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Freezing point depression in model Lennard-Jones solutions

Konstantin Koschkea, Hans Jörg Limbachb, Kurt Kremera and Davide Donadio a,c,d,∗

aMax Planck Institute for Polymer Research, Mainz, Germany; bNestlé Research Center, Lausanne, Switzerland; cDonostia International
Physics Center, San Sebastian, Spain; dIKERBASQUE, Basque Foundation for Science, Bilbao, Spain

(Received 6 February 2015; accepted 9 March 2015)

Crystallisation of liquid solutions is of uttermost importance in a wide variety of processes in materials, atmospheric and
food science. Depending on the type and concentration of solutes the freezing point shifts, thus allowing control on the
thermodynamics of complex fluids. Here we investigate the basic principles of solute-induced freezing point depression by
computing the melting temperature of a Lennard-Jones fluid with low concentrations of solutes, by means of equilibrium
molecular dynamics simulations. The effect of solvophilic and weakly solvophobic solutes at low concentrations is analysed,
scanning systematically the size and the concentration. We identify the range of parameters that produce deviations from the
linear dependence of the freezing point on the molal concentration of solutes, expected for ideal solutions. Our simulations
allow us also to link the shifts in coexistence temperature to the microscopic structure of the solutions.

Keywords: Lennard-Jones; solution; melting temperature; molecular dynamics

1. Introduction

Thermodynamics and kinetics of solid–liquid phase transi-
tions rule several processes that have a massive impact on
life on Earth. Freezing and melting of water and aqueous so-
lutions deeply influence climate, atmospheric and geologi-
cal processes, materials processing and food processing and
conservation. At a given pressure, crystallisation and melt-
ing rates are controlled in first instance by the temperature
at which the liquid and the solid phase coexist in equilib-
rium, i.e. the coexistence temperature (Tc). Even though
Tc is an intrinsic property of materials, it can be affected
by external factors, for example by the high curvature of
capillary walls [1] under micro or nano-confinement [2], by
the confinement length [3] or by the presence of impurities,
even at very low concentration [4,5].

In solutions, Tc is usually reduced by an amount pro-
portional to the solute concentration. This is commonly ex-
perienced, for example, when ice is molten at temperatures
lower than 0◦C by adding salt. In the ideal case of a binary
system, in which the solute is fully diluted, the depression of
the coexistence temperature, �Tc = T solution

c − T
pure solvent
c ,

depends linearly on the molality m of the solute, with a pro-
portionality constant k. In aqueous solutions, k is a dubbed
cryoscopic constant. In the ideal case, k does not depend on
the type of solute but only on its concentration, so that

�Tc = −k · m. (1)

The basic rationale behind such ideal behaviour is that the
addition of solute to a pure solvent increases the entropy of

∗
Corresponding author. Email: donadio@mpip-mainz.mpg.de

the solution by an amount proportional only to the number
of added solute particles, independently on the chemical
nature of the solute [6]. The excess entropy shifts the phase
balance between liquid and solid in favour of the liquid, thus
shifting the Tc. The simplicity and universality of this rela-
tion is exploited to measure the vapour pressure of solutions
of electrolytes and/or their molar number [7,8].

However, Equation (1) is only justified in the case of
an ideal dilution, that is at very low solute concentrations,
and it was observed to break down already for 0.5 molal
aqueous solutions [9]. Deviations from ideal behavior stem
from specific molecular interactions, namely solute–solute,
solvent–solute interactions, and solute-induced variations
in solvent–solvent interactions [10]. At low concentration,
solvent–solute interactions are expected to play the most
important role, and empirical corrections to the ideal freez-
ing point depression law have been devised in terms of
solute–solvent interaction or activity coefficients [10–12].
Equation (1) can be generalised to take into account devi-
ations from the linear behaviour due to the partial dissoci-
ation of solutes, by including the Van’t Hoff dissociation
factor i, so that

�Tc = −i · k · m. (2)

Even if empirical models may result successful for specific
cases a microscopic theory linking the thermodynamics of
solid–liquid phase transitions of binary solutions to their
structural properties islacking.

C© 2015 Taylor & Francis
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In this work, we verify to what extent Equation (1) holds
for a simple system, and provide the missing link between
the shift in the coexistence temperature and the structural
changes in the solvent, induced by the presence of different
types of solutes. We especially want to target the conditions
often occurring in biological environments or in food pro-
cessing, in which the presence of few large macromolecules
produces significant shifts in the coexistence temperature
of water. To this scope, we employ molecular dynamics
(MD) simulations on model systems, consisting of binary
Lennard-Jones (LJ) mixtures, in which one of the two com-
ponents, made of larger particles, is kept at low concentra-
tion (<2.5% in number of particles) and acts as solute, and
the other acts as solvent.

LJ mixtures are valuable models to understand the gen-
eral features of crystallisation in binary solutions, from nu-
cleation [13] to growth [14–17]. More complex LJ mixtures
with suitably chosen interaction parameters were also used
to model how additives modulate the nucleation and crys-
tal growth of solutes in supersaturated solutions [18,19].
The phase diagram of binary LJ mixtures was extensively
characterised in former works [20–22]. Nevertheless, these
works take into account mixtures of particles with rather
similar size (diameter ratio up to ∼1.2), and do not discuss
the effect of large solute particles at small concentrations
on the solid–liquid transition temperature of a solvent made
of smaller LJ particles, which, instead, is the focus of this
work.

Two types of solute–solvent interaction and a broad
range of sizes and concentrations of solute particles are
tested. We show that �Tc deviates significantly from the
ideal behaviour in Equation (1) for solutes smaller than
a certain size even at very low concentrations, while the
effect of larger solutes on Tc is correctly predicted. We then
propose a link between �Tc and how solutes modify the
short- and medium-range order of the solvent, probed by
computing the static structure factor S(k) and the excess
configurational entropy.

2. Models and numerical methods

We compute the melting temperature of a binary LJ mixture
by MD simulations. Solid–liquid phase transitions in single-
component LJ are well characterised: the solid–liquid phase
coexistence line was computed by Agrawal and Kofke [23],
and several studies investigated nucleation from the melt
[24–27] and crystal growth [28,29].

In our simulations of LJ binary mixtures, the interac-
tion between two particles of type a and b at distance r is
described by the truncated and shifted LJ potential [30],

Vab(r) =
{
vab(r) − vab(rc), if rab < rc,

0, otherwise,
(3)

where

vab(r) = 4εab

[(σab

r

)12
−

(σab

r

)6
]

. (4)

We define type-1 particles as solvent and type-2 particles
as solute (at low concentration), and σ 11 = 1 and ε11 = 1
as length and energy units. All particles have unitary mass
and all the other quantities are expressed in reduced units
derived from σ 11 and ε11. For example, time is expressed in
τ = σ11

√
m/ε11 and pressure in ε11/σ

3
11. The interaction pa-

rameters between mixed species ε12 and σ 12, are defined as
geometric averages ε12 = √

ε11ε22 and σ12 = √
σ11σ22. In-

teractions are truncated at a cut-off rc = 3.7 and long-range
corrections to potential energy and pressure are applied to
compensate the effect of truncation to the LJ equation of
state [31]. A so large rc is necessary to account correctly
for the interactions, when σ 22 is much larger than 1.

The direct calculation of the coexistence temperature Tc

by either heating a crystal until it melts or cooling a liquid
until it freezes would be affected by large hysteresis, due
to the finite size of the simulation cell and the presence of
the nucleation barrier. To circumvent this issue, we adopt
the two-phase method [32], which allows an accurate and
direct evaluation of Tc at a given pressure in a single sim-
ulation. This approach consists of simulating a crystal in
contact with its melt in the same simulation cell with pe-
riodic boundary conditions (Figure 1). After equilibration
at a chosen temperature, the system with a fixed number
of particles N is allowed to evolve at constant pressure and
constant enthalpy (NPH). In the NPH ensemble, one of the
two phases, depending on the initial temperature, grows at
the expenses of the other producing or adsorbing latent heat
and the system evolves spontaneously towards the coexis-
tence temperature. Provided that the size of the system is
sufficiently large to avoid interactions between solid–liquid
interfaces, the Tc obtained by this approach is in excel-
lent agreement with that computed by the thermodynamic
integration [33].

The starting configuration, with dimension 25 × 25 ×
85, containing about 45 · 103 particles, was equilibrated us-
ing the Berendsen thermostat and barostat [34] at the melt-
ing temperature of the single component system, T

pure
c =

0.694(1), at a pressure of 0.002387 ε11/σ
3
11. The NPH en-

semble is enforced by using the Parrinello–Rahman baro-
stat [35], an extension to non-isotropic cell deformation
of the Andersen barostat [36]. This algorithm is based
on an extended Hamiltonian, in which the cell parame-
ters are additional dynamical variables, and its conserved
quantity is the total enthalpy. The pressure is controlled
by using a barostat coupling parameter τ p = 30 and the
default compressibility, κT = 0.021, and the angles of the
simulation box are constrained. The systems consist of a
solid bock made of type-1 (solvent) particles, and a liq-
uid phase containing also type-2 solute particles at the
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Molecular Physics 3

Figure 1. Example of a simulation setup for solutes with size σ 22 = 1.5 at 1% number concentration. The z-direction is perpendicular
to the interface seen roughly in the middle of the box. Particles in the liquid phase are on the right part of the box and host the solute
particles with diameter size σ 22 (shown in green). All particles shown in light blue have size σ 11 = 1.0.

number concentration c = Nsolutes/N
liq
solvent, where N

liq
solvent

is the number of solvent particles in the liquid state. Note,
that with this definition and choice of mass m = 1, the
molality m = nsolute/msolvent is equivalent to the number
concentration c. We consider both solvophilic (ε11 = ε12 =
ε22 = 1) and weakly solvophobic (ε12 = ε11/2 = 0.5 and
ε22 = 0.25) solutes with size σ 22 between 1.1 and 2.5 at
number concentration c between 0.1% and 2.5%.

MD simulations are performed using GROMACS [37]
and the equations of motion are integrated with a timestep
�t = 0.005. Production runs in which thermodynamic av-
erages are calculated are 4 × 105 steps long, resulting in
2000τ long trajectories. Five independent runs for each pa-
rameter pair (size, initial concentration) were carried out.
During the NPH simulation, the number of particles in the
liquid state changed due to the phase transition. In order
to obtain the final concentration of the system, the number
of particles in the liquid state was averaged over the last
100 frames (starting at t = 1500 τ in steps of 5) and the
concentration computed to c = (number of solutes/average
number of solvent particles). Taking the mean value (along
with the standard deviation) of all five runs leads to the
final result for a given solute parameter pair. The melting
temperature was obtained by averaging over the last 500 τ

of each independent trajectory.
To determine which solvent particles are in either the

liquid or the solid phase, we use Steinhardt’s order param-
eter [38] modified by Wolde [39]. We calculate for each
solvent particle i, the complex vector q6m(i) as follows: for
each neighbour j = 1. . .Nb(i) of particle i, where Nb(i) is the
total number of neighbours around i within a chosen cut-off
range (we chose the first minimum in the radial distribution
function), calculate

q̃6m(i) = 1

Nb(i)

Nb(i)∑
j=1

Y6m(r̂ij ) , (5)

where r̂ij is the normalised distance vector between i and j
and Y6m(r̂ij ) are spherical harmonics of angular momentum
l = 6. The sum of the normalised scalar products leads to
q6(i),

q6(i) =
Nb(i)∑
j=1

∑6
m=−6 q̃6m(i)q̃∗

6m(j )(∑6
m=−6 |q̃6m(i)|2

)1/2
(∑6

m=−6 |q̃6m(j )|2
)1/2

,

(6)

and quantifies the symmetry around particle i. If this value is
greater than 0.7, the particle is identified as crystalline. The
local order parameter q6 has proven to work particularly
well for the expected face-centred-cubic symmetry in LJ
systems [25].

We also performed microcanoncial MD simulations to
analyse the structure and thermodynamics of liquid solu-
tions in a simulation box containing about 22 · 103 particles.
Specifically, we computed the radial distribution function
g11(r) of the solvent and the static structure factor S11(k).
Hereon for the sake of simplicity, we refer S11(k) and g11(r)
as S(k) and g(r). S(k) is calculated as the Fourier transform
of g(r):

S(k) = 1 + 4πρ

k

∫
dr(g(r) − 1)r sin(kr) . (7)

We calculated the conformational entropy (S) of the sol-
vent using the excess entropy formalism [40,41]. The total
thermodynamic entropy is the sum of the ideal gas entropy
Sid and the excess entropy Se,

S = Sid + Se . (8)
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4 K. Koschke et al.

The entropy of an ideal gas reads

Sid/NkB = ln

(
V

N λ3

)
+ 5

2
, (9)

where N is the number of particles of the system, V the
volume, kB the Boltzmann constant, β the inverse tempera-
ture, h the Planck constant and λ the de Broglie wavelength,
λ = h

√
β/2πm. The excess entropy is expressed as a mul-

tiparticle correlation expansion [40,41],

Se = S2 + S3 + · · · , (10)

with Sn as the n-particle correlation contribution. S2, the
contribution due to pair correlations between atoms of the
same type, can be calculated from the pair distribution func-
tion as follows:

S2/NkB = −2πρ

Rmax∫
0

dr {g(r) ln g(r) − [g(r) − 1]} r2,

(11)
where the integral is computed from 0 to a radius Rmax at
which g(Rmax) � 1. Our expansion of the excess entropy is
truncated after the pair wise term S2. The calculation of S
is carried out taking into account the solvent only, therefore
the quantities N, g(r) and ρ refer solely to type-1 particles.

Solutes in the binary LJ mixture start to form clusters
with increasing solute size and concentration depending
on the solute–solvent and solute–solute interactions. The
amount of clusters, or the affinity to form clusters, is com-
puted by using a clustering order parameter �, defined as

� = number of clusters

number of solutes
. (12)

The clusters in the liquid mixture are identified and counted
using a nearest-neighbour criterion. For each solute parti-
cle, all neighbouring solute particles within a cut-off cor-
responding to the first minimum in the radial distribution
function g22(r) are recursively marked as belonging to the
same cluster.

3. Results and discussion

3.1. Freezing-point depression

The proportionality constant in Equation (1) for an ideal
solution is given by [42]:

k = R T 2
c /�H, (13)

where �H is the enthalpy difference between the solid and
the liquid phase. The melting enthalpy per particle for our
system at P = 0.002387 ε11/σ

3
11 is �H = 1.12467 ε11, in

Figure 2. �Tc as a function of the concentration of solvophilic
solutes with diameter sizes σ 22 = 1.1 and σ 22 = 2.0. The data
points are shown along with the weighted linear fit. The resulting
negative slopes are 0.0011(6)Tc and 0.0049(3)Tc (or 0.7(4) 10−3

and 3.4(2) 10−3 in reduced units) for systems with solvophilic
solute sizes σ 22 = 1.1 and σ 22 = 2.0, respectively. The coexis-
tence temperature Tc was computed for the pure Lennard-Jones
solvent to Tc = 0.694(1). Considering the differences in some
simulation parameters, e.g. the interaction cut-off and the size of
the system, this result agrees well with the result obtained from
the thermodynamic integration by Agrawal and Kofke [23], Tc =
0.687(4).

agreement with the previous calculations at similar con-
ditions [31,43]. At Tc = 0.694(1) with the gas constant in
reduced units, R = 8.3473 · 10−3/K, k for an ideal solution in
reduced units at the thermodynamic conditions considered
here is 3.575(8) · 10−3.

Using the two-phase approach, we compute the melting
temperature for the LJ binary mixtures described in the pre-
vious section. We found that the expected linear dependence
of �Tc on the number, or equivalently molal, concentration
in Equation (1) is retrieved for all the considered solvophilic
solutes. Examples are shown in Figure 2, in which we plot
�Tc as a function of concentration of solvophilic solutes of
two different sizes. The figure clearly shows that the slope
of the linear fit is not independent on the size of the so-
lute particles, as predicted by the ideal solvation model, but
varies from 0.0003(1) to 0.0039(2). We can already argue
that these systems deviate from the ideal behaviour, with
the consequence that k is not solely a colligative property of
the solvent. Hence, we will call the proportionality factor
in Equation (1) α(σ 22) to avoid confusion with the theory
of fully diluted systems. It is then worth computing sys-
tematically the proportionality factor α(σ 22) as a function
of the size and the interaction type of solutes, as shown in
Figure 3.
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Molecular Physics 5

Figure 3. Proportionality factor α between the solute concentration and �Tc as a function of solute size σ 22. α(σ 22) was obtained from
linearly fitting �Tc(c) for different σ 22. The standard deviation of the fit quantifies the error bars of α(σ 22). (a) Solvophilic solutes with
ε22 = 1.0. (b) Weakly solvophobic solutes with ε22 = 0.25. The grey line marks the value of the cryoscopic constant of an ideal Lennard-
Jones solution, the dashed line in (a) indicates the average proportionality factor considering the data collected for σ 22 between 1.3
and 2.0.

For solvophilic solutes (Figure 3(a)), for sizes σ 22 ≥ 1.3,
the proportionality factor α in �Tc(c) does not depend on
σ 22 within error bars and is fairly close to the k predicted by
theory (solid line in Figure 3). On the other hand, for σ 22 ≤
1.25, α(σ 22), is much smaller. α(σ 22) increases with σ 22 and
saturates at a plateau for 1.3 ≤ σ 22 ≤ 2.0 at α ≈ 0.00334(4),
7% below the theoretical value for the cryoscopic constant
calculated from Equation (13).

The resulting proportionality factors α(σ 22) for weakly
solvophobic solutes are reported in Figure 3(b). α(σ 22)
slowly increases with σ 22 up to 1.3 and stays constant up to
σ 22 = 1.6. Overall, the proportionality factor α(σ 22) varies
from 0.0025(1) to 0.0037(11) and the dependence of α on
σ 22 is less pronounced than for solvophilic solutes. The re-
sults for weakly solvophobic solutes with ε22 = 0.25 require
a more differentiated analysis.

The linear dependence of �Tc on the entire concentra-
tion range of c up to 2.5% is observed only for solutes with
sizes σ 22 ≤ 1.3. For larger solutes, �Tc is proportional to
c only up to a threshold concentration cmax. The reason is
that at c ≥ cmax, the solutes start to cluster and one should
correct the definition of number concentration taking into

account such effect. Thus, for weakly solvophobic solutes
with size σ 22 between 1.3 and 1.6, the slope α(σ 22) was ob-
tained from a linear fit up to cmax. Larger solutes, σ 22 ≥ 1.7,
form clusters even at very low concentrations, making it im-
possible to estimate α(σ 22). The maximum concentration
cmax was defined by a threshold value of the clustering order
parameter � of Equation (12). With increasing solute size
and concentration, weakly solvophobic solutes form more
clusters and � decreases. At � ≈ 80%, the linear depen-
dence of �Tc on c breaks down and, depending on the so-
lute size, determines the maximum concentration cmax. The
maximum freezing point depression obtained for weakly
solvophobic solutes (1.03%) in the range of concentrations
considered here is significantly lower than that calculated
for solvophilic solutes, with σ 22 = 2.5, at the concentration
of 2.3%, thus indicating that large solvophilic particles can
be used more effectively to control the thermodynamics of
phase transitions of solutions. In fact, weakly solvophobic
solutes depress Tc as efficiently as solvophilic solutes only
in the low concentration range, when clustering is avoided.
On the other hand, when solutes begin to cluster, the
freezing temperature of the solution stops decreasing and
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6 K. Koschke et al.

Figure 4. �Tc(c) for weakly solvophobic solutes with different sizes σ 22. The blue data points show the freezing-point depression. The
dashed line is the resulting fit of the linear model of Equation (1). The slopes of the fits lead to the results shown in Figure 3. With
increasing solute size, the linear regime breaks down at lower concentrations, which is indicated by the vertical grey line. The red points
represent the clustering order parameter with � = 100% as the fully dispersed state and � = 0% as the fully phase segregated state. The
linear regime of �Tc holds up to � = 80%.

becomes independent on the concentration of solute parti-
cles, as shown in Figure 4, where �Tc(c) is plotted together
with the clustering order parameter �.

In general, our results show that in contrast with the
theory for ideal solutions, size and interaction type of the
solute particles affect the freezing-point depression. Devi-
ations from the ideal behaviour expressed in Equation (1)
need to be analysed in detail.

3.2. Entropy corrections for solid state solution

For ‘small’ solute particles, we observe a significant reduc-
tion of proportionality factors α(σ 22) with respect to the
ideal cryoscopic constant k. The origin of such deviations
from the ideal behaviour is that in deriving Equation (13),
one ignores the possibility that incorporating solutes in the
crystal to form a solid solution may be thermodynamically
favourable. In fact, when solutes are sufficiently small, we
have to consider also how the Gibbs free energy of the solid

phase changes upon incorporation of solute particles. We
calculate the change of the free energy �G when changing
single component crystal of N LJ particles to a solid solu-
tion made of N1 = N − N2 solvent particles and N2 solute
particles, at constant temperature and pressure. Here we
consider solvophilic solutes, both for the sake of simplicity
and because incorporation is more effective in this case.
The difference in the free energy of a pure solid solvent and
a solid solution is �G = �U − T �S + P�V , where U
is the internal energy and S the entropy of the system. We
neglect the relatively small volume term P�V, and compute
�U in a 24,576 particles system at coexistence. To improve
the statistics, a set of different number of solutes,

{N2} = {122, 147, 171, 195, 219, 243, 303, 363, 482}

was probed. For solutes with a large σ 22, a smaller sub-
set of {N2} was used because of equilibration issues for
large N2.
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Molecular Physics 7

Figure 5. Difference in the Gibbs free energy �G between a
single component crystal and a solid solution for a 24576 particles
system as a function of solute size σ 22 for different concentrations
x2 = N2/N.

While the energy difference is computed by MD, the
difference in entropy, �S = Sss − Ssc is derived as fol-
lows. To get the configurational entropy of the solid solu-
tion Sss, we consider N crystal lattice sites and replace N2

of them with solute particles. The number of configurations

 is


 =
(

N

N2

)
= N !

N1!N2!
. (14)

With S = kB ln(
), we find for the entropy Sss

Sss = −kB [ln N ! − ln N2! − ln N1!] (15)

= −kBN

[
ln (1 − x2) + x2 ln

(
x2

1 − x2

)]
, (16)

where we used Stirling’s approximation and x2 = N2/N.
Since the configurational entropy of the single component
crystal is zero, �S = Sss.

The entropy gain in solid solution �S counteracts the
difference in internal energy �U, making the solid solu-
tion thermodynamically more favourable than the single
component crystal for solutes smaller than ∼1.18, as it is
shown in Figure 5, which displays �G as a function of
solute size.

This shift in the reference free energy of the solid phase
leads to deviations of the proportionality constant α from
the ideal behaviour for σ 22 < 1.3 for solvophilic solutes.
Also for solute sizes σ 22 ≥ 1.18, although less likely,
incorporation in the solid phase is thermodynamically
competitive.

Figure 6. Clustering of the solution of weakly solvophobic so-
lutes. The cluster ratio � is shown as a function of solute size σ 22

and concentration c. � = 100% is obtained for a fully dispersed
system, � = 0% if the system is completely phase-separated.
See Equation (12) for the definition of �. These results are
determined by MD simulations in the microcanonical NVE en-
semble of a liquid system of ≈22 · 103 particles in a periodic
supercell.

3.3. Clustering of weakly solvophobic solute
particles

Weakly solvophobic solutes tend to cluster with increasing
solute size and concentration. Clustering produces large de-
viations from the ideal freezing point depression behaviour.
Here we analyse clustering of solute particles quantitatively.
In Figure 6, the clustering order parameter �, computed
from Equation (12), is plotted as a function of solute size σ 22

and concentration c. The figure shows that weakly solvo-
phobic solutes stay dispersed if their size is close to the
solvent particle size (σ 22 = 1.0), but start to cluster at
σ 22 = 1.5 for c > 1.0%, often resulting in a completely
phase-separated system. Solvophilic solutes stay dispersed
over the entire concentration range considered. The two
consequences of clustering are (1) saturation �Tc as a func-
tion of concentration, which hinders the calculation of the
proportionality factors α(σ 22) for solutes with large σ 22,
(2) less effective depression of Tc.

Comparing the clustering order parameter and the de-
pendence of �Tc on the concentration of solvophobic so-
lutes (Figure 4), for all solute sizes we find that a breakdown
of the linear regime and saturation of �Tc occurs for � ∼
80%. Therefore, we can conclude that � ∼ 80% dictates
the threshold concentration at which a the maximum �Tc is
attained for a given solute size. Remarkably, rescaling the
concentration on the x-axis to c̃ based on either the Van’t
Hoff factor as in Equation (2) or the number of clusters
as obtained from the clustering analysis does not restore a
linear dependence of �Tc on c̃.
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We need to point out that our simulations have been per-
formed on finite periodic systems, and those with the high-
est degree of clustering tend to phase separate. However,
phase separation does not occur over the simulated time
scales, therefore we are actually probing out-of-equilibrium
cases, which often occur in materials growth and food pro-
cessing, as well as in the atmosphere.

3.4. Static structure factor and configurational
entropy

After discussing the deviations from the ideal behaviour
of the freezing point depression, we now aim at estab-
lishing a direct link between the thermodynamic of the
liquid–solid transition in solutions and the changes in the
microscopic structure of the solvent upon insertion of so-
lutes. In a seminal paper for the whole field of MD sim-
ulations, Hansen and Verlet demonstrated that a LJ liquid
crystallises when the first peak of the structure factor S(k)
is about 2.85 [31]. It is then reasonable to expect a cor-
relation between the melting temperature of solutions and
the amplitude of the first peak of the S(k) of the solvent.
In our simulations, the amplitude of the first peak of the
S(k) of the pure solvent at Tc is ∼2.81, in agreement with
more recent estimates for liquids with various interaction
potentials and for colloidal particles [44,45]. To probe such
correlation, we computed the S(k) of binary LJ solutions
in the microcanonical (NVE) ensemble, after equilibrating
the systems at the melting temperature of the pure solvent.
We considered both solvophilic and weakly solvophobic
solutes of four different sizes (1.1, 1.5, 2 and 2.5 σ ) over
the whole range of concentrations up to 2.5%. Figure 7
shows that the amplitude of the first peak of the struc-
ture factor and the melting temperature of the solutions
are indeed unmistakingly correlated, confirming that the
mid-range structural modifications induced by the presence
of solutes dictate the thermodynamics of phase transitions
in solutions. The plot, however, does not include systems
that tend to cluster and phase separate (� < 80%), for
which the calculation of the S(k) is made problematic by
size effects and by the out-of-equilibrium state of these
systems.

While this scenario may be compatible with the basic
assumptions of the thermodynamics of freezing point de-
pression in ideal solutions, we find that also systems with
non-ideal freezing-point depression proportionality factor
fall well within this general trend, and obey the Hansen–
Verlet criterion. In fact, the changes in the amplitude of the
first peak of the S(k) do not depend solely on the concen-
tration but also on the size and the type of interaction of the
solute particles. This fact can be appreciated in Figure 8, in
which the S(k) of solutions contain four different solutes, all
at the same concentration (1%). The amplitude of the first
peak of the S(k) is indeed higher for the σ 22 = 1.1 solute
and lower for the σ 22 = 2.5 solute, reflecting the different

Figure 7. Amplitude of the first peak of the static structure factor
S(k) of the solvent upon insertion of solvophilic solutes of various
size at different concentration, at the coexistence temperature of
the pure system as a function of �Tc. The reference point of the
pure system is a black circle. The fit (dashed grey line) has a
Pearson correlation coefficient of 0.95, which indicates a solid
linear dependence.

ability of different solutes to inhibit freezing, as formerly
reported in Figure 3. No further significant changes appear
in either the radial distribution function or the S(k), ex-
cept for a peak arising at very small wavevector. The latter
peak is an indicator of a long-range structure in the so-
lute, possibly affected by the limited size of the simulated
systems.

The amplitude of the first peak in the static struc-
ture factor S(k) is sensitive to medium-range structural
disorder, and is a qualitative indicator of the configura-
tional entropy of a liquid. The entropy S of the solvent
is the dominating factor among the thermodynamic con-
tributions to the free energy and is the leading influence
on �Tc. A quantitative relation between structure and con-
figurational entropy is given by the definition of the ex-
cess entropy Se, as the integral of the radial distribution
function [40,41,46]. Se computed according to Equation
(11), is a pairwise addition to the entropy of the ideal gas,
which depends on the density of the liquid as in Equa-
tion (9). The truncation to the pairwise term leads to a
systematic overestimate of S, which is relatively small at
temperatures near the melting point. For example, this er-
ror was estimated about 2% for liquid sodium [40]. The
entropy thus computed also correlates linearly with �Tc,
especially for solvophilic solutes, as shown in Figure 9.
Finite size and equilibration issues, related to the ten-
dency to phase separate of weakly solvophobic solutes with
σ 22 > 1.5, hinder the calculation of Se, yielding too large
uncertainties.
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Figure 8. Results for the liquid mixtures with solvophilic solutes. (a) Radial distribution function g(r) of the solvent. The g(r) appears
rather insensitive in the presence of different solutes, indicating that solutes do not affect the short-range structure of the solvent. The pure
solvent reference system is represented by the purple dashed-dotted line. (b) Static structure factor S(k) of the solvent for different solute
sizes. S(k) was computed according to Equation (7). The system size varied from 21,120 to 23,113 particles at a fixed solute concentration
of 1.0%. The insets show a magnification of the regions around the peaks. The pure solvent reference system is represented by the purple
dashed-dotted line. Simulations are performed at the coexistence temperature of the pure solvent.

Figure 9. Results for the liquid mixtures. Entropy S/NkB as a function of �Tc. S was obtained according to Equation (8), truncated
after the pairwise term in the expansion of Se and based on the g(r) of the solvent. (a) Solvophilic solutes. (b) Weakly solvophobic solutes.
Shown are only the results for well-dispersed solutes, i.e. with a clustering value of � ≥ 80%.

4. Conclusions

In summary, utilising MD simulations of two-phase sys-
tems, we have investigated the freezing-point depression
in model LJ solutions with fairly low concentration of so-
lutes of varying size and two different types of interactions
with the solvent, solvophilic and weakly solvophobic. Our
results confirm that �Tc depends linearly on the molal con-
centration of the solute, as expected for ideal solutions at the

limit of infinite dilution, as long as the solute does not tend
to cluster and phase separate. We found that when the dis-
persion of the solute gets smaller than 80% increasing the
molal concentration does not affect the freezing tempera-
ture of the solution. For this reasons, solvophilic solutes are
more efficient to shift Tc. In addition, in the range of sizes
and concentrations of solutes in which �Tc is proportional
to the molal/number concentration, the proportionality
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10 K. Koschke et al.

constant is different from the ideal cryoscopic constant,
and exhibits a dependence on the size of the solutes and the
type of interaction of solutes–solvent interaction. Our anal-
ysis supports the classical picture based on the application
of Raoult’s law on ideal solutions, in which the presence of
solutes shifts the free energy of the solvent by increasing its
entropy. Deviations from the ideal cryoscopic constant for
solutes of small size stem from the possibility of being in-
corporated in the solid phase. Even though the formation of
solid solutions may shift the free energy of the solid by a �G
one order of magnitude lower than the free energy changes
occurring in the solvent, this effect is sufficient to produce
anomalous proportionality factors between �Tc and c.

We also show that �Tc is strictly linked to the structural
changes of the solvent induced by the presence of solutes.
The observed correlations between either the medium-
range structure or the entropy of the solvent and �Tc then
suggest that solutes affect the structure of solvents, thus
increasing their entropy and stabilising the liquid phase.
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