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Review. The diagnosis of limbal stem cell deficiency
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aStein Eye Institute, Cornea Division, David Geffen School of Medicine, University of California, 
Los Angeles

bDepartment of Ophthalmology, Eye & ENT Hospital of Fudan University, Shanghai 200031, 
China

Abstract

Limbal stem cells (LSCs) maintain the normal homeostasis and wound healing of corneal 

epithelium. Limbal stem cell deficiency (LSCD) is a pathologic condition that results from the 

dysfunction and/or an insufficient quantity of LSCs. The diagnosis of LSCD has been made 

mainly based on medical history and clinical signs, which often are not specific to LSCD. 

Methods to stage the severity of LSCD have been lacking. With the application of newly 

developed ocular imaging modalities and molecular methods as diagnostic tools, standardized 

quantitative criteria for the staging of LSCD can be established. Because of these recent 

advancements, effective patient-specific therapy for different stages of LSCD may be feasible.
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1. Introduction

Limbal stem cells (LSCs) are adult stem cells that further differentiate into corneal 

epithelium. Functional LSCs are essential for maintaining the integrity of the corneal surface 

and transparency of the cornea. The limbus is the transition area between the transparent 

cornea and the opaque sclera [1]. Normal limbus and LSCs act as a barrier against the 

invasion of conjunctival epithelial cells onto the cornea [2–4]. In the past four decades, most 

studies of LSCD have focused on the biology of LSCs and their function in maintaining the 

regeneration of the corneal epithelium under healthy and pathologic conditions.

LSCs reside in the basal layer of epithelium within the limbal area [5, 6]. Studies have 

provided direct evidence of LSC survival and self-maintenance at the limbus by using 
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transgenic mice that expressed ubiquitous green fluorescent protein [7, 8]. The palisades of 

Vogt, a limbal structure that is shown to harbor a high density of LSCs, provide the niche 

microenvironment that is necessary for the survival and function of LSCs, and maintenance 

of their stemness. It might represent the collective influence of coexisting local stromal cells, 

the extracellular matrix, local vasculature and soluble growth factors [4, 6, 9–12]. LSCs are 

also found outside of the palisades of Vogt in adult and fetal human eyes, including limbal 

epithelial crypts and limbal epithelial pit [7, 13, 14].

Direct damage to LSCs and/or the destruction of their niche microenvironment leads to 

limbal stem cell deficiency (LSCD). As a result, the barrier function of the limbus is 

compromised, and the corneal epithelium is replaced with conjunctival epithelial cells, 

which is the hallmark of LSCD. Neovascularization could occur within the corneal 

epithelium and stroma, and the cornea becomes opaque eventually, leading to vision loss and 

blindness [3, 15].

Accurate diagnosis of LSCD is crucial because appropriate treatments can prevent 

progression of the condition and further damage to the ocular surface. For example, 

penetrating keratoplasty cannot restore sight to an eye blinded by LSCD before functional 

LSCs are restored [16]. In the past several decades, diagnosis of LSCD was predominantly 

made based on the patient’s medical history and clinical signs. However, inherent limitations 

are associated with the interpretation of clinical signs [17]. For instance, the presence of a 

fibrovascular pannus may be caused by previous infectious keratitis rather than LSCD. 

Moreover, there is no consensus on the methods to stage the severity of LSCD. With the 

application of newly developed ocular imaging techniques and progress in identifying 

molecular diagnostic markers and developing new tests based on these markers, the 

diagnosis of LSCD is coming into a new era.

To review the recent advances in the diagnosis of LSCD, we performed a systematic search 

on PubMed for English language literature published before March 31, 2017. The following 

combined search terms were used: “limbal stem cell deficiency” AND “diagnosis,” “limbal 

stem cell deficiency” AND ”in vivo confocal microscopy,” “limbal stem cell deficiency” 

AND “optical coherence tomography,” “limbal stem cell deficiency” AND “impression 

cytology.” Publications that are not related to the diagnosis of LSCD, or are published in 

non-English language were excluded. We collected data on diagnostic methods (clinical 

findings, in vivo confocal microscopy, anterior segment optical coherence tomography 

[OCT], impression cytology, or detection for various epithelial molecular markers). This 

literature review summarizes the diagnostic methods currently used in the diagnosis of 

LSCD and reports recent advances in the diagnosis and classification of LSCD. Based on 

these findings, a diagnostic approach for LSCD is proposed in the near future to overcome 

the limitations using the current diagnostic methods. We hope that this review will further 

emphasize the need to include objective testing using in vivo imaging modalities.

2. Etiology

The two pathologic mechanisms of LSCD are the direct destructive loss of LSCs and the 

loss of the limbal microenvironment/niche needed for LSC survival. The delicate niche of 
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LSCs plays an important role in maintaining the LSC pool. Pathologic processes leading to 

either the direct loss of the LSC pool or the dysfunction of the limbal niche can result in the 

same phenotype of LSCD.

The etiology of LSCD can be primary, resulting from genetic mutations that lead to LSC 

dysfunction or destruction. The known causes of primary LSCD include aniridia [18, 19], 

congenital epidermal dysplasia [20, 21], dyskeratosis congenital [22], keratitis associated 

with multiple endocrine deficiencies [3], Turner syndrome [23], lacrimo-auriculo-dento-

digital (LADD) syndrome [24], and xeroderma pigmentosum [25].

LSCD can also be secondary, resulting from external factors that directly destroy LSCs, 

damage the stem cell niche, or both. Common causes include chemical or thermal injuries 

[5, 15, 26–28]; chronic inflammation and cicatricial process from mucous membrane 

pemphigoid [28, 29], Stevens-Johnson syndrome [30, 31], graft-versus-host disease [32] and 

chronic limbitis [33, 34]; iatrogenic injury caused by ocular surgeries, radiation, 

cryotherapy, or systemic chemotherapy [28, 35–38]; drug-induced toxicity such as that 

caused by mitomycin C, 5-fluorouracil, and sulfur mustard [39–41]; and contact lens wear 

[28, 42, 43]. LSCD secondary to other ocular surface disorders has also been reported; these 

disorders include extensive microbial infection [28], neurotrophic (neural and ischemic) 

keratopathy [44], bullous keratopathy [45], and extensive ocular surface tumors [46].

Animal models have been established to investigate the pathogenesis of LSCD. 

Transcription factor PAX6 (paired box 6) is critical in anterior segment and corneal 

development. Mutations in PAX6 lead to aniridia and LSCD both in humans and mice [47, 

48]. In the Pax6+/− mouse model with heterozygous Pax6+/Sey-Neu mutant allele on a 

congenic CBA/Ca genetic background, unstable corneal homeostasis and features of 

progressive corneal deterioration are observed. This mouse model has been used to 

investigate the effect of Pax6 genotype and age on corneal epithelial cells and to explore the 

pathogenesis of LSCD [49]. Another mouse model of LSCD was created by using topical 

administration of benzalkonium chloride at high concentrations [50]. Sulfur mustard 

exposure induces severe ocular injury and late-onset LSCD in humans. Both rabbit [51] and 

mouse [52] models of sulfur mustard gas injury have been created. Information obtained 

from studies of these animal models will shed light on different mechanisms by which 

LSCD develops and aid in the development of appropriate treatments for LSCD arising from 

different causes.

3. Clinical presentations

3.1. Symptoms

Patients suffering from LSCD may present with a wide variety of symptoms related to poor 

epithelial wound healing and recurrent erosions. Patients often experience chronic 

conjunctival redness, decreased vision, photophobia, foreign body sensation, tearing, 

blepharospasm, and recurrent episodes of pain from recurrent epithelial breakdown. The 

pain, photophobia, and discomfort are often debilitating. However, most of these symptoms 

are nonspecific and inadequate to make the diagnosis correctly.
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3.2. Clinical findings under slit-lamp biomicroscopy

Slit-lamp biomicroscopy has been the most commonly used method to make the diagnosis of 

LSCD. Examination under white light without fluorescein staining provides very limited 

information to make a correct diagnosis of LSCD. Examination under cobalt blue light using 

fluorescein staining is essential to detect the subtle signs of LSCD, particularly in the mild 

or early stage of LSCD (Figs. 1F and 1G).

LSCD may be progressive or stationary, diffuse or sectoral (partial). Clinical manifestations 

of LSCD vary depending on the severity and extent of limbal involvement.

3.2.1. Mild stage—In the mild stage of LSCD, slit-lamp examination findings include 

dull/irregular corneal surface with loss of light reflex, corneal epithelial opacity and loss of 

limbal palisades of Vogt.

3.2.1.1. Epithelial opacity: Compared with transparent corneal epithelium seen in normal 

cornea (Figs. 1A and 1B), a dull and irregular reflex of the epithelium that varies in 

thickness and transparency [53] is usually seen on the affected corneal surface. These 

abnormal epithelial cells may be a mixture of metaplastic corneal epithelial cells and 

conjunctival epithelial cells, or only conjunctival epithelial cells without neovascularization 

[54, 55]. The irregular opacified epithelium can be identified under white light with careful 

examination, but is better visualized using fluorescein staining under cobalt blue light.

3.2.1.2. Epithelial staining: Fluorescein allows visualization of the abnormal cells and their 

pattern of distribution under cobalt blue light. Fluorescein tends to pool on the affected area 

because the abnormal conjunctival/metaplastic epithelium layer tends to be thinner and lacks 

cell-cell tight junctions [56]. The late staining on the abnormal area remains after 10 minutes 

and can be visualized even after rinsing with balanced salt solution or eye wash. In the mild 

or early stage of LSCD, stippled fluorescein staining may be present [43, 53]. As the disease 

becomes more severe, a clear line of demarcation may sometimes, but not always, be visible 

between the area covered by the corneal and conjunctival epithelial cells in sectoral LSCD 

(Figs. 1F and 1G).

3.2.1.3. Loss of palisades of Vogt: The palisades of Vogt are more commonly seen in the 

superior and inferior limbus. In the early or mild stage of LSCD, there may be flattening at 

the limbus in the region of palisades of Vogt or loss of palisades of Vogt. However, this 

presentation is not reliably found in all cases. Loss of palisades is also age-related [57].

3.2.2. Moderate stage—A common feature of moderate stage LSCD is fluorescein 

staining and epithelial thinning in a vortex pattern. Superficial neovascularization and 

peripheral pannus may be present. The extent of LSCD can range from sectoral to total 

involvement of the limbus. If the central visual axis is involved, the vision can be 

significantly compromised.

3.2.2.1. Vortex keratopathy: In the moderate or intermediate stage of LSCD, the abnormal 

epithelium forms a confluent sheet spreading in a spiral pattern from the limbus onto the 

cornea and invading the visual axis occasionally (Fig. 1K). With fluorescein staining, a 
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whorl or vortex pattern of abnormal epithelium can be visualized (Fig. 1L). Sometimes it is 

referred to as whorl-like epitheliopathy [42, 53, 55], which is typically present in the 

moderate stage. The abnormal epithelium is prone to erosion, and mild anterior stromal haze 

may be present in the area affected by LSCD.

3.2.2.2. Superficial vascularization and peripheral pannus: Limbal stem cells and corneal 

epithelium play a significant role in maintaining the angiogenic balance in favor of 

avascularity [58]. Conjunctival epithelial cells, which migrate onto the cornea in LSCD, 

have been shown to attract new vessels and they may lack the ability to secrete certain anti-

angiogenic factors found in normal corneal epithelium [56]. Therefore, superficial 

vascularization of the cornea and peripheral pannus are usually seen in the moderate stage of 

LSCD [54, 59].

3. 2.3. Severe stage—Recurrent or persistent corneal epithelial defect, corneal 

neovascularization, corneal stroma scarring and opacification are often present in severe-to-

total LSCD.

3.2.3.1. Recurrent/persistent epithelial defects: As the population of functional LSCs 

declines further, recurrent or persistent epithelial defects often occur (Fig. 1Q). Chronic non-

healing corneal epithelial defect or repeated epithelium breakdown followed by slow healing 

are common clinical manifestations of LSCD. Because of the compromised corneal 

epithelial barrier, the risk of microbial infection increases [60, 61]. Corneal melt or even 

perforation that may or may not be related to infection can occur in severe LSCD as a result 

of the persistent epithelial defect.

3.2.3.2. Stromal neovascularization: Both persistent epithelial defects and deteriorated 

barrier function of the limbus might contribute to an ingrowth of fibrovascular pannus and 

neovascularization at deep stroma. Although stromal neovascularization is common in 

severe LSCD, it can also be found in other eye disorders without LSCD, such as herpetic 

keratitis and previous microbial keratitis.

3.2.3.3. Stromal scarring and opacity: Severe-to-total deficiency of functional LSCs 

results in almost complete absence of normal corneal epithelium. Corneal stromal haze often 

worsens as a result of the longstanding instability of the epithelial surface (Fig. 1P). Stromal 

scarring, calcification, and eventual opacification often occur at the end stage of LSCD. The 

severe corneal epithelial and stromal opacity leads to functional blindness. Sometimes total 

or partial keratinization of the covering epithelium may be present due to associated aqueous 

tear deficiency rather than LSCD.

4. Current diagnostic methods

4.1. Clinical examination

As noted in Section 3, clinical findings under slit-lamp biomicroscopy have been the main 

basis for the diagnosis and classification of LSCD. A detailed description of the clinical 

presentations presently used to diagnose and classify mild, moderate, and severe/total LSCD 

is provided above and summarized in Table 1.
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Although fluorescein staining is essential in the diagnosis of LSCD, the technique to instill 

fluorescein into the conjunctival sac is crucial to elicit the clinical signs of LSCD. Briefly, a 

sterile fluorescein strip is wetted by approximately 20 μL sterile saline solution and instilled 

into the inferior conjunctival sac without touching the cornea or limbus. Patients are then 

instructed to blink several times to allow the fluorescein to spread over the entire ocular 

surface. Too much fluorescein will mask the pathology and too little fluorescein will not 

stain epithelium sufficiently, thus compromising its diagnostic effect.

4.2. Impression cytology

Impression cytology is a well-established method to diagnose ocular surface diseases [62, 

63]. It is performed by applying a cellulose acetate filter paper, nitrocellulose membrane or 

Biopore membrane to the ocular surface to remove the very superficial layers of ocular 

surface epithelium. The specimens can be subjected to hematoxylin and eosin (H&E), 

Periodic acid Schiff, Papanicolaou, or Giemsa staining to evaluate the morphology of cells 

taken from ocular surface, both goblet cells and epithelial cells. Impression cytology has 

been used as a standard technique to study squamous metaplasia and goblet cell loss in 

ocular surface diseases, such as dry eye disease, chemical injuries, cicatrizing conjunctivitis, 

vitamin A deficiency, and effects of diverse medications [62].

The presence of goblet cells on the cornea indicates the invasion of conjunctival cells, which 

is a hallmark of LSCD [45, 63–65]. The identification of goblet cells on the specimens taken 

from corneal surface by impression cytology has been considered as the “gold standard” in 

the currently used diagnosis system for LSCD. Moreover, impression cytology on the cornea 

has been used from the first limbal transplantation to evaluate the restoration of corneal 

phenotype after surgery [66].

The sensitivity of impression cytology in the diagnosis of LSCD is affected by many factors. 

Filter pore size affects the consistency of cell collection, and the surfactant treatment of the 

filter paper can reduce cell pick-up. Therefore, surfactant- free filter paper with pore size 

0.22–0.44 μm is recommended [63]. Compared to Biopore membrane, cellulose acetate filter 

paper is easily wetted during the sample acquisition, either from the anesthetic used 

beforehand and/or reflex tearing, leading to a poorer cell acquisition and staining outcome. 

The pressure being applied to the membrane also has a direct effect on the number of cells 

harvested. The more epithelial cells that are sampled, the greater the number of goblet cells 

detected on the filter/membrane [67]. The location of sampling is also important, especially 

in sectoral LSCD. Some researchers divide the membrane into two “D” shaped halves or one 

large round disk (13 mm) to cover the entire corneal and limbal surface, while others use 

four fan-shaped pieces to achieve better contact between the membrane and ocular surface 

[63]. Identification of the location where abnormal epithelium is detected is important, 

especially in cases of sectoral LSCD.

4.3. Limitations of current diagnostic methods

A recent review reported that more than 60% of the interventional studies on LSCD 

performed from 2003 to 2013 used diagnostic criteria solely based on clinical presentations, 

and 30% used the combination of clinical signs and impression cytology for the diagnosis of 
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LSCD [68]. Less than 10% of the interventional studies used the combination of slit-lamp 

biomicroscopy and other diagnostic tests, such as imaging (e.g., in vivo confocal microscopy 

[IVCM]) and/or molecular tests to detect conjunctival epithelial cells on the cornea.

Several findings indicate that current diagnostic criteria cannot accurately assess the severity 

of LSCD [69–71]. Structural changes occur before the onset of clinical signs. Although 

clinical signs and presentations are important in the diagnosis of LSCD, many signs 

described above are not pathognomonic of LSCD and can be found in other ocular disorders. 

In addition, detection of those subtle clinical signs is operator-dependent and interpretation 

of clinical signs is subjective. Normal variations of the limbal structure can further 

complicate the interpretation. For instance, the palisades of Vogt signify a normal healthy 

limbus. Disarrayed or absence of palisades of Vogt may be an early anatomical change in 

mild LSCD or as a result of normal variant or aging process [72]. Subtle fluorescein staining 

patterns in sectoral or partial LSCD may be missed by clinical examination. Some signs 

present in LSCD, such as fine stippling fluorescein staining and corneal neovascularization, 

are nonspecific and are present in other conditions that do not have a component of LSCD. 

Previous studies also suggest that changes in the microstructure precede the clinical 

presentation in LSCD [53, 69]. Therefore, clinical presentations are insufficient to provide 

quantitative evaluation for grading the severity of LSCD.

Although the presence of goblet cells on the corneal surface signifies conjunctival epithelial 

invasion, the absence of goblet cells on the cornea does not necessarily exclude the presence 

of LSCD. In Stevens-Johnson syndrome, advanced mucous membrane pemphigoid and 

severe chemical burn, the number of goblet cells is decreased on the ocular surface [73–75]. 

Sensitivity of impression cytology is low in patients with such disorders and may lead to a 

false-negative result. The sensitivity of impression cytology varies due to a lack of 

standardization in the collection and cytological staining protocol [76, 77]. Sampling bias 

exists because of tight junction of corneal epithelial cells. Therefore, impression cytology is 

not a quantitative test and cannot be used to quantify the severity of LSCD.

It is difficult to distinguish severe LSCD from total LSCD based on the current diagnostic 

methods. Although the clinical presentations of severe LSCD and total LSCD are similar, 

their clinical outcome and prognosis after treatment are likely to be different. A recent study 

found that residual normal limbal epithelial cells were present in eyes that are categorized as 

total LSCD using the current diagnostic criteria [71]. It has also been observed that the host 

LSCs reconstructed the corneal epithelium after allogeneic LSC transplantation in a 

significant number of successful cases [78, 79], suggesting that the residual LSCs in these 

recipient eyes might be responsible for reconstruction of the normal corneal epithelial 

surface. The amount of residual functional LSCs likely plays an important role in the clinical 

outcome of LSCT. Therefore, it is important to distinguish severe LSCD from total LSCD. 

An accurate diagnosis and staging of LSCD is of paramount importance in the assessment of 

the efficacy of different treatments for LSCD.
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5. Recent advances in the diagnosis of LSCD

To overcome the shortcomings of current diagnostic methods of LSCD, researchers have 

investigated the utility of newly developed ocular anterior-segment imaging modalities in the 

diagnosis of LSCD. Moreover, significant progress has been made in identifying molecular 

markers that can be developed into new diagnostic tests.

5.1. In vivo imaging

5.1.1. In vivo laser scanning confocal microscopy—In vivo laser scanning confocal 

microscopy (IVCM) is a noninvasive method to visualize the microstructures within the 

cornea, limbus, and conjunctiva at the single cell level [31, 57, 80–84]. IVCM has a lateral 

resolution of 1 μm, and axial resolution of 4 μm [85]. The morphology of the corneal 

epithelium, corneal subbasal nerve plexus, corneal stroma, and limbal structure can be 

visualized in healthy and abnormal eyes. Hence, the use of IVCM in ophthalmology, 

especially in the studies of LSCD, has expanded greatly over the last decade [18, 27, 53, 69–

71, 80, 86–89].

5.1.1.1 Techniques of IVCM on patients with LSCD: Currently, two types of in vivo 

confocal microscopes are commercially available: ConfoScan 4 (NIDEK CO., LTD, Japan) 

and Heidelberg Retina Tomography (HRT) with a cornea module (Heidelberg Engineering 

GmbH, Germany). With the application of laser as light source, HRT can obtain images of 

limbus with better quality, thus becoming the main tool in the study of limbus under normal 

and pathological conditions. Since the typical size of HRT IVCM image is 0.4 x 0.4 mm2, 

representing only 0.15% of the total corneal area, careful slit lamp examination before 

IVCM can help to determine the location of pathology, which is important to obtain images 

with good diagnostic values, especially in patients with sectoral LSCD. Patient cooperation 

is also crucial for obtaining good confocal pictures. Detailed explanation to patients before 

the examination will alleviate their anxiety and fear caused by the direct contact from the 

confocal lens. To look for residual LSCs in cases of severe-to-total LSCD, a quick scan of 

the entire 360 degrees of limbus using the “Sequence” mode is preferred. Patients is 

instructed to rotate their eyes by following the target light to position the limbus to the 

imaging areas.

5.1.1.2. IVCM parameters for the diagnosis of LSCD: The detection of goblet cells on the 

cornea by IVCM has been reported as a diagnostic marker of LSCD [64, 88]. However, 

detection of goblet cells by IVCM is examiner-dependent and has the same limitations as 

those in impression cytology for the diagnosis of LSCD, as discussed previously [27, 64]. 

Moreover, there is no consensus in regard to the morphologic features of goblet cells 

observed on the confocal images. Some studies have reported that goblet cells exhibit a 

hyper-reflective cytoplasm [77, 90], whereas other studies have suggested that the cytoplasm 

is hypo-reflective [91]. This variation might be due to the secretion status of the goblet cells. 

Therefore, new parameters to identify abnormal corneal epithelium, limbal epithelial cells, 

and conjunctival epithelial cells are more precise and are needed to improve the sensitivity 

and accuracy of IVCM in the diagnosis of LSCD.
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5.1.1.2.1. Corneal and limbal epithelium: Normal corneal epithelium is composed of 

superficial cells, wing cells, and basal cells. Superficial cells usually appear to be loosely 

arranged, large hexagonal or polygonal flat cells with hyper-reflective cytoplasm. Wing 

cells, located between superficial cells and basal cells, have a dark cytoplasm, well-defined 

bright cell borders, and no visible nuclei (Fig. 1C). Basal epithelial cells are the smallest of 

the three types of corneal epithelial cells, with a diameter of 8–10 μm [85]. They usually 

appear as a regular mosaic of dark cell bodies with cell borders visible but less clearly 

defined than those seen in wing cells. The nuclei of basal epithelial cells are often not visible 

or very faint. The subbasal nerve plexus is visible at the basal and subbasal layer of corneal 

epithelial cells in normal eyes (Fig. 1D).

Significant microstructural changes in the corneal epithelium are detected in patients with 

LSCD, even in those with mild- or early-stage LSCD. The epithelial cells in patients with 

LSCD have less distinct borders and prominent nuclei (Fig. 1H and 1I). In more advanced 

stages of LSCD, more morphologic abnormalities of the epithelial cells can be seen (Fig. 

1M and 1N). In eyes with severe LSCD, epithelial cells are metaplastic (Fig. 1R and 1S) and 

neovascularization may be seen. Compared with healthy eyes, eyes with LSCD have 

significantly decreased basal epithelial cell density (31.0% reduction in LSCD eyes) and 

larger size of basal epithelial cells (19.7% augmentation in LSCD eyes) [53, 69]. There is a 

positive correlation between the reduction of basal cell density and the severity of LSCD 

[69]. Although the morphologic changes of the corneal epithelium are not specific to LSCD, 

the large-scale reduction of basal cell density has been reported only for LSCD. In addition 

to the changes in morphology and basal cell density, the epithelial thickness at the central 

cornea is also decreased significantly in patients with LSCD (20.2% reduction in LSCD 

eyes) [70]. The extent of epithelial thinning is also positively correlated with the degree of 

LSCD.

The limbal epithelium undergoes morphologic changes similar to those of the corneal 

epithelial cells, including decreased cellular density (23.6% reduction in LSCD eyes), 

enlarged cellular size (13.5% augmentation in LSCD eyes), and alterations in the cell 

morphology [69, 92]. The epithelial thickness at the limbal area is also significantly reduced 

(38.5% reduction in LSCD eyes) [70]. Similar to the changes found in the central cornea, the 

reduction of basal limbal epithelial density and limbal epithelium thickness positively 

correlates with the severity of LSCD. More importantly, there are significant decreases in 

basal cell density and epithelial thickness in the limbal regions that do not exhibit clinical 

signs of LSCD in eyes with sectoral LSCD. This finding suggests that these microstructural 

changes precede the clinical presentation of LSCD.

5.1.1..2.2 Subbasal nerve plexus: In addition to epithelial cells, the subbasal nerve plexus is 

affected in LSCD. Innervation of the corneal epithelium plays a pivotal role in the 

maintenance of health and function of the epithelium. Corneal nerves not only protect the 

ocular surface through an elaborate mechanism of sensation and blink reflex, but also release 

various trophic factors that regulate epithelial integrity, proliferation, and wound healing [93, 

94].
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In patients with LSCD, drastic changes in the morphology and the density of the subbasal 

nerve plexus are observed, which correlate with the severity of LSCD (Fig. 1I, 1N, 1S). 

Compared with control subjects, subbasal nerve density was reduced by 34.9% in the early 

stage, 54.0% in the intermediate stage, and 73.5% in the late stage of LSCD [95]. Other 

distinct morphologic changes of the subbasal nerve plexus in patients with LSCD include 

severe nerve dropout, short nerve branches, and sharp turns of the branched nerve [95]. In 

patients with severe LSCD, such as in mucous membrane pemphigoid [96], chronic Stevens-

Johnson syndrome, and toxic epidermal necrolysis [31], the subbasal nerve plexus is usually 

not detectable.

It should be noted that reduced corneal subbasal nerve density can be found under many 

pathological conditions, including systemic diseases [97, 98], ocular disorders [99–101], and 

alterations caused by ocular surgeries or therapies [102–105]. Therefore, this parameter is 

not specific to LSCD. The sensitivity and specificity of subbasal nerve density in the 

diagnosis of LSCD requires further investigation.

5.1.1.2.3. Corneal and limbal stroma: The morphology of corneal and limbal stroma is 

affected in LSCD. A large number of inflammatory and dendritic cells are sometimes 

present with blood vessels within the epithelial layer and deep stromal layers [33, 106]. The 

slightly hyper-reflective stroma in normal eyes is replaced by homogenously bright fibrotic 

structures in LSCD even at mild stage [107].

At the limbal area, the palisades of Vogt may be detected in normal eyes by IVCM. The 

palisades of Vogt usually appear as hyper-reflective, double-contour, linear structures (Fig. 

1E). These structures alternate with islands of epithelial cells that correspond to the inter-

palisade rete pegs [80, 82]. In moderately pigmented healthy subjects, a bright fringe of 

hyper-reflective basal epithelial cells around stromal papilla is usually seen [57]. Limbal 

projections, which are round cords of stroma that extend into the limbal epithelium, is 

another structure observed in normal eyes [80, 108].

In patients with LSCD, the structure of the palisades of Vogt is altered or totally absent (Fig. 

1J, 1O, 1T) [86, 88, 89]. Limbal projections are often absent. Interestingly, well-demarcated, 

lacunae-like structures are occasionally found in certain limbal regions of eyes with sectoral 

LSCD. These structures extend into the deep underlying limbal stroma and contain clusters 

of highly packed normal limbal epithelial-like cells. These individual structures can extend 

more than 100 μm into the stroma [109]. The deep location may protect LSCs from surface 

insults. The exact mechanism by which these lacunae-like structures are formed in sectoral 

LSCD is unknown.

5.1.1.2.4 Summary: Although the feasibility of using IVCM in the diagnosis of LSCD has 

been investigated by many researchers [53, 69, 70, 72, 81, 88, 89], the threshold values for 

the diagnosis in clinical practice cannot be given based on the present studies, because the 

number of study populations is not large enough. Moreover, basal cell density and epithelial 

thickness change with age [57, 110]. Therefore, a large study to determine the normal 

variation due to aging will be necessary to distinguish the degree of change in these two 

parameters that signify and grade the degree of LSCD. The percentage of reduction or 
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augmentation from the normal level would be a better index than the actual measurement 

because there might be the variations in the cell counting among different centers or 

examiners.

5.1.2. Anterior segment optical coherence tomography

5.1.2.1. Principles: OCT, a noninvasive and noncontact imaging technique that was first 

introduced in 1994 [111], is based on low-coherence interferometry. It compares the time-

delay and intensity of infrared light reflected from the tissue structures against a reference 

beam. To obtain an OCT image, multiple scans are performed to create a series of axial 

scans (A-scans), and these A-scans are combined into a composite two-dimensional image, 

or cross-sectional tomography [112].

Anterior segment OCT (AS-OCT) can image ocular anterior segment structures, including 

the cornea, limbus, anterior chamber and angle without the use of topical anesthesia. 

Commercially available AS-OCT systems (Table 2) are developed on two different 

platforms: time-domain and spectral domain (also called Fourier-domain). In time-domain 

OCT, cross-sectional images are produced by varying the position of the reference mirror 

[112]. Spectral domain OCT uses a stationary reference mirror [112]. The signal of 

interference between the sample and reference reflection is detected by varying the 

wavelength of the light source with time [113]. Time domain OCT has a wider scan range 

but relatively lower resolution. With the development of spectral OCT, which provides an 

axial resolution of 3 μm [114], the limbal structure can be better elucidated in normal and 

pathological conditions [110, 115, 116].

5.1.2.2. Ocular surface structure

5.1.2.2.1. Corneal and limbal epithelium: AS-OCT provides two methods to measure 

epithelium thickness. The thickness of the epithelial cell layer within a 6-mm diameter of the 

central cornea can be automatically measured (Fig. 2A, 2E). The thickness of epithelium, 

either central cornea or limbal area, can also be manually measured on cross-sectional 

images (Fig. 2B, 2F) [110]. AS-OCT can measure the epithelial thickness in normal eyes 

[110, 117] and in eyes with various ocular surface disorders [118, 119]. In LSCD, the 

thickness of limbal epithelium measured by AS-OCT decreases significantly (Fig. 2D–2F) 

[87], which is consistent with the findings of confocal imaging [70]. The limbal epithelial 

thinning correlates with the damage to the palisades of Vogt in LSCD. However, the 

application of AS-OCT to study the alterations of corneal epithelial thickness in LSCD has 

not yet been fully developed [70]. The irregularity of the epithelium, the reflectivity 

alterations of the epithelial layer, and interference caused by hyper-reflective fibrovascular 

tissue underneath the epithelium in LSCD are all factors that reduce the discrimination of 

the epithelial layer from the underlying subepithelial scar or anterior stromal haze on the 

OCT images. These limitations could be resolved by a newer generation of OCT with an 

ultra-higher resolution.

5.1.2.2.2. The palisades of Vogt: In vivo visualization of the palisades of Vogt provides 

information about any structural changes of the limbus in healthy and pathological 

conditions. Spectral domain OCT has been reported to visualize the palisades of Vogt (Fig. 
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2C) [120]. This technique may enhance targeted limbal biopsies for transplantation [121]. 

However, as mentioned above, the palisades of Vogt may be absent in eyes with normal LSC 

function. IVCM is a more sensitive tool to locate normal limbal epithelium for biopsy.

5.1.2.3. OCT angiography (OCTA): Recent technological developments have increased the 

imaging capabilities of OCT in the evaluation of vascular flow; use of OCT for this purpose 

is called OCT angiography (OCTA). This method visualizes vessels via motion contrast 

imaging of erythrocyte movement across sequential B-scans [122]. In a preliminary study, 

OCTA acquired images of the cornea and limbal vasculature with substantial consistency 

[123]. Although the utilization of OCTA in the diagnosis of LSCD is probably limited 

because corneal neovascularization is not a specific sign of LSCD, it might be a promising 

tool to quantify the extent of corneal neovascularization.

5.1.3. Three-dimensional imaging of cornea and limbus—With recent 

improvement of hardware and software in quantitative corneal imaging by IVCM, three-

dimensional images of the cornea and limbus can be obtained. These images allow 

measurement of corneal sublayer thicknesses, stromal cell and extracellular matrix 

backscatter, depth-dependent changes in corneal keratocyte density, and the structure of the 

subbasal nerve plexus [124]. The development of image acquisition, reconstruction, and 

analysis techniques should further expand the applications of IVCM in the diagnosis of 

LSCD.

With the progress of volumetric OCT and computer-assisted three-dimensional 

reconstruction technology, spectral domain OCT has recently been shown to have the 

capability of visualizing the three-dimensional structure of the limbal area by using 

reconstructed volumetric images that include the palisades of Vogt, blood vessels, lymphoid 

channels, Schlemm's canal, trabecular meshwork and corneal nerve fiber bundles [125–128]. 

The palisades of Vogt appear to be connected in the stromal layer as deep as 120 μm below 

the epithelial surface. These deep invasions of epithelium form an elaborate network [82]. 

This finding suggests that LSCs are likely to be located very deep in the limbal stroma.

Three-dimensional images of the limbus could provide important structural information on 

the LSC niche in both normal and pathologic conditions. The structural information could be 

used as a new parameter to detect residual LSCs and quantify the severity of LSCD.

5.2. Molecular methods

Direct histological staining (e.g., H&E staining and Papanicolaou staining) of impression 

cytology specimens is used to evaluate the morphology of the epithelium. However, 

histology cannot distinguish conjunctival epithelial cells from corneal epithelial cells 

without cell-specific markers.

5.2.1. Molecular biomarkers—Cytokeratins are a group of water-insoluble proteins that 

form intermediate filaments in epithelial cells and are expressed in distinct patterns during 

epithelial development and differentiation. Immunocytochemical analysis of impression 

cytology specimens can identify the specific type of cytokeratin present and hence determine 
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the type of epithelium. Cytokeratin profiles have been used as markers of epithelial origins 

and as a supplementary diagnostic tool in some studies of LSCD [129, 130].

Table 3 summarizes the biomarkers that have been used in the diagnosis of LSCD and 

methods to detect them. Cytokeratin 3 and 12 are regarded as specific markers of 

differentiated corneal epithelial cells, whereas cytokeratin 19 and mucin 1(MUC1) are 

reportedly conjunctiva-specific markers [54, 81, 131]. However, other reports have shown 

that cytokeratin 19 is expressed in the limbal and peripheral corneal epithelium and MUC 1 

is expressed throughout the entire ocular surface in the normal human eye [132, 133]. 

Keratin 3 is also expressed in the conjunctiva [81]. Therefore, cytokeratin 3 is less specific 

than cytokeratin 12 to identify corneal epithelium, and keratin 19 and mucin 1 are not 

specific for conjunctival epithelium. In contrast, cytokeratin 7 and cytokeratin 13 are 

expressed in the conjunctival epithelium but not in the corneal epithelium [134, 135]; thus, 

these two proteins are more specific markers of conjunctival epithelial cells than cytokeratin 

19 and MUC1. Cytokeratin 15 has also been reported as the specific marker of conjunctival 

epithelial cells [136]. However, its application in impression cytology is under investigation. 

Mucin 5AC is a specific marker of goblet cells [132] which has been used to detect goblet 

cells.

5.2.2. Methods to detect the molecular biomarkers—The traditional technique to 

detect cytokeratin is immunohistochemistry. Flow cytometric analysis of cells collected by 

impression cytology is a new approach [137]. Other molecular analytical methods, such as 

RT-PCR to detect the transcript of Mucin 5AC, are more sensitive and objective than the 

immunohistochemistry staining [132, 138–140].

In recent years, the protein/cytokine analysis of tears has been performed in patients with 

congenital aniridia using high-performance liquid chromatography, two-dimensional 

electrophoresis, and liquid chromatography-tandem mass spectrometry [141, 142]. Tear 

acquisition is easier to perform and less traumatic to the epithelium than impression 

cytology. The diagnostic value of these proteins/cytokines in tear still needs further 

investigation and validation because aniridia accounts for only a very small portion of 

LSCD.

The use of specific markers of conjunctival and corneal epithelia and the application of new 

techniques to detect these markers increases the specificity and sensitivity of traditional 

impression cytology. Optimization of these molecular techniques is needed to verify their 

utility as diagnostic tests. The diagnosis of LSCD will be more reliable using the 

combination of molecular diagnostic tests and in vivo imaging.

6. Future Developments

The characterization of the cellular structure of the cornea and limbus in healthy eyes using 

in vivo imaging has increased our understanding of pathophysiology of external eye diseases 

[85, 110, 143, 144]. Cellular changes in the cornea and limbus occur in LSCD and have been 

quantified by both IVCM and AS-OCT. Basal cell density, subbasal nerve density and 

epithelial thickness are three quantifiable measures that have been shown to correlate with 
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the severity of LSCD. With further improvement in image resolution and image analysis 

software, these quantifiable parameters could be further optimized to establish a threshold 

level that indicates the occurrence of LSCD and to classify the severity of LSCD.

The three-dimensional structure of the limbus can be mapped by IVCM and AS-OCT, and 

the number of any residual limbal epithelial cells located in deep limbal crypts/lacunae could 

be identified. In addition, these residual LSCs could be collected by targeted biopsy for 

autologous LSC therapy in severe LSCD.

A precise diagnostic test using molecular markers to detect conjunctival epithelial cells on 

the cornea will be important in confirming the diagnosis of LSCD. A combination of the 

molecular diagnostic tests, the grading of clinical signs, and the detection of microstructural 

changes could lead to a precise staging of LSCD and assessment of the clinical outcome of 

LSC therapy in the future.

The treatment approaches for different severity levels of LSCD are different. In partial 

LSCD, elimination of ongoing insults to the existing LSCs and optimization of the health of 

the ocular surface should be the first steps in recovering the LSC population from the 

remaining LSC pool and restoring LSC function. These initial steps would not require LSC 

transplantation. It is likely that only in severe or total LSCD, transplantation of LSCs will be 

necessary. The degree of LSCD that requires LSC transplantation remains to be established. 

The same criteria to stage LSCD would be used to assess the clinical outcome of different 

therapies and make future improvement of these therapies possible.

7. Summary

The current diagnostic methods and criteria for LSCD are based solely on clinical 

examination and traditional impression cytology. They are not accurate and do not permit 

the quantification of LSC function or LSCD. There is a lack of consensus in the current 

diagnostic approaches for LSCD. In vivo imaging devices are powerful tools to analyze and 

quantify the in vivo dynamic changes of the ocular surface structure at the cellular level. A 

set of standardized criteria can be established by using a combination of grading of clinical 

presentation, quantitative analysis of ocular surface structural changes, and detection of 

molecular biomarkers to accurately diagnose and quantify LSCD.
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Figure 1. 
Clinical presentations and confocal images of LSCD at different stages.

Figure 1A, 1F, 1K and 1P are slit lamp photos under white light. Figure 1B, 1G, 1L and 1Q 

are slit lamp photos under cobalt blue light. Figure 1C, 1H, 1M and 1R are confocal images 

of wing cells at central cornea. Figure 1D, 1I, 1N and 1S are confocal images of epithelial 

basal cells at central cornea. Figure 1E, 1J, 1O and 1T are confocal images of limbal 

epithelium and the palisades of Vogt.

Healthy corneal epithelium is transparent (A) without fluorescein staining (B). Normal wing 

cells (C) have a dark cytoplasm, well-defined bright borders, and no visible nuclei. Basal 

epithelial cells (D), which are characterized with dark cytoplasm, fairly defined cell borders 

and no visible nuclei, are clearly seen in normal eyes. The subbasal nerve plexus is also 

visible in this layer. In healthy eyes, the palisades of Vogt may be detected at the limbal area 

and appear as hyper-reflective, double-contour, linear structures (E). Late fluorescein 

staining can be detected at mild stage of LSCD, with a clear line of demarcation may be 

visible between the corneal and conjunctival epithelial cells in sectoral LSCD (F and G). 

Corneal epithelial cells in mild LSCD have less distinct borders and prominent nuclei (H and 

I). The density of subbasal nerve plexus decrease dramatically, along with the infiltration of 

dendritic cells (I). The structure of palisades of Vogt is altered even in mild LSCD. A large 

number of inflammatory and dendritic cells are sometimes present with blood vessels (J). 

Epithelial opacity (K) and persistent late fluorescein staining in a vortex pattern (L) are the 

signs of a more advanced stage. The morphological abnormalities of wing cells (M) and 

basal cells (N) at central cornea continue to progress. The degradation of subbusal nerve 

plexus deteriorates further (N). The palisades of Vogt are absent at limbal area, along with 

enlargement of limbal epithelial cells (O). Epithelial and stromal opacity, neovascularization 

(P), and persistent epithelial defect (Q) on the corneal surface may be present in severe or 

total LSCD. Metaplastic epithelial cells are visible in eyes with severe LSCD (R and S). The 

structures of limbus and palisades of Vogt are totally damaged (T).
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Figure 2. 
AS-OCT images of normal subjects and patients with LSCD

Fig 2A–2C are taken from normal eyes. The thickness of epithelial cell layer within a 6-mm 

diameter of the central cornea can be automatically measured under pachymetry scan mode 

(A). The thickness of limbal epithelium can be manually measured on cross-sectional image 

(B). The palisades of Vogt are visible at limbus in normal eyes (C). Fig 2D–2F are taken 

from eyes with sectoral LSCD. The area with reduced epithelial thickness found in AS-OCT 

(E) is corresponding to the affected area shown by slit-lamp examination (D). The cross 

sectional images of limbus show that the thickness of limbal epithelium decreased at the 

affected area (F).
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Table 3

Biomarkers previously or currently used in the diagnosis of LSCD

biomarker location specificity detection

CK3 [54, 131] cornea + immunohistochemical staining

CK12 [81, 132] cornea +++ immunohistochemical staining

CK19 [54, 131] conjunctiva + immunohistochemical staining

CK15 [136] conjunctiva ++ immunohistochemical staining

CK7 [132] conjunctiva +++ immunohistochemical staining

CK13 [132, 134, 135] conjunctiva +++ immunohistochemical staining

MUC5AC [132, 140] goblet cells +++
immunohistochemical staining
counterstained with hematoxylin
RT-PCR

MUC1 [81] conjunctiva (membrane-associated mucins) + immunohistochemical staining and immunoelectron 
microscopy

Ocul Surf. Author manuscript; available in PMC 2019 January 01.


	Abstract
	1. Introduction
	2. Etiology
	3. Clinical presentations
	3.1. Symptoms
	3.2. Clinical findings under slit-lamp biomicroscopy
	3.2.1. Mild stage
	3.2.1.1. Epithelial opacity
	3.2.1.2. Epithelial staining
	3.2.1.3. Loss of palisades of Vogt

	3.2.2. Moderate stage
	3.2.2.1. Vortex keratopathy
	3.2.2.2. Superficial vascularization and peripheral pannus

	3. 2.3. Severe stage
	3.2.3.1. Recurrent/persistent epithelial defects
	3.2.3.2. Stromal neovascularization
	3.2.3.3. Stromal scarring and opacity



	4. Current diagnostic methods
	4.1. Clinical examination
	4.2. Impression cytology
	4.3. Limitations of current diagnostic methods

	5. Recent advances in the diagnosis of LSCD
	5.1. In vivo imaging
	5.1.1. In vivo laser scanning confocal microscopy
	5.1.1.1 Techniques of IVCM on patients with LSCD
	5.1.1.2. IVCM parameters for the diagnosis of LSCD
	5.1.1.2.1. Corneal and limbal epithelium
	5.1.1..2.2 Subbasal nerve plexus
	5.1.1.2.3. Corneal and limbal stroma
	5.1.1.2.4 Summary


	5.1.2. Anterior segment optical coherence tomography
	5.1.2.1. Principles
	5.1.2.2. Ocular surface structure
	5.1.2.2.1. Corneal and limbal epithelium
	5.1.2.2.2. The palisades of Vogt

	5.1.2.3. OCT angiography (OCTA)

	5.1.3. Three-dimensional imaging of cornea and limbus

	5.2. Molecular methods
	5.2.1. Molecular biomarkers
	5.2.2. Methods to detect the molecular biomarkers


	6. Future Developments
	7. Summary
	References
	Figure 1
	Figure 2
	Table 1
	Table 2
	Table 3



