
UCLA
UCLA Electronic Theses and Dissertations

Title
Developing Combinatorial Optimization and Data-driven Methods for Multi-modal Motion
Planning

Permalink
https://escholarship.org/uc/item/38m7c2c2

Author
Lin, Xuan

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/38m7c2c2
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Developing Combinatorial Optimization and Data-driven Methods for

Multi-modal Motion Planning

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

Xuan Lin

2022

© Copyright by

Xuan Lin

2022

ABSTRACT OF THE DISSERTATION

Developing Combinatorial Optimization and Data-driven Methods for

Multi-modal Motion Planning

by

Xuan Lin

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2022

Professor Dennis W. Hong, Chair

Legged robots require fast and reliable motion planners and controllers to sat-

isfy real-time implementation requirements. In this dissertation, we inves-

tigate the model-based motion planning and control techniques for robotics

problems involving contact, including multi-legged robot walking and ver-

tical climbing, item manipulation inside a cluttered environment, and self-

reconfigurable robot systems. Each of them can be formulated into a mixed-

integer nonlinear (non-convex) program problem for optimization solvers to

resolve.

In general, mixed-integer nonconvex programs are challenging to solve. In

this dissertation, we adopted several approaches including the decoupling ap-

proach, coupled approaches such as ADMM, and data-driven approaches. In

the end, we benchmark the performance of the proposed approaches on the

bookshelf manipulation problem. Through comparison of various approaches,

we show that the data-driven approach can potentially achieve a high success

rate, fast solving speed, and good objective function value, given that the new

problem is within the trained distribution. Planned trajectories are validated

on the hardware showing the planner’s capability of generating real-world fea-

sible trajectories.

ii

The dissertation of Xuan Lin is approved.

Lieven Vandenberghe

Veronica Santos

Tetsuya Iwasaki

Dennis W. Hong, Committee Chair

University of California, Los Angeles

2022

iii

To my amazing labmates, robots, and family members.

iv

TABLE OF CONTENT

1 Introduction . 1

1.1 Optimization and Learning based Motion Planning 1

1.2 Multi-model Legged Walking and Climbing Robots 3

1.3 Contributions . 4

1.4 Outline . 5

2 Background . 7

2.1 Model Based Motion Planning for Multi-limed Robots 7

2.1.1 Graph Based Planning . 8

2.1.2 Sampling based Planning 8

2.1.3 MICP Gait and Whole body Planning 9

2.1.4 NLP and LCS Planning . 10

2.1.5 Reinforcement Learning Based Planning 10

2.1.6 Supervised Learning Based Planning 11

2.1.7 Template based Dynamic Planning, ZMP, ICP, CWC . . . 12

2.1.8 Shooting methods through iterative local approximation

- DDP/iLQR . 14

2.1.9 Lyapunov function based methods 14

2.1.10 Combining different approaches 15

3 Introduction to SiLVIA and SCALER 17

3.1 Design and Manufacturing . 18

3.2 Software Construction . 20

v

3.2.1 State Estimation . 20

3.2.2 Control . 21

3.3 Testings . 22

3.4 Grippers . 24

4 Compliance Model of Multi-legged Robots 28

4.1 VJM for a Limb Stiffness . 28

4.2 Whole Body Stiffness . 31

4.3 Experiment for Stiffness Test . 34

5 Motion Planning Algorithm for Walking and Climbing 38

5.1 A Two Step Decoupled Planner 38

5.1.1 Vertical Climbing Problem Formulation 38

5.1.2 Problem Solving with Optimization 40

5.1.3 Optimization for Climbing Posture 43

5.1.4 Optimization for Pushing Force 45

5.1.5 Results . 47

5.1.6 Discussion . 53

5.2 A Coupled Planner with Data-driven Envelope Relaxation 54

5.2.1 Problem Setup . 54

5.2.2 Envelope Learning Algorithm 60

5.2.3 Training results . 66

5.2.4 Planning results . 69

5.2.5 Discussion . 71

5.3 Transition Planning . 72

vi

6 Motion Planning Algorithm for Multi-modal Multi-agent Self-reconfigurable

Robot System . 75

6.1 Background on Modular Re-configurable Robots 76

6.2 System Description . 77

6.3 Problem Formulation . 79

6.3.1 Integral Logic Constraints 81

6.3.2 Continuous Constraints 84

6.4 ADMM Formulation . 89

6.5 Results . 91

6.6 Conclusion: Why Do We Need Stronger Optimization Methods? 96

7 Data-driven Methods for Mixed-integer Non-convex Optimization: Al-

gorithms . 97

7.1 Background on Data-driven Methods for Optimization 97

7.1.1 Motion Library . 97

7.1.2 Parametric Programming 97

7.1.3 Learning Problem-solution Mapping 98

7.1.4 System Identification Approach 98

7.1.5 Online Formulation . 99

7.1.6 Solving Techniques for MICP and MINLP 100

7.1.7 Collision Avoidance with Mode Switch 102

7.2 Data-driven Methods for Fast Online Optimization: Algorithms 103

7.2.1 Complementary Formulation 105

7.2.2 MIP Formulation . 105

7.2.3 Conclusion . 108

vii

8 Data-driven Methods for Mixed-integer Non-convex Optimization: Ap-

plications . 109

8.1 Book Shelf Organization Problem 109

8.1.1 Problem Formulation . 109

8.1.2 Mixed-integer Formulations 114

8.1.3 Solving with Data-driven Methods 117

8.2 Mixed-integer Non-Convex Model Predictive Control 127

8.2.1 Dynamic Model . 127

8.2.2 Control Implementation 132

8.2.3 Learning for Warm Start 133

8.2.4 Experimental Results . 136

9 Conclusion . 146

9.1 Compliance Model . 146

9.2 Vertical Climbing . 146

9.3 Optimization Based Motion Planning 148

9.4 Data-driven Methods for Combinatorial Optimization 148

References . 150

viii

LIST OF FIGURES

3.1 Hexapod robot body dimension and position 18

3.2 The quadruped robot SCALER climbing on the rock-climbing wall 19

3.3 Software architecture for SCALER robot. 21

3.4 SCALER climbing test. 23

3.5 SCALER walking test. 23

3.6 Validation of open loop performance. 24

3.7 Grippers used for SiLVIA and SCALER. 25

3.8 Mechanical design of the spine gripper 26

4.1 Diagram of limb deformation. 30

4.2 Test of stiffness matrix . 34

4.3 Curve of cycle loading. 35

4.4 Result of stiffness testing. 36

5.1 Complete optimization formulation for vertical climbing problem 41

5.2 Visualization for climbing over steps on the walls. 49

5.3 Diagrams of the planned and V-rep simulated results for the re-

quired motor torque and coefficient of friction. 49

5.4 Visualization of climb and avoid an obstacle. 50

5.5 Hardware test for climbing and avoiding an obstacle. 51

5.6 Visualization and hardware test of climbing on non-parallel walls. 52

5.7 Feasible region for climbing on non-parallel walls. 53

5.8 Notations of force planning for robot climbing. 55

5.9 Clustering to find gridding regions. 59

ix

5.10 Optimization formulation of the coupled position and force plan-

ning problem . 60

5.11 The average fitness of the population for GA. 68

5.12 Motion plans generated by coupled position and force planner. . 69

5.13 Illustration of frames for transition planning. 73

5.14 SiLVIA walking to climbing transition 73

5.15 Visualization and hardware demonstration of planned transition

motion. 74

6.1 LIMMS visualization of concept. 78

6.2 LIMMS visualization of logic rules 1-12 and their implications. . 84

6.3 LIMMS results for 5 experiments. 87

6.4 LIMMS convergence of ADMM algorithm. 92

8.1 Complete formulation of the bookshelf organization problem. . 110

8.2 Solved scenes of bookshelves. 114

8.3 Visualized clusters using T-SNE. 120

8.4 Comparison of different learning algorithms. 122

8.5 Large angle turning trajectory and contact forces. 137

8.6 Forward walking trajectories and forces. 138

8.7 Velocity and angle trajectories of the forward walking task. . . . 139

8.8 Velocity and angle trajectories of the disturbance rejection task. . 140

8.9 Velocity and angle trajectories of the large angle turning task. . . 141

8.10 Approximation accuracy. 142

8.11 Hardware experiment for walking. 143

x

LIST OF TABLES

3.1 SiLVIA parameters . 17

3.2 SCALER parameters . 18

5.1 Specs for climbing and avoiding obstacle 52

5.2 Validation results for trained envelopes 68

5.3 Solving time for vertical two flat wall climbing 71

6.1 Table of optimization variables 80

6.2 Table of logic rules . 82

6.3 Solving time for experiment 1-4. 95

8.1 Benchmark Results . 116

8.2 Comparison of different solving techniques for the bookshelf

problem. 122

8.3 Segmentations of Non-convex Variables 124

8.4 Segmentations of the nonconvex variables 131

8.5 Average approximation accuracy 142

8.6 Problem sizes and solving speeds 145

xi

ACKNOWLEDGMENTS

The author would like to say thank you to:

My advisor, Dr. Dennis Hong, who has been giving me unconditional sup-

port during the years of my Ph.D. in RoMeLa.

My amazing labmates, who has given me support about my work, and all

kinds of things outside the lab. There are too many names, so do not put them

here in case I leave out some.

My Ph.D. committee members, who helped me with my Ph.D. journey.

All professors who had given me great lectures about different subjects in

which I am interested, especially outside the robotics and control fields.

My family members who keep on discussing with me about my plans.

And finally, I want to say thank you to myself. It has been a great challenge

to overcome all the hurdles and reach this point. But you have been doing a

great job. There are even bigger obstacles to appear. Be confident, you can take

them down.

xii

VITA

2013–2015 M.S., University of California Los Angeles

2009–2013 B.S., Harbin Institute of Technology

PUBLICATIONS

1) Xuan Lin, et al. “Multi-Limbed Robot Vertical Two Wall Climbing Based on

Static Indeterminacy Modeling and Feasibility Region Analysis.” 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

2) Xuan Lin, et al. “Optimization Based Motion Planning for Multi-Limbed

Vertical Climbing Robots.” 2019 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS). IEEE, 2019.

3) Y Shirai, X Lin, Y Tanaka, A Mehta, D Hong, “Risk-Aware Motion Planning

for a Limbed Robot with Stochastic Gripping Forces Using Nonlinear Program-

ming.” 2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS)/IEEE Robotics and Automation Letters 5 (4), 4994-5001

4) Xuan Lin, Gabriel I. Fernandez, Dennis W. Hong , “ReDUCE: Reformulation

of Mixed Integer Programs using Data from Unsupervised Clusters for Learn-

ing Efficient Strategies” 2022 IEEE International Conference on Robotics and

Automation (ICRA)

5) Shirai, Yuki, Xuan Lin, Ankur Mehta, and Dennis Hong. “LTO: Lazy Trajec-

tory Optimization with Graph-Search Planning for High DOF Robots in Clut-

tered Environments.” 2021 IEEE International Conference on Robotics and Au-

tomation (ICRA)

xiii

6) Xuan Lin, Min Sung Ahn, and Dennis W Hong, “Designing Multi-Stage

Coupled Convex Programming with Data-Driven McCormick Envelope Relax-

ations for Motion Planning” 2021 IEEE International Conference on Robotics

and Automation (ICRA)

7) Jingwen Zhang, Xuan Lin, and Dennis W Hong, “Transition Motion Plan-

ning for Multi-Limbed Vertical Climbing Robots Using Complementarity Con-

straints” 2021 IEEE International Conference on Robotics and Automation (ICRA)

8) Yusuke Tanaka, Yuki Shirai, Zachary Lacey, Xuan Lin, Jane Liu, Dennis

Hong, “An Under-Actuated Whippletree Mechanism Gripper based on Multi-

Objective Design Optimization with Auto-Tuned Weights” 2021 IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems (IROS). IEEE, 2021.

9) Xuan Lin, Gabriel I. Fernandez, Dennis W. Hong, “Multi-Modal Multi-Agent

Optimization for LIMMS, A Modular Robotics Approach to Delivery Automa-

tion.” 2022 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems (IROS)

10) Yuki Shirai, Xuan Lin, Alexander Schperberg, Yusuke Tanaka, Hayato Kato,

Varit Vichathorn, and Dennis Hong, “Simultaneous Efficient Contact-Rich Grasp-

ing and Locomotion Optimization Enabling Free-Climbing for Multi-Limbed

Robots.” 2022 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS)

11) Yusuke Tanaka, Xuan Lin, Yuki Shirai, Alexander Schperberg, Hayato Kato,

Alexander Swerdlow, Naoya Kumagai, and Dennis Hong, “SCALER: A Tough

Versatile Quadruped Free-Climber Robot.” 2022 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS)

xiv

CHAPTER 1

Introduction

1.1 Optimization and Learning based Motion Planning

Robots need to plan and control their motions to complete given tasks au-

tonomously. During the process, Legged robots or manipulators will need to

constantly interact with the environment such as to control the body posture,

manipulate the objects, make connections between robot modules, etc. In prac-

tical applications, the problem usually comes with solving time limitations, but

can easily scale up. Our current tools of discrete optimization do not generally

meet those requirements even when the problem scale becomes slightly larger,

e.g. robot model becomes more complex, or the number of agents becomes

larger. In this thesis, we first develop optimization-based motion planning

techniques to solve motion planning problems, mostly for legged robots, and

implement the trajectories on the actual hardware. We then combine learning

methods to speed up the optimization solving process for a few combinato-

rial optimization problems coming from practical robotics applications. This

framework is developed in the hope that it may be scalable to more compli-

cated combinatorial motion planning problems.

Common method to tackle motion planning problems include graph search

methods [1], Lyapunov-function-based nonlinear control based methods [2,3],

sampling based methods [4], optimization based methods [5–12], and learning

based methods [13, 14]. In addition, researchers exploit combinations of the

aforementioned methods to tackle complex problems [15]. For example, many

of the classical graph search and control based methods suffer when the di-

1

mension of the problem becomes high. This may be remedied by optimization

based methods [10].

As a relatively new technique, optimization based methods are being used

to plan motion for multi-robot systems [16], legged robots [5–12], self-driving

cars [17], and so on. Typical optimization based approaches such as mixed-

integer convex programs (MICPs) [7, 18], nonlinear or nonconvex programs

(NLPs) [6, 9, 19] and mixed-integer NLPs (MINLPs) [20] offer powerful tools to

formulate motion planning problems. Those formulations are handed to the

solvers for solutions. However, each optimization scheme has its own draw-

backs. NLPs tend to suffer from local optimal solutions. In practice, local opti-

mal solutions can sometimes have bad properties, such as inconsistent behavior

as they depend on initial guesses. Mixed-integer programs (MIPs) are a type

of NP-hard problem. Branch-and-bound is usually used to solve MIPs [21].

MIP solvers seek global optimal solutions, therefore, having more consistent

behavior than NLP solvers. For small-scale problems, these algorithms usually

find optimal solutions within a reasonable time [7, 22]. On the contrary, MIPs

can require impractically long solving times for problems with a large num-

ber of integer variables [23]. MINLPs incorporate both integer variables and

nonlinear constraints, hence, very expressive. Unfortunately, we lack efficient

algorithms to tackle MINLPs. Many practical problems require a solving speed

of at most a few seconds. As a result, it is difficult to implement most of the

optimization schemes online for larger-scale problems.

Learning based methods are typically used to identify features and discover

heuristics that help to find solutions for a rather complicated systems. Typical

learning methods includes supervised learning, unsupervised learning, rein-

forcement learning, or imitation learning. Given sufficient training data, su-

pervised learning can be used to train a map from the problem feature to the

robot walking gait [24], optimal cost-to-go [25, 26], mixed-integer strategies

2

[27,28], lyapunov functions for stabilizing controller [29], and so on. Unsuper-

vised learning methods are relatively less explored, but can be used to identify

modes from data and construct piece-wise convex functions. Typical usage

can be seen in piece-wise affine (PWA) system identification [30–33], and is

recently expended to solve nonlinear programming problems [34]. The dif-

ference of using clustering methods for system identification versus solving

nonlinear optimization is that the former cares clusters in the parameter space

while the latter cares clusters in the solution space. Reinforcement learning

methods has been explored for locomotion [35, 36], manipulation [37] and has

demonstrated impressive performance on real hardware. However, the data

efficiency, convergence guarantee are still among many open and challenging

problems along this line.

Recently, researchers explore learning methods to help the optimization

solvers, mixed-integer optimization solvers in particular, to find solution faster

[27, 28, 38–40]. These approaches help to implement integer programmings

from middle to large scale onto robotic systems that have solving speed re-

quirements.

1.2 Multi-model Legged Walking and Climbing Robots

Walking and vertical wall climbing robots are applicable in many situations,

such as surveillance, search and rescue, and building maintenance. Since wheeled

vehicles can move fast on flat surfaces, wheeled robots have been experimented

with for wall climbing [41] [42]. Like many wheeled robots, non-legged wall-

climbing robots are impeded by uneven surfaces, limiting their capabilities.

Many animals found in nature demonstrate fast and agile climbing with their

limbs. Legged animals can climb up highly unstructured environments as well

as traverse on ground. They are also able to jump onto and grab structures

3

using only their hands, demonstrating highly mobile motions that non-legged

robots cannot even attempt. Much of the research on climbing robots started

by mimicking animals [43] [44], and then gradually the systems became more

complex. The most recent advancement is [45] which presented a 35 kg robot

with 4, 7-degree-of-freedom limbs, climbing on smooth surfaces with a gecko

type gripper and rough surfaces with micro-spine gripper. When generating

climbing motions, many researchers in the field resort to templates [46] [47].

Templates are used to study the dynamics of climbing. Its implementation is

currently limited to light, low degree-of-freedom robots. The climbing mo-

tion for more complex, high degree-of-freedom robots is still quasi-static [45].

When climbing an environment not seen before, the robot needs to carefully

plan its steps and torque based on the environment to find a trajectory to reach

its objective. Thus, wall climbing becomes a motion planning problem. This

line of work was started by [4], which presented an algorithm based on a more

classical graph search method listed in the previous section.

1.3 Contributions

This dissertation proposes methods to formulate various problems including

multi-limbed robot walking and climbing, item manipulation inside a clut-

tered environment, and self-reconfigurable robot system, into mixed-integer

nonlinear (non-convex) programs (MINLPs). First, a model of the proposed

robotic system is formulated including kinematics, dynamics, or compliance.

Next, the model is resolved by optimization solvers. Different approaches such

as decoupling, ADMM, and data-driven approaches are proposed and imple-

mented. Finally, we benchmark those methods on a bookshelf organization

problem to understand their performances such as capability to find a feasible

solution, solving speed, and optimality. For each of the problems mentioned

above, we implemented the planned trajectories on the actual robot hardware

4

to demonstrate real-world feasibility.

1.4 Outline

In chapter 3, the design of the robot being used throughout this series of re-

search is presented. The state estimation and control methods for this robot

are also presented. The robot is tested with various tasks such as open loop

walking, weight lifting, and walking on uneven terrains for its strength, speed,

and stability. There are two versions of this multi-legged robot: one six-legged

older version (SiLVIA), and one four-legged newer version (SCALER). This dis-

sertation will focus on SiLVIA. Some results will be demonstrated for SCALER.

In chapter 4, a robot whole-body model considering joint compliance is pre-

sented. This model allows calculations for the joint and body center of mass

deflections. In particular, it allows the calculations for contact forces when the

robot is climbing between two walls. Hardware testing results for simple two-

wall climbing are shown. In chapter 5, we formulate the mixed-integer pro-

grams to tackle the motion planning tasks for the multi-legged robot to climb

up on uneven terrains and avoid obstacles. We also investigated planning tran-

sition gait from the ground to the wall using complementary constraints, and

use data to speed up mixed-integer planner with envelope constraints. In 6,

we presented a motion planner on a self-reconfigurable robot system named

LIMMS, which is a larger-scale problem than robot climbing. We investigated

ADMM as a coupled kinodynamic planning approach. In each chapter, the

hardware demonstrations are included.

From chapter 7, we investigated data-driven methods to further improve

the feasibility, optimality and solving speed of the optimization schemes. In

chapter 8, we applied the data-driven methods to two problems involving con-

tact. One is the bookshelf organization problem, which is an item manipula-

5

tion problem involving contact. The other one is a mixed-integer non-convex

model-predictive control problem on SCALER. We showed the benchmark re-

sults using various proposed methods with the bookshelf problem. Finally,

chapter 9 concludes the thesis and discusses the ongoing work and future

works.

6

CHAPTER 2

Background

2.1 Model Based Motion Planning for Multi-limed Robots

Multi-limbed robots use discrete contact points to navigate through the envi-

ronment. Compared to their wheeled counterparts, they are less limited by

the type of terrain and are more mobile in uneven or discrete terrain such as

stairs. However, since the trajectory of limbed robots is composed of discrete

contact points as well as the order of limb sequence (gaits), continuous path

planning techniques such as potential field-based methods [48] that are used

for wheeled robots do not directly apply. The current literature typically use

graph search methods [1], integer programming methods [18], linear comple-

mentary planning methods [49] or learning methods [50, 51] to treat the gait

and contact point planning.

In addition to kinematics, it is also important to plan contact forces on each

contact point as this is typically important for the stability of legged robots. To

plan contact forces, a dynamic robot model is typically required. For bipedal or

quadruped robots with trot gait, the intrinsic dynamics is unstable, and com-

monly used models include ZMP, capture point, and SLIP models. For hexapod

robots, a dynamic model is usually not required since the intrinsic dynamics is

stable for tripod gaits. On the other hand, if the limbed robots are subject to

heavy load, non-negligible deformation can happen to the robot body and legs.

In this case, the whole body compliance model is considered, as introduced in

the next chapter.

7

2.1.1 Graph Based Planning

Graph-based motion planning operates on graph models of the environment

or physics. These methods naturally fit the tasks of legged robot footstep plan-

ning as legs make discrete contacts to the environment. Typical algorithms

include A∗ [52], ARA∗ [53], D∗ [54], R∗ [55], and so on. The footstep planning

work done on ASIMO [56] first introduced A∗ for bipedal robot footstep plan-

ning. Later work includes [1] which proposed A∗ algorithm which allows par-

tial feet contact implemented on ATLAS and Valkyrie humanoid robots. Using

graph search based methods to plan dynamics is not straightforward, hence

it is somewhat rare to see this line of research include robot COM dynamics

as stated in [1]. One approach will be designing simple heuristics for body

dynamics and introducing the cost function.

2.1.2 Sampling based Planning

Graph based planning methods work well for low-dimensional problems. How-

ever, as the method requires gridding the configuration space, as the dimension

of the problem gets higher, the number of grids required for solving the prob-

lem grows exponentially. This so-called curse of dimensionality makes many

grid-based methods unable to solve the problem with configuration space more

than tens. Sampling based methods such as PRM [57], RRT [58] are invented

to deal with static motion planning problems in relatively higher configura-

tion space. This set of methods uses samples to speed up the exploration of

space and connect the samples in a collision-free manner, resulting in a map

(PRM) or a tree (RRT). Sampling based methods will work well even with a

dimension of configuration space at tens. Problems such as 6-7 DoF manipu-

lator motion planning are friendly to this method. When first proposed, they

focus on finding a feasible trajectory. PRM* and RRT* methods [59] are later

8

proposed which keeps on finding more optimal trajectories. One drawback of

these methods is that it relies on efficient samples to discover feasible solu-

tions. If the configuration space contains narrow tunnels (this tends to happen

when equality constraints appear), this chance of getting feasible samples dra-

matically decreases. These algorithms also suffer from planning problems with

dynamics as the sampling efficiency also drops significantly. One approach to

improve sampling efficiency relies on simulating the system forward [60].

2.1.3 MICP Gait and Whole body Planning

Another common approach to planning footstep positions is to use mixed-

integer programs. Contact planning includes a series of on-off constraints

which can naturally be formulated with binary variables and big-M formu-

lation. If those binary variables are relaxed into continuous variables and the

problem is convex after relaxation, the formulation is mixed-integer convex.

There exist efficient off-the-shelf solvers to solve mixed-integer convex pro-

grams such as Gurobi, CPLEX, etc. This line of work is started by [25], where

mixed-integer quadratic programming is used to plan the footsteps given collision-

free contact regions followed by a nonlinear program for the upper body mo-

tion. The upper body motion with pure kinematics can easily be incorporated

into MIQP formulation [7]. Full kinematics can be incorporated using the ap-

proach proposed by [61]. If the problem scale is small, the solving time for

MIPs is relatively fast. However, the MIP worst solving time grows expo-

nentially as the number of discrete variables gets larger. Moreover, the solv-

ing time is dramatically slower after introducing the nonlinear dynamic con-

straints which are typically approximated with McCormick envelopes [62]. For

a problem with a reasonable scale, MIPs with envelopes can take hours to solve

[23]. In this thesis, we try to introduce learning methods as a remedy.

9

2.1.4 NLP and LCS Planning

Nonlinear programs (NLPs) are the most natural approach to dealing with non-

linear dynamics constraints. NLPs solvers typically use sequential quadratic

programs (SQPs) or interior point based methods which do not guarantee to

find a feasible solution and will likely result in a local optimal if it does find the

solution. On the other hand, NLPs typically can be solved faster than the MIP

formulation of the same problem [61]. If contacts exist, NLPs can incorporate

complementary constraints which may be termed linear complementary sys-

tems (LCS) if other constraints are linear. Complementary constraints enforce

orthogonality between continuous variables, effectively making them discrete.

However, complementary constraints are known to be numerically difficult for

NLP solvers hence special treatments are typically required [63].

This line of work includes [19] which solves robot motion plans with full

kinematics and center of mass dynamics. [64] which incorporates complemen-

tary constraints for contact planning, and [6] which plans contact time for each

leg. A more recent work implements NLP formulations online [65]. This for-

mulation is simplified to minimize the nonlinearities and added a regulariza-

tion term through offline extracting heuristics from simulation data [66]. A

non-simplified NLP formulation for walking is still too slow to solve online for

MPC. In this situation, one can simplify the model and implement convex MPC

[67].

2.1.5 Reinforcement Learning Based Planning

Reinforcement learning (RL) based methods have draw more attention from

robotics researchers and have been implemented on real hardware for quadruped

robots [35, 68], bipedal robots [36, 69, 70], and manipulation [37, 71, 72]. If the

RL controller works on the actual hardware, it can demonstrate good perfor-

10

mance which other controllers would take effort to realize. However, RL-based

controllers are usually nontrivial to implement on the hardware. For example,

[35] specifically trained a neural network to represent the actuator dynamics

and use that network to train policies in the simulator. [68] trained a teacher

policy network and a student policy network. It is mentioned in this paper that

training a rough-terrain locomotion policy directly via RL was not successful

due to sparse reward. In [69] the RL policy network is trained to mimic refer-

ence trajectories which are collected offline using direct collocation methods.

Moreover, RL-based methods usually require a large amount of data for train-

ing. For robotics problems, the most practical approach to collect those data

would be to run the simulation. However, simulators introduce additional sim-

to-real gaps as almost none of the current simulators represents precisely the

parameters on the actual hardware.

2.1.6 Supervised Learning Based Planning

Reinforcement learning methods require the learning agents to actively explore

the action space to collect good trajectories. On the other hand, data can be

collected in advance offline, then a learning agent can be trained to operate

online. Typical approaches include training to mimic certain parameters in

the trajectory. For example, [24, 73] uses supervised learning to map feedback

signals to the Bezier coefficients of the desired trajectory. Another approach is

to train an agent to partially solve a combinatorial optimization problem. For

example, [39] solves a mixed-integer program by training a network to propose

candidate integer variables and solve multiple convex optimizations online.

11

2.1.7 Template based Dynamic Planning, ZMP, ICP, CWC

For planning with dynamic systems, the aforementioned methods for static

motion planning tend to suffer. Effectively, a dynamic system has different ob-

stacle constraints defined differently at any location in the configuration space.

When dealing with this problem, researchers usually try to simplify the sys-

tem dynamics into so-called templates which can hopefully be resolved with

regular controller design techniques like LQR.

For the problem of legged robots locomotion, typical templates used are the

rimless wheel, inverted pendulum, spring-loaded inverted pendulum (SLIP),

and so on [74]. These simplified dynamic models help to capture the essential

part of robot dynamics, design simple controllers, prove stability. The most

famous example probably is the Raibert controller on the SLIP model [75]. The

Raibert controller utilizes 2 control inputs: linear spring position and hip an-

gle, to control a 2D hopping robot. Simple as it is, it has shown impressive

dynamic performance on robots back in the 80s. Even nowadays, these heuris-

tics are still used to plan the leg footstep positions [76, 77].

Aside from templates, another approach to get simple controller heuristics

is to investigate rigid body dynamics for the whole robot (ignore e.g. leg swing

dynamics) and make assumptions. A good example that is also very successful

is zero moment point (ZMP) [78]. ZMP uses rigid body dynamics assuming

the flat ground, constant center of mass height, and foot does not collide with

the ground. With those assumptions, the dynamic equations become linear

permitting simple stability criterion.

ZMP can be used to plan dynamic motion for bipedal robots or quadruped

robots. Hexapods usually have more than 3 contact points on the ground,

hence do not need such a stability rule. Usually, it is sufficient to guarantee

stability for hexapods if the center of mass is within the support polygon. If

12

the terrain is not flat, an extended support polygon can be used [4].

Instantaneous capture point (ICP) [79] which computes the position to make

a step to recover the body posture based on the linear inverted pendulum

model. Based on the principle to regulate the orbital energy to zero after mak-

ing one step, criteria can be obtained indicating when to take a step (when

the capture point is outside the convex hull of the foot support area), where

to take a step (the base of support covers the capture point), and how many

steps are required. With a linear inverted pendulum model plus a flywheel,

the capture point will grow to a capture region. However, for quadruped robots

and hexapods which are more stable than bipedal robots, capture point based

methods can provide heuristics but are seldom used as principle control meth-

ods [80].

Another stability criterion more general than ZMP is the contact wrench

cone (CWC) [81, 82]. In fact, the most general criterion for contact failure

should be the frictional failure of the contact force field on the foot. The ZMP

criterion effectively simplifies this assuming the robot walks on the flat ground

and ignores slipping failure. In [83], the authors have shown that the failure of

the contact force field is equivalent to the failure of the contact wrench cones

on each of the vertex of the convex foot shape. This yields more general stabil-

ity criteria that can work on the non-flat terrain as well as taking into account

the sliding failure, but can still be relatively easy to compute [82]. For typical

quadrupeds or hexapods with point foot contact, this criterion is reduced to

simple friction cone failure criterion. However, for climbing robots that equip

grippers, this failure criteria can still be used.

13

2.1.8 Shooting methods through iterative local approximation - DDP/iLQR

One set of methods that takes use of the advantage of close-form control so-

lution for LQR problems is the differential dynamic programming (DDP) [84]

and iterative LQR (iLQR) [85] methods. Those methods would make the quadratic

approximation of the value functions and linear approximation of the dynam-

ics given an initial trajectory. As a result, the LQR problem has a closed-form

solution, which is then integrated forward to update the trajectory. The pro-

cess is repeated until it converges. One limitation of the DDP-type methods

is that it does not directly deal with the constraints, e.g. in the control signal

domain. Some researches have been done to alleviate this limitation [86]. In

addition, these methods are developed for smooth dynamics. To use them for

legged robot motion planning, one will need to extend the algorithm to hybrid

systems. Works along this line came out recently using e.g. saltation matrix

[87].

2.1.9 Lyapunov function based methods

Lyapunov function based method is a typical method for controller design on

nonlinear systems. The basic idea is to search for a Lyapunov function that is

positive definite by itself but the derivative is negative definite, resembling the

energy of the system. If those conditions can be satisfied, we not only find valid

control inputs but also rigorously prove the stability of the controller as well

as retrieve its region of attraction.

The challenge of Lyapunov function based methods is that since the alge-

braic form of the function is not explicitly defined, it is impossible to search

over each candidate. One has to restrict the form of Lyapunov functions to a

subset, typically quadratic forms. If the coefficients of the Lyapunov functions

are predetermined, the searching problem is reduced to quadratic programs

14

(QPs) where the small-scale ones can be efficiently solved online for control

inputs. These methods are named control Lyapunov functions (CLFs) [3, 88],

control barrier functions (CBFs) [89]. These methods have been used on safety

critical systems [90, 91], bipedal walking [92, 93], hopping [94], etc.

If one would like to search the control signal simultaneously with the Lya-

punov functions, the optimization problems become nonlinear programs which

are significantly more challenging. One approach is to use sum-of-squares pro-

grams (SOS) [95] and restrict the controllers and Lyapunov functions to poly-

nomials.

Except for Lyapunov function based methods, other nonlinear control meth-

ods can also be used to do whole body control for walking robots with contact

such as hybrid zero dynamics [96].

2.1.10 Combining different approaches

Previous sections provide various methods to resolve motion planning and

control problems. Each of them has assets and drawbacks. To resolve more

complicated problems, combinations of those methods are reasonable. For

example, [97] combines LQR controller with randomized tree search (RRT)

blending in information from the region of attraction analysis. [93] combines

RRT* with control Lyapunov functions to search for generating feasible mo-

tions on uneven terrain. [98] proposes a hierarchical planning framework where

a high-level DQN-based planner coordinates the low-level gradient-based con-

troller to plan reactive manipulation. [99] developed a hierarchical planner

where the high-level planner uses Random Possibility Graph that quickly ex-

plores potential actions to aid the low-level planner. [5] combines MICP for

footstep planning and NLP for body dynamics planning to allow a humanoid

robot to walk over uneven terrains in the DARPA robotics challenge. [10] com-

15

bines a high-level graph search method and low-level mixed-integer program-

ming method to solve obstacle-free trajectories that improved the solving speed

compared to a nominal MICP solver.

16

CHAPTER 3

Introduction to SiLVIA and SCALER

This chapter introduces the multi-legged robots that are used for walking and

climbing tests throughout the research. There are two versions of the multi-

legged robot. The older version is a six-legged robot, named SiLVIA: Six Legged

Vehicle with Intelligent Articulation. The newer version is a four-legged robot,

named SCALER: Spine Enhanced Climbing Autonomous Legged Exploration

Robot. SiLVIA is used mostly for two-wall climbing. SCALER is used mainly

for the research of climbing on a rock-climbing wall with spine-enhanced grip-

pers and state estimation tests. The author led a team to design SiLVIA, and

manufactured most of the Aluminum components. SCALER is mainly de-

signed and manufactured by Yusuke Tanaka, although sharing the same code

framework with SiLVIA.

Table 3.1: SiLVIA parameters

Parameter Value
Degree of Freedom for Each Limb 3

Limb Coxa Length 57 [mm]
Limb Femur Length 195 [mm]
Limb Tibia Length 375 [mm]

Weight 10.3 [KG]
Motor Proportional Gain P 12

Motor Integral Gain I 0
Motor Derivative Gain D 0

Max Torque 25 [Nm]

17

Table 3.2: SCALER parameters

Parameter
Value

Walking Climbing

Degree of freedom for each limb 3 7

Total weight 6.3 [kg] 8.8 [kg]

Body mass 2.5 [kg]

One leg total mass 0.95 [kg] 1.57 [kg]

Motor pair max torque 10 [Nm]

Figure 3.1: Hexapod robot body dimension and position

3.1 Design and Manufacturing

The robotic platform SiLVIA used in this study is a hexapod design with a

central body frame and 6 limb assemblies, as shown in Fig. 3.1. The central

body frame consists of aluminum brackets interconnected with carbon fiber

tubes. Each limb has 3 degrees of freedom and consists of a coxa, an upper

femur, and a lower tibia assembly. The tibia and femur assemblies are made

with carbon fiber tubes and are connected by a dual motor assembly.

Thirty-six MX-106 motors have been used in pairs for actuation. The stall

torque for each motor pair is approximately 25.0 Nm. The robot carries its

own battery, computer, and IMU. It weighs 10.3 kg. The robot’s end effectors

are covered by 60 grit sand paper to enhance friction. The parameters of the

robot are summarized in Table 3.1.

Another hardware platform used for climbing on a single rock-climbing

wall is shown in Fig. 3.2. This platform has a quadruped design with each limb

18

Figure 3.2: The quadruped robot SCALER climbing on the rock-climbing wall

a 5-bar-linkage to increase the leg strength. The strength of actuation is further

improved with the paired Dynamixel XM430-350 motors which is light weight

(160kg) but deliver more than 10Nm continuous torque. The SCALER robot

body also has 1 degree of freedom which enlarges the workspace of each limb.

When walking, each limb has 3 degree of freedom with actuators all placed

nearby the shoulder to decrease the leg swinging momentum. When climb-

ing, the wrist is equipped with additional 3 degree-of-freedom actuation and

a gripper based on micro-spine design [100]. This type of gripper is very good

at grasping onto rough surfaces. The wrist is also equipped with FT sensors

allowing it to control the contact forces. SCALER weights 6.3kg for walking

configuration, and 8.8kg for climbing configuration including grippers. It is

able to carry over 3kg payload for climbing.

19

3.2 Software Construction

Both SiLVIA and SCALER are equipped with various sensors: force-torque sen-

sors on the wrists (SCALER only), a body IMU sensor, Dynamixel actuators en-

coders, and sensors for the grippers (SCALER only), all of which are handled

in a corresponding dedicated I/O thread.

The Dynamixel servos and GOAT gripper modules (SCALER only) are con-

nected over RS-485 and to the CPU via a USB bus. Due to the large number of

Dynamixel motors, the communication frequency with the encoders is capped

to 150Hz, which is sufficient for the targeted tasks. All other sensors run at

over 400Hz.

Joint space position control is either done on the Dynamixel actuator or on

the CPU which runs our custom position controllers that generate position or

velocity control inputs to the actuators. Though the communication frequency

limits the control frequency, joint velocity control allows the robots to perform

more aggressive motions.

3.2.1 State Estimation

State estimation is used for walking to provide full state feedback so that an

MPC controller based on [67] can be used instead of explicit wrench references.

Legged State Estimation(LSE) is implemented from [101] which takes IMU, F/T

sensor, contact detection, and encoders along with kinematics, and provides

pose and velocity estimations using an Extended Kalman filter. A diagram of

software architecture is shown in Fig. 3.3. Body and foot trajectories can be

generated either manually or by optimization-based planners [7] outside of the

current SCALER software structure.

20

IMU

Abs.
Encoders

F/T *Admittance Control

LSE *MPC

Body Angle
PID Control

Motor Control
• Position
• Velocity

GOAT Gripper Control
• Position
• Current-based
• Stiffness model-based

Interpolator

SCALER
Kinematics

Potentiometer
Rotary/Linear

FF Gravity
Compensation

�

Sensor
Workspace
Joint space
Gripper Space

Figure 3.3: Software architecture for SCALER robot.

3.2.2 Control

Admittance control is implemented as operational space force control to track

a contact reaction force or wrench trajectory. Specifically:

Md ẍ +Dd ẋ +Kd(x− x0) = fmeas −Fref (3.1)

Where Md , Dd and Kd are desired mass, damping and spring coefficients. Fref

is the wrench profile to be tracked. x is the position of the robot end-effector.

The control output of (3.1) is ẍ which is integrated allowing position or veloc-

ity control. When Kd = 0, (3.1) tracks the reference force profile Fref which

can be used to track contact force on the gripper. When Fref = 0, (3.1) tracks

the reference position trajectory x0(t) with compliance which mitigates the im-

pact during walking. Due to gear backlash, the force control struggles to track

rapidly changing force profiles (e.g., a square wave of more than 10 Hz). This

control bandwidth suffices for low-speed tasks such as climbing that experi-

21

ence less frequent force reference changes. A technique to auto-tune the con-

troller gains is proposed in [102].

3.3 Testings

In this section, we present results for open-loop tests where the robot demon-

strated capabilities of robust locomotion without any feedback. These capabil-

ities have been demonstrated before on the hexapod robot RHex [103] with a

unique leg design. Despite its impressive terrain traverse capabilities, RHex’s

leg has only 1 degree of freedom hence incapable of tasks which requires more

careful footstep planning.

Figure 3.6 shows a few moments of SiLVIA robot performance testing. We

demonstrate that SiLVIA can walk over uneven terrains, walk up/downstairs

(walking upstairs is more difficult) all with open loop gait. SiLVIA can also lift

a 20kg weight which is 2.3 times its own mass. With suction cups attached to

its feet, SiLVIA can attach itself to the white board very reliably and perform

tasks. The main factors of such capabilities are that SiLVIA has 6 legs which

gives extra stability and support of its body on uneven terrains. In addition,

SiLVIA use dual Dynamixel 106 motors which has large gear ratio and enor-

mous torque output given its weight. The strength and stability makes the

climbing tasks described afterwards possible.

The testings on SCALER are mainly focused on fast walking, walking with

payload and single wall climbing. Due to the linkage design, the robot is able

to walk stably with a payload of more than 13kg as shown by Fig. 3.5. When

walking at full speed, it is able to exceed 0.56m/s. Comparison tables of the

walking speed and payload between different robots can be seen in [104]. This

robot has decent performance even comparing to the famous quadruped robots

such as ANYMAL and SPOT. In addition, this robot can climb onto a single

22

(a) 90 degrees climb
with 3.4 kg payload.

Weight

(b) Upside down climbing.

Figure 3.4: SCALER climbing test.

t=0.5st=0s t=1.0s

t=2.0st=1.5s t=2.5s

Figure 3.5: SCALER walking test.

rock-climbing wall perpendicular to the ground as shown by Fig. 3.2. It is also

able to climb upside-down, or climb with a payload of more than 3kg shown

by Fig. 3.4. The climbing speed is 0.42m/min. This speed is significantly

faster than Lemur 3 which is a climbing robot of similar size and similar type

of gripper [45].

23

Figure 3.6: Validation of open loop performance. Left up: SiLVIA walk over
uneven terrain using open loop gait. Right up: SiLVIA walk down stairs using
open loop gait. Left down: SiLVIA lift a 20kg weight which is 2.3 times it own
mass. Right down: SiLVIA equipped with suction cups is attaching itself on
the white board.

3.4 Grippers

Both SiLVIA and SCALER are equipped with micro-spine grippers. The de-

sign of the grippers are similar to [105]. Previous works [105–110] has done

comprehensive modeling and design works on spine-based grippers. However,

there is one key difference between the way we use the spine gripper and the

way previous works use the spine gripper. The main difference is that the ap-

proach [105–110] takes assumes the gripper has a preferred direction. The

spines are angled to maximize the adhesion force. These spines are placed

throughout the palm of the gripper [107], and the way the gripper approaches

to the rock surface and grip is consistent with the spine preferred direction.

Based on their model [106], minimizing the normal pushing force from the

springs to the spines is preferred since extra normal force will decrease the

spine adhesion force. On the other hand, all our grippers operates under large

24

Figure 3.7: Grippers used for SiLVIA and SCALER. Left: SiLVIA gripper which
has a 3 finger design. Right: SCALER gripper which has a 2 finger design.

extra normal force [100], shown by figure 3.7. The function of our gripper

is leaning more towards increasing the coefficient of friction. According to the

model [106], the amount of extra normal force exerted on the gripper will make

the gripper completely non-functional. Therefore, modifications are required

on the previously published models.

We identify three forces acting on the gripper. The gripping force f g is de-

fined as the force between the gripper and the surface of the environment when

no external force is acting on the gripper. For magnet type of grippers, this force

corresponds to the magnetic force. For our spine based gripper, even under

minimal external load, the spines will insert into the microscopic gaps on the

surface, generating a significant amount of shear force. We assume that f g has

pure shear components. f e is the external load on the gripper generated by

the robot limb. f r is the sole reaction force between the surface of the envi-

ronment and the gripper. Due to the spines, we assume that this reaction force

is a frictional force and is subject to friction cone constraint. For many other

grippers (e.g., suction cups, magnetic grippers), the ultimate gripping forces

are also frictional forces. Thus, our force model is generalizable. The forces on

the gripper should satisfy:

− f r = f g + f e (3.2)

A gripper may play two roles. First, it can increase the coefficient of friction

25

���� �������	
�

��
�
�

��
�
������	�����
	�����

����	

�	���
���

��
�

��
�
�

�

�
�

��
�
�

�		��	

��

��
�

�

Figure 3.8: Mechanical design of the spine gripper

between the surface of the environment and the toe, relaxing the constraint on

f r . It may also provide f g to increase the reaction force. Equation 3.2 indicates

that the gripping force f g can increase the reaction force if f e is fixed. This

decomposition allows the planner to take into consideration gripping forces

explicitly.

In this work, we assume that gripping forces by spine grippers is a function

of the gripper orientation and the coefficient of friction. This is because with a

microscopic view, how the spine touches the surface has a significant influence

on the gripping force [105,106]. Hence, the state s is a four-dimensional vector

with s = [α,β,γ,λ]> where α, β, γ are the rotation angles along x, y, z axis that

are defined in 3.8, respectively. λ is the coefficient of friction of the surface.

Although the gripper generates the shear and the normal force on the environ-

ment, the normal force by our grippers is relatively small. Thus, we assume

that the grippers generate only shear adhesion.

Here, we assume that the shear force follows Gaussian distribution. Given

a data set S = {s1, · · · ,sn} with the measured shear forces yg =
[
y
g
1 , . . . , y

g
n

]>
, the

shear force f g by a gripper can therefore be modeled as:

f g(s) ∼ GP (µg(s),κg(s,s∗)) (3.3)

where, f g =
[
f
g

1 , . . . , f
g
n

]>
, n is the number of samples from a GP.

µg(s) =
[
µ
g
1(s), . . . ,µgn(s)

]>
is the mean and [κg]i,j = κg

(
si ,sj

)
is the covariance

26

matrix, where κg(·, ·) is a positive definite kernel. In this work, we employ the

squared exponential kernel as follows:

κg
(
si ,sj

)
= σ2

f exp

−1
2

∣∣∣si − sj ∣∣∣2
`2

 (3.4)

where σ2
f represents the amplitude parameter and l defines the smoothness of

the function f g .

Here, letD = [s1, · · · ,sn]> be the matrix of the inputs. In order to predict the

mean and variance matrix at D∗, we obtain the predictive mean and variance

of the shear force by assuming that it is jointly Gaussian as follows:

f̂
g

= E [f g (D∗)] = κ>∗
(
KD + σ2

n I
)−1

yg (3.5)

Σ̂
g

= V [f g (D∗)] = κ∗∗ −κ>∗
(
KD + σ2

n I
)−1

κ∗ (3.6)

where κ∗ = κg (D∗,D), KD = κg (D,D), κ∗∗ = κg (D∗,D∗), and σ2
n is the variance of

the Gaussian observation noise with zero mean.

27

CHAPTER 4

Compliance Model of Multi-legged Robots

For climbing robot motion planning, a whole body model is required to rea-

son the contact forces. This is especially true for the two-wall climbing case

[111]. For two-wall climbing, the robot requires a contact force between its

feet and the wall to keep itself from falling down, essentially squeeze itself be-

tween walls. Such a “squeezing" force comes from compliance as a result of

P-controlled motors. One key feature of this contact force is that it is statically

indeterminate with 3 or more contact points to the environment, meaning one

cannot solve them without a proper compliance model for the robot [112]. This

section derives the stiffness matrix of one of the robot’s limbs in order to calcu-

late the contact force. We then show how the whole body stiffness is obtained

from individual limb stiffness.

4.1 VJM for a Limb Stiffness

We derive the limb’s stiffness matrix in Cartesian space using VJM as done by

[113]. The stiffness matrix describes the spring-like behavior of the robot’s

limb, assuming the shoulder is fixed with a force exerted on the end effector

and each joint angle is regulated by position control. The mathematical defini-

tion of the 3D stiffness matrix is given by:

f = KδX (4.1)

where δX is the tiny shift in position at the end effector due to limb deforma-

tion, and f is the reaction forces on the end effector. Note that the definition

28

is based on the fact that there is a fixed-end constraint on the limb shoulder,

which is consistent with the mechanical design (Fig. 3.1).

For position controlled motors, if the motor position is regulated with only

a Proportional (P) gain, the joint behaves like a torsional spring, whose spring

constant is proportional to motor’s P gain. For the P gain used for climbing, the

robot structures are considered rigid, and the majority of the limb compliance

can be lumped into the joint compliance.

Given a robot limb that has N degrees of freedom with point contact only

(no torque exerted on end effector), the standard Jacobian matrix J is a 3 ×N

matrix. If the deformation of the robot limb is small enough, one can assume

that the deformation is linear elastic. Thus the relationship between linear de-

flection on the end effector and the rotational deflection (similar to the rotation

angle of a torsional spring) on each joint is:

δX = Jδθ (4.2)

where δθ is the rotational deflection on each joint.

The relationship between reaction forces on the end effector and the resul-

tant torque on each motor is:

τ = JT f (4.3)

If the P-controlled motors are modeled as torsional springs with spring co-

efficient kis, the motor rotational deflection angles are:

δθi =
τi
ki
, i = 1...N (4.4)

or

29

Figure 4.1: Diagram of limb deformation. The upper half shows the forces and
deformations of the robot bracing between walls. The dashed line shows state
1, while the solid line shows state 2. The enlarged view shows the deformation

of the robot limb, where
−−→
CE represents state 1,

−−−−→
C′W represents state 2, and

−−−−→
C′E′ represents state 3.

δθ = k−1τ (4.5)

where:

k = diag(ki), i = 1...N (4.6)

Therefore, from equation 4.2, plugging in equation 4.5 and 4.3, and then

comparing it with equation 4.1, we have:

K = (Jk−1JT)−1 (4.7)

Note that the stiffness matrix from equation 4.7 will be symmetric and pos-

itive definite.

30

4.2 Whole Body Stiffness

In this subsection, the whole body stiffness matrix is assembled.

When a multi-limbed robot is climbing between 2 walls quasi-statically,

each pose may be analyzed in two states. State 1: a human is holding the robot

body while the its limbs stretch out to its commanded position with no wall

contact. State 2: the wall is pushed in to its position and the human releases

the robot’s body. The difference between the commanded end effector position

and the wall’s position deforms the robot’s limbs, and the body’s center of mass

has a deflection, e.g. the sag-down due to gravity. This causes the coordinate

system attached to the body’s center of mass to shift and rotate by a small

amount, from XYZ to X ′Y ′Z ′. This physical process is depicted in Fig. 4.1,

where
−−→
CE represents state 1,

−−−−→
C′W represents state 2.

From standard elasticity theory, the movement from state 1 to state 2 con-

tains two components: one due to rigid body movement (translation and ro-

tation) and the other due to deformation. For this reason, the wall movement

does not equal to the amount of deformation for limbs. To depict the correct

deformation vector, we need to get rid of the rigid body movement portion.

To do so, state 3 is introduced, which starts from state 2 but removes the wall

while keeping the body fixed, depicted by
−−−−→
C′E′ . State 3 is a transition state

which releases all the deformation, so that the movement from state 1 to state

3 only contains rigid body motion. Let the translational part of it be from
−−→
CE

to
−−−−→
C′E′′ , and the rotational part be from

−−−−→
C′E′′ to

−−−−→
C′E′ . Denote body’s center

of mass deflection by δCM = [δdCM ,δθCM]T , in which
−−−→
CC′ =

−−−→
EE′′ = δdCM is

the small displacement and δθCM is the small rotation. The wall-imposed de-

flection on limb i is denoted by δi_wall , which is a known input. From state 1, if

we first move the limb in parallel along δdCM to get
−−−−→
C′E′′ , then rotate it to get

−−−−→
C′E′ , we reach state 3. Then the wall deforms E′ by δi_def orm to reach W (state

31

2). Therefore δi_def orm is the correct deformation vector for limb i, resulting in:

f
i

= Kiδi_def orm, i = 1...N (4.8)

Note this equation assumes the limb is subject to a fixed-end constraint at

its shoulder, which is consistent with the way stiffness matrices are defined.

From Fig. 4.1:

δi_def orm = δi_wall − δi_rigid , i = 1...N (4.9)

Wall motion δi_wall is a known input. To get δi_def orm, we seek an expression

for δi_rigid . Let Rd be the rotation matrix from frame XYZ to frame X ′Y ′Z ′.

Then the end effector displacement due to body rotation is
−−−−→
E′′E′ = Rdr i − r i ,

where r i = [xi , yi , zi]T =
−−−−→
C′E′′ . Then we have:

δi_rigid = δdCM + Rdr i − r i , i = 1...N (4.10)

When the rotation angles in δθCM are infinitesimal, it can be shown [114]

that Rd may be represented to the first order as:

Rd =


1 −δθCMz

δθCMy

δθCMz
1 −δθCMx

−δθCMy
δθCMx

1

 (4.11)

Where δθCM = [δθCMx
,δθCMy

,δθCMz
]T . Note this matrix is first order uni-

tary.

Plugging equations 4.11 and 4.10 into equation 4.9:

δi_def orm = δi_wall − [I PTi]δCM , i = 1...N (4.12)

32

where:

Pi =


0 −zi yi

zi 0 −xi
−yi xi 0

 (4.13)

And by equation 4.8 the reaction force on the end effector is:

f
i

= Ki(δi_wall − [I PTi]δCM), i = 1...N (4.14)

The static equilibrium equations are:

N∑
i=1

f
i
+Ftot = 0 (4.15)

N∑
i=1

(r i × f i) +Mtot = 0 (4.16)

Where Ftot is the total load force and Mtot is the total load torque.

Plug equation 4.14 into equation 4.15 and 4.16 to get

AδCM =

 FtotMtot

+
N∑
i=1

 Kiδi_wall

PiKiδi_wall

 (4.17)

Where:

A =
N∑
i=1

 Ki KiPTi

PiKi PiKiPTi

 (4.18)

is the whole body stiffness matrix. Equation 4.17 relates the body’s center of

mass deflection to its loading, plus a deformation input describing the effect of

the imposed wall deflection.

As a result, the complete stiffness model can be summarized by equation

(4.7), (4.13), (4.14), (4.17), and (4.18).

33

Figure 4.2: Test to retrieve stiffness matrices for SiLVIA leg on a CNC machine

Compared to previous works, especially [115] and [116], VJM, instead of

MSA, is adopted to model the limb stiffness. Mobile robots tend to operate

in uncertain environment and do not require high precision control. VJM

method, although less accurate than MSA, models much faster, expediting its

implementation. Additionally, the deformation input δi_def orm is introduced

as the difference between commanded end effector position and wall position.

The robot’s limb can actively change δi_def orm by changing its commanded po-

sition to avoid failure.

4.3 Experiment for Stiffness Test

In order to test the theoretical results, experiments are established to measure

the stiffness matrix of the robot limb. The experiment is done on a 3 axis CNC

machine.

Figure 4.2 illustrates our setup. The robot limb is fixed at point A through

the machine gripper, while hinged at point B by a ball joint. This ball joint en-

sures that no moment can be transferred from the fixture, thus simulate a pure

friction contact. The ball joint is connected to the vise, which can move relative

to the gripper at 3 axes. The z axis is along vertical direction, with positive up-

34

Figure 4.3: Curve of cycle loading demonstrating the gear backlash of SiLVIA
motors

wards, while the x axis is along horizontal direction, with positive to the right.

The amount of displacement is controlled by the machine. If we displace the

robot limb along one axis, we get reaction force at end effector, which is mea-

sured by a ATI mini45 6 axes force/torque sensor. By doing single axis loading

test, we can retrieve 2 components in the stiffness matrix. Therefore, through

2 axes loading test, we are able to build the 2 by 2 stiffness matrix. When the

single axis test is conducted, point A and B are shift relative to each other up

to 2 inch, with a 0.025-inch step, thus 8 data points are measured.

First, a cycle loading test is conducted to test the impact of backlash. Start-

ing from zero load condition, the limb is loaded 2 inch along -Z direction first,

and gradually unload and load 2 inch along +Z direction. The reaction force

is measured at 0.025-inch step. One set of data is depicted in Figure 4.3, mea-

sured at θ1 = 70° and θ2 = 50°. It is noticed that when unloaded, the 0 reaction

force point is shifted. The experiment is repeated several times, and this phe-

nomenon reappears with the same amount of loading, thus the author thinks

it’s due to the motor backlash (instead of plastic deformation). We can tell from

Figure 4.3 that for the robot of our size, the zero reaction force point can shift

2.5mm due to backlash. This issue needs to be taken into consideration when

the robot is climbing.

35

Figure 4.4: Result of stiffness testing: stiffness matrices and its eigenvalues

Since the motor has a backlash, the joints are preloaded to get rid of it when

we measure stiffness matrices. The preload is subtracted out from the data

points, and the slopes are averaged to compute stiffness coefficients, i.e.

k =
1
n

n∑
i=1

F −Fpreload
δ − δpreload

(4.19)

We load the robot limb at 12 different configurations, the result is listed in table

I. The result eigenvalue curves are plotted in Figure 13. All testes are repeated

at least twice to make sure the data are repeatable. Stiffness matrix K is put as:

K =

Kxx KxyKyx Kyy

 (4.20)

We can tell from the experiment result that the stiffness coefficients do de-

pend considerably on limb configurations. For example, Kxx in configuration

11 is 30 times as much as it is in configuration 1. Although the idea behind this

36

model is motivated by structure compliance, it will be valuable to gauge what

portion of compliance ellipsoid is actually contributed by structure compli-

ance instead of joint compliance. By assuming that the all structure elements

are perfectly rigid, and model the joint compliance into torsional springs with

stiffness coefficients K1 and K2, one can derive analytical expression for com-

pliance matrix induced only by joint compliance. From 2 sets of experiment

data, K1 and K2 can be identified, and pure joint compliance matrices are com-

puted to compare to experiment data. With this method, we roughly gauge the

structure compliance to comprise to 30% of the total compliance.

37

CHAPTER 5

Motion Planning Algorithm for Walking and Climbing

Having set up the robot model, we formulate the optimization problem for ver-

tical two-wall climbing in this section, and solve it with mixed-integer convex

solvers.

5.1 A Two Step Decoupled Planner

5.1.1 Vertical Climbing Problem Formulation

5.1.1.1 Safety Factor for Climbing

One difference in wall climbing from walking is that wall climbing is a high-

risk task. Falling down from a climb is likely to not only damage the robot

and its environment but also injure people. When in a non-controlled envi-

ronment, several uncertainties may cause climbing to fail unexpectedly. For

instance, the friction coefficient can never be measured precisely, or there may

be unexpected external load e.g. , wind. In our analysis wall-climbing tasks

are typically static postures since the process happens slowly. However, there

still exist velocities which may cause the end effector to disengage or over-

torque. For this reason the authors propose the notion of safety factors for

wall-climbing motions. In order to motion plan, it not only needs to satisfy the

nominal constraint but also needs to satisfy the safety factor constraint.

Similar to finite element analysis, the safety factor is generated by analyzing

each posture of the motion and calculating the ratio of the current index over

the critical failure index. In this paper, we investigate a robot climbing between

38

two walls with frictional contact, and the two failure modes are insufficient

friction (slip) and motor over-torque. Therefore, there are two safety factors to

consider. Imagine being able to gradually reduce µ from the nominal value to

the critical value µc, when the robot is about to slip. This provides us with a

notion of the safety factor with respect to the coefficient of friction, Sµ, defined

in equation (7). Similarly, if we imagine lowering the motor torque limit τmax

from its nominal value to a critical value τc, which is right before the motor

over-torques. We can define another safety factor with respect to the motor’s

max torque, Sτ , defined by equation (8).

Sµ = µ/µc (5.1)

Sτ = τmax/τc (5.2)

These notions are first introduced in our previous paper [111], where it

can be retrieved graphically from feasibility region analysis. In this paper, we

formulate a convex optimization problem to plan for the amount of pushing

forces that satisfy the safety factor constraints for each planned robot pose.

5.1.1.2 Complete Formulation of the Planning Problem

In Fig. 5.10, we present here the complete mathematical formulation of motion

planning problem for M-rounds climbing between walls with friction, where

part of the decision variables, Γp, are

Γp = {p
i
[j], p

COM
[j], Θb[j] | i = 1, . . . ,N, j = 1, . . . ,M} (5.3)

and the other part of decision variables, Γf , are

39

Γf = { δCOM[j], f
i
[j], δi_wall[j], Ki[j]

| i = 1, . . . ,N, j = 1, . . . ,M }
(5.4)

for each round j, it plans body’s center of mass (COM) position p
COM

[j], body

orientation Θb[j], body deflection δCOM[j] and the ith limb’s toe positions p
i
[j],

the limb stiffness matrices Ki[j], the contact forces f
i
[j], and limb deflections

δi_wall[j], where i is the limb index.

Constraint A and B limit the range of travel between rounds. In constraint C,

we approximate the limb workspace by a ball. v is the vector from robot body’s

COM to the first joint of the limb. Constraint D ensures the toe lies on a feasible

contact region on the wall. In this paper, we assume perfect knowledge of

the wall geometry, i.e. its mathematical expression is available to the planner.

Constraint E represents inverse kinematics. Constraint F is equation (4.7), the

limb stiffness matrix based on VJM. Constraint G is equation (4.17) (4.18) (4.13),

the whole body stiffness model. Constraint H is equation (4.14) which relates

limb contact force with its deflection. Constraint H, I, J, and K ensure the safety

factor constraint in Section 5.1.1.1 is satisfied.

Given the results from [6], the complete problem may be solvable with a

single NLP solver. Instead of doing that, we chose to separate the problem

into two parts that solve an MICP/NLP problem first and then solve a series of

standard convex optimization problems, as demonstrated in the next section.

5.1.2 Problem Solving with Optimization

Several papers e.g. [6, 19, 65] have demonstrated the power of NLP solvers be-

ing able to solve various nonlinear motion planning problems. However, NLP

solvers can easily get trapped by local minima if the problem is complicated.

We noticed that in the optimization problem constraint F can be numerically

40

hard for optimization solvers, especially due to potential singularity issues.

Therefore, we chose to naturally decouple the problem into two sections at

constraint F, as indicated on the left of Fig. 5.10. The first section is composed

of constraint A, B, C, D. This is similar to a standard walking motion planning

problem and can be solved by an MICP or NLP solver given the vast existing

literature. The second section including constraint G, H, I, J, K. Given all toe

positions and body posture, this part is a standard force distribution problem

[117], and can be formulated into a standard convex optimization problem that

can be easily solved. In this setup, the constraint F along with constraint E are

evaluated algebraically after solving the first section of the problem and are

not fed into any optimization solver. By doing so, we sacrifice some optimality,

which can be seen in the following form:

Figure 5.1: Complete optimization formulation for vertical climbing problem

minimize
Γp Γf

f (Γp,Γf)

subject to h1(Γp) ≤ 0

h2(Γp,Γf) ≤ 0

41

The constraint h1 ≤ 0 denotes the part that is to be solved in the first part

of the optimization problem while h2 ≤ 0 in the second part of the problem.

Compared to an NLP solver that takes care of both sets of constraints simulta-

neously, in our 2-step setup constraint h1 ≤ 0 is solved independent of h2 ≤ 0.

This means an optimal solution to h1 ≤ 0 may render h2 ≤ 0 non-optimal. How-

ever, we choose to solve this problem in such way since it has several advan-

tages:

1. Interpretability The two problems have clear and distinct physical inter-

pretations. The first part focuses on solving a series of postures, while

the second part optimizes for how much force the robot needs to exert

on the wall. If at one round the solver fails, it is clear why the planner

fails, and part of the feasible solutions may still be used. Whereas for an

NLP solver, if it returns infeasible, it tends to return results that can’t be

utilized and with no interpretable information.

2. Adaptability The first part of the problem is identical to the motion plan-

ning problem for legged walking. Thus, it easily connects to the vast lit-

erature of walking robot motion planning. Only the second part depends

on end effectors for climbing, which can be easily reformulated if the end-

effector is swapped.

3. Speed Decoupling the problem into two parts turns a bulk part of the

problem into convex optimization problems, which can be solved effi-

ciently. This can be justified by Table 5.1.

In the next two sections, we introduce detailed formulations for each part

of the problem.

42

5.1.3 Optimization for Climbing Posture

Given a goal configuration during wall climbing, a pre-defined number of pos-

tures M to reach it should be computed under the constraints of step size, kine-

matics, and toe contact points within feasible contact regions. To simplify the

task of assigning toe contact points, we divided feasible contact regions into

several pre-computed convex constraints represented by Arpi ≤ br with per-

fect knowledge of structured wall geometry, where r is the index of feasible

contact region. The IRIS algorithm [5] used for typical walking robot motion

planning problem, is also able to compute these regions with perception. The

entire optimization problem for climbing posture is formulated as follows:

minimize
Γp, H

(q[M]−q
g
)TWg(q[M]−q

g
) +

M−1∑
j=1

(JCOM + JROT + JS)

subject to for j = 1, . . . ,M,

∆p
min
≤ ‖p

COM
[j]−p

COM
[j − 1]‖2 ≤ ∆p

max

∆Pmin ≤ ‖pi[j]−p
i
[j − 1]‖2 ≤ ∆Pmax

∆Θmin ≤Θb[j]−Θb[j − 1] ≤ ∆Θmax

‖p
i
[j]−p

COM
[j]−Rv‖2 ≤ ∆FK

Hr,i[j] ⇒ Arpi ≤ br
R∑
r=1

Hr,i[j] = 1 Hr,i ∈ 0,1

where ∆p
min

, ∆p
max

, ∆Pmin, ∆Pmax, ∆Θmin, ∆Θmax ∈ R3 are bounds for the

toe, body’s COM and orientation step sizes. ∆FK ∈ R is the radius of the limb

workspace ball. For each round, H ∈ {0,1}R×6 is taking on integer values to

assign toes to feasible contact regions where R is the number of feasible contact

43

regions. The conditional constraint about Hr,i is represented using a standard

big-M formulation.

In terms of cost function, the first term is introducing the distance of the

last round from goal configuration where q[M] = [p
1
[M], . . . , p

6
[M]] while q

g

is the goal configuration. The shifting amounts JCOM , JROT and JS of body’s

COM, orientation and toe positions are added to avoid turning or climbing too

far in one single step, as the second term of cost function:


JCOM = ∆pT

COM
WCOM∆p

COM

JS =
6∑
i=1

∆pT
i

Ws∆p
i

JROT = ∆ΘT
b WROT∆Θb

where WCOM , Ws, WROT and previous Wg are weights used to tune the op-

timizer. Except rotation matrix R computed from Θb[j], which has a non-

linear constraint, other parts forms an MICP, since they are either linear or

quadratic (convex). To address the nonlinearity, linear approximation of R for

Θb[j] = [α,β,γ] is used as follows:

R(Θb[j]) =


1 −γ β

γ 1 −α

−β α 1

 (5.5)

This approximation is valid for applications involving small rotations which

is reasonable for wall-climbing applications that do not require large rotations.

The error is under 3% while angles are smaller than 10◦ using the Frobenius

norm of a matrix to compare the similarity between linearly-approximated and

exact rotation matrix.

When large changes in the body orientation are expected, linearization of

the rotation matrix becomes invalid. In this case, NLP can be used. We formu-

44

lated our NLP according to [6] without considering the dynamic model. More-

over, NLP can easily handle non-convex terrains, e.g. , round tubes, which

extends the application of our work.

5.1.4 Optimization for Pushing Force

After the posture planner is finished, the inverse kinematics, constraint E, and

the stiffness matrix, constraint F, may be evaluated directly. Since those con-

straints are complicated and may have numerical stability issues due to the

inverse of the matrix, we avoid directly placing it in a gradient based solver.

The second part of algorithm tackles the problem of how much force each limb

needs to exert on the wall. We use a pre-defined gait to go from one planned

posture to the next one. The robot lifts one leg and puts it on the wall, pushes

the body upwards, then lifts another leg, and repeats. We pick 12 critical in-

stants between two postures for the force planner to investigate: 6 instants after

the robot lifts one leg and 6 instants after the robot pushes its body up. The

planner is formulated into a series of standard convex optimization problem so

that it can be solved efficiently.

In Section 5.1.1.1 the notion of climbing motion safety factors, Sµ and Sτ ,

are proposed. Since the two safety factors are inversely related: pushing harder

against the wall will increase Sµ but decrease Sτ and vice versa. We would like

to guarantee that the safety factors are above a value larger than 1 while having

a weight to tune the pushing force. This can be formulated as:

45

maximize
τi f i

Sτ +wSµ

subject to |τi | ≤ τmax/Sτ

nTi f i
≥ 0

‖f
i
− (nTi f i)ni‖2 ≤ (µ/Sµ)(nTi f i)

Sµ ≥ 1 , Sτ ≥ 1

where ni is the wall normal vector at toe i, and w is the weight to trade-off

between the two safety factors. If we define Sτ_inv = 1/Sτ , we can write the

torque constraints into a linear form. Although the friction cone constraint

itself is convex, adding in frictional safety factor Sµ as an optimization variable

makes it non-convex. Thus we set a constant Sµ, which shrinks the friction

cone. We put normal reaction forces nTi f i into the objective function. By tuning

the amount of normal reaction force, the effective friction cone constraint can

be made looser or tighter. Stated formally:

minimize
δCOM f

i
δi_wall τi Sτ_inv

Sτ_inv −w
N∑
i=1

nTi f i

subject to AδCOM =

 FtotMtot

+
N∑
i=1

 Ki

PiKi

δi_wall
f
i

= Ki(δi_wall − [I PTi]δCOM)

τ i = J(θi)
T f

i

0 ≤ Sτ_inv ≤ 1

|τi | ≤ Sτ_invτmax

nTi f i
≥ 0

‖f
i
− (nTi f i)ni‖2 ≤ µ(nTi f i)/Sµ

46

Increasing w makes the normal reaction force higher. This loosens the fric-

tion cone bound, since the required shear force (fz in Fig. 4.1) is static deter-

minate (half of the gravity G). Decreasing w increases Sτ , while tightening the

friction cone bound. This problem is convex and can be solved quickly with a

global optimal guarantee. According to our trial and error hardware testing,

a lower bound of Sµ = 1.8 provides sufficient safety against the coefficient of

friction.

5.1.5 Results

We present here three scenarios that we investigated using our planner: climb-

ing over steps on the walls, climbing on the walls while avoiding obstacles,

and climbing on non-parallel walls. All results are validated on actual hard-

ware with properly tuned weights. In each experiment, the walls are covered

by rubber pads and the robot toes are covered by anti-slip tape, which gives a

frictional coefficient µ around 1. A body posture regulator based on IMU ori-

entation feedback and PID control is utilized for the robot body to track the

planned orientation. No other feedback is used. Due to the stable but slow

one-leg gait, the climbing speeds in all cases are around 20 cm/min.

5.1.5.1 Climbing over steps on the walls

In this scenario, we let the robot climb between two walls at a distance of

1230mm but with a 40mm thick by 200mm high step on both walls. The wall

has multiple feasible contact surfaces, but the robot doesn’t need to rotate for

this task. Therefore, MICP is used for planning the robot posture with the body

orientation kept flat. However, the robot does need to adapt to the tightening

of the walls’ distance between the walls. On the steps, the robot doesn’t push

as far out to prevent over-torque. Fig. 5.2 shows the planned series of postures,

47

visualized in MATLAB, as well as associated hardware testing scenarios.

To verify the contact force optimization results, the setup of the robot climb-

ing onto the steps is simulated in V-rep. Fig. 5.3 plots the planned with the

simulated torque curves and the critical friction coefficient µc as defined by

equation (5.2) with their failure boundaries for 3 consecutive legs. The torque

plotted is the maximal torque among three motors of one leg. When a certain

leg is lifted and in the air, the planned torque is set to zero because lifting is

achieved by the controller instead of planner. Simulated torques for the lifted

leg is negligibly small compared to the torques when it is on the wall so that

we can tell lifting phase from these curves. And the frictional factor is also

zero with no friction generated for the lifted leg. In Fig. 5.3 (a), the maximal

torques of right middle (RM) and right back (RB) legs decrease after right front

(RF) leg finished lifting phase (between the shaded interval). With one leg in

the air, other legs need to achieve larger contact force to avoid slipping. Once

the lifted leg reaches its goal position, contact force would be re-distributed to

the 6 legs on the wall. As we can tell, due to the complexity of contact, µc tends

to exceed the planned values, which is the reason we weighted more on friction

than torque. The non-smoothness of the data is in part due to the toe rubbing

on the wall (caused by the physics simulator) and to the overshoot of PID body

posture controller. Some points of the curves are above the boundaries, but the

robot will not slip or over-torque if this is not continuous.

48

Figure 5.2: Visualization and hardware testing of planning results for climbing
over steps on the walls.

Figure 5.3: Diagrams of the planned and V-rep (Bullet 2.83 engine) simulated
results for the required motor torque τc (maximum of 3 motors, diagram (a))
and coefficient of friction µc (diagram (b)) for a single leg. The plotted data
is for right front (RF) leg, right middle (RM) leg, and right back (RB) leg. The
shaded regions are when the robot lifts a certain leg and put it on the next posi-
tion, and white regions are when the robot pushes its body up. The plot shows
failure points (red dashed line), planned curves (blue line), and simulation re-
sults (black line). The arrow (green) indicates the margin due to planned safety
factor. The results demonstrate a general correspondence of planned and V-rep
simulated results.

49

5.1.5.2 Climbing on the walls while avoiding obstacles

This scenario focuses on planning the climbing direction and orienting the

body to avoid an obstacle between the walls, obstructing a direct path. The

planned results are visualized in Fig. 5.4. The robot doesn’t need to rotate its

body more than 20 degrees to complete the task; thus, MICP with a linearized

body rotation matrix is applied. Due to the obstacle, the feasible contact region

shrinks. We manually divide each wall into three convex regions: the upper,

middle, and lower rectangle. For each round, the toe position is optimized

within one of the three regions selected by the MICP planner. Currently, the

robot does not have any vision sensor. In the future, this division can be pro-

vided by a perception system, and the complete process will be automated. The

hardware test is shown in Fig. 5.5.

Figure 5.4: A series of trajectories generated by the MICP motion planner for
the six-legged robot to climb up between two walls while avoiding an obstacle.
Red and blue dots show the planned toe positions, and the hexagons show the
body orientation. Three postures are detailed on the right with planned contact
forces (blue arrows) along with the nominal friction cones (red).

50

Figure 5.5: Hardware test for climbing and avoiding an obstacle. The robot
starts underneath the obstacle, as shown in the top figure, and then it angles
its body and climbs forward and up simultaneously, as shown in the middle
and bottom figures.

The MICP plans 8 rounds for this problem. Within each round, the robot

lifts each leg once and pushes up the body for 6 times. Hence, the serial convex

optimizer plans the force 12 times for each round and 96 times in total. Some

statistics for this planner is shown in Table 5.1 (taken on an Intel Core i7-8750H

machine). Since the bulk of the problem is convex, the total solution speed is

decently fast. We point out here that a single NLP solver will need to deal with

the same amount of variables and constraints; thus, a similar or slower speed

is expected (refer to Table I in [6]).

5.1.5.3 Climbing on non-parallel walls

An interesting variation of the two-wall climbing problem is when the walls

are no longer parallel. Ideally, we want the robot to take use of two walls at

an arbitrary angle and climb up. This section demonstrates that our planner

51

Table 5.1: Specs for climbing and avoiding obstacle

Solver Variables Constraints T-Solve * Total T-Solve

Posture Planner
(MICP - 8 rounds)

Gurobi
480

(192 continuous
144 binary)

1002 420 ms
1380 ms

Force Planner Gurobi
5856

(61 x 96)
10368

(108 x 96)
960 ms

(10 ms x 96)

* Include problem set-up time

can be used to plan the climbing motion when two flat walls are at a horizontal

angle α. We pick α = 20 degrees and implement the planning results on the

hardware, shown in Fig. 5.6. Additionally, we are interested in retrieving a

feasible climbing region regarding the given horizontal angle α and the wall

coefficient of friction µ. We fix the distance between the two middle legs, and

solve this problem by running the planner at discrete grid points for α and µ,

and label each point feasible/infeasible. Fig. 5.7 shows the result when the

robot is at its own weight without payload (10.3kg). In the plot, the shaded

region shows where the robot succeeds, and the rest can be divided into where

the robot fails to provide enough force, or fails kinematically (i.e. , some toes

cannot reach the walls). This result demonstrates that our planner can be ex-

tended to broader two-wall cases and possibly to climbing up poles or trees

where α = 180 degrees.

Figure 5.6: Visualization and hardware test of planning results for climbing on
non-parallel walls with α = 20 degrees.

52

Figure 5.7: Feasible region for climbing on non-parallel walls.

5.1.6 Discussion

By decoupling the problem into two parts, we sacrifice some optimality. How-

ever, this makes the solver easier to tune. The feasibility region (as shown in

[111]) for this problem is pretty narrow. Therefore, it is critical to find the

proper weights in the force planner. Since our force planner is convex and

interpretable, the difficulty of tuning the weights is attenuated.

To enable the posture planner to plan according to contact force, we can

fuse constraints G through K into the posture planner. This will hopefully en-

hance the optimality of the solution returned. Additionally, we plan to develop

a perception system that maps the wall and retrieves its geometry information.

This combined with the planner may automate the complete climbing process

and ensure the robot can track the motion plan. Given the solving speed of our

algorithm, it could be implemented online to constantly re-plan. We also inves-

tigated the problem of climbing spirally up inside a tube with an MICP/NLP

solver as the posture planner, which requires the robot to rotate its body by

large angles. This will be published in future papers. Other future works in-

clude extending the safety factor design principle to other types of grippers

e.g. , gecko type or microspine, comparing and combining MICP and NLP,

etc. Dynamics could be added into the planner, if dynamic climbing is desired.

53

However, we show that if the planner resolves more than rigid body dynamics,

e.g. , body compliance, a good option is to decouple the algorithm according to

the physics, and resolve them hierarchically.

5.2 A Coupled Planner with Data-driven Envelope Relaxation

In the previous section, we presented a decoupled 2-stage planner with kine-

matics planning as the first stage and force planning as the second stage. While

this planner is fast, one issue is that the first stage kinematics planner can make

the second stage force planner infeasible since it has no knowledge of the ex-

istence of the second stage. One example is that if the kinematics planner put

the contact force inside an infeasible area (e.g. coefficient of friction equals

to zero), then the force planner would not be able to find a solution. In this

section, we add coupling between the 2-stage planners. Specifically, we ap-

proximate bilinear torque constraints as McCormick envelopes and add them

to the first stage planner.

5.2.1 Problem Setup

Similar to the last section, a multi-limbed robot is assumed to make N point

contacts (i.e. pure contact force, no contact moment) with the environment.

We denote the contact points with index i where i = 1, ...,N . We model the

environment with polygon meshes (e.g. a triangular mesh is depicted in Fig.

5.8).

Additionally, we assume that mesh i’s vertices (corresponding to the limb

i in contact with the mesh) are denoted by viu , where u is the indices of the

vertices, u = 1, ...,U and U is the number of vertices for mesh i. The normal

direction ni can be retrieved via a perception system. If we define pwi to be the

position of toe i within mesh i with respect to the world frame:

54

pwi =
∑
u

pwiuviu ,
∑
j

pwiu = 1, pwiu ∈ [0,1] (5.6)

If we define pbi to be the position of toe i with respect to the origin of the

body coordinate system, we have:

pwi = pCOM + pbi (5.7)

where pCOM is the position of the center of mass (COM) with respect to the

origin of the global coordinate system.

Figure 5.8: A robot making 3 contacts with the environment, subject to grav-
ity. Contact planes are represented by triangular meshes with vertices vsj(i, j =
1,2,3). Fsn, Fsy , Fsz are constant vectors along the normal and two pre-defined
shear directions. The three contact points form a contact triangle.

Let the contact force on limb i be denoted by fi . Since ni is known, we

can define two mutually perpendicular shear directions yi and zi , which can

be pre-defined for every mesh. The three directional vectors form a local mesh

coordinate frame, and the contact force can be represented as fi = fin+fiy+fiz in

the mesh frame, where fin is the normal force, and fiy and fiz are the shear force

components. Define Fin, Fiy , Fiz as constant vectors along the normal and two

55

shear directions on mesh i, we can express the dimensional force components

using the non-dimensional force components fin, fiy , fiz as fik = fikFik , k =

n,y,z. The total contact force is:

fi =
∑
k=n,y,z

fikFik (5.8)

Similarly, defining Px, Py , Pz as constant vectors along the 3 axes of the

world frame, pbi can be expressed as:

pbi =
∑
j=x,y,z

pbijPj (5.9)

Both position and force characteristic quantities are chosen such that pbij ∈

[−1,1], fik ∈ [−1,1].

Also note that equation (5.8) and (5.9) non-dimensionalized the force and

position variables fi and pbi into quantities fik and pbij . This is suggested before

utilizing certain mathematical operations to avoid unit mismatch as seen in

[118].

Having set up the contact positions and forces, whole body constraints can

be imposed. The robot motion is assumed to be quasi-static, thus the robot is

always subject to the static equilibrium constraint:

N∑
i=1

fi + F = 0 (5.10)

N∑
i=1

pbi × fi + M = 0 (5.11)

where F and M are known external forces (gravity G in this work) and mo-

ments. COM is also assumed to always be at the geometric center, irrespective

56

of the robot limb motion.

Equation (5.11) introduces a bilinear term pbi × fi . Utilizing (5.8) and (5.9),

the bilinear term can further be expressed as:

pbi × fi =
∑
j=x,y,z

∑
k=n,y,z

pbijfikPj ×Fik (5.12)

To isolate the bilinear terms, let the moment variables be:

mijk = pbijfik (5.13)

where mijk’s are the moment components. Plugging (5.13) into (5.12), and fur-

ther back into (5.11) results in:

N∑
i=1

∑
j=x,y,z

∑
k=n,y,z

mijkPj ×Fik + M = 0 (5.14)

In the predominant case where legged robots are not equipped with grip-

pers on its toes, the point contacts with the environment are pure frictional

contacts. When the robot places its toes, the contact forces are subject to fric-

tion cone constraints. Given (5.8) and defining µ as the friction coefficient, the

constraint can be written as:

√
f 2
iy + f 2

iz < µfin (5.15)

To plan a complete quasi-static motion to the specified goal, the motion

planner generates a series of “key frames"—body COM positions, body orien-

tations, and footstep positions—to the goal position. The number of key frames

is pre-specified as M, and each key frame posture needs to satisfy kinematics

57

constraints. Between two consecutive key frames, step size constraints are en-

forced. Similar to [7], the following constraints are used:

for r = 1, . . . ,M,

∆p
min
≤ ‖p

COM
[r]−p

COM
[r − 1]‖2 ≤ ∆p

max

∆Pmin ≤ ‖pi[r]−p
i
[r − 1]‖2 ≤ ∆Pmax

∆Θmin ≤ ‖Θb[r]−Θb[r − 1]‖2 ≤ ∆Θmax

‖p
i
[r]−p

COM
[r]−R[r]v‖2 ≤ ∆FK

(5.16)

where Θb[r] is body orientation, ∆p
min

, ∆p
max

, ∆Pmin, ∆Pmax, ∆Θmin, and ∆Θmax

are bounds for the toe, body COM, and orientation step sizes. The limb workspace

is simplified into a sphere, with ∆FK ∈ R its radius. v is the constant shoulder

vector from body COM to the first joint of the limb (depicted in Fig. 5.8). R[r] is

the rotation matrix as a function of Θb[r]. We assume the body rotation angles

are small (< 15 degrees), thus the rotation matrix can be linearized in terms of

Θb[r] = [α,β,γ] [7].

In summary, there are kinematics constraints (5.16) (convex), (5.6) (5.7)

(5.9) (linear), static equilibrium constraints (5.8) (5.10) (5.14) (linear), with ad-

ditional constraints (5.13) (bilinear), and friction cone constraints (5.15) (con-

vex). The objective function minimizes the distance of the planned final con-

figuration to the goal configuration and penalizes the step size in similar fash-

ion as [5][7]. Let us denote the complete problem by P . This problem is

parametrized by θ which is the terrain geometry viu . Fig. 5.8 illustrates the

scene and the notations that are used in this paper. For simplicity, the decision

variables are grouped into two sets -

kinematics variables Γp = { p
i
[r], pij[r], p

COM
[r], Θb[r] } and force variables

Γf = { fi[r], fik[r], mijk[r] }.

58

Figure 5.9: The proposed approach to find BF inside the intersection of solu-
tion set Fi ’s and exclude infeasible solution set Fi ’s. While we can finely grid
the variable space and accurately approximate Fi ’s in each grid (shown in F1
plot), the proposed approach results in less integer variables.

A standard approach to convert bilinear constraints into MICPs is to grid

the variable space (shown in Fig. 5.9 with F1) and use McCormick envelopes

to approximate the nonlinear constraint inside each grid. This approach accu-

rately describes solutions for any problem parameter θ, but introduces hun-

dreds of binary variables into the optimization problem [61], hence solving

speed is slow. We solve problem P by introducing a 2-stage convex optimiza-

tion process P1 → P2. During the first stage P1, we approximate the bilinear

constraints in P2 using McCormick envelopes and solve for both sets of bilin-

ear variables pij and fik. In the second stage P2, we choose to keep one set of

bilinear variables in the solution of P1 and project the other set onto the bilin-

ear surface. If one set of bilinear variables are given, the bilinear constraint

(5.13) in P2 is linearized. Because of the McCormick envelope in P1, the 2-stage

planner is coupled, with the approximation of the nonlinear constraint in P2

embedded in P1. This process is shown in Fig. 5.10.

59

Figure 5.10: Optimization formulation of the coupled position and force plan-
ning problem

We propose to learn the best envelope to a certain type of problem with un-

supervised learning, such that the envelope formulation captures the heuristics

behind the given type of input. Since trajectory optimization solves a series of

postures with identical mathematical formulation, it is sufficient to learn the

constraints on a single posture. We generate data by solving the problem with

M = 1 using the accurate MICP formulation [61], and collect data for bilinear

variables. We then fit McCormick envelopes around the regions where data

clusters, excluding the infeasible regions. Through this approach, the relax-

ation can be made tighter with a fixed number of envelopes.

5.2.2 Envelope Learning Algorithm

As solutions of similar types of problems could be densely populated in certain

regions, learning methods, especially unsupervised learning, could be used to

identify those regions to form a “tighter" McCormick envelope. This eliminates

regions in the variables’ space where infeasible solutions are expected.

Our algorithm seeks the overlapping regions for bilinear variables (p,f).

The position variable p to be learned is pb. We omit the superscript for simplic-

60

ity. Suppose we define problem P (θi) where θi is the parameter drawn from a

distribution G(θ) and represents the terrain shape in our work. If P (θi) is feasi-

ble, we define the solution set X(θi) = {x|x = (p,f,m,y) feasible for P (θi)}. p,f,m

are the variables that satisfy the bilinear constraint md = pdfd in each dimen-

sion d = 1, ...,D, while y’s are other optimization variables. If P (θi) is infeasible,

we define the infeasible solution set X(θi) by removing the bilinear constraint

from P (θi) that generates P (θi), and X(θi) = {x|x = (p,f,m,y) feasible for P (θi)}.

A McCormick envelope relaxation of md = pdfd [119] can be defined tightly

over a pair of lower/upper bounds [pLd ,p
U
d] and [fLd ,f

U
d] that describes a rectan-

gular region B over [pT ,fT]T . McCormick envelopes Mc(B) satisfy the property

such that [pT ,fT]T ∈ B and md = pdfd , ∀d implies Mc(B) ≤ 0. Furthermore,

[pT ,fT]T < B⇒Mc(B) � 0. Define Si as the projection of X(θi) onto p × f (“×”

is Cartesian product) subspace giving all feasible [pT ,fT]T for problem P (θi).

Then, ∀(p,f) ∈ Si , ∃ (m,y) such that (p,f,m,y) is feasible for P (θi). We also de-

fine the projection of infeasible solution set of [pT ,fT]T as S i by projecting X(θi)

onto p× f subspace.

Assume that for any feasible P (θi) that generates Si , there exists an over-

lapping region: S = ∩Si , ∅. We can find a rectangular region BS inside S to

construct a McCormick envelope relaxation Mc(BS) ≤ 0, and define the 2-step

optimization process P1→ P2. P1 is defined by replacing the biliner constraints

in P (θi) with the McCormick relaxation, and gives a solution (p̃,̃f,m̃, ỹ). P2 has

identical constraints as P , but uses (̃f, ỹ) (or (p̃, ỹ)) from P1 to solve for (p∗,m∗)

(or (f∗,m∗)), as the bilinear constraints are linearized.

Theorem. If there exist a McCormick envelopeMc(BS) ≤ 0 that satisfies the follow-

ing 3 conditions:

1. ∀ θi that makes P (θi) feasible and generates Si , BS ∩ Si , ∅.

2. ∀ θi that makes P (θi) infeasible, BS ∩ S i = ∅.

61

3. (Complete Projectability) ∀f ∈ BS , ∀y, (or ∀p ∈ BS , ∀y) such that (f,y) (or

(p,y)) is feasible for P1, (f,y) (or (p,y)) is also feasible for P .

Then the 2-step process P1→ P2 defined above satisfy:

1. P is feasible⇒ P1 −→ P2 is feasible. In addition, any feasible solution for P1 −→

P2 is also feasible for P .

2. P is infeasible⇒ P1 is infeasible.

Note that depending on how P2 projects the solution of P1, the required

projectability condition (3) is different. If we keep (f,y) and project (p,m), then

we need (f,y) to be feasible for P , and vise versa.

Proof.

1) Suppose P is feasible with solution subspace Si . Since BS∩Si , ∅, ∃[pTi ,f
T
i]T ∈

BS ∩ Si . [pTi ,f
T
i]T ∈ Si ⇒ ∃(mi ,yi) such that x = (pi ,fi ,mi ,yi) is feasible for P

(satisfying each constraint except Mc(pi ,fi ,mi) ≤ 0). In particular, (pi ,fi ,mi)

satisfies the bilinear constraintmd = pdfd , ∀d. This together with [pTi ,f
T
i]T ∈ BS

implies Mc(pi ,fi ,mi) ≤ 0. Thus P is feasible⇒ P1 is feasible.

Now we show that P1 is feasible ⇒ P2 is feasible, and the solution of P1 −→ P2

is feasible for P . Any feasible solution (p,f,m,y) for P1 satisfies Mc(p,f,m) ≤

0⇒ (p,f) ∈ BS . By condition (3), (f,y) (or (p,y)) is feasible for P , which means

∃(p̃,m̃) (or (̃f,m̃)) such that x̃ = (p̃,f,m̃,y) (or (p,̃f,m̃,y)) satisfies P . Since P2 has

identical constraints as P , x̃ is feasible for P2. As P2 is feasible and has identical

constraints as P , any solution for P2 is feasible for P .

2) By condition (2), BS ∩ S i = ∅, ∀[pT ,fT]T ∈ S i (satisfies all but the bilinear

constraints), [pT ,fT]T < BS , thus Mc(p,f,∀m) � 0⇒ P1 is infeasible.

Remark. It may look like result 2) is too strong. Normally, a relaxation is feasible

doesn’t guarantee that the original problem is feasible. However, in this case it does.

62

Basically, 2) shifts the region of relaxation on (p, f) completely away from the danger

zone - region that potentially makes infeasible problems feasible. The relaxation will

admit new m points. However, no matter what m is, since (p, f) is infeasible for the

original problem, (p, f, m, y) wll not be feasible. A good example is that, for some

problem, m = pf does not constraint anything. This means whenever θi is infeasible

for P , P is still infeasible. In this case, the envelope can be all the domain, as other

constraints for P are already making the problem infeasible.

The idea behind finding BS is shown in Fig. 5.9. Condition (3) guarantees

projectability for any point in BS . Strictly satisfying it guarantees P1 will not

give solutions that cause P2 to be infeasible. In practice, verifying condition (3)

is very difficult. We put additional safety factors to make constraints in P1 even

tighter to reduce the the relaxation (at the risk of P1 not a complete relaxation

of P). As an simple extension of this paper, one can also learn an overlapping

region of yi ’s and formulate as an additional constraint into P1. This guaran-

tees that P1 does not give any “strange” yi that makes P2 infeasible. Another

approach is to set an optimal criteria for P1 and guarantee that the optimal

solution of (f,y) is always projectable to P2 [120]. If the projection still fails

with the above efforts, the problem is over-relaxed, suggesting that the enve-

lope should be divided into multiple smaller pieces. Interesting future work

remains where an objective function that guarantees projectability at optimal

points could potentially exist. In addition, if we do not confine the formulation

to convex ones, we can use nonlinear optimization (NLPs) in P2 to do the pro-

jection. In this case, we only keep yi from P1 and project (p,y) simultaneously.

Properly initialized NLPs can have fast speed with a solvable rate close to 100%

[61]. Finally, even if ∩Si = ∅, we can still identify multiple mutually exclusive

BS ’s that give multiple envelopes. An example is shown in the next section.

We present two data-based approaches to identify BS , one based on clus-

tering to directly fit envelopes and the other one based on evolutionary algo-

63

Algorithm 1 DataGeneration
Input Number of samples N
1: Initialize feasible solution set S and infeasible solution set S
2: while i < N do
3: Sample θi ∼ G(θ)
4: Solve P (θi) with high precision MICP
5: if (pi , fi) is a feasible solution for P (θi) then
6: Add (pi , fi) to S
7: else
8: Remove bilinear constraint (5.13) to produce problem P (θi)
9: Solve P (θi)

10: if (pi , fi) is a feasible solution for P (θi) then
11: Add (pi , fi) to S
12: Increase i
13: return S, S

rithms.

5.2.2.1 Clustering Approach

Based on the high-accuracy MICP formulation [61], we can generate feasible

solutions or prove infeasibility for problems P (θi) sampled from G(θ). We rec-

ognize that if we sample the same amount of feasible solutions inside each Si ,

the overlapping region S will receive more samples, indicating a clustering

approach may identify S . We also need to draw samples from the infeasible so-

lution set S i and make the envelope exclude those points. The data generation

algorithm is shown in Algorithm 1, where we generate a random terrain from

a pre-defined distribution and collect the subsequent optimization’s solutions

depending on their feasibilities.

Having collected the data in S and S, we use Algorithm 2 to fit the en-

velopes. With a specified number of envelopes, the algorithm first performs

clustering with Gaussian Mixture Models (GMMs) to identify the center of

clusters. Then, an optimization problem named Boundary_fit is solved to fit

the largest rectangular region B around the centers excluding any points in S i .

64

Algorithm 2 EnvelopeFitting
Input Threshold probability pth, Number of clusters n, DataGeneration’s S,
S

1: Initialize dictionary BS
2: for k = 1, ...,n do
3: Get cluster means (pk , fk) = GMM(S)
4: Bk = Boundary_fit((pk , fk), S)
5: Sk = points in S that are in Bk
6: Sok = GMM_filter(p > pth)
7: BS_k = get_exterior_boundary(Sok)
8: Add BS_k to BS
9: return BS

Multiple formulations can be used to achieve this. We used a formulation based

on mixed-integer programming, but other options exist [25]. We then collect

all points in B but remove those whose probability of belonging to the cluster

is less than the threshold pth. The exterior boundary formed by the remaining

points gives BS .

5.2.2.2 Evolutionary Approach

Contrasting to the fitting approach, a sampling-based evolutionary approach

could, by nature, find bounds that are even tighter. Using a sufficient num-

ber of random terrain (input) and feasibility (output) pairs, a genetic algorithm

(GA) can be tailored to solve a bilevel optimization that is indicative of the orig-

inal problem at hand. While mostly following the conventional GA approach,

we choose our chromosomes to be the lower and upper bounds of the envelope,

while uniform crossover is done per lower/upper bound pair as opposed to per

gene value. We design the fitness function to be representative of the bilevel

optimization that occurs between the two stages of the original problem. To

achieve this, we define two key metrics that help in finding better envelopes.

We define a to be the percentage of original infeasible values becoming feasi-

ble, and b to be the percentage of original feasible values becoming infeasible.

65

At each solution’s fitness calculation, a random pair of terrain parameter and

ground truth feasibility zg are selected from a pre-generated dataset built using

the data generator. Then, the individual and the terrain parameter are used to

find the feasibility z1 in P1. If zg is infeasible while z1 is feasible, a increases,

whereas if zg is feasible but z1 is infeasible, b increases. Per generation, each

individual is tested against K number of terrains from the training set and the

average a and b are used in the calculation of the fitness function. While we

try to minimize a, we keep b below a certain threshold δ. To ensure that the

number of mutations also decreases over the generations and that the variance

of the population’s fitness decreases, the mutation rate is set to be a function of

the generation number decreasing over time.

5.2.3 Training results

To validate our proposed algorithm, we choose the random distribution θ to

provide two different kinds of terrains—ground and wall—whose (p,f) are

expected to show distinct distributions. For training, we provide one terrain

mesh to each leg, while varying terrain position, orientation, and friction coef-

ficient µ randomly. For ground data, we uniformly sample the angle of normal

vectors within the 30° region around the straight-up direction, while varying

µ between [0.1, 0.8]. The wall data are collected to plan trajectories for the

robot to climb up between two walls [111] with pure frictional contact. We

vary the angles within the 30° region around the nominal direction as shown

in the top right of Fig. 5.12, and vary µ between [0.1, 1.2]. We use Algorithm

1 to gather a set S of 500 feasible points and 500 infeasible points for envelope

fitting, and another set S of the same number for validation. We set the number

of envelopes to be 1. Both ground and wall envelopes are fit with 3 legs (two

right, one left). Envelopes are also fitted with 5 legs on the wall. For valida-

tion, we separate the success rate into two categories showing respectively if

66

our convex optimization can identify feasible solutions correctly and identify

infeasible solutions correctly. We show the results of both stages. If BS ∈ Si , P1

should remain feasible if P is feasible. If condition (2) in our theorem holds,

P1 should be infeasible if P is infeasible. If condition (3) holds, the feasible so-

lutions for P1 should be projectable to make P2 feasible, thus success rate for

feasible solutions should not drop from P1 to P2. We use both convex and NLP

methods mentioned in the previous section for P2. For convex method, we use

pb from P1 to solve f in P2. The NLP method solves pb and f together.

Expert human heuristics are used to create envelope parameters as base-

lines. Bounds for pb are measured outer boundaries of each leg’s workspace,

while that for f are from our understanding of force profiles. Normal force

bounds are [0.0,0.9]/[0.0,0.5] for climbing/walking, as large normal forces are

expected to prevent slipping. Shear force bounds are [−0.3,0.3]/[−0.15,0.15]

for climbing/walking. For wall climbing the vertical shear force boundeds are

[0.0,0.4] as they need to counteract the gravity. We perform hand-tuning to

optimize the performance. The results are in Table 5.2.

The results show that P1 tends to match P well for all test cases when using

clustering, as both success rates are close to 100%. For convex projection, about

20%∼30% of P1’s solutions cannot be projected for 3 leg case. This is due to a

violation of condition (3) indicating a single envelope may over-relax the orig-

inal problem. For the 5 leg test, both stages perform well. Intuitively, since the

problem dimension is higher, p has more room to adjust at P2. NLP projections

perform well, with the rate of projection close to 100% and solving speed no

more than a few hundred milliseconds.

Aside from training a single cluster, we tried to fit envelopes with combined

ground and wall data. By giving n = 2 in Algorithm 2, two mutually exclusive

envelopes representing the ground and the wall are identified. This results

in an MICP formulation with one binary variable z ∈ {0,1} per posture that

67

Table 5.2: Validation results for trained envelopes

Problem
P1 P1→ P2 P1→ P2 (NLP)

correct
feasible

correct
infeasible

correct
feasible∗

correct
feasible

3 leg
ground

Cluster 98.16% 77.78% 83.54% 98.16%
GA 70.08% 91.24% 37.40% 70.08%

Heuristic 99.77% 50.00% 84.91% 99.77%

3 leg
wall

Cluster 93.62% 80.00% 63.32% 93.62%
GA 77.85% 97.72% 67.07% 77.85%

Heuristic 78.72% 51.33% 60.75% 78.72%

5 leg
wall

Cluster 95.27% 79.31% 90.41% 93.49%
GA 68.21% 98.68% 62.70% 68.21%

Heuristic 92.90% 72.41% 88.10% 92.25%

* Correct infeasible results for P2 are identical to P1 thus omitted.

switches between 2 modes as the robot traverses from one type of terrain to the

other.

Figure 5.11: The average fitness of the population is shown with its variance.
Certain individuals maximize the fitness early on in the generation.

Contrary to the clustering approach, the GA approach shows lopsided re-

sults. This could be an artifact of suboptimal initial solutions and a lack of gen-

erations as seen by the variance in Fig. 5.11. However, the extremely high infea-

sibility detection suggests that possibly a combined approach between a struc-

tured clustering and a conventional learning based approach could achieve

higher accuracy.

The results suggest that our methodological approach based on data im-

mediately provides comparable results to heuristics that require expert knowl-

edge.

68

5.2.4 Planning results

Figure 5.12: Motion plans generated by coupled position and force planner.
Top left: the robot climbs stairs. Top right: the robot switches from walking
to climbing. Bottom left: the robot climbs up inside a tube. Bottom right: the
robot climbs up between two walls and avoid patches of low friction materials.

We use the learned envelopes in our 2-stage planner, and plan the motion for

a 24 DoF hexapod. Trajectories to traverse in multiple terrains are found, in-

cluding walking on flat ground with stairs, climbing between two flat vertical

walls of varying friction, and climbing inside a tube. The coupling achieved

in the planner is compared against the decoupled approaches [7]. The planner

is verified on hardware. All results are included in the accompanying video

[121].

5.2.4.1 Walking on Ground

The proposed planner generates trajectories for walking on a flat ground with

stairs (Fig. 5.12 top left). This shows the feasibility of the approach on a simple

environment because the terrains are effectively flat.

69

5.2.4.2 Climbing between Walls

This problem is first studied by [111], which uses a stiffness based approach

allowing the robot to brace between two walls and climb. A 2-stage decoupled

approach is then used [7] to plan the climbing motion, where it plans the posi-

tion p’s without any knowledge of force. To test the proposed coupled planner,

we plan the trajectory for the robot to climb on the walls with patches of zero

friction µ = 0 (green regions in Fig. 5.12, bottom right) and µ = 1 in other areas.

P1 will have to place the toes outside the region to avoid P2 being infeasible. For

this, decoupled planner [7] would fail. We also plan a climbing motion inside a

tube consisting of meshes at different angles (Fig. 5.12, bottom left), to test the

adaptability to irregular walls. In both cases, the planer solves feasible motion

plan on hardware.

5.2.4.3 Automatic switching motion plan from ground to wall

We demonstrate that with the learned 2 mode formulation, trajectories with

contact forces that automatically switch between walking and climbing can be

generated as seen in Fig. 5.12 top right. Beyond finding a feasible trajectory, the

planner finds z = 0/z = 1 when the robot is on the ground/wall, indicating that

it interprets the current motion as walking/climbing. This result shows the

interpretability of the proposed planner. If we divide the variable space into

smaller pieces and assign an integer variable for each piece, the information

found by the planner can quickly get submerged by the large number of possi-

ble combinations of integer variables. Instead, our planner gives interpretable

information that humans can process.

70

Table 5.3: Solving time for vertical two flat wall climbing

Test Name Rounds M Variables Constraint Solve Time [s]*

2-stage Convex 8 4128 1176 0.16
MICP without Envelope 4 16608 (276 binary) 3360 91

MICP with Envelope 4 16608 (276 binary) 4008 33
MICP without Envelope 8 33216 (552 binary) 6720 > 1,000

MICP with Envelope 8 33216 (552 binary) 8016 152

* Data taken on an Intel i5-6260U 1.80GHz machine with Gurobi [122]

5.2.4.4 Solving Time

We benchmark the solving time on the problem of climbing between two flat

walls with uniform µ. Table 5.3 row 1 shows the solving time for the proposed

two-stage convex planner. The convex solver generates trajectories in hundreds

of milliseconds. Comparison with similar works using NLPs suggests a possible

speed up of around 100 times [6]. This justifies the motivation behind using

a multi-staged convex algorithm. The designed envelope can also be used to

speed up MICP. We compare the accurate MICP formulation with and without

our learned envelope as an additional constraint for the problem of climbing

between two flat walls. A typical MICP solver deals with integer variables

through a branch and bound algorithm [123] that expands nodes on each bi-

nary variable. Since [61] does not utilize the problem-specific knowledge, the

solver wastes time expanding nodes inside regions that we already know are

infeasible. Our approach reduces the solving time, and has minimum impact

on the solutions (Table 5.3, row 2-4).

5.2.5 Discussion

A 2-stage motion planner is designed based on convex optimization, with the

inter-stage coupling formulated as McCormick envelopes learned from data.

We performed learning through clustering and GA approaches and validated

against labeled data. The results show that a smaller number of integer vari-

71

ables and envelopes tailored to the type of problem can reduce solve time and

help interpret the outcome. We also demonstrated the planner on the hard-

ware.

Finer relaxations with smaller envelopes could be possible if one envelope

is insufficient. Since we require exploring the solution set, which could be effi-

cient on hardware, training on hardware is of interest. While we focused on a

specific problem, this work may be generalizable for more complicated prob-

lems with multiple stages, and a larger class of nonlinear constraints.

5.3 Transition Planning

As we have demonstrated SiLVIA’s capability of walking and climbing between

two walls using motion planning, a transition trajectory planner between wall

and ground is required. The role of this planner is to connect the ground and

wall trajectories such that full mobility over space can be automatically real-

ized. This work can be done through a pure open loop trajectory shown by Fig.

5.14. A more comprehensive and autonomous work using linear complemen-

tary constraints is done in [11], where in addition to the traditional tripod gait

(3-3 gait), non-traditional gaits such as 2-2-2, 3-1-2-2 can also be realized. We

briefly summarize the results here. For more details, please refere to [11]. We

apply the same idea of [64] exploiting the complementarity condition between

the contact distance and the contact force to our motion planning algorithm.

As shown in Fig. 5.13, the contact force can be generated only when the con-

tact distance is zero. Therefore, either the contact distance (pci,j)z or the normal

contact force (fci,j)z will be zero which can be express as:

(fci,j)z ≥ 0, (pci,j)z ≥ 0 (5.17a)

(fci,j)z(p
c
i,j)z = 0 (5.17b)

72

Figure 5.13: Illustration of the world frame {w} and the local contact frame
{c}. Solid dots indicate toes on the wall while the hollow one indicates the
swing leg. Inside the red box is the complementarity condition between contact
distance (pci,j)z and the normal contact force (fci,j)z. Inside the blue box is the
limb compliance for indirect force control of SiLVIA.

Figure 5.14: SiLVIA walking to climbing transition

For hardware demonstration, we let the robot stand between two parallel

walls at a distance of 1230 mm. Initially, the robot stands on the ground with

the body height as 210 mm. The desired configuration on the wall is the start-

ing point of the climbing trajectory from our previous work [7]. The walls are

covered by rubber pads and the robot toes are covered by anti-slip tapes, which

gives a frictional coefficient µ around 1. With the nominal values for safety fac-

tors (Sτ = 1.8, Sµ = 1.1). The planner is able to generate more traditional tripod

(3-3) or amble (2-2-2) contact sequence from ground to wall. Some of the more

investigations are shown in Fig. 5.15, where we put two bricks next to the left

wall on the ground. Intuitively the robot would be able to step on the brick

for the intermediate round. To take advantage of the brick, we decrease the

kinematics range for the legs on the left side until the leg is unable to reach

73

the desired positions on the wall in one step. The 3-3-3 contact sequence is

generated which puts left front leg (LF) and left rear leg (LR) on the brick and

right middle leg (RM) on the right wall, then moves right front leg (RF), right

rear leg (RR) and left middle leg (LM) on the wall, finally moves LF, LR and

RM again to the desired positions on the wall, as shown in Fig. 5.15. However,

in the hardware experiment, the robot tips over when it is trying to lift 3 legs

based on the supporting from 2 legs on the brick and 1 leg on the wall. The

two legs on the brick (LF and LR) slip causing the failure. The reason is that

the friction coefficient between the brick and the toe is much smaller than the

one between the toe and the wall. We add one more round to enrich the possi-

ble contact sequence that the planner can search over. From the bottom row of

Fig. 5.15. We can see that for the second round, the robot would not lift 3 legs

together as what the robot would do in the 3-3-3 contact sequence. Instead, it

is divided into two rounds. The robot would lift the leg LM to create 4 contact

points and then lift the right two legs (RF and RR) to avoid too large horizontal

forces required for the two legs on the brick. The robot successfully overcomes

the transition phase with steps by performing the 3-1-2-2 contact sequence.

Figure 5.15: Visualization and hardware demonstration of planned transition
motion. The upper row is the 3-3-3 contact sequence for the parallel wall with
steps while the bottom row is the 3-1-2-2 contact sequence. The middle row is
the screenshots of hardware experiments when implementing these two con-
tact sequences. (Green represents a surface with smaller friction coefficient)

74

CHAPTER 6

Motion Planning Algorithm for Multi-modal Multi-agent

Self-reconfigurable Robot System

After the successful implementation of the optimization-based motion planner

on the multi-legged walking and wall-climbing robots, a natural next step is to

test the planner on problems that are larger in scale and requires faster solv-

ing speed. In this chapter, we demonstrate using optimization-based motion

planning to generate kinematics and dynamic trajectories for a modular recon-

figurable robot system LIMMS (Latching Intelligent Modular Mobility System)

for package delivery. This is a good example of solving motion planning prob-

lems on a larger scale. We set up the discrete logic constraints and continuous

kinematics and dynamics constraints, use the Alternating Direction Method of

Multipliers (ADMM) to solve the system, show the planning results, and dis-

cuss the issues that prevent those algorithms from real-time implementations.

The materials in this section mainly come from [124]..

LIMMS was introduced in the recent work [125] as a modular approach to

last-mile delivery, shown in Fig. 6.1. LIMMS system is composed of individual

modules that resemble a 6 degree-of-freedom (DoF) arm but with wheels and

a latching mechanism at both ends. As such either side of LIMMS can act as

the base depending on the need. In the case of last-mile delivery, within the

delivery truck, it is assumed that the surface, as well as boxes, have anchor

points LIMMS can attach the latch to. By attaching one end to the walls within

the vehicle LIMMS can carry and move boxes by latching its free end to it like

other manipulators. To actually transport the box to the recipient’s door, four

LIMMS can attach to a box and use it as its body to walk itself there. Finally, to

75

return LIMMS can self-balance and wheel itself back. LIMMS introduces chal-

lenging motion planning problems, each LIMMS has multiple DoF, and this

requires kinematic constraints which were rarely done [126] [127]. Moreover,

each LIMMS has different approaches to locomoting itself: as a wheeled robot,

as a leg, or as an arm. The delivery package can also be transported in different

methods: to be manipulated or be moved as the body of a quadruped robot.

This introduces complicated mixing of discrete decisions and continuous con-

straints.

6.1 Background on Modular Re-configurable Robots

Various approaches have been explored to resolve the reconfiguration plan-

ning problem, such as graph search methods [126], reinforcement learning

[128], or optimization-based approaches [129]. We adopt optimization-based

methods for LIMMS. Among the optimization-based methods, mixed-integer

programs (MIP) are useful for discrete decision-making within multi-agent

systems [16, 130]. However, the LIMMS motion planning problem includes

nonlinear constraints such as kinematics. Therefore, the problem becomes a

mixed-integer nonlinear (non-convex) program (MINLP). MINLPs are known

to be computationally difficult when the problem scale is large. Aside from

directly applying commercialized solvers, e.g., SCIP, there are generally two

approaches that transform the MINLP problems into MIPs using linear ap-

proximations of the nonlinear constraints, or into nonlinear programs (NLPs)

using complementary constraints to replace binary variables. Unfortunately, as

the problem scales up, nonlinear constraints yield a large amount of piece-wise

linear approximations making the problem very slow [23], and complementary

constraints tend to cause infeasibility without a good initial guess [34].

In this paper, we implemented the alternating direction method of multi-

76

pliers (ADMM) to solve the MINLP problem, inspired by [131, 132]. ADMM

decomposes the problem into two sub-problems: an MIP problem and an NLP

problem. By decomposition, the problem scale of both MIP and NLP is reduced

and becomes more tractable. The logic constraints about the connections of

LIMMS are formulated into MIP while the nonlinear kinematics constraints

are formulated into NLP. We establish general rules for such a system to oper-

ate under and use ADMM to explore possible approaches to resolve the given

scenario, showing the feasibility of our proposed method as well as the richness

of the system.

6.2 System Description

Hardware. To gain an intuition of the constraints in the optimization formula-

tion, the physical limitations and design of the first LIMMS hardware proto-

type are detailed in this section and depicted in Fig. 6.1. LIMMS is a symmet-

ric 6 DoF robot. At full length, a single LIMMS unit stretches to about 0.75

m and weighs roughly 4.14 kg including batteries. From preliminary tests in

simulation with a target package payload of 2 kg, we determined off-the-shelf

Dynamixel motors from ROBOTIS were sufficient for the prototype. With our

custom gearbox, it reaches a peak velocity of 2 rad/s and a peak torque of 31

Nm. For interested readers previous recent work in [125] goes further in-depth

on the overall design.

One of the crucial aspects of LIMMS is its latching mechanism, which al-

lows it to attach either end to anchor points or itself. Latching will be used

frequently since it is how LIMMS transitions to different modes and grab ob-

jects for manipulation. The current prototype proposed in [133] consists of a

radially symmetric multi-blade design. Fig. 6.1 (bottom right) depicts the latch

prototype. By the geometry of the blade and the anchor point hole pattern, the

77

Figure 6.1: Top shows the various operational modes for LIMMS which will be
considered for the optimization formulation. Upper Left: 4 LIMMS attached to
a box in quadruped mode. Upper Right: 1 LIMMS self-balancing to move. This
is called free mode. Lower Left: 2 LIMMS anchored to surfaces in manipula-
tor mode. Lower Right: LIMMS attached to each other. This can be used in
both quadruped and manipulator mode. Bottom shows the joint axis and the
latching mechnanism to be integrated at the end effector.

latch mechanically self-aligns when it rotates.

The mechanism is designed to maximize robustness to misalignment in po-

sition and orientation about its center axis, see [133].

This has a dual effect of easing control effort and allowing for the latches

to pull the box or itself into the desired position and orientation without being

fully positioned. If LIMMS is kinematically constrained and cannot fully reach

the target position and orientation, there is slack created by the latch’s mechan-

78

ical design. In this sense when latching to an anchor point, the alignment does

not need to strictly satisfy its constraint.

Modes of Operation. Through latching, LIMMS can enter many different

modes to complete its tasks. For our proposed planner we only consider three

different modes as these will be sufficient for delivering packages. However,

LIMMS has the potential for many other modes, some of which are described in

[125]. Fig. 6.1 depicts the 3 modes considered in our optimization formulation:

4 LIMMS attached to a box are in quadruped mode, LIMMS attached to walls

or surfaces are in manipulator mode, a single LIMMS which wheels around or

move like a snake is in free mode. The last sub-figure in the top half, lower

right shows two LIMMS attached to the end of each other. This can be viewed

as a sub-skill accessible to all modes.

6.3 Problem Formulation

In this section, we demonstrate the optimization formulation for LIMMS mo-

tion planning. The objective function of the optimization problem is to min-

imize the distance from the box center position to the target box position, i.e.

deliver the box to the goal. The constraints consist of two parts: logic, which

is formulated into constraints using integer variables, and kinematics or dy-

namics, which is formulated into linear or nonlinear equations of motion. As a

result, the problem is an MINLP, which will be separated into an MIP and NLP

to be then solved with ADMM. Assume there are B boxes and L LIMMS. Each

box has SB = 4 anchor points at the center of each face. The optimization is

run from t = 1, ...,T time steps. We use upper case letters to indicate constants

such as the number of boxes B, the number of anchor points SB, and use the

lower case letters to index the quantities such as b = 1, ...,B, sb = 1, ...,SB. i is

used to index the binary variables. Upper case letters are also used as variable

79

Var Dim Description

zB,i [B,T]
Mode for box b at time t. i = {1 : stable object,

2 : free object, 3 : manipulated, 4 : quadruped}

zL,i [L,T]
Mode for limb l at time t. i = {1 : free,

2 : arm, 3 : add arm 4 : leg, 5 : add leg}

zS,i [B,SB,L,T]

Mode of connection for anchor point sb on box b

to limb l at time t

i = {1 : empty, 2 : to arm, 3 : to leg}

zW,i [Sw,L,T]
Mode of connection for anchor point sw on wall

to limb l at time t i = {1 : empty, 2 : to arm}

zAc,i [Lpr ,Lpo,T]

Mode for connection s.t. limb lpo
connects as an additional limb to lpr
i = {1 : not connected, 2 : connected}

zLc,i [Lpr ,Lpo,T]

Mode for connection s.t. limb lpo
connects as an additional leg to lpr
i = {1 : not connected, 2 : connected}

pB [B,T] Position of center of box b at time t

RB [B,T] Orientation of box b

cB [B,C,T] Position of corner c for box b at time t

pL [J,L,T] Position of joint j of limb l at time t

RL [J,L,T] Rotation matrix of joint j of limb l

fL [B,S,L,T]
Contact force at anchor point s of box b

from limb l at time t

a [L1,L2,T] Normal vector of separating plane for l1 and l2

C
on

ti
nu

ou
s

b [L1,L2,T] Offset of separating plane for l1 and l2

Table 6.1: Table of optimization variables

names. For example, zB,i are binary variables associated with boxes. We state

the assumptions made for this formulation:

1. The box does not rotate and the momentum is assumed to be balanced.

This simplifies the dynamics constraints. In practice, this minimizes the

damage to the contents in boxes during shipping.

2. Multi-body dynamics of LIMMS are not enforced. This is to simplify the

constraints.

All binary and continuous variables are summarized in Table 6.1 except

those that pertain to enforcing collision avoidance with the environment for

simplicity (i.e. binary variables δBa,i , δBg,i , δLa,i , δLg,i , and the corresponding

80

λ ∈ [0,1] variables for convex combination). Note pr is short for previous, and

po is short for post.

6.3.1 Integral Logic Constraints

Mode for Boxes. We define 4 modes for each box represented by 4 binary vari-

ables: zBi[b, t], i = 1, ...,4 for the mode of box b at t. Mode 1 is stable object mode,

where the box is supported by the ground. Mode 2 is free object mode where

the box is in the air subject to gravity. Mode 3 is manipulated object mode

where the box is connected to a manipulator. Mode 4 is quadruped mode

where the box is used as a robot body. We currently only allow quadruped

robot for walking. This can be relaxed to incorporate more solutions such as

simultaneously bipedal walking while manipulating boxes as in [134]. At each

t, a box is subject to 1 mode, such that:
∑4
i=1 zBi[b, t] = 1 ∀b, ∀t.

Mode for LIMMS. We define 5 modes for each LIMMS represented by 5 bi-

nary variables: zLi[l, t],where i = 1, ...,5 indicating the mode of LIMMS l at t.

Mode 1 is free (wheeled) mode, where the corresponding LIMMS unit moves on

the ground like a Segway robot. Mode 2 is manipulation mode, where LIMMS

connects to one connection site on the wall and may connect to one box to ma-

nipulate it. Mode 3 is add arm mode, where a LIMMS can connect to another

LIMMS to extend the length of the arm for a larger workspace. Mode 4 is leg

mode, where LIMMS connects to a box and serves as a leg. Mode 5 is add leg

mode, where it can connect to another LIMMS to extend the length of the leg

similar to mode 3. At any time step, LIMMS can only be in one mode, such

that:
∑5
i=1 zLi[l, t] = 1 ∀l,∀t.

Mode for Anchor Points. Each box has 4 anchor points on each side face. We

define 3 modes for each anchor point by 3 binary variables zSi[b,sb, l, t],where i =

1, ...,3, denoting the connection mode for anchor point sb on b to l at t. Mode

81

Table 6.2: Table of logic rules

Logic Rule Description Mathematical Formulation

1 Box b in quadruped mode, all 4 sb is connected to leg mode LIMMS. zB,4[b, t] = 1 =⇒
∑
l zS,3[b,sb, l, t] = 1 ∀sb

2 Anchor point sb on box b in leg mode, box b is in quadruped mode. zS,3[b,sb, l, t] = 1 ∃l, ∃SB =⇒ zB,4[b, t] = 1

3 Anchor point sb is connected to LIMMS l as a leg, l is in leg mode. zS,3[b,sb, l, t] = 1 =⇒ zL,4[l, t] = 1

Q
u

ad
ru

p
ed

4 LIMMS l in leg mode, it’s connected as a leg to one anchor point. zL,4[l, t] = 1 =⇒
∑
s
∑
b zS,3[b,sb, l, t] = 1

5 b in manipulated mode, at least 1 sb is connected to 1 arm mode l. zB,3[b, t] = 1 =⇒
∑
l
∑
sb
zS,2[b,sb, l, t] ≥ 1

6 sb is connected to l in arm mode, l is in arm or add arm mode. zS,2[b,sb, l, t] = 1 =⇒ zL,2[l, t] = 1 or zL,3[l, t] = 1

7 l is in arm mode, l is connected to one sw on the wall or ground. zL,2[l, t] = 1 =⇒
∑
sw
zW,2[sw, l, t] = 1

8 sw on wall or ground, sw is connected to l, l is in arm mode. zW,2[sw, l, t] = 1 =⇒ zL,2[1, t] = 1

9 LIMMS l is in add arm mode, it’s connected to one other LIMMS. zL,3[l, t] = 1 =⇒
∑
lpr
zAc[lpr , l, t] = 1

10
LIMMS lpr is connected to lpo, lpr is in arm or add arm mode,

lpo is in add arm mode.
zAc[lpr , lpo, t] = 1 =⇒

 zL,2[lpr , t] = 1
zL,3[lpo, t] = 1

M
an

ip
u

la
ti

on

11 LIMMS lpr is connected to lpo, lpr cannot connect to any box. zAc[lpr , lpo, t] = 1 =⇒ zS,2[b,sb, lpr , t] = 0

Fr
ee 12 Box b is in stable or free object mode, all anchor points sb are empty. zB,1[b, t] = 1 or zB,2[b, t] = 1 =⇒ zS,1[b,sb, l, t] = 1 ∀sb ∀l

1 is empty mode, where sb on b is not connected to l. Mode 2 is arm mode

where l connects to sb as an arm. Mode 3 is leg mode where l connects to sb

as a leg. Their summation has to be 1 at each time step:
∑3
i=1 zSi[b,sb, l, t] =

1 ∀b, ∀sb, ∀l, ∀t. In addition, at each time sb can connect to no more than

1 LIMMS, while a given LIMMS can connect to no more than 1 sb at its base

point. This introduces two more constraints:
∑
b
∑
sb
zSi[b,sb, l, t] ≤ 1 ∀l, ∀t and∑

l zSi[b,sb, l, t] ≤ 1 ∀b, ∀sb, ∀t. sb on b is associated with a physical connection.

If latching is enforced, the position and orientation of the base of LIMMS is

constrained:

pL[j = 0, l, t] = pB[b, t] + RB[b, t]o[sb]

RL[j = 0, l, t] = Ro[s]RB[b, t]
(6.1)

Where o[s] is the constant offset vector from the center of the box b to the

anchor point sb. Ro[sb] is the constant rotation matrix from the box frame lo-

cated at the geometric center of the box to the sb frame located at anchor point

sb. This conditional equality constraint can be enforced through big-M formu-

lation such that if zS,i = 1, (6.1) is enforced.

Each anchor site on the wall sw has two modes. Mode 1 is empty mode

82

where sw is empty, and mode 2 is manipulation mode where l connects to

sw as an arm. Multiple sw can exist on the ground. Two binary variables

zWi[sw, l, t],where i = 1,2 are used to represent those modes. The associated

mode constraints and physical connection constraints are similar to the anchor

points on the boxes. We also define binary variables for additional connec-

tions between LIMMS as arms or legs: zAc,i[lpr , lpo, t] or zLc,i[lpr , lpo, t], i = 1,2. If

zAc,i[lpr , lpo, t] = 1, LIMMS lpo connects as an additional arm to LIMMS lpr at t.

Similar for zLc,i .

Logic for Boxes as Robot Bodies. We define 4 logic rules for any box detailed

in rule 1 − 4 in Table 6.2. They constrain the boxes in quadruped mode and

LIMMS units connected to it. The gist is to ensure that several things happen

simultaneously: 1) b is used as the robot body, 2) 4 LIMMS are its legs, and 3)

connections happen between them. On the other hand, if no box is used as a

quadruped body, no LIMMS should be used as legs. This is enforced through

formulating the rules into a loop as shown in figure 6.2. If 1 LIMMS is used as

leg, it should connect to 1 anchor point on 1 of the boxes due to Logic 4, and

the corresponding box should be in quadruped mode due to Logic 2.

Each logic can be formulated as constraints between integer variables through

big-M formulation. For example, Logic 1 can be written as 1−M(1−zB,4[b, t]) ≤∑
l zS,3[b,sb, l, t] ≤ 1 +M(1− zB,4[b, t]) where M is a large constant (usually 105).

Other constraints follow similarly.

Logic for Boxes as Manipulated Objects. We define 7 logic rules for boxes

as objects and are manipulated by LIMMS as arms. They again constrain the

modes for the box and LIMMS connected to it. The gist is to ensure that the

following happens simultaneously: 1) box is being manipulated by 1 or more

LIMMS, 2) 1 or more LIMMS operate in arm mode, 3) connections occur be-

tween the arm and box, and 4) arm is connected to 1 anchor point on the wall

or ground. While most of the logic rules are single directional, the bidirec-

83

Figure 6.2: Implications of logic 1-12. Left half is associated with robot mode
while right half is associated with manipulation mode. Arrows are labeled
with specific logic rules. If not, the implication is mathematically correct. The
symbol⇒∅⇐means mutually exclusive.

tional rules are enforced by formulating implicit loops. For example, there is

no explicit rules enforcing a box to be in manipulated object mode (arrow from

8 to 12) if LIMMS arm is manipulating it (block 8 in Fig. 6.2). However, block

8 is mutually exclusive with block 4 and 6. This means that if 8 happens, 4 and

6 cannot happen, which means block 5 and 7 cannot happen (by reversing the

direction of implication). This in turn indicates that 12, which is the comple-

ment of 5 and 7, has to happen. Note that we did not include the constraints

for additional arm or leg mode in Fig. 6.2, but similar arguments carry over.

Logic for Boxes as Stable or Free Objects. Logic 12 in Fig. 6.2 is defined for

boxes as stable or free object modes which states that if a box is stable or free,

all its anchors are empty.

6.3.2 Continuous Constraints

Kinematics. Kinematics constraints are imposed for each LIMMS through a

series of linear constraints and bilinear constraints in the same fashion as [61]:

84

p[j + 1, l, t] = pL[j, l, t] + RL[j, l, t]pj+1,j

RL[j − 1, l, t]zj−1,j = RL[j, l, t]zj,j

RL[j, l, t]RL[j, l, t]T = I

RL[j, l, t] represents a right handed frame

(6.2)

Where pj+1,j is the constant position vector of the next joint as seen in the

frame of the previous joint, and zj−1,j is the constant orientation of the next

joint as seen in the frame of the previous joint, where ours are zj−1,j = [0,0,1]T .

Collision Avoidance with Environment. To enforce constraints such that LIMMS

and boxes does not collide with the environment, we model the environment

into discrete convex regions. All boxes and LIMMS have to stay within the

convex regions during the process. We also need to discriminate if the LIMMS

or box is making contact with the ground. This introduces additional binary

variables δBa,i , δBg,i , δLa,i , and δLg,i . Note subscript g stands for ground, and a

stands for air. If LIMMS and boxes are within a convex region, the joint points

of LIMMS and corners of boxes are linear combinations of the vertices of the

convex region:

p =
∑
v

λvVv ,
∑
v

λv = δ, λv ∈ [0,1] (6.3)

Where p, λ and δ are associated with either corner points of the box cB or

position of joints of LIMMS pL as listed in Table 6.1. λv’s represent the vertices

of the convex region. If one region is not selected, all λv’s are zero due to δ = 0.

Collision Avoidance Between Agents. To enforce collision avoidance for LIMMS-

LIMMS and LIMMS-box contact, we use the formulation from [34] that uses

separating planes. For convex polygons, the two polygons do not overlap with

each other if and only if there exists a separating hyperplane aT x = b in be-

85

tween [135]. That is, for any point p1 inside polygon 1 then aTp1 ≤ b, and for

any point p2 inside polygon 2 then aTp2 ≥ b. Our problem uses the following

constraints:

aTpL[j, l1, t] ≤ b, aTpL[j, l2, t] ≥ b

aT cB[c,b, t] ≤ b, aTpL[j, l, t] ≥ b ∀t, aT a ≥ 0.5
(6.4)

Where a and b is the normal vector and offset for planes associated with the

specific pair. 0.5 is just an arbitrary nonzero number that we choose, as a does

not necessarily need to be a unit vector. With this method, we enforce collision

avoidance purely through inequality constraints and avoid using complemen-

tary constraints such as [136].

Dynamics for Box. The dynamics are required for the agent to generate

strictly feasible motions. However, enforcing dynamics for each LIMMS is ex-

pensive given its high DoF. We only enforce dynamics for the boxes. This serves

as two purposes. First, it allows the system to generate dynamic motions such

as throwing or jumping. Second, it allows the system to select motion plans

based on the box weight.

When the box is in stable object mode, the gravity is compensated for by the

ground. Additionally, LIMMS can only apply reaction forces to the box when it

is connected through the anchor points on the box. We define the reaction force

on the end effector of a LIMMS l to the box b as fi[b,s, l, t], where the index s

indicates that the force is through the anchor point sb. When LIMMS connects

to the box as a leg, fi serves as the contact force on the ground, while when

LIMMS connects to the box as an arm, fi serves as the contact force to grasp the

86

Figure 6.3: Results for 5 experiments. The green rectangle represents the initial
region in which LIMMS is constrained in. LIMMS is trying to get the box to the
magenta region, where LIMMS is allowed to move in as well.: 1) LIMMS picks
up a box and throws it towards the goal. 2) LIMMS lifts box in manipulator
mode and switches to quadruped mode to jump out of the vehicle. 3a) LIMMS
attempts to use manipulator mode to reach goal. 3b) LIMMS climbs onto a step
using quadruped mode. 4) LIMMS sends the box towards the goal using dual
double arm manipulation to enlarge the workspace.

box. The box dynamics are:

mp̈box[b, t] =
4∑
s=1

L∑
l=1

fi[b,s, l, t]−mg(1− zB,1[b, t]) (6.5)

4∑
s=1

L∑
l=1

(pL[j = 6, l, t]−pB[b, t])× fi[b,s, l, t] = 0 (6.6)

fi[b,s, l, t] only exists when l is connected to the box:

fi[b,s, l, t] = 0 if zS,1[b,sb, l, t] = 1 (6.7)

When l connects to the box as leg mode, f represents the contact force from

the ground. Therefore, f needs to satisfy the friction cone constraint:

f ∈ Cone if zS,i[b,sb, l, t] = 1 and δLg[j = 6, l,∃p, t] (6.8)

87

Since LIMMS has a loading capacity, we enforce the max norm constraint

on any contact force: ||f|| ≤ fmax. Note that there is a contact moment across

the latching. Missing this moment results in the box incapable of being manip-

ulated with a single contact (moment balance will be violated). For simplic-

ity, we fix the box orientation: R = I. This can be justified as in manipulated

mode, the contact moment is sufficient to keep the orientation of the box, and

in quadruped mode, the four ground support points is sufficient to keep the

body orientation.

Support Polygon. The balance of moment constraint should guarantee the

stability of the quadruped body. However, there are already many nonlinear

constraints such as kinematics. To simplify the NLP formulation, one approach

is to enforce a simple stability constraint in replacement of the moment balance

constraint. Since the rotation matrix is fixed, we can simply enforce that the

end effector of LIMMS stays to one side of the body which guarantees that the

body’s center of mass lies within the support polygon of the foot.

Stability of LIMMS. One drawback of our formulation is that we do not in-

clude the dynamics of LIMMS. As a compensation, there should be a constraint

to guarantee the stability when LIMMS is on the ground and tries to reach an

anchor point.

We just assume that we have many latching points on the ground so realiz-

ing this motion is relatively simple. Therefore, when LIMMS is in free mode,

we enforce that the base stays on the ground and give a speed constraint:

||pL[j, l, t + 1]−pL[j, l, t]|| ≤ ∆P if δLg[j = 0, l,p, t] = 1 (6.9)

Continuity of Connection. One suboptimal solution to avoid is having LIMMS

frequently latch on and off an anchor point. We enforce equality constraints for

binary variables within a range zS,i[t] = ... = zS,i[t +n]. We usually choose n be-

88

tween 3 and 5, decided based on the speed of latching.

6.4 ADMM Formulation

Collecting the constraints defined previously, the problem to solve becomes:

minimize
z, δ, p, R, f, λ, a, b

fobj

subject to

Mixed integer constraints:

Logic rules 1-12

collision avoidance with the environment (6.3)

Dynamics constraints: (6.5), (6.7), (6.8)

Stability of LIMMS on ground (6.9)

Nonlinear constraints:

Kinematics (6.2)

Collision avoidance between agents (6.4)

Dynamics constraints (6.6)

(6.10)

Where fobj is a quadratic equation that minimizes the distance of the box

to the goal position. The variables and constraints of problem (6.10) incor-

porate discrete and continuous variables with linear and nonconvex (bilinear)

constraints. This results in an MINLP. The commercial solvers tend to perform

non-satisfactory in this type of problem. There are generally two approaches

that convert this type of problem: an MICP using convex envelope relaxations

for nonlinear constraints [61] or conversion of the discrete variables into con-

tinuous ones through complementary formulation [63]. MIPs with convex en-

velopes tend to solve slowly when the problem scales up. Since there are many

discrete variables in this problem, complementary formulations will be nu-

89

merically difficult [132]. In this paper, we adopt the ADMM. ADMM separates

the problem into two sub-problems. Although those sub-problems have dif-

ferent constraints, ADMM iterates between sub-problems such that constraint

1 which may not appear in sub-problem 2 will be implicitly enforced as the

iteration proceeds. In the end, sub-problems will reach a consensus mean-

ing their solutions are close to each other. This procedure is detailed in Al-

gorithm 3. In our problem, the logic rule constraints are resolved through

MIPs, while the nonlinear kinematics and collision avoidance constraints are

resolved through NLPs. Similar to [131], we first make copies var2 of the vari-

ables var1 = [z,δ,p,R,f,λ,a,b]. Represent the feasible set of mixed-integer con-

straints through 0−∞ indicator function by IM and the nonlinear constraints

by IN . The consensus problem between MIP and NLP is:

minimize
var1 var2

fobj + IM(var1) + IN (var2)

s.t. var1 = var2

(6.11)

The constraints are moved to the objective function through the indicator func-

tion. Applying ADMM [137] to the Lagrangian L of (6.11) results in three

iterative operations:

vari+1
1 = argminvar1

L(vari1, vari2, wi) (6.12a)

vari+1
2 = argminvar2

L(vari+1
1 , vari2, wi) (6.12b)

wi+1 = wi + vari1 − vari1 (6.12c)

Where w is the dual variable of the Lagrangian of (6.11). In (6.12), (6.12a)

solves the MIP problem:

minimize
var1

||vari1 − vari2 + wi ||Wk
MIP

s.t. Mixed-integer constraints in (6.10)

90

In the next step, (6.12b), solves the NLP:

minimize
var2

||vari2 − (vari+1
1 + wi))||Wk

NLP

s.t. Nonlinear constraints in (6.10)

And the next step, (6.12c), updates the dual variable w. To finish one it-

eration, the weights for MIP, WMIP, the weights for NLP, WNLP, and the dual

variable w, are updated with line 6 − 7 in Algorithm 3. Within one iteration,

(6.12a), (6.12b), (6.12c) are solved in succession. This iterative procedure con-

tinues until the discrepancy between the MIP solutions and the NLP solutions

θ = vari1 − vari1 are lower than the user-set error threshold θth.

It is well known that ADMM has convergence guarantees for convex prob-

lems and can significantly improve the solving speed. However, for complex

MINLPs, there is no convergence guarantee. In this problem, both MIP and

NLP can be slow and expensive. We avoid explicitly placing complementary

constraints to represent discrete modes as [131] did, since it hinders conver-

gence for NLP. However, NLP does need some information on discrete vari-

ables as it needs to reason connections and turn variables such as f on or off

accordingly. After solving the MIPs, we directly use the solutions of zS,i , zW,i in

the NLP step to enforce connections. This improves the precision of the NLP

step and the overall precision of consensus. The price to pay is an increase in

difficulty for NLP solvers to find solutions.

6.5 Results

We performed 5 numerical experiments to evaluate the performance of the

proposed formulation and ADMM algorithm. For all experiments, the MIP

formulation was solved with Gurobi 9, and the NLP formulation was solved

through Ipopt on a Intel Core i7-7800X 3.5GHz × 12 machine. We solved all

91

Algorithm 3 ADMM for LIMMS
Input ρ, W0

MIP, W0
NLP, w0, var0

2, θth
1: Initialization i = 1
2: while θ > θth and i < imax do
3: Compute vari+1

1 via (6.12a)
4: Compute vari+1

2 via (6.12b)
5: wi+1←−wi + vari1 − vari1
6: Wk+1

MIP←− ρWk
MIP, Wk+1

NLP←− ρWk
NLP

7: wi+1←−wi/ρ
8: θ←− vari1 − vari1
9: i = i + 1

10: return vari2

Figure 6.4: Convergence of mean and max residual rpB, rpL, rRL for experiment
1-4. Solid lines denote mean residuals and dashed lines denote max residuals.

the scenarios for 15 iterations. Other parameters we have chosen are: ∆t = 1sec,

fmax = 20N , max moving speed for LIMMS on the ground of 0.5m/s, and a 30cm

cube box. The 6 Dof LIMMS unit lengths are 5cm, 7.4cm, 33cm, 7.8cm, 33cm,

7.4cm, 5cm, respectively for each link starting at one end. Fig. 6.3 shows the

MATLAB visualization of the first 4 experiments. Animations of all tests are

included in the attached video available at https://www.youtube.com/watch?

v=RH9gMOK24L0.

1) Throwing. In the first experiment, we placed 1 LIMMS and 1 box in the

92

https://www.youtube.com/watch?v=RH9gMOK24L0
https://www.youtube.com/watch?v=RH9gMOK24L0

scene and provided 1 anchor point on the wall. The goal is set higher than

a LIMMS unit can reach. The solver gives a solution where the LIMMS unit

connects to the wall and picks up the box, then throws the box to the goal. This

simple test shows the ability of the solver to generate manipulation motions

using dynamics.

2) Jumping. In the second experiment, we placed 4 LIMMS and 1 box on

a raised platform or inside a truck and set the goal position to be lower on

the ground. In addition, 2 anchor points are provided on the wall. The plan-

ner provides the solution where 1 LIMMS latches itself onto the wall and lifts

the box. Then the other 3 LIMMS connects to the anchor points on the sides

of the box which enters quadruped mode. This quadruped robot then jumps

down the step to reach the goal. The solver automatically changes modes from

manipulation to quadruped.

3a,b) Weight Lifting. In the third experiment, we investigate the behavior

change due to a change in the weight of the box. We place 4 LIMMS and 1

box down a ledge and set the goal to be above the ledge. Two anchor points on

the wall are provided. First, we set the box weight to be 0.5kg. The planner

provides a manipulation trajectory where two LIMMS connect to the wall and

lift the box to move it to the goal. We then increase the box weight to 7kg.

In this case, if we force LIMMS to manipulate the object, the planner returns

infeasible. The feasible trajectory returned by the solver set 3 LIMMS to be

anchored onto the ledge and box, while 1 leg stays down from the ledge to

push the body up onto the platform. As the box weight exceeds the capacity of

dual arm manipulation, a quadruped motion is necessary to lift the 7kg box.

4) Manipulation with Double-dual Arms. In the fourth experiment, we again

place 4 LIMMS and 1 box in the same scenario, below a desired platform or

step. Two anchor points are provided on the wall. However, we enlarged the

width of the truck such that 1 LIMMS cannot reach the box from the wall. In

93

this case, the solver connected a second LIMMS as an additional arm to the first

which is connected to the wall, allowing the arms to reach the box and perform

dual arm manipulation.

5) Quadruped Walking with Refinement. In the fifth experiment, we placed 4

LIMMS and a box on flat ground and set the goal to be at the same elevation but

separated by a distance. LIMMS moved to the box and assembled a quadruped

robot which then moved towards the goal. Furthermore, since there is no gait

optimization in our problem formulation, we used an additional planner sim-

ilar to [65] but included 6 DoF kinematics to provide the quadruped walking

motion to the goal. This experiment demonstrated that, although the planner

may give rough trajectories, they can be further refined with another planner

to correct kinematics discrepancies and gait cycles. This readies it to be imple-

mented on the hardware.

6) Box Lifting on Hardware In this experiment, one LIMMS is initially an-

chored to the ground. There is another anchor point on the wall. The objective

is to lift the box higher. If LIMMS lifts the box with the other end anchored

to the ground, the kinematics quickly becomes infeasible. The planner instead

lets LIMMS first anchor to the box, then anchor to the wall from the box. The

LIMMS can easily lift the box higher with the other end anchored to the wall.

The hardware implementation is included in the video.

7) Convergence Define the residual to be the mismatch between the MIP and

NLP solutions. The mean residuals for pB, pL and RL are the mean value of all

the norms:

rpB[i] = mean
b
||pB,MIP[b, i]−pB,NLP[b, i]|| (6.13a)

rpL[i] = mean
j, l
||pL,MIP[j, l, i]−pL,NLP[j, l, i]|| (6.13b)

rRL[i] = mean
j, l
||Vec(RL,MIP[j, l, i]−RL,NLP[j, l, i])|| (6.13c)

94

T
of variables # of constraints Time in Minutes

MIP NLP MIP NLP T-MIP T-NLP T-Total

1 10
4857 cont.
670 bin.

1777 3623
eq. 582
ineq. 5206

0.88 7.17 8.05

2 15
25917 cont.
3150 bin.

8787 34545
eq. 621
ineq. 28990

129 24 153

3a) 15
25917 cont.
3150 bin.

8787 33102
eq. 1686
ineq. 28990

41 107 148

3b) 10
17277 cont.
2100 bin.

5857 22032
eq. 1131
ineq. 19180

5 50 55

4 15
25917 cont.
3690 bin.

8787 35924
eq. 606
ineq. 31342

19 244 263

Table 6.3: Solving time for experiment 1-4. Note: Far left column in ascending
order is: 1 for Throw, 2 for Jump, 3a for Lifting with Arm, 3b for Lifting with
Climb, and 4 for Double-dual Arm.

The max residual is the maximal value of all the norms. Figure 6.4 depicts

the change of mean and max residuals as a function of time. ADMM gener-

ally showed decent average consensus after iteration 10, where rpB or rpL usu-

ally converges to cm-mm level and rRL usually less than 0.1 rad. The maximal

residual can sometimes be large. If we put the MIP solutions on the real hard-

ware, we can run another kinematics refiner to solve the kinematics to ensure

that the nonlinear constraints are strictly satisfied.

The number of variables, constraints and time cost for solving the exper-

iments above are listed in Table 6.3. Generally, the NLP portion is the more

challenging portion of ADMM, since it includes kinematic and collision avoid-

ance constraints. To speed up the solving process, some linear constraints in

can be moved into the MIP formulations. This will speed up the NLP solver

but the residual may increase.

95

6.6 Conclusion: Why Do We Need Stronger Optimization Methods?

An optimization-based motion planner for the multi-agent modular robot sys-

tem LIMMS is presented. We demonstrated solving the proposed formula-

tion with ADMM. The results show how LIMMS autonomously coordinates

between different modes and generates trajectories of the system under differ-

ent situations. With proper refinement, the trajectories can be implemented on

the hardware.

It is worthwhile to mention that due to the separating plane for collision

avoidance, the NLP part of the problem takes a long time to solve. Table 6.3

shows that the solving time can be as long as hours. Clearly, this takes too long

for real-time implementations. A well-trained human commander can easily

exceed this speed. In addition, we have found that the optimal costs given by

ADMM solutions are also not satisfactory [34]. Note that we have not yet put

the most challenging multi-body dynamics inside the problem formulation. To

conclude, the proposed ADMM method works in some cases, but is too slow

and not reliable enough for real-time implementations.

ADMM works better than poorly initialized formulation with complemen-

tary constraint or mixed-integer formulation. However, with pre-solved data,

we can ask for a faster solving speed and a better optimal cost. In the pre-

vious work [34], we used data-driven methods to solve those constraints fast

online. A similar approach can be adopted here such that a learning agent can

be trained to give a good initial guess for the separating planes.

96

CHAPTER 7

Data-driven Methods for Mixed-integer Non-convex Optimization:

Algorithms

7.1 Background on Data-driven Methods for Optimization

7.1.1 Motion Library

Motion library is a typical method to leverage offline computing power. A large

number of controllers are pre-computed offline and stored inside a library. On-

line, the controllers are selected based on the robot state in the nearest neigh-

bor manner. This method can provide more robust and global policies faster

than online solving techniques such as dynamic programming [138]. Motion li-

braries have been used to synthesize controllers for bipedal walking [139], and

simulated multi-link swimming [140]. However, this method does not adapt

well to situations not previously seen in the library.

7.1.2 Parametric Programming

Parametric programming is a technique to build a function that maps to the

optimization solutions from varying parameters of the optimization problem

[141, 142]. Previous works has investigated parametric programming on lin-

ear programming [143], quadratic programming [144], mixed-integer nonlin-

ear programming [145]. As an implementation of parametric programming on

controller design, explicit MPC [144, 146] tries to solve the model-predictive

control problem offline, and stores active sets. When computed online, the

problem parameter can be used to retrieve the active sets. [144] solved a con-

97

strained linear quadratic regulator problem with explicit MPC and proved that

the active sets are polyhedrons. Therefore, the parameter space can be parti-

tioned using an algorithm proposed by [147]. However, when the problem is

non-convex, the active sets do not in general form polyhedrons. Therefore, it is

significantly more complex to compute critical regions offline.

7.1.3 Learning Problem-solution Mapping

The basic ideas behind parametric optimization is to construct a mapping from

the descriptor of the problem to the solutions of the problem. For simple prob-

lems, this may be done analytically with parametric optimization techiques.

For more challenging problems, it makes more sense to use learning approaches.

For relatively smaller datasets, previous works [28, 148, 149] directly store the

data points and pick out warm-start using non-parametric learning such as

K-nearest neighbor (KNN), and solve the online formulation. Effectively, this

approach adds an online adaptation step to the motion library method, which

turns out to work well. On the other hand, modern learning techniques such

as neural-networks can learn an embedding of a larger set of parameters that

maps to the solutions [27]. One advantage of using neural-network methods is

the capability to deal with out-of-distribution situations that are not included

in the training set [150].

7.1.4 System Identification Approach

A different perspective to look at the learning problem-solution mapping ap-

proach is to treat this as a system identification problem, where we intend to

identify a function that transforms the problem parameter space into the so-

lution space. In certain cases such as [144], the optimal control law is a piece-

wise affine (PWA) function. This indicates that we can use piece-wise affine

98

system identification tools to fit the problem-solution mapping. The classi-

cal approaches include [30] which utilized a clustering approach, and [151]

which used polynomial factorization. An overview of the classical methods

can be seen in [33]. Those methods, however, do not scale up to larger prob-

lems. More recent approaches such as [152] proposed methods that can scale

to thousands of discrete modes. An interesting comparison can be made be-

tween the learning methods and system identification methods. In general,

the system identification approach can be difficult to perform model training

and does not scale as well as learning approaches such as neural networks.

However, they are more interpretable as each mode is explicitly represented by

planes. It is also easier to leverage the optimization formulation with explicit

plane models. The system identification approach may be a valid choice for

smaller-scale problems.

7.1.5 Online Formulation

To allow online adaptation, one needs to solve an online optimization formu-

lation in real-time. This online formulation can have several forms. Typi-

cal robotics problem includes discrete contact and discrete operating modes.

There are generally two ways to include discrete variables in the optimization

formulation. Mixed-integer programs include continuous variables and ex-

plicit discrete variables. The definition of mixed-integer variables is that if the

discrete variables are relaxed into continuous ones, the problem becomes con-

vex [61]. Typical mixed-integer programming solvers use branch-and-bound

methods [21], cutting plane methods [153], and rely on heuristics to choose

the branch to explore. Despite the worst case of solving time, a large portion

of problems only requires exploring a small portion of the search tree [123].

Mixed-integer programs have been implemented for online motion planning

such as [22].

99

On the other hand, mathematical programs with complementary constraints

(MPCC) models discrete modes through continuous variables with comple-

mentary constraints. Complementary constraints enforce a pair of variables

such that if one of them is non-zero, the other one should be zero. This con-

straint is traditionally hard to solve and is sensitive to initial guesses. Algo-

rithms such as time-stepping [154], pivoting [155], central path methods [156]

are proposed to resolve complementarity. In the robotics community, comple-

mentary constraints are typically used to optimize over gaits for trajectory op-

timization [11, 64] or control with implicit contacts [157] where contact forces

and distance to the ground are complementary with each other. On the other

hand, complementary constraints can also be used to model binary variables

[158].

7.1.6 Solving Techniques for MICP and MINLP

Mixed integer convex programs are defined such that

find x,z

s.t.

xz
 ∈ C

x ∈Rnx z ∈ {0,1}nz

(7.1)

Where x’s are continuous variables, z’s are discrete (usually binary) vari-

ables. C is a convex set. The definition states that if the binary variables

z ∈ {0,1}nz are relaxed into continuous variables z ∈ [0,1]nz , the problem be-

comes a convex optimization problem. Mixed-integer programs are generally

solved through branch-and-bound method [159, 160] and cutting plane meth-

ods [161]. The basic idea behind branch and bound algorithm is to relax the

integer variables and solve the corresponding convex programming in an iter-

100

ative fashion, while keeping track of two bounds of global optimal solution:

the upper bound - best solution for the convex programming, and the lower

bound - best current feasible solution. Once those two bounds get close to

each other, the algorithm converges. On the other hand, cutting planes gen-

erate constraints that are equivalent to the current constraint given that some

variables are integers, but stronger in terms of its continuous relaxations. This

method helps to quickly cutout globally infeasible regions. Aside from branch-

and-bound and cutting planes, mixed-integer optimization solvers also rely on

heuristics [38] that guides the search to e.g. which branch should be expanded

in the branch and bound process.

Mixed integer nonlinear programs are defines such that

minimize dT x

s.t. gi(x) < 0 ∀i ∈M

Li ≤ xi ≤Uj ∀j ∈ N

xj ∈Z ∀j ∈ I

(7.2)

where I ⊆ N B {1, ...,n} is the index set of integer variables, d ∈Rn. L andU

are lower and upper bounds on the variables. There are different approaches

to relax MINLPs. One can omit the integer constraints resulting in nonlinear

programming relaxations, or one can relax the nonlinear constraints (if such

a relaxation exists), resulting in mixed-integer programs. One example is the

McCormick envelope relaxation of bilinear constraints [62], or convex enve-

lope on trilinear monomials [162]. However, such convex envelope relaxations

of the non-convex constraints tend to generate mixed-integer programs with

many integer variables and are slow to solve.

Many MIP heuristics rely on finding small sub-MIP which contains good so-

lutions. This set of methods are usually called Local Branching (LNS). In [163]

101

the authors proposed local branching which imposes linear soft fixing con-

straints to “fix" a part of the integer variables given a feasible solution. In [164]

the authors proposed RINS which fixes the variables that has the same values

in the current best solution and the solution from global continuous relaxation,

and solve a sub-MIP on the remaining variables. In [165], the authors proposed

DINS which combines the soft fixing from local branching and hard fixing from

RINS based on an intuition that the improved MIP solutions are more likely to

be the close ones to the current relaxation solution. Those LNS improvement

heuristics can be extended to more general case of MINLP [166–168]. Some

of them are special to MINLPs [169]. Some of the recent works have also use

learning methods to perform branch and bound [170], LNS [171,172]. Another

perspective to look at this set of methods is that it uses heuristics to pick good

solution and warm start the problem. Similar work has done for mixed-integer

MPC [173].

7.1.7 Collision Avoidance with Mode Switch

Collision avoidance constraints typically appear in multi-agent motion plan-

ning problems. Single-agent collision avoidance with the stationary environ-

ment is relatively straightforward as the collision-free regions can be precom-

puted such that the moving agent stays within them. Polyhedrons are typi-

cal models for collision-free environment [174]. If moving agents have simple

shapes such as circles, collision-free constraints can simply enforce that dis-

tance between two agents are larger than a known value [175]. However, if

moving agents have complex shapes, collision avoidance becomes more chal-

lenging. Naive methods include enforcing collision avoidance between a large

number of points sampled within each agent. This approach is obviously com-

putationally expensive. Methods based on KKT conditions are proposed [176]

to enforce collision avoidance between convex shapes. This method does not

102

allow the agent to make contact without sacrificing precision. In this paper, we

propose a novel approach using separating planes to enforce collision avoid-

ance between convex agents but still allow them to make precise contacts. If

the agent has a non-convex shape, it can be decomposed into convex shapes

such that this approach can still be used. For many multi-agent optimization

problems, agents can operate under various modes encoded with discrete vari-

ables. The discrete mode switching with collision avoidance constraints leads

to a mixed-integer bilinear formulation which is challenging to solve. Lever-

aging on pre-solved data is one approach to solve these formulations fast and

reliably.

7.2 Data-driven Methods for Fast Online Optimization: Algorithms

Assume that we are given a set of problems parametrized by Θ that is drawn

from a distribution D(Θ). For each Θ, we seek a solution to the optimization

problem:

minimize
x, z

fobj(x,z;Θ)

s. t. fi(x,z;Θ) ≤ 0, i = 1, ...,mf

bj(x,z;Θ) ≤ 0, j = 1, ...,mb

(7.3)

Where x denotes continuous variables and z binary variables with zi ∈ {0,1}

for i = 1, ...,dim(z). Constraints fi are mixed-integer convex, meaning if the

binary variables z are relaxed into continuous variables z ∈ [0,1], fi becomes

convex. Constraints bj are mixed-integer bilinear, meaning that relaxing the

binary variables gives bilinear constraints. Without loss of generality, x and z

are assumed to be involved in each constraint. We omit equality constraints

in (7.3) as they can be turned into two inequality constraints from opposite

directions.

103

In general, there are two directions to convert a mixed-integer bilinear pro-

gram to either a mixed-integer linear program or a nonlinear program. To

convert to a mixed-integer linear program, one needs to convert non-convex

constraints to mixed-integer linear constraints. For example, we can convert

trigonometry constraints into piece-wise linear constraints [18], or convert bi-

linear constraints into mixed-integer envelope constraints [61]. However, mixed-

integer envelope constraint tend to significantly increase the solving time. In

[23], the trajectory planner is based on mixed-integer formulation with en-

velopes to approximate the bilinear moment constraints. To walk a few steps

upstairs, the solver can take several hours to find a feasible solution. The other

approach is to convert the binary variables into continuous variables with com-

plementary constraints. This approach requires the solver to deal with a po-

tentially large number of complementary constraints known to be computa-

tionally difficult. Directly solving the NLP with complementary constraints

without an informed initial guess result in high chance of infeasibility, unless

special treatment such as [154] are used. Those methods, however, result in

slower solving speed from our benchmark results.

For both directions mentioned above, incorporating pre-solved data to learn

a good warm-start online can improve the solving speed or rate of feasibility,

as we will show in our experiments. If the learning agent with the problem

description Θ can partially provide feasible integer variables, the size of the

mixed-integer optimization problem can be reduced and hence solved faster.

If the learning agent can provide a complete list of integer variables, the prob-

lem reduces to a convex optimization permitting convex solvers such as OSQP

[177]. On the other hand, if the learning agent provides a good initial guess for

the variables involved in complementary constraints, the feasibility to solve the

problem significantly increases.

As the online formulation can be MPCC, MIP, or a convex formulation, we

104

have compared their performances on benchmark problems. In the following

sections, we describe the implementation details for each online formulation.

7.2.1 Complementary Formulation

An equivalent formulation of mixed-integer programs with binary variables

is to turn all the binary variables zi into continuous variables with comple-

mentary constraints, such that the complete formulation can be solved through

NLP solvers. One implementation is from [158]:

zi(1− zi) = 0 (7.4)

Which is equivalent to the constraint zi ∈ {0,1}. Other implementations can

be found in [63].

After collecting the dataset, we can learn the optimal problem-solution

mapping from the problem parameter Θ to the solution (x,z). Online, the

learner samples multiple warm-start points (x,z) for the NLP. The NLP with

complementary constraints are then solved using the sampled warm-start one-

by-one until a feasible solution is returned.

7.2.2 MIP Formulation

We convert bilinear constraints into mixed-integer linear constraints by grid-

ding the solution space S and approximating the constraints locally inside

grids with McCormick envelopes similar to [61]. A McCormick envelope relax-

ation of one bilinear constraint w = xy [119] is the best linear approximation

defined over a pair of lower and upper bounds [xL,xU] and [yL, yU]. There-

fore, we first assign grids G(x) to S. Let {gl}, l = 1, ...,L be one cell in the grid

with upper and lower bounds [xL,xU]. We introduce additional integer vari-

105

ables n, ni ∈ {0,1}. Each unique value of n corresponds to one cell in the grid

within which McCormick envelope relaxations are applied. The constraints

bj(x,z;Θ) ≤ 0, j = 1, ...,mb are converted into L constraints: Ebj ,l(x,z,n;Θ) ≤ 0

for j = 1, ...,mb and l = 1, ...,L, turning (7.3) into an MICP:

minimize
x, z, n

fobj(x,z,n;Θ)

s. t. fi(x,z;Θ) ≤ 0, i = 1, ...,mf

Ebj ,l(x,z,n;Θ) ≤ 0, j = 1, ...,mb, l = 1, ...,L

(7.5)

We use a log2N formulation which meansN grids are represented by dlog2N e

binary variables. For example, 17 ∼ 32 grids are represented by 5 integer vari-

ables. Since the intervals generated by the clustering methods are not necessar-

ily connected, the proposed method in [61] does not work. The formulation we

use can incorporate intervals that are not connected hence more general. The

price to pay is additional continuous variables. Please see Appendix for details

of the formulation. Despite the relatively smaller number of binary variables

due to log2N formulation, approximating nonlinear constraints with mixed-

integer convex constraints still generates a large number of integer variables

when high approximation accuracy is desired. As a result, the formulation suf-

fers from extended solving time. We use data-driven methods to reduce the

number of integer variables and learn good warm-starts for online applica-

tions.

7.2.2.1 Reduced Scale MIP Formulation

[178] proposes ReDUCE as a method to generate smaller scale MIP problems.

The basic idea of using unsupervised learning to reduce the size of mixed-

integer programs is to identify and cluster the important regions on the solu-

106

tion manifold, and generate MIP formulations with smaller scale. If Rdim(x)

is segmented into smaller regions, e.g. clusters, the required integer variables

for each cluster can be reduced. This may be seen in Fig. 5.9 which is an in-

stance of 2-dimensional (dim) X(Θ) from a bookshelf experiment described in

Sec. 8.1.3.1.

This paragraph reviews the general steps of ReDUCE. To begin, ReDUCE

uses pre-solved dataset (Θk ,xk), k = 1, ...,K . We pre-assign grids G(x) to the

solution space S. The size of grids depends on the approximation accuracy

requirement for bilinear constraints. ReDUCE begins by performing unsuper-

vised learning on the pre-solved dataset to retrieve clusters that indicates re-

gions on X(θ). Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) [179] was used to cluster on x which gives clusters x1,x2, ...,xC ,

where C is the number of clusters. We then trace Θ → x map backwards to

create clusters in Θ space, i.e. ({Θ}1, {x}1), ..., ({Θ}C , {x}C). Next, a supervised

classifier is trained to classify (Θ, c). We use Random Forest which requires rel-

atively smaller amounts of data to train than deep learning methods. For all

{x}c in cluster c, we find the grid cells that they occupy and re-assign integer

variables zc and nc to each cluster. At this point, the original MIP problem is

segmented into smaller scale MIP problems with faster solving speed. When

a new problem instance comes online, the classifier is used to point the new

problem to one of the existing clusters and the reduced scale MIP is solved.

The idea of solving smaller sub-MIPs bears similarities with algorithms

such as RENS [167] and Neural Diving [38] where a subset of integer variables

are fixed from linear program solutions or a learned model, while the others are

solved. Our method, however, segments the problem through an unsupervised

clustering approach.

107

7.2.2.2 Convex Formulation

In the extreme case, if the learner can provide a complete warm-start of the bi-

nary variables, the problem online becomes convex permitting fast QP solvers.

[27, 180, 181] define integer strategies to be tuples of I (Θi) = (z∗,n∗,T (Θi)),

where (x∗,z∗,n∗) is an optimizer for problem (7.5), T (Θi) = {i ∈ 1, ...,mf , l ∈

1, ...,L|fi(x∗,z∗;Θ) = 0, Ebj ,l(x
∗,z∗,n∗;Θ) = 0} is the set of active inequality con-

straints. Given an optimal integer strategy I (Θi), solutions to (7.5) can be re-

trieved through solving a convex optimization problem. This idea is adopted

for learning warm-start with a convex formulation online. We have imple-

mented both K-nearest neighbor to sample the points that are closest to the

new problem Θ. We have also tested a simple neural-network structure iden-

tical to [27].

7.2.3 Conclusion

We have listed several online formulations for receiving a warm-start and solv-

ing the problem fast to meet the real-time planning and control requirements.

In the next chapter, we implement those methods for planning item manipu-

lation motions in a cluttered environment and controlling a quadruped robot

walking with fast gait selection online.

108

CHAPTER 8

Data-driven Methods for Mixed-integer Non-convex Optimization:

Applications

In this section, we demonstrate several implementations of the data-driven

methods proposed in the previous section to solve optimization problems. Ex-

amples include the organization of stored items using a manipulator, hybrid

non-convex model predictive control, etc. One common feature of those prob-

lems is that the problem size can easily be large, and they require real-time

solving speed (within a few seconds for motion planning problems, and more

than 50Hz for control problems).

8.1 Book Shelf Organization Problem

We introduce the bookshelf organization problem. Given a bookshelf with sev-

eral books on top, an additional book needs to be placed on the shelf with min-

imal disturbance on the existing books. Some of the original and solved cases

are given in Fig. 8.2. This problem has practical applications in e.g. logistic

industry. A more comprehensive presentation of the formulation and results

are available at [182]

8.1.1 Problem Formulation

Assume a 2D bookshelf with limited width W and height H contains rectan-

gular books where book i has width Wi and height Hi for i = 1, ...,N −1. A new

book, i = N , is to be inserted into the shelf. The bookshelf contains enough

books in various orientations, where in order to insert book N , the other N − 1

109

books may need to be moved, i.e., optimize for minimal movement of N − 1

books. This paper focuses on inserting one book using a single robot motion

during which the book is always grasped. The problem settings can be ex-

tended to a sequence of motions with re-grasping.

Figure 8.1: Complete formulation of the bookshelf organization problem.

The variables that characterize book i are: position xi = [xi , yi] and angle

θi about its centroid. θi = 0 when a book stands upright. The rotation matrix

is: Ri = [cos(θi), −sin(θi); sin(θi), cos(θi)]. Let the 4 vertices of book i be vi,k,

k = 1,2,3,4. The constraint:

xi + Rihi,k = vi,k (8.1)

shows the linear relationship between xi and vi,k, where hi,k is the constant

offset vector from its centroid to vertices.

Constraint:

vi,k ⊂ Book Shelf (8.2)

110

enforces that all vertices of all books stay within the bookshelf, a linear

constraint.

Constraint:

RT
i Ri = I, det(Ri) = 1 (8.3)

enforces the orthogonality of the rotation matrix, a bilinear (non-convex)

constraint.

Constraint:

Ri(1,1) ≥ 0 (8.4)

enforces that the angle θi stays within [−90°,90°], storing books right side

up.

To ensure that the final book positions and orientations do not overlap with

each other, separating plane constraints are enforced. For convex shapes, the

two shapes do not overlap with each other if and only if there exists a separat-

ing hyperplane aT x = b in between [135]. That is, for any point p1 inside shape

1 then aTp1 ≤ b, and for any point p2 inside shape 2 then aTp2 ≥ b. This is

represented by:

aTj vj1,k ≤ bj , aTj vj2,k ≥ bj

aTj aj ≥ 0.5
(8.5)

Both constraints are bilinear constraints. The second constraint speaks that the

norm of the plane normal vector should be larger than 0. We avoid directly

using an equality constraint of unit norm vector to reduce the numerical diffi-

culty of the solver.

Finally, we need to assign a state to each book i. For each book, it can be

standing straight up, laying down on its left or right, or leaning towards left

111

or right against some other book, as shown in the far right column in Fig. 8.1.

For each book i, we assign a set of integer variables zi . If book i stands upright

(zi,2 = 1) or lays flat on its left (zi,1 = 1) or right (zi,3 = 1), constraints:

Ri(2,1) = −1, xi(y) = yground +
1
2
Wi (8.6)

or

Ri(2,1) = 0, xi(y) = yground +
1
2
Hi (8.7)

or

Ri(2,1) = 1, xi(y) = yground +
1
2
Wi (8.8)

are enforced, respectively. If book i leans against another book (or left/right

wall which can be treated as static books) on the left or right, constraints

aTj vj1,1 = bj , aTj vj2,4 = bj

vj1,2(x) ≤ xj1(x) ≤ xj2(x)

vj1,2(y) = yground , Rj1(2,1) < 0

(8.9)

or

aTj vj1,4 = bj , aTj vj2,1 = bj

xj2(x) ≤ xj1(x) ≤ vj1,3(x)

vj1,3(y) = yground , Rj1(2,1) > 0

(8.10)

are enforced, respectively. Fig. 8.1 shows the constraints, variables and ob-

jective function for the bookshelf problem. To this end checks need to indicate

the contact between books. By looking at the right column in Fig. 8.1, we can

112

reasonably assume that the separating plane aT x = b always crosses vertex 1 of

the book on the left and vertex 4 of the book on the right. This is represented

by bilinear constraints, K1 and L1. In addition, the books need to remain sta-

ble given gravity. Constraints K2 and L2 enforce that a book is stable if its x

position stays between the supporting point of itself (vertex 2 if leaning right-

ward and vertex 3 if leaning leftward) and the x position of the book that it is

leaning onto. Lastly, constraint K3 and L3 enforce that the books have contact

with the ground. For practical reasons, we assume that books cannot stack onto

each other, i.e, each book has to touch the ground of bookshelf at at least one

point. We note that constraints in H, I, J, K, and L can be easily formulated as

MICP constraints using big-M formulation [183], such that they are enforced

only if the associated integer variable z = 1. Also, it can easily be extended to

allow stacking for our problem. Any contact conditions between pairs of books

may also be added into this problem as long as it can be formulated as mixed-

integer convex constraint. Overall, this is a problem with integer variables, zi ,

and non-convex constraints C, E, F, K1, and L1, hence, an MINLP problem.

Practically, this problem presents challenges for retrieving high quality so-

lutions. If robots were used to store books, the permissible solving time is

several seconds, and less optimal solutions means longer realization times. For

example, in Fig. 8.2 a non-optimal insertion induces multiple additional robot

motions that dramatically increase the chance of failure. There are several po-

tential approaches to resolving this issue: fix one set of nonlinear variables

and solve MICP [49], convert the nonlinear constraints into piece-wise linear

constraints and formulate them into an MICP [18], or directly apply MINLP

solvers such as BONMIN [184]. As expected, these approaches struggle to meet

the requirements.

113

Figure 8.2: Solved scenes of bookshelves. Top Row: Instance solved by CoCo
with ReDUCE. Bottom Row: Instance solved by RF with ReDUCE. Column (a),
(b), (c) corresponds to cluster 0, 1, 2, respectively. Each cell contains a before
and after scene with the upper diagram showing the original bookshelf with
orange rectangles representing stored books and the lower diagram showing
the solved bookshelf where the blue rectangle represents the inserted book. For
column (a), we demonstrate a scene where RF gives a much worse result than
CoCo such that multiple books are moved. However, CoCo and RF usually give
similar results.

8.1.2 Mixed-integer Formulations

We explain the formulation that is used to solve the MIPs in the previous sec-

tion.

For a non-convex constraint, we segment it into multiple regions and lo-

cally approximate or relax them into convex constraints. In this paper, we relax

the bilinear constraints locally into convex polytopes (McCormick envelopes).

Each polytope is associated with a unique combination of integer variable val-

ues, hence, mixed-integer convex constraints. Assume the number of regions

used isN . Depending on the number of integer variables used, the formulation

can generally be divided into 2 categories: 1) If the number of integer variables

114

is N , we call it N formulation, e.g., the convex hull formulation [185]. 2) If the

number of integer variables is log2N , we call it log2N formulation, e.g., [186].

[186] presents a log2N formulation to model the special ordered sets of type 2

(sos2). However, there are several limitations of this formulation. For example,

the segmented regions need to be connected to be a valid sos2 constraint, i.e.,

the two consecutive couple of non-zero entries can be any consecutive couple

in the set. In this paper, we use MIP to model convex polytopes of arbitrary lo-

cations. This can increase the complexity for sos2 techniques as the polytopes

can be disjunctive. The disjunctive constraints can be handled with convex hull

formulations at a price of introducing more integer variables which may result

in slower solving speeds.

In this appendix, we demonstrate an intuitive but general log2N formulation

to model combinations of convex polytopes at any locations which serves as

the base MIP formulation for the bilinear constraints in our paper. Assume the

variable x is enforced to be within one of the N convex polytopes, denoted by

Aix ≤ bi , i = 1, ...,N . We introduce m = log2N binary variables z1, ..., zm, zi ∈

{0,1}. Each combination of unique values of binary variables can be assigned

to a convex polytope. Let the assignment be:

z = z̄i ⇒Aix ≤ bi (8.11)

Where z̄i = [z̄i,1, ..., z̄i,m] are constant binary values associated with polytope

i. Note z̄i , z̄j if i , j. In other words, we require that when z = z̄i , x stays

within the polytope Aix ≤ bi ; otherwise, the constraint is unenforced.

Denote the vertices of the polytopes by vi,1, ...,vi,ni , i = 1, ...,N , where ni is

the number of vertices associated with polytope i. Each vertex vi,j is assigned

a continuous non-negative variable λi,j ∈ [0,1]. In general, one can run a math-

ematical program (e.g. [187]) to get vertices from the nondegenerate system of

115

Table 8.1: Benchmark Results

ADMM - Knitro ADMM - IPOPT MIP - 50 MIP - 20
MPCC_default

- Knitro
MPCC_default

- IPOPT
MPCC_Manual

- Knitro
MPCC_Manual

- IPOPT
MPCC_KNN3

- Knitro (15000data)
MPCC_KNN3

- IPOPT (15000 data)
MPCC_KNN3 (Rev)
- Knitro (36000 data)

Convex - 200
(15000 data)

Convex - 600
(15000 data)

Convex - 200
(78000 data)

Note
Each cluster
50 samples

Each cluster
20 samples

Using default initial guess from
CasADi

Using manually selected 1 initial guess KNN selects top 3 guesses from 15000 data
Same to left but select
the worst 3 guesses

Max iteration
of OSQP=200

Max iteration
of OSQP=600

Currently KNN
learner

Success Rate 96.5% 94.75% 100 % 98.75% 1.25 % 0 % 78.25% 78.25% 99.25% 98.5% 92.5% 94.5% 98.75% 96%

Avg. Solve Time 260 ms 522 ms 790 ms 616 ms 72 ms 29 ms 81 ms 30 ms 96 ms 61 ms 65 ms 80 ms 16 ms

Max. Solve Time 1.29 sec 3.59 sec 17.3 s 70 s 82 ms 198 ms 1.96 sec 280 ms 990 ms 327 ms 190 ms 400 ms 174 ms

Avg. Objective -7250 -7339 -8606 -8435 -5703 -8620 -8952 -8258 -8618 -6461 -8631 -8687 -8637

Avg. # of iterations 4.73 4.6 1 1 1 1 1.05 1.06 1.25 4.85 3.85 2.57

Solver Gurobi+Knitro Gurobi+IPOPT Gurobi Gurobi Knitro IPOPT Knitro IPOPT Knitro IPOPT Knitro OSQP OSQP OSQP

inequalities Aix ≤ bi . As a result, the assignment becomes:

z = z̄i ⇒

x =
ni∑
j=1

λi,jvi,j

ni∑
j=1

λi,j = 1, λi,j ∈ [0,1]

(8.12)

The formulation can be written as:

(5.a) x =
N∑
i=1

ni∑
j=1

λi,jvi,j

(5.b)
N∑
i=1

ni∑
j=1

λi,j = 1, λi,j ∈ [0,1]

(5.c)
k,i∑

k=1,...,N

nk∑
j=1

λk,j ≤
m∑
l=1

|zl − z̄i,l |

(8.13)

The set of constraint in (8.13) enforces (8.12) for all polytopes, as
∑m
l=1 |zl −

z̄i,l | = 0 only when z = z̄i , enforcing that all λ’s that are not associated with

polytope i to be zero. If z , z̄i ,
∑m
l=1 |zl − z̄i,l | ≥ 1 and constraint (5.c) is looser

than constraint (5.b), hence, trivial.

Note that formulation (8.13) works for any convex polytope that can be

written as Aix ≤ bi . In this paper, the polytopes are McCormick envelope con-

straints which is a special case.

116

8.1.3 Solving with Data-driven Methods

8.1.3.1 Setup

We place 3 books inside the shelf where 1 additional book is to be inserted.

Grids are assigned to the variables involved in the non-convex constraint C, E,

F, K1, L1: Ri(θi), aj and vi,k. These variables span a 48-dim space. The rotation

angles θi , which includes Ri , are gridded at π
8 intervals. Elements in aj are

gridded on 0.25 intervals. Elements in vi,k are gridded at intervals 1
4 the shelf

widthW and height H . Table 8.3 lists the number of grids for each non-convex

variable. Our MICP formulation results in 130 integer variables in total. The

input vector includes the center positions, angles, heights and widths of stored

books and height and width of the book to be inserted. The input dimension is

17.

The problem instances are generated using a 2-dim simulated environment

of books on a shelf. Initially, 4 randomly sized books are arbitrarily placed

on the shelf, and then 1 is randomly removed and regarded as the book to be

inserted. Contrary to the sequence, the initial state with 4 books represents one

feasible (not necessarily optimal) solution to the problem of placing a book on

a shelf with 3 existing books. This guarantees that all problem instances are

feasible. Since this problem can be viewed as high-level planning for robotic

systems, the simulated data is sufficient. For applications outside of the scope

of this paper real-world data may be preferable in this pipeline.

All methods are tested on 400 randomly sampled bookshelf problems in

the same distribution using the same method mentioned above. All results are

listed in table 8.1.

117

8.1.3.2 Complementary Formulation

We turn the binary variables into continuous variables with complementary

constraints. We selected both IPOPT and Knitro solvers to solve the MPCC for-

mulation. A small relaxation of ε = 10−3 on the right hand side of the comple-

mentary constraints is used to increase the chance of getting a feasible solution.

Zero Warm Start As a baseline, we solve the problem with the default ini-

tial guess of the solvers (all zeros). The results are shown in the column of

Table 8.1 named "MPCC_default". As we can see, despite the relaxation of

complementary constraints, the rate of solving the problem successfully with

zero warm-start is almost zero.

Warm Start with Manually Designed Heuristics Another baseline is to warm-

start the formulation with human-designed heuristics. The bookshelf problem

requires inserting one book minimizing the movements of the existing books.

Therefore, a good initial guess is to directly use the continuous and discrete

variables from the original scene. We also pre-solve the separating planes using

the original scene to warm-start the parameters a and b. The authors believe

this is the best initial guess readily available without paying much more effort.

The results are shown in Table 8.1 in the column "MPCC_Manual".

Implementing this initial guess increases the success rate to more than 70%,

significantly better than the default initial guess from the solver. However, we

noticed that this success rate drops as the number of books increases. When

there are only 2 books on the shelf, inserting the 3rd book has over 80% success

rate with the same approach for the initial guess. Therefore, the manually

selected initial guess may not scale to problems with much larger sizes.

Warm Start with pre-solved Dataset We show the result of using K-nearest

neighbor learner to pick out the top 3 candidates from a 15000 pre-solved

dataset in the column "MPCC_KNN3" column in Table 8.1. The results show

118

that a simple KNN solver is able to significantly increase the rate of getting

a feasible solution to more than 98%. The average iteration of solving the

problem is only slightly more than 1 showing that most problem instances are

solved with only 1 K-nearest neighbor sample. Since the MPCC formulation

keeps the non-convexity of the original formulation, it permits the solver to

explore larger regions, hence the learner does not need to pick out a point or

region that is very close to the optimal solution as required by the convex for-

mulation. Note that we found warm-starting the non-convex continuous vari-

ables is as important as warm-starting the discrete (complementary) variables.

8.1.3.3 Reduced Order Mixed-integer Programming Formulation

We randomly sample 4,000 bookshelves and implement DBSCAN to realize

100 clusters. DBSCAN was tuned to ensure the number of clusters did not

grow with samples while maintaining a minimal amount of outliers. Fig. 5.9

shows the first 2 dimensions of the projected solution set X(Θ) and 6 modes

with distinct labels and colors. Fig. 8.3 shows the solution set packed into

tighter groups compared to the same sample of features using t-distributed

Stochastic Neighbor Embedding (t-SNE) [188] as a projection of the high di-

mensional space to 2-dim. The upper graph in Fig. 8.3 shows the clusters

in the solution space, while the lower one depicts the corresponding clusters

in the feature space according to (Θ,x) from the kick off data. The colors in

Fig. 8.3 denote the different clusters. We can tell obvious separations in the

solution space. Although the clusters are more intertwined in the feature space

because of the complexity of Θ −→ x mapping, there are still distinct regions

where certain colors are more dominant. We trained a random forest (RF) clas-

sifier on the features Θ. The classification accuracy reaches 97% indicating that

RF({Θ}) −→ {x} is able to achieve a reasonable mapping.

With the RF classifier trained on 100 clusters, we can quickly sample differ-

119

Figure 8.3: Top: projection onto a 2-dim manifold using t-SNE to depict cluster-
ing of a 48-dim solution space. Each color and label specify a solution cluster-
ing. Under this projection the solution appears very much structured. Bottom:
projection of the 17-dim feature space corresponding to the solution using t-
SNE. The clusters have some structure over the feature space with certain labels
only being found in certain regions. For visualization purposes only the top 8
clusters out of 100 are being displayed.

ent bookshelf problems and solve the reduced MIP problem within seconds to

collect more data for supervised learning. To verify the benefits with ReDUCE,

we first run an experiment that observes an increase in performance with in-

creasing amounts of data over several clusters each containing different num-

ber of integer variables (denoted as Int in Fig. 8.4). We pick 4 different clusters

with number of integer variables 77, 77, 66, and 46, respectively. Five differ-

ent methods to solve the reduced problem within a cluster are used and tested

on a fixed testing set of 500 data points. The results are shown in Fig. 8.4.

The column titled ReDUCE shows the total number of unique integer strate-

gies (N) over training data (total), and the uniqueness percentage (%) is the

resulting quotient. For the column titled CoCo+Re, we train a neural network

with one hidden layer of size 10,000. The input size is equal to dimension of

feature space (17) and the output layer is equal to the number of unique strate-

gies within training data (N). The neural network then samples 30 candidate

120

strategies online according to the rank of the softmax scores of the network

and solves the associated convex optimization problems. If one strategy gives a

feasible solution, we terminate the process and record the solving time and op-

timal cost. Otherwise, infeasibility is recorded. Since the maximum number of

convex problems considered is 30 to be solved online, the problem setup time

is non-negligible. To avoid additional overhead we only setup the problem

once and keep on modifying the integer constraints for more instances. Thus,

all solving times include the problem setup time. The solving process is done

on a Core i7-7800X 3.5GHz × 12 machine with Gurobi. For column RF+Re, we

instead train a random forest with 150 decision trees and get the top 30 most

voted strategies for candidate solutions. For column titled KNN+Re, we fit a

K-nearest neighbor model to the feature-strategy mapping which provides the

top 30 strategies whose features are closest to the feature of the problem to be

solved online. For column titled Baseline+Re, we simply randomly sample 30

unique strategies from the training strategies. For column MIP+Re, we solve

the MIP with reduced number of integer variables, instead of using supervised

learning or sampling method. For all sampling methods, we record the rate of

feasibility (S%), the deterioration (Det) of optimal cost compared to the optimal

cost from MIP+Re column. That is, for the MIP+Re column, its feasibility rates

are all 100%, and its optimal deteriorations are 0. Solving times for baseline is

omitted as they are significantly longer than learning based methods. All times

under Avg and Max (average and maximum solving time) are in seconds.

Generally, learning based methods improved with more data. As ReDUCE

improves the solving speed to collect larger amounts of data, we can further in-

crease the performances with more data. The random sampling baseline (Base-

line+Re) has significantly worse performance than learning methods. This col-

umn ensures that the clusters are not too small making the reduced problem

too simple. For larger clusters with more integer variables (e.g. cluster 0),

121

Figure 8.4: Comparison of different algorithms with ReDUCE (+Re) for CoCo
(CoCo+Re), Random Forest (RF+Re), random sampling (Baseline+Re), and
MIP (MIP+Re). Success rate and deterioration on the objective is denoted as
S% and Det, respectively. Average solving time and maximum solving time are
denoted as Avg and Max, respectively. Int stands for the number of integer
variables within a cluster. With more data the algorithms typically improved.

the learning methods demonstrate an increase in solving speed over MIP. For

smaller clusters (e.g. cluster 2), MIP has faster solving speeds. Therefore, if the

clustering algorithm can decompose the problem into uniformly small clusters,

directly solving the classified mixed-integer programming problem online may

be feasible. A surprising result, as opposed to what [27] shows, is that the K-NN

demonstrates good performance matching what the neural-network model can

achieve. The unique aspect of the bookshelf organization problem is that many

integer variables come from the envelope relaxation of continuous nonlinear

variables. This may cause the mapping function from feature to the integer

strategy to have good continuity favored by the KNN model.

Success (%) Det Avg Time Max Time
CoCo+Re 99.2% 140 1.21 sec 13.47 sec
MIP+Re 100 % 0 2.36 sec 48 sec
MIP n/a n/a > 851 sec n/a
MINLP n/a n/a > 10 min n/a

Table 8.2: Comparison of different solving techniques for the bookshelf prob-
lem. CoCo+Re (+Re denotes using ReDUCE) returned the top 50 candidate
solutions over 100 clusters. MIP+Re used those same clusters to solve the
problem on Gurobi. MIP also used Gurobi. MINLP ran using BONMIN as the
solver. MIP and MINLP solving time for the full set of samples have exceeded
reasonable limitations beyond practical purposes.

122

For a second set of experiments, we collect data for all 100 clusters, in total

17,000, and train a neural network with the same size as above. The network is

then tested on a 1,000 testing set with 100 clusters blended together. The net-

work then samples 50 strategies. The percentage of feasibility (Success (%)),

the optimal cost deterioration (Det), the average (Avg Time) and max (Max

Time) solving time are shown in Table 8.2. For comparison, we record the aver-

age and maximal solving time for MIP with ReDUCE (all clusters blended to-

gether). We also record the solving time for MIP without ReDUCE, the original

formulation, and the solving time for formulation (7.3) solved with BONMIN,

an MINLP solver. CoCo solves faster than MIP for larger clusters which is as-

sociated with more data from the kick off data. When sampling D(Θ), we get

more samples for larger clusters. Therefore, solving time is improved when av-

eraged. For non-reduced MIP, Table 8.2 shows the average solving time over 10

samples where the solving process is interrupted if it exceeds 1,000 sec. Thus,

the average solving time is at least 851 sec. It is clear that without ReDUCE,

it is intractable to gather the amount of data required to train a learner of de-

cent performance. Similar speed is seen for the MINLP solver. All the code is

available at: https://github.com/RoMeLaUCLA/ReDUCE.git.

8.1.3.4 Convex Formulation

To make the online formulation convex, the non-convex part of the continuous

solutions is first discretized, then the complete list of integer variables is used

for training. We discretize the variables using the range given by Table 8.3. A

K-nearest neighbor learner is trained to pick out the first 10 integer solutions.

They are used to turn the mixed-integer program into convex programs which

are then solved one by one until a feasible solution is retrieved. We select the

solver OSQP to solve those convex problems. This solver automatically uses

the previous solution to warm-start the next solution for faster solving speed.

123

https://github.com/RoMeLaUCLA/ReDUCE.git

Table 8.3: Segmentations of Non-convex Variables

variable range # of segmentations
Item orientation θ (rad) [-pi/2, pi/2] 8
Separating plane normal a [-1, 1] 8
Vertex x position vx (cm) [-9, 9] 4
Vertex y position vy (cm) [0, 11] 4

The maximal iterations can be tuned. As most of the problems take no more

than 200 iterations to solve, we set this parameter to 200. Setting the maximal

iteration to 600 will incorporate more solutions, but the average solving time

is longer as it takes more time before the solver decides infeasibility. The result

is shown in the columns named "Convex" in Table 8.1.

The result shows that the convex formulation achieves the fastest solving

speed due to the strong performance of convex solvers. The authors suspect

that the solvers such as OSQP utilized the heuristics specific to convexity, hence

run faster than well-initialized NLP solvers such as Knitro. On the other hand,

the price to pay for turning the problem into convex is that the learner needs

to perform better than in the MPCC case. This is indicated by the 4.85 av-

erage iterations required to find a feasible solution. Due to the inherent is-

sue with KNN, some instances are classified incorrectly, and the solver wastes

much longer time going over the infeasible integer variables.

As the space is discretized, the Θ space is no longer Euclidean. The quanti-

ties that are close to each other in the Euclidean distance sense, but on different

sides of the discretization boundary will be assigned different integer variables,

hence no longer close to each other. The KNN utilizes Euclidean distance, thus

ignoring this non-Euclidean effect and failing to select the correct warm-start

integers in those cases.

124

8.1.3.5 Nonlinear ADMM Formulation

As a non-data-driven benchmark, we implemented the nonlinear ADMM method

on the MINLP formulation by iterating between a mixed-integer formulation

and a nonlinear formulation as described in Section 6.4. To keep this method

non-data-driven, manually designed heuristics same as 8.1.3.2 are used to warm-

start the nonlinear formulation to increase the feasibility rate. A sufficient ef-

fort is devoted to tuning the weights G, γ , and scaling the variables properly to

ensure the performance is on the better end. Since the mixed-integer approx-

imations on the bilinear constraints induce numerical errors, termination con-

ditions and accuracy of bilinear collision avoidance constraints are set lower

to match the accuracy of mixed-integer envelope formulation. The results are

shown in the column named "ADMM" in Table 8.1.

According to the results, ADMM works fairly well for getting a feasible so-

lution. The solving speed is several times slower compared to the data-driven

MPCC formulation and convex formulation. One important reason is that it

usually takes 4-5 iterations (1 iteration includes 1 MIP and 1 NLP) to get a

feasible solution. The nonlinear formulation takes more than 70% of the solv-

ing time, due to the separating plane constraints. If data-driven methods can

be used to warm-start the nonlinear formulation, a faster solving speed may be

achieved. In addition, the average optimal cost from ADMM is worse than most

of the data-driven methods. The authors suspect that the reason is due to the

extra consensus terms in the objective function which guides the convergence.

8.1.3.6 Hardware Experiment

We implement our optimization results on hardware with a 6 degree of free-

dom manipulator [189] to insert a book onto a shelf. To automate the system, a

trajectory planner is required to generate the insertion motion, which is com-

125

mon in practice. As the focus of this paper is on high level planning, we sim-

plify this part by manually selecting waypoints. The hardware implementation

is shown in the attached video.

8.1.3.7 Discussion

According to our test, data-driven methods can simultaneously achieve good

optimality, fast solving speed, and high success rate leveraging on a reason-

able amount of pre-solved data. Among the online formulations, MPCC keeps

the original non-convex formulations hence can converge better even from

a relatively bad initial warm-start. The implementation of MPCC on NLP

solvers is easier than the convex formulation which requires converting the

non-convex constraints into mixed-integer envelope constraints. The solving

speed of MPCC formulation is also fast. The convex formulation has the fastest

solving speed due to well-performed convex solvers. However, since additional

constraints are added to make the problem convex, it is more difficult for the

learner to select a good warm-start, resulting in more trials. Finally, non-data-

driven methods such as nonlinear ADMM have a decent chance to get a feasible

solution. However, both the optimality and the solving speed are much worse.

The obvious merit of the data-driven approach is that it can solve the prob-

lem fast, but also optimally and reliably as long as the new problem instance is

within the trained parameter regime. An obvious challenge with this method is

how to generalize the training to cases outside the dataset. To achieve this goal,

simple learners such as KNN do not perform well, and more modern learning

methods such as auto-encoders are to be explored.

126

8.2 Mixed-integer Non-Convex Model Predictive Control

In this section, a model predictive controller based on data-driven methods

to solve mixed-integer non-convex programming is demonstrated. This shows

that the data-driven methods can significantly speed up the otherwise difficult

optimization problem such that it can be used for high-speed control applica-

tions. The materials are from [190].

8.2.1 Dynamic Model

In this section, we explain the dynamic model used for control in this paper.

Following the common approach seen in literature, we model the robot into a

single rigid body ignoring the swing leg dynamics. However, we do not make

any simplification of the model such as the small angle approximation which

is commonly seen in the literature [67]. We also do not use a pre-planned gait.

8.2.1.1 Nonlinear Dynamics

The dynamics of a single rigid body including the Newton second law and the

angular momentum are:

mp̈ =
N∑
i=1

fi −mg (8.14)

Iω̇ +ω × (Iω) =
n∑
i=1

rb,i × fi (8.15)

Where p represents the geometric center of the body which is also assumed

to be the center of mass. fi represents the contact force on toe i. ω is the angular

velocity and I is the moment of inertia. rb,i is the vector from body center of

mass position p to the contact position pi which is the moment arm of fi .

127

We define the Z-Y-X Euler angles as Θ = [φ,θ,ψ]. The transformation ma-

trix from body frame to world frame is:

Rwb =


cθcψ sφsθcψ − sψcφ sφsψ + sθcφcψ

sψcθ cφcψ + sφsθsψ sθsψcφ− sφcψ

−sθ sφcθ cφcθ

 (8.16)

The transformation from the rate of change of Euler angles to angular ve-

locities ω is:

ω =


cθcψ −sψ 0

cθsψ cψ 0

−sθ 0 1



φ̇

θ̇

ψ̇

 (8.17)

In this paper, we assume that the robot is making point contact to the

ground. The friction cone constraint on each toe can be written as:

fi,z ≥ µ
√
f 2
i,x + f 2

i,y (8.18)

Where µ is the coefficient of friction. Following the common approaches

of trajectory optimization, the continuous trajectory is discretized into knot

points at step 1,2, ...,N with fixed ∆T . Between knot points, the forward Euler

integration constraint is enforced:

p[n+ 1]−p[n] = v∆T

v[n+ 1]− v[n] = a∆T

Θ[n+ 1]−Θ[n] = Θ∆T

ω[n+ 1]−ω[n] = α∆T

(8.19)

Where v is the center of mass velocity and a is the center of mass accelera-

tion. α is the body angular acceleration.

128

The relation between the vector of toe position pw,i originated from world

frame origin to the vector of toe position pb,i originated from the body center

of mass is:

pw,i[n+ 1]−p[n] = pb,i[n+ 1] (8.20)

For easiness of solving, we also make approximation of the leg workspace

into a box:

p[n] + Rwb[n]Hb,i = Hw,i[n]

pw,i[n]−Hw,i[n]−Rwb[n]oi ∈ Rwb[n]B
(8.21)

Where oi is the offset from body center to the shoulder. Hb,i is the vector

from the robot center of mass to the shoulder position (base position of leg)

of the robot body. Hw,i is the vector from the origin of the world frame to

the shoulder position. B is the size of box for leg workspace approximation.

Note that since we collect data offline, we can use full kinematics to completely

explore the workspace. Online, we can discretize the workspace into convex

regions and formulate the kinematics as mixed-integer convex constraint [7].

In order to characterize gait, we define contact variable ci for each toe. If

ci = 0, the leg i is lifted to the air. If ci = 1, the leg is down on the ground. Since

each toe can only have one state, ci is a binary variable.

In addition, the no-slip condition is enforced:

|pw,i[n+ 1]−pw,i[n]| ≤ (1− ci[n])M + (1− ci[n+ 1])M (8.22)

Where M is the standard bigM constant. This mixed-integer linear con-

straint says that if the toe i is on the ground at both iteration n and n + 1, it

should not move (slip).

129

When the toe is lifted into the air, we enforce the lift height constraint and

the zero force constraint:
pb,i(z) =H

|fi | ≤ fmaxci
(8.23)

The lift height H is pre-defined. It can be a variable to deal with situations

such as climbing on stairs with variable height. This will be explored in later

papers.

When ci = 1, the toe is making contact with the ground. For pre-solved

trajectories, we generate randomized terrain shapes discretized into multiple

convex polygon regions s = 1, ...,S, and ensure that the robot makes contact

with one of the polygon region. This constraint is again mixed-integer convex.

We define binary variables zi,s for toe i and convex region s such that if zi,s = 1,

toe i makes contact with the convex region s. The constraint is:

pw,i ∈ Regions if zi,s = 1 (8.24)

Since the toe can be lifted or make contact with one of the convex region,

we enforce: ∑
s

zi,s + (1− ci) = 1 (8.25)

8.2.1.2 Envelope Approximation

A standard approach to formulate the linear relaxations for bilinear constraints

is through McCormick envelopes [62]. For a bilinear constraint z = xy, where

x ∈ [xL,xU] and y ∈ [yL, yU], the McCormick envelope relaxation can be defined

as:

130

z ≥ xLy + xyL − xLyL, z ≥ xUy + xyU − xUyU

z ≤ xUy + xyL − xUyL, z ≤ xLy + xyU − xLyU
(8.26)

Which is the best set of linear relaxation for variable range [xL,xU] and

[yL, yU]. Multi-linear terms such as a1a2...an usually exist in the equation of

dynamics. For trilinear terms, although relaxations of higher accuracy exist

[162], we simply use two McCormick envelopes. Specifically, for terms such

as a = a1a2a3, we first define a12 = a1a2 and implement Eqn. (8.26) between

[a1, a2, a12], then implement Eqn. (8.26) again between [a12, a3, a]. We found

reasonable approximation accuracy out of this approach.

Usually, this approximation accuracy is insufficient if we use the nominal

variable range to generate a single McCormick envelope. The standard ap-

proach is to separate the variable range into smaller regions and implement

multiple envelopes with integer variables pointing to a specific region [61].

For our set of single rigid body dynamics, we identify non-convex multi-linear

terms to be the w×(Iw) which is bilinear, rb,i ×fi which is bilinear, terms in Rwb

which are either bilinear or trilinear, and terms from Eqn. (8.17) which are

either bilinear or trilinear. We separate the variables into the regions as shown

in Table 8.4 for envelope relaxation:

Table 8.4: Segmentations of the nonconvex variables

variable range # of regions

angles [φ, θ, ψ] (rad) [-pi/2, pi/2] 4

bilinear trig terms e.g. cθcψ [-1, 1] 4

rate of change for Euler angles e.g. θ̇ (rad/s) [-10, 10] 16

angular velocity w (rad/s) [-10, 10] 16

toe position p (cm) [-8, 8] 4

contact force f (N) [-15, 15] 16

131

For trigonometry terms such as sθ and cθ, we implement standard piece-

wise linear relaxations similar to [5].

8.2.2 Control Implementation

One key feature of the proposed controller is that it outputs footstep position

and contact force simultaneously, as opposed to the standard force MPC ap-

proaches which typically decouple the footstep planning from the force control

[67]. One advantage of this is that the footstep planner has complete informa-

tion about the force and hence can make contact decisions based on the dy-

namic property of the single rigid body model. We implement this controller

on a quadruped robot designed and built by ourselves. The quadruped robot,

named Spine Enhanced Climbing Autonomous Legged Exploration Robot (SCALER)

[104], is a 18 DoF (12 joints + 6 rigid body DoF) position controlled robot for

walking and wall-climbing. Each joint is actuated by a pair of dynamixel XM-

430 servo motors which are designed for position control. To do force con-

trol, force-torque sensors are equipped on each end-effector. If the robot is

given position and force commands simultaneously, it can track one of them

perfectly, or stays somewhere in between. This controller is implemented by

admittance control. Admittance controller measures external force and uses

position control to track position and force profiles. Admittance controller can

be formulated in task space as:

Md ẍ +Dd ẋ +Kd(x− x0) = Kf (fmeas −Fref) (8.27)

Where Md , Dd and Kd are desired mass, damping and spring coefficients.

Fref is the wrench profile to be tracked. This equation can be re-written for

controller design:

132

ẍ =M−1
d (−Dd ẋ−Kd(x− x0) +Kf (fmeas −Fref)) (8.28)

For admittance control, the control input is position u. We can use:

u =
"

ẍ dtdt (8.29)

Equation (8.28) (8.29) turns the force controller into a position controller

that can be directly implemented with our dynamixel servo motors.

Admittance control makes a trade-off between tracking force profile and

position profile. If we set Dd = Kd = 0, the position tracking is turned off and

the controller becomes a force tracker. If we set Kf = 0 the controller becomes

a pure position tracker ignoring all measured forces. Since our trajectory con-

tains both position and force, we feed two profiles simultaneously to the ad-

mittance controller. It can find a balance between position and force tracking.

8.2.3 Learning for Warm Start

8.2.3.1 Data-driven methods for MINLPs

Since the problem incorporating online gait selection and non-convex dynam-

ics is a mixed-integer nonlinear (non-convex) problem (MINLP) which is known

to be difficult to solve, we implement data-driven methods to learn warm-start

out of pre-solved instances and solve a simplified problem online. This idea

was tested in [34]. We first list some of the results. There are in general two

approaches to convert the MINLP into either mixed-integer programs with

envelopes, or nonlinear programs with complementary constraints. The first

approach, as described in section 8.2.1.2, use local convex approximations to

convert the non-convex constraints into mixed-integer convex constraints. The

issue with this method is that the resultant mixed-integer convex constraints

133

are usually very slow to resolve as a precise approximation usually gives a large

number of integer variables. On the other hand, one can convert the discrete

variables into continuous ones with complementary constraints. Specifically,

the binary variable z ∈ {0,1} may be converted into z ∈ [0,1] with additional

constraint z(1 − z) = 0. However, this conversion tends to give a numerically

difficult nonlinear optimization problem. Simply giving such a problem to

NLP solvers without a good initial guess results in an extremely low feasibility

rate. In both cases, pre-solving some of the problems and using learning to pro-

vide warm-starts online dramatically helps with the feasibility rate and solv-

ing speed. In the extreme case, one can take the MIP approach and learn full

integer variables offline, such that the problem becomes convex online given

warm-starts. Commonly, the learner will sample several integer strategies and

try them one by one until a feasible solution is retrieved. Ideally, we would like

to use a minimal amount of trials to get a highly optimized solution resulting

in the fastest solving speed (similar to convex MPCs). This will require a train-

ing dataset of high optimality and well-performed learning. Several learning

schemes have been explored [27, 28].

Other than data-driven methods, several non-data-driven methods also ex-

ist to get local optimal solutions at a decent speed such as ADMM [132]. How-

ever, ADMM can oftentimes provide highly sub-optimal solutions. With datasets

of good quality, data-driven methods could provide solutions that are close to

global optimal ones with even faster solving speeds. In some cases of robotics

problems, global optimal are sometimes desired as they have consistent behav-

ior across similar scenarios and are economically beneficial (for example, they

complete the tasks faster and cost less energy).

134

8.2.3.2 Training for locomotion with single rigid body model

To train a learner offline, we sample the problem instances. Define the problem

with a parameter P . Consider a quadruped robot walking subject to distur-

bance forces. In this case, P describes the various initial conditions such as ini-

tial accelerations, velocities, angles, and angular rates caused by disturbances.

In this paper, we simplify the problem by only considering flat terrain. Non-

flat terrains can be considered by randomizing the terrain shape. The problem

is then formulated as NLP with complementary constraints for gait variables

and solved using solver IPOPT. As mentioned in the previous section, it is dif-

ficult to find feasible solutions without a good warm-start. For our problem,

we use trot gait to warm-stat the binary gait variables which will be further

optimized by the MIP formulation. After collecting a dataset from the NLP

formulation, we use them to warm-start the equivalent MIP formulation by

converting the non-convex continuous variables into integer variables. With-

out a warm-start, the MIP solver struggles to find any feasible solution. The

MIP formulation can further improve the optimality of the dataset. One of the

tricks is that we can partially warm-start the binary variables and let the MIP

solver deal with the rest of the binary variables. As the initial conditions of the

problem to be solved by MIP do not necessarily match with the dataset coming

from NLP solutions, using the exact binary solutions from NLP dataset may

lead to infeasibility. Partially warm-start most of the binary variables can give

more feasible solutions, and the MIP solving time is still fast. For the walking

problem, if we warm-start the binary variables for non-convex variables and

let the MIP solver deal with gait variables, the problem can be solved in a few

seconds with a much more dynamic gait retunred.

One feature of MIP is that the theoretical lower bound of the optimal cost

can be retrieved by relaxing the binary variables into continuous variables. The

optimal primal-dual gap can be defined by the ratio of primal objective bound

135

zP minus the dual objective bound zD , or the current best objective value minus

the lower bound of objective value. The gap ratio |zP −zD |/ |zP | tells how optimal

the current solution is. The lower this value is, the closer the current solution

is to the global optimal solution. Most of the solutions from the NLP solver

have an optimal gap more than 30%. Since the single rigid body model is at a

reasonable scale, the MIP solver Gurobi can improve the gap to less than 15%.

We then train a learner to provide full list of integer variables online. The

general balance controller should not need the information about the terrain,

and should regulate the robot body despite the change of environment. There-

fore, the input of the learner is the body center of mass positions, velocities

and accelerations, and the output is foot positions, body orientations and con-

tact forces. On the other hand, the controller can be aware of the terrain if

vision information is available. In this case, constraint (8.24) can be replaced

by terrain observed by the robot. In this case, vision information can also be

used as input to the learner which provides the warm-start allowing the MPC

to make decisions of the foot steps on the terrain through convex optimization.

8.2.4 Experimental Results

We conduct several offline computation experiments using the method de-

scribed in the paper. For getting an offline solution to a certain problem, we

first sample the problem parameters around the targeted problem, then solve

the set of problems using the nonlinear programming method with a trot gait

as initial guesses. Although the chance of getting infeasible solution is high

due to complementary constraints, NLPs usually finish within a few seconds.

We can keep sampling until we find feasible cases. After gathering some fea-

sible solutions using NLP, we use them to warm-start the target problem with

the mixed-integer formulation. This greatly improves the solving speed of the

target MIP which can oftentimes be solved to a MIP gap below 15% within a

136

Figure 8.5: Large angle turning trajectory and contact forces. From left to right
are snapshots at time 0.16s, 0.32s, 0.72s, and 0.96s. The red arrow represents
the contact forces. The magenta arrow represents the current velocity. The
short blue line pointing forwards represents the head position of the robot.
Note at t=0.32, the robot tilts its body using gravity to cancel the moment from
the contact forces.

reasonable time. This approach is used for solving forward walking, distur-

bance rejection, and large angle turning trajectories for a quadruped robot.

8.2.4.1 Forward walking

We first generate the control input to make the robot move forward. The objec-

tive function we use is:

fobj = ||v[i]− vref ||2wv
+ ||Θ[i]−Θref ||2wθ

+ ||pz[i]−pz,ref ||
2
wh +

∑
i

||p[i + 1]−p[i]||2

+
∑
i, s,t

||fs[i]− ft[i]||2

(8.30)

Where wv , wθ, wh are the weights for velocity tracking, rotation angle track-

ing and body height tracking. For walking forward, we first set wv = [100,100,10],

wθ = [10,10,10], wh = 10. This set of weight favors more on the forward walk-

ing speed. As a result, the MIP solution consistently gives forward jumping

gait despite that the NLP solution being handed as warm-start uses trot gait.

The MIP solution, being close to the global optimal solution, significantly im-

137

Figure 8.6: Forward walking trajectories and forces. The upper two figures rep-
resent the dynamic jumping trajectory from the MIP formulation which uses 4
legs to push simultaneously to maximize the forward velocity. The bottom two
figures represent the trot walking trajectory from the NLP formulation which
has a slower forward speed. The red arrow represents the contact forces. The
magenta arrow represents the current velocity. The short blue line pointing
forwards represents the head position of the robot.

proves the tracking for speed as shown by Fig. 8.7. This is intuitively true, as

jumping gaits immediately use 4 legs to push on the ground simultaneously,

hence more effective in changing speed. On the other hand, if we increase the

weight of z velocity and position tracking to 1000 to minimize the z direction

body vibration, the optimizer gives a gait that lifts only one leg each iteration.

The forward speed tracks much slower in this case. The optimized forward

trajectories are shown in Fig. 8.6.

8.2.4.2 Disturbance rejection

In this experiment, we test the controller performance when the objective is

moving forward as in the previous section, but there is a large initial backward

speed as a disturbance. If the backward speed is relatively smaller, The con-

138

Figure 8.7: Velocity and angle trajectories of the forward walking task. Black
lines are the tracking objectives. Orange curves come from the NLP solution.
Blue curves come from the MIP solution with optimized gait. X is the forward
direction and Y is the side direction. Simply changing the gait can make for-
ward speed tracking much faster. Note that the angle tracking weights are rel-
atively smaller, hence MIP solver may initially choose to sacrifice more angular
tracking performance for better speed tracking.

troller commands all the legs to be on the ground for a few iterations, then re-

sumes the forward jumping trajectory. In this situation, all legs create forward

forces to cancel the back speed, effectively serving as a brake. If the backward

speed is relatively larger, the leg kinematics will be infeasible due to the no-slip

constraint as the body quickly goes backward. In this case, the controller gen-

erates a back trot gait for a few iterations, then resumes the forward jumping

gait. The tracking performance is shown in Fig. 8.8.

8.2.4.3 Large angle turning

In this section, we validate the controller performance to make large angle

turns. This serves to verify the controller’s ability to select gait and make large

139

Figure 8.8: Velocity and angle trajectories of the disturbance rejection task.
Black lines are the tracking objectives. The 20% gap MIP solution takes 30 min
to solve, and the more optimal 10% gap MIP solution takes 45 min. X is the
forward direction and Y is the side direction. As the 20% gap MIP solution still
does unnecessary motions such as out of plane (Z) rotation, the 10% gap MIP
solution almost does not do any unnecessary motions.

orientation changes simultaneously. The initial condition given is 1.8m/s for-

ward while the target tracking speed is 1.8m/s but at a 90deg angle to the side.

The NLP solution with initial guesses of trot gait remains using the trot gait

to perform the turning. However, the trajectory improved by the MIP will

generate a jumping-type of gait with a jump first to cancel the forward veloc-

ity. It then simultaneously walks sideways and rotates the body using a non-

traditional gait. The velocity and angle tracking plots are shown in Fig. 8.9,

and the snapshots of the trajectory are shown in Fig 8.5. Intuitively, the more

optimized MIP solution makes the motion much more dynamic. Note that

when the robot breaks to cancel the forward velocity (iteration 4, time=0.32s),

it needs to generate a large breaking force on its toe. The robot shifts the center

of mass backward using the moment from gravity to cancel the moment from

140

Figure 8.9: Velocity and angle trajectories of the large angle turning task. Black
lines are the tracking objectives. The 30% gap MIP solution takes 30 min to
solve, and the more optimal 20% gap MIP solution takes 90 min. X is the
forward direction and Y is the side direction. Although the NLP solution has
much better initial conditions (we cannot find a feasible solution with the exact
initial condition to the MIPs), both the MIP solutions quickly catch up and
track the objectives faster.

the braking force, such that a larger braking force can be used.

8.2.4.4 Approximation accuracy

In this section, we show the approximation accuracy using McCormick en-

velopes for bilinear and trilinear terms. Since we use envelopes to locally

convexify the constraints, it is important to ensure reasonable approximation

accuracy. There are several types of non-convex terms: bilinear trig multi-

plication terms such as sin(θ0)cos(θ1), bilinear angular velocity multiplication

terms such asw0w1, bilinear moment terms such as pxfy , trilinear trig multipli-

cation terms such as sin(θ0)sin(θ1)cos(θ2), trilinear trig and Euler angular rate

multiplication terms such as sin(θ2)cos(θ1)θ̇0. We average the approximation

141

Figure 8.10: Approximation accuracy along a typical trajectory.

accuracy of those terms across the trajectory for a 200 point dataset using the

following equation:

errorx =
|xapprox − xtrue|

max(|xapprox|, |xtrue|)
(8.31)

The results are listed in Table 8.5. An actual trajectory of approximated and

true values for a few non-convex terms is shown by Fig. 8.10. The results show

that the approximated values clearly resemble the trend of change in the actual

values, and the accuracy is generally around 10% or less. We note that since the

model may not be perfect, a rough approximation leaves some room for tuning

on actual hardware which is sometimes favored.

Table 8.5: Average approximation accuracy

term sθ0cθ1 sθ0sθ1cθ2 sθ2cθ1(θ̇0) w0w1 pxfy

error 10.84% 12.38% 2.86% 11.73% 7.81%

8.2.4.5 Dataset collection and hardware implementation

We implemented our proposed control framework on a position-controlled

quadruped robot SCALER. The experiment is a forward walking task similar

142

Figure 8.11: Hardware experiment for walking. Up: 3 snapshots of the
robot walking forward using the proposed framework and changing gait when
dragged back. Down: estimated forward speed from state estimation.

to what is described in section 8.2.4.1 and 8.2.4.2, designed to observe online

gait change due to MPC results given the state of the robot. Since this robot

is position controlled, we use the admittance control law with force torque

sensors on its feet to track the planned position and force profile. This same

controller is used throughout the trajectory. We collected 110 trajectories with

720 ms long, 9 iterations each, that begin with randomized initial conditions of

vx ∈ [−1.5,1.5] and ax ∈ [−15,15]. Those trajectories give information on how

the robot can reach the goal velocity from different initial conditions in the

most optimal approach. Since our robot cannot track the jumping trajectory,

we force the optimizer to have at least 2 contact points on the ground for each

iteration. The MPC plan 5 iterations ahead (400 ms) for the robot to follow

the trajectories and reach the goal. Along the full trajectory, we segment out 5

iteration sections, 220 in total, and use them as data for the learner. Our previ-

ous tests on smaller scale problems [34, 148] show that the K-nearest neighbor

method works decently well on problems of this scale, hence is used in this

experiment. Typical force MPC algorithms only need to know the current state

to plan ahead. This is because there is a pre-generated gait pattern from a

high-level planner. However, for our hybrid MPC, the gait and forces are both

generated online. To reason the gait which is of slower changing frequency, the

143

learner needs to have information of a short history of the trajectory to decide

the next lifting leg. Otherwise, the learner may keep on lifting the same set

of legs. We feed the current forward velocity, forward acceleration, and the

toe positions in the previous 2 iterations to the KNN learner which provides

the integer variables in the next 5 iterations. With the integer variables pro-

vided, convex optimization is solved for the actual contact positions, forces,

body orientations, and corresponding speed and acceleration quantities. We

use OSQP solver [177] for online solving. One feature of KNN is that it can

provide several candidates of integer variables. If one fails, the solver can try

the next one until one succeeds. For this problem, as long as the input to KNN

is within the region of the randomization regime, it usually takes only 1 trial

to find a feasible solution. The average solving speed is 19 ms on an Intel Core

i7-12800H laptop or 53 Hz. State estimation [101] that fuses encoder and IMU

information is used to estimate the forward velocity used by KNN.

The hardware experiment begins with the robot making a step forward that

gains some speed, which is fed back to KNN such that the robot proceeds to

follow the trajectory. The human operator then manually pulls the robot back-

ward. With the sensed negative speed, the robot then stops trotting forward

but keeps all its toes on the ground to maximize the braking force as described

in section 8.2.4.2. The process is shown in the upper part of Fig. 8.11. The

estimated forward velocity is shown in the lower part of the same figure.

8.2.4.6 Solving speed

For mixed-integer nonconvex problems such as locomotion planning with a

single rigid body, directly solving the MIP formulation with envelope con-

straints is mostly infeasible. The solver can sometimes take days before it can

find even one feasible solution. First sampling the problem parameters around

the targeted problem and solving a small set of problems in NLP formulation,

144

Table 8.6: Problem sizes and solving speeds

Offline TO (NLP) Offline TO (MIP) Online MPC Online NLP benchmark
of iterations 9 (720 ms) 9 (720 ms) 5 (400 ms) 5 (400 ms)
of continuous variables 1143 80321 34549 579
of binary variables N.A. 976 488 N.A.
of constraints 2327 103430 44478 1115

Avg. solving time
1.34 s (when feasible with

trot gait initial guess)
See section 8.2.4.6 19 ms (53 Hz)

498 ms (2 Hz, when feasible with
trot gait initial guess)

Solver IPOPT Gurobi OSQP IPOPT

then using them to partially warm-start the target problem in MIP formulation

dramatically speeds up the MIP solving speed. For our single rigid body prob-

lem, the MIP solver with warm-start tends to make quick progress to minimize

the primal-dual gap in the next 30 minutes to 1 hour, until it reaches around

15% and slows down again. For the disturbance rejection task, the solver takes

30 minutes to decrease the bound to 20%, and 45 minutes to further decrease

it to 10%. For the large angle turning task, it takes 30 minutes to decrease the

bound to 30%, and 90 min to further decrease it to 20%. In many cases, this

process already makes the solution significantly more optimal than the original

solutions from NLP solvers. If the goal is to optimize the gait, the MIP solver

takes seconds to finish while keeping the large angle rotation trajectories from

NLP solvers. After MIP solving, the more optimal solutions can be added to

the dataset which makes the following process even faster.

Table 8.6 gives the number of variables, constraints, and solving time for

both the offline and online optimizations. The online MPC with KNN learned

integer variables can run more than 50 Hz on the OSQP solver which is suf-

ficient for hybrid MPC. In comparison, solving the same problem with NLP

formulation on the IPOPT solver is significantly slower. The commercialized

KNITRO solver may run faster than IPOPT but we expect it not to be able to

catch the convex MPC solving speed.

145

CHAPTER 9

Conclusion

In this dissertation, we mainly complete three things: First, we developed com-

pliance models for a multi-limbed robot that allows it to climb up by bracing

between two walls. Second, we developed combinatorial optimization based al-

gorithms for motion planning and control with applications on robot walking

and climbing, item manipulation, and self-reconfigurable robot motion gener-

ation. Third, we implemented data-driven methods to speed up the solving

process and enhance the robustness of optimization solvers.

9.1 Compliance Model

The compliance model developed in this thesis can be used for gauging the

robot sagdown due to compliance. This is used for our robot SCALER, and

can be extended for other types of robots such as soft robots. The virtual

joint method is a simplification of the more complicated finite element analysis

based method. The complexity is dramatically reduced, but still very expensive

to resolve online. Direct nonlinear programming may be used if solving time

is not a concern. For fast solutions, data-driven methods are still good options.

9.2 Vertical Climbing

As a unique type of locomotion method, vertical climbing combines legged lo-

comotion and grasping into the problem hence is an interesting one to investi-

gate but has been less explored. With the assistance of grippers, robot climbers

can potentially traverse any terrain including even vertical walls. Interesting

146

research can be done to apply robot climbers to space exploration, disaster

rescue, construction, and so on. We are particularly interested in climbing ap-

plications on earth. Being able to achieve such tasks allows robot climbers to

perform dangerous jobs which can save numerous human workers. To achieve

climbing, reliability is required both in terms of hardware platform and plan-

ning/control algorithms.

First of all, the robot climber needs to carry a non-trivial payload such as in-

vestigation and cleaning equipment to perform practical applications. A load-

ing capacity of at least 5kg is expected. Among the few current platforms ca-

pable of doing this, the most famous one is the JPL lemur 3 robot. However,

this robot, designed for space exploration, uses highly over-designed grippers

and extremely strong actuators without any contact force sensing. The strat-

egy is to ensure that the gripper can simply be attached to the rock-based wall

without any control as the large number of spines ensure a grip with a high

chance. However, this strategy will fail if the graspable spot is very sparse. Ad-

ditionally, the over-designed gripper is heavy which further limits the loading

capacity.

Our goal along this line of work is to fundamentally change the strategy.

We plan to use a gripper that only has a few fingers like a human hand and

climb on discrete handholds such as rock climbing walls. This means we need

to carefully reason the grasp beforehand and control the contact wrench using

rich feedback signals. Moreover, to increase the loading capacity, linkage de-

signs are being investigated. SCALER is equipped with force torque sensors on

its end effector, RGB-D cameras, and other sensors allowing the implementa-

tion of motion planning and control algorithms.

147

9.3 Optimization Based Motion Planning

Several optimization-based motion planning schemes are developed in this

thesis with the goal in mind to solve a relatively more complicated model faster.

Our formulation is quasi-static but incorporates compliance models that did

not appear in the previous works. This model can be solved in a decoupled

2-stage approach by mixed-integer programs, or with a nonlinear program-

ming formulation. One significant slowdown of mixed-integer programming

formulation comes from the contact selection. If the number of contact re-

gions becomes large, mixed-integer programming can sometimes be signifi-

cantly slower. The slowdown is even worse with dynamics which needs to be

approximated through convex envelope relaxations. On the other hand, non-

linear programs can resolve dynamics relatively faster. With complementary

formulations, it can also deal with discrete terrain shapes. However, comple-

mentary constraints are usually numerically difficult for the gradient-based

solver, despite smart formulations such as [63] existing. In both cases, as

the problem scale becomes larger, the solving process is too slow for practi-

cal robotics implementations that require real-time operation.

9.4 Data-driven Methods for Combinatorial Optimization

Due to the recent progress of deep learning, researchers have started to inves-

tigate data-driven approaches to speed up optimization solvers. Typical meth-

ods involve using graph neural networks [38, 191, 192]. While this direction is

promising, the purpose of the current literature is to speed up the MIP solver

for general purposes such as operational research. Many problems in those

fields do not require real-time solving speed. The applications of those ideas

and methods to robot motion planning or control problems still require major

testing. Many questions are yet to be answered. Can we bound the solving

148

time? Is the controller stable? This thesis implements a simple data-driven

idea to speed up the solver for a small-scale bookshelf organization problem.

The solving speed itself is sufficient for real-time applications such as MPC.

However, strict verifications to answer the questions above are required. In ad-

dition, bookshelf organization problems and other problems such as the mod-

ular robot problem studied in this thesis can be easily scaled up to real-world

size, such that the current solver cannot handle within a reasonable time. Toy

problems such as inverted pendulum with contact likely will give us clues and

insights into those questions.

149

References

[1] R. J. Griffin, G. Wiedebach, S. McCrory, S. Bertrand, I. Lee, and J. Pratt,
“Footstep planning for autonomous walking over rough terrain”, in
2019 IEEE-RAS 19th international conference on humanoid robots (hu-
manoids). IEEE, 2019, pp. 9–16.

[2] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames, “Models,
feedback control, and open problems of 3d bipedal robotic walking”,
Automatica, vol. 50, no. 8, pp. 1955–1988, 2014.

[3] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly expo-
nentially stabilizing control lyapunov functions and hybrid zero dynam-
ics”, IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 876–891,
2014.

[4] T. Bretl, “Motion planning of multi-limbed robots subject to equilibrium
constraints: The free-climbing robot problem”, The International Journal
of Robotics Research, vol. 25, no. 4, pp. 317–342, 2006.

[5] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot”,
Autonomous Robots, vol. 40, no. 3, pp. 429–455, 2016.

[6] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajec-
tory optimization for legged systems through phase-based end-effector
parameterization”, IEEE Robotics and Automation Letters, vol. 3, no. 3,
pp. 1560–1567, 2018.

[7] X. Lin, J. Zhang, J. Shen, G. Fernandez, and D. W. Hong, “Optimization
based motion planning for multi-limbed vertical climbing robots”, in
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 1918–1925.

[8] M. S. Ahn, H. Chae, and D. W. Hong, “Stable, autonomous, unknown
terrain locomotion for quadrupeds based on visual feedback and mixed-
integer convex optimization”, in 2018 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 3791–3798.

[9] Y. Shirai, X. Lin, Y. Tanaka, A. Mehta, and D. Hong, “Risk-aware motion
planning for a limbed robot with stochastic gripping forces using non-
linear programming”, IEEE Robotics and Automation Letters, vol. 5, no.
4, pp. 4994–5001, 2020.

150

[10] Y. Shirai, X. Lin, A. Mehta, and D. Hong, “Lto: Lazy trajectory optimiza-
tion with graph-search planning for high dof robots in cluttered envi-
ronments”, arXiv preprint arXiv:2103.01333, 2021.

[11] J. Zhang, X. Lin, and D. W. Hong, “Transition motion planning for multi-
limbed vertical climbing robots using complementarity constraints”, in
2021 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021, pp. 2033–2039.

[12] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning”, The International Jour-
nal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[13] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. Panne, “Learning loco-
motion skills for cassie: Iterative design and sim-to-real”, in Conference
on Robot Learning. PMLR, 2020, pp. 317–329.

[14] H. Duan, J. Dao, K. Green, T. Apgar, A. Fern, and J. Hurst, “Learning
task space actions for bipedal locomotion”, in 2021 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 1276–
1282.

[15] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal, “Fast, ro-
bust quadruped locomotion over challenging terrain”, in 2010 IEEE In-
ternational Conference on Robotics and Automation. IEEE, 2010, pp. 2665–
2670.

[16] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer pro-
gramming for multi-vehicle path planning”, in 2001 European control
conference (ECC). IEEE, 2001, pp. 2603–2608.

[17] J. Zhou, R. He, Y. Wang, S. Jiang, Z. Zhu, J. Hu, J. Miao, and Q. Luo, “Au-
tonomous driving trajectory optimization with dual-loop iterative an-
choring path smoothing and piecewise-jerk speed optimization”, IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 439–446, 2020.

[18] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization”, in 2014 IEEE-RAS international
conference on humanoid robots. IEEE, 2014, pp. 279–286.

[19] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning
with centroidal dynamics and full kinematics”, in 2014 IEEE-RAS Inter-
national Conference on Humanoid Robots. IEEE, 2014, pp. 295–302.

[20] M. Soler, A. Olivares, P. Bonami, and E. Staffetti, “En-route optimal flight
planning constrained to pass through waypoints using minlp”, 2011.

151

[21] S. Boyd and J. Mattingley, “Branch and bound methods”, Notes for
EE364b, Stanford University, pp. 2006–07, 2007.

[22] J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and safe trajectory
planner for flights in unknown environments”, in 2019 IEEE/RSJ inter-
national conference on intelligent robots and systems (IROS). IEEE, 2019,
pp. 1934–1940.

[23] X. Lin, M. S. Ahn, and D. Hong, “Designing multi-stage coupled con-
vex programming with data-driven mccormick envelope relaxations for
motion planning”, in 2021 IEEE/RSJ International Conference on Robotics
and Automation (ICRA). IEEE, 2021.

[24] X. Da, R. Hartley, and J. W. Grizzle, “Supervised learning for stabilizing
underactuated bipedal robot locomotion, with outdoor experiments on
the wave field”, in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 3476–3483.

[25] R. L. H. Deits, Convex segmentation and mixed-integer footstep planning
for a walking robot, PhD thesis, Massachusetts Institute of Technology,
2014.

[26] I. Mordatch and E. Todorov, “Combining the benefits of function ap-
proximation and trajectory optimization.”, in Robotics: Science and Sys-
tems, 2014, vol. 4.

[27] A. Cauligi, P. Culbertson, E. Schmerling, M. Schwager, B. Stellato, and M.
Pavone, “Coco: Online mixed-integer control via supervised learning”,
arXiv preprint arXiv:2107.08143, 2021.

[28] J.-J. Zhu and G. Martius, “Fast non-parametric learning to accelerate
mixed-integer programming for online hybrid model predictive con-
trol”, arXiv preprint arXiv:1911.09214, 2019.

[29] H. Dai, B. Landry, L. Yang, M. Pavone, and R. Tedrake, “Lyapunov-stable
neural-network control”, arXiv preprint arXiv:2109.14152, 2021.

[30] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari, “A clustering
technique for the identification of piecewise affine systems”, Automatica,
vol. 39, no. 2, pp. 205–217, 2003.

[31] G. Ferrari-Trecate and M. Schinkel, “Conditions of optimal classifica-
tion for piecewise affine regression”, in International Workshop on Hybrid
Systems: Computation and Control. Springer, 2003, pp. 188–202.

[32] H. Nakada, K. Takaba, and T. Katayama, “Identification of piecewise
affine systems based on statistical clustering technique”, Automatica, vol.
41, no. 5, pp. 905–913, 2005.

152

[33] S. Paoletti, A. L. Juloski, G. Ferrari-Trecate, and R. Vidal, “Identification
of hybrid systems a tutorial”, European journal of control, vol. 13, no. 2-3,
pp. 242–260, 2007.

[34] X. Lin, G. I. Fernandez, and D. W. Hong, “Reduce: Reformulation of
mixed integer programs using data from unsupervised clusters for learn-
ing efficient strategies”, arXiv preprint arXiv:2110.00666, 2021.

[35] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots”, Science Robotics, vol. 4, no. 26, pp. eaau5872, 2019.

[36] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal
stair traversal via sim-to-real reinforcement learning”, arXiv preprint
arXiv:2105.08328, 2021.

[37] I. A. OpenAI, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A.
Petron, A. Paino, M. Plappert, G. Powell, R. Ribas, et al., “Solving rubik’s
cube with a robot hand”, 2019.

[38] V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B.
O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang, et al., “Solv-
ing mixed integer programs using neural networks”, arXiv preprint
arXiv:2012.13349, 2020.

[39] A. Cauligi, P. Culbertson, B. Stellato, D. Bertsimas, M. Schwager, and
M. Pavone, “Learning mixed-integer convex optimization strategies for
robot planning and control”, arXiv preprint arXiv:2004.03736, 2020.

[40] Y. Tang, S. Agrawal, and Y. Faenza, “Reinforcement learning for integer
programming: Learning to cut”, in International Conference on Machine
Learning. PMLR, 2020, pp. 9367–9376.

[41] P. Beardsley, R. Siegwart, M. Arigoni, M. Bischoff, S. Fuhrer, D. Krumme-
nacher, D. Mammolo, and R. Simpson, “Vertigo-a wall-climbing robot
including ground-wall transition”, Disney Research, 2015.

[42] M. P. Murphy and M. Sitti, “Waalbot: An agile small-scale wall-climbing
robot utilizing dry elastomer adhesives”, IEEE/ASME transactions on
Mechatronics, vol. 12, no. 3, pp. 330–338, 2007.

[43] S. Kim, M. Spenko, S. Trujillo, B. Heyneman, D. Santos, and M. R.
Cutkosky, “Smooth vertical surface climbing with directional adhesion”,
IEEE Transactions on robotics, vol. 24, no. 1, pp. 65–74, 2008.

[44] M. J. Spenko, G. C. Haynes, J. Saunders, M. R. Cutkosky, A. A. Rizzi,
R. J. Full, and D. E. Koditschek, “Biologically inspired climbing with a

153

hexapedal robot”, Journal of field robotics, vol. 25, no. 4-5, pp. 223–242,
2008.

[45] A. Parness, N. Abcouwer, C. Fuller, N. Wiltsie, J. Nash, and B. Kennedy,
“Lemur 3: A limbed climbing robot for extreme terrain mobility in
space”, in Robotics and Automation (ICRA), 2017 IEEE International Con-
ference on. IEEE, 2017, pp. 5467–5473.

[46] G. A. Lynch, J. E. Clark, P.-C. Lin, and D. E. Koditschek, “A bioinspired
dynamical vertical climbing robot”, The International Journal of Robotics
Research, vol. 31, no. 8, pp. 974–996, 2012.

[47] J. Clark, D. Goldman, P.-C. Lin, G. Lynch, T. Chen, H. Komsuoglu, R. J.
Full, and D. E. Koditschek, “Design of a bio-inspired dynamical vertical
climbing robot.”, in Robotics: Science and Systems, 2007, vol. 1.

[48] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning”, IEEE transactions on systems,
man, and cybernetics, vol. 22, no. 2, pp. 224–241, 1992.

[49] M. Posa, M. Tobenkin, and R. Tedrake, “Stability analysis and control
of rigid-body systems with impacts and friction”, IEEE Transactions on
Automatic Control, vol. 61, no. 6, pp. 1423–1437, 2015.

[50] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S. McKinley, and
K. Goldberg, “Learning ambidextrous robot grasping policies”, Science
Robotics, vol. 4, no. 26, pp. eaau4984, 2019.

[51] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning”, IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3699–
3706, 2020.

[52] R. Dechter and J. Pearl, “Generalized best-first search strategies and the
optimality of a”, Journal of the ACM (JACM), vol. 32, no. 3, pp. 505–536,
1985.

[53] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with prov-
able bounds on sub-optimality”, Advances in neural information process-
ing systems, vol. 16, 2003.

[54] A. Stentz et al., “The focussed dˆ* algorithm for real-time replanning”,
in IJCAI, 1995, vol. 95, pp. 1652–1659.

[55] M. Likhachev and A. Stentz, “R* search”, 2008.

154

[56] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade,
“Footstep planning for the honda asimo humanoid”, in Proceedings of
the 2005 IEEE international conference on robotics and automation. IEEE,
2005, pp. 629–634.

[57] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces”, IEEE transactions on Robotics and Automation, vol. 12, no. 4, pp.
566–580, 1996.

[58] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning”, 1998.

[59] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning”, The international journal of robotics research, vol. 30,
no. 7, pp. 846–894, 2011.

[60] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling
for planning under differential constraints”, in 2009 IEEE International
Conference on Robotics and Automation. IEEE, 2009, pp. 2859–2865.

[61] H. Dai, G. Izatt, and R. Tedrake, “Global inverse kinematics via mixed-
integer convex optimization”, The International Journal of Robotics Re-
search, vol. 38, no. 12-13, pp. 1420–1441, 2019.

[62] G. P. McCormick, “Computability of global solutions to factorable non-
convex programs: Part i—convex underestimating problems”, Mathe-
matical programming, vol. 10, no. 1, pp. 147–175, 1976.

[63] O. Stein, J. Oldenburg, and W. Marquardt, “Continuous reformulations
of discrete–continuous optimization problems”, Computers & chemical
engineering, vol. 28, no. 10, pp. 1951–1966, 2004.

[64] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact”, The International Journal of
Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[65] G. Bledt and S. Kim, “Implementing regularized predictive control
for simultaneous real-time footstep and ground reaction force optimiza-
tion”, in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 6316–6323.

[66] G. Bledt and S. Kim, “Extracting legged locomotion heuristics with reg-
ularized predictive control”, in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 406–412.

155

[67] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive con-
trol”, in 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1–9.

[68] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain”, Science robotics, vol.
5, no. 47, pp. eabc5986, 2020.

[69] K. Green, Y. Godse, J. Dao, R. L. Hatton, A. Fern, and J. Hurst, “Learning
spring mass locomotion: Guiding policies with a reduced-order model”,
IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3926–3932, 2021.

[70] J. Siekmann, Y. Godse, A. Fern, and J. Hurst, “Sim-to-real learning of all
common bipedal gaits via periodic reward composition”, in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2021,
pp. 7309–7315.

[71] M. Neunert, A. Abdolmaleki, M. Wulfmeier, T. Lampe, T. Sprin-
genberg, R. Hafner, F. Romano, J. Buchli, N. Heess, and M. Ried-
miller, “Continuous-discrete reinforcement learning for hybrid control
in robotics”, in Conference on Robot Learning. PMLR, 2020, pp. 735–751.

[72] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and
P. Abbeel, “Reinforcement learning on variable impedance controller
for high-precision robotic assembly”, in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 3080–3087.

[73] X. Da and J. Grizzle, “Combining trajectory optimization, supervised
machine learning, and model structure for mitigating the curse of di-
mensionality in the control of bipedal robots”, The International Journal
of Robotics Research, vol. 38, no. 9, pp. 1063–1097, 2019.

[74] R. Tedrake, Underactuated Robotics, 2022.

[75] M. H. Raibert, Legged robots that balance, MIT press, 1986.

[76] A. W. Winkler, F. Farshidian, D. Pardo, M. Neunert, and J. Buchli, “Fast
trajectory optimization for legged robots using vertex-based zmp con-
straints”, IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2201–
2208, 2017.

[77] J. R. Hooks, Real-time optimization for control of a multi-modal legged
robotic system, University of California, Los Angeles, 2019.

[78] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa, “Biped walking pattern generation by using preview con-
trol of zero-moment point”, in 2003 IEEE International Conference on

156

Robotics and Automation (Cat. No. 03CH37422). IEEE, 2003, vol. 2, pp.
1620–1626.

[79] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step
toward humanoid push recovery”, in 2006 6th IEEE-RAS international
conference on humanoid robots. IEEE, 2006, pp. 200–207.

[80] B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for pushing
the limits of dynamic quadruped control”, in 2019 International Confer-
ence on Robotics and Automation (ICRA). IEEE, 2019, pp. 6295–6301.

[81] H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro,
K. Fujiwara, and M. Morisawa, “A universal stability criterion of the
foot contact of legged robots-adios zmp”, in Proceedings 2006 IEEE Inter-
national Conference on Robotics and Automation, 2006. ICRA 2006. IEEE,
2006, pp. 1976–1983.

[82] H. Dai and R. Tedrake, “Planning robust walking motion on uneven
terrain via convex optimization”, in 2016 IEEE-RAS 16th International
Conference on Humanoid Robots (Humanoids). IEEE, 2016, pp. 579–586.

[83] S. Caron, Q.-C. Pham, and Y. Nakamura, “Stability of surface contacts
for humanoid robots: Closed-form formulae of the contact wrench cone
for rectangular support areas”, in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 5107–5112.

[84] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of complex
behaviors through online trajectory optimization”, in 2012 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. IEEE, 2012, pp.
4906–4913.

[85] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.”, in ICINCO (1). Citeseer, 2004,
pp. 222–229.

[86] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dy-
namic programming”, in 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014, pp. 1168–1175.

[87] N. J. Kong, G. Council, and A. M. Johnson, “ilqr for piecewise-smooth
hybrid dynamical systems”, arXiv preprint arXiv:2103.14584, 2021.

[88] E. D. Sontag, “A ‘universal’construction of artstein’s theorem on nonlin-
ear stabilization”, Systems & control letters, vol. 13, no. 2, pp. 117–123,
1989.

157

[89] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P.
Tabuada, “Control barrier functions: Theory and applications”, in 2019
18th European control conference (ECC). IEEE, 2019, pp. 3420–3431.

[90] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier func-
tion based quadratic programs for safety critical systems”, IEEE Trans-
actions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.

[91] M. Ahmadi, X. Xiong, and A. D. Ames, “Risk-averse control via cvar bar-
rier functions: Application to bipedal robot locomotion”, IEEE Control
Systems Letters, vol. 6, pp. 878–883, 2021.

[92] X. Xiong and A. D. Ames, “Coupling reduced order models via feedback
control for 3d underactuated bipedal robotic walking”, in 2018 IEEE-
RAS 18th International Conference on Humanoid Robots (Humanoids).
IEEE, 2018, pp. 1–9.

[93] J.-K. Huang and J. W. Grizzle, “Efficient anytime clf reactive plan-
ning system for a bipedal robot on undulating terrain”, arXiv preprint
arXiv:2108.06699, 2021.

[94] X. Xiong and A. D. Ames, “Bipedal hopping: Reduced-order model
embedding via optimization-based control”, in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
3821–3828.

[95] A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control design along tra-
jectories with sums of squares programming”, in 2013 IEEE International
Conference on Robotics and Automation. IEEE, 2013, pp. 4054–4061.

[96] A. Hereid, C. M. Hubicki, E. A. Cousineau, J. W. Hurst, and A. D. Ames,
“Hybrid zero dynamics based multiple shooting optimization with ap-
plications to robotic walking”, in 2015 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2015, pp. 5734–5740.

[97] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-trees:
Feedback motion planning via sums-of-squares verification”, The Inter-
national Journal of Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.

[98] P. S. Schmitt, F. Wirnshofer, K. M. Wurm, G. v. Wichert, and W. Bur-
gard, “Planning reactive manipulation in dynamic environments”, in
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2019, pp. 136–143.

[99] M. X. Grey, A. D. Ames, and C. K. Liu, “Footstep and motion planning in
semi-unstructured environments using randomized possibility graphs”,
in 2017 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 4747–4753.

158

[100] Y. Tanaka, Y. Shirai, Z. Lacey, X. Lin, J. Liu, and D. Hong, “An under-
actuated whippletree mechanism gripper based on multi-objective de-
sign optimization with auto-tuned weights”, in 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2021, pp.
6139–6146.

[101] M. Bloesch, M. Hutter, M. A. Hoepflinger, S. Leutenegger, C. Gehring,
C. D. Remy, and R. Siegwart, “State estimation for legged robots-
consistent fusion of leg kinematics and imu”, Robotics, vol. 17, pp. 17–
24, 2013.

[102] A. Schperberg, Y. Shirai, X. Lin, Y. Tanaka, and D. Hong, “Auto-
calibrating admittance controller for robust motion of robotic systems”,
arXiv preprint arXiv:2207.01033, 2022.

[103] E. Moore, D. Campbell, F. Grimminger, and M. Buehler, “Reliable stair
climbing in the simple hexapod’rhex”’, in Proceedings 2002 IEEE Inter-
national Conference on Robotics and Automation (Cat. No. 02CH37292).
IEEE, 2002, vol. 3, pp. 2222–2227.

[104] Y. Tanaka, X. Lin*, Y. Shirai*, A. Schperberg, H. Kato, A. Swerdlow, N.
Kumagai, and D. Hong, “Scaler: A tough versatile quadruped free-
climber robot”, arXiv preprint arXiv:2207.01180, 2022.

[105] S. Wang, H. Jiang, and M. R. Cutkosky, “A palm for a rock climbing robot
based on dense arrays of micro-spines”, in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 52–
59.

[106] S. Wang, H. Jiang, and M. R. Cutkosky, “Design and modeling of
linearly-constrained compliant spines for human-scale locomotion on
rocky surfaces”, The International Journal of Robotics Research, vol. 36,
no. 9, pp. 985–999, 2017.

[107] S. Wang, H. Jiang, T. Myung Huh, D. Sun, W. Ruotolo, M. Miller, W. R.
Roderick, H. S. Stuart, and M. R. Cutkosky, “Spinyhand: Contact load
sharing for a human-scale climbing robot”, Journal of Mechanisms and
Robotics, vol. 11, no. 3, pp. 031009, 2019.

[108] H. Jiang, S. Wang, and M. R. Cutkosky, “Stochastic models of compliant
spine arrays for rough surface grasping”, The International Journal of
Robotics Research, vol. 37, no. 7, pp. 669–687, 2018.

[109] K. Hauser, S. Wang, and M. R. Cutkosky, “Efficient equilibrium testing
under adhesion and anisotropy using empirical contact force models”,
IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1157–1169, 2018.

159

[110] W. R. Provancher, J. E. Clark, B. Geisler, and M. R. Cutkosky, “Towards
penetration-based clawed climbing”, in Climbing and walking robots, pp.
961–970. Springer, 2005.

[111] X. Lin, H. Krishnan, Y. Su, and D. W. Hong, “Multi-limbed robot verti-
cal two wall climbing based on static indeterminacy modeling and fea-
sibility region analysis”, in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018, pp. 4355–4362.

[112] X. Lin and D. Hong, “Formulation of posture optimization for multi-
legged robot via eigen decomposition of stiffness matrix”, in 2016 13th
International Conference on Ubiquitous Robots and Ambient Intelligence
(URAI). IEEE, 2016, pp. 104–108.

[113] J. K. Salisbury, “Active stiffness control of a manipulator in cartesian co-
ordinates”, in 1980 19th IEEE conference on decision and control including
the symposium on adaptive processes. IEEE, 1980, pp. 95–100.

[114] T. Bretl and S. Lall, “A fast and adaptive test of static equilibrium for
legged robots”, in Proceedings 2006 IEEE International Conference on
Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, pp. 1109–1116.

[115] X. Gao and S.-M. Song, “A stiffness matrix method for foot force dis-
tribution of walking vehicles”, IEEE transactions on systems, man, and
cybernetics, vol. 22, no. 5, pp. 1131–1138, 1992.

[116] X. Gao, S.-M. Song, and C. Q. Zheng, “A generalized stiffness matrix
method for force distribution of robotic systems with indeterminancy”,
1993.

[117] V. Kumar and K. Waldron, “Force distribution in walking vehicles”,
Journal of Mechanical Design, vol. 112, no. 1, pp. 90–99, 1990.

[118] B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of hu-
manoid momentum dynamics for multi-contact motion generation”, in
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids). IEEE, 2016, pp. 842–849.

[119] P. M. Castro, “Tightening piecewise mccormick relaxations for bilin-
ear problems”, Computers & Chemical Engineering, vol. 72, pp. 300–311,
2015.

[120] B. Acikmese and S. R. Ploen, “Convex programming approach to pow-
ered descent guidance for mars landing”, Journal of Guidance, Control,
and Dynamics, vol. 30, no. 5, pp. 1353–1366, 2007.

[121] RoMeLa, “Icra2021 - multi-stage coupled convex programming with
data-driven mccormick envelopes”.

160

[122] G. Optimization, “Inc.,“gurobi optimizer reference manual,” 2015”,
2014.

[123] H. P. Williams, Model building in mathematical programming, John Wiley
& Sons, 2013.

[124] X. Lin, G. Fernandez, Y. Liu, T. Zhu, Y. Shirai, and D. Hong, “Multi-
modal multi-agent optimization for limms, a modular robotics approach
to delivery automation”, 2022.

[125] T. Zhu, G. I. Fernandez, C. Togashi, Y. Liu, and D. Hong, “Feasibility
study of limms, a multi-agent modular robotic delivery system with var-
ious locomotion and manipulation modes”, in 2022 19th International
Conference on Ubiquitous Robots (UR). IEEE, 2022, pp. 30–37.

[126] C. Liu, M. Whitzer, and M. Yim, “A distributed reconfiguration planning
algorithm for modular robots”, IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 4231–4238, 2019.

[127] K. Gilpin, K. Kotay, D. Rus, and I. Vasilescu, “Miche: Modular shape
formation by self-disassembly”, The International Journal of Robotics Re-
search, vol. 27, no. 3-4, pp. 345–372, 2008.

[128] Y. Zhang, W. Wang, P. Zhang, and P. Huang, “Reinforcement learning-
based task planning for self-reconfiguration of cellular satellites”, IEEE
Aerospace and Electronic Systems Magazine, 2021.

[129] N. Gandhi, D. Saldana, V. Kumar, and L. T. X. Phan, “Self-
reconfiguration in response to faults in modular aerial systems”, IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2522–2529, 2020.

[130] T. Kataoka, “A multi-period mixed integer programming model on re-
configurable manufacturing cells”, Procedia Manufacturing, vol. 43, pp.
231–238, 2020.

[131] A. Aydinoglu and M. Posa, “Real-time multi-contact model predictive
control via admm”, arXiv preprint arXiv:2109.07076, 2021.

[132] Y. Shirai, X. Lin, A. Schperberg, Y. Tanaka, H. Kato, V. Vichathorn, and
D. Hong, “Simultaneous contact-rich grasping and locomotion via dis-
tributed optimization enabling free-climbing for multi-limbed robots”,
IEEE Proc. 2022 IEEE/RSJ Int. Conf. Intell. Rob. Syst, 2022.

[133] G. I. Fernandez, S. Gessow, J. Quan, and D. Hong, “Self-aligning rota-
tional latching mechanisms”, in International Design Engineering Techni-
cal Conferences and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers, 2022.

161

[134] J. Hooks, M. S. Ahn, J. Yu, X. Zhang, T. Zhu, H. Chae, and D. Hong,
“Alphred: A multi-modal operations quadruped robot for package de-
livery applications”, IEEE Robotics and Automation Letters, vol. 5, no. 4,
pp. 5409–5416, 2020.

[135] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge univer-
sity press, 2004.

[136] A. U. Raghunathan, D. K. Jha, and D. Romeres, “Pyrobocop: Python-
based robotic control & optimization package for manipulation and col-
lision avoidance”, arXiv preprint arXiv:2106.03220, 2021.

[137] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed op-
timization and statistical learning via the alternating direction method
of multipliers”, Foundations and Trends® in Machine learning, vol. 3, no.
1, pp. 1–122, 2011.

[138] M. Stolle and C. G. Atkeson, “Policies based on trajectory libraries”, in
Proceedings 2006 IEEE International Conference on Robotics and Automa-
tion, 2006. ICRA 2006. IEEE, 2006, pp. 3344–3349.

[139] C. Liu, C. G. Atkeson, and J. Su, “Biped walking control using a trajec-
tory library”, Robotica, vol. 31, no. 2, pp. 311–322, 2013.

[140] Y. Tassa, T. Erez, and W. Smart, “Receding horizon differential dynamic
programming”, Advances in neural information processing systems, vol.
20, 2007.

[141] A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear
programming, vol. 165, Academic press, 1983.

[142] E. N. Pistikopoulos, V. Dua, N. A. Bozinis, A. Bemporad, and M. Morari,
“On-line optimization via off-line parametric optimization tools”, Com-
puters & Chemical Engineering, vol. 26, no. 2, pp. 175–185, 2002.

[143] T. Gal, Postoptimal Analyses, Parametric Programming, and Related Topics:
degeneracy, multicriteria decision making, redundancy, Walter de Gruyter,
2010.

[144] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems”, Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[145] V. Dua and E. N. Pistikopoulos, “Algorithms for the solution of multi-
parametric mixed-integer nonlinear optimization problems”, Industrial
& engineering chemistry research, vol. 38, no. 10, pp. 3976–3987, 1999.

162

[146] P. Tøndel, T. A. Johansen, and A. Bemporad, “An algorithm for multi-
parametric quadratic programming and explicit mpc solutions”, Auto-
matica, vol. 39, no. 3, pp. 489–497, 2003.

[147] V. Dua and E. N. Pistikopoulos, “An algorithm for the solution of mul-
tiparametric mixed integer linear programming problems”, Annals of
operations research, vol. 99, no. 1, pp. 123–139, 2000.

[148] K. Hauser, “Learning the problem-optimum map: Analysis and appli-
cation to global optimization in robotics”, IEEE Transactions on Robotics,
vol. 33, no. 1, pp. 141–152, 2016.

[149] G. Tang and K. Hauser, “A data-driven indirect method for nonlinear
optimal control”, Astrodynamics, vol. 3, no. 4, pp. 345–359, 2019.

[150] T. Power and D. Berenson, “Variational inference mpc using nor-
malizing flows and out-of-distribution projection”, arXiv preprint
arXiv:2205.04667, 2022.

[151] R. Vidal, S. Soatto, Y. Ma, and S. Sastry, “An algebraic geometric ap-
proach to the identification of a class of linear hybrid systems”, in
42nd IEEE International Conference on Decision and Control (IEEE Cat. No.
03CH37475). IEEE, 2003, vol. 1, pp. 167–172.

[152] W. Jin, A. Aydinoglu, M. Halm, and M. Posa, “Learning linear comple-
mentarity systems”, in Learning for Dynamics and Control Conference.
PMLR, 2022, pp. 1137–1149.

[153] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey, “Cutting planes
in integer and mixed integer”, Discrete Optimization: The State of the Art,
vol. 11, pp. 397, 2003.

[154] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity prob-
lems”, Nonlinear Dynamics, vol. 14, no. 3, pp. 231–247, 1997.

[155] E. Drumwright, “Rapidly computable viscous friction and no-slip rigid
contact models”, arXiv preprint arXiv:1504.00719, 2015.

[156] M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, “A unified approach to
interior point algorithms for linear complementarity problems: A sum-
mary”, Operations Research Letters, vol. 10, no. 5, pp. 247–254, 1991.

[157] S. L. Cleac’h, T. Howell, M. Schwager, and Z. Manchester, “Fast contact-
implicit model-predictive control”, arXiv preprint arXiv:2107.05616,
2021.

163

[158] J. Park and S. Boyd, “A semidefinite programming method for integer
convex quadratic minimization”, Optimization Letters, vol. 12, no. 3, pp.
499–518, 2018.

[159] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey”,
Operations research, vol. 14, no. 4, pp. 699–719, 1966.

[160] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization, vol. 6,
Athena Scientific Belmont, MA, 1997.

[161] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey, “Cutting planes
in integer and mixed integer programming”, Discrete Applied Mathemat-
ics, vol. 123, no. 1-3, pp. 397–446, 2002.

[162] C. A. Meyer and C. A. Floudas, “Trilinear monomials with mixed sign
domains: Facets of the convex and concave envelopes”, Journal of Global
Optimization, vol. 29, no. 2, pp. 125–155, 2004.

[163] M. Fischetti and A. Lodi, “Local branching”, Mathematical programming,
vol. 98, no. 1, pp. 23–47, 2003.

[164] E. Danna, E. Rothberg, and C. L. Pape, “Exploring relaxation induced
neighborhoods to improve mip solutions”, Mathematical Programming,
vol. 102, no. 1, pp. 71–90, 2005.

[165] S. Ghosh, “Dins, a mip improvement heuristic”, in International Con-
ference on Integer Programming and Combinatorial Optimization. Springer,
2007, pp. 310–323.

[166] T. Berthold, S. Heinz, M. Pfetsch, and S. Vigerske, “Large neighborhood
search beyond mip”, 2012.

[167] T. Berthold, “Rens”, Mathematical Programming Computation, vol. 6, no.
1, pp. 33–54, 2014.

[168] G. Nannicini, P. Belotti, and L. Liberti, “A local branching heuristic for
minlps”, arXiv preprint arXiv:0812.2188, 2008.

[169] T. Berthold and A. M. Gleixner, “Undercover: a primal minlp heuristic
exploring a largest sub-mip”, Mathematical Programming, vol. 144, no. 1,
pp. 315–346, 2014.

[170] A. Chmiela, E. Khalil, A. Gleixner, A. Lodi, and S. Pokutta, “Learning to
schedule heuristics in branch and bound”, Advances in Neural Informa-
tion Processing Systems, vol. 34, 2021.

[171] N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, and V. Nair, “Learning a
large neighborhood search algorithm for mixed integer programs”, arXiv
preprint arXiv:2107.10201, 2021.

164

[172] D. Liu, M. Fischetti, and A. Lodi, “Learning to search in local branch-
ing”, arXiv preprint arXiv:2112.02195, 2021.

[173] T. Marcucci and R. Tedrake, “Warm start of mixed-integer programs
for model predictive control of hybrid systems”, IEEE Transactions on
Automatic Control, vol. 66, no. 6, pp. 2433–2448, 2020.

[174] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming”, in Algorithmic founda-
tions of robotics XI, pp. 109–124. Springer, 2015.

[175] L. Dai, Q. Cao, Y. Xia, and Y. Gao, “Distributed mpc for formation of
multi-agent systems with collision avoidance and obstacle avoidance”,
Journal of the Franklin Institute, vol. 354, no. 4, pp. 2068–2085, 2017.

[176] A. U. Raghunathan, D. K. Jha, and D. Romeres, “Pyrobocop: Python-
based robotic control & optimization package for manipulation”, in
2022 International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 985–991.

[177] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp:
An operator splitting solver for quadratic programs”, Mathematical Pro-
gramming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[178] X. Lin, G. I. Fernandez, and D. W. Hong, “Reduce: Reformulation of
mixed integer programs using data from unsupervised clusters for learn-
ing efficient strategies”, in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 4459–4465.

[179] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “Density-based spatial clus-
tering of applications with noise”, in Int. Conf. Knowledge Discovery and
Data Mining, 1996, vol. 240, p. 6.

[180] D. Bertsimas and B. Stellato, “The voice of optimization”, Machine
Learning, vol. 110, no. 2, pp. 249–277, 2021.

[181] D. Bertsimas and B. Stellato, “Online mixed-integer optimization in mil-
liseconds”, arXiv preprint arXiv:1907.02206, 2019.

[182] X. Lin, G. I. Fernandez, and D. W. Hong, “Benchmark results for book-
shelf organization problem as mixed integer nonlinear program with
mode switch and collision avoidance”, 2022.

[183] J. P. Vielma, “Mixed integer linear programming formulation tech-
niques”, Siam Review, vol. 57, no. 1, pp. 3–57, 2015.

[184] P. Bonami and J. Lee, “Bonmin user’s manual”, Numer Math, vol. 4, pp.
1–32, 2007.

165

[185] P. Belotti, L. Liberti, A. Lodi, G. Nannicini, A. Tramontani, et al., “Dis-
junctive inequalities: applications and extensions”, Wiley Encyclopedia
of Operations Research and Management Science, vol. 2, pp. 1441–1450,
2011.

[186] J. P. Vielma and G. L. Nemhauser, “Modeling disjunctive constraints
with a logarithmic number of binary variables and constraints”, Mathe-
matical Programming, vol. 128, no. 1, pp. 49–72, 2011.

[187] D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls and ver-
tex enumeration of arrangements and polyhedra”, Discrete & Computa-
tional Geometry, vol. 8, no. 3, pp. 295–313, 1992.

[188] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”, Jour-
nal of machine learning research, vol. 9, no. 11, 2008.

[189] D. Noh, Y. Liu, F. Rafeedi, H. Nam, K. Gillespie, J.-s. Yi, T. Zhu, Q. Xu,
and D. Hong, “Minimal degree of freedom dual-arm manipulation plat-
form with coupling body joint for diverse cooking tasks”, in 2020 17th
International Conference on Ubiquitous Robots (UR). IEEE, 2020, pp. 225–
232.

[190] X. Lin, F. Xu, A. Schperberg, and D. Hong, “Learning near-global-
optimal strategies for hybrid non-convex model predictive control of sin-
gle rigid body locomotion”, arXiv preprint arXiv:2207.07846, 2022.

[191] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Veličković,
“Combinatorial optimization and reasoning with graph neural net-
works”, arXiv preprint arXiv:2102.09544, 2021.

[192] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact com-
binatorial optimization with graph convolutional neural networks”, Ad-
vances in Neural Information Processing Systems, vol. 32, 2019.

166

	Introduction
	Optimization and Learning based Motion Planning
	Multi-model Legged Walking and Climbing Robots
	Contributions
	Outline

	Background
	Model Based Motion Planning for Multi-limed Robots
	Graph Based Planning
	Sampling based Planning
	MICP Gait and Whole body Planning
	NLP and LCS Planning
	Reinforcement Learning Based Planning
	Supervised Learning Based Planning
	Template based Dynamic Planning, ZMP, ICP, CWC
	Shooting methods through iterative local approximation - DDP/iLQR
	Lyapunov function based methods
	Combining different approaches

	Introduction to SiLVIA and SCALER
	Design and Manufacturing
	Software Construction
	State Estimation
	Control

	Testings
	Grippers

	Compliance Model of Multi-legged Robots
	VJM for a Limb Stiffness
	Whole Body Stiffness
	Experiment for Stiffness Test

	Motion Planning Algorithm for Walking and Climbing
	A Two Step Decoupled Planner
	Vertical Climbing Problem Formulation
	Problem Solving with Optimization
	Optimization for Climbing Posture
	Optimization for Pushing Force
	Results
	Discussion

	A Coupled Planner with Data-driven Envelope Relaxation
	Problem Setup
	Envelope Learning Algorithm
	Training results
	Planning results
	Discussion

	Transition Planning

	Motion Planning Algorithm for Multi-modal Multi-agent Self-reconfigurable Robot System
	Background on Modular Re-configurable Robots
	System Description
	Problem Formulation
	Integral Logic Constraints
	Continuous Constraints

	ADMM Formulation
	Results
	Conclusion: Why Do We Need Stronger Optimization Methods?

	Data-driven Methods for Mixed-integer Non-convex Optimization: Algorithms
	Background on Data-driven Methods for Optimization
	Motion Library
	Parametric Programming
	Learning Problem-solution Mapping
	System Identification Approach
	Online Formulation
	Solving Techniques for MICP and MINLP
	Collision Avoidance with Mode Switch

	Data-driven Methods for Fast Online Optimization: Algorithms
	Complementary Formulation
	MIP Formulation
	Conclusion

	Data-driven Methods for Mixed-integer Non-convex Optimization: Applications
	Book Shelf Organization Problem
	Problem Formulation
	Mixed-integer Formulations
	Solving with Data-driven Methods

	Mixed-integer Non-Convex Model Predictive Control
	Dynamic Model
	Control Implementation
	Learning for Warm Start
	Experimental Results

	Conclusion
	Compliance Model
	Vertical Climbing
	Optimization Based Motion Planning
	Data-driven Methods for Combinatorial Optimization

	References

