific functions are also likely to 

 be responding to ppGpp levels, including the Nucleotide Stress, Glutarate, Efflux Pump, and Biofilm 

 iModulons. 

 Despite the presence of stressors and the activation of specific ROS responses OxyR and SoxS 

 (  Sections 4.2.6.1  and  4.2.6.4  ), the general stress  response is not activated in the evolved strains. There 

 are two likely reasons for this: the stress signals are downregulated by the success of the evolved 

 strategies of PQ tolerance, and the growth-inhibiting effects of RpoS have selected against strains with 

 high RpoS activity. This work agrees with previous findings that ALE shifts allocation toward ‘greed’ 

 [19], [40], [192]  . The decoupling of the ROS and general  stress responses makes these strains 

 ROS-response specialists, constituting a valuable adaptation strategy. 

 4.2.8.2 Functional Iron-Sulfur Clusters Downregulate Leucine and Biotin Synthesis 

 Two DiMAs reflect a decrease in oxidative damage by sensing Fe-S-dependent metabolites. The 

 Leucine iModulon (  Figure 4.6D  ) encodes the leucine  biosynthesis pathway, which requires an Fe-S 

 cluster and other metal-dependent enzymes that are sensitive to oxidative stress  [195]  . Leucine feeds 

 back to inhibit the iModulon’s expression  [196]  . In  the starting strain with PQ, oxidative damage likely 

 leads to a decrease in leucine concentrations and an upregulation of the iModulon. By contrast, the 

 evolved strains experience less stress, protect their Fe-S clusters, and therefore exhibit low Leucine 

 iModulon activity. Similarly, the Biotin iModulon (  Figure 4.6E  ) uses an Fe-S cluster in BioB to 

 synthesize biotin  [197]  , which then controls iModulon  activity via regulation by BirA  [198]  . 

 4.2.8.3 Increased Demand for Nucleotides underlies Purine and Ribose Synthesis 

 Ribose concentrations are sensed by RbsR  [199]  , which  represses the Ribose iModulon in its 

 presence. Ribose is produced as part of the pentose phosphate pathway (PPP), which is the primary 

 pathway for producing NADPH to detoxify ROS. Upon initiation of oxidative stress, PPP flux increases, 
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 producing ribose  [200]  . Oxidative stress also slows growth and DNA synthesis, which will decrease 

 ribose utilization. We therefore expect an increase in ribose concentrations in the starting strain upon PQ 

 stress, which is observed as a decrease in Ribose iModulon activity (  Figure 4.6F  ). In the evolved strains, 

 flux shifts towards glycolysis and away from the PPP, producing less ribose. They also synthesize more 

 DNA to support faster growth, using ribose. Therefore, Ribose iModulon activity increases relative to 

 the starting strain, while still exhibiting a negative correlation with PQ. 

 The Purine iModulon is regulated by PurR and ppGpp, and its activation pattern in our samples 

 (  Figure 4.6G  ) mirrors that of the Translation and  ppGpp iModulons (  Figure 4.6B–C  ). This activation 

 may be explained by direct action by ppGpp, or via PurR, which represses these genes in the presence of 

 hypoxanthine or guanine  [201]  . The faster growing  evolved strains would perform more DNA 

 replication and RNA synthesis, and therefore require purine synthesis, depleting the metabolites which 

 are sensed by PurR and de-repressing the iModulon. 

 4.2.8.4 Cysteine and Copper iModulons Sense the Oxidation State of the Cell 

 Changes in Cysteine-1 iModulon activities may be explained by increased ROS readiness and 

 subsequent improvement in amino acid homeostasis (  Figure  4.6I  ). This iModulon is regulated by CysB, 

 which can be inhibited by cystine and other oxidized sulfur compounds  [202], [203]  . Cysteine is very 

 easily oxidized  [204], [205]  , which may explain the  dramatic downregulation of the iModulon upon PQ 

 addition in the starting strain. The evolved strains with PQ have significantly higher Cysteine-1 activity 

 compared to the parent strain with PQ, due to the success of their tolerization strategies. 

 The Copper iModulon, which contains copper efflux genes regulated by CueR, CusR, and HprR, 

 is downregulated in the evolved strains (  Figure 4.6K  ).  Copper is redox-sensitive, and its efflux depends 

 on the proton-motive force (PMF) or ATP  [206]  . It  is also an important cofactor for various enzymes, 

 including the superoxide dismutase  sodC  [207]  .  Oxidative  damage should decrease the PMF and ATP 

 concentrations and alter the copper redox state, which would explain the iModulon’s upregulation in the 
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 stressed starting strain. The evolved strains downregulate this iModulon, reflecting improvements in 

 metal homeostasis resulting from ROS tolerization. 

 Thus, iModulons measure the entire sensory output of the TRN and allow us to mine the 

 transcriptome for insights into many cellular processes. Because we also have an understanding of the 

 stress phenotype of the cells, we predicted reasons for a large fraction of transcriptional alterations. This 

 approach would be useful to any researcher seeking to enumerate phenotypic alterations in novel strains 

 using only RNAseq data as a guide. 

 4.2.9 Mutating Central and Energy Metabolism Genes Decreases PQ Cycling 

 We now turn to metabolism, which adds a fourth layer to our analysis and involves a complex 

 interplay of effects from each level (  Figure 4.3A  ).  We show that enzyme mutations can suggest 

 tolerance strategies, and then ME modeling can validate them. Finally, iModulon analysis can reveal 

 how those strategies are organized and regulated by the cell. 

 4.2.9.1 Loss-of-function TCA Cycle Mutations Were Commonly Acquired 

 The main metabolic mutations occur in the tricarboxylic acid (TCA) cycle. The second gene to 

 mutate in all strains was  aceE  (  Figure 4.2B,D  ).  aceE  encodes a subunit of pyruvate dehydrogenase 

 (PDH), the entry point into the TCA cycle.  gltA, sucA,  and  icd  also mutate often, with  icd  being affected 

 by e14 deletion and SNPs  [208]  (  Figure 4.7A  ). These  mutations would likely decrease the function of 

 the enzymes, thus decreasing TCA cycle flux and production of NADH. These mutations suggest a 

 tolerance benefit to decreasing NADH production. The likely reason for this benefit is that PQ uses 

 electrons from NAD(P)H to reduce oxygen and generate stress  [209]–[211]  . These mutations would 

 decrease the available electrons to the PQ cycle and prevent stress generation. To decrease oxidative 

 stress from PQ, the evolved strains perform less oxidative metabolism. The Fe-S and motility 

 mechanisms (  Sections 4.2.6.3  and  4.2.7  ) also shift  strains away from NADH production. 
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 Figure 4.7  : Mutations drive metabolic rerouting toward  fermentation to avoid PQ cycling by decreasing 
 NADH availability.  (A)  Simplified metabolic map of  the TCA cycle and fate of NADH. Reactions 
 catalyzed by mutated enzymes are shown in red and labeled with a pie chart indicating which strains 
 have a wild-type (WT) or mutant allele. First generation strains in the pie chart protrude, with their 
 descendants following them counter-clockwise.  (B)  Ribosome readthrough ratio in  aceE  from ribosome 
 profiling, means ± standard deviation. The ratio B/A is the fraction of ribosomes bound downstream (B) 
 vs. upstream (A) of the early amber stop codon (TAG) in aceE. The midpoint (MP) strain has  aceE 
 Q409* with WT  glnX  , whereas the 2_0 strain has both  aceE  Q409* and the  glnX  anticodon mutation that 
 enables ribosomes to read through the amber stop codon. In evolved strains such as 2_0, PDH levels are 
 decreased but not zero.  (C)  Aero-type plot  [212]  computed  from measured growth rates and glucose 
 uptake rates, where points represent means ± SEM, with constant growth rate isoclines. Colored regions 
 labeled with roman numerals are aero-type regions as defined previously  [150]  . Cells switch to a lower 
 aero-type with PQ and increase their glucose uptake after evolution.  (D)  Flux differences from the 
 OxidizeME model, comparing the starting strain with no PQ and a representative evolved strain at high 
 PQ. Model was constrained by growth rate, glucose uptake rate, and RNAseq data (  Figure B.4  ).  (E) 
 Each point represents a TCA cycle reaction in the constrained OxidizeME models; models of evolved 
 strains predict lower TCA cycle fluxes.  (F-G)  OxidizeME  model results in mmol/gDCW/h for 0_0 and 
 1_0, constrained by growth rate, glucose uptake rate, and RNA expression.  (F)  As PQ cycle flux 
 increases, the damaged fraction (filled in) of the TCA cycle increases.  (G)  NADH production decreases 
 with PQ, but is more sensitive in 0_0. 0_0 can also carry more PQ cycle flux. 
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 Loss of function (LOF) mutations in the TCA cycle come with a cost, since those pathways are 

 the primary energy source for aerobic cells. Indeed, the evolved strains have decreased growth and 

 translational activity under no stress relative to the starting strain, probably for this reason (  Figure  4.2C, 

 4.6B  ). During ALE, the strains must therefore balance  a tradeoff: generate enough NADH to grow and 

 repair themselves, but not so much as to over-empower the PQ cycle. 

 We summarize all metabolic mutations in  Figure B.3  . 

 4.2.9.2 Synergistic Mutations in  aceE  and  glnX  Balance  a Tradeoff Between Energy and Stress 

 The growth/stress tradeoff of the TCA cycle is embodied by interactions between two mutations, 

 which both occurred in both the 1_0 and 2_0 strains. First,  aceE  acquired a C→T nonsense SNP, 

 creating an amber stop codon  [213]  : Q791* in 1_0 and  Q409* in 2_0. This mutation inactivated PDH 

 and likely significantly decreased flux into the TCA cycle. While effective early in the evolution at 

 decreasing PQ cycling, the change was extremely damaging. Interestingly, both 1_0 and 2_0 later 

 acquired the same C→T SNP in the anticodon of the glutamine tRNA  glnX  [214]  . This second change 

 enabled the mutant  glnX  to read through the initial  aceE  truncation, allowing for some functional PDH  to 

 be translated and utilized for energy generation. Due to competition between stop codon release factors 

 and  glnX  , functional  aceE  translation would not return  to wild type levels  [215]  , but rather find an 

 intermediate level which balanced the tradeoff. 

 We quantified the above relationship using ribosome profiling (  Figure 4.7C  ). By measuring the 

 fraction of ribosomes bound to the sequence before and after the truncating SNP, we demonstrated the 

 near complete deactivation of  aceE  translation in  the midpoint strain. In the 2_0 strain with both the 

 aceE  and  glnX  mutations, translation was partially  restored (to a ratio of 0.23±0.08). Thus, synergy 

 between these two mutations brokered a compromise between the energy and stress-generating effects of 

 TCA cycle flux. 

 The 3_0 strain acquired a frameshift 1 bp deletion in  aceE  instead of the nonsense SNP. This 

 meant that it could not employ a similar strategy to 1_0 and 2_0. However, two of its second generation 
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 derivative strains (3_1 and 3_3) had insertions at or near the deletion (  Figure B.3  ), which may have 

 served a similar purpose in re-increasing PDH levels. 

 4.2.9.3 Mutations in NADH Utilization Genes Suggest PQ Diaphorase Activity 

 In addition to the NADH production-related mutations described in  Sections 4.2.9.1–4.2.9.2  , we 

 also observe NADH utilization-related mutations. Five strains acquired unique mutations in  nuoC, nuoG, 

 and  nuoM  of the NADH dehydrogenase complex (NDH-1).  A 40 bp deletion within  nuoG  appears to 

 induce early termination of transcription, since genes downstream of it are captured by the NDH-1 

 iModulon and strongly downregulated in the strain with the deletion (  Figure B.1J  ). Note that another 

 strain deleted 123 bp in a nearby region of the same gene, but we do not observe early termination in that 

 strain. The prevalence of these mutations suggests a benefit to NDH-1 LOF under PQ conditions. 

 Cellular enzymes which catalyze PQ reduction are called PQ diaphorases, and three have been 

 identified in  E. coli  by past studies  [210], [216]  .  Those studies suggested that NADPH plays a larger role 

 than NADH, but our mutations preferentially affect NADH production and NDH-1. It is possible that 

 transhydrogenases first convert NADH to NADPH  [217]  prior to the PQ cycle. Alternatively, NDH-1 

 and other mutated NADH reductases from this study (e.g.  cyoB, ubiF, torZ,  and  trxC;  Figure B.3) ought 

 to be considered as potential PQ diaphorases. Though NDH-1 has not been implicated in PQ cycling in 

 E. coli  , this phenomenon has been observed in mammals  [209], [211]  . 

 4.2.10 Metabolic Rewiring Towards a Lower Aero-Type Decreases PQ Sensitivity 

 and Flux in Evolved Strains 

 4.2.10.1 The Evolved Strains Decrease their Aero-Type 

 We quantified glucose uptake for each strain at various PQ levels, and generated a plot 

 comparing biomass yield per gram of glucose to the glucose uptake rate (  Figure 4.7C  ). This rate-yield 

 plane has been characterized in past studies  [150],  [212]  , which revealed distinct energy generation 
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 strategies (aero-types) for each position in the plane. Samples with high biomass yields are in the highest 

 aero-type (aero-type  v  ), which represents efficient  aerobic growth, whereas lower aero-types are 

 associated with lower aerobicity and secretion of organic acids. The higher aero-types pump more 

 protons across the inner membrane than the lower aerotypes  [150]  . 

 In  Figure 4.7C  , we observe a switch to a lower aero-type  in the starting strain upon PQ 

 exposure, since ROS damage decreases growth rate and particularly damages respiration. In the evolved 

 strains, the lower aero-type is maintained even when no PQ is present. The aero-type change is likely 

 due to the TCA cycle-related mutations, which we predicted would decrease respiration. However, the 

 evolved samples also shift rightward, increasing their glucose uptake and total metabolic flux, enabling 

 them to maintain growth under stress. Their position in the plane doesn’t vary much with PQ 

 concentration, indicating decreased sensitivity. 

 4.2.10.2 Metabolism and Expression Modeling Demonstrates Decreased PQ Cycle Flux and 

 Sensitivity 

 To characterize metabolism  in silico  , we used OxidizeME,  a genome-scale computational model 

 of  E. coli  metabolism and expression (ME) which incorporates  ROS stress effects  [126]  . We constrained 

 the model using each strain’s growth rate, glucose uptake rate, and RNA expression, then simulated 

 optimal steady states (  Figure 4.7D, B.4  ). Though we  did not attempt to simulate the effects of mutations 

 on the reaction rates, the optimal flux distributions in the evolved strains showed decreases in TCA cycle 

 flux (  Figure 4.7E  ), consistent with the predicted  effects of the mutations. 

 In the absence of experimental methods for directly measuring PQ cycle flux, we 

 computationally assessed the consequences of PQ cycle flux by varying it for the starting strain and a 

 representative evolved strain (  Figure 4.7F-G  ). Though  total proteomic allocation to the TCA cycle was 

 constrained to match the RNA expression, ROS damage to the Fe-S clusters in  acnA  ,  fumAB  , and 

 sdhABCD  led to decreasing functional proteome fractions  (  Figure 4.7F  ). The starting strain relied more 

 heavily on the TCA cycle; this made it more sensitive to PQ, as evidenced by the steeper slope in NADH 
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 production (  Figure 4.7G  ). The starting strain was also able to grow at higher PQ fluxes, which is 

 inefficient and exacerbates stress. Thus, tolerization both decreases sensitivity to lower PQ fluxes and 

 prevents a steady state with high PQ flux. 

 The genome-scale OxidizeME model integrates the individual cellular processes and RNA 

 expression changes which adjust the phenotype, and it elucidates key systems level tolerization 

 strategies. Its results match expectations from mutational analysis. 

 4.2.11 iModulon Activities Shift Tolerant Strains Towards Anaerobic Metabolism 

 and Glycolysis 

 4.2.11.1 Increased Fermentation Is Induced by ArcA and Fnr 

 Finally, we discuss iModulons which regulate the metabolic rerouting presented above. The 

 cellular oxidation state is sensed and regulated by ArcA and Fnr  [218]  , whose iModulons are 

 differentially activated in the evolved strains (  Figure  4.8A-D  ). Both TFs sense redox balance, which 

 shifts towards reduction in the evolved strains due to the successful tolerization: ArcA represses when 

 the electron transport chain is in a reduced state  [219]  , whereas Fnr repression ceases when Fe-S clusters 

 are intact  [220]  (  Figure 4.8E  ). These transcriptional  changes shift from aerobic respiration genes toward 

 anaerobic fermentation genes  [218]  (despite the aerobic  ALE conditions). This strategy maintains a 

 lower aero-type and decreases reliance on NADH. Thus, this mechanism reinforces the decreased 

 reliance on the TCA cycle brought on by the mutations, ultimately slowing PQ cycling. 

 ArcA is part of the ArcAB two-component system, which senses the ratio of reduced to oxidized 

 quinones in the ETC  [219]  . In the starting strain,  oxidative stress from PQ shifts this ratio toward 

 oxidation, causing ArcAB to be less active and derepress the ArcA iModulon. As strains evolve, they 

 experience less oxidative stress due to their transport and TCA cycle mutations. This lowered stress leads 

 to a more reduced quinone pool, an increase in ArcAB activity, and repression of the ArcA iModulon 

 (  Figure 4.8A  ). The ArcA iModulon contains aerobic  growth genes such as oxidoreductases and 
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 cytochromes, so its repression will encourage anaerobic metabolism, fermentation, and a decreased 

 reliance on NADH. 

 Fnr senses oxygen levels via oxidative damage to its Fe-S cluster and activates anaerobic 

 metabolism genes when the cluster is intact  [220],  [221]  . Its regulon is captured by three iModulons, 

 whose activities behave similarly in this study (  Figure  4.8B-D  ). The decrease in oxidative stress, as well 

 as the success of iron-related mutations, help to maintain more active Fnr and therefore upregulate this 

 iModulon. 

 Figure 4.8  : Mutations and iModulon reallocation drive  metabolic rerouting toward fermentation to avoid 
 PQ cycling. Bars indicate mean iModulon activities ±95% confidence interval.  (A)  ArcA iModulon 
 activities are mostly decreased after evolution, except in the case of mutations to  arcAB  (p = 0.035). 
 ArcA contains aerobic metabolism genes.  (B-D)  Fnr  controls three iModulons with anaerobic 
 metabolism genes, all of which are upregulated (p = 0.034, 0.030, 0.023).  (E)  Knowledge graph 
 describing changes in the evolved strains connecting central carbon mutations to anaerobic and 
 glycolytic gene expression, which decreases TCA cycle flux and ROS generation.  (F)  The Cra 
 iModulon, which contains glycolytic genes that are repressed by Cra, is upregulated (p = 0.017).  (G)  The 
 Crp-2 iModulon, which controls phosphotransferase systems, is upregulated (p = 0.022). (H) The 
 Pyruvate-2 iModulon is upregulated (p = 0.012). 
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 There are two strains which have mutations in the ArcAB two-component system, affecting 

 ArcA iModulon activity. A frameshift in the sensor kinase  arcB  in 3_1 has a moderate derepressing 

 effect, and an early stop in  arcA  in 1_1 had a stronger  derepressing effect (  Figure 4.8A  ). These two 

 strains are an exception which appear to have struck a different balance in the growth/stress generation 

 tradeoff compared to the other evolved strains. They express aerobic metabolism genes as well as the 

 Fnr-activated anaerobic fermentation genes, which would enable them to use more energy producing 

 pathways but could also exacerbate stress generation. 

 4.2.11.2 Glycolytic Flux Increases Due to the Action of Cra and Crp 

 To meet energy needs with lower respiration, the cells increased their glycolytic activity, a 

 change which is described by two DiMAs. Cra iModulon activity increases, indicating an increase in 

 glycolytic flux (  Figure 4.8F  ). Similarly, the Crp-2  iModulon returns to unstressed or intermediate levels 

 in the evolved strains, which indicates a more active phosphotransfer system (  Figure 4.8G  ). This 

 transcriptomic change matches the rightward shift in the aero-type plot (  Figure 4.7C  ). 

 The Cra iModulon captures a set of genes of glycolysis and carbohydrate catabolism genes 

 which are repressed by Cra  [222], [223]  . Cra regulates  these genes by acting as a flux sensor for 

 glycolysis, since their suppression is activated by fructose-1,6-bisphosphate  [224]  . We observe an 

 increase in Cra iModulon activity in the evolved strains (  Figure 4.8F  ), which both indicates and 

 positively regulates an increase in glycolytic flux. 

 The Crp-2 iModulon contains mostly phosphotransfer (PTS) system genes which are activated 

 by the master regulator Crp  [225]  . Crp responds to  cAMP levels in a biphasic manner, and cAMP levels 

 themselves have complex regulation  [226]  . We observe  a strong downregulation of the Crp-2 iModulon 

 in the stressed starting strain, but a return to unstressed or intermediate levels in the evolved strains 

 (  Figure 4.8G  ). This change is consistent with a return  to homeostasis, and may indicate a more active 

 PTS, higher glucose uptake, and increase in ATP concentrations after evolution. 
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 4.2.11.3 Pyruvate Accumulation is Sensed by Exometabolomics and the Pyruvate-2 iModulon 

 The LOF mutations in PDH and the TCA cycle should increase intracellular pyruvate 

 concentrations, since pyruvate is the initial substrate for those reactions. The Pyruvate-2 iModulon is 

 regulated by PyrR, which can sense pyruvate concentrations  [227]  . Pyruvate-2 activity increases in the 

 evolved strains (  Figure 4.8H  ), which is consistent  with this prediction. We also observe pyruvate 

 secretion at high PQ levels (  Figure B.1K  ), probably  due to the oxidative damage to PDH and the TCA 

 cycle causing so much pyruvate accumulation that it must be secreted. 

 In  Sections 4.2.9–4.2.11  , we showed that mutations  and iModulon activity adjustments work 

 together to enforce a low aero-type, PQ-tolerant metabolic network. The PQ tolerance stems from a 

 decreased reliance on the TCA cycle and decreased NADH production, which leads to a metabolic 

 network that supports less total PQ cycling and makes the system less sensitive to small amounts of PQ 

 cycling. It is often difficult to interpret biological systems when genes, gene expression, and metabolic 

 flux are all changing, but our multilevel interoperable approach using mutational analysis, iModulon 

 activity changes, and genome-scale modeling produced a consistent and comprehensive interpretation of 

 multiple data types. 

 4.3 Discussion 

 In this chapter, we combined ALE with a detailed, systems-level transcriptomic analysis to 

 comprehensively reveal mechanisms underlying PQ tolerance. The approach spanned four levels of 

 analysis (  Figure 4.3A  ): (i) genetic alterations and  their predicted effects, (ii) transcriptomic adaptations 

 along with up- and downstream inferences about their regulatory causes and physiological impact, (iii) 

 metabolic fluxes calculated from genome-scale metabolic models, and (iv) phenotypic changes such as 

 swarming motility. We found iModulon analysis of the transcriptome to be particularly revealing, as the 

 TF activities could be readily quantified and utilized to infer a wealth of information about the 
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 phenotypic state. By combining these approaches into a coherent set of tolerization strategies, we 

 presented a summary of the systems biology of paraquat tolerance. 

 The evolved strains characterized herein achieved high tolerance through several mechanisms 

 (  Figure 4.3B  ). They promoted efflux of PQ via  emrE  segmental amplification, and precluded influx by 

 mutating or deleting various other transporters. Inside the cells, PQ failed to generate as much ROS due 

 to LOF mutations in and downregulation of NADH-producing pathways. To compensate for the 

 decreased biomass yield of their metabolism, the cells increased glucose uptake and glycolytic flux. 

 Since ROS interact with iron, some strains modified iron regulation via TF mutations that curtailed these 

 systems when stress was high. These mutational and metabolic strategies led to a decrease in stress, 

 which was sensed by the TRN and shifted various regulators toward faster growth. 

 The impact of this study is threefold. (i) We present biological insights of wide interest to 

 researchers, including the growth/stress tradeoff of redox metabolism, the use of Fe-S clusters as a brake 

 on iron uptake and metabolism, and novel interactions such as those between  pitA  and motility and 

 between  aceE  and  glnX  . (ii) Acquired mutations and  iModulon activities can become design variables 

 for strain engineering, which frequently seeks to mitigate oxidative stress for bioproduction applications. 

 (iii) We demonstrate an approach that utilizes iModulons to reveal a novel integrated perspective on 

 adaptation to stress by understanding transcriptomic allocation. This approach will be reused in  Chapter 

 5  to understand adaptation to a different type of  stress. 

 Future studies should integrate additional data types into this framework. For instance, 

 proteomics, endo-metabolomics, and chromatin immunoprecipitation of key TFs would be able to test 

 various aspects of these hypotheses, better constrain models, and potentially uncover new insights. In 

 addition, we encourage focused studies which characterize the mechanisms proposed here in greater 

 detail. 

 Taken together, our results elucidate the systems biology of paraquat tolerization using 

 genome-scale datasets, computational models, and detailed literature review. Given the falling cost of 

 RNAseq, development of laboratory evolution, and the availability of the pipeline developed here, we 
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 can expect that the systems biology of an increasing number of cellular functions and adaptations will be 

 revealed. 

 4.4 Methods 

 4.4.1 Data and Code Availability 

 RNAseq data have been deposited to GEO and are publicly available as of the date of 

 publication, under accession numbers GSE134256 and GSE221314. DNAseq data are available from 

 aledb.org under the project “ROS”. iModulons and related data are available from iModulonDB.org 

 under the dataset “  E. coli  PRECISE-1K”. 

 All original code and data to generate figures are available at  github.com/SBRG/ROS-ALE  , 

 which also links to the alignment, ICA, and iModulon analysis workflows  [128]  . It has been deposited at 

 Zenodo and is publicly available  [228]  . The DOI is  10.5281/zenodo.7449004  . 

 4.4.2 Microbial Strains and Culture Conditions 

 The starting strain (0_0) was an MG1655 K-12  E. coli  strain which had been evolved for optimal 

 growth on glucose as a carbon source in M9 minimal media  [162]  . Mutations for the evolved strains are 

 listed on aledb.org. 

 Strains were grown overnight in M9 minimal media with 0.4% w/v glucose as a carbon source. 

 Fresh media was inoculated with the overnight culture at an initial 600 nm optical density (OD) of 0.025. 

 Cultures were aerated with a stir bar at 1100 rpm in a water bath maintained at 37°C until OD reached 

 0.5. 50 mM PQ was added to reach the desired concentration in stressed flasks. After 20 minutes, 

 samples were harvested for transcriptomics or ribosome profiling. 
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 4.4.3 Adaptive Laboratory Evolution 

 ALE was performed using a similar protocol to Mohamad  et al.  2017  [229]  . Parallel cultures 

 were started in M9 minimal medium by inoculation from isolated colonies. Evolution was performed in 

 an automated platform with 15 mL working volume aerobic cultures maintained at 37°C and 

 magnetically stirred at 1100 rpm. Growth was monitored by periodic measurement of the 600 nm OD on 

 a Tecan Sunrise microplate reader, and cultures were passaged to fresh medium during exponential cell 

 growth at an OD of approximately 0.3. Growth rates were determined for each batch by linear regression 

 of ln(OD) versus time. At the time of passage, PQ concentration in the fresh medium batch was 

 automatically increased if a growth rate of 0.08 h  -1  had been met for 3 consecutive flasks. Samples were 

 saved throughout the experiment by mixing equal parts culture and 50% v/v glycerol and storing at 

 -80°C. 

 4.4.4 DNA Sequencing and Mutation Calling 

 DNA was isolated as described  [230]  . Total DNA was  sampled from an overnight culture and 

 immediately centrifuged for 5 min at 8,000 rpm. The supernatant was decanted, and the cell pellet was 

 frozen at -80°C. Genomic DNA was isolated using a Quick-DNA Fungal/Bacterial Microprep Kit (Zymo 

 Research) following the manufacturer’s protocol, including treatment with RNase A. Resequencing 

 libraries were prepared using a Kapa Hyper Plus Kit (Roche Diagnostics) following the manufacturer’s 

 protocol. Libraries were run on HiSeq and/or NextSeq (Illumina). 

 Sequencing reads were filtered and trimmed using AfterQC version 0.9.7  [231]  . We mapped 

 reads to the  E. coli  K-12 MG1655 reference genome  (NC_00913.3) using the breseq pipeline version 

 0.33.1  [232]  . Mutation analysis was performed using  ALEdb  [146]  . 
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 4.4.5 Physiological Characterization 

 Growth curves and exometabolomic samples were generated by inoculating cells from an 

 overnight culture to a low OD using the same conditions as the ALE. For each strain, we started with 0 

 PQ. OD measurements and samples were taken at various time points until stationary phase was reached. 

 We then passaged the cells into a new flask, stepped up the PQ concentration, and characterized the next 

 curve, for concentrations 125, 250, 500, 750, 1500, and 2500 μM. We stopped if growth was not 

 observed after 48 hours. For each flask, growth rates were determined by linear regression of ln(OD) 

 versus time in the early exponential part of the curve. 

 We took cell culture samples at the same time as OD measurements for the starting strain at 0 

 and 125 μM PQ, and for the evolved strains at 0, 250, and 750 μM PQ. Samples were sterile filtered, and 

 extracellular by-products were determined by high pressure liquid chromatography (HPLC). The filtrate 

 was injected into an HPLC column (Aminex HPX-87H 125-0140). The concentrations of the detected 

 compounds were determined by comparison to a normalized curve of known concentrations. Substrate 

 uptake and secretion rates in the early exponential growth phase were calculated from the product of the 

 growth rate and the slope from a linear regression of the grams dry weight (gDW) versus the substrate 

 concentration. The biomass yield was calculated as the quotient of the growth rate and the glucose 

 uptake rates during the exponential growth phase. 

 4.4.6 RNA Sequencing 

 3 mL of induced culture was added to 6 mL of RNAProtect Bacteria Reagent (Qiagen) and 

 vortexed, then left at room temperature to incubate for 5 minutes. Cells were pelleted, resuspended in 

 400 μL elution buffer, and then split into two tubes with one kept as a spare. One pellet was then lysed 

 enzymatically with addition of lysozyme, proteinase-K, and 20% SDS. SUPERase-In was added to 

 maintain the integrity of the RNA. RNA isolation was then performed according to the RNeasy Mini Kit 

 (Qiagen) protocol. rRNA was depleted using the Ribo-Zero rRNA Removal Kit for gram negative 
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 bacteria according to the protocol. Libraries were constructed for paired-end sequencing using a KAPA 

 RNAseq Library Preparation kit. Reads were sequenced on the Illumina NextSeq platform. 

 As part of the PRECISE-1K dataset  [140]  , transcriptomic  reads were mapped using our pipeline 

 (  https://github.com/avsastry/modulome-workflow  )  [128]  and run on Amazon Web Services Batch. First, 

 raw read trimming was performed using Trim Galore with default options, followed by FastQC on the 

 trimmed reads. Next, reads were aligned to the  E.  coli  K-12 MG1655 reference genome (NC_000913.3) 

 using Bowtie  [233]  . The read direction was inferred  using RSeQC  [234]  . Read counts were generated 

 using featureCounts  [235]  . All quality control metrics  were compiled using MultiQC  [236]  . Finally, the 

 expression dataset was reported in units of log-transformed transcripts per million (log(TPM+1)). 

 All included samples passed rigorous quality control, with “high-quality” defined as (i) passing 

 the following FastQC checks:  per_base_sequence_quality,  per_sequence_quality_scores, 

 per_base_n_content, adaptor content;  (ii) having at  least 500,000 reads mapped to the coding sequences 

 of the reference genome (NC_000913.3); (iii) not being an outlier in a hierarchical clustering based on 

 pairwise Pearson correlation between all samples in PRECISE-1K; and (iv) having a minimum Pearson 

 correlation between biological replicates of 0.95. 

 4.4.7 Ribosome Profiling 

 Ribosome profiling libraries were created using a modified version of the protocol outlined in 

 Latif et al  [237]  . The protocol was modified to negate  the effects of the addition of chloramphenicol by 

 grinding frozen cells. 50 mL of cell culture was harvested by centrifugation for 4 minutes at 37°C in a 50 

 mL conical tube containing 0.4 g of sand. Supernatant was aspirated quickly and the pellet was flash 

 frozen in liquid nitrogen. Pellets were transferred into a liquid nitrogen cooled mortar and pestle, 500 μL 

 of lysis buffer was added, and the pellet was pulverized to lyse the cells. Lysate was transferred to a 

 falcon tube to thaw on ice. The lysate was then centrifuged, and the supernatant was isolated to continue 

 with the published protocol. Reads were sequenced on an Illumina HighSeq machine using a single end 

 50 bp kit. 
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 Adaptors were removed from ribosome profiling reads using CutAdapt v1.8  [238]  , then mapped 

 to the  E. coli  K-12 MG1655 reference genome (NC_000913.3)  using bowtie  [233]  . They were scored at 

 the 3’ end to generate ribosome density profiles. 

 4.4.8 Generation of  pitA  Mutants 

 The mutations referred to in  Figures 4.5I-K and B.2  were introduced into the starting (0_0) and 

 evolved (1_0) genomes using a Cas9-assisted Lambda Red homologous recombination method. Golden 

 gate assembly was first used to construct a plasmid vector harboring both Cas9 and lambda red 

 recombinase genes under the control of an L-arabinose inducible promoter, a single guide RNA 

 sequence, and a donor fragment generated by PCR which contained the desired  pitA  +T mutation and 

 around 200 bp flanking both sides of the Cas9 target cut site as directed by the guide RNA. After 

 allowing cells harboring the plasmid to grow for 2 hours at 30°C, L-arabinose was added to the media 

 and the cells were allowed to grow for 3 to 5 hours, at which time a portion of the culture was plated. 

 Single colonies were screened using ARMS PCR. Amplicons spanning the mutation site, generated with 

 primers annealing to the genome upstream and downstream of the sequence of the donor fragment 

 contained in the plasmid, were confirmed with Sanger sequencing. Confirmed isolates were cured of the 

 plasmid by growth at 37°C. 

 4.4.9 Cell Motility Assay 

 We performed motility assays in duplicate for each of the conditions shown in  Figure B.2  . We 

 mixed a tryptone broth (13 g tryptone and 7 g NaCl per liter of media) with 0.25% agar and the desired 

 PQ level. We autoclaved the broths, then poured 25 mL into petri dishes and solidified them at room 

 temperature overnight. Fresh colonies were spotted in the middle of the semi-solid agar with a toothpick. 

 The plates were then incubated at 37°C for 6–8 hours and imaged on a Gel Imaging System. 
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 4.4.10 iModulon Computation and Curation 

 The full PRECISE-1K compendium, including the samples for this study, was used to compute 

 iModulons using our previously described method  [32],  [140]  . The log(TPM) dataset  X  was first 

 centered such that wild-type  E. coli  MG1655 samples  in M9 minimal media with glucose had mean 

 expression values of 0 for all genes. Independent component analysis was performed using the 

 Scikit-Learn (v0.19.0) implementation of FastICA  [24]  .  We performed 100 iterations of the algorithm 

 across a range of dimensionalities, and for each dimensionality we pooled and clustered the components 

 with DBSCAN to find robust components which appeared in more than 50 of the iterations. If the 

 dimensionality parameter is too high, ICA will begin to return single gene components; if it is too low, 

 the components will be too dense to represent biological signals. Therefore, we selected a dimensionality 

 which was as high as possible without creating many single gene components, as described  [32]  . At the 

 optimal dimensionality, the total number of iModulons was 201. The output is composed of matrices  M 

 [genes x iModulons], which defines the relationship between each iModulon and each gene, and  A 

 [iModulons x samples], which contains the activity levels for each iModulon in each sample. 

 For each iModulon, a threshold must be drawn in the  M  matrix to determine which genes are 

 members of each iModulon. These thresholds are based on the distribution of gene weights. The highest 

 weighted genes were progressively removed until the remaining weights had a D’agostino K  2  normality 

 below 550. Thus, the iModulon member genes are outliers from an otherwise normal distribution. 

 iModulon annotation and curation was performed by comparing them against the known TRN from 

 RegulonDB  [11]  . Names, descriptions, and statistics  for each iModulon are available from the 

 PRECISE-1K manuscript  [140]  and iModulonDB  [21]  . 

 4.4.11 Differential iModulon Analysis 

 DiMAs were calculated as previously described  [19],  [128]  . For each iModulon, a null 

 distribution was generated by calculating the absolute difference between each pair of biological 
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 replicates and fitting a log-normal distribution to them. For the groups being compared, their mean 

 difference for each iModulon was compared to that iModulon’s null distribution to obtain a p-value. The 

 set of p-values for all iModulons was then false discovery rate (FDR) corrected to generate q-values. 

 Activities were considered significant if they passed an absolute difference threshold of 5 and an FDR of 

 0.1. The main comparison in this study was between the starting strain at 250 μM PQ (n = 2) and the 

 combined set of all evolved strains at 250 and 750 μM PQ (n = 61). Performing the comparison using 

 both concentrations of PQ ensures that our comparison captures all of the major effects of tolerization. 

 The set of DiMAs was similar when performing the comparison at just one or the other concentration. 

 We also performed a brief DEG analysis, which used the same algorithm as above but with 

 individual gene expression values instead of iModulon activities. 

 4.4.12 iModulon Explained Variance Calculation 

 The explained variance for each iModulon in this study was calculated using our workflow 

 [128]  . Since iModulons are built on a matrix decomposition,  the contribution of each one to the overall 

 expression dataset can be calculated. For each iModulon, the column of  M  and the row of  A  for the 

 evolved samples in this study were multiplied together, and the explained variance between the result 

 and the full expression dataset was computed. These explained variance scores were used to size the 

 subsets of the treemap in  Figure 4.2H  .  Note that the  variance explained by ICA is ‘knowledge-based’ in 

 contrast to the ‘statistic-based’ variance explanation provided by the commonly used principal 

 component analysis (PCA). 

 4.4.13 Metabolism and Expression Modeling with OxidizeME 

 We used OxidizeME, a genome-scale model of metabolism and expression (ME) with ROS 

 damage responses  [126]  . Models used for flux maps  were constrained using phenotypic data (glucose 

 uptake rate and growth rate) and expression data  as previously described  [149], [150]  . In order to  force 
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 PQ cycling in the model, the lower bounds for the 

 ‘PQ2RED_FWD_FLAVONADPREDUCT-MONOMER_mod_fad’ and ‘PQ1OX_FWD_SPONT’ were 

 set to the same non-zero value and iterated over. Additionally, the former reaction was amended to 

 accept NADH as an electron donor by editing the stoichiometry. PQ cycling sweeping calculations were 

 performed by sampling various lower bounds to identify the range the model could support growth, and 

 then sweeping 100 uniform values within that range. The total NADH produced through the TCA cycle 

 was calculated by summing the fluxes for the ‘MDH’ and ‘AKGDH’ metabolic reactions. 

 Table 4.1  : Complexes from the OxidizeME model used  to calculate damage to the TCA cycle by 
 oxidative stress. 

 ComplexFormation Reaction ID  Associated Protein 

 damage_SUCC-DEHASE_mod_3fe4s_mod_fad_ 
 mod_2fe2s_mod_4fe4s_o2s 

 Succinate Dehydrogenase 

 damage_CPLX0-7760_mod_4fe4s_o2s  Aconitase A 

 damage_CPLX0-7761_mod_4fe4s_o2s  Aconitase B 

 damage_FUMARASE-A_mod_4fe4s_o2s  Fumarase A 

 damage_FUMARASE-B_mod_4fe4s_o2s  Fumarase B 

 The percentage of the proteome allocated to the TCA cycle was calculated using the solutions 

 from each model, specifically the translation fluxes: 

 %     𝑃𝑟𝑜𝑡𝑒𝑜𝑚𝑒     𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑     𝑡𝑜     𝑡ℎ𝑒     𝑇𝐶𝐴     𝑐𝑦𝑐𝑙𝑒    =     𝑖 
∑ 𝑚𝑤 

 𝑖 
* 𝑉 

 𝑖 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 𝑗 
∑ 𝑚𝑤 

 𝑗 
* 𝑉 

 𝑗 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 Where  and  represents  the molecular weight and translation flux of the  i  th  protein in the  𝑚𝑤 
 𝑖 

 𝑉 
 𝑖 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 TCA cycle, and  and  represents  the molecular weight and translation flux of the jth  𝑚𝑤 
 𝑗 

 𝑉 
 𝑗 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 

 protein the entire model. The damaged portion of the proteome was calculated as follows: 

 %     𝐷𝑎𝑚𝑎𝑔𝑒𝑑     𝑃𝑟𝑜𝑡𝑒𝑜𝑚𝑒     𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑     𝑡𝑜     𝑡ℎ𝑒     𝑇𝐶𝐴     𝑐𝑦𝑐𝑙𝑒    =     𝑘 
∑ 𝑚𝑤 

 𝑘 
* 𝑉 

 𝑘 
 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

 𝑖 
∑ 𝑚𝑤 

 𝑗 
* 𝑉 

 𝑗 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 
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 Where  and  are the same variables above, and  and  correspond to  𝑚𝑤 
 𝑗 

 𝑉 
 𝑗 
 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛  𝑚𝑤 

 𝑘 
 𝑉 

 𝑘 
 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 

 the k  th  protein in  Table 4.1  . The undamaged portion  of the proteome allocated to the TCA cycle was 

 calculated as the difference between the total proteome allocated and the damaged proteome allocated. 
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 Chapter 5. Laboratory evolution reveals transcriptional 

 mechanisms underlying thermal adaptation of 

 Escherichia coli 

 Adaptive laboratory evolution (ALE) is able to generate microbial strains with extreme 

 phenotypes, which help reveal fundamental biological adaptation mechanisms. Here, we use ALE to 

 evolve  Escherichia coli  strains that grow at temperatures  of 45.3°C, a temperature lethal to wild type 

 cells. The strains adopted a hypermutator phenotype that made global analysis of the DNA mutations 

 difficult. This motivated the use of independently modulated gene set (iModulon) analysis to understand 

 high temperature tolerance adaptation mechanisms at the transcriptomic level. Five transcriptional 

 mechanisms underlying growth at high temperatures were revealed. These mechanisms were connected 

 to fixed mutations, sensory inputs, and phenotypes. They are: (i) downregulation of general stress 

 responses while upregulating the specific heat stress response; (ii) upregulation of flagellar basal bodies 

 without upregulating motility, and upregulation fimbriae; (iii) shift toward anaerobic metabolism to avert 

 autoxidation, (iv) regulation of iron uptake, and (v) upregulation of  yjfIJKL  , a novel heat tolerance 

 operon. These five mechanisms explain nearly half of all variance in the gene expression of adapted 

 strains. These thermotolerance strategies reveal that streamlining stress responses and metabolism can be 

 achieved with a small number of simple regulatory mutations, and may suggest a new role for large 

 protein export systems. ALE with transcriptomic characterization is a productive approach for 

 elucidating and interpreting adaptation to otherwise lethal stresses. 
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 5.1 Introduction 
 Adaptive laboratory evolution (ALE) selects for microbes that push biological systems to 

 extremes, which enables the study of interesting new phenotypes and can provide insight into 

 fundamental biology. Starting with a microbe and condition of interest, cells are grown for many 

 generations and propagated in exponential growth phase when flasks reach a target density  [144]  . 

 Mutants that spontaneously arise in the flask and are able to grow faster under the given condition will 

 have a higher likelihood of being propagated, so the population will accumulate beneficial mutations and 

 evolve. For tolerization ALEs, cells are grown in a stressful condition, and the stress is increased when 

 the flask’s growth rate stabilizes  [145]  , enabling  the development of highly stress-tolerant strains. A 

 detailed understanding of these strains reveals mechanisms of stress tolerance which are able to inform 

 the design of cellular factories  [145]  , our understanding  of the evolution of pathogens  [147]  , and the 

 fundamental science of systems that may otherwise be hard to study. 

 Typically, ALE endpoint strains are studied by DNA resequencing and subsequent 

 characterization of the mutations that are expected to improve fitness. This works well for many ALEs, 

 as the average evolved strain has only ~22 mutations (according to ALEdb, a database of such mutations 

 [146]  ). However, microbes are able to increase their  mutation rate by mutating the DNA mismatch repair 

 machinery, and will evolve into hypermutator strains in highly stressful environments  [239]  . These 

 strains are therefore of particular interest, since they rapidly acquire novel phenotypes. However, it is 

 very difficult to elucidate the key causal mutations from hypermutator strains due to the high number of 

 mutations, each of which may interact with one another in complex ways or have very little effect at all. 

 Therefore, methods that can reduce the complexity of analyzing hypermutator strains and cut through the 

 genomic noise of their many mutations are needed. 

 The transcriptional regulatory network (TRN) senses cellular states and environments, and helps 

 to maintain homeostasis and regulate growth by adjusting gene expression levels. Analyzing changes to 

 transcriptomic allocation in hypermutator strains represents a possible route for their characterization, as 

 it can reveal regulatory changes induced by the mutations or be used to infer changes to metabolism and 
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 stress. However, we again run into a problem of scale: hundreds or thousands of genes may be 

 differentially expressed, making it difficult to glean a global understanding from transcriptomic datasets. 

 This problem can now be addressed by a recently developed approach called independently 

 modulated gene set (iModulon) analysis  [19]  . iModulon  analysis employs independent component 

 analysis (ICA) to identify co-regulated signals from large compendia of gene expression data. These 

 signals are represented by iModulons, which have a weighting for each gene and an activity level in each 

 sample. Highly weighted genes are considered to be members of the iModulon, and they tend to match 

 very well to regulons defined experimentally. Analyzing the activity levels of iModulons decreases the 

 number of significant variables approximately 17-fold  [140]  , making it tractable to characterize most of 

 the variance in gene expression. Since they are trained on dozens or even hundreds of transcriptomes, 

 they also provide useful context for analyzing trends in sets of samples. iModulon structures have been 

 established for several organisms, including  E. coli  [19], [140]  , and are available to browse, search,  or 

 download from iModulonDB.org  [21]  . iModulons have  proven useful for analyzing non-hypermutator 

 ALE strains in several cases (including  Chapter 4  )  [39], [40], [149]–[151], [240]  , making them a 

 promising option for characterizing hypermutator strains. 

 To explore how transcriptomes evolve, we must choose a selection pressure that will produce 

 informative strains. High temperature exerts a fundamental stress on biological systems by destabilizing 

 proteins and other molecules  [153]  . Tolerating this  stress has driven evolution since life began  [241]  ,  is 

 relevant to understanding the response of pathogens to fever  [242]  , and could be helpful to engineer 

 more efficient cell factories  [243]  . A prior study  used ALE with increasing temperatures to generate ten 

 E. coli strains that grow well at 42°C  [244]  . Mutational  analysis and a simple transcriptomic analysis of 

 these strains revealed some valuable thermal adaptation strategies, such as modifying mRNA 

 degradation and peptidoglycan recycling pathways. 

 Here, we evolved an isolate from the 42°C evolution even further to push the limits of heat 

 tolerance. The six endpoint strains of this study can grow at temperatures as high as 45.3°C, which is 

 lethal to wild type strains. To achieve this increase in heat tolerance, the strains were all hypermutators. 
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 We generated transcriptomic samples from these strains at various temperatures, included them in a 

 compendium of over 1,000 RNA sequencing (RNAseq) datasets called PRECISE-1K  [140]  , and 

 extracted iModulons. We enumerated each of the major transcriptomic adaptations that facilitate rapid 

 growth at high temperatures. Despite their broad range of genomic mutations, the strains exhibited only a 

 few major iModulon changes in their transcriptomes. For several iModulon changes, we describe 

 potential mechanisms based on the observed regulatory mutations and a review of the literature. We 

 reveal changes to the regulation of stress responses, motility, redox metabolism, and iron uptake. We also 

 propose that a previously uncharacterized operon,  yjfIJKL  , which was upregulated in these strains, is 

 beneficial for survival at high temperatures. In addition to the specific insights on heat tolerance, this 

 study demonstrates the value of iModulon analysis for gaining clear insights from hypermutator strains. 
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 Figure 5.1  : ALE increased heat tolerance via changes  to the genome and transcriptome.  (A)  ALE 
 schematic, showing a previous round of ALE that generated  E. coli  strain that tolerated up to 42°C  [244]  , 
 and that this study focuses on descendents from a single strain of the prior study to generate strains that 
 tolerate up to 43.5°C. Symbol shapes represent strain cohorts, and colors represent temperatures; these 
 will be kept consistent throughout the paper. See  Figure C.1  for details.  (B)  Growth rates for the wild 
 type and final evolved strains at three temperatures, showing a significant increase in growth rate at 44°C 
 (p = 5.9*10  -7  ).  (C)  Treemap of all 504 mutations observed  in any of the six evolved strains, where each 
 mutation is mapped to its nearest gene and genes that mutate in five or more strains are labeled. Colors 
 indicate clusters of orthologous genes (COGs).  (D)  Treemap of the variance in the transcriptomes of the 
 evolved strains by iModulon, showing that relatively few iModulons capture most of the variation. The 
 20 iModulons which explain the most variance are labeled, with some names shortened for space. For 
 more information on each iModulon, see iModulonDB.org.  (E)  Venn diagram of the significantly 
 different 37 iModulon activities (DiMAs) from evolution (F) and temperature changes (G). Colors match 
 the categories in (D). iModulons with bolded names are also in the top 20 by explained variance.  (F-G) 
 Colors match the categories in (D), except that gray represents insignificant iModulon activities and 
 black represents the “unknown” category.  (F)  DiMA  plot comparing the iModulon activities in the wild 
 type and evolved strains at their highest respective temperatures.  (G)  DiMA plot comparing iModulon 
 activities in the evolved strains at cold (30°C) and hot (44°C) temperatures. 
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 5.2 Results 

 5.2.1 ALE increased heat tolerance via a hypermutator phenotype 

 Using ALE, we obtained six evolved strains that tolerated 45.3°C (  Figure 5.1A, C.1  ). Each one 

 descended from the same ancestor from the previous 42°C ALE  [244]  , 42c_3, which itself descended 

 from  E. coli  K-12 MG1655. We generated growth curves  and computed growth rates for each of the 

 strains at 30, 37, and 44°C (  Figure 5.1B  ), showing  a significant increase in growth rate at 44°C after 

 evolution (p = 5.9*10  -7  ). Interestingly, the strains  did not exhibit a major tradeoff in growth rates at 37°C 

 on average (p = 0.13), and only had a slight growth disadvantage against wild type at 30°C (p = 0.012). 

 The evolved strains maintained much of their ability to adapt to changes in temperature, suggesting that 

 the genomic mutations were not especially deleterious. 

 The ancestral strain, 42c_3, contained 30 mutations, including  mutL  G49V. MutL is part of the 

 DNA mismatch repair machinery, and mutations in this gene tend to induce increases in mutation rates 

 [239], [245]–[247]  . Thus, each of the evolved strains  was a hypermutator, and ended with between 60 

 and 126 mutations, with the average strain experiencing 84 mutations. Each of the mutations was 

 assigned to its nearest gene, and mutated genes were visualized in  Figure 5.1C  . No particular cluster  of 

 orthologous genes (COG) was enriched in this set, and the large number of mutations precluded a 

 detailed analysis of the potential benefit of each one. 

 5.2.2 iModulon analysis revealed a small set of transcriptomic adaptations 

 In order to gain a clear understanding of the adaptations in the evolved strains, we generated 

 RNAseq data for each of them and the 42c_3 ancestor at 30, 37, and 44°C in duplicate. From the prior 

 study  [244]  , we also had samples at 42°C for the wild  type and each of the 42°C evolved strains. All of 

 these profiles were included in PRECISE-1K, a compendium of over 1,000  E. coli  transcriptomes which 

 were generated using the same experimental protocol and analyzed with iModulons in aggregate  [140]  . 
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 PRECISE-1K provides a large and diverse condition space for ICA to identify co-regulated, 

 independently modulated signals (iModulons). The 201 iModulons computed from PRECISE-1K have 

 been characterized with assigned functions, regulators, and categories to facilitate interpretation. They 

 are available at iModulonDB.org  [21]  under “  E. coli  PRECISE-1K”, in the project “hot_tale”. 

 Because ICA is a matrix decomposition method  [22]  ,  any subset of iModulons can be used to 

 infer the original gene expression data across any subset of conditions in PRECISE-1K. Therefore, we 

 can quantify the explained variance of each iModulon in the samples from the evolved strains (  Figure 

 5.1D  ). In the data generated for this study (a subset  of PRECISE-1K), the 201 iModulons captured 82% 

 of the variance in the data. The top 20 highest explained variance iModulons explained 61.3% of the 

 overall variance. Thus, a relatively small number of variables can be highly informative about the global 

 state of these samples, and therefore represent an approach to identify the key thermotolerance strategies 

 that emerge during ALE. 

 Differential iModulon activities (DiMAs) are similar to differentially expressed genes (DEGs), 

 except they are much easier to interpret because the iModulons are much fewer in number (201) than 

 genes (4257). iModulons are also knowledge-enriched with regulatory information  [140]  . DiMAs 

 between starting and evolved strains represent a summary of transcriptional adaptations  [240]  (  Figure 

 5.1F  ). In this dataset, we can also quantify DiMAs  for the evolved strains between the cold and hot 

 temperatures (  Figure 5.1G  ), and compare the sets of  significant iModulons (  Figure 5.1E  ). 
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 Figure 5.2  :  Overview of the five adaptive mechanisms  to high temperature growth. On the left side, high 
 temperature is the main “input”, which leads to a variety of sensory inputs in the first column, which are 
 expected from literature or inferred from the iModulon evidence. In the second column, mutations in the 
 evolved strains are shown, according to the legend. iModulons in the third column integrate sensory 
 inputs and effects of mutations to determine their activity levels. Colors in the iModulon icons represent 
 the change between the wild type (WT) activity at 42°C and the given strain’s evolved activity at 44°C, 
 normalized by the standard deviation (SD) of the iModulon’s activity in all samples from PRECISE-1K. 
 iModulon icons are sized according to their explained variance (from Fur-2, 0.27% to RpoS, 19.8%; 
 scaled using the square root). To the right of the iModulon column are the pathways and phenotypes 
 which are determined by the transcriptomic and genomic changes. The far right column lists 
 hypothesized strategies by which the evolved strains tolerated heat. Different background shades 
 represent different topics, and each is labeled with the respective figure from this chapter in which to 
 find more information. Dotted lines represent lower confidence relationships that warrant further 
 research. 
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 Highly variable and differentially activated iModulons in ALE studies typically indicate one of 

 three features  [240]  : (1) large genomic alterations  have directly amplified or deleted the genes of an 

 iModulon, (2) mutations in regulatory pathways have altered gene expression, or (3) underlying 

 metabolites or processes which are sensed by the TRN have been altered. There were no major 

 amplifications or deletions in the evolved strains which resulted in their own iModulons. Therefore, the 

 major signals are either the result of regulatory mutations or the output of the sensory systems within the 

 evolved cells. Based on the direction of the change, the large body of existing literature on the  E. coli 

 TRN, and experimental evidence, we have inferred the mechanisms which underlie the major changes in 

 the transcriptome. We also proposed explanations of how they provide benefits to the evolving strains. 

 We present the five mechanisms with the strongest signals in the following sections, and in  Figure 5.2  . 

 5.2.3 Stress sigma factors shift allocation from general to specific responses 

 The iModulon with the largest explained variance is the RpoS iModulon, which reallocates an 

 enormous 19.8% of the transcriptome in the evolved strains. RpoS is the general stress response sigma 

 factor, which is governed by complex regulation and limits growth when active  [190], [191]  . Prior 

 iModulon studies have explored a “fear-greed tradeoff”, where typical strains exhibit a negative 

 correlation between the RpoS and Translation iModulon activities. Faster growing cells activate the 

 Translation and downregulate the RpoS iModulons (see  Section 4.2.8.1  )  [19], [40], [43], [192], [193]  . 

 As the prior generation of 42°C evolved strains mutated to tolerate high temperatures, they experienced 

 less stress and therefore downregulated RpoS  [244]  (  Figure 5.3A,  “42c Other”). In the 42c_3 ancestor  of 

 the high temperature tolerant strains, we observe even stronger downregulation of the RpoS iModulon, 

 which is maintained in the new 45°C evolved strains. 

 This iModulon activity is likely resulting from a frameshift mutation in  rpoS  in 42c_3 and its 

 derivatives. The mutation appears to have mostly deactivated RpoS, allowing sigma factors that do not 

 suppress growth to outcompete it and providing a growth rate benefit during ALE. Deactivating RpoS is 
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 generally a good strategy for ALE  [19], [40], [43], [192], [193]  , but the temperature adapted strains take 

 this to an extreme via this mutation. 

 Figure 5.3  :  Stress sigma factors shift allocation  from general to specific responses.  Error bars represent 
 mean ± 95% confidence interval. Colors in the columns of the legend are consistent for each plot.  (A-C) 
 Activities of the RpoS and Translation iModulons, which constitute the fear-greed tradeoff.  (A)  RpoS 
 activity is downregulated by evolution (p = 0.036), and accounts for 19.8% of the variance in the dataset. 
 This iModulon regulates the general stress response which slows growth. Since very little variation by 
 temperature was observed, bars represent strains regardless of temperature.  (B)  Scatter plot labeled 
 according to the legend, with low opacity circles representing all other samples in PRECISE-1K. A black 
 dashed line was fit to the other samples, representing the typical fear-greed tradeoff. The evolved 
 samples have lower RpoS activity than expected, due to the  rpoS  mutation in the strains.  (C)  Translation 
 activity is correlated with temperature, but downregulated less strongly after evolution due to successful 
 adaptation (p = 0.027).  (D)  Knowledge graph explaining  the three iModulons in this figure.  (E)  RpoH 
 iModulon activity, which maintains its correlation with temperature but is slightly upregulated by 
 prolonged heat exposure (p = 0.0031). RpoH regulates high temperature responses. 

 The Translation iModulon is typically anti-correlated with RpoS, because similar underlying 

 growth/stress and RNA polymerase-related variables control both iModulons  [190], [191]  . However, the 

 Translation iModulon remains anti-correlated with temperature (  Figure 5.3C  ) while the RpoS iModulon 

 is downregulated at all temperatures, diverging from the usual fear-greed tradeoff (  Figure 5.3B  ). The 

 rpoS  frameshift stops RpoS activity but does not regulate  the Translation iModulon, explaining this 

 discrepancy (  Figure 5.3D  ). We do observe a small upregulation  of the Translation iModulon at high 

 temperatures after evolution, suggesting that the mutations and tolerization strategies in these strains 
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 have successfully decreased the stress signals which typically downregulate Translation at high 

 temperatures. 

 Unlike RpoS, the heat stress sigma factor RpoH does not mutate, maintains its wild type 

 correlation with temperature, and is differentially upregulated at high temperatures after evolution 

 (  Figure 5.3D  ). RpoH senses temperature via several  mechanisms including an RNA-thermosensor and 

 temperature-dependent proteolysis  [248], [249]  , and  it activates a variety of heat shock genes and 

 chaperones  [250]  . Presumably, any mutations or changes  to heat stress regulation were selected against. 

 Prolonged exposure to high temperatures slightly upregulates RpoH, probably via the known 

 temperature-dependent pathways. 

 Thus, the evolved cells downregulate general stress responses (RpoS) to improve growth, but 

 upregulate specific responses to heat (RpoH). This represents an effective strategy for stress tolerization 

 ALE; indeed, it mirrors the response of oxidative stress evolved strains, which maintain activity of the 

 specific oxidative stress response, SoxS, (  Section  4.2.6.4  ) while also downregulating RpoS (  Section 

 4.2.8.1  )  [240]  . 

 5.2.4 Motility iModulons amplify basal body expression while suppressing FliA 

 A major fraction (18%) of the variance in the transcriptome of the thermotolerant strains is 

 explained by motility iModulons, which respond to two transcription factors, FlhDC and FliA. The 

 regulation of this system has been studied in detail  [251]  , and the iModulon gene structure matches well 

 with the known literature. The two primary iModulons of interest are FlhDC-2 and FliA (  Figure 5.4A  ). 

 The promoter of  flhDC  integrates many signals that  affect motility,  and then expression of FlhDC 

 induces flagellar synthesis in steps: first, the basal body is synthesized, and then the hook, junction, 

 flagellin, motor, and control mechanisms are added. The timing of these steps is ensured by using a 

 second regulator, the sigma factor FliA, which is induced by FlhDC (as part of the class I genes, purple 

 in  Figure 5.4A  ), co-regulates the intermediate steps  (class II genes, orange), and solely regulates the 

 final steps (class III genes, green)  [251]  . A good  understanding of the regulation and dynamics of this 
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 system is important for fundamental biology, understanding host-pathogen interactions  [252]  , and 

 developing a toolkit for designing protein secretion systems  [253], [254]  . 

 Figure 5.4  :  Changes to motility and fimbriae regulation  suggest a possible role in protein aggregate 
 export.  (A)  Venn diagram of genes in the two main  motility iModulons, FlhDC-2 and FliA, which are 
 highly similar to the known regulons  [11], [251]  .  The most notable exception is  fliMNOPQR  , which is 
 thought to be regulated by both FlhDC and FliA but is only found in the FlhDC related iModulon.  (B) 
 Illustration of the flagellum, adapted from  [251]  .  Components are colored according to the Venn diagram 
 in (A), and low opacity components are those which were expected to be under dual regulation. ATPase 
 mutations observed in the evolved strains are pictured with a red star and label. The established 
 regulatory cascade  [251]  is also pictured in the lower  right, showing that the anti-sigma factor FlgM 
 requires the ATPase to be exported and derepresses FliA.  (C)  Knowledge graph summarizing this 
 section.  (D-E)  Scatter plots of iModulon activities  (iModulon activity phase planes), illustrated 
 according to the legend above panel (D).  (D)  Though  FliA activity is typically correlated with FlhDC-2 
 activity (black dotted line: best fit for other projects; Pearson R = 0.87) and follows it in the regulatory 
 cascade (B), the mutant strains (squares) do not activate FliA as strongly as expected, particularly in the 
 case of the strain with two ATPase mutations (diamonds).  (E)  The two  FlhDC iModulons form a tight 
 curve with heat tolerant strains having high activity below 40°C but decreasing at high temperatures.  (F) 
 Bar and swarm plot of Fimbriae iModulon activity, with all evolved strains upregulating it (p = 0.00030) 
 and those with the  ecpC  Δ1 mutation upregulating it  the strongest at high temperatures. Error bars 
 represent mean ± 95% confidence interval. 
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 The two iModulons nearly perfectly mirror the known regulation (  Figure 5.4B  ). However, 

 FlhDC-2, but not FliA, includes  fliLMNOPQR  , despite  the fact that it has binding sites for both 

 regulators. This operon is needed earlier in the synthesis of flagella  [255]  . iModulons learn from 

 relationships in expression data, so the exclusion of this operon from FliA indicates that these genes tend 

 to be more correlated with the early stages of synthesis, in agreement with their function and despite the 

 ability to be regulated by the late stage regulator. In addition, a third iModulon plays a unique role: the 

 FlhDC-1 iModulon contains several genes from both iModulons at both positive and negative weights, 

 and appears to capture a third dimension or nonlinearity in the motility transcriptome. This may reflect 

 different binding affinities and changing ratios between the two regulators. FlhDC-1 and 2 form a 

 nonlinear curve, suggesting that samples adjust towards FlhDC-1 as FlhDC expression increases (  Figure 

 5.4E  ). Thus, iModulons reflect the known transcriptional  regulation while providing additional nuance 

 which is useful for a practical understanding of the system. 

 At high temperatures, the flagellar secretion system is less able to secrete FlgM, the anti-sigma 

 factor for FliA  [256]  . This mechanism may have evolved  to help  E. coli  avoid flagellin-mediated 

 detection by the host immune system during a fever  [252]  . Thus, the flagella synthesis pathway is cut  off 

 at a regulatory point between the two iModulons (  Figure  5.4C  ). We observe this mechanism clearly in 

 the activity of the evolved strains at 44°C, which have some FlhDC-2 activity but no FliA activation 

 (  Figure 5.4D  ). The activity phase plane between FlhDC-2  and FliA is thus highly informative: typically, 

 the two iModulons exhibit a strong correlation (Pearson R = 0.87), but in cases below the best fit line, a 

 mechanism such as the failed secretion of FlgM inhibits FliA activity. 

 Interestingly, we also observed the evolved samples exhibiting activity below the best fit line at 

 lower temperatures, when heat should not be disrupting FlgM secretion (  Figure 5.4D  ). This observation 

 indicates that something besides temperature in these strains downregulates the FliA iModulon. Indeed, 

 the ancestor (42c_3) of all evolved strains had a frameshift mutation in  fliJ  , which is a chaperone  that 

 prevents aggregation of the flagellar export substrates  [255]  . Since FlgM likely can’t be exported as 

 efficiently due to this mutation, the strains occupy a unique location in the phase plane. Another 
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 mutation, a frameshift in the export ATPase  fliI  , affected only the hot_4 strain. With this mutation, FliA 

 activity decreases even further (diamonds,  Figure  5.4D  ). 

 iModulons have thus quantitatively captured the complex transcriptional regulation of motility 

 and revealed the effects of temperature and mutations on the regulation of FliA. Key questions remain to 

 be elucidated: (i) the strains strongly upregulate FlhDC, but due to its complex upstream regulation it is 

 difficult to deduce the molecular mechanism, (ii) since FlhDC activity also decreases at high 

 temperatures, some unknown mechanism downstream of FliA may be feeding back to regulate these 

 genes, and (iii) there may be an evolutionary benefit to expressing FlhDC-regulated genes but not 

 FliA-regulated genes at high temperatures. 

 We can speculate that the evolutionary benefit in question (iii) could arise from secretion of 

 other temperature-sensitive proteins. Given that the flagellar basal body is able to rapidly secrete large 

 proteins  [253]  and its typical secretion substrate,  fliC  , is downregulated by the evolved  fliIJ  mutants, 

 perhaps it has been repurposed to help eliminate protein aggregates in the cells. 

 5.2.5 The Fimbriae iModulon is a second upregulated large protein export system 

 Another extracellular structure, the fimbriae, is an important part of transcriptome reallocation in 

 the evolved strains (1.6% explained variance). This iModulon contains the fimbriae synthesis genes 

 fimAICDFGH  [257]  , which are strongly upregulated in  42c_3 and the evolved strains and negatively 

 correlated with temperature (  Figure 5.4F  )  .  Interestingly,  the negative correlation with temperature was 

 abolished and fimbriae were strongly upregulated at high temperatures in two evolved strains, hot_3 and 

 hot_10, which both shared a frameshift mutation in the  ecpC  gene. EcpC is a putative usher protein for 

 another extracellular structure, the common pilus  [258]  . This result suggests cross-talk between various 

 extracellular fiber systems in  E. coli  , and it also  suggests that upregulation of fimbriae may be beneficial 

 at high temperatures. 

 Similar to our hypothesis that misfolded proteins are exported by flagellar basal bodies, it is 

 reasonable to also associate the expression of usher proteins  fimD  and  ecpC  with the export of misfolded 
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 proteins. In each case, an upregulated or modified gene functions to export proteins. Unlike flagellar 

 basal bodies, the fimbriae systems are only in the outer membrane and would therefore be limited to 

 secreting periplasmic proteins. However, they could still potentially help export misfolded proteins to 

 support growth at high temperatures. Further research into the specificity of protein export by fimbriae 

 and pilus systems could be helpful for the design of heterologous protein producers  [259]  . 

 5.2.6 Redox Metabolism shifts toward fermentation to increase biomass yield 

 ArcA and Fnr, the regulators of aerobicity, exert significant control over cellular phenotypes via 

 alterations to the expression of genes involved in respiration  [218]  . Together, their associated iModulons 

 explain 3.4% of the variance in the transcriptomes of the evolved strains, but are likely to have a larger 

 effect on metabolism and phenotypes (e.g.  Section  4.2.11.1  ). The ArcAB two-component system 

 represses aerobic metabolism genes when the electron transport chain (ETC) is in a reduced state  [219]  , 

 and Fnr derepresses anaerobic metabolism genes when its iron-sulfur (Fe-S) clusters are not oxidized 

 [220]  . Fnr activity is captured by three iModulons  with similar activities in these samples; we therefore 

 focus on Fnr-3, which has the highest explained variance of the three. ArcA and Fnr-3 activities are 

 correlated (black line,  Figure 5.5B  ) since they both  sense different features of the same underlying 

 cellular redox state. 

 As temperature increases, gene expression shifts upward and leftward in the ArcA/Fnr-3 phase 

 plane (  Figure 5A-C  ). This shift indicates that high  temperatures decrease oxidation, which is consistent 

 with the decrease in oxygen solubility as temperatures increase  [260]  . Decreased oxygen solubility may 

 cause the ETC to be more reduced and the Fe-S clusters to be less oxidized, causing changes to the 

 activity state of these iModulons. The expression change will induce a lower aero-type and tend to 

 decrease the production of NADH and reliance on oxygen. 
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 Figure 5.5  : iModulon activities and mutations reveal  hallmarks of redox metabolism, iron uptake, and 
 uncharacterized genes which may facilitate temperature adaptation.  All figures use the colors, and all 
 scatterplots use the shapes, given in the legend (top middle). For bar graphs, error bars represent mean ± 
 95% confidence interval.  (A-C)  iModulon activities  for ArcA, which regulates aerobic metabolism, and 
 Fnr-3, which regulates anaerobic metabolism. In (B), linear fits for the evolved samples (green) and all 
 other samples (black) are shown. Temperature shifts expression up the trendline toward a less oxidized 
 state, and the evolved strains have shifted their trend leftward, likely due to an  arcB  E118G mutation. 
 (D)  Rate-yield plot demonstrating the effect of temperature  and evolution on biomass yield and glucose 
 uptake rate. Gray dotted lines indicate isoclines with constant growth rate.  (E-G  ) iModulon activities  for 
 Fur-1 and Fur-2, which regulate iron uptake and are fit to a logarithmic curve.  (H)  Zoomed in version  of 
 (F), showing that raising the temperature tends to shift samples above the trendline, toward Fur-2 
 expression. Fur-2 contains  feoABC  , the simple iron  transporter, whereas Fur-1 contains the more 
 metabolically expensive and less necessary siderophore synthesis pathways.  (I)  Distance to the trendline 
 from panels (F) and (H), showing that increasing temperatures shifts the preference of Fur toward 
 activating Fur-2.  (J)  YjfJ iModulon activity, describing  the expression of the  yjfIJKL  operon. The 
 iModulon appears to be activated in all evolved strains by a single nucleotide promoter deletion 
 upstream of  yjfI  . This iModulon represents an unknown  molecular process, but is a clear signal detected 
 by ICA.  (K-M)  Knowledge graphs for each of the iModulon  findings presented in this figure. 
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 In addition to its effect on oxygen solubility, high temperature also increases the rate of reactive 

 oxygen species (ROS) generation by ETC components like NADH dehydrogenase (see  Section 4.2.9  ) 

 [261], [262]  . Decreasing ArcA expression should decrease  ETC activity and help to decrease the amount 

 of electrons that end up being wasted by this process at high temperatures  [261], [262]  . Interestingly,  the 

 42c_3 strain and all fully evolved strains harbored the mutation  arcB  E118G, suggesting that they 

 modified the ArcAB system to better tolerate high temperatures. In  Figure 5.5B  , we observe that ArcA 

 iModulon activity has shifted to the left of the trendline formed by the other samples  [140]  , so we infer 

 that this mutation increases the phosphorylation of ArcA by ArcB  [263]  . The  arcB  mutation would 

 explain the shift in ArcA iModulon activities, and provide the benefit of decreasing autoxidation from 

 the ETC, reinforcing a change induced by high temperatures. However, there ought to be a tradeoff to 

 this mutation at lower temperatures, when autoxidation does not have as strong of an effect on biomass 

 yield. 

 We also note one outlier strain, hot_9, which did not upregulate Fnr iModulons or further 

 downregulate the ArcA iModulon when temperature increased. This strain harbored the mutation  gor 

 G127D, which may have enhanced ROS detoxification by glutathione reductase or decreased 

 autoxidation  [264]  at high temperatures. 

 To explore the systems-level changes to energy metabolism that arise from these genomic and 

 transcriptomic changes, we measured the glucose uptake rate and biomass yield of the wild type and 

 evolved strains at three temperatures (  Figure 5.5D  ).  These two parameters change notably with 

 temperature. Regions of the rate-yield plane are associated with distinct states of energy metabolism 

 called aero-types, as has been characterized in prior studies (see  Section 4.2.10.1  )  [150], [212], [240]  . 

 Samples with high biomass yields are in the highest aero-type, corresponding to efficient aerobic growth. 

 Lower aero-types are progressively less efficient and pump fewer protons across the inner membrane 

 during respiration. Temperature strongly affects yield and uptake: cold samples are highly efficient, but 

 unable to rapidly uptake glucose, whereas hot samples can rapidly take up glucose but have low yield 

 due to heat-induced damage and waste. 
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 The evolved strains at high temperature have higher uptake and yield compared to the wild type 

 (  Figure 5.5D  ). The increased uptake may be due to  the changes toward anaerobic metabolism, which 

 utilizes more glucose  [218]  . The increased yield is  the result of the combined success of many of the 

 mutations which decrease temperature stress, including the decreased autoxidation brought about by the 

 shift toward anaerobic metabolism. We note that, on average, the effects of evolution at 37°C are 

 negligible. At 30°C, on the other hand, yield decreases while glucose uptake rates remain low. This is 

 consistent with the  arcB  mutation preventing upregulation  of the high-yield aerobic pathways, which are 

 highly efficient in the wild type at low temperatures. 

 Thus, iModulon and aero-type analysis have revealed the effects of temperature and mutations 

 on energy metabolism (  Figure 5.5K  ). At high temperatures,  dissolved oxygen decreases and electrons 

 leak from the electron transport chain into ROS more readily  [262]  , inducing a metabolic shift toward 

 anaerobiosis which is amplified by an  arcB  mutation  in the heat-tolerant evolved strains. A mutation in 

 gor  may alleviate some autoxidation at high temperatures.  This shift successfully increases both glucose 

 uptake and biomass yield at high temperatures, but carries a tradeoff that decreases yield at lower 

 temperatures. This temperature tolerance strategy is informative for the fundamental biology of 

 cross-stress tolerance and the relationship between stress and metabolism. Its mutations may also 

 provide design variables of interest for fermentation applications which may experience high 

 temperatures or uneven oxygenation. 

 5.2.7 Fur preferentially derepresses  feoB  , a commonly  mutated iron transporter 

 The two Fur iModulons regulate iron uptake systems and exhibit a nonlinear relationship 

 (  Figure 5.5E-G  )  [43], [240]  . They explain approximately  1% of the variance in the transcriptome and 

 exhibit an interesting relationship with temperature, in which temperature shifts activity perpendicularly 

 to the trendline (  Figure 5.5H-I  ; similar to  Section  4.2.6.2  ). This behavior is observed in both wild  type 

 and evolved strains, suggesting that it may be a fundamental feature of fur binding. The effect is to prefer 

 Fur-1 in lower temperatures and Fur-2 in higher temperatures. Fur-1 contains siderophore synthesis 
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 genes (  Figure B.1A  ), which are needed when iron becomes less soluble at cold temperatures, as has 

 been studied in  Vibrio salmonicida  [265]  . Fur-2, on  the other hand, contains less metabolically expensive 

 ionic iron transporters, like  feoABC  [266]  . These  would be preferred at higher temperatures due to their 

 lower cost and the readily available dissolved iron (  Figure 5.5L  ). 

 Though there are no transcriptional regulatory mutations to the iron uptake system, the 

 transporter gene  feoB  mutates in three of the six  evolved strains (hot_4: F363L; hot_8: W699*; hot_9: 

 F363L & V563M). Further research ought to probe the effects of these mutations on the temperature 

 stability and function of FeoABC. 

 5.2.8 The yjfJ operon may be a new heat tolerance operon 

 Finally, a large 2.2% of the explained variance in the transcriptome is attributed to a single 

 operon of all uncharacterized genes,  yjfIJKL  , which  constitutes the YjfJ iModulon. The iModulon was 

 named as such because  yjfJ  encodes a putative transcription  factor which is presumed to be the regulator 

 of the operon. YjfJ exhibits homology to PspA, which protects against membrane stress  [267]  . The 

 iModulon is upregulated in 42c_3 and the evolved strains (  Figure 5.5J  ), which may have been an 

 adaptation that supported the membrane against heat stress and therefore provided a benefit to the cells. 

 It is likely that the upregulation was induced by a single nucleotide deletion 80 base pairs upstream of 

 the operon (  yjfI-  p∆1;  Figure 5.5M  ). Thus, we find  a putative function for these genes in heat stress 

 whose mechanistic basis needs a detailed study to reveal the underlying molecular functions. 

 5.3 Discussion 

 Here, we used ALE to produce six  E. coli  strains which  can grow at 45.3°C, a temperature lethal 

 to wild type cells. Though their hypermutator phenotype made a detailed global analysis of their 

 genomic changes intractable, important features of the strains’ tolerance strategies were revealed via an 

 iModulon analysis of their transcriptome. We discussed mechanisms that involve only 11 mutations and 
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 14 iModulons, but we cover nearly half of all variation in the gene expression of these strains (  Figure 

 5.2  ). The strains use gene expression adaptations  to improve tolerance by (i) specializing their stress 

 response by downregulating RpoS and upregulating RpoH, (ii) activating flagellar basal bodies and 

 fimbriae while downregulating FliA with possible effects on the export of heat-damaged, misfolded 

 proteins, (iii) downregulating aerobic metabolism genes to counteract changes to oxygen solubility and 

 autoxidation rates, (iv) upregulating and modifying ionic iron uptake while shifting away from the 

 unnecessary expression of siderophores, and (v) upregulating the previously uncharacterized  yjfIJKL 

 operon. Each of the changes we describe is supported by coherent mutational mechanisms and existing 

 literature. Together, these adaptations represent the transcriptional systems biology of a high temperature 

 growth phenotype in  E. coli  . 

 The five mechanisms described above suggest two general principles for mesophilic microbes 

 growing at high temperatures. The first is to streamline stress responses and metabolism – the strains 

 downregulate the RpoS general stress response and the autoxidation-inducing ArcA regulon using TCA 

 cycle mutations. The shift from Fur-1 to Fur-2 also helps to streamline metabolism by de-emphasizing 

 siderophore pathways, though this may be a wild type phenomenon and not an evolved feature. 

 Secondly, the strains need to deal with protein aggregation that occurs at high temperatures. To do so, 

 they can upregulate the RpoH sigmulon of proteases and chaperones, and they may also use the flagellar 

 basal bodies and fimbriae machinery to export misfolded proteins. 

 This study and similar work on ROS tolerance (  Chapter  4  )  [240]  emphasize the value of 

 iModulons for building a multi-level understanding of cellular stress tolerance phenotypes. In both cases, 

 the stress response becomes specialized for the given strain by modifying activity of RpoS while leaving 

 the specific stress regulon (RpoH or SoxS) to function as it does in wild type. Interestingly, both cases 

 also showed a shift toward anaerobiosis and higher preference for Fur-2 ionic iron transport, but with 

 different predicted underlying mechanisms. The rich information gleaned from these experiments and 

 datasets ought to motivate further applications of iModulons for understanding unique strains, which will 
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 build up more examples associated with each iModulon and further enrich the field’s working 

 understanding TRNs. 

 A particularly fruitful use of iModulon analysis in this study lies in the use activity phase planes 

 (  Figures 5.3B, 5.4D-E, 5.5B, 5.5F, 5.5H)  . Each figure  showed a trend that was observed across the 

 many samples of PRECISE-1K  [140]  , and modifications  to that trend resulting from regulatory changes 

 in the evolved strains. This is an example of learning from scale, as the evolved trends could not have 

 been understood without the context of the rest of the dataset. 

 The goal of this study was to demonstrate the usefulness of iModulons for making valuable 

 predictions about the global behavior of hypermutator strains with a desired phenotype. However, we 

 acknowledge this limits the scope of our results. The mutational mechanisms are predicted based on 

 literature associations of the genes and regulons, as opposed to being individually validated. We rely on 

 prior work in the literature, which allows us to cover more of the global features of the transcriptome in a 

 single manuscript. This approach bears the risk of presenting incorrect conclusions, and thus we 

 encourage future studies to more thoroughly validate the hypotheses presented here using traditional 

 methods. 

 In addition to its contribution to the understanding of the TRN in high temperatures, we hope 

 that this study can inform applications. Engineering flagellar basal bodies for heterologous protein export 

 is a promising approach  [254]  , and we have implicated  mutations in the ATPase genes  fliIJ  in a 

 mechanism that upregulates the export basal body without the wasteful production of other motility 

 proteins. We are also the first to report that high temperatures change the activity of ArcA and Fnr and 

 predict that it is due to their sensitivity to temperature-dependent changes in oxygen – this could also be 

 useful for designing cell factories, in which changes to oxygen and temperature commonly occur, and 

 regulatory effects need to be precisely understood. Also, temperature-tolerant pathogenic  E. coli  strains 

 would be more able to survive fever conditions in a host, so the mutations and mechanisms described 

 here could help to explain the evolution of pathogenic strains. 
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 Here, we presented a global characterization of evolved, high temperature-tolerant strains using 

 an emphasis on the transcriptome as opposed to the genome. Our multi-level approach was effective for 

 predicting new mechanisms of heat tolerance and characterizing unknown genes. Given the availability 

 of large amounts of transcriptomic data and tools like iModulon analysis, we believe that TRN evolution 

 will continue to be elucidated in unprecedented ways. 

 5.4 Materials & methods 

 5.4.1 Resource availability 

 RNA-seq data have been deposited to GEO and are publicly available as of the date of 

 publication, under accession number GSE140478. DNAseq data are available from aledb.org under the 

 project “Hot mutL”. iModulons and related data are available from iModulonDB.org under the dataset 

 “  E. coli  PRECISE-1K”. 

 All original code and data to generate figures are available at github.com/SBRG/Hot-ALE, 

 which also links to the alignment, ICA, and iModulon analysis workflows  [128]  . It has been deposited at 

 Zenodo and is publicly available as of the date of publication. 

 5.4.2 Microbial strains 

 The starting strain of the original 42c evolution  [244]  was  E. coli  K-12 MG1655. Mutations for 

 the evolved strains are listed on aledb.org. 

 5.4.3 Culture conditions 

 All strains were grown and evolved in M9 minimal medium prepared by addition of 0.1 mM 

 CaCl  2  , 2 mM MgSO  4  , 1x trace elements solution, 1x  M9 salt solution, and 4 g/L D-glucose to Milli-Q 

 water. The M9 salt solution was composed of 68 g/L Na  2  HPO  4  , 30 g/L KH  2  PO  4  , 5 g/L NaCl, and 10 g/L 
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 NH  4  Cl. The trace elements solution was prepared by mixing 27 g/L FeCl  3  ・6 H  2  O, 1.3 g/L ZnCl  2  , 2 g/L 

 CoCl  2  ⋅ 6 H  2  O, 2 g/L Na  2  MoO  4  ⋅ 2 H  2  O, 0.75 g/L CaCl  2  ,  0.91 g/L CuCl  2  , and 0.5 g/L H  3  BO  3  in a Milli-Q 

 water solution consisting of 10% concentrated HCl by final volume. Sterilization was achieved in all 

 solutions and media by filtration through a 0.22 μM PVDF membrane. 

 5.4.4 Adaptive laboratory evolution 

 Stage I of the ALE experiment was started from isolates of the wild-type  E. coli  K-12 MG1655, 

 and evolved at 42°C as described previously  [244]  .  Clones were isolated from ten populations at the end 

 of this experiment, and eight of them with distinct mutational histories were used to start the Stage II 

 ALE experiment. Unfortunately, a contamination event early in the Stage II ALE led to the 42c_3 strain 

 becoming the dominant strain in all flasks that were subsequently analyzed. 

 All cultures during the Stage II evolution were grown in 35 mL flasks with a 15 mL working 

 volume, and were vigorously stirred at 1100 rpm to create a well-mixed and aerobic environment. Initial 

 temperatures for these cultures were set to 42°C. The temperatures were increased by 0.5°C 

 approximately every 150 generations (∼15 passages) to give the cultures time to optimize their growth 

 under the new conditions. Due to the higher stress levels, temperature increases were only 0.25°C above 

 44°C. An automated system was used to propagate the evolving populations over the course of the ALE. 

 To maintain the evolving population at the exponential growth phase, their growth was periodically 

 monitored by taking optical density measurements at a 600 nm wavelength (OD600) on a Tecan Sunrise 

 reader plate (  Figure C.1  ). Once reaching the target  OD600∼0.3 (∼1 on a 1 cm path length 

 spectrophotometer), approximately 0.66% of the cells in a population were passaged to the fresh 

 medium. Population samples along the adaptive trajectories were taken by mixing 800 μL of culture with 

 800 μL of 50% glycerol, and stored at -80°C for subsequent analysis (not reported). 

 130 

https://www.zotero.org/google-docs/?7qWeaF


 5.4.5 DNA sequencing and mutation calling 

 Growth-improved clones along the ALE trajectory were isolated and grown in the standard 

 medium condition. Cells were then harvested while in exponential growth and genomic DNA was 

 extracted using a KingFisher Flex Purification system previously validated for the high throughput 

 platform mentioned below  [268]  . Shotgun metagenomic  sequencing libraries were prepared using a 

 miniaturized version of the Kapa HyperPlus Illumina-compatible library prep kit (Kapa Biosystems). 

 DNA extracts were normalized to 5 ng total input per sample using an Echo 550 acoustic liquid handling 

 robot (Labcyte Inc), and 1/10 scale enzymatic fragmentation, end-repair, and adapter-ligation reactions 

 carried out using a Mosquito HTS liquid-handling robot (TTP Labtech Inc). Sequencing adapters were 

 based on the iTru protocol  [269]  , in which short universal  adapter stubs are ligated first and then 

 sample-specific barcoded sequences added in a subsequent PCR step. Amplified and barcoded libraries 

 were then quantified using a PicoGreen assay and pooled in approximately equimolar ratios before being 

 sequenced on an Illumina HiSeq 4000 instrument. 

 Sequencing reads were filtered and trimmed using AfterQC version 0.9.7  [231]  . We mapped 

 reads to the  E. coli  K-12 MG1655 reference genome  (NC_00913.3) using the breseq pipeline version 

 0.33.1  [232]  . Mutation analysis was performed using  ALEdb  [146]  . 

 5.4.6 Physiological characterization 

 Cultures were initially inoculated from -80°C glycerol stocks, and grown at 37°C overnight. 

 Physiological adaptation was achieved by growing cell cultures exponentially over 2 passages for 5 to 10 

 generations at the target temperature for phenotypic characterization. Next, cultures growing at the 

 exponential growth phase were passaged to a 15 mL working volume tube and grown fully aerated. 

 Spectrophotometer readings at OD600 were periodically taken (Thermo Fisher Scientific, Waltham, 

 MA) until stationary phase was reached. Growth rates were determined for each culture by least-squares 

 linear regression of ln(OD600) versus time. 
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 Samples were filtered through a 0.22 micrometer filter (MilliporeSigma, Burlington, MA) at the 

 same time OD600 measurements were taken, and the filtrate was analyzed for glucose and acetate 

 concentrations using a high-performance liquid chromatography system (Agilent Technologies, Santa 

 Clara, CA) with an Aminex HPX-87H column (Bio-Rad Laboratories, Hercules, CA). Glucose uptake 

 rates and acetate production rates in exponential growth were determined by best-fit linear regression of 

 glucose and acetate concentrations versus cell dry weights, multiplied by growth rates over the same 

 sample range. The above described phenotypic characterizations were performed for two biological 

 replicates of each of the selected clonal isolates along the ALE trajectory, at 30°C, 37°C, and 44°C, 

 respectively. 

 5.4.7 RNA sequencing 

 During phenotypic characterization, 3 mL of cell broth was taken at OD600∼0.6, and 

 immediately added to Qiagen RNAprotect Bacteria Reagent (6 mL). Then, the sample was vortexed for 

 5 seconds, incubated at room temperature for 5 minutes, and immediately centrifuged for 10 minutes at 

 5000g. The supernatant was decanted, and the cell pellet was stored in the -80°C. Cell pellets were 

 thawed and incubated with Readylyse Lysozyme, SuperaseIn, Protease K, and 20% SDS for 20 minutes 

 at 37°C. Total RNA was isolated and purified using the RNeasy Plus Mini Kit (Qiagen) columns 

 following vendor procedures. An on-column DNase-treatment was performed for 30 minutes at room 

 temperature. RNA was quantified using a Nano drop and quality assessed by running an RNA-nano chip 

 on a bioanalyzer. The rRNA was removed using Illumina Ribo-Zero rRNA Removal Kit 

 (Gram-Negative Bacteria). The quantity was determined by Nanodrop 1000 spectrophotometer (Thermo 

 Scientific). The quality was checked using RNA 6000 Pico Kit using Agilent 2100 Bioanalyzer 

 (Agilent). Paired-end, strand-specific RNA-seq library was built with the KAPA RNA Hyper Prep kit 

 (Kapa Biosystems) following manufacturer’s instructions. Libraries were sequenced on an Illumina 

 HiSeq 4000 instrument. 
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 As part of the PRECISE-1K dataset  [140]  , transcriptomic reads were mapped using our pipeline 

 (  https://github.com/avsastry/modulome-workflow  )  [128]  and run on Amazon Web Services Batch. First, 

 raw read trimming was performed using Trim Galore with default options, followed by FastQC on the 

 trimmed reads. Next, reads were aligned to the  E.  coli  K-12 MG1655 reference genome (NC_000913.3) 

 using Bowtie  [233]  . The read direction was inferred  using RSeQC  [234]  . Read counts were generated 

 using featureCounts  [235]  . All quality control metrics  were compiled using MultiQC  [236]  . Finally, the 

 expression dataset was reported in units of log-transformed transcripts per million (log(TPM)). 

 All included samples passed rigorous quality control, with “high-quality” defined as (i) passing 

 the following FastQC checks:  per_base_sequence_quality,  per_sequence_quality_scores, 

 per_base_n_content, adaptor content;  (ii) having at  least 500,000 reads mapped to the coding sequences 

 of the reference genome (NC_000913.3); (iii) not being an outlier in a hierarchical clustering based on 

 pairwise Pearson correlation between all samples in PRECISE-1K; and (iv) having a minimum Pearson 

 correlation between biological replicates of 0.95. 

 5.4.8 iModulon computation and curation 

 The full PRECISE-1K compendium, including the samples for this study, was used to compute 

 iModulons using our previously described method  [32],  [140]  . The log(TPM) dataset  X  was first 

 centered such that wild-type  E. coli  MG1655 samples  in M9 minimal media with glucose had mean 

 expression values of 0 for all genes. Independent component analysis was performed using the 

 Scikit-Learn (v0.19.0) implementation of FastICA  [24]  .  We performed 100 iterations of the algorithm 

 across a range of dimensionalities, and for each dimensionality we pooled and clustered the components 

 with DBSCAN to find robust components which appeared in more than 50 of the iterations. If the 

 dimensionality parameter is too high, ICA will begin to return single gene components; if it is too low, 

 the components will be too dense to represent biological signals. Therefore, we selected a dimensionality 

 which was as high as possible without creating many single gene components, as described  [32]  . At the 

 optimal dimensionality, the total number of iModulons was 201. The output is composed of matrices  M 
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 [genes x iModulons], which defines the relationship between each iModulon and each gene, and  A 

 [iModulons x samples], which contains the activity levels for each iModulon in each sample. 

 For each iModulon, a threshold must be drawn in the  M  matrix to determine which genes are 

 members of each iModulon. These thresholds are based on the distribution of gene weights. The highest 

 weighted genes were progressively removed until the remaining weights had a D’agostino K  2  normality 

 below 550. Thus, the iModulon member genes are outliers from an otherwise normal distribution. 

 iModulon annotation and curation was performed by comparing them against the known TRN from 

 RegulonDB  [11]  . Names, descriptions, and statistics  for each iModulon are available from the 

 PRECISE-1K manuscript  [140]  and iModulonDB  [21]  . 

 5.4.9 Differential iModulon activity analysis 

 DiMAs were calculated as previously described  [19],  [128]  . For each iModulon, a null 

 distribution was generated by calculating the absolute difference between each pair of biological 

 replicates and fitting a log-normal distribution to them. For the groups being compared, their mean 

 difference for each iModulon was compared to that iModulon’s null distribution to obtain a p-value. The 

 set of p-values for all iModulons was then false discovery rate (FDR) corrected to generate q-values. 

 Activities were considered significant if they passed an absolute difference threshold of 5 and an FDR of 

 0.1. The main comparison in this study was between the wild type strain at 42°C (n = 1) and the 

 combined set of all fully evolved strains at 44°C (n = 12). This comparison is shown in  Figure 5.1F  ,  and 

 its p-values are reported in figure captions throughout the chapter. We used the same statistical algorithm 

 to compare the evolved strains at 30°C (n = 12) and 44°C (n = 12) in  Figure 5.1G  . 

 5.4.10 iModulon explained variance calculation 

 The explained variance for each iModulon in this study was calculated using our workflow 

 [128]  . Since iModulons are built on a matrix decomposition,  the contribution of each one to the overall 
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 expression dataset can be calculated. For each iModulon, the column of  M  and the row of  A  for the 

 evolved samples in this study were multiplied together, and the explained variance between the result 

 and the full expression dataset was computed. These explained variance scores were used to size the 

 subsets of the treemap in  Figure 5.1D  and the icons  in the third column of  Figure 5.2  . Note that the 

 variance explained by ICA is ‘knowledge-based’ in contrast to the ‘statistic-based’ variance explanation 

 provided by the commonly used principal component analysis (PCA). 
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 Chapter 6. Conclusions 

 6.1 Dissertation Summary 

 In this dissertation, we have established iModulons as an excellent tool for transcriptomic 

 analysis. In  Chapter 1  , we described how the emergence  of genome-scale technologies and rapid 

 accumulation of large biological datasets has heralded a new age of biology. We also identified important 

 gaps in the existing analysis methods for transcriptomic data, which were holding back the field’s ability 

 to interpret the sensory and regulatory systems within cells. An important proof-of-concept study by 

 Sastry et al  [19]  developed iModulon analysis and  demonstrated its potential for solving several of the 

 problems in transcriptomics, but more efforts were needed to further develop this tool, broadly apply it, 

 and enable the research community to use it. 

 In  Chapter 2  , we applied iModulon analysis to characterize  the TRN of  Bacillus subtilis  . We 

 globally summarized the major signals underlying diverse conditions, obtained specific hypotheses 

 (some of which were later validated by a collaborator  [108]  ), and described broad re-allocation in 

 sporulation in three phases with a small number of iModulons. Together with the original  E. coli  paper, 

 this work suggested broad applicability of iModulon analysis across the phylogenetic tree, motivating 

 the following chapter. 

 In  Chapter 3  , we developed and expanded iModulonDB.  iModulonDB is a web tool for 

 browsing, searching, visualizing and downloading iModulon-related data and curated knowledge. As of 

 this writing, it has been filled with 16 datasets across 11 diverse species, and it receives over 300 unique 

 users each month. Such rapid growth and adoption speaks to the value of iModulon analysis, and will 

 surely enable the elucidation of further new insights. 

 In  Chapters 4  and  5  , we moved beyond simply characterizing  iModulons by applying and 

 integrating them with other approaches to obtain systems-level understanding of new strains. iModulons 
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 proved to be highly informative for this purpose. We characterized laboratory evolved strains which 

 tolerated very high levels of the oxidative stressor paraquat (  Chapter 4  ) and thermal stress from high 

 temperatures (  Chapter 5  ). For both chapters, we integrated  results from genomics and physiological 

 experiments to show relationships between mutations, energy balance, and the transcriptome in detailed 

 knowledge graphs. For  Chapter 4  , we also used a metabolic  model to interpret the adaptations in the 

 strains. These chapters listed key stress tolerance strategies which could be used in biomanufacturing for 

 improving stress tolerance of production strains. They also provide examples of multi-omic integration 

 with iModulons, which is important as the field works toward an integrated understanding of genomic, 

 transcriptomic, and metabolomic data. 

 6.2 Emerging Themes 

 One of the strengths of iModulon activity analysis, which has emerged as a theme in this 

 dissertation, is that it is bidirectional: iModulon activities have downstream effects on cellular responses, 

 but they also enable inferences about upstream regulatory events. A naive approach to transcriptomic 

 analysis would be to only consider the downstream, e.g. “fumarate reductase is activated, therefore 

 fumarate fermentation is increased”. This reasoning is often flawed, since expression does not 

 necessarily induce function (e.g. there may be no fumarate available to ferment). While it is important to 

 consider that the cell’s phenotypic capacity changes as a result of transcriptional reallocation, it has often 

 been more fruitful to make inferences  upstream  of  gene expression. iModulon analysis facilitates 

 upstream interpretation by nature of grouping coregulated genes: the example statement above becomes 

 “the Fnr iModulons are activated, therefore Fnr should be more active”. From there, we can predict 

 reasons that the Fnr TF’s activity increased, for instance because the redox ratio has shifted (see  Section 

 4.2.11.1  and  5.2.6  ). In this way, we can interpret  sensory systems and characterize the cell more deeply. 

 When faced with a DiMA, a researcher should consider both the upstream regulation and the 

 downstream effects. Feedback loops wherein an iModulon regulates itself are also common, so it is 
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 important to read literature surrounding any regulator carefully. 

 Compared to typical journal articles in microbiology, the chapters of this dissertation cover a 

 wider breadth of topics at the expense of detailed validation experiments in the wet lab. This is by 

 design: the goal was to gain a global understanding of cellular states by probing each of the major 

 signals in the transcriptome. Where possible, we connect our findings to the broader literature, and prefer 

 to support our predictions with past published work rather than repeat past experiments in our new 

 strains. We are careful to point out what is expected, unexpected, or unexplored, and we encourage 

 detailed follow-up experiments. Results of such experiments will be more easily interpretable in light of 

 the global overviews presented here. We do acknowledge that this type of study design may lead to the 

 proposal of some incorrect hypotheses. Nonetheless, we believe that leveraging and coherently 

 inter-relating decades of past research to achieve a global perspective has value and novelty. 

 We strongly value FAIR principles – that is, making data and knowledge  f  indable,  a  ccessible, 

 i  nteroperable, and  r  eusable  [270]  . The tsunami of  FAIR transcriptomic data and the ability to reuse it 

 were the critical advances which enabled this work. The creation of iModulonDB in  Chapter 2  returns 

 this favor to the research community: the data can now be reused again, but with added confidence from 

 our quality checks, with added context from the scale of our analyses, and enriched with added 

 knowledge from the iModulon curation and interpretation process. iModulonDB makes iModulons 

 findable, accessible, and reusable. Interoperability remains a major goal of future efforts, but the 

 relationships between data types demonstrated in  Chapters  4  and  5  are a step in this direction. 

 6.3 Unreasonable Effectiveness of iModulons & Outlook 

 This dissertation clearly demonstrated that iModulon analysis has wide applicability as a tool, 

 but we did not further explore the underlying theory. Why is this particular machine learning method so 

 good at unraveling the secrets within transcriptomic datasets? 

 A similar, but broader question was asked in 1960 by Nobel Prize winning physicist Eugene 
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 Wigner in his work, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences”  [271]  . In 

 it, he discusses how mathematics seemed at first to simply be a tool and language with which to describe 

 physics. In mathematics, structures like imaginary numbers were used to demonstrate a mathematician’s 

 ingenuity and reasoning, but were never expected to be fundamental to aspects of the real world. 

 However, as physics progressed and took advantage of more advanced mathematical concepts, they 

 proved to be necessary for the formulation of the laws of quantum mechanics. It seems as though math is 

 not simply a tool, but rather an underlying truth which is actually more fundamental than physics. 

 This analogy is not perfect, since we know that iModulons are not the actual underlying truth of 

 the TRN. They have several key limitations, including their linearity, independence assumption, and 

 sensitivity to arbitrary parameters (see  Section 1.3.3  ).  Despite this, they are indeed unreasonably 

 effective, as shown by the cases described in this dissertation. Therefore, there ought to be an underlying 

 truth which is shared by real transcriptomes and iModulon analysis. 

 We speculate that perhaps the key to understanding the transcriptome lies in the separation of 

 structure from activity. With the core matrix decomposition equation  X = M * A,  combined with the 

 flexible statistical constraints for selecting components and our modifications to enhance robustness and 

 tune parameters, ICA is able to obtain a good approximation of both. The genome encodes  M  , which is 

 some relation between regulators and genes arising from promoter sequences, TF binding, RNA 

 degradation, and other interactions. The cellular state and environment provides  A  , some set of 

 quantifiable sensory inputs which exert influence over the regulators. After years of work with 

 iModulons, we believe that other frameworks, such as clustering, which are not formulated around these 

 hidden regulatory variables, are not likely to match prokaryotic biological reality as well as iModulon 

 analysis. However,  M  and  A  could take on forms other  than linear matrices. 

 Perhaps other yet-to-be-developed factorization methods could improve upon this method by 

 finding ways of eliminating some of its assumptions. In addition, the integration of more data types 

 (such as sequence, binding, or modification information) could improve the formulation of  M  . 

 Alternatively,  M  could be built from the bottom-up  using detailed promoter models, which would allow 
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 interactions to be more explicitly encoded. There is a tradeoff to incorporating this information: 

 understanding of model organisms may improve, but the wide applicability to less characterized 

 organisms (e.g.  Section 3.6  ) would be lost. 

 Even if  M  and  A  are reformulated with more sophisticated  algorithms, this iModulon work 

 would still be useful for several reasons. Firstly, it shows the value and applicability of the  M  and  A 

 framework, which made systems-level understanding of transcriptomes possible. Second, the datasets in 

 iModulonDB provide an excellent resource for testing new methods of TRN inference, since to our 

 knowledge there is no other database of quality controlled, consistently processed, ready-to-use, and 

 knowledge enriched transcriptomic data. Finally, the insights obtained herein are backed by literature, 

 comparisons with other data types, and follow-up experiments, so future decompositions should 

 recapitulate the same insights – this would be another way of testing new  M  and  A  formulations. 

 6.4 Closing Remarks 

 In our quest to understand living systems, we are faced with the challenge of elucidating the 

 TRN which senses and adapts to environments at the cellular level. Though the complete output of the 

 TRN could be measured more than two decades ago, interpretability has lagged because of its 

 complexity. In recent years, an unprecedented opportunity has arisen: we can now analyze large 

 compendia of transcriptomic data with machine learning. iModulon analysis has emerged as an effective 

 tool for unraveling these datasets and interpreting the secrets hidden within them. In this dissertation, we 

 developed iModulon analysis by: characterizing an important model organism, disseminating iModulons 

 on an expansive online knowledgebase, and revealing mechanisms of their evolution. The specific 

 insights we gain elucidate new information about a wide range of cellular systems, which may be 

 applicable to the development of biomanufacturing strains and the study of pathogens. This work is a 

 blueprint for interpreting the TRN in an exciting new light. 
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 Appendix A. Machine learning uncovers independently 

 regulated modules in the  Bacillus subtilis  transcriptome 

 Figure A.1  : The CcpA iModulons. CcpA-1 contains mostly  sugar metabolism enzymes (ribose, sucrose, 
 mannose, trehalose, lichenan, etc.) while CcpA-2 contains a mix of genes including those for inositol 
 consumption, tricarboxylic acid permeability, and acetyl-CoA utilization.  (a)  Venn diagram of gene 
 membership for these iModulons and their matched regulon.  (b-c)  Activity of CcpA iModulons for three 
 experiments: growth in LB media (“Exp”, “Tran” and “Stat” refer to exponential, transition, and 
 stationary phase, respectively), glucose (Glc) exhaustion, and germination. Dots indicate individual 
 samples and lines pass through means.  (b)  CcpA-1 is  active during exponential growth and germination, 
 but declines in stationary phase and during glucose exhaustion.  (c)  CcpA-2 is active during stationary 
 phase and throughout the first 5 hours of glucose exhaustion, and comparatively less active during 
 germination. 
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 Figure A.2  : Correlation between iModulon activity  and regulator expression. Each plot contains an 
 iModulon’s transcriptional regulator expression on the x axis and the corresponding activity level on the 
 y axis.  (a)  MalR is a typical transcription factor  that responds to kinase activity downstream of malate 
 binding. The activity is therefore not correlated with regulator expression but is increased with malate 
 supplementation.  (b)  SigD is the sigma factor governing  motility, which is regulated at the 
 transcriptional level, so a correlation between activity and expression is observed. Four experiments that 
 exhibit low activity are highlighted; their activity matches expectations from literature.  (c)  Histogram  of 
 correlations for all iModulons with a known regulator. Self-regulating iModulons are those that contain a 
 TF which also regulates them (FFL: Feed-Forward Loop). Higher correlations are observed for FFL and 
 sigma factor-regulated iModulons.  (d)  This Thi-box  transcript precedes  thiC  , and the other 4 Thi-box 
 transcripts exhibit similar patterns. A broken line was used for this regression. When activity is low, the 
 expressed RNA contains only the short Thi-box sequence, which appears to be degraded quickly in the 
 rich media condition (flasks) but not in the biofilm condition. The Thi-box RNA appears to be stable in 
 biofilms for an unknown reason. 
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 Appendix B. Laboratory Evolution, Transcriptomics, and 

 Modeling Reveal Mechanisms of Paraquat Tolerance 

 Figure B.1  : Additional insights from mutational, iModulon,  and metabolic analysis. Bars indicate mean 
 ± 95% confidence interval.  (A)  Venn diagram of the  Fur-1 and Fur-2 iModulon genes, color coded by 
 function. Ion transport and storage systems, which may be advantageous under ROS conditions, are 
 enriched in Fur-2.  (B-D, H-J)  Scatter plots of iModulon  activities with bar plots sharing axes. Light gray 
 dots indicate other samples from PRECISE-1K. In (C) and (H), samples are colored by relevant 
 mutations, and shapes indicate PQ concentrations according to the legends. A black arrow connects the 
 starting strain samples between 0 and 250 μM PQ. In bar plots, point colors indicate PQ concentrations 
 and label colors match with the scatter plots.  (B-D)  Suf and Isc iModulon activities, which are both 
 regulated by IscR and encode distinct Fe-S cluster synthesis mechanisms (Suf is more robust to stress 
 compared to Isc).  (E)  Knowledge graph linking two  key TF mutations through their iModulons to 
 negative feedback which averts stress.  (F)  SoxS iModulon  activity is correlated with PQ in both starting 
 and evolved strains (Pearson R = 0.72, p = 5.5*10  -15  ).  (G-I)  FliA and Fnr-3 iModulon activities by  pitA 
 mutation, showing an unexpected upregulation in the case of the frameshift  pitA*  , but not in the case  of 
 the  pitA  deletion.  (J)  NDH-1 iModulon activities.  The NDH-1 iModulon consists of genes 
 (  nuoGHIJKLMN  ) that are controlled by ArcA and Fnr  and are all downstream of the  nuoG  Δ40 
 mutation, which may create a terminator sequence.  (K)  Pyruvate production rates from exometabolomic 
 characterizations of evolved strains. Note that the starting strain was characterized at 0 and 125 μM PQ 
 (due to no growth at higher PQ), whereas the evolved strains were characterized at 0, 250, and 750 μM 
 PQ. Pyruvate is secreted at high PQ levels, particularly by evolved strains which have downregulated 
 PDH and the TCA cycle. 
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 Figure B.2:  Swarming assays of  pitA  mutants. Cells  were plated on agar in tryptone broth with glucose 
 and the PQ concentration shown in the column headers. They were allowed to swarm for one day prior 
 to image capture. The  pitA  mutant strains 0_0::  pitA*  (D-F)  and 1_0  (G-I)  swarmed, while wild type  pitA 
 strains  (A-C; J-L)  did not. Panels A and D are shown  in  Figure 4.5K  . 
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 Figure B.3  : Mutations in genes relevant to metabolism.  Colored blocks share a mutation in the given 
 strain and gene (blue: missense SNP; brown: nonsense SNP; orange: frameshift deletion less than 3 bp; 
 red: large deletion affecting gene; olive: insertion that does not cause a frameshift). Gene names are 
 colored by type (green: central carbon metabolic enzyme; purple: redox enzyme; black: other gene 
 relevant to metabolism). Silent mutations, the e14 deletion, and promoter mutations are omitted. 
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 Figure B.4  : The constrained OxidizeME model predicts  the flux distribution change in central 
 metabolism after evolution. Flux distribution changes from specific OxidizeME models, constrained by 
 RNAseq, growth, and glucose uptake data. TCA cycle flux always decreases after evolution (  Figure 
 4.7D  ), and glycolytic flux varies with glucose uptake  rate. Note that glucose uptake increases in evolved 
 strains relative to the stressed starting strain, but some strains have more or less glucose uptake relative 
 to the unstressed starting strain. 

 169 



 Appendix C. Laboratory evolution reveals transcriptional 

 mechanisms underlying thermal adaptation of 

 Escherichia coli 

 Figure C.1  : Growth rates and temperatures for each  flask in ALE.  Dotted vertical lines indicate the 
 flasks at which the temperature was increased. Generation numbers are estimated from the growth rate 
 and elapsed time of each flask. 
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