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ABSTRACT OF THE DISSERTATION

Optimization-Based Risk-Averse Outlier Accommodation With Linear Performance Constraints:
Real-Time Computation and Constraint Feasibility in CAV State Estimation

by

Wang Hu

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2024

Dr. Jay A. Farrell, Chairperson

Connected and Autonomous Vehicles (CAV) require positioning that is consistently reliable and

accurate. This is achieved through the choice of sensors and the real-time selection of high-quality

measurements. Global Navigation Satellite Systems (GNSS) are the foundation to achieve accurate

absolute positioning. GNSS Common-mode Errors (CME) mitigation can be realized with Differen-

tial GNSS (DGNSS) approach and Precise Point Positioning (PPP) techniques. With the evolution

of International GNSS Service (IGS) Multi-GNSS Experiment (MGEX), Real-time PPP (RT-PPP)

corrections for multi-GNSS have only recently become accessible.

GNSS measurements are prone to outliers. This results in an inherent performance versus

risk trade-off in CAV state estimation applications. Recently proposed Risk-Averse Performance-

Specified (RAPS) methods address this trade-off by optimally selecting a subset of measurements

to minimize risk while achieving a target performance. The existing RAPS literature presents cases

where the performance specification is stated for the full information matrix. However, those meth-

ods are not computationally efficient as required for real-time and do not address situations where

that specification is infeasible.

vii



This dissertation focuses on the Diagonal RAPS (DiagRAPS) formulation. This disserta-

tion begins with a review of GNSS measurement models and real-time CME mitigation techniques,

such as DGNSS, PPP, and Virtual Network DGNSS (VN-DGNSS). It then develops the theory

of DiagRAPS for both binary and non-binary measurement selection variables. Algorithms suit-

able for real-time applications are proposed within Linear Programming (LP) and Mixed-Integer

Linear Programming (ILP) optimization frameworks, achieving polynomial time-complexity. The

convergence and computation costs of these algorithms are discussed. For binary DiagRAPS, a

novel convex reformulation is derived, leading to a globally optimal solution that can be solved

using existing tools. Additionally, a soft constraint optimization approach is proposed for situations

when the specified performance is unfeasible. Finally, this dissertation evaluates DiagRAPS state

estimation approaches using real-world multi-GNSS data from challenging environments for both

DGNSS and RT-PPP applications. The results reveal that the locally optimal approach achieves state

estimation performance comparable to the global solution. Both binary and non-binary DiagRAPS

outperform traditional methods. Notably, the non-binary approach yielded the lowest computation

cost and the best overall performance.
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Chapter 1

Introduction

1.1 Introduction

Within the framework of Intelligent Transportation System (ITS) and CAVs, reliable and

accurate state estimation for localization is essential [1–3]. Accurate localization relies on sensor

measurements from GNSS, vision, LIDAR, etc. Outliers commonly occur and can compromise

these measurements. Outlier measurements are those that are very unlikely given the measure-

ment model. A trade-off between performance and risk is inherent. In an ideal scenario where

all measurements are outlier-free, utilizing all available data within a maximum a posteriori frame-

work would lead to optimal state estimation accuracy. However, in practical scenarios, some mea-

surements might be outliers (i.e, measurements that are extremely unlikely given the measurement

model [4]). Therefore, each measurement offers the potential to provide enhanced estimation ac-

curacy as quantified by the state error covariance matrix, provided it is outlier-free; however, each

measurement that is added increases the risk that outlier measurements will corrupt the state esti-
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mate while causing the estimator to be overly confident in that corrupted estimate (i.e., the error

covariance matrix is too small).

Precise and dependable localization and positioning are fundamental requirements for

CAV applications [1]. Typically, accurate absolute positioning is facilitated by GNSS. For CAV

applications, the Society of Automotive Engineers (SAE) J2945 specification defines the require-

ment for horizontal and vertical position errors to be less than 1.5 m and 3.0 m, respectively, with

a probability of 68% [5]. However, standalone GNSS receivers, when not supplemented with ex-

ternal corrections, usually achieve positioning accuracy around 10 meters [6, 7]. This limitation is

caused by CME in GNSS measurements, which can be attributed to factors such as inaccuracy in

the broadcast satellite orbits and clocks, satellite hardware biases, and ionospheric and tropospheric

delays [8]. CME are correlated over local areas (i.e., approximately 40km).

Early and traditional methods to counteract the effects of CME employed Observation

Space Representation (OSR) corrections. This approach is commonly associated with DGNSS,

where receivers acquire lumped CME corrections either from a processing center or nearby base

stations. DGNSS using pseudorange measurements typically yields an accuracy within the range of

0-3 meters. In contrast, DGNSS using phase measurements (often referred to as Real-time Kine-

matic Positioning (RTK)) can attain centimeter-level accuracy when integer ambiguities are cor-

rectly resolved [9]. However, these DGNSS advantages necessitate extensive local infrastructure

and do not inherently provide corrections with global coverage.

The PPP technique is more appropriate for applications such as CAV that require global

coverage. PPP uses State Space Representation (SSR), which utilizes models for each individ-

ual components of the CME [10]. Originally developed for post-processing in GPS surveying
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applications, PPP has recently advanced to the point where it is suitable for real-time GNSS op-

erations [10, 11]. The IGS collaborates with global GNSS agencies, including Centre national

d’études spatiales (CNES), Wuhan University (WHU), Chinese Academy of Sciences (CAS), Ger-

man Aerospace Center (DLR), and others, to compute and supply globally relevant RT-PPP correc-

tions with a low latency (approximately 10 seconds). This innovation enables users to receive CME

corrections without the need for a nearby physical base station. With the continued progress of the

IGS MGEX project, RT-PPP products for multi-GNSS systems (e.g., GPS, Galileo, BeiDou) have

become accessible from some GNSS agencies.

With the rapid decline in the cost and size of sensors, the number of measurements avail-

able can far exceed the number that is required for observability of the state or for achieving a given

accuracy specification. For example, state estimation using GNSS, the primary source for absolute

position determination [12], requires pseudorange measurements from only four spatially diverse

satellites per epoch [13]. Each GNSS satellite system generally provides 6-12 satellite observations

per signal per epoch. Currently, four fully operational satellite constellations (i.e., BeiDou, GPS,

Galileo, GLONASS) are available. Each has at least 2 ranging signals. This allows a receiver to

receive at least 48-96 satellite ranging signals per epoch under open-sky conditions.

Such signal-rich environments offer new opportunities to optimize the selection of the

least risky signals to use at each epoch to achieve a given performance specification. However, in

challenging urban scenarios, such as areas with narrow streets flanked by tall buildings and trees,

some GNSS signals may be obstructed or suffer from anomalies like multipath and non-line-of-sight

effects [14]. These effects lead to a reduction in the number of available signals and an increased

likelihood of outliers in the measurements that are actually received.
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The performance versus risk trade-off and methodologies to optimize it are of paramount

importance. In scenarios where a sufficient number of measurements m are utilized, adding one

additional valid measurement only decreases the estimation error marginally (i.e., covariance de-

creases approximately as 1
m ); However, incorporating a single outlier-affected measurement can

critically undermine the entire estimation process. This is because it not only corrupts the mean of

the state estimate but also decreases the covariance, compromising the integrity of all subsequent

outlier decisions.

State estimation using discrete-time measurements involves two steps. The time update

propagates the posterior state estimate from the previous measurement epoch across the time span

between measurements, to provide a prior state estimate at the next measurement epoch. The mea-

surement update incorporates the measurement information to correct the prior state estimate to

produce a posterior state estimate at the measurement time. Because outliers only affect the mea-

surement update, this paper focuses entirely on the problem of measurement selection for the mea-

surement update.

1.2 Outlier Accommodation Literature

The accommodation of outliers in state estimation is a well-studied problem. Standard

methods for state estimation and control (see e.g.: [15–18]) evaluate measurement residuals against

their expected values using a fixed or an adaptive threshold test, as will be reviewed in Section

5.1. More advanced approaches, such as Least Squares-based linear model fitting [19–21], least

soft-threshold squares [22], least trimmed squares [23], and median least squares [24], have been

developed for lease squares applications. These methods generally focus on detecting and either

4



ignoring or de-weighting outliers, but do not address the risk-versus-performance trade-off involved

with all measurements.

Recent advancements in outlier accommodation within an optimization framework have

been developed [25–27]. N. Sünderhauf and P. Protzel [25] introduced latent variables to activate or

deactivate measurements to achieve robust pose graph optimization. L. Carlone et al. [27] selected

the maximal coherent subset of measurements for the same optimization problem. J. Shi et al. [26]

proposed an approach to check the outliers in a subset of measurements through a compatibility test.

An alternative approach, RAPS state estimation, has been explored in [28, 29]. This esti-

mation approach solves an optimal measurement selection and state estimation problem that tries to

achieve a specified level of accuracy while incurring minimum risk. Previous RAPS studies formu-

lated the optimization framework by using the full information matrix in the performance specifi-

cation constraint, resulting in a semi-definite programming problem. The experimental evaluations

of [28] were conducted under relative clear view of sky condition. The experimental evaluations

of [29] focused on open-sky environments with artificially imposed outlier conditions. In both [28]

and [29] the performance constraints were consistently feasible throughout the experiments; there-

fore, methods to address infeasibility were not discussed. Their data was from GPS-only so the

number of available measurements m was not large. Additionally, these studies did not offer a

computationally efficient method for solving the RAPS optimization problem, particularly for bi-

nary measurement selection variables. They relied on exhaustively evaluating all 2m possible mea-

surement combinations. Exhaustive evaluation has permutation time complexity which becomes

computationally impractical as m increases. Although an approach incorporating only the diagonal

5



elements of the information matrix into the performance specification constraint was mentioned,

that problem and its computation efficient solution have not yet been investigated.

1.3 Contribution

This dissertation presents and demonstrates a computationally efficient solution to the

RAPS problem with a diagonal performance specification (DiagRAPS) in the context of linear state

estimation. Locally optimal approaches for both binary and non-binary measurement selection

variables using the Block Coordinate Descent (BCD) method are proposed. The convergence and

computation costs of the algorithm are discussed. A convex programming problem for the binary

case is derived and formulated, leading to a globally optimal solution. It is significantly more effi-

cient than the previously proposed methods that have permutation time complexity. These solutions

are framed within the contexts of LP and Mixed-ILP problems. The experimental evaluation con-

ducted multi-GNSS Single Frequency (SF) applications using both DGNSS and PPP approaches.

For DGNSS, real-world driving data from hard urban environments was used, while for PPP, the

data was collected under relatively clear sky conditions. These scenarios include numerous in-

stances where the performance specification is infeasible (i.e., the constraint cannot be satisfied

even with all measurements enabled). To address such scenarios, a relaxed optimization solution

employing soft constraints for the LP or Mixed-ILP problem is proposed and evaluated.

The article is organized as follows: Chapter 2 reviews the GNSS measurement models

and errors. Chapter 3 describes the GNSS real-time correction techniques from DGNSS and PPP.

Chapter 4 outlines the linear state estimation problem and reviews Maximum A Posteriori (MAP)

for the measurement update step using selected measurements. Chapter 5 reviews the Threshold

6



Decisions (TD) and DiagRAPS approaches. Chapter 6 presents solutions to DiagRAPS optimiza-

tion problems, discussing convergence, optimality, and computation costs. Chapter 7 describes the

experiments data source and analyzes DiagRAPS performance in DGNSS and PPP applications.

Finally, Chapter 8 concludes the article and discusses future research directions.
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Chapter 2

GNSS Models and Errors

2.1 GNSS Code Measurement Model

The signals transmitted by GPS, Galileo and BeiDou are based on Code Division Multiple

Access (CDMA). GLONASS is based on Frequency Dvision Multiple Access (FDMA). For con-

stellations based on CDMA, the frequencies are identical for all satellites. The measurement models

presented in this section and the construction of this article are based on CDMA. For constellations

based on FDMA, the frequency is different for each satellite and therefore for each receiver channel;

therefore, there are additional frequency dependent inter-channel biases (ICBs) terms in both code

and carrier phase observation equations [30, 31]. This research focus on GNSS applications using

CDMA and single frequency.

For each GNSS constellation γ , that uses CDMA, transmits signals using f carrier fre-

quencies. The SF code (pseudorange) observation from satellite s tracked by receiver r at the GNSS

8



Table 2.1: Notation definitions.

c: Speed of light (m/s),

δ s: Satellite clock model error, δ s = (c d̂t
s −∆s), (m),

d̂t
s
: Broadcast satellite clock correction (s),

∆s: Satellite clock bias (m),

Bs
f : Satellite code hardware bias (m),

∆
γ
r : Receiver clock bias for constellation γ (m),

T s
r : Tropospheric delay (m),

Is
f ,r: Ionospheric delay for f frequency (m),

Ms
r : Multipath error (m),

ηs
r,ρ : Random code measurement noise (m).

receiver time tr is modeled as (see Chap. 21 of [9])

ρ
s
f ,r(tr) =R

(
pr(tr), p̂s(ts)

)
+∆

γ
r +Ms

r +η
s
r,ρ

+Es
r −∆

s +Bs
f +T s

r + Is
r, f ,

 (2.1)

where pr denotes the receiver antenna position, p̂s denotes the satellite position, while ts denotes the

time when the signal was transmitted. The terms pr and p̂s will be further discussed in Sec. 2.3. Es
r

denotes the satellite range ephemeris error in meters which is modeled as

Es
r = R

(
pr(tr),ps(ts)

)
−R
(

pr(tr), p̂s(ts)
)

where ps represents the true satellite position. Other important symbols are defined as in Table 2.1.

The measurement noise is assumed to be white and uncorrelated between satellites.
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2.2 GNSS Code Measurement Errors

The goal of the state estimator using GNSS is to accurately estimate the state vector,

which will include the position pr and the receiver clock bias ∆
γ
r . The satellite clock bias ∆s can be

corrected by the broadcast satellite clock correction, denoted as d̂t
s
, using ephemeris. The model for

d̂t
s
, which includes a polynomial and a relativistic correction, can be found in the Interface Control

Document (ICD) of each constellation [32–34]. The remaining satellite clock model error is

δ
s = (c d̂t

s −∆
s). (2.2)

The error terms of the measurement model of eqn. (2.1) can be classified into two cate-

gories:

• CME are essentially the same for all receivers in a local vicinity. They are grouped in the

second line of eqn. (2.1). These include: satellite range ephemeris and clock model errors,

satellite code hardware bias, and atmospheric (ionospheric and tropospheric) error.

• Non-CME are different for each receiver. These include: code multipath error and random

code measurement noise.

These errors significantly affect the positioning accuracy. The typical error magnitudes are summa-

rized in Table. 2.2. The CME mitigation techniques will be detailed in Chapter 3. The non-CME

will be discussed in Sec. 4.3
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Table 2.2: GNSS range measurement error magnitudes.

Error Source Typical Magnitude Reference

Satellite range ephemeris ∼ 2 m [35]

Satellite clock ∼ 5 ns [35]

Satellite code bias ∼ 20 ns [36–38]

Troposphere delay ∼ 2.3 m [39]

Ionosphere delay < 30 m Sec. 25.2 in [9]

Code multipath < 3 m Sec. 8.4.7 in [8]

Measurement noise < 1 mm Sec. 19.7.1 in [9]

2.3 Geometric Range Model and Linearization

Both pr and p̂s are defined in the Earth-Centered Earth-Fixed (ECEF) frame. Because the

ECEF frame is rotating, the range quantity in Eqn. (2.1) must be interpreted carefully, as the ECEF

frame is oriented differently at times ts and tr. Let Er and Es represent the ECEF frames at time tr

and ts respectively. The rotation matrix REr
Es

rotates vectors from their representation in frame Es to

Er (See eqn. (2) in [40]). Therefore, the geometric range term is expressed as

R(pEr
r (tr), p̂Er

s (ts)) = ∥pEr
r (tr)− p̂Er

s (ts)∥,

where pEr
r (tr)= pr(tr), p̂Es

s (ts)= p̂s(ts), and p̂Er
s (ts)=REr

Es
p̂Es

s (ts) where p̂Es
s (ts) represent the satellite

position at ts in Es frame which can be calculated using ephemeris. The rotation matrix REr
Es

is a

function of signal’s time-of-transmission tT . Utilizing the pseudo time-of-transmission computed

from code measurement could affect the accuracy of satellite position rotation, dominated by the

receiver clock bias ∆
γ
r , particularly in the case of low-cost receivers [40].
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Alternatively, this geometric range can be computed by the well-known Sagnac correc-

tion:

R(pEr
r (tr), p̂Er

s (ts)) = ∥pEr
r (tr)− p̂Es

s (ts)∥+
ωe

c
(pEr

r (tr)× p̂Es
s (ts)) (2.3)

= ∥pEr
r (tr)− p̂Es

s (ts)∥+
ωie

c
(xb−ay), (2.4)

where ωe = [0,0,ωie]
⊤, ωie is the earth rotation rate, p̂s = [x,y,z]T , and pr = [a,b,κ]T . Eqn. (2.4)

offers a more computationally efficient implementation than eqn. (2.3) due to ωe containing two

zero elements. The derivation of Sagnac correction can be found in [41]. The accuracy of the

Sagnac correction is shown to be accurate to 7.34×10−4 m. In addition, t̂T = R(pEr
r (tr), p̂Er

s (ts))/c

can be used to approximate the signal time-of-transmission for the computation of REr
Es

.

For the subsequent discussion, the time notation ’(tr)’ and ’(ts)’ are dropped. Given an

initial rover position p0, the first-order Taylor series expansion of R(pr, p̂s) at pr = p0 yields

R(pr, p̂s)≈ R(p0, p̂s)+(1s
r)

⊤(pr −p0) (2.5)

where 1r
s is the line-of-sight (LOS) vector from the satellite to the receiver, defined as

1r
s =

p0 − p̂s

∥p0 − p̂s∥
. (2.6)

The geometric range is typically on the order of 107 meters. If p0 is within 100 meters of the actual

position, the magnitude of higher-order terms is less than one millimeter, which is smaller than the

magnitude of the measurement noise, and therefore negligible. In GNSS applications, this p0 can
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be given by the predicted position from the prior state so that ∥p0 −pr∥ is typically less than 100

meters.

2.4 GNSS Doppler Measurement Model

For satellite s, the Doppler measurement is modeled as

−λ f Ds = (1r
s)

⊤ (vr −vs)+ rc − ∆̇
s +η

s
r,D (2.7)

where λ f is the wavelength of f frequency, vr ∈ ℜ3 denotes the rover velocity at tr in Er frame, rc is

the receiver clock drift in meters per seconds, vs ∈ ℜ3 denotes the satellite velocity at ts in Es frame

where vs = REr
Es

vEs
s , vEs

s and ∆̇s denotes the satellite velocity (m/s) in Es frame and clock drift (m/s)

which can be computed using ephemeris, and ηs
D ∼ N (0,σs,D) is the Doppler measurement noise

which is assumed to be white and uncorrelated between satellites. Note that the receiver clock drift

rate is identical for all constellations.
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Chapter 3

GNSS Real-time Correction Techniques

In real-time applications, three methods to effectively improve the GNSS positioning ac-

curacy are discussed herein. First, DGNSS approaches use OSR corrections. GNSS measurements

from a receiver at a known location near to the user receiver are communicated to the user receiver,

which forms differential measurements that are essentially free from common-mode errors [42].

Second, PPP approaches rely on correction information communicated in SSR format. The correc-

tion information for each portion of the common-mode range errors are separately communicated

from an on-line data source to the receiver [36, 43]. Third, the recently developed VN-DGNSS

constructs OSR corrections using RT-PPP techniques with global dissemination coverage. This ap-

proach requires the receiver’s native solution (i.e., the correction is directly input into the receivers

through the Radio Technical Commission for Maritime Services (RTCM) protocol) and eliminates

the additional need for physical reference stations.
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3.1 DGNSS

The fundamental constitution of DGNSS is reference stations that transmit corrections or

observations that align with its accurately-surveyed position to users. If the corrections are deter-

mined by the data from a single reference station, it is known as local DGNSS. DGNSS is a widely-

utilized and effective technique for mitigating the common-mode errors within a local vicinity (see

Section 8.8 in [8]). This mitigation is accomplished through a single-difference operation between

the rover’s measurements and base station’s corrections. The base station antenna and its location

should be selected to minimize multipath effects.

In the code-based DGNSS, the code and Doppler measurement model for the base station

at time tb is similar to eqn. (2.1),

ρ
s
f ,b(tb) = R(pb, p̂s)+∆

γ

b +Es
b −∆

s +Bs
f +T s

b + Is
b, f +Ms

b +η
s
b,ρ . (3.1)

The difference tr − tb is indicated as communication latency of DGNSS, which demonstratively

achieve 95% sub-meter accuracy probability with latency less than 600 seconds [42]. The base

station position pb is static and known to centimeter accuracy. Therefore, the differential correction

is computed as

Cb = ρ
s
f ,b(tb)−R(pb, p̂s)

= ∆
γ

b +Es
b −∆

s +Bs
f +T s

b + Is
b, f +Ms

b +η
s
ρ . (3.2)
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The single-differenced code measurement model for satellite s is

δρ
s
OSR = ρ

s
f ,r(tr)−Cb

= R(pr, p̂s)+∆
γ

r,OSR +Ms
r,OSR + ε

s
r,OSR, (3.3)

where ∆
γ

r,OSR = ∆
γ
r −∆

γ

b represents the single-differenced receiver clock bias, Ms
r,OSR = Ms

r −Ms
b, and

ε
s
r,OSR = Es

r −Es
b +T s

r −T s
b + Is

r, f − Is
b, f +η

s
r,ρ −η

s
b,ρ (3.4)

represents the residual of CME and measurement noise.

3.2 Real-time PPP

SSR correction service is the latest generation GNSS service, which is usually indicated

to PPP. PPP was introduced since 1997 [44] but its under continuously developing. Unlike DGNSS,

PPP does not require simultaneous observations from nearby base stations. PPP approach process

undifferenced GNSS measurements with correcting each common-mode errors using empirical cor-

rection models or real-time correction service [11, 12].

3.2.1 Satellite Orbit and Clock Corrections

The SSR data streams provide orbit and clock products to correct the satellite position

p̂s(ts) and clock error δ s(ts) at the transmit time ts.
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The orbit correction consists of orbit δO= [δOr,δOa,δOc]
T and rate δ Ȯ= [δ Ȯr,δ Ȯa,δ Ȯc]

T

corrections along with a reference time to. These define radial (δOr, δ Ȯr), along-track (δOa, δ Ȯa)

and cross-track (δOc, δ Ȯc) components. The calculation has five steps [10, 42]:

1. Compute the satellite orbit correction O for time ts:

O(ts) = δO−δ Ȯ · (ts − to).

2. Compute the along-track ea, cross-track ec, and radial er direction unit vectors:

ea =
v̂s(ts)
|v̂s(ts)|

, ec =
p̂s(ts)× v̂s(ts)
|p̂s(ts)× v̂s(ts)|

, er = ea × ec,

where v̂s is the satellite velocity and × denotes the vector cross product.

3. Transform the corrections to the ECEF frame at ts:

δps(ts) = [er, ea, ec]∆O(ts).

4. Correct the broadcast position p̂s(ts) to precise position p̃s(ts):

p̃s(ts) = p̂s(ts)−δps(ts).

5. Compute satellite range ephemeris error Ês
r :

Ês
r = R(pr(tr), p̃s(ts))−R(pr(tr), p̂s(ts)).
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The satellite clock correction is transmitted as three polynomial parameters (Cs
i , i= 0,1,2)

with a corresponding reference time ts
c. The clock correction for satellite s at transmit time ts is:

δCs(ts) =Cs
0 +Cs

1(t
s − ts

c)+Cs
2(t

s − ts
c) meters. (3.5)

To be consistent with eqn. (4) in [45], the correction of satellite clock model error δ̂ s (i.e., correction

of the broadcast clock error) is

δ̂
s =−δCs(ts) seconds. (3.6)

3.2.2 Satellite Hardware Bias

Satellite hardware biases have various causes such as analog group delays in the front-

end and digital delays. They are normally very stable over time (i.e., constant over at least a single

day) [46]. GNSS OS users can apply the Timing Goup Delay (TGD) to roughly correct the hardware

bias [47]. The TGD is computed by the GNSS control segment and broadcast in the navigation

message for GNSS Open Service (OS) users.

To attain higher accuracy, SSR operations may use either Differential Code Bias (DCB) or

Observable-specific Code Biases (OSB) corrections, as defined in the SINEX standard [48]. For the

OSB product, let the symbol B(S,T ) to denote the correction for observation type T of constellation

S (e.g., T could be the C1C observation type with S denoting GPS). The B(S,T ) correction products

are available in SSR format from sources such as CAS GIPP [49]. For SSR users, the observation

O(S,T ) is corrected by B(S,T ) as

O
′

(S,T ) = O(S,T )−B(S,T ) (3.7)
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to produce the OSB-corrected observation O
′

(S,T ).

For the code measurement in eqn. (2.1),

B̂s
f = B(S,T ). (3.8)

3.2.3 Global Troposphere Model

The troposphere is the lowest layer of the atmosphere, extending to about 60 kilometers

above the Earth’s surface. In this layer, the speed of light is slower than in a vacuum, so the radio

signal is delayed. The delay is affected by numerous meteorological parameters relevant within the

vicinity of the receiver, e.g., temperature, pressure, and relative humidity. Numerous tropospheric

delay correction models have been introduced [50–52]. These models avoid the need for real-time

measurement of the meteorological parameters.

IGGtrop [51] is one such global empirical model. It computes the correction for the slant

troposphere delay T s
r as:

T̂ s
r (E, t) = M(E) Tz(t) (3.9)

where E is the satellite elevation angle at the rover position;

M(E) = 1.001
(
0.002001+ sin2(E)

)− 1
2

is the mapping function [53] for converting the Zenith Troposphere Delay (ZTD) to the slant tro-

pospheric delay; and, Tz(t) is the ZTD (i.e., tropospheric delay in the zenith direction above the
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receiver). IGGtrop computes Tz(t) as

Tz(t) =a0 +a1 cos(γ t)+a2 sin(γ t) (3.10)

+a3 cos(2γ t)+a4 sin(2γ t)

where γ = (2π/365.25) and the units of t are real-valued days of the year. The coefficients a0,

(a1, a2) and (a3, a4) model the mean value, the annual variation and the semi-annual variation

in ZTD, respectively. IGGtrop defines these parameters on a 3-D grid in latitude, longitude, and

altitude around the globe. This enables interpolation of the ZTD at a receiver position to achieve

3.86cm root-mean-square error and -0.46cm average bias; however, it requires 666k parameters to

implement a global grid.

There are several variants of IGGtrop [51, 54, 55]. The trade-offs between them re-

lated to the required number of parameters and the resulting accuracy. The experimental evalua-

tion in this article employs the IGGtrop SH variant [55]. This approach computes the coefficients

a0,a1,a2,a3,a4 for eqn. (3.10) using the empirical model:

a0(h) = exp
( m

∑
i=0

αi hi
)
, (3.11)

a j(h) =
5

∑
i=0

β ji hi + c, ∀ j ∈ {1,2,3,4}, (3.12)

where h is the altitude of the receiver. In eqn. (3.11), the parameter m is a function of the receiver

latitude (see Section III in [55]). The coefficients α j and β ji are defined on a 2-D grid in latitude and

longitude. These values were provided by the first author of [55]. The value of Tz(t) is computed at

the four nearest points on the 2-D grid and interpolate to compute its value at the receiver position.
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3.2.4 Ionosphere Model

The ionosphere is the ionized zone of the atmosphere containing free electrons and posi-

tively charged ions. It ranges from about 50 km to 1000 km above the Earth surface. Electromag-

netic signals are refracted in the ionosphere (Sec. 6.3 in [9]). It is a dispersive medium that impacts

different frequencies, and the carrier and modulating signals, differently.

In GNSS OS processes, the dual-frequency user is able to form ionosphere-free combi-

nations or estimate ionospheric delay using two measurements tracked for two frequencies from

one satellite. The single-frequency users apply a prior model (i.e., Klobuchar for GPS and Bei-

Dou [32, 34, 56], NeQuick for Galileo [33, 57]) using ionosphere parameters from the navigation

message to reduce the ionosphere delay by about 50% Root Mean Square (RMS) [58, 59]. Real-

time, single-frequency, PPP users compensate the ionosphere delay by processing ionosphere prod-

ucts. The correction of the ionosphere delay for the code measurement on frequency f by

Îs
f ,r =

40.3
f 2 ST EC 1016. (3.13)

The Slant Total Electron Content (STEC) is calculated from a model of the Vertical Total Electron

Content (VTEC). VTEC is computed at the Ionosphere Pierce Point (IPP), which is computed from

the rover location pr and the computed satellite location p̂s.

SSR VTEC-SH: The agencies listed in Table 3.1 provide real-time VTEC SSR products

that have global applicability. In the RTCM Version 3 standard [60], the real-time VTEC SSR mes-

sage provides the parameters for a Spherical Harmonic (SH) expansion with degree of the expansion

N, order of the expansion M, and coefficients Cn,m and Sn,m for n = 0, . . . ,N and m = 0, . . . ,M. For
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Table 3.1: Public real-time global ionosphere VTEC modeling services providing RTCM VTEC
message. Each has NTRIP caster ID: ‘products.igs-ip.net:2101’.

Agency SH degree Mount point References

CAS 15 SSRA00CAS0 [62]

CNES 12 SSRA00CNE0 [63]

a single-layer model, the VTEC model at the IPP is [10, 61]

V T EC(φPP,λPP) =
N

∑
n=0

min(n,M)

∑
m=0

Pn,m(sin(φPP)) (3.14)

· (Cn,m cos(mλS)+Sn,m sin(mλS)) (3.15)

where Pn,m() is the normalized associated Legendre function, (φPP,λPP) are the geocentric latitude

and longitude of the IPP, and λS is computed by

λS = (λPP +(t −50400)∗π/43200)modulo(2π) (3.16)

where t is the SSR epoch time of computation, modulo 86400 seconds.

The STEC is computed from VTEC using

ST EC =
V T EC

sin(E +φPP)
(3.17)

where E is the elevation angle of the satellite at the rover position.

US-TEC: For North America users, the National Oceanic and Atmospheric Adminis-

tration (NOAA) provides the real-time US Total Electron Content (US-TEC) product for public

usage [64]. US-TEC provides VTEC values in a uniform grid of point locations with 1 degree
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resolution in latitude and longitude. The official website (https://services.swpc.noaa.gov/

text/us-tec-total-electron-content.txt) states that the normal update interval is 15 min-

utes, typically with 28 minutes latency. During the period from late 2020 through the middle of

2021, the latency was over 24 hours; therefore, although US-TEC is not used in the demonstration

experiments which aim to real-time applications.

The VTEC at the IPP (within the geographical extent of the grid points) is computed as a

linear function of the values at grid points. The VN-DGNSS server uses distance weighted spatial

interpolation [65, 66]:

V T EC(IPP) = w(IPP) IG, (3.18)

where w(IPP) is a vector of weights. Both w(IPP) and IG are vectors with K components. The k-th

element wk of the weighting vector determines the amount that a VTEC value [IG]k at the k-th grid

point IPPk contributes to the value of Total Electron Content (TEC) at the desired IPP.

The vector w(IPP) = [w1, ...,wK ] satisfies the following constraints:

1. ∑
K
i=1 wk = 1, so that Eqn. (3.18) interpolates the value for VTEC from the grid points.

2. the k-th element wk should decrease smoothly as dk = ∥IPP− IPPk∥ increases. This results

in a smooth interpolation between the grid point values.

The approach herein uses at most four nonzero weights. If IPP = IPPk for some k, then wk = 1 and

all remaining values of w(IPP) are zero. Otherwise, the IPP is between four grid points. In this

case, we define a ∈ ℜK such that ak = 1/dk for those four corner grid points, noting that ak is finite

because dk ̸= 0. All the remaining elements of a are zero. Then, the components of w(IPP) are

defined as wk =
ak

∑
K
i=1 ai

.
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Spatial interpolation provides the VTEC at the IPP. The STEC is computed as [66]:

ST EC = F(E)V T EC(IPP). (3.19)

where F(E) is the ionospheric obliquity factor defined as

F(E) =
1√

1−
[

re cos(E)
re+hm

]2
, (3.20)

where re is the average radius of the earth, and hm is the height of the maximum electron density

(assumed herein to be 350 km).

3.2.5 RT-PPP Corrections and the Corrected Code Model

This section discusses the choice of RT-PPP corrections used herein to mitigate the CME

effects. The PPP SSR format corrections are communicated via parameters for models of each

component of the CME. They demonstrate efficacy on a global scale. Various sources are available.

These sources have been comprehensively defined and examined in [10, 12, 48, 51]. The real-time

orbit and clock products are corrections to the satellite position and clock error from broadcast

ephemeris. In this study, we choose to use those from WHU. Satellite hardware bias could be

corrected using either DCB or OSB format corrections. The multi-GNSS OSB products are more

convenient. In this study, the OSB products are provided by CAS. Tropospheric delay is corrected by

the global IGGtrop empirical model. Ionospheric delay is compensated using the real-time global

VTEC product provided by CNES. The model and the reasons for choosing it are discussed in

Section IV.D of [12].
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The RT-PPP corrections related to satellite orbit and clock, satellite hardware bias, and

tropospheric delay can achieve centimeter-level accuracy. The assessment of the CNES VTEC

product indicates that the RMS ranges from 2.07 to 6.15 TEC Units (TECU), which, when scaled

using the GPS L1 frequency, corresponds to 0.34 to 1.00 meters [67].

By mitigating the CME, the corrected code model can be represented as:

δρ
s
SSR = ρ

s
f ,r(tr)+ c d̂t

s − δ̂
s − B̂s

f − T̂ s
r − Îs

f ,r

= R(pr, p̃s)+∆
γ

r,SSR +Ms
r,SSR + ε

s
r,SSR (3.21)

where ∆
γ

r,SSR = ∆
γ
r , Ms

r , and

ε
s
r,SSR = R(pr,ps)−R(pr, p̃s)+δ

s − δ̂
s +Bs

f − B̂s
f

+T s
r − T̂ s

r + Is
f ,r − Îs

f ,r +η
s
r,ρ (3.22)

represents the residual of CME and measurement noise.

3.3 VN-DGNSS

This section present the VN-DGNSS approach that provides a Multi-GNSS correction

service to users [12]. The RTCM OSR messages that are transmitted are accepted by most re-

ceivers. In this approach, there is no need for additional physical reference stations. The RTCM

OSR format communicates corrections in the form of an observation, which must be computa-

tionally constructed in any VN-DGNSS approach using PPP information. The computationally
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constructed observation requires the satellite position and time-of-transmissions for each satellite to

be consistent for measurements at a specified time at the user-specified location.

At present, few receivers are available that accept SSR correction information. Even as

more receivers become available that accept SSR correction information, legacy receivers will re-

quire correction information in OSR format. The RTCM format for communicating OSR correction

information is as a measurement.

Considering eqn. (3.1) from the perspective of constructing an RTCM OSR message using

SSR data for a known virtual base antenna position pb. First, the base station receiver clock bias ∆
γ

b

is not important for positioning applications. This error will only affect the estimated rover clock

bias, since it is identical for all code measurements of constellation γ . Therefore, for the virtual

base station, ∆
γ

b is set to zero. Second, the multipath and receiver terms (Ms
b +ηs

b,ρ) are non-CME

and should not be included. Therefore, the desired code measurement to send as an RTCM OSR

message is modeled as

ρ
s
f ,b(tb) = R(pb, p̂s)+Es

b −∆
s +Bs

f +T s
b + Is

b, f . (3.23)

The server (i.e., Virtual Reference Station (VRS)) transmits RTCM 3.X messages to the receiver

which include the virtual base station position pb and time tb, and the computed code measurements

ρs
f ,b(tb). The code measurement construction can be decomposed into two parts: range component

R(pb, p̂s) and CME terms. The CME corrections are computed by the models discussed in Sec. 3.2.

To compute the term R
(

pb, p̂s

)
in eqn. (3.23) when the base location pb and measurement

time tb are given. This computation must determine the location p̂s(ts) for which the signal received

from satellite s transmitted at time ts would be received at time tb by a virtual receiver at location
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pb. These computations will neglect the common-mode errors, whose effect is analyzed in Section

3.3.2.

For a signal pseudo-transmit-time t̂s, the ICD provides equations and the broadcast nav-

igation message provides data to compute the satellite clock offset d̂t
s
(t̂s), satellite position p̂s(t̄s)

and satellite velocity v̂s(t̄s), where t̄s = (tb − ts
p − d̂t

s
) is the time-of-signal-transmission corrected

by the navigation satellite clock error model from the ICD where ts
p is the pseudo propagation time.

3.3.1 Algorithm Definition

The range between the satellite and virtual base antennae can be computed in two ways:

R
(

pb, p̂s(tb − ts
p − d̂ts)

)
and c (ts

p + d̂ts) (3.24)

Algorithm 1 adjusts the (uncorrected) propagation time ts
p to compute the satellite position p̂s(t̄s) at

the corrected time of transmission t̄s by minimizing the error between the two range equations:

F(ts
p : pb, tb) = R

(
pb, p̂s(tb − ts

p − d̂ts)
)
− c (ts

p + d̂ts). (3.25)

The quantity ts
g = ts

p + d̂ts is the geometric travel time. The notation F(ts
p : pb, tb) means that ts

p is

the argument and pb and tb are known parameters.

The optimization is implemented using numeric search. Step 1 initializes the propagation

time to ts
p = 0.067 seconds because GNSS satellites are approximately 20,000 km from the Earth

surface. Step 2 declares a parameter to store the last value of ts
p. Step 3 starts the while loop which

terminates when |t−p − ts
p| is small. Step 4 computes the pseudo-transmit time t̂s, which is used in
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Step 5 to compute the satellite clock correction d̂t
s
(t̂s), and the position p̂s(t̄s) and velocity p̂s(t̄s).

The ICD models are represented by the function f (t̂s,θs
e) where θs

e are the broadcast ephemeris and

clock correction parameters. Steps 6 - 9 compute the two ranges and the range error for the current

value of ts
p. Step 10 computes the partial derivative of the cost with respect to the ts

p

∂F
∂ ts

p
=−(1s

b · v̂s(t̄s)+ c)(1−a1 −2a2 (t̂s − toc)) , (3.26)

where a1, a2, and toc are the clock model parameters from the navigation message. Step 11 stores

the ts
p to t−p before updating ts

p Step 12 implements Newton’s Zero Finding Algorithm to optimize ts
p

to minimize the square of the error defined in Eqn. (3.25). Step 14 computes satellite transmission

time t̄s which will be used as ts in the SSR clock product of Sec. 3.2.1.

For the input receiver time tb and base station location pb, this optimization process pro-

vides the broadcast clock correction d̂t
s
(t̂s) and the satellite location p̂s(t̄s) at the corrected time of

transmission. These enable computation of R
(

pb, p̂s(t̄s)
)

as required for the RTCM OSR measure-

ment defined in eqn. (3.23).

3.3.2 Effect of Common Mode Errors

At the user receiver, residual measurements are formed for both the base and user receiver

measurements. For the base measurements, the available information is tb and ρs
f ,b(tb). The user

receiver computes the time of satellite transmission as

t̃s = tb −
1
c

ρ
s
f ,b(tb),
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Algorithm 1 Satellite Position Estimation
Input: pb, tb.
Output: p̂s(ts), v̂s(ts), d̂t

s
and ts.

1: ts
p = 0.067; // Initialize the propagation time

2: t−p = 0; // Initialize previous value to 0
3: while |t−p − ts

p|> 10−11 do
4: t̂s = tb − ts

p; // Pseudo-transmit-time
5: [p̂s(t̄s), v̂s(t̄s), d̂t

s
(t̂s)] = f (t̂s,θs

e); // ICD models
6: R1 = R(pb, p̂s(t̄s)) // Range based on position
7: ts

g = ts
p + d̂t

s
(t̂s) // See definition in Eqn. (3.25)

8: R2 = c · ts
g // Range based on geometric travel time

9: F = R1 −R2; // Eqn. (3.25)
10: dF =−

(
v̂s(t̄s)·(p̂s−pb)

R1
+ c
) (

1− ∂

∂ ts
p
d̂t

s
(t̂s)
)

; // Eqn. (3.26)

11: t−p = ts
p; // save the previous value

12: ts
p = ts

p − F
dF ; // Newton’s Zero Finding Algorithm

13: end while
14: t̄s = tb − ts

p − d̂t
s
(t̂s). // Transmit time by the satellite clock

where t̃s
p = 1

c ρs
f ,b(tb) is the measured propagation time. Because the measurement of ρs

f ,b(tb) in-

cludes errors, as modeled in Eqn. (2.1), the measured and actual values of the transmit time are

related according to

t̃s = t̄s − es
b,

where es
b denotes both CME and non-CME scaled to units of time (i.e., |es

b| ≤ 200 ns). The error es
b

is neglected in the algorithm of the previous section. This section analyzes the effect of this decision

on the satellite position and its range from the base.

The algorithm computes ps(t̄s) when it should have computed ps(t̄s − es
b). Consider the

Taylor series expansion:

ps(t̄s − es
b) = ps(t̄s)−

∂

∂ t
ps(t)

∣∣∣∣
t=t̄s

es
b (3.27)

= ps(t̄s)−vs(t̄s)es
b (3.28)
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Figure 3.1: VN-DGNSS server-client architecture

Therefore, because the satellite speed is about 4,000 m/s and |es
b| ≤ 2×10−7, the effect of neglecting

es
b on the satellite position calculation is less than one millimeter.

3.3.3 VN-DGNSS Server-Client System Design

This section describes the software implementation for a publicly available, open-source,

client/server VN-DGNSS implementation with global coverage. The VN-DGNSS repository is

public on GitHub: https://github.com/Azurehappen/Virtual-Network-DGNSS-Project.

The server receives real-time information in SSR format and provides each client with virtual base

station RTCM OSR formatted messages applicable to their local vicinity for BeiDou B1, GALILEO

E1, and GPS L1. This approach eliminates the need for the client to have physical access to a local

reference station.
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3.3.3.1 System Architecture

Fig. 3.1 displays the VN-DGNSS client/server framework. The VN-DGNSS server in-

cludes four fundamental components.

• The data requestor establishes communications with online sources to maintain real-time

SSR data. The BKG NTRIP Client (BNC) [68] provides broadcast ephemeris for each satel-

lite system, Multi-GNSS SSR orbit and clock corrections, and SSR VTEC information (see

Table 3.1). US-TEC products are included as an option for US clients. CAS GIPP provides

code bias products [49]. Because the IGGtrop SH parameters are static, they are loaded at

run-time and do not require real-time communications.

• The code measurement generator constructs the code measurements, for the virtual base po-

sition pb requested by the client, using eqn. (3.23) for GPS L1, Galileo E1 and Beidou B1.

The range is computed as described in Sec. 3.3.1. The correction terms in the second line of

eqn. (3.23) are computed using the models discussed in Sec. 3.2.

• The RTCM message generator creates RTCM message type 1004 and MSM4 message types:

1074 for GPS, 1094 for Galileo, 1124 for BeiDou. The RTCM 1004 message communicates

the virtual reference station position pb. The RTCM MSM4 message includes the code mea-

surements constructed by the code measurement generator at integer epoch times tb (i.e., 1.0

Hertz), along with the observation type and Signal-to-Noise Ratio (SNR)1.

• The client communicator receives requests from, then establishes and maintains TCP con-

nections with clients. In addition to its internet address, the client sends its (desired) virtual

1In the current implementation, the server computes the SNR as f loor(A E
π

)+S, where E is the satellite elevation in
radians, S is the minimum SNR, and A is a coefficient that determines the maximum SNR.

31



reference station position pb, and the GNSS constellations and the observation types for which

the client desires RTCM messages. Clients that are moving can update their desired virtual

reference station position as necessary to keep it within a reasonable distance (e.g., 20 km) of

their location.

Some portions of the VN-DGNSS (e.g., code measurement generator, RTCM message generator)

are modifications of open-source functions in RTKLIB [69] and BNC [68].

3.3.3.2 Implementation Strategies

Details and choices required for the VN-DGNSS server implementation are described

below.

1. Table 3.1 list the two agencies that currently stream SSR Multi-GNSS corrections and global

VTEC SH parameters using RTCM messages through NTRIP. Both are available through the

server.

2. The real-time orbit and clock corrections are applicable to a specific Issue Of Data (IOD)

ephemeris. GPS and Galileo ephemeris provides the IOD number for each satellite. The

Beidou IOD depends on the agency providing the data. The two agencies in Table 3.1 both

share the same methodology (see http://www.ppp-wizard.net/news.html):

BeiDou IOD = ((int)toe/720) modulo 240,

where toe is the time-of-ephemeris in the BeiDou navigation message.
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3. The multi-GNSS OSB product provided by CAS [49] is referred to as GIPP. The GIPP code

bias data can be downloaded from ftp://ftp.gipp.org.cn/product/dcb/daybias/.

They are updated with a period of one day update and latency of 1-5 days. The two agencies

listed in Table 3.1 also provide code biases through NTRIP; however, they do not provide bias

estimates for all observation types required for the experiments.

4. The SSR data has two types: Antenna Phase Centre (APC) and Center of Mass (COM). The

broadcast ephemeris is referred to the satellite’s APC; therefore, the selected SSR data stream

for orbit corrections must also reference to the APC, not COM.
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Chapter 4

Linear State Estimation

This article focuses on outlier recommendation for GNSS applications in linear systems.

State estimation will be performed using multi-GNSS SF code and Doppler measurements. This

section outlines the position, velocity, acceleration (PVA) state propagation model and the measure-

ment update using the linearized code measurement model and the Doppler measurement model.

4.1 Time Propagation

The state vector is defined as

x = [pr, vr, ar,∆
γ , rc]

⊤ ∈ ℜ
n (4.1)

where ar ∈ ℜ3 denotes the receiver acceleration, ∆γ ∈ ℜns represents the vector of receiver clock

biases for the ns different GNSS constellations. The state at time tk = k T will be denoted as xk

where T is the sampling interval.
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The time update portion of the discrete-time model is

xk+1 = Fxk +wk (4.2)

is a standard PVA approach where the state transition matrix is

F =



I3 T I3
1
2 T 2 I3 0 0

0 I3 T I3 0 0

0 0 I3 0 0

0 0 0 Ins Tns

0 0 0 0 1


(4.3)

and wk ∼ N (0,Qd) is the white Gaussian process noise (see eqn. (B.5) in Appendix B for the

derivation of Qd), Iq represents the identity matrix with q rows and columns, and Tns is a column

vector with ns elements all having value of T . The symbol 0 is a conformal matrix containing all

zeros.

The time propagation model for the state estimate is:

x̂−k+1 = Fx̂+k , (4.4)

P−
k+1 = FP+

k F⊤+Qd (4.5)

where x̂−k and x̂+k denote the prior and posterior state estimate, and P−
k and P+

k denote the prior

and posterior state estimate error covariance matrix. The Probability Density Function (PDF) of

prior state xk is assumed to be Gaussian xk ∼ N (x̂−k ,P
−
k ). Outliers are not directly involved in the
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time propagation process since they only affect the measurements, the outlier accommodation is

considered in the measurement update process.

4.2 Measurement Models

The measurement vector y at time k is modeled as:

yk = Hxk +ηk (4.6)

where yk ∈ ℜm, H ∈ ℜm×n is the known measurement matrix, and ηk ∼N (0, R) is white Gaussian

measurement noise. The covariance matrix R ∈ ℜm×m is assumed to be invertible and diagonal;

therefore, it can be written as R = ∑
m
i=1 σ2

i ei ei
⊤, where ei is i-th standard basis vector. The prior,

process noise, and measurement noise are independent.

Some of the measurements will be affected by outliers. Outlier measurements are those

that are very unlikely given the model stated in eqn. (4.6). When the i-th measurement at time k is

affected by an outlier, that measurement is modeled as

yi(k) = hi xk(k)+ηi + si(k), (4.7)

where si(k) represents the outlier and hi is the i-th row of H. There is usually no known model

for the outlier si(k). The objective is to use the measurements yk to estimate the state vector while

attenuating the effects of the outlier vector sk. The GNSS code measurement outlier will be defined

in Sec. 4.3.
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Using eqn. (2.5), the linearized code measurement model can be computed as

zs = δρ
s −R(p−, p̂s)+(1s

r)
⊤p−

= (1s
r)

⊤pr +∆
γ

r,tech +Ms
r,tech + ε

s
r,tech

= hρ
s x+Ms

r,tech + ε
s
r,tech (4.8)

where ∆
γ

r,tech, Ms
r,tech, and εs

r,tech denote ∆
γ

r,OSR, Ms
r,OSR, and εs

r,OSR in DGNSS applications or ∆
γ

r,SSR,

Ms
r,SSR, and εs

r,SSR in PPP applications, and

hρ
s = [(1s

r)
⊤, 01×3, 01×3, e⊤γ , 0] (4.9)

After compensating for the satellite velocity and clock drift to eqn. (2.7), the linear

Doppler measurement for satellite s is modeled as

δDs = (1r
s)

⊤ vr + rc +η
s
D

= hD
s x+η

s
D (4.10)

where

hD
s = [01×3, (1

s
r)

⊤, 01×3, 01×ns , 1]. (4.11)
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In the case of DGNSS, ∆̇ and ηs
D denote the single-differenced receiver clock drift and Doppler

measurement noise. Therefore, the measurement vector y is defined as

y = [z⊤, D⊤]⊤ ∈ ℜ
m (4.12)

where z = [z1, ..., zms ]
⊤ and D = [δD1, ..., δDms ]

⊤ for ms satellites and m = 2ms. The measurement

matrix is defined as

H = [Hρ ; HD] (4.13)

where Hρ = [hρ

1 ; ...; hρ
ms ] and HD = [hD

1 ; ...; hD
ms
].

The measurement noise matrix is defined as

R = diag[σ2
1,ρ , ..., σ

2
ms,ρ , σ

2
1,D, ..., σ

2
ms,D]. (4.14)

4.3 Measurement Noise Model and Outliers

In GNSS applications, the multipath or non-LOS errors cause principally due to signal

travel through reflecting structures and ground. In the case of code measurement, it is capable to

reach a theoretical value of 1.5 times the wavelength, which means the worst case for GPS C/A code

(its wavelength ≈ 293.1m) can reach 450 meters [70]. In most open-sky cases, they are less than 3

meters.
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The state estimation process assumes that the combined effect of measurement noise plus

multipath and nonline-of-sight errors follows a white Gaussian distribution with (Ms
r,tech +εs

r,tech)∼

N (0,σ2
s,ρ) where σs,ρ signifies the measurement noise in this section.

This assumption is reasonable under open-sky conditions where multipath effects are gen-

erally minor [71, 72]. However, in challenging urban scenarios, such as areas with narrow lanes

flanked by densely tall buildings and trees, numerous GNSS signals are obstructed or suffer from

anomalies like multipath and non-line-of-sight effects, resulting from reflections. In this situation,

multipath and non-LOS effects may increase to tens of meters [73]. Given the absence of a definitive

model for these errors, they are treated as outliers when they are significant.

4.4 Measurement Update by MAP Estimation

This section first reviews MAP estimation using all measurements. Then it introduces

a convenient approach for selecting or weighting measurements so that various robust estimation

approaches can be compared using a unified notation.

4.4.1 Estimation using All Measurements

Under the assumption that all measurements are devoid of outliers, the MAP approach

chooses the state estimate x̂ to maximize the conditional probability density (see [74]):

x̂k = argmax
xk

p(xk|yk) = argmax
xk

p(yk|xk)p(xk). (4.15)
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Minimizing the negative log-likelihood, using the assumption that the prior and noise are Gaussian,

yields the cost function:

x̂k = argmin
xk

[
(yk −Hxk)

⊤R−1(yk −Hxk)+(xk − x̂−k )
⊤(P−

k )
−1(xk − x̂−k )

]
= argmin

xk

∥ΣR (yk −Hxk)∥2
2 +∥ΣP (xk − x̂−k )∥

2
2 (4.16)

where R−1 = ΣR
⊤ΣR and (P−

k )
−1 = ΣP

⊤ΣP. 1 Solving eqn. (4.16) for xk and dropping the k

subscripts, yields the estimate

x̂ .
=
(

H⊤ R−1H+J−
)−1(

H⊤ R−1y+J−x̂−
)

(4.17)

where J− = (P−)−1 is the prior information matrix. Eqn. (4.17) is the Kalman filter measurement

update in Information Form. In this expression, J+ = H⊤ R−1H+ J− is the posterior information

matrix and P+ = (J+)−1 is the posterior error covariance matrix.

4.4.2 Estimation using Selected Measurements

For the purpose of comparing approaches for excluding or de-weight the measurements,

it is convenient to introduce the vector of measurement selection variables b = [b1, b2, ..., bm]
⊤.

When the vector b is defined to be a binary vector where bi ∈ {0,1}, it is used to select certain

measurements to be used (bi = 1) and others to be ignored (bi = 0) (see [75, 76]). Alternatively,

when the vector b is a non-binary vector where bi ∈ [0,1], bi can be looked upon as a means to

de-weight the i-th measurement. Corresponding to b, define the diagonal matrix Φ(b) = diag(b).
1The notation ∥v∥2

P = v⊤P−1v = ∥ΣP v∥2
2, where P−1 = Σ⊤

P ΣP for ΣP > 0. This Mahalanobis norm naturally
arises with Gaussian distributions.
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When b = 1 (i.e., each bi = 1), then Φ(1) = I and eqn. (4.16) yields the same estimate as

the solution of

x̂b = argmin
x

(
∥ΣRΦ(b)(y−Hx)∥2

2 +∥ΣP− (x− x̂−)∥2
2

)
. (4.18)

In the case, where some elements of b are set to zero, the matrix Φ(b) has the effect of removing

those rows of both y and H from the optimization. Alternatively, in the case where the elements of

b are values in [0, 1], the matrix Φ(b) has the effect of de-weight the rows of both y and H during

the optimization. Each choice of b results in a different estimate x̂b.

By defining:

Ab =

ΣRΦ(b)H

ΣP−

 , cb =

ΣRΦ(b)y

ΣP− x̂−

 (4.19)

the cost function in eqn. (4.18) can be written as:

C(x,b) = ∥Ab x− cb∥2, (4.20)

which, for any given b, is a Least Squares problem that can be solved for x. Minimizing the cost

function in eqn. (4.20) with respect to x for a fixed b yields:

x̂b = (A⊤
b Ab)

−1A⊤
b cb (4.21)

=
[
H⊤Φ(b)⊤R−1Φ(b)H+(P−)−1

]−1 [
H⊤Φ(b)⊤R−1Φ(b)y+(P−)−1x̂−

]
.
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The posterior information matrix corresponding to the measurement selection vector b is

J+b
.
= H⊤Φ(b)⊤R−1Φ(b)H+(P−)−1. (4.22)

Using the decomposition of R discussed after eqn. (4.6), the cost function and posterior

information can be expressed as:

C(x,b) = ∥x− x̂−∥2
P− +

m

∑
i=1

b2
i

σ2
i
(yi −hix)2, and (4.23)

J+b =
m

∑
i=1

b2
i

σ2
i

h⊤
i hi +J−. (4.24)

This form is convenient for highlighting some inherent trade-offs. If b = 0, the solution is the prior

and the cost function has value zero; however, no information is extracted from the measurements

so J+b = J−. For each bi that is switched from 0 to 1, both the cost and information matrix increase

due to the new term in each summation. The added cost of measurement i is computed as a function

of its residual ri = yi −hi x. If b = 1, the solution using all measurements is the same as that in eqn.

(4.17). For all other cases (i.e., b not equal to 0 of 1), the goal in deciding which measurements to

use is to achieve a good trade-off between increased information (quantified by the first term of J+b )

and increased cost C(x,b). When each bi is a real number in the interval (0,1], then the effective

measurement noise covariance matrix corresponding to eqn. (4.23) is Rb = ∑
m
i=1

(
σi
bi

)2
ei ei

⊤. The

i-th measurement is progressively de-weighted as bi is decreased from one toward zero. As bi

approaches zero, the effective covariance (σi/bi)
2 approaches infinity, and the estimation effectively

ignores the measurement yi.
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Chapter 5

Methods to Accommodate Outliers

This chapter presents two methods for accommodating outliers in state estimation.

5.1 Threshold Decisions

The traditional approach to detect and remove outliers in state estimation is based on a

threshold test:

bi
.
=


0, when |ri| ≥ λσri

1, when |ri|< λσri

(5.1)

where λ > 0 is the decision parameter, σ2
ri
= hi Ph⊤

i +σ2
i is the covariance of residual component

ri (see e.g.: [16, 17, 77]). The residual and predicted measurement are computed as

r .
= y− ŷ and ŷ .

= Hx̂−. (5.2)

43



The optimal estimate x̂b and its posterior information J+b are the solutions of eqn. (4.21) and eqn.

(4.22).

This threshold test requires the designer to select a decision threshold λ . This choice

trades-off missed detections relative to false alarms. When λ is so large that all measurements are

included, the posterior information reaches its maximum. However, this inclusion strategy works

well only in scenarios where outliers are absent. When outliers are present, a large λ results in a

high probability of missed detections. The presence of outliers complicates the matter significantly.

Consistency between the state estimate and its error covariance matrix is maintained only if outliers

are completely eliminated at each epoch. Certainty of excluding outliers requires λ to be very

small, which yields a high probability of false alarms. In practical applications, no outlier detection

method is infallible. False alarms result in lost information. Since the TD approach uses a fixed

value for λ that does not change to achieve a given performance specification, any such performance

specification could be violated. Missed detection results in a corrupted state estimate mean x̂+k and

an overconfident covariance matrix, thus creating inconsistency between the actual and estimated

uncertainty. This inconsistency renders subsequent outlier decisions unreliable.

5.2 RAPS Estimation using Diagonal Constraint

RAPS estimation finds an optimal (i.e., minimum risk) subset of measurements to achieve

a state estimation accuracy specification (see [28,29]). The specification on the solution is achieved

by placing a constraint on the posterior information matrix in an optimization framework. The

idea that a constraint only on the diagonal of the posterior information matrix (i.e., DiagRAPS)
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might allow an efficient computation of the solution is suggested in Section V-A of [29], but a

computationally efficient solution to that idea has never been developed. It is now considered herein.

The DiagRAPS optimization problem [78, 79] is written as:

x̂,b = argmin
x,b

C(x,b)

s.t.: diag(J+b )≥ Jl

 (5.3)

where the cost C(x,b) is defined in eqn. (4.23). DiagRAPS optimizes over both the choice of

measurements to include (i.e., b) and the state estimate (i.e., x). DiagRAPS interprets the cost

C(x,b) as the risk associated with the choice of measurements dictated by b. This interpretation is

based on the cost function having two terms. The first term quantifies how well the optimal estimate

matches the prior. The second term quantifies the size of each measurement residual relative to the

covariance R, which is related to the risk of including each residual in the optimization.

The optimization is subject to a performance constraint. Because the information matrix

arises naturally in the MAP solution (see eqn. (4.24)), the performance constraint is stated using

information form, rather than covariance form, with Jl ∈ Rn being a user-defined non-negative

vector of minimum accuracy specifications.

Appendix A defines G ∈ Rn×m and d ∈ Rn such that optimization problem (5.3) can be

reformulated into more convenient problems.
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5.2.0.1 Binary vector b

Optimization problem (5.3) can be rewritten as

x̂,b =argmin
x,b

∥x− x̂−∥2
P− +

m

∑
i=1

bi

σ2
i
(yi −hix)2

s.t.: Gb ≥ d

bi ∈ {0, 1} for i = 1, ...m.


(5.4)

Both the objective function and the constraint are linear in b. The objective function is quadratic in

x.

5.2.0.2 Non-binary vector b

Optimization problem (5.3) can be written as

x̂,b =argmin
x,b

∥x− x̂−∥2
P− +

m

∑
i=1

bi

σ2
i
(yi −hix)2

s.t.: Gb ≥ d

bi ∈ [0, 1] for i = 1, ...m.


(5.5)

Both the objective function and the constraint are linear in b. The objective function is quadratic in

x.

Note that Problem (5.5) differs from Problem (5.4) due to the domain of b.
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Chapter 6

Solutions to DiagRAPS

This chapter presents computationally efficient approaches to solve the DiagRAPS opti-

mization problems discussed in Sec. 5.2. Solutions for the binary or non-binary cases of b using

the BCD method are proposed in Sections 6.1 and 6.2, respectively. Discussion of the convergence,

optimality, and computational cost are presented in Sections. 6.3 and 6.4.

This section only discusses the solution for the DiagRAPS problems that have feasible

solutions. There may be situations where no feasible solutions exist, meaning that there is insuffi-

cient information in the complete set of measurements to achieve the performance constraint. Sec.

6.5 presents a soft-constraint relaxation approach to address these situations.

6.1 Binary Solution

Problem (5.4) is a multi-convex mixed-integer nonlinear programming problem where the

objective function is convex with respect to x and b individually, but not in combination. Using the

BCD method [80, 81], the minimization of the cost C(x,b) given in eqn. (4.23) constrained by the
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linear inequalities in Problem (5.4) can be solved by a two part iteration. The inputs to the algorithm

include H, y, x̂−, P−, and R. The algorithm is initialized with ℓ= 0 with x0 = x̂−.

1. Select b for a fixed x: To start this step, the iteration counter is incremented: ℓ= ℓ+1. During

this step, x is held constant with value xℓ−1 and C(xℓ−1,b) is minimized with respect to b.

Because the first term of C(xℓ−1,b) is independent of b, the effective optimization problem is

min : C(b : xℓ−1) =
m

∑
i=1

bi

σ2
i
(hi xℓ−1 − yi)

2

s.t.: Gb ≥ d

bi ∈ {0, 1} for i = 1, ...m.


(6.1)

Problem (6.1) is a standard ILP problem. Assuming that a feasible solution exists, the result

of this step is bℓ with cost C(xℓ−1,bℓ).

2. Select x for fixed b: In this step, the cost function C(x,b)|b=bℓ defined in eqn. (5.4) is minimized

with respect to x. This is an unconstrained optimization because of the constraint of eqn.

(5.4) does not depend on x. With b = bℓ being known, eqn. (4.19) and eqn. (4.21) compute

x̂ℓ = x̂bℓ , which achieves cost C(x̂ℓ,bℓ).

The iteration is stopped when C(x̂ℓ,bℓ) =C(x̂ℓ−1,bℓ−1), which must occurs because the number of

feasible b vectors is finite and x̂ of a given b is unique.

6.2 Non-binary Solution

When b is treated as a real variable, DiagRAPS estimation is defined by Problem (5.5).

Applying the BCD method to Problem (5.5) yields a two-part iteration:
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1. Select b for a fixed x: bℓ is determined by solving the LP problem:

min : C(b : xℓ−1) =
m

∑
i=1

bi

σ2
i
(hi xℓ−1 − yi)

2

s.t.: Gb ≥ d

bi ∈ [0, 1] for i = 1, ...m.


(6.2)

2. Select x for fixed b: x̂ℓ = x̂bℓ by minimizing cost C(x̂ℓ,bℓ) using eqn. (4.21) with b = bℓ.

This non-binary approach provides a non-binary vector b to deactivate or de-weight the measure-

ments. The resulting LP can be solved more efficiently than ILP, offering a potentially more robust

and computationally tractable approach compared to the binary solution.

6.3 Convergence and Optimality

The following points provide insights into the optimality and convergence characteristics

of the algorithm:

• Step 1 focuses on selecting a set of measurements to minimize the risk subject to a perfor-

mance constraint.

• Step 1 of iteration ℓ= 1 establishes an initial cost C(x0,b1). After that point, each subsequent

minimization step of each iteration results in decreasing cost:

C(x0,b1)≥C(x1,b1)≥C(x1,b2)≥ ·· · . (6.3)
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Since the cost is strictly positive and decreasing, this implies that the iteration will ultimately

achieve the stopping condition, as long as there is at least one feasible solution.

• The BCD approach, as applied to both binary and non-binary solutions, converges to a local

optimum of the DiagRAPS optimization problem. Appendix C demonstrates that Problem

(5.4) can be reformulated as a convex programming problem. The comparative analysis of

performance in the choice between the global or local optimization approaches are discussed

in Sections 6.4 and 7.4.

6.4 Computation Cost

6.4.1 Locally Optimal Solution

For the non-binary solution, solving the LP problem as defined in Problem (6.2) is as-

sociated with polynomial-time complexity [82, 83]. In contrast, the binary solution for Problem

(6.1) involves an ILP problem, which is an NP-hard problem. Although the worst-case scenario

for solving an ILP problem has exponential-time complexity, ILP is well-investigated with several

tools available for effectively solving it (e.g., ’intlinprog‘ in MATLAB, Google OR-Tools, SciPy

Optimize). Common strategies for solving ILP/Mixed-ILP include LP relaxation, cut generation,

and Branch & Bound algorithm, which collectively contribute to a polynomial-time average com-

putational cost [84–87].

6.4.2 Globally Optimal Solution

For the binary problem, earlier work has suggested a depth-first search (DFS) strategy to

exhaustively explore all possible combinations of binary vector b [29, 88] to find the global opti-
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mum. This exhaustive approach using DFS demands either permutation time complexity O(m!) to

examine all permutations of b, including duplicates, or O(2m) time complexity and O(2m) space

complexity to avoid duplicates. These solutions become increasingly impractical computationally

as m increases. Although a convex programming formulation of Problem (5.4) is derived in Ap-

pendix C, it remains a mixed-integer nonlinear programming problem, introducing additional n×m

variables. Solving this convex problem via CVX MOSEK requires the combination of a continuous

optimization algorithm and an exhaustive search of the binary variables in b [88], which can lead to

a time complexity of O(2m).

While solving the convex formulation for a global optimum of Problem (C.6) or (C.8) is

possible, there are significant trade-offs to consider between the local and global solutions. Specifi-

cally for the GNSS applications discussed in this article, the CVX MOSEK toolbox requires tens of

seconds to several minutes to resolve the convex programming problem for a single GNSS epoch,

rendering it impractical for real-time applications. Experiment results and further discussions are

provided in Sec. 7.4.

6.5 Performance Feasibility and Soft Constraint

The DiagRAPS optimization problem is solvable only when the performance constrain

(Gb≥ d) is feasible. However, in certain conditions, such as the SAE specification discussed in Sec.

7.2, satisfying the constraint may not be possible even when all measurements are enabled (b = 1),

rendering the DiagRAPS optimization problem infeasible. To address this feasibility issue, this

paper adopts a soft constraint approach using a vector of positive slack variables µ= [µ1, ..., µn]
⊤.
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For the local optimum approach to solve Problem (5.4), the revised objective function is

formulated as

Cµ(x,b,µ) = ∥x− x̂−∥2
P− +

m

∑
i=1

bi

σ2
i
(yi −hix)2 + γ

n

∑
j=1

µ (6.4)

where γ ∑
n
j=1µ is the soft constraint penalty term and γ is a scaling parameter that determines

the penalty’s influence. The optimization problem, as originally stated in Problem (6.1), is then

reformulated to a Mixed-ILP problem that accommodates the relaxed constraints:

min : Cµ(b,µ : xℓ−1) =

m

∑
i=1

bi

σ2
i
(hi xℓ−1 − yi)

2 + γ

n

∑
j=1

µ

s.t.: g j b+µ j ≥ d j −L j,

µ j ∈


[0, L j], g j1> d j

[0, g j1], g j1≤ d j

for j = 1, ...n,

bi ∈ {0, 1} for i = 1, ...m.



(6.5)

where L j = max(d j −g j 1, 0), g j is the j-th row of G, d j = Jl( j)−J−d ( j) is the j-th element of d,

and Jl( j) and J−d ( j) represent the j-th element of Jl and Jd , respectively.

Problem (6.5) considers two conditions. First, when the performance specification con-

straints are feasible the maximum diagonal information that can be achieved for the j-th state is

greater than the specification:

g j 1+J−d ( j)> Jl( j)⇒ g j 1> d j.
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Therefore, L j = 0 and µ j = 0. In this situation, Problem (6.5) is equivalent to the original Problem

(6.1). Second, when either the performance constraints is infeasible (i.e., g j1< d j) or all measure-

ments are required to be selected (i.e., g j1 = d j), L j = d j −g j 1, which is positive. The constraint

in Problem (6.5) is then

g j b+µ j ≥ d j −L j

⇒ g j b+µ j ≥ g j 1

⇒ g j b+J−d ( j)+µ j ≥ g j 1+J−d ( j)

where g j b+ J−d ( j) is the posterior information of the j-th state for a given b, g j 1+ J−d ( j) is the

maximum achievable posterior information, and µ j represents the reduction of information relative

to the maximum achievable information to balance the risk relative to the feasibility. Therefore, µ j

ranges from g j 0 to g j 1 (i.e., µ j ∈ [0, g j 1]).

The convex formulation for the globally optimal approach in the binary case is presented

as Problem (C.8) in Appendix C. Problem (6.2) in the non-binary solution can be relaxed with

soft constraints similar to Problem (6.5), where the objective function is still Cµ(b,µ : xℓ−1) with b

being non-binary.

This relaxation requires the designer to specify a value for γ . For the GNSS applications

employed in this article, the choice of γ is discussed in Sec. 7.2.
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Chapter 7

Experimental Evaluation

7.1 Data Description

The experimental evaluation focuses on demonstrating the efficacy of DiagRAPS com-

pared to traditional approaches. Both the DGNSS and PPP approaches are evaluated. The VN-

DGNSS approach utilizes equivalent information to PPP but provides the correction pattern dif-

ferently. As it requires the receiver’s native solution, this chapter does not concentrate on Dia-

gRAPS in VN-DGNSS applications. The experiment implementation code can be found in https:

//github.com/Azurehappen/GNSS-Risk-Averse-Estimation.

7.1.1 DGNSS Data

The open-source University of Texas Challenge for Urban Positioning (TEX-CUP) dataset

is utilized for the experimental evaluation in DGNSS applications [?]. The evaluation encompasses

a multi-GNSS application, incorporating signals from GPS L1, GLONASS L1, GALILEO E1, and

Beidou B1. The elevation cut-off is 10 degrees. These GNSS measurements were collected using
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two Septentrio receivers (one for the rover and one for the base) to enable DGNSS applications.

For the purpose of evaluation, the dataset also provides a ground truth trajectory. During the exper-

iment, the vehicle route traverses the west campus of The University of Texas at Austin and down-

town Austin. This route includes portions with a challenging environment containing viaducts, tall

buildings, large structures and trees. It is a hard-urban area that is prone to frequent and significant

outlier measurements. Visual depictions of the street views are available in Fig. 5 of [?]. When the

vehicle traverses the urban area with narrow lanes and tall buildings surrounding, the GNSS signal

may experience serve multipath and non-line-of-sight errors for any satellite. This dataset spans

approximately 1.5 hours, encompassing about 5000 epochs with one-second measurement intervals

(i.e., T = 1).

7.1.2 PPP Data

This experimental evaluation focuses on GNSS positioning using DiagRAPS and RT-PPP

corrections. To be comparable with automotive applications, a low-cost u-blox F9P receiver is used

to acquire the raw GNSS measurements on a moving platform. The analysis of multi-GNSS RT-

PPP is performed using GPS L1, Galileo E1, and Beidou B1 signals. The elevation cut-off is 10

degrees. The experimental vehicle navigated through urban and residential zones near University

of California-Riverside (UCR), traversing areas characterized by narrow lanes lined with tall trees,

under a relatively clear view of the sky. Throughout the experiment, the u-blox maintained commu-

nication with a nearby base station. The ground truth trajectory was established using u-blox’s na-

tive multi-GNSS, dual-frequency, integer-fixed RTK solution to achieve centimeter accuracy. This

dataset spans approximately 20 minutes, encompassing about 1300 epochs with one-second mea-

surement intervals.
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7.2 Performance Specification and Feasibility

The SAE J2945 specification stipulates accuracy requirements for highway vehicle appli-

cations, requiring horizontal accuracy to be better than 1.5 m and vertical accuracy better than 3 m,

both at 68% probability. The computation of the performance constraint parameter Jl to achieve

the SAE J2945 specification is described in Section III-B of [29]. The optimization problem perfor-

mance constraint is applied only for the position and velocity variables, by defining Jl = [J⊤p ,J⊤v ]⊤

with

Jp = [1.389, 1.389, 0.347]⊤ and Jv = [2.778, 2.778, 0.694]⊤.

The first two elements of Jp and Jv specify the local tangent plane north and east direction informa-

tion bounds, while the third elements are that of vertical direction.

The SAE J2945 standard applies for open sky conditions. However, the primary focus

of this experiment is on challenging scenarios, such as hard urban environments, where the avail-

ability and quality of satellite signals is often compromised. Therefore, the optimization formulas

discussed in Sec. 6.5 are used to perform the experimental analysis.

This relaxation requires the designer to specify a value for γ . When the prior x− is re-

liable, each measurement residual term (i.e., (hi x− yi)
2/σ2

i ) typically remains below 10 in GNSS

applications. However, in areas with significant outliers, the value of this term could rise above 100.

The optimization strategy employed in Problem (6.5) is intended to selecting measurements with

lower residuals, indicative of lower risk, and discarding those with excessively high values. Choos-

ing an appropriate value for γ is crucial. If γ is too small, the optimization favors larger values of µ

minimizing the objective function at the expense of using fewer or no measurements (losing infor-

mation). Conversely, a very large γ results in the selection of all measurements, regardless of their
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risk. For the analysis conducted in this experiment, γ is set to 50. This value is chosen to balance the

trade-off between rejecting measurements with high risks and retaining a sufficient value to satisfy

the performance specification.

7.3 Metrics

Roadway applications typically focus on horizontal positioning accuracy. Vertical posi-

tioning accuracy are included for reference. The cost function defined in eqn. (4.23) quantifies the

risk for all states in x and is dimensionless. Metrics are thus established as follows:

• North, East and Down (NED) frame coordinate errors: δ pN , δ pE , δ pD;

• Posterior error covariance of the position in NED frame: σ2
N , σ2

E , σ2
D;

• Horizontal positioning error: HE =
√

δ p2
N +δ p2

E ;

• Vertical positioning error: V E = |δ pD|;

• Horizontal estimation error Standard Deviation (STD): HorST D =
√

σ2
N +σ2

E ;

• Vertical estimation error STD: VerST D =
√

σ2
D;

• For the binary case, the optimal objective value is quantified by Cµ(x+k , b,µ) as defined in

eqn. (6.4) or Cg(x+k ,b,q,µ) as defined in eqn. (C.7). In the experimental results, Cµ repre-

sents the local optimal objective value obtained from the BCD method, while Cg denotes the

global optimal objective value solved by CVX MOSEK;

• Estimation risk as quantified by C(x+k , b) as defined in eqn. (4.23);

• DiagRAPS penalty term: γ ∑
n
j=1µ;
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The metrics intentionally include actual errors (e.g., δ pN , δ pE , δ pD) and theoretical char-

acterization of those errors (e.g., σ2
N , σ2

E , σ2
D). This enables comparison of how the estimator is

actually doing with how the theory predicts that it is doing.

7.4 Comparison of DiagRAPS Optimization Methods

Before comparing the binary and non-binary cases presented in Chapter. 6, it is useful to

compare the global or local approach for the binary case. Two approaches to solve the DiagRAPS

for the binary case, as discussed in Sec. 6.3,

Evaluating the entire dataset for the globally optimal approach is impractical, due to its

runtime. Therefore, this comparison focuses on a subset containing 200 one-second epochs of TEX-

CUP driving data. The runtime for the globally optimal approach for this subset took about 2 hours.

The experiment results were processed using MATLAB on an AMD 5800x processor.

7.4.1 Global versus Local Optimization

To accurately assess how close the locally optimal approach is to the globally optimal

approach, it is crucial to compare results computed from exactly equivalent objective functions and

parameter values. To achieve this, in this subsection only, both solutions utilize the same values of

x−, P−, y, H, and R at each epoch. Starting from these same settings, each approach converges

to its optimal posterior state: x+ and P+. After convergence, we record and evaluate the optimal

objective value and computation time using for each approach separately; then, only the globally

optimal posterior state is used for time propagation.
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Fig. 7.1 illustrates the comparison of optimality between the two solutions. Subplot

(a) shows the objective values of the globally optimal solution in blue and of the locally optimal

solution in red. Subplot (b) presents the difference in optimal objective value (i.e., Cµ −Cg). These

graphs show that the global optimum approach always achieves a lower optimal objective value as

expected. The gap between the globally optimal and locally optimal solutions is generally narrow.

Subplot (c) displays the computation time at each epoch for those two solutions. The

computation time for the globally optimal approach ranges from a few seconds to several minutes

per epoch, rendering it infeasible for real-time applications. In contrast, the locally optimal approach

has computation time per epoch that is typically less than 0.1 seconds, which is significantly more

efficient than the globally optimal approach.

7.4.2 State Estimation Performance

To analyze and compare the overall and actual state estimation performance, we inde-

pendently (i.e., each approach used its own posterior state in the time propagation) processed the

200-second data subset data using each approach. Because each approach delivers different pos-

terior information at the initial epoch, their optimization problems are distinct at all subsequent

times, having different values for G, d, and P−. Therefore, they are not directly comparable epoch-

by-epoch. The non-binary DiagRAPS results are included for comparison. Fig. 7.2 presents the

comparison of the cumulative probability distribution of horizontal positioning errors, vertical po-

sitioning errors, and estimation risk, leading to the following observations:

Subplot a and b: The global and local optimization approaches for binary DiagRAPS offer similar

positioning accuracy. Non-binary DiagRAPS has slightly better performance in the horizontal
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accuracy. Specifically, for horizontal positioning performance, 96.00% of positioning errors

were less than 1.5 meters for the local optimum binary approach, compared to 98.00% for

the global optimum binary approach and 98.50% for the non-binary approach. For vertical

positioning performance, 97.50% of positioning errors were less than 3 meters for the local

optimum approach, compared to 97.00% for the global optimum approach and 97.00% for

the non-binary approach.

Subplot c: All approaches yield comparable estimation risks. The globally optimal approach does

offer higher probability at the lower level of risk levels. But the difference between them is

not notable.

7.4.3 Summary

This subsection has highlighted the trade-offs between the optimality of the solution and

the computational efficiency required for real-time applications. While the globally optimal ap-

proach provides the best solution for a given objective function, the locally optimal approach offers

a very similar solution at significantly lower computational cost. The performance difference be-

tween globally optimal binary approach and non-binary approach are not significant. Therefore, for

the case of binary b, only the locally optimal solution method is used for the subsequent DiagRAPS

performance evaluation.
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7.5 Estimators

The performance evaluation of DiagRAPS estimation is conducted using four distinct es-

timators. These estimators use identical time propagation procedures; however, their measurement

update processes differ.

Kalman Filter (KF): Determines the posterior state x+ by minimizing the cost function as defined

in eqn. (4.23) utilizing all measurements (i.e., b = 1).

TD: Selects b based on the threshold test in eqn. (5.1) with λ = 2. It then determines the posterior

state x+ by minimizing the cost function as defined in eqn. (4.23).

RAPS-bi: Uses DiagRAPS to choose binary b to minimize the cost function in eqn. (6.4). The

binary b determines which measurements are used.

RAPS-nb: Uses DiagRAPS to choose non-binary b to minimize the cost function in eqn. (6.4) The

non-binary b determines the measurement de-weighting.

The evaluation of these estimators focuses on their risk and the statistical analysis of

positioning errors, examining key aspects.

7.6 Evaluation in DGNSS Applications

This section compares the performance of DiagRAPS with traditional estimation methods

in the DGNSS approach, utilizing the entirety of the DGNSS dataset.
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7.6.1 Overall Performance Across the Four Estimators

Fig. 7.3a plots the risk versus time for the four estimation approaches. This graph high-

lights that DiagRAPS, both in its binary and non-binary forms, consistently achieves lower risk in

over 98% of epochs compared to KF and TD. This superior performance is particularly evident

during vehicular movement in urban areas that is characterized by frequent and severe GNSS mul-

tipath (i.e., k ∈ [500, 4500]). In contrast, during stationary phases or in open-sky environments (i.e.,

k ≤ 500 or k > 4500), the difference in estimation risk among the methods is less pronounced.

Fig. 7.3(b) show the values of the penalty term in the soft constraint approaches. A zero value in

this penalty term indicates that the performance specification constraint is being met. A non-zero

value means the constraint is not feasible. Fig. 7.3(c) shows the number of measurements excluded

at each epoch (i.e, for the non-binary case, the i-th measurement is considered as excluded when

bi ≤ 0.01.) No green graph is presented in this subplot as the KF uses all measurements. The

purple graph shows the total number of measurements available. Although both binary and non-

binary DiagRAPS have similar risk profiles and penalty term values, certain epochs, such as around

the 3000th epoch, show noticeable differences between the two. These differences underscore the

flexibility advantage of non-binary DiagRAPS. Unlike the binary approach, which can only select

or reject measurements outright, non-binary DiagRAPS has more flexibility to trade-off between

constraint satisfaction and cost minimization by de-weighting measurements.

In many epochs, the risk of the KF and TD are sufficiently similar that the KF graphs are

covered by the TD graphs in the visual representations. The yellow graphs in Fig. 7.3(c) reveal that

most measurement residuals satisfy the TD test, even with the relatively small decision threshold

λ = 2.0. There are several epochs where KF exhibits significantly higher risk compared to TD,
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Table 7.1: Horizontal position error statistics.

Methods
Mean
(m)

RMS
(m)

Max
(m)

Prob. of
HE ≤ 1.0 m

Prob. of
HE ≤ 1.5 m

EKF 6.33 11.55 103.42 42.45% 47.47%

TD 4.44 7.84 103.42 43.65% 49.32%

RAPS-bi 5.84 12.82 69.83 57.38% 63.90%

RAPS-nb 4.23 9.73 56.22 60.22% 67.97%

Table 7.2: Vertical position error statistics.

Methods
Mean
(m)

RMS
(m)

Max
(m)

Prob. of
VE ≤ 3.0 m

EKF 15.24 26.04 123.57 43.52%

TD 11.00 18.08 100.52 45.29%

RAPS-bi 9.49 22.26 147.85 65.52%

RAPS-nb 7.51 18.88 131.93 68.59%

demonstrating TD’s ability to effectively reject severe outliers. In contrast, DiagRAPS adopts a

different approach, selecting a subset of measurements that optimally minimizes the risk when per-

formance specifications are achievable or, alternatively, minimizing the cost using a soft constraint

when strict adherence to the performance specification is not feasible. In such cases, when the soft

constraint penalty term is non-zero, the estimator is aware that the specification is not being met and

can alert the maneuver planner for the application so that the application can adjust accordingly.

The KF and TD approaches cannot do the same due to the fact that their covariance is wrong (i.e.,

inconsistent) due to the inclusion of outlier measurements.

Tables 7.1 and 7.2 display statistics for each estimator for various of the metrics defined

in Section 7.3 for the horizontal and vertical positioning. The best results in each category is high-

lighted in bold.
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Non-binary DiagRAPS achieves the lowest mean in positioning errors, while TD demon-

strates the lowest RMS error. All estimators record significant maximum errors, attributable to

severe outlier conditions encountered in the challenging portions of the experiment.

Fig. 7.4 presents the cumulative probability distribution for horizontal (subplot (a)) and

vertical (subplot (b)) positioning errors. The legend defines a color coding for each estimator that is

consistent with Fig. 7.3. The cumulative probability distribution graphs elucidate the superior per-

formance of both DiagRAPS approaches, showing that they achieve probability of achieving smaller

errors. Specifically, non-binary DiagRAPS outperforms other methods, with approximately 68%

probability of maintaining horizontal errors below 1.5 m and vertical errors below 3 m. This level

of performance in this challenging urban environment even meets the SAE specifications which are

defined for open sky conditions, underscoring the efficacy of the non-binary DiagRAPS approach

in challenging environments.

Fig. 7.5 is a scatter plot showing the horizontal positioning error on the y-axis and pre-

dicted posterior error STD (i.e., the square root of the norm of the appropriate diagonal elements of

P+) on the x-axis, using the same color scheme as in Fig. 7.3 for KF, TD, RAPS-bi, and RAPS-nb.

The left plot displays the horizontal positioning error. The right plot presents the vertical positioning

error. The black line in each plot represents the line-of-consistency along which the actual position-

ing performance equals the predicted estimation accuracy. Consequently, the plots are divided into

two distinct regions:

1. Over-confident region: The region above the line-of-consistency represents a risky and

unsafe estimation scenario. In this region the estimator is overconfident because its actual
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Table 7.3: Percentage of results in the conservative region.

KF TD RAPS-bi RAPS-nb

Horizontal 42.43% 44.06% 70.00% 75.16%

Vertical 13.03% 13.77% 67.17% 69.37%

estimation error is greater than the estimators theoretical characterization of its estimation

error.

2. Conservative region: The region above the line-of-consistency represents a conservative

estimation scenario. In this region, the estimator achieves an actual accuracy that is better

than it predicts.

Table 7.3 summarizes the percentage of results from Fig. 7.5 in the conservative regions

for each estimator. Non-binary DiagRAPS achieves the highest performance, securing 75.16% and

69.37% of points in the conservative regions for horizontal and vertical cases, respectively. The

DiagRAPS approaches demonstrate an approximate advantage of 30% and 50% in conservative

performance over the other methods. These statistics indicate that KF and TD tend to produce more

over confident estimates. For example in Region 1, the KF and TD predict accuracy with a STD

of 0.8-1.5 meters, while the actual positioning errors often exceed 2-10 meters. In contrast, the

Region 1 points from DiagRAPS are generally closer to the line-of-consistency, suggesting that the

DiagRAPS does a better job of characterizing the accuracy that it is achieving.

7.6.2 Binary versus Non-binary RAPS

The preceding sections have established that DiagRAPS is both better able to achieve a

given specification and better able to predict its accuracy in challenging measurement conditions.
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Table 7.4: Position error probabilities for binary and non-binary DiagRAPS under feasibility and
infeasible conditions.

HE ≤ 1.0 m HE ≤ 1.5 m VE ≤ 3.0 m

Feasible
Constraint

RAPS-bi 89.49% 94.57% 92.66%

RAPS-nb 90.82% 96.05% 95.47%

Soft
Constraint

RAPS-bi 39.64% 46.95% 50.53%

RAPS-nb 45.95% 54.88% 52.14%

This section focuses on differentiating between binary and non-binary DiagRAPS in terms of their

performance under different feasibility conditions.

Fig. 7.6 (a) and (b) show the DiagRAPS the DiagRAPS cumulative probability distribu-

tions of the positioning errors for horizontal and vertical results, respectively, for epochs that are

feasible. Subplots (c) and (d) display results for epochs that are infeasible and therefore employ

soft constraints. Notably, feasible constraint conditions typically coincide with scenarios where the

vehicle experiences a relatively clear view of the sky. In contrast, soft constraints are necessitated

in more challenging environments where insufficient measurements are available to meet the per-

formance specifications. The proportion of epochs with feasible constraints is 35.59% for binary

DiagRAPS and 31.78% for non-binary DiagRAPS. The graphs show that the binary and non-binary

DiagRAPS perform similarly when the constraints are feasible. Non-binary DiagRAPS exhibits su-

perior horizontal positioning performance in more challenging environments where soft constraints

are applied.

Table 7.4 summarizes the probability metrics for this comparison, showing that non-

binary DiagRAPS outperforms binary DiagRAPS across all metrics. Under feasible performance

specification constraints, both binary and non-binary DiagRAPS exceed SAE specifications with

comparable performance. However, when the problem is infeasible and soft constraints are re-
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quired, non-binary DiagRAPS demonstrates an approximate 7% advantage in horizontal probabil-

ity metrics. This advantage can be attributed to the ability of non-binary DiagRAPS to select more

measurements with diverse weightings to minimize cost, thereby offering enhanced robustness.

7.6.3 DiagRAPS Computation Time

Fig. 7.7 displays a histogram of the per epoch computation time for binary and non-

binary DiagRAPS. The computation time for KF and TD is typically less than 0.01 seconds, as these

methods do not involve optimization. Both binary and non-binary DiagRAPS maintain computation

times typically less than 0.06 seconds. Non-binary DiagRAPS achieves faster computation times

compared to binary DiagRAPS, attributed to the less complex LP problem it solves, which can be

processed more efficiently than the Mixed-ILP problem in binary DiagRAPS.

7.7 Evaluation in RT-PPP Applications

This sections compares the performance of DiagRAPS with traditional estimation meth-

ods in the RT-PPP approach, utilizing the entirety of the PPP dataset. Section 7.6 has demonstrated

that non-binary DiagRAPS yields the best overall performance and lower computation costs com-

pared to binary DiagRAPS. Hence, this section primarily focuses on the results from non-binary

DiagRAPS.

The performance of the three estimators is evaluated based on their estimation risk and

positioning accuracy. The subplot a in Fig. 7.8 display the risks across all epochs. The red graph

indicates that DiagRAPS consistently achieves the lowest risk. Both KF and TD exhibit risks that

are significantly higher than that of DiagRAPS. In many epochs, the risk difference between KF
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and TD is small, so the KF data is covered by the TD data. This shows that for most time epochs,

most residuals passed the TD test, even with the reasonable small value of λ . Notably, during

specific epochs (around 600s and 1000s), KF demonstrates a pronounced risk, whereas TD exhibits

a reduced risk due to its ability to reject severe outliers.

The subplot b in Fig. 7.8 display the number of measurements discarded by DiagRAPS or

TD. DiagRAPS selects a subset of measurements to minimize risk while achieving the performance

specifications. The solution is feasible for all epochs, even while removing many more measure-

ments than TD. At each epoch, DiagRAPS adapts both the number of satellites removed and the

specific satellites removed based on the number and geometry of the available measurements as

well as their specific residuals. This selection results in the reduced risk demonstrated in the top

figure while achieving the performance specification.

Fig. 7.9 presents the cumulative probability distribution for both horizontal and vertical

positioning errors, using a consistent color scheme with Fig. 7.8. Tables 7.5 and 7.6 provide a

summary of statistics for each estimator for the horizontal and vertical positioning, including the

mean, RMS, maximum horizontal and vertical errors, and the probability of the positioning errors

being less than the specified threshold corresponding to the SAE specification. The best results in

each category is highlighted in bold.

Throughout the entire experimental period, DiagRAPS consistently delivers superior re-

sults, except for the probability of vertical errors being less than 3 meters, which is 3.84% lower

than that of TD. However, DiagRAPS exhibits the lowest mean, RMS, and maximum errors in ver-

tical statistics, while KF and TD result in a high percentage of severe errors, as shown in subplot

b of Fig. 7.9. Additionally, DiagRAPS showed a higher probability for vertical errors being less
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Table 7.5: Horizontal position error statistics for PPP experiment.

Methods
Mean
(m)

RMS
(m)

Max
(m)

Prob. of
HE ≤ 1.0 m

Prob. of
HE ≤ 1.5 m

EKF 0.94 1.65 12.72 74.88% 86.13%

TD 0.77 1.00 4.72 76.55% 88.19%

RAPS-nb 0.70 0.86 3.84 77.34% 93.42%

Table 7.6: Vertical position error statistics for PPP experiment.

Methods
Mean
(m)

RMS
(m)

Max
(m)

Prob. of
VE ≤ 3.0 m

EKF 1.72 2.81 20.01 84.63%

TD 1.54 2.18 11.17 87.00%
RAPS-nb 1.46 1.99 6.23 83.52%

than 1.5 meters. For horizontal errors less than 1.5 meters, DiagRAPS demonstrates an advantage

of 7.29% over KF and 5.23% over TD. SF RT-PPP performance of these three estimators all surpass

the SAE requirements.
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Figure 7.1: Comparison of optimality between the globally and locally optimal approaches. Results
were derived using the same set of coefficients for the objective function at each epoch. Subplot
(a) shows the optimal objective values obtained by each approach. Subplot (b) shows the difference
between the objective values obtained by each approach. Subplot (c) shows the computation time
in seconds required to solve the optimization problem at each epoch.
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Figure 7.2: Cumulative probability curves for DiagRAPS using the globally and locally optimal ap-
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green curve shows the non-binary DiagRAPS results. Subplot (a) shows the cumulative probability
of the horizontal positioning errors. Subplot (b) shows the cumulative probability of the horizontal
positioning errors. Subplot (c) shows the cumulative probability of the optimal objective values
(i.e., Risk).
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Figure 7.3: (a) Estimation risk for each epoch (KF is green, TD is yellow, RAPS-bi is red, RAPS-nb
is blue). (b) Soft constraint penalty term values of binary and non-binary DiagRAPS as defined in
eqn. (6.4). (c) Number of measurements excluded by TD, RAPS-bi, and RAPS-nb. Graph colors are
as described for Subplot (a). The purple graph shows the total number of measurements available
in each epoch.
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Figure 7.7: Probability histogram of the per epoch computation time for binary and non-binary
DiagRAPS. The red bars represent binary DiagRAPS, and the blue bars represent non-binary Dia-
gRAPS. In areas of overlap, the dark blue color highlights the shorter bar.
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Figure 7.8: (a) Experimental results for the risk from KF in green, TD in yellow, and non-binary
DiagRAPS in blue. (b) The number of measurements removed by either DiagRAPS or TD (left y-
axis) and the total number of measurements available (right y-axis). The number of measurements
available is equivalent to the number used by the KF.
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Chapter 8

Conclusion and Future Research Ideas

This article first reviewed two major GNSS pseudorange error mitigation approaches:

DGNSS and RT-PPP, detailing their models and discussing correction sources. It then presented

and validated two computationally efficient approaches for solving the risk-averse linear state esti-

mation problem with a diagonal performance specification (i.e., DiagRAPS). These methods, lever-

aging BCD for both binary and non-binary measurement selection variables, ensure locally optimal

solutions. The binary DiagRAPS focuses on selecting or rejecting measurements, while non-binary

DiagRAPS offers a flexible approach by weighting measurements.

The DiagRAPS optimization problem for binary measurement selection has been refor-

mulated into a convex programming problem, solvable by existing tools that guarantee a globally

optimal solution. For applications where time is not a critical factor, this globally optimal approach

provides the best solution for binary DiagRAPS. For the application of interest herein, the BCD ap-

proach provides results very similar to the global optimum, with a significantly lower computational

cost, making it suitable for real-time applications.
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This study also introduced relaxed formulations of DiagRAPS with soft constraints to

accommodate situations where the specified performance was infeasible with the available mea-

surements. This approach allows DiagRAPS to balance the risk of outlier inclusion relative to

sacrificing feasibility. When this occurs, DiagRAPS is able to communicate the lack of feasibility

to the application-level planner so that it can adjust the application behavior appropriately.

The experimental evaluation conducted multi-GNSS SF applications using both DGNSS

and PPP approaches. For DGNSS, real-world driving data from hard urban environments was used,

while for PPP, the data was collected under relatively clear sky conditions. RT-PPP corrections,

applicable globally without the need for local base stations, overcome the limitations of DGNSS.

In the DGNSS evaluation, the performance of both binary and non-binary DiagRAPS approaches

was assessed and compared to solutions using all measurements in a KF and a traditional outlier

rejection approach based on normalized residual magnitudes. The results showed that binary and

non-binary DiagRAPS offered an advantage of at least 14% in horizontal and 20% in vertical SAE

probability metrics compared to KF and TD, as detailed in the rightmost columns of Tables 7.1 and

7.2. Notably, the non-binary approach had the lowest computation cost and the best overall perfor-

mance. In the PPP evaluation, KF, traditional TD, and non-binary DiagRAPS were evaluated and

compared. The results indicated that all approaches exceeded SAE specifications when employ-

ing PPP techniques for real-time applications. Particularly in challenging scenarios with obscured

sky views and heightened multipath effects, the DiagRAPS approach demonstrated its efficacy in

decreasing outlier effects, leading to less severe positioning errors. Overall, DiagRAPS showed

improvements of 5.23% over TD and 7.29% over KF in horizontal positioning performance, with

comparable results in vertical performance according to Fig. 7.9, Tables 7.5 and 7.6.
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Several avenues for future research are interesting. First, this article concentrated on

diagonal performance specifications due to the linear constraints that facilitate computationally ef-

ficient solutions and the ease of incorporating soft constraints when no feasible solutions exist. For

computation-insensitive applications, incorporating the full performance specification (i.e., J+b ≥ Jl)

could yield more robust results, as the joint information could become significant. However, prop-

erly applying soft constraints to RAPS estimations dominated by semi-definite programming prob-

lems presents a greater challenge. Second, enhanced positioning accuracy could be achieved by

incorporating RTK with GNSS carrier phase measurements. This extension would necessitate a

double-difference operation on the carrier phase measurements, resulting in a non-diagonal mea-

surement noise matrix (i.e., R). Therefore, investigating RAPS estimation for non-diagonal R ma-

trices presents an intriguing opportunity. While diagonalizing R is straightforward, this method

distributes outlier effects across multiple transformed measurements. Additionally, in PPP applica-

tions, incorporating carrier-phase measurements aligns with the PPP RTK technique. Leveraging

carrier-phase measurements in an SF context presents challenges. This direction becomes more

viable with the anticipated launch of the third stage of the SSR schedule by IGS in the near fu-

ture [10]. Extending the DiagRAPS approach to multi-frequency applications within PPP is also

intriguing. Significant ionospheric error sources can be substantially mitigated through measure-

ment combinations. Third, urban areas often lack a sufficient number of outlier-free GNSS signals

to meet SAE specifications. In these cases, sensor fusion techniques incorporating a broader array

of sensors (e.g., Inertial Measurement Unit (IMU), camera-aided systems, lidar) could be advanta-

geous. Developing such extensions would necessitate further advancements in DiagRAPS methods

for non-linear systems.
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Appendix A

Formulation of Linear Performance

Specification Constraint

The purpose of this appendix is to reformulate the diagonal performance specification into

a form that is a linear in the measurement selection variable.

The optimization problem of eqn. (5.3) has the constraint

diag(J+b )≥ Jl where J+b =
m

∑
i=1

b2
i

σ2
i

h⊤
i hi +J−, (A.1)
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where Jl is a positive semi-definite and diagonal matrix. This constraint can be manipulated as

follows:

diag

(
m

∑
i=1

b2
i

σ2
i

h⊤
i hi +J−

)
≥ Jl

diag

(
m

∑
i=1

b2
i

σ2
i

h⊤
i hi

)
≥ Jl −J−d

G(b◦b)≥ d (A.2)

where J−d = diag(J−) and b ◦b is the element-wise product (i.e., b ◦b = [b2
1, ..., b2

m]
⊤), d = Jl −

diag(J−) and

G =



h2
11

σ2
1

h2
21

σ2
2

. . .
h2

m1
σ2

m

h2
12

σ2
1

h2
22

σ2
2

. . .
h2

m2
σ2

m

...
...

. . .
...

h2
1n

σ2
1

h2
2n

σ2
2

. . . h2
mn

σ2
m


. (A.3)

For the binary case, b2
i = bi; therefore, the constraint can be represented as

Gb ≥ d. (A.4)
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For the non-binary case, the optimization problem (5.3) is written as

x̂,b =argmin
x,b

∥x− x̂−∥2
P− +

m

∑
i=1

b2
i

σ2
i
(yi −hix)2

s.t.: G(b◦b)≥ d

bi ∈ [0, 1] for i = 1, ...m.


(A.5)

Let νi = b2
i ∈ [0,1]. Therefore, optimization problem (A.5) can be written as

x̂,ν =argmin
x,ν

∥x− x̂−∥2
P− +

m

∑
i=1

νi

σ2
i
(yi −hix)2

s.t.: Gν ≥ d

νi ∈ [0, 1] for i = 1, ...m.


(A.6)

Optimization problem (A.6) is linear in ν. In the problem statement, the symbol ν is a dummy

variable. In the main body of the article (see Problem (5.5)), ν will be replaced by b.
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Appendix B

Derivation from Continuous-time Model

to Discrete-time Model

The purpose of this appendix is to derive the PVA discrete-time model from its continuous-

time model.

The continuous-time state vector is defined as

x(t) = [pr(t), vr(t), ar(t),∆γ(t), rc(t)]⊤ ∈ ℜ
n (B.1)

where pr(t), vr(t), ar(t) ∈ ℜn, and ∆γ(t) ∈ ℜns .

The position, velocity, acceleration, and clock system continuous-time models are defined

as

ṗr(t) = vr(t), v̇r(t) = ar(t), ȧr(t) = ηa(t), ∆̇
γ

i (t) = rc(t), ṙc(t) = η∆(t), (B.2)
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where ηa(t) = [η2
ax
(t),η2

ay
(t),η2

az
(t)] is a vector of continuous-time Gaussian white noise terms with

Power Spectral Density (PSD) of σ2
ax

, σ2
ay

, and σ2
az

, respectively, η∆(t) is the continuous-time Gaus-

sian white noise with PSD of σ2
∆

, and ∆̇
γ

i (t) is the derivative of i-th element of ∆γ(t). Acceleration

ar and clock drift rc are modeled as a random walk because they are updated frequently, with the

measurement update step occurring every second.

Therefore, the continuous-time system is ẋ(t) = F x(t)+Gη(t), where

F =



0 I3 0 0 0

0 0 I3 0 0

0 0 0 0 0

0 0 0 0 Tns

0 0 0 0 0


, G =



0 0 0 0 0

0 0 0 0 0

0 0 I3 0 0

0 0 0 0 0

0 0 0 0 1


, η(t) =



0

0

ηa(t)

0

η∆(t),


(B.3)

and η(t) ∼ N (0,Q) is the continuous-time process noise where Q = diag([0; 0; σ2
a; 0; σ2

∆
])

where σ2
a = [σ2

ax
; σ2

ay
; σ2

az
]. Other symbols are defined after eqn. (4.3).

The corresponding discrete-time state-space model is represented by

xk+1 = Fxk +wk,

Pk+1 = FPk F⊤+Qd .
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where Pk is the error covariance matrix of state xk. Using the methods discussed in Section 4.7

of [8], the exact solution of F is derived by

F(τ, t) = expF (τ−t)

F(T ) = expF T

= I+F T +
1
2
(F T )2 + · · ·

= I+F T +
1
2
(F T )2

=



I3×3 T I3×3
1
2 T 2 I3×3 0 0

0 I3×3 T I3×3 0 0

0 0 I3×3 0 0

0 0 0 Ins×ns Tns

0 0 0 0 1


, (B.4)
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where T = tk+1 − tk. The exact solution of process noise matrix Qd is derived by

Qd =
∫ tk+1

tk
F(tk+1,s)GQ,G⊤ F(tk+1,s)⊤ds

=
∫ T

0
F(s)GQG⊤ F(s)⊤ds

=
∫ T

0



0 0 1
2 s2 I3×3 0 0

0 0 sI3×3 0 0

0 0 I3×3 0 0

0 0 0 0 Tns

0 0 0 0 1


Q



0 0 0 0 0

0 0 0 0 0

1
2 s2 I3×3 sI3×3 I3×3 0 0

0 0 0 0 0

0 0 0 T⊤
ns

1


ds

=



T 5

20 Qa
T 4

8 Qa
T 3

6 Qa 0 0

T 4

8 Qa
T 3

3 Qa
T 2

2 Qa 0 0

T 3

6 Qa
T 2

2 Qa T Qa 0 0

0 0 0
σ2

∆

3 T 3Λns
σ2

∆

2 T 2 Tns

0 0 0
σ2

∆

2 T 2 T⊤
ns

T


(B.5)

where Λns is a ns by ns matrix with all elements equal to one.
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Appendix C

Convex Problem Formulation of Binary

DiagRAPS

This appendix is to derive the convex optimization form of DiagRAPS for binary mea-

surement selection variables b. The DiagRAPS optimization problem of eqn. (5.4) for binary vector

b is written as

x̂,b =argmin
x,b

∥x− x̂−∥2
P− +

m

∑
i=1

b2
i

σ2
i
(yi −hix)2

s.t.: Gb ≥ d,

bi ∈ {0, 1} for i = 1, ...m.


(C.1)

where b2
i = bi is the nature of binary variables. Therefore, Problem (C.1) can be represented as

x̂,b =argmin
x,b

∥x− x̂−∥2
P− +

m

∑
i=1

(yi bi −hi bi x)2

σ2
i

s.t.: Gb ≥ d,

bi ∈ {0, 1} for i = 1, ...m.


(C.2)
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Introduce a new vector q= [q1; ...; qi; ...; qm]∈Rn×m where qi = bi x= [qi1, ..., qi j, ..., qin]
⊤ ∈

Rn where qi j = bi x j where x j is j-th element of x. While the multiplication bi xi is non-convex, non-

linear, and mixed-binary, the new variable can be constrained by linear constraints as

xmin ≤ x ≤ xmax, (C.3)

x−xmax(1−bi)≤ qi ≤ bi xmax, (C.4)

bi xmin ≤ qi ≤ x−xmin(1−bi), (C.5)

where xmin and xmax are the lower bound and upper bound of x. respectively. For a state estimation

problem, these bounds can be set to x̂−±∆ where ∆ can be a large positive value of engineering

bound. The linear constraints in eqn. (C.4) and eqn. (C.5) construct interesting features for q.

1. When bi = 1, eqn. (C.4) is x ≤ qi ≤ xmax and eqn. (C.5) is xmin ≤ qi ≤ x, which ensure that

qi = x;

2. When bi = 0, eqn. (C.4) is x−xmax ≤ qi ≤ 0 and eqn. (C.5) is 0 ≤ qi ≤ x−xmin, which ensure

that qi = 0.

The linear constraints therefore guarantee that the new variables qi j is consistent with its definition

of bi x j. In consequence, for binary vector b, the convex objective function is written as

Cc(x,b,q) = ∥x− x̂−∥2
P− +

m

∑
i=1

(yi bi −hi qi)
2

σ2
i

,
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and the convex DiagRAPS optimization problem can be formulated by

x̂,b,q =argmin
x,b,q

Cc(x,b,q)

s.t.: Gb ≥ d,

bi ∈ {0, 1} for i = 1, ...m,

xmin ≤ x ≤ xmax,

x−xmax(1−bi)≤ qi ≤ bi xmax,

bi xmin ≤ qi ≤ x−xmin(1−bi).



(C.6)

Problem (C.6) has a non-linear convex objective function and linear constraints. It is equivalent

to the original DiagRAPS optimization problem. However, it is mixed-integer non-linear convex

optimization problem. Compare to the non-convex form, this new form introduces additional n×m

variables.

When the soft constraint is applied as discussed in Sec. 6.5. The convex objective function

is formulated by

Cg(x,b,q,µ) =∥x− x̂−∥2
P− +

m

∑
i=1

(yi bi −hi qi)
2

σ2
i

+λ

n

∑
j=1

µ, (C.7)

97



and the relaxed convex DiagRAPS optimization problem is written as

x̂,b,q,µ= argmin
x,b,q,µ

Cg(x,b,q,µ)

s.t.: g j b+µ j ≥ d j −L j,

µ j ∈


[0, L j], g j1> d j

[0, g j1], g j1≤ d j

for j = 1, ...n,

bi ∈ {0, 1} for i = 1, ...m,

xmin ≤ x ≤ xmax,

x−xmax(1−bi)≤ qi ≤ bi xmax,

bi xmin ≤ qi ≤ x−xmin(1−bi).



(C.8)
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