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Abstract 

   Most theories of word learning fall into one of two 
classes: hypothesis elimination or associationist.  We 
propose a new approach to word learning within a 
Bayesian framework. Tenenbaum and Xu (2000) 
presented a Bayesian model of adults learning words 
for hierarchically structured categories. We report two 
experiments with 3- and 4-year-old children, providing 
evidence that the basic principles of Bayesian 
inference are employed when children acquire new 
words at different hierarchical levels.  Implications for 
theories of word learning are discussed.   

Introduction 
The problem of word learning has been a well-cited 

example of the general problem of induction.  With each 
referential act, e.g., “Look, a dog!” there are an infinite 
number of hypotheses for the meaning of the word “dog” that 
is consistent with the data (Quine, 1960).  The word could 
refer to all (and only) dogs, all mammals, all animals, all 
Dalmatians, this individual Max, all dogs plus the Lone 
Ranger’s horse, all dogs except Labradors, all spotted things, 
the front half of a dog, undetached dog parts, things which are 
dogs if first observed before next Monday but cats if first 
observed thereafter, and on and on. Yet despite this severe 
under-determination, even 2- or 3-year-old children seem to 
be remarkably successful at learning the meanings of words 
from just one or a few positive examples (Bloom, 2000; 
Carey, 1978; Markman, 1989; Regier, 1996; among others).  
How do they do it?   

Most theories of word learning fall under what we call 
the hypothesis elimination approach to learning.  The learner 
effectively considers a hypothesis space of possible concepts 
onto which words will map, and assumes that each word 
maps onto exactly one of these concepts. The act of learning 
consists of eliminating incorrect hypotheses about word 
meaning, based on a combination of a priori knowledge and 
observations of how words are used to refer to aspects of 
experience, until the learner converges on a single consistent 
hypothesis. More precisely, some logically possible 
hypotheses may be ruled out a priori because they do not 
correspond to any psychologically natural concepts, e.g., the 
hypothesis that “dog” refers to things which are dogs if 
observed before Tuesday but cats if observed thereafter. 
Other hypotheses may be ruled out because they are 
inconsistent with examples of how the word is used, e.g., the 
hypotheses that “dog” refers to all and only terriers, can be 
ruled out upon seeing the example of Max the Dalmatian.  

Settling on one hypothesis by eliminating all others as 
incorrect amounts to taking a deductive approach to the 
logical problem of word learning. The learner essentially 
deduces the word’s meaning from a set of premises, which 
include the assumption that the word maps onto one of the 
learner’s hypotheses and the a priori knowledge and 
observational data that rule out all but one hypothesis.  The 
success of word learning is then explained by the deductive 
validity of this inference. Thus we will sometimes refer to 
hypothesis elimination approaches as deductive approaches to 
word learning. 

To illustrate how word learning has traditionally been 
explained within a deductive framework, let us return to our 
opening question of how a child could possibly infer the 
meaning of the word “dog” from a typical labeling event.  
One influential proposal has been that children come to the 
task of word learning equipped with strong prior constraints 
on viable word meanings (e.g., Markman, 1989), allowing 
them to rule out a priori many logically possible but 
psychologically unnatural extensions of a word.  Often it is 
most natural to view these constraints as giving structure to 
the learner’s hypothesis space, but they could also be seen as 
eliminating the implausible hypotheses from a larger space of 
all logically possible concepts.   

Two classic constraints on the meanings of common 
nouns include the whole object constraint and the taxonomic 
constraint (Markman, 1989).  The whole object constraint 
requires words to refer to whole objects, as opposed to parts 
of objects or attributes of objects, thus ruling out word 
meanings such as the front half of a dog, or undetached dog 
parts.  The taxonomic constraint requires words refer to 
taxonomic classes, typically in a tree-structured hierarchy of 
natural kind categories (Keil, 1979), thus ruling out word 
meanings such as all dogs plus the Lone Ranger’s horse, all 
spotted things, all running things or all dogs except 
Labradors.  Whether these constraints are specific to the 
domain of word meaning or reflect more general restrictions 
on the structure of natural kind concepts is controversial (e.g., 
Tomasello, 2001), but their importance in guiding the process 
of word learning is fairly well accepted.  

In most cases, such as our example of a child learning the 
word “dog”, these constraints are useful but not sufficient to 
solve the inference problem.  Even after ruling out all 
hypotheses that are inconsistent with a typical labeled 
example (e.g., Max the Dalmatian), a learner will still be left 
with many consistent hypotheses that also correspond to 
possible meanings of common nouns. How are we to infer 
whether a word that has been perceived to refer to Max 
applies to all and only Dalmatians, all and only dogs, all 
canines, all mammals, or all animals, and so on?  This 
problem of inference in a hierarchy is interesting in its own 
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right, but more importantly as a special case of the 
fundamental challenge faced by deductive approaches to 
word learning.   In most interesting semantic domains, the 
natural concepts that can be named in the lexicon are not 
mutually exclusive, but overlap in some more or less 
structured way.  In other words, most objects can be 
described with more than one word.  Thus no example can 
ever rule out all but one of the a priori plausible hypotheses, 
as the hypothesis elimination framework requires for 
successful inductive inference.  

While deduction or hypothesis elimination may be the 
dominant framework in which researchers have sought to 
understand the inferential processes underlying word 
learning, it is not the only standing candidate.  Connectionist 
or neural network models (e.g., Regier, 1996; Gasser & 
Smith, 1998) treat word learning as a kind of associative 
learning process.  Similarity-based models treat word learning 
as a process of exemplar memorization and generalization by 
graded matching (Landau, Smith, & Jones, 1988).  By using 
internal layers of “hidden” units and appropriately designed 
input and output representations, or appropriately tuned 
similarity metrics, these models are able to produce abstract 
generalizations of word meaning that go beyond what one 
might expect from their roots as models of the simplest 
animal learning or memory processes.  They also have the 
potential to capture some aspects of word learning that are not 
easily explained within the deductive framework, such as the 
graded nature of many generalizations, the noise tolerance of 
learning, or the varying degrees of confidence that word 
learners may have in their inferences.  However, associative 
or similarity-based models have not replaced hypothesis 
elimination as the dominant way of thinking about word 
learning (Bloom, 2000).  In large part, this is probably 
because they have not yet exhibited the essential capacities of 
fast mapping.  The term “fast mapping” has come to mean 
different things for different researchers.  We emphasize 
children’s ability not only to form a link between a 
phonological form and a meaning, but also to generalize to 
novel instances based on one or just a few positive examples 
(see Carey & Bartlett, 1978; Markman, 1989; Markson & 
Bloom, 1997; Waxman & Booth; 2001 for other definitions).  

While both deductive and associationist models offer 
certain insights into the processes of word learning, we 
believe that neither approach provides an adequate 
framework in which to explain how people actually learn the 
meanings of words.  Here we propose a novel approach based 
on principles of rational statistical inference.  Our framework 
combines the principal advantages of both deductive and 
associationist frameworks: it supports the rational inferences 
underlying generalization in fast mapping, but it also exhibits 
a graded sensitivity to uncertainty in prior knowledge and the 
input.  It can be viewed as a natural extension of the 
hypothesis elimination approach, in which hypotheses are 
evaluated not by deductive logic but by the machinery of 
Bayesian probability theory.  Thus hypotheses are not simply 
ruled in or out, but scored according to their probability of 
being correct.  The result is a much wider spectrum of 
inferences, ranging from complete certainty to complete 
uncertainty, and including both logical deductions and true 

inductive leaps based only on suspicious coincidences in the 
observed data. This allows the Bayesian framework to 
explain crucial fast mapping phenomena and other word 
learning behaviors that neither previous framework can make 
sense of.    

We will study a phenomenon in the context of learning 
words for taxonomic categories, which strongly suggest that a 
statistical inference mechanism is at work.  Suppose that after 
observing Max the Dalmatian labeled a “fep”, and inferring 
(based on a basic-level preference within a taxonomic 
hypothesis space) that “fep” refers to all and only dogs, we 
then see three more objects labeled as feps, each of which is 
also a Dalmatian.  These additional examples are consistent 
with exactly the same set of taxonomic hypotheses that were 
consistent with the first example; no potential meanings can 
be ruled out as inconsistent that were not already inconsistent 
after seeing one Dalmatian called a “fep”. Yet after seeing 
these additional examples, the word “fep” seems relatively 
more likely to refer to just Dalmatians than to all dogs.  
Intuitively, this inference appears to be based on a suspicious 
coincidence: it would be quite surprising to observe only 
Dalmatians called “fep” if in fact the word referred to all dogs 
(and if the first four examples were a random sample of “fep” 
in the world).  

In previous research we presented evidence that adults’ 
performance in a word learning task accords with these 
intuitions and we presented a Bayesian model of adults’ 
generalization behavior (Tenenbaum & Xu, 2000).  Given a 
hypothesis space and one or more examples of a novel word’s 
referents, the learner evaluates all hypotheses for candidate 
word meanings by computing their posterior probabilities, 
proportional to the product of prior probabilities and 
likelihoods. The prior probabilities embody all of the 
learner’s beliefs about which hypotheses are more or less 
plausible, independent of the observed examples.  Constraints 
on word meaning (e.g., the whole object assumption or the 
taxonomic assumption) are part of the prior.  Prior 
probabilities may be innate or learned, and they may change 
over time as the lexicon grows.  The likelihood captures the 
statistical information in the examples.  It reflects the 
learner’s expectations about which examples are likely to be 
observed given a particular hypothesis about word meaning, 
e.g., the learner assumes that the observed examples are a 
representative sample of the word/concept.  The posterior 
captures the learner’s degree of belief that the hypothesized 
word meaning is the true meaning of the word given the 
examples.   

Tenenbaum and Xu (2000) specified how these various 
terms could be instantiated in the Bayesian model.  For the 
case of learning words for kinds, hypotheses were assumed to 
correspond to classes in a hierarchical taxonomy of kinds.  A 
representation of subjects’ taxonomies was obtained by 
hierarchical clustering of similarity judgments.  The clusters 
included subordinate, basic-level, and superordinate 
categories, as well as others (see T&X for details).  The more 
distinctive a cluster was in terms of similarity, the higher the 
prior probability was that a word would map onto that cluster.  
The likelihood reflects a size principle:  Assuming that the 
examples are randomly sampled from the word’s extension, 
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hypotheses corresponding to smaller extensions are preferred 
relative to larger extensions, and the preference increases 
exponentially as the number of consistent examples increases.  
This captures the intuition of “suspicious coincidence": If the 
first example of "fep" is a Dalmatian, either all Dalmatians or 
all dogs may be plausible hypotheses.  But if the first three 
examples of “fep” are all Dalmatians, the word seems more 
likely to refer to just the Dalmatians than to all dogs. Lastly, 
generalization to new objects is determined by averaging the 
predictions of all hypotheses weighted by their posterior 
probabilities.   

Previous studies showed that adults’ data fit well with 
this model.  What about children who are in the midst of 
rapidly learning new words?  

 
Experiment 1 

Experiment 1 investigated how 4-year-old children learn 
words for subordinate, basic-level and superordinate 
categories.  Children were taught novel words for object 
categories and were asked to generalize these words to new 
objects.  As in T&X (2000), two factors were manipulated: 
the number of examples labeled (1 vs. 3) and the range 
spanned by the examples (e.g., three Dalmatians, three kinds 
of dogs, or three kinds of animals).   
Method 
Participants 

Participants were thirty-six 4-year-old children (mean 
age 4 years 1 month, ranged from 3 years 6 months to 5 years 
0 months). All participants were recruited from the Greater 
Boston area by mail and subsequent phone calls. English was 
the primary language for all children.    
Materials 

The stimuli were 45 objects.  They were distributed 
across three different superordinate categories (animals, 
vegetables, and vehicles) and within those, many different 
basic-level and subordinate-level categories (e.g., 
Dalmatians/terriers/hush puppies, pelicans, cats, etc.).  These 
stimuli were divided into a training set of 21 stimuli and a test 
set of 24 stimuli.  The test stimuli included subordinate 
matches (e.g., other terriers), basic-level matches (e.g., other 
dogs), and superordinate matches (e.g., other animals).   
Design and Procedure 

Each child was randomly assigned to one of two 
conditions: the One-example Condition and the Three-
example Condition.  Each child received a total of 3 trials.  In 
the One-example Condition, every child received 3 trials, one 
from each domain.  In the Three-example Condition, because 
it might be too demanding to ask children for generalizations 
at all three levels within a single domain, each child received 
one trial in each of the three domains.   

Children were introduced to a puppet, Mr. Frog, and 
were told that they were helping the puppet who speaks a 
different language to pick out the objects he wants.  The test 
array of 24 objects was randomly laid out in front of the child 
and the experimenter.  The experimenter held the puppet and 
said to the child, “This is my friend Mr. Frog.  Can you say 
“hello” to Mr. Frog?” [Child says “Hello.”]  These are all of 
Mr. Frog’s toys, and he would like you to play a game with 
him.  Would you like to play a game with Mr. Frog?” [Child 

says “yes.”]  Then the experimenter says, “Good!  Now, Mr. 
Frog speaks a different language and he has different names 
than we do for his toys.  He is going to pick out some of them 
and he would like you to help him pick out the others like the 
ones he has picked out, okay?” [Child says ‘ok.’]  Three 
novel words were used: blick, fep, and dax.   
One-example Condition.  

On each trial, the experimenter picked out an object from 
the array, e.g., a green pepper, and labeled it, “See? A blick.”  
Then the child was told that Mr. Frog is very picky.  The 
experimenter said to the child, “Now, Mr. Frog wants you to 
pick out all the blicks from his toys, but he doesn’t want 
anything that is not a blick.  Remember that Mr. Frog wants 
all the blicks and nothing else.  Can you pick out the other 
blicks from his toys?”   The child was then allowed to choose 
among the 24 test objects to find the blicks and put them in 
front of Mr. Frog.  If a child only picks out one toy, the 
experimenter reminded him/her, “Remember Mr. Frog wants 
all the blicks.  Are there more blicks?”  If a child picks out 
more than one object, nothing more was said to encourage 
him/her to pick out more toys.  At the end of each trial, the 
experimenter said to the child, “Now, let’s put all the blicks 
back and play the game again.  Mr. Frog is going to pick out 
some more toys and he would like you to help him pick out 
others like the ones he picks, okay?” Then another novel 
word was introduced as before.   

Each child received three trials, one from each of the 
three superordinate categories, e.g., a Dalmatian (animal), a 
green pepper (vegetable), and a yellow truck (vehicle).  The 
order of the trials and the novel words used (blick, fep, and 
dax) were counterbalanced across participants.   
Three-example Condition.  

On each trial, the procedure was the same as in the one-
example trial with one important difference: The 
experimenter picked out one object, labeled it for the child, 
e.g., “See? A fep.” Then she picked out two more objects, one 
at a time, and labeled each one for the child, e.g., “Look, 
another fep!” The order of the superordinate category 
(animal, vegetable, and vehicle), the range spanned by the 
examples (subordinate, e.g., three very similar Dalmatians; 
basic, e.g., three different dogs; superordinate, e.g., three 
different animals), and the novel words were counterbalanced 
across participants.   
Results 

Since no child chose any of the distracters in this 
experiment, all analyses excluded the distracter scores.  
Figure 1 shows the percentage of responses at the various 
hierarchical levels.   
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Figure 1:  Generalization data from Experiment 1 

 
Two questions are addressed with planned t-tests.  First, 

did children behave differently in the 1-example trials 
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compared with the 3-example subordinate trials when they 
were given 1 vs. 3 virtually identical exemplars?  More 
specifically, did they show a falling off at the basic level in 
the 1-example trials and did they restrict their generalization 
to the subordinate level in the 3-example trials?  Second, did 
the 3-example trials differ from each other depending on the 
range spanned by the examples?  More specifically, did 
children modify their generalization to the most specific level 
that was consistent with the set of exemplars?   

To investigate the first question, we compared the 
percentages of responses that matched the example(s) at the 
subordinate, basic-level, or the superordinate level.  On the 
one-example trials, participants chose more subordinate 
(85%) than basic-level matches (31%), and more basic-level 
than superordinate matches (3%) (p < .0001 for both 
comparisons).  When presented with three very similar 
exemplars from the same subordinate category, participants 
chose more subordinate matches (83%) than both basic-level 
(13%) and superordinate matches (3%) (p < .0001 for both 
comparisons). Furthermore there was a reliable difference in 
basic-level matches (31% vs. 13%, p < .01).   

To investigate the second question, we tested a series of 
predictions based on our model.  A set of planned 
comparisons address this question by comparing the 
percentages of response at each level. Given 3 examples from 
the same subordinate level category, the model predicts a 
sharp drop between subordinate level generalization and 
basic-level generalization (83% vs. 13%, p < .0001).  Given 3 
examples from the same basic-level category, the model 
predicts a sharp drop between basic-level generalization and 
superordinate level generalization (47% vs. 15%, p < .0001).  
Given 3 examples from the same superordinate category, the 
model predicts that generalization should include all 
exemplars from that superordinate category (86%, 53%, and 
43%).  Children's performance is in broad agreement with the 
predictions.  With three examples, children generalized to the 
appropriate level consistent with the examples and their 
generalizations were sharper than with one example.   
Discussion 

Four-year-old children’s performance was in broad 
agreement with our predictions.  On the 1-example trials, they 
showed graded generalization.  Interestingly, they did not 
show a strong basic-level bias.  On the 3-example trials, the 
children modified their generalizations depending on the span 
of the examples.  Their generalizations were consistent with 
the most specific category that included all the examples.  
However, the children’s data were much noisier than those of 
the adults in T&X.  Several methodological reasons may 
account for these differences.  The overall level of response 
was much lower for children.  Perhaps the task of freely 
choosing among 24 objects was too demanding for children 
of this age and some of them may be reluctant to choose more 
than a few objects.   

In the next experiment, we presented children with each 
of 10 objects and ask for a yes/no response for each.  This 
modification ensured that all children provide us with 
judgment on each of the test objects.   

The critical prediction made by our Bayesian framework 
was whether the learner’s generalization function differed 

when labeling a single example vs. three independent 
examples.  However, given that each object was labeled once, 
the three-example trials contained three times as many 
labeling events as the one-example trials.  Thus we are not 
able to tell if the learner kept track of the number of examples 
labeled or simply the number of labeling events (i.e., word-
object pairings).  This is particularly important since some 
associative word-learning models (e.g., Colunga & Smith, 
2001) claim that keeping track of word-object pairings is the 
very mechanism of children’s word learning.  To distinguish 
the Bayesian approach from associative approaches, it is 
important to tease apart these possibilities.  In Experiment 2 
we equated the number of labeling events between the 1- and 
3-example trials by labeling the single object three times.   

 
Experiment 2 

Method 
Participants 

Participants were thirty-six 4-year-old children (mean 
age 4 years 0 months, ranged from 3 years 6 months to 5 
years 0 months). Participants were recruited as in Experiment 
1.   
Materials 

The stimuli were the same 45 objects as in Experiment 1, 
except that the five Dalmatians were replaced by five slightly 
different terriers.   
Design and Procedure 

The procedure was identical to that of Experiment 1, 
except for the following.  In the One-example Condition, each 
object was labeled three times.  For example, the 
experimenter may pick out a green pepper, show it to the 
child, and say, “See? A fep.”  She put the pepper down on the 
floor, then picked it up again, and said, “Look, a fep.”  She 
put down and picked up the pepper the third time and said, 
“It’s a fep.”  The experimenter made sure that the child was 
following her actions so it was clear that the same pepper had 
been labeled three times.   

In the Three-example Condition, each object was labeled 
exactly once.  Again, the experimenter monitored the child’s 
attention to ensure that joint attention was established before 
the labeling event for each object.   

Although all 24 objects were laid out in front of the 
child, the experimenter chose 10 of these objects as target 
objects.  The experimenter picked up each of the 10 objects 
and asked the child, “Is this a fep?”  The target set included 2 
subordinate matches, 2 basic-level matches, 4 superordinate-
level matches, and 2 distracters.   
Results 

Figure 2 shows the percentage of responses at the various 
hierarchical levels.   
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Figure 2:  Generalization data from Experiment 2 
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The same two questions are addressed as in Experiment 
1. First, did children behave differently in the 1-example trials 
compared with the 3-example subordinate trials when they 
were given 1 vs. 3 virtually identical exemplars?   Second, did 
the 3-example trials differ from each other depending on the 
span of the examples?  

To investigate the first question, we compared the 
percentages of responses that matched the example(s) at the 
subordinate, basic-level, or superordinate level.  On the one-
example trials, participants chose more subordinate (96%) 
than basic-level matches (40%), and more basic-level than 
superordinate matches (17%) (p < .001 for both 
comparisons).  In contrast, when presented with three very 
similar exemplars from the same subordinate category, 
participants chose more subordinate matches (94%) than both 
basic-level (6%) and superordinate matches (0%) (p < .0001 
for both comparisons).  Furthermore, there was a reliable 
difference between the basic-level matches (40% vs. 6%, p < 
.01).   

To investigate the second question, we tested a series of 
predictions based on our model.  With the modifications on 
methodology, children's performance is very consistent with 
our predictions. Given 3 examples from the same subordinate 
level category, the model predicts a sharp drop between 
subordinate level and basic-level generalization (94% vs. 5%, 
p < .0001).  Given 3 examples from the same basic-level 
category, the model predicts a sharp drop between basic-level 
and superordinate level generalization (75% vs. 8%, p < 
.0001).  Given 3 examples from the same superordinate 
category, the model predicts that generalization should 
include all exemplars from that superordinate category (94%, 
88%, and 62%).   
Discussion  

With the modifications on the experimental design, 
preschool children showed evidence of computing over the 
number of examples labeled (not just the number of word-
object pairings) and computing over the span of the examples.  
These results replicated and extended those of Experiment 1, 
providing stronger evidence for our model.   

 
General Discussion 

In order to test specific predictions of the Bayesian 
framework, our experiments investigated the effects of number 
of examples (1 vs. 3), span of examples presented to our 
participants (subordinate, basic, vs. superordinate levels), and 
number of labeling events (one object labeled three times vs. 
three objects labeled once each). Each of these experimental 
design features sheds new light onto the process of word 
learning.   

By varying the number of examples, we were able to 
examine the effects of multiple examples on generalization. 
We found that word learning displays the characteristics of a 
statistical inference, with both adult and child learners 
becoming more accurate and more confident in their 
generalizations as the number of examples increased.  This 
effect was not the typical gradual learning curve that is 
typically associated with “statistical learning”; rather, there 
was a strong shift in generalization behavior from one to three 
examples, reflecting the statistical intuition that the span of 

three independent, randomly sampled examples warrants a 
sharp increase in confidence for particular hypotheses.  These 
results suggest that both adult and child learners are very 
sensitive to the “suspicious coincidence” in the input.     

By varying the span of examples, we found that labels for 
subordinate and superordinate categories may not be as 
difficult to learn as suggested by previous studies.  When given 
multiple examples, preschool children are able to learn words 
that refer to different levels of the taxonomic hierarchy, at least 
in the domains of animal, vehicle, and vegetable.  Special 
linguistics cues or negative examples are not necessary for 
learning these words.   

By varying the number of labeling events independent of 
the number of examples, we were able to explore the 
ontological underpinning of children’s word learning.  We 
found evidence that preschool children are keeping track of the 
number of instances labeled and not simply the number of co-
occurrences between object-percepts and labels. Word learning 
appears to be fundamentally a statistical inference, but unlike 
standard associative models, the statistics are computed over 
an ontology of objects and classes, rather than over surface 
perceptual features.   

Any theory of word learning needs three components: 
First, what is the body of prior knowledge the learner has 
coming into the task of learning new words at any given point 
in time? Second, what are the data required by the learner and 
what are the data actually available to the learner in order to 
succeed in acquiring word meanings? Third, what engine of 
inference is employed by the learner? Furthermore, how these 
three components interact is crucial for the success of any 
theory of word learning or inductive inference in general 
(Tenenbaum & Griffiths, 2001).   

We make two main points in adopting a Bayesian 
inference framework in studying word learning.  First, 
previous theories of word learning (both from the hypothesis 
elimination tradition and the associative learning tradition) 
have not endowed the learner with a powerful enough 
inference engine.  Second, some researchers may suggest that 
what is most important is to characterize the first and the 
second components above, prior knowledge and input.  We 
argue otherwise.  If the inference engine were incorrectly 
characterized, one would necessarily err in charactering either 
prior knowledge or the data necessary for successful learning.  
If the inference engine were too weak, one would need to posit 
either a great deal of prior knowledge or a lot of input data.  By 
adopting a stronger inference engine than other approaches to 
word learning, we are able to place stronger constraints on 
prior knowledge and also on the necessary input data.   

The research presented here sheds light on both of these 
points.  What is the right inference engine? Previous literature 
suggests two candidates: associative learning or hypothesis 
elimination, neither of which can easily explain our findings 
here.  One major issue with typical associative learning rules is 
that they are sensitive only to the statistical relations between 
features, regardless of the nature of those features (e.g., Regier, 
1996; Gasser & Smith, 1998).  Given multiple features that are 
all present in all examples of a new word to be learned, 
standard associative models raise the weights of all these 
features equally; they do not recognize that some highly 

2385



correlated features are more diagnostic than others. A priori 
biases can be incorporated by adopting different initial values 
for the weights of different features, but unless one introduces 
an attentional mechanism, it is difficult to develop a posteriori 
preferences that discriminate among two features which are 
equally natural a priori and equally well-correlated with the 
observation of the word to be learned.  In the context of 
learning words for nested categories, associative learning 
approaches have difficulty explaining why generalization 
sharpens up from 1 to 3 virtually identical examples since both 
sets of examples are consistent with multiple hypotheses 
represented in terms of correlated features; it also has difficulty 
choosing the right level of generalization for the same reason.    

 In contrast, hypothesis elimination approaches run into a 
different sort of problem.  In order to explain the sharpening 
from 1 to 3 examples, one would have to posit a basic-level 
bias just for the 1-example case and some version of a bias 
towards “the smallest category consistent with the examples” 
just for the 3-example case.  Presumably we do not want to 
have to posit a specific selection principle for each particular 
case.  In addition, positing a basic-level bias makes 
subordinate and superordinate nouns difficult to learn.  Since 
children do eventually learn these nouns, hypothesis 
elimination approaches have to posit further constraints to 
override the basic-level bias.   

Although it may be possible to modify existing models to 
account for these results, the advantage of the Bayesian 
inference framework is that it explains both the transition 
from 1 to 3 examples and the appropriate level of 
generalization without having to posit somewhat post hoc 
constraints.  The graded generalization with 1 example 
follows straightforwardly from the mechanism of hypothesis 
averaging.  The sharpening from 1 to 3 examples follows 
straightforwardly from the size principle.  For the problem of 
learning words for kinds, at least, the Bayesian framework 
provides the most principled and parsimonious account.    

Choosing the right inference engine also has implications 
for the information needed for successful learning, both in 
terms of prior knowledge and input data.  Associative 
learning requires many examples and sometimes both 
positive and negative examples.  At least in certain domains 
of word learning (e.g., count nouns for kinds), a small number 
of examples are sufficient for generalization in both children 
and adults, and vast majority of the words are learned through 
positive examples alone (Bloom, 2000).  Similarly, 
hypothesis elimination approaches have to posit specific prior 
constraints (e.g., the basic-level bias) in order to explain fast 
mapping.  These constraints often have to be overridden by 
other constraints (e.g., mutual exclusivity so that each 
category can only have one basic-level label).  The advantage 
of the Bayesian framework is that it arrives at the right 
generalization pattern from just a few positive examples, and 
it does not need special linguistic cues or constraints that have 
to be overridden later on.    

In sum, our inductive models may be seen as 
probabilistic generalizations of the classic deductive approach 
to word learning based on hypothesis elimination. Our 
experiments in the domain of words for object categories, 
with both adults and children, showed that people's patterns 

of generalization are qualitatively and quantitatively 
consistent with the Bayesian model's behavior, but not with 
standard models based on hypothesis elimination, or 
associative or correlational learning. Bayesian inference may 
thus offer the most promising framework in which to explain 
the speed and success of fast mapping in word learning.    

The field of cognitive and language development has 
often been polarized over debates about of whether nature or 
nurture is key in development.  The Bayesian framework we 
advocate here can perhaps take us beyond this classic “either-
or” dichotomy, by showing how both prior knowledge 
(probabilistic versions of constraints) and observed data (the 
statistical structure of the examples) can be combined in a 
rational inference process.   
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