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Abstract. Positive-feedback mechanisms such as fatigue induce a self-accelerating behavior, captured10

by models displaying infinite limit-state asymptotics, collectively known as the failure forecast method11

(FFM). This paper presents a Bayesian model parameter estimation approach to the fully nonlinear12

FFM implementation and compares the results to the classic linear regression formulation, including13

a regression uncertainty model. This process is demonstrated in a cyclic loading fatigue crack prop-14

agation application, both on a synthetic data set and on a full fatigue experiment. A novel "switch15

point" parameter is included in the Bayesian formulation to account for nonstationary changes in the16

growth parameter.17

1 Introduction18

Information provided by structural health monitoring (SHM) data is generally used to assess the19

current diagnostic state of components or systems [1]. Such SHM assessments may be subsequently20

used to inform predictive models that estimate remaining useful life (RUL) or some related prognostic21

condition [2, 3]. RUL is most commonly defined as the amount of time, subject to some assumed usage22

profile, that a structure has before achieving some limit state that prevents its ability to perform its23

intended design functions safely and reliably [4]. The achievement of this limit state (measured as24

time, response, or load cycles, or a similar metric) will be defined as the time-of-failure, denoted by the25

variable tf .26

In particular, this paper focuses on estimating tf of specimens subjected to ultimate failure27

induced by fatigue cracking. A common method employed for predicting tf in a fatigue scenario is28

the Paris-Ergodan crack growth law [5]. This law expresses the rate of crack growth as a function of29

parameters such as the stress intensity factor from the load around the crack tip, material properties30

which may be obtained experimentally, and stress information particular to the specific cyclic loading.31

Although motivated by linear elastic fracture mechanics, the parameters which affect tf predictions32

using Paris’ law have intrinsic uncertainty, and in fact they may be impossible to estimate or measure33

accurately in cases such as complex geometries, materials, or load states. Varying environmental effects34

may also infuse substantive uncertainty into the Paris’ law approach.35

Such uncertainties in Paris’ law (and many other classes of such crack growth models) necessitated36

development of more probabilistic methods for estimating RUL in fatigue loading applications. Some37

of the sources of variability or uncertainty that affect prediction of tf , generally regardless of modeling38
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approach, include (but aren’t limited to) stochastic environmental or loading effects, uncertainty in39

initial material state, and measurement process noise. This inherently makes the prediction problem40

probabilistic, since typically these influences cannot be measured or estimated completely [6,7]. One41

subsequent approach addressed this with a modified version of the Paris-Ergodan crack growth law42

known as the NASGRO equation, which quantified the material uncertainties and loading conditions in43

fatigue behavior using Monte Carlo (MC) analysis [8,9]. Mallor et al. recently presented a study on the44

probabilistic formulation for fatigue crack propagation based on the NASGRO equation and provided a45

stochastic approach for predicting statistical moments of fatigue lifetime for components subject to46

non-uniform loading patterns [10]. In this study, the RUL expected value and variance of numerically47

simulated fatigue loading experiments are approximated and verified using MC simulation. Artificial48

neural networks are also being used to estimate RUL, without the need for an explicit physical fatigue49

mathematical model form. Studies by Jimenez-Martinez et al. and Barbosa et al. show the results50

of using machine learning capabilities with only two inputs (component strain and fatigue cycle) to51

estimate failure [11, 12]. Both studies reported a higher prediction capability at some load sequences in52

comparison to traditional modeling techniques.53

For failure modes expected to possess self-accelerating observable behavior (such as unarrested54

crack growth), a method for estimating tf that has been shown to have broad application is widely-55

known as the failure forecast method (FFM). Early origins of the FFM began with Fukuzono, who56

observed that landslide mechanics could be explained by using an empirical positive-feedback model of57

the inverse rate of ground strain [13]. Voight later formalized this observation into a more comprehensive58

predictive model and first coined the term “failure forecast method” [14,15]. The FFM has been further59

widely implemented in modeling a diverse variety of self-accelerating failure mechanisms, ranging from60

material-level failures (e.g., creep, fatigue) to volcanic eruptions [16–22]. This paper will focus on the61

use of the FFM to sample the distribution of tf for fracture in fatigue loading applications. For fatigue62

cracking (and many other applications, for that matter), the FFM has traditionally been implemented63

in a linearized way by linearly regressing the inverse rate of crack growth against time, as detailed64

later in Section 2.1. When the inverse rate of the monitored feature approaches zero (the time axis65

intercept), the feature rate approaches infinity, and the failure event is defined to have occurred [16–18].66

However, the regression implementation of the FFM provides a single estimated point for tf , which67

does not consider explicitly the propagation of uncertainty in the estimation process. A recent study68

proposed a model to approximate this propagated uncertainty in the FFM linear regression process [23];69

this same model will be used in this study to estimate probability density functions for tf for the70

"classical" linear FFM approach, in comparison to the Bayesian model that will be proposed and71

implemented in this work. More recent work has shown that the linearity assumption made in the72

regression implementation of FFM has been observed to be false for both early and late stage crack73

growth [24]. This work shows that imposing linearity may cause a positive bias in tf estimation for late74

stage crack growth, where the inverse feature rate has been observed to slope downward; this implies75

that the failure time occurs consistently sooner than predicted, introducing a non-conservative bias that76

could be catastrophic. While this study focuses on the problem of fatigue, a range of different damage77

mechanisms exhibit multiple distinct phases of progression determined by the underlying mechanics,78

and indeed the inclusion of pre-damage data will lead to non-constant trends, and so a solution to this79

problem will be widely applicable.80
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The Bayesian model introduced in this work allows both for relaxation of the linearity assumption81

and for sampling the posterior distribution of tf . We shall compare tf distribution models from the fully-82

Bayesian approach to tf estimations made from the linear regression approach, including distributions83

from the linear regression uncertainty model. Approaching model parameter estimation from a Bayesian84

statistical perspective is advantageous when only a few realizations (or even a single realization) can be85

obtained for analysis, such as data from a single cyclic fatigue loading experiment. The operation of86

the Bayesian modeler consists of formulating and continuously sampling the distributions of model87

parameters as new data become available, intrinsically allowing for the generation of uncertainty88

distributions for each parameter, including tf . We thus relax the linearity constraint by including a89

model parameter in the Bayesian-inferred parameter set which accounts for nonlinearity, rather than90

setting it to an assumed value.91

Recent published works have begun to propose various uncertainty quantification approaches to92

the FFM. Commonly, published works operate on data from historic earthquakes, but the FFM is93

agnostic to the particular failure mechanism which makes these studies related to the current work.94

Bell et al. [25] evaluated the FFM using synthetic strain and earthquake sequences. A small amount95

of Gaussian noise was added to the strain rate data to simulate the effect of measurement error,96

and earthquake data was simulated as a Poisson process with mean rate and variance. The article97

synthesized 200 realizations of data for each process, and generated probability density functions98

based on tf estimations of the FFM for each realization. Bevilacqua et al. [26] proposed a doubly99

stochastic enhancement of the FFM by introducing a formulation similar to the Hull-White model in100

financial mathematics. By including stochastic noise terms in the original FFM governing equation, tf101

estimation uncertainty can be systematically characterized. Their method provides complete posterior102

probability distributions, allowing for worst case scenario estimation with a specified level of confidence.103

Bevilacqua’s method is applied to earthquake eruption prediction, with small sets of data compared to104

the data presented in this study. In the domain of fatigue prediction, Leung et al. [24] compared the105

performance between conventional periodic inspections informing Paris’ law parameters (themselves106

updated via Bayesian inference) and continuous monitoring for use by the linearized formulation of the107

FFM. In that study, random uncertainty in the damage accumulation rate measurements is the only108

source of uncertainty for the FFM, which in turn results in uncertainties in the regression fit and the109

extrapolated time axis intercept (tf ). The data are assumed to fit the model form, and it is assumed110

that data realizations are readily obtained.111

While uncertainty modeling within the FFM has indeed progressed, the use of Bayesian inference112

is quite limited. Boue et al. in [20] and [27] implemented a Bayesian model to estimate the eruption113

time of volcanoes, specifically trained on data from Volcán de Colima. Their Bayesian model operated114

on the empirical power law which contained parameters including the failure time coinciding with115

eruption onset. Their Bayesian model generated confidence levels associated with the failure time,116

which is especially useful for crisis management and decision making. They showed that Bayesian model117

sampling methods were beneficial to exploring each measured feature, and using a linear regression118

for the FFM was not always relevant for every measured feature set. The present work provides a119

significantly broader look into the use of Bayesian reasoning in the FFM, achieved by evaluating the120

performance of the Bayesian model on synthetic data with varying parameters, allowing for many121

realizations to be generated. We also provide advancement by developing a parameter switching model122
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which determines a discrete point where our Bayesian parameters can switch (detailed in section 4).123

Within the FFM framework, this paper compares two probabilistic models for estimating tf : the124

linear regression with an uncertainty model, and the proposed fully-Bayesian approach. The probability125

density functions (PDFs) of the linear regression model p(t̂f ) and the tf posterior belief distributions of126

the Bayesian model are compared on a synthesized dataset (in section 3), and a real fatigue dataset (in127

section 4).128

2 Predictive Models129

The most common general FFM model form proposes that the time rate-of-change R of some130

time-dependent measured feature Ω, R = Ω̇, obeys the following evolution equation131

Ṙ = kRα, (1)

where k > 0 and α > 1 are empirical constants relevant to the specific physical process. As these132

constants are not derived from a mechanics consideration, one attractive property of the FFM model133

formulation is that, unlike Paris’ law, no knowledge of application-specific loading parameters and134

material properties is required. The solution to Eq. (1), assuming that the rate R at the time of135

failure tf is Rf (often assumed infinite in the original literature, since the model form admits an infinite136

asymptote at tf ) is given by137

R(t) = [R1−α
f + k(α− 1)(tf − t)]

1
1−α . (2)

The FFM literature have shown it to be more convenient to consider the inverse of the rate R, since138

this facilitates easier definition of the failure criterion, i.e., the inverse rate tending to zero rather than139

the rate itself tending to infinity at the time of failure. Defining the inverse rate P = R−1, the solution140

Eq. (2) becomes141

P (t) = [Pα−1
f + k(α− 1)(tf − t)]

1
α−1 , (3)

where tf may be solved for as142

tf = t+
Pα−1 − Pα−1

f

k(α− 1) . (4)

This form of the FFM predicts that failure will occur at some inverse feature rate-informed amount of143

time after present time t, encapsulated in the second term on the right-hand side of Equation 4.144

2.1 The Linearized FFM with Linear Regression Method145

The linearized FFM approach is to assume that α is approximately 2 (based on a number of146

empirical studies done over a variety of failure mechanisms, as evidenced in the literature already cited),147

which permits a linear regression on Eq. (4), after rearrangement, as148

P − Pf = ktf − kt. (5)
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Clearly, as t → tf , then P→Pf , where the mathematically idealized target failure criterion is that149

Pf = 0, corresponding to Rf →∞, as alluded to above. By setting it to any positive value, a degree150

of conservatism is introduced into the approach. Of course, in most practical applications, “failure”151

occurs at a point prior to an infinite data rate-of-change observation, but to be consistent with general152

implementation in the literature and for the purposes of parametric studies in this paper, we will153

employ Pf = 0 as the failure criterion, which won’t change the basic nature of this study. With that,154

the two regression coefficients obtained from a time/data linear regression (over some given window of155

time) are given by β0 = ktf (intercept) and β1 = −k (slope) such that the regression-estimated time156

to failure is t̂f = −β0/β1, the negative of the ratio of the intercept to the slope. If k is not known, it157

could be estimated via a maximum likelihood technique or via Markov Chain Monte Carlo (MCMC)158

sampling methods [22,28].159

We will review the uncertainty model recently developed for this linear regression process presented160

in detail in [23, 24]. Any given regression on some time-stamped feature set represents a single "block"161

observation, which is presumed representative of an ensemble population of regressions over the same162

time frame. Thus, the regression coefficient vector β = [β̂0, β̂1]T is an estimate from populations of163

regression coefficients. A visualization of this process in seen in Figure (1).164

Figure 1: An example of a regression block occurring at 300 cycles. The vertical solid line represents the failure point.

For a given linear regression model P = Xβ + e, where P are observations of data, X is the165

design matrix, and e are the residuals between the data the linear regression model. It is assumed166

that the regression process yields residuals that are unbiased, uncorrelated, and normally-distributed167

e ≡ N(0, σ2I), under typical central limit theorem assumptions (regardless of the distribution of the168

regressed data, P ). Under this assumption, the theory follows that the regression coefficients themselves169

have normal distributions β̂j≡N(βj, σ2(XTX)−1), j = 0, 1, and the superscript "T" indicates the matrix170

transpose. An unbiased estimate of the population error variance is σ2 = ‖P −Xβ̂‖2/(n− 2), where171

n is the number of data points used in the regression design, reduced by two since two regression172

coefficients were estimated in the process. Given the uncertainty models in the regression coefficients,173

the time-of-failure is predicted by t̂f = −β̂0/β̂1, as stated previously. The distribution of this ratio of174
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correlated normal variables may be computed as175

p(t̂f ) =
∫ ∞
−∞

p(−t̂f β̂1, β̂1)
| − 1/β̂1|

dβ̂1 (6)

where p(β̂0, β̂1) is the bivariate normal density function. The computation of Eq. (7) yields the result176

p(t̂f ) =
√

1− ρ2σ0σ1e
−µ2

1σ
2
0+2ρµ0µ1σ0σ1−µ

2
0σ

2
1

2σ2
0σ

2
1(1−ρ2)

π(σ2
1 + 2ρσ0σ1t̂f + σ2

0 t̂
2
f )

+

e−
(µ1+µ0 t̂f )2

2(σ2
1+2ρσ0σ1 t̂f+σ2

0 t̂
2
f

)
erf( µ1σ0(ρσ1+σ0 t̂f )−µ0σ1(σ1+ρσ0 t̂f )√

2−2ρ2σ0σ1

√
σ2

1+2ρσ0σ1 t̂f+σ2
0 t̂

2
f

)
√

2π(σ2
1 + 2ρσ0σ1t̂f + σ2

0 t̂
2
f )3/2

,

(7)

where erf(*) is the error function, µj = β̂j, σj =
√
‖P −Xβ̂‖2(XTX)−1

j+1,j+1/(n− 2), and ρ =177

‖P −Xβ̂‖2(XTX)−1
12 /(σ0σ1(n− 2)), with j = 0, 1; the double subscript 1,2 refers to the row-column178

selection of the subscripted matrix. Strictly speaking, since the exact population µj and σj are not179

known a priori and must be estimated from the data as presented above, a sampling distribution for180

the ratio mean and standard deviation should be derived, but here the population ratio distribution,181

Eq. (7) will be used as a surrogate. It should be noted that this PDF has no analytically-calculable182

order statistics [29]. However, Refs. [23] and [24] used Eq. (7) and showed it was sufficient to describe183

the distribution of the failure time, and it will be used here.184

2.2 Bayesian Model185

At its core, the Bayesian technique operates by continuously updating posterior beliefs (dis-186

tributions) of parameters as new data become available. The general form of Bayes’ equation is187

188

p(Θ|D) = P (D|Θ)× P (Θ)
P (D) , (8)

where D represents the data (in this case we are using inverse crack growth rate data, or P ) and Θ189

represents the model parameters to be estimated (akin to the regression coefficients of the previous190

section). After obtaining new data, denoted by D = {d1, ..., dn}, model parameter beliefs are updated,191

P (Θ|D), influenced by the likelihood P (D|Θ) and a prior distribution, P (Θ). This prior distribution192

describes the modeler’s degree of belief about the parameter values before observing any data, which193

may also be based on past experience, if such experience exists. One can also use uninformed prior194

distributions, e.g., a Jeffry’s prior, if no such prior belief or information exists.195

In the current work, the parameter vector Θ consists of the parameters k, α, tf , and the standard196

deviation σl (noise parameter) that will be a part of our likelihood function (discussed more later).197

Because tf should be positive and greater than the current time of data collection t, the prior is assumed198

to be uniformly distributed from current time, t, to ∞. The prior for k is also assumed to be an199

improper (it doesn’t integrate to unity) uniform distribution, from 0 to ∞ because it is known to be200

positive. We chose the prior for α to be uniform between 1.5-2.5 because the literature shows that this201

parameter is close to 2 (as per the discussion above leading to the linear regression implementation)202
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and fluctuates in accordance to physical properties of failure mechanisms [22]. We chose the prior for203

σl to be half normal, a weakly informative distribution as suggested by Gelman et al. [30,31]. Table (1)204

shows a summary of the priors selected for the parameters.205

Table 1: Parameters of the Bayesian model (synthetic data)
Parameter Prior
tf Improper uniform distribution with lower bound of t
k Improper uniform distribution with lower bound of 0
α Uniform distribution between 1.5 and 2.5
σl Half normal distribution, standard deviation of 1

If a specific forward measurement model were proposed or developed, a tailored likelihood function206

could be derived from that. The current work, however, seeks to maintain a Bayesian model that is207

more agnostic to the specific kind of data/features D that are used, so a normal model for the likelihood208

function N(µl, σl) was chosen. In order to capture the heteroscedastic converging effect of the noise209

structure observed in real fatigue experiments [22, 24], inference is performed in the logarithmic space,210

i.e., P (D′|Θ) = N(µl, σl) where D′ = log(D). In the logarithmic space, the noise statistics observed211

on inverse feature rate data can be approximated as stationary which allows the Bayesian model to212

sample the noise standard deviation consistently. By using inference in the logarithm domain, and213

maintaining the sampling of the likelihood’s standard deviation σl outside the logarithm domain, we214

were able to capture posterior predictions matching the noise structure, seen in Figure (4). The mean215

of our likelihood function µl takes the form of the logarithm of Eq. (7), containing sampled parameters216

α, k, and tf , provided by217

µl = log([Pα−1
f + k(α− 1)(tf − t)]

1
α−1 ), (9)

where t is current time, and Pf = 0 remains the failure criterion; thus our likelihood function may be218

written219

P (D′|Θ) = 1√
2πσl

e

−
(
D′−log([Pα−1

f
+k(α−1)(tf−t)]

1
α−1 )

)
2

2σ2
l


, (10)

Obtaining the analytical expression for the joint posterior of parameters requires calculating220

high dimensional integrals, which is not often feasible. In the present case, the Bayesian model is221

of dimension 4, making sampling-based algorithms like Markov chain Monte Carlo (MCMC) viable222

to explore the posterior belief space. Sampling-based methods such as MCMC are an absolutely223

fundamental part of Bayesian inference, as they allow the design of more flexible and complex models224

of higher dimension. In the current work, we used the No-U-Turn Sampler (NUTS) within the PyMC3225

python package [32] to sample the joint posterior of parameters. The NUTS sampler is an extension to226

the Hamiltonian Monte Carlo (HMC) algorithm which eliminates the need to manually select a desired227

number of steps and their size. NUTS works by building a set of likely candidate points spanning a228

wide range of the target distribution and stopping when the selection begins to double back on itself.229

We have made this selection because NUTS retains (and in some cases improves upon) HMC’s ability230

to generate effectively independent samples efficiently [33]. The initialization method of the sampler231

was selected as the "jitter+adapt_diag" option built into the PYMC3 package, which worked by setting232

the starting point of the Bayesian sampler with a identity mass matrix, adapting a diagonal based on233
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the variance of the tuning samples, and adding a uniform "jitter" in [−1, 1] to the starting point of each234

chain, detailed in [32]. We used 2 chains for each simulation to verify convergence.235

To generate posterior predictions using observable data, our model utilizes predictive inference,236

which is derived from the general form of the Bayesian model. After observations have been recorded237

in D′ (D′ = log(D)), we can predict an unknown observable, D̃′, using similar Bayesian logic. The238

distribution of D̃′ is called the posterior predictive distribution, and is shown Eq. (11), where the last239

step follows the assumed conditional independence of D̃′ and D′ given Θ. Figure (2) shows examples of240

the posterior predictive distributions at two separate cycle instances [30].241

p(D̃′|D′) =
∫
p(D̃′|Θ, D′)p(Θ|D′)dΘ

=
∫
p(D̃′|Θ)p(Θ|D′)dΘ

(11)

To mimic the nature of failure prognosis, parameter estimations were performed by using data242

from a time window containing all sample points until the present cycle. This is seen in Figure (2)243

where data projections from the Bayesian model are generated based on data from the first cycle to the244

current cycle. The posterior predictions seen in figure (2) are made from synthesized data described in245

a subsequent section.246

Figure 2: Predictions generated by the Bayesian model at different time windows. Figures show prediction at 0.6tf (left)
and 0.8tf (right). Red dots show the inverse feature rate data, the black shaded regions show the posterior prediction.

Figure (2) shows a progression of the predictive capabilities of both models. The data on each plot247

(red points) show the data D provided to the Bayesian model (before transformation into log-space D′).248

The posterior prediction made by the model is shown in the shaded regions. Darker shaded regions249

on the plot show areas of where the posterior predictive generated more samples, corresponding to250

areas of higher probability of data. The heteroscedastic (appears to converge) nature of the noise of251

the prediction areas in the plots is a result of the logarithm space mean likelihood µl sampling with a252

"non-logarithm" space sampling of the likelihood standard deviation σl.253

We verified the Bayesian model’s posterior prediction and the linear regression model’s uncertainty254

PDF against a Monte-Carlo brute force simulation taken from simulated data at different cycles,255
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Figure 3: Verification of the agreement of the Bayesian posterior predictions of tf , the linear regression uncertainty
model, and a brute-force Monte-Carlo simulation, taken at different cycles.

corresponding with 0.25tf , 0.50tf , and 0.75tf . For the simplest case, in each verification in Figure (3)256

we assumed α = 2 (thus not initially considered part of the Bayesian hyperparameter set), and sampling257

occurring at a known, prescribed time t. Figure (3) shows p(tf) provided by the linear regression258

uncertainty model in Eq. (7), the posterior distribution of tf obtained from the Bayesian model, and259

a Monte-Carlo brute force simulation using Eq. (3) with noise added to the Pf term. We observed260

excellent agreement in this baseline verification process, which allows us to directly compare the two261

models’ estimation capabilities.262

We will next look at comparisons between the linear regression tf and the Bayesian model posterior263

predictions of tf using synthesized data based a fatigue experiment and then unaltered data from a264

real fatigue experiment.265

3 Synthesized Fatigue Data Experiment266

A fatigue test was simulated based on a laboratory-scale accelerated fatigue test as described in267

Corcoran [22]. Inverse strain rate data and time (fatigue cycles) were scaled to facilitate easier evaluation268

of Eq. (7), as the actual values from the test made numerical evaluation of Eq. (7) challenging. Data269

were generated at each fatigue cycle N, 0 < N < 1000, where the actual time of failure from [22]270

was scaled to tf = 1000 cycles, using Eq. (3). Such simulations were conducted at three different271

uncertainty/noise levels (0.02, 0.05, and 0.10), where the noise on the data P were assumed unbiased272

lognormal, i.e., the logarithm of the noise was normally-distributed with stationary zero mean and273

variance σ2. Practically, the noise-free data was generated using Eq. (3) and normally distributed noise274

was added to the logarithm of the noise-free data. The resulting data was then transformed back into275

"non-logarithm" space to be used as the available data for both the linear regression model and the276

Bayesian model. This procedure was used to generate a noise structure which mimics the trend of the277

real accelerated fatigue test from [22]. Figure (4 top left) shows the feature rate, R(N) from Eq. (2),278

and figure (4 top right) shows inverse feature rate, P(N) from Eq. (3) for a synthetic data realization279

where α = 1.75. Figure (4 bottom left) shows the feature rate, R(N) from Eq. (2), and figure (4 bottom280

right) shows inverse feature rate, P(N) from Eq. (3) for a synthetic data realization where α = 2.25. It281

is apparent that the α parameter is responsible for the convexity/concavity of the inverse feature rate,282

and can cause substantial errors in tf (x-intercept) estimation due to nonlinearity when α 6= 2.283
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Figure 4: Realizations of simulated data with α = 1.75 (top) and α = 2.25 (bottom). Left plots show the feature rate
(Eq. (2)), and right plots show the inverse feature rate (Eq. (3)). The linear regression and Bayesian model operated on
the inverse feature rate (right plots).

3.1 Results284

This section includes the results of tf (regression) and tf (Bayesian) on synthetic data with a285

variety of σ and α values: α = 1.75− 2.25, σ = 0.02− 0.10. Estimations are taken with the entirety286

of the data until the current time without windowing, i.e. the 0.4tf distribution represents using the287

first 40% of the data before failure. Each plot in figure (5) shows the evolution of tf (Bayesian) and tf288

(regression), for cycles 0.4tf to 0.9tf . Figure (6) shows tf − α joint distributions made by the Bayesian289

model.290

When α < 2, as seen in figure (5, top row), the shape of the inverse feature rate is convex, or291

curving upward along the horizontal axis, as seen in figure (4), as often observed in stage 1 crack292

growth [22]. Figure (5, top row) shows tf (Bayesian) and tf (regression) from data generated where293

α = 1.75. The nonlinear inverse feature rate governed by α < 2 causes tf (regression) to greatly294

underestimate tf for all levels of noise (with tight distributions), due to the linear regression model’s295

forced linearity assumption of the inverse feature rate. Distributions of tf (Bayesian) are able to296

include nonlinear inverse feature rate effects, which allows the distributions to converge onto the true297

tf value, shown in tf distributions at cycles 0.8tf and 0.9tf for all noise levels. In all noise cases, tf298

(Bayesian) followed a trend of negatively biased, conservative estimations in prediction cycles 0.4tf to299

0.6tf , then providing a positive bias in the estimation at cycle 0.7tf , before centering onto the true300
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Figure 5: tf (Bayesian) compared to tf (regression).
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Figure 6: Joint Distributions of tf and α distributions sampled by the Bayesian model. The yellow × is the median
prediction of the linear regression model, with an error bar extending to +/− the standard deviation of a best-fit normal
distribution (not always visible in the figure due to their very small extent from the prediction), the blue shaded regions
correspond to the Bayesian model’s joint traces, and the red ? is the true value of α and tf . The linear regression marker
is not estimating the value of α, and is intrinsically set at 2.0.



13

tf for prediction cycles 0.8tf and 0.9tf . In the smallest noise case σ = 0.02, all of the sampled tf301

distributions included the true tf . As expected, as more data became available to the Bayesian model,302

tf (Bayesian) distributions showed increased confidence (reduced variance). In the medium and large303

noise cases, σ = 0.05 and σ = 0.1, early cycle predictions were too negatively biased to incorporate the304

true tf until prediction cycles at 0.5tf and 0.6tf , respectively.305

One circumstance where the linear regression model outperformed the Bayesian model is when306

α = 2, as seen in figure (5, middle row) as observed in stage 2 crack growth; this is because the307

linear regression model assumes the inverse feature rate is linear, while the Bayesian model samples308

α, (nonlinearity measure), unlike during the model verification in figure (3). For noise level σ = 0.02,309

tf (Bayesian) incorporated tf at each prediction cycle, but with considerably less confidence than tf310

(regression). The Bayesian model, performed similarly as the α = {1.75, 2.25} cases, with increasing311

levels of negative bias as noise σ level increases, and being positively biased at cycle 0.7tf . The value312

of tf (Bayesian) converged to the true tf value at cycles 0.8tf and 0.9tf for all σ levels.313

Simulations run using data realized with α > 2, also caused considerable bias in tf (regression),314

seen in figure (5, bottom row). As observed in stage 3 crack growth, when α > 2 the shape of the315

inverse feature rate is concave, or curving downward along the x-axis, as seen in figure (4). The linear316

regression is based on assuming the linearity of the inverse feature rate causing tf (regression) to be317

positively biased for all levels of noise. This equates to earlier-than-predicted failure, which may be318

undesirable from a practical standpoint. The Bayesian model was able to adapt to the nonlinear inverse319

feature rate, and tf (Bayesian) distributions behaved similarly to the distributions on data realized320

with α = 1.75 and α = 2.0. The Bayesian tf predictions had increasing levels of negative bias as noise321

σ level increased, but tf (Bayesian) shown to converge onto the true tf value by 0.8tf for all cases.322

In summary, in all noise levels σ and α parameters, The Bayesian model was observed to converge323

to include the true tf as the prediction cycle increased. The Bayesian model performed agnostic to the324

true value of α, while the bias of the linear regression estimator was determined by α.325

A sample of α-tf parameter joint distribution plots generated with the Bayesian model are shown326

in figure (6). Darker regions in each plot correspond to areas containing more samples meaning higher327

probability estimates from the Bayesian model. The distributions on the outside of the plot grid328

represent the sampled distribution of tf (bayesian) (top of each plot) and α (right of each plot). The329

star on each plot shows the exact tf and α values. The × shows tf (regression), which is constrained to330

α = 2, with an error bar extending to +/− the standard deviation of a best-fit normal distribution. It331

should be noted that no correlation was assumed for α and tf in the prior beliefs, but a highly negative332

correlation is observed in the joint posterior distribution. For every simulation, we observed a strong333

negative correlation (ρ ≈ −0.95 to −0.99) between the sampled α and tf parameters, suggesting a334

next-iteration Bayesian model could incorporate a joint α-tf distribution, or the possibility of combining335

terms to simplify the average term in the likelihood taken from Eq. (3) through principal component336

analysis.337

Of course, the bias evident in the linear regression may be addressed by non-linear regression and338

solving for α, in addition to k and tf , as shown in [22]. The benefit of using the Bayesian approach339

over non-linear regression is that it provides a full probabilistic analysis, is useful for exploring the340

distributions of all parameters (seen in figure 6), and may be built on to include more complexity as341

shown in the following section.342
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Figure 7: Left and center show geometry of the specimen used in the fatigue experiment. Right shows feature (crack
growth rate) and its inverse with respect to cycle.

4 Fatigue Data Experiment343

To further evaluate the Bayesian model, we performed failure prediction on another set of data344

from a fatigue experiment, first published in [24], again using an input feature related to inverse crack345

growth. This experiment differed from the first experiment presented in Section 3 because the fatigue346

data was used directly here, without bootstrapping or adjusting levels of noise or the α parameter. The347

motivation for this experiment was to test our Bayesian model on unaltered data and fully challenge348

the usual FFM assumptions on stationarity. The feature data was taken from a fatigue experiment349

using a standard 316 stainless steel compact tension test specimen, detailed in figure (7) and Tables350

(2) and (3). The feature was monitored using a permanently-installed potential drop measurement351

system, and the results plotting the rate of normalized resistance (related to crack growth through a352

simple polynomial) as a function of fatigue cycle are shown in figure (7, right), which also shows the353

inverse rate of normalized resistance [34]. The measurement in this experiment contains observations354

throughout the entire crack propagation event, potentially including crack growth stages 1-3, which is355

shown to correspond to a transient, unknown α [22, 24]. The failure mechanism of the experiment was356

ductile fracture, making the selection of the exact tf cycle non-trivial. The potential drop system was357

removed at cycle 545,455, when the coupon began to exhibit a narrowing of cross-section (necking), and358

the specimen was removed from the fatigue testing machine at cycle 555,000 before complete fracture.359

We chose to express the actual tf as a range between cycle 545,455 and 565,455.360

Table 2: Fatigue test specimen dimensions
Parameter Value
W (mm) 50
B (mm) 25
a (mm) 15.5
Maximum Load, Pmax (kN) 11
Load Ratio, R (-) 0.1

The non-stationary nature of α (nonlinearity measure) in the real, unaltered fatigue test caused361

an influential difference compared to the synthesized data which was generated with a constant α value.362
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Table 3: Quantified uncertainties of each input parameter of the empirical crack growth law.
Parameter Mean Value Standard Error
Measured Crack Length, a0 (mm) Updates with each inspection 1
Critical Crack Length, af (mm) 38 Not considered
Paris Constant, ln(C) -25.5 0.264
Paris Exponent, m 2.88 Not considered
Maximum Load, Pmax (kN) 35 3.5
Load Ratio, R 0.1 Not considered
Geometry, Y(a) Calculated from standards Not considered

Performing Bayesian inference on the entire series of data (which may include multiple stages of crack363

growth) can introduce biased estimation due to the non-stationarity of parameters. Standard practice364

of implementing the FFM often includes truncating the visibly nonlinear inverse feature rate data,365

which can introduce human error influenced by where the user chooses to truncate. To mitigate the366

effects of this potential bias and subjectivity, we designed a method to truncate data estimated to be367

recorded during different-than-current crack growth stages. We utilized PYMC3 to develop a Bayesian368

model that incorporates two distinct, uncorrelated sets of Θ (all of the sampled parameters) determined369

by a switch point selected by the maximum posterior belief of a sampled α switch point parameter370

(noted as αsp), i.e. completely separating the sampled parameters after a discrete cycle where α has371

is estimated to change, signifying the change in crack growth stage. Though crack growth has been372

observed to have 3 stages, our model allowed for only 2 sets of Θ because the model provided poor373

results when a second switch point (3 stage model) was introduced; we hypothesize that this is due374

to a relatively low amount of data in the third crack growth stage. This α-switching model used the375

same likelihood function (Eq. (10)) as the previously proposed model, with slightly altered Θ priors,376

summarized in Table (4). Due to previous literature showing that crack growth after stage 1 exhibits377

α ≥ 2 behavior [22, 24], the prior selected for the second α parameter was constrained to a uniform378

distribution from 2.0 to 2.2. The prior selected for the αsp parameter was a uniform distribution from379

0 to current time t.380

Figure (8) shows the results of the α-switching model compared to tf (regression) estimations381

using full and truncated data sets. For current cycle={0.55tf , 0.65tf , 0.75tf , 0.98tf}, the Bayesian382

model consistently estimated αsp to have a posterior distribution with a mean cycle of approximately383

112, 300, around 20% through the experiment, shown on each plot. The dashed line shows the tf384

(regression) using the full test data including stage 1 crack growth, which greatly underestimates the385

actual tf for every estimation cycle. We also chose to show tf (regression) using only data after the386

Bayesian-estimated αsp cycle, which improved estimation, but still yielded negatively biased results for387

cycles 0.55tf -0.57tf , and overestimated the actual tf for cycle 0.98tf . We attribute the underestimation388

to the selection of the αsp; the α-switching model selected what appears to be the inflection point of389

the data, leaving some nonlinear data remaining after truncation. The overestimation of the truncated390

tf (regression) at 0.98tf may be due to the inverse feature rate’s nonlinear behavior at later fatigue391

cycles. In implementation, we hypothesize that tf (regression) would benefit from truncating data from392

a later cycle. The Bayesian α-switching model was able to provide more accurate tf estimations which393

were able to include the actual tf range for all cycle predictions, and we saw our model converging394

towards the normal distribution as more data was made available. The interval of the actual tf was395
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represented in high density regions of each (Bayesian) tf PDF, with high accuracy in cycles past 0.65tf .396

The α-switching Bayesian model was able to objectively provide a distribution for the crack stage397

growth transition cycle, improving the accuracy of tf (regression) when using truncated data, while398

also providing highly accurate (Bayesian) tf estimation. During future use of the Bayesian α-switching399

model, feature data may be provided to the model within only a single stage of crack growth. To prevent400

the model from falsely selecting an α switch-point and separating model parameters, the uniformity401

and convergence of αsp can be evaluated to motivate the selection of the number of switch-points (if402

any). Beyond the FFM, the identification of switch-points may be useful in analyzing data through403

conventional analysis such as Paris Law; segmenting the data allows more accurate characterization of404

the different stages.405

Table 4: Parameters of the α-switching Bayesian model (real data)
Parameter Prior
tf Improper uniform distribution with lower bound of t
k1 Improper uniform distribution with lower bound of 0
k2 Improper uniform distribution with lower bound of 0
α1 Uniform distribution between 1.5 and 2.5
α2 Uniform distribution between 2.0 and 2.2
αsp Uniform distribution between 0 and t
σl Half normal distribution, standard deviation of 0.8

5 Summary and Conclusions406

When limited data are available for analysis, future events can be difficult to accurately predict.407

For failure events (tf ) which exhibit positive feedback failure mechanisms, the failure forecast method408

(FFM) allows for tf predictions made using a single measured feature, unaffected by application specific409

experimental parameters and their uncertainty. Classically, the FFM implementation assumes linearity410

of the inverse feature rate, and creates a single estimation of tf from a single realization of data from411

linear regression. Assuming the inverse feature rate’s linearity causes a rigidity in the FFM because the412

governing phenomena often exhibit nonlinear inverse feature rate behavior, which has been observed in413

early and late stage crack growth [15, 16]. In this paper, we developed a Bayesian statistical model414

which relaxes this linearity assumption, and samples the posterior distribution of tf , allowing for the415

generation of probability distributions for tf .416

For the specific application of fatigue crack growth, tf (Bayesian) was compared against a417

statistical model of the "classic" FFM implementation, tf (regression). We first compared the two418

models on synthetic data based on a real accelerated fatigue test published in [24], and then compared419

both models’ tf estimation made by the models on an unaltered accelerated fatigue test from [34].420

In the study performed with synthetic data, tf (Bayesian) was able to accurately converge to421

tf estimation to the true tf values for α = {1.75, 2.0, 2.25} across all noise levels, while the linear422

regression model was only able to converge to the correct tf for data generated with α = 2.0 across423

all noise levels. tf estimation results of this study are shown in figures (5) and (6). The Bayesian424

model behaved mostly independent of the true α value of each synthetic data simulation, save for slight425
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Figure 8: Results from using the α-switching Bayesian model and linear regression model on data from a real un-altered
fatigue test for cycle predictions 0.55tf -0.98tf . Black shaded regions show the posterior prediction, orange regions show
the posterior distribution of αsp, blue regions show the tf (Bayesian) posterior distribution, dashed and solid black lines
show the tf (regression) distribution for non-truncated data and truncated data, respectively. Inverse feature rate data
is shown in red dots, and the range of actual tf is shown in dashed red lines. Primary y-axis has units of probability
density for distributions p(αsp) and p(tf ), and secondary axis has units of inverse feature rate for experimental data and
Bayesian posterior predictive.
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increase in tf distribution spread as the α value increased. The tf (Bayesian) estimations across all α426

levels developed a negative bias at cycles 0.4tf − 0.6tf , provided a positive bias at cycle 0.7tf , before427

converging to the true tf value at cycles 0.8tf and 0.9tf . The amount of bias was proportional to the428

level of noise. Joint distributions of sampled variables tf -α in the Bayesian model also exhibited the429

same trend for all α values; these variables were observed to be highly negatively correlated.430

The tf estimations from both models were also compared on data from an un-altered fatigue431

test from [34]. To account for the non-stationarity often observed in the inverse feature rate data, the432

Bayesian model was adapted to incorporate an α switch point, allowing for two sets of Θ (Bayesian433

model parameters) to be sampled before and after the α switch point. The α-switching Bayesian model434

was able to accurately estimate tf for cycles 0.55tf onward, by effectively sampling the transition point435

αsp and truncating the data after stage 1 crack growth, which was predicted to occur approximately436

20% through the fatigue experiment. The α-switching Bayesian model was also used to estimate a437

truncation point for the linear regression model, which performed much more accurately when using438

data only after αsp.439

The benefits of truncating the early stage crack growth motivates future work which explores the440

benefits of windowing data, impacting the tf for both models. Some discussion is presented in [23],441

regarding windowing feature data for the linear regression model, but there is no work exploring the442

effects on the Bayesian model of windowing data.443

As seen in figure (6), the Bayesian model showed a very high negative correlation between tf and444

α. This result also motivates future iterations of the Bayesian model which accounts for this correlation445

by establishing jointly distributed tf and α parameters, or simplifying the model based on principal446

component analysis.447

Acknowledgements448

The U.S.A. authors acknowledge support for this work was provided by the University of Dayton449

on subcontract FA8650-16-D-0311 under master contract with Air Force Research Laboratory/Eglin450

Air Force Base. The U.K. authors acknowledge support from the UK Engineering and Physical Sciences451

Research Council via the UK Research Centre in NDE, EP/L022125/1.452

References453

[1] C. R. Farrar and K. Worden, “An introduction to structural health monitoring.,” Philosophical454

Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2007.455

[2] N. Chen and K. L. Tsui, “Condition monitoring and remaining useful life prediction using456

degradation signals: revisited,” IIE Transactions, vol. 45, pp. 939–952, sep 2013.457

[3] X.-S. Si, W. Wang, C.-H. Hu, D.-H. Zhou, and M. G. Pecht, “Remaining useful life estimation458

based on a nonlinear diffusion degradation process,” IEEE Transactions on Reliability, vol. 61,459

no. 1, pp. 50–67, 2012.460



19

[4] S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ461

process monitoring and in-situ metrology for metal additive manufacturing,” Materials & Design,462

vol. 95, pp. 431–445, 2016.463

[5] P. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” ASME Journal of Basic464

Engineering, vol. 85, no. 1, pp. 528–534, 1963.465

[6] X.-S. Si, W. Wang, C.-H. Hu, and D.-H. Zhou, “Remaining useful life estimation–a review on the466

statistical data driven approaches,” European Journal of Operational Research, vol. 213, no. 1,467

pp. 1–14, 2011.468

[7] J. Z. Sikorska, M. Hodkiewicz, and L. Ma, “Prognostic modelling options for remaining useful life469

estimation by industry,” Mechanical Systems and Signal Processing, vol. 25, no. 5, pp. 1803–1836,470

2011.471

[8] S. Beretta and M. Carboni, “Experiments and stochastic model for propagation lifetime of railway472

axles,” Engineering fracture mechanics, vol. 73, no. 17, pp. 2627–2641, 2006.473

[9] S. Beretta and A. Villa, “A RV approach for the analysis of fatigue crack growth with NASGRO474

equation,” in 4th International ASRANAT Colloquium, pp. 1–7, 2008.475

[10] C. Mallor, S. Calvo, J. L. Núñez, R. Rodríguez-Barrachina, and A. Landaberea, “Full second-order476

approach for expected value and variance prediction of probabilistic fatigue crack growth life,”477

International Journal of Fatigue, vol. 133, p. 105454, 2020.478

[11] M. Jimenez-Martinez and M. Alfaro-Ponce, “Fatigue damage effect approach by artificial neural479

network,” International Journal of Fatigue, vol. 124, pp. 42–47, 2019.480

[12] J. F. Barbosa, J. A. F. O. Correia, R. C. S. F. Júnior, and A. M. P. De Jesus, “Fatigue life481

prediction of metallic materials considering mean stress effects by means of an artificial neural482

network,” International Journal of Fatigue, vol. 135, p. 105527, 2020.483

[13] T. FUKUZONO, “A new method for predicting the failure time of a slope,” in Proceedings of 4th484

International Conference and Field Workshop on Landslide., 1985, pp. 145–150, 1985.485

[14] B. Voight, “A method for prediction of volcanic eruptions,” Nature, 1988.486

[15] B. Voight, “A relation to describe rate-dependent material failure,” Science, 1989.487

[16] R. R. Cornelius and P. A. Scott, “A materials failure relation of accelerating creep as empirical488

description of damage accumulation,” Rock Mechanics and Rock Engineering, vol. 26, no. 3,489

pp. 233–252, 1993.490

[17] R. R. Cornelius and B. Voight, “Seismological aspects of the 1989–1990 eruption at Redoubt491

Volcano, Alaska: The Materials Failure Forecast Method (FFM) with RSAM and SSAM seismic492

data,” Journal of Volcanology and Geothermal Research, vol. 62, no. 1-4, pp. 469–498, 1994.493



20

[18] R. R. Cornelius and B. Voight, “Graphical and PC-software analysis of volcano eruption precur-494

sors according to the Materials Failure Forecast Method (FFM),” Journal of Volcanology and495

Geothermal Research, vol. 64, no. 3-4, pp. 295–320, 1995.496

[19] G. B. Crosta and F. Agliardi, “Failure forecast for large rock slides by surface displacement497

measurements,” Canadian Geotechnical Journal, vol. 40, no. 1, pp. 176–191, 2003.498

[20] A. Boue, P. Lesage, G. Cortés, B. Valette, and G. Reyes-Dávila, “Real-time eruption forecasting499

using the material Failure Forecast Method with a Bayesian approach,” Journal of Geophysical500

Research: Solid Earth, vol. 120, no. 4, pp. 2143–2161, 2015.501

[21] Y. Lavallée, P. G. Meredith, D. B. Dingwell, K.-U. Hess, J. Wassermann, B. Cordonnier, A. Gerik,502

and J. H. Kruhl, “Seismogenic lavas and explosive eruption forecasting,” Nature, vol. 453, no. 7194,503

p. 507, 2008.504

[22] J. Corcoran, “Rate-based structural health monitoring using permanently installed sensors,” Proc.505

R. Soc. A, vol. 473, no. 2205, p. 20170270, 2017.506

[23] M. D. Todd, M. Leung, and J. Corcoran, “A probability density function for uncertainty quantifica-507

tion in the failure forecast method,” in Proceedings of the 9th European Workshop on Structural508

Health Monitoring, Manchester, UK July, pp. 9–11, 2018.509

[24] M. S. H. Leung, J. Corcoran, P. Cawley, and M. D. Todd, “Evaluating the use of rate-based510

monitoring for improved fatigue remnant life predictions,” International Journal of Fatigue, vol. 120,511

pp. 162–174, 2019.512

[25] A. F. Bell, M. Naylor, M. J. Heap, and I. G. Main, “Forecasting volcanic eruptions and other513

material failure phenomena: An evaluation of the failure forecast method,” Geophysical Research514

Letters, 2011.515

[26] A. Bevilacqua, E. B. Pitman, A. Patra, A. Neri, and M. Bursik, “Probabilistic Enhancement of516

the Failure Forecast Method Using a Stochastic Differential Equation and Application to Volcanic517

Eruption Forecasts,” Frontiers in Earth Science, 2019.518

[27] A. Boue, P. Lesage, G. Cortés, B. Valette, G. Reyes-Dávila, R. Arámbula-Mendoza, and A. Budi-519

Santoso, “Performance of the ‘material Failure Forecast Method’in real-time situations: A Bayesian520

approach applied on effusive and explosive eruptions,” Journal of Volcanology and Geothermal521

Research, vol. 327, pp. 622–633, 2016.522

[28] A. F. Bell, M. Naylor, and I. G. Main, “The limits of predictability of volcanic eruptions from523

accelerating rates of earthquakes,” Geophysical Journal International, vol. 194, no. 3, pp. 1541–524

1553, 2013.525

[29] D. V. Hinkley, “On the ratio of two correlated normal random variables,” Biometrika, vol. 56,526

no. 3, pp. 635–639, 1969.527



21

[30] A. Gelman, H. S. Stern, J. B. Carlin, D. B. Dunson, A. Vehtari, and D. B. Rubin,528

Bayesian Data Analysis. Chapman and Hall/CRC, 2013.529

[31] A. Gelman, D. Simpson, and M. Betancourt, “The prior can often only be understood in the530

context of the likelihood,” Entropy, vol. 19, no. 10, p. 555, 2017.531

[32] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck, “Probabilistic programming in Python using532

PyMC3,” PeerJ Computer Science, vol. 2, p. e55, 2016.533

[33] M. D. Hoffman and A. Gelman, “The No-U-turn sampler: adaptively setting path lengths in534

Hamiltonian Monte Carlo.,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1593–1623,535

2014.536

[34] J. Corcoran, C. M. Davies, P. Cawley, and P. B. Nagy, “A Quasi-DC Potential Drop Measurement537

System for Material Testing,” IEEE Transactions on Instrumentation and Measurement, vol. 69,538

no. 4, pp. 1313–1326, 2019.539


	Introduction
	Predictive Models
	The Linearized FFM with Linear Regression Method
	Bayesian Model

	Synthesized Fatigue Data Experiment
	Results

	Fatigue Data Experiment
	Summary and Conclusions

