UCLA

Posters

Title

SYS 2: Acoustic ENSBox A System of Self Calibrating Distributed Acoustic Arrays

Permalink

https://escholarship.org/uc/item/38m7c4g8

Authors

Lewis Girod Martin Lukac Vlad Trifa <u>et al.</u>

Publication Date

2006

NS Center for Embedded Networked Sensing

Lewis Girod, Martin Lukac, Vlad Trifa, Deborah Estrin CENS Systems Lab - http://research.cens.ucla.edu

Introduction: Self-configuring platform for collaborative acoustic monitoring

Passive Acoustic Monitoring Applications

- · Detect, classify, and localize targets using sound
- · Free of interference to targets and environment
- · Suitable for animal behavior monitoring

System architecture

- · Network of acoustic arrays distributed in field
 - Four microphones in a square array
 - PXA255 platform, 2.6 Linux kernel
 - VXPocket 440 PCMCIA 4-channel sound card
 - Arrays are wirelessly connected via 802.11
- · Acoustic monitoring through collaborative processing
 - Animal vocalization is detected by nearby acoustic arrays
 - Sound is classified and DOA is estimated from phase comparison
 - Animal location is estimated through collaboration of multiple arrays

Problem Description: Challenges in collaborative acoustic monitoring

Collaborative monitoring system

- · Staged signal processing model
 - Early stages filter out periods where there are no events
 - Later stages detect, classify, and compute DOA
 - Collaborative phase: data association and localization
- · Precise synchronization between sampled channels
 - Required for accurate direction of arrival (DOA)
 - Need to overcome limitations of VXP hardware

Node 108

- Self-calibration
- 3-D location and orientation of microphone arrays - Required for 3-D target localization via bearing-crossing
 - Difficult to obtain manually in dense-foliage environments
 - Localization info must be maintained when system is bumped or moved
- Acoustic localization system
 - Based on time of flight (TOF) of acoustic signals
 - Requires precise synchronization between nodes and from sample clock to node CPU clock

System Design: Acoustic ENSBox: a portable acoustic monitoring box

Software System

- Buffered Continuous Sampling Interface
- Allows online detection and post-facto processing - Abstracts away non-deterministic system delays,
- e.g. network latency

Multihop Time Conversion

- Clocks run independent
- Nodes maintain time conversion parameters
- Service provides pair wise time base conversion
- and global event time service

(a) 2D Position Deviation, Courtyard Experiments

Residual Rejecti

Centimeters

(d) 2D Position Deviation, JR Experiments

25

20

15

10

-10

-15

-25

-30

40

30

20

10

0

-20

-30

-40

-40 -30 -20 -10 0

30 40

Z (cm)

10 20

Centimeters

Centi -10

Collaborative Network Primitives

- Flood service with hop-by-hop time conversion - Reliable state dissemination mechanism with publish-subscribe interface

Location and Orientation Self-Calibration 3D location and orientation of sensor array

Antbird Detection

- Early results obtained from master's thesis experiments
- Applied AML bearing estimation algorithm to enhance antbird calls and apply HMM recognizer

AML Bearing Estimator

Antbird Species Recognition, for varying HMM parameters

UCLA – UCR – Caltech – USC – CSU – JPL – UC Merced

ΠΜ

- Щ_О

Range and Bearing Estimation