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Telling where one is heading and where things move independently

Niels da Vitoria Lobo and John K. Tsotsos*
Dept. of Computer Science, University of Toronto, Toronto, Canada M5S 1A4.
e-mail. niels@vis.toronto.edu, tsotsos@vis.toronto.edu

Abstract

We summarize our recent novel approach to computing the Fo-
cus of Expansion for an observer moving with unrestricted mo-
tion in a scene with objects of unrestricted shape. This method
also detects points not moving rigidly with the scene. The
approach, using collinear image points, is based on an exact
method for cancelling effects of the observer's rotation from
optic flow. The computational results are being presented else-
where (da Vitoria Lobo & Tsotsos 1991). Here, we argue that
this algorithm is biologically plausible.

Introduction

Many years ago researchers (Helmholtz 1925, Gibson 1957)
hypothesized that the 3-D motion and the shape of the en-
vironment are perceivable from the projected motion arising
out of the relative motion between a monocular observer and
the scene. In this paper, we summarize our recent compu-
tational solution to this problem and discuss its biological
plausibility.

The paradigm we work withinassumes that an approxima-
tion to instantaneous image velocity (also termed image flow
or optic flow) can be measured, and some progress has been
made towards achieving such measurements (see Watson &
Ahumada 1985, Heeger 1988, Fleet 1990). The subsequent
step, that of computing the 3-D motion parameters and shape
information from the instantaneous image velocity, has re-
ceived ample attention from researchers. However, in addi-
tion to the fact that every 3-D algorithm proposed so far is
not robust to noise in the input instantaneous velocity, the al-
gorithms typically suffer from other important problems that
disqualify them from biological candidacy. Algorithms that
permit general rigid motion and unrestricted shapes have to
search in spaces that have at least three dimensions (Bruss
& Horn 1983), and the non-linear numerical methods used
are very sensilive Lo the initial guess. Others assume some
restricted form of motion (eg., no rotation in a certain di-
mension; see Barron 1988), or restrict the allowable shapes
(eg., planarity), in order to get closed-form solutions for the
unknowns (Waxman & Wohn 1987), or assume that some
parameters are known and solve for the others (Ballard &
Kimball 1983, Matthies er al, 1989) — all of them too re-
strictive for biological plausibility.

The basis of our approach is a technique for combining
collinear image points which allows rotation to be cancelled

*John K. Tsotsos is the Canadian Pacific Fellow of the Cana-
dian Institute for Advanced Research. This work was supported
by the Natural Sciences and Engineering Research Council and the
Information Technology Research Center, a Province of Ontario
Center of Excellence. The range data came from the Range Image
Database of NRC Canada.
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in an exact manner. Along any straight line in the image, the
rotational contribution to the image velocity component or-
thogonal to the line varies linearly with length, so that taking
approximations to the second derivative of this component of
velocity cancels out rotation. Thus despite the unrestricted
motion and unrestricted shape involved in the problem, the
motion parameters can be unlocked by a search for the cor-
rect direction of translation, which is a mere 2-dimensional
search and incurs a far lower computational cost than other
algorithms that search in higher dimensions. The algorithm,
termed the FOE Algorithm, uses an operator that simultane-
ously cancels out rotation exactly and samples the transla-
tion contribution to find the direction of translation. Earlier,
da Vitoria Lobo & Tsotsos (1990) showed that for three non-
collinear image points, the pair-wise relative depths of the
three scene points are dependent only on the unknown 3-D
direction of translation and the known image velocities and
image positions (i.e., that, in principle, knowledge of rotation
is irrelevant to the calculation of shape from motion). For
other work that cancels rotation see Prazdny (1983), Nelson
& Aloimonos (1988) and Heeger & Jepson (1990). Our ap-
proach also straightforwardly detects points that do not move
in a manner consistent with the assumption of a rigid scene.
In this paper we argue that due to its simplicity, low computa-
tional cost, inherent parallelism, and robustness (o noise, this
method is biologically plausible, and we explore its conse-
quences for research in biological systems. We first review
our FOE algorithm and its extension to detecting indepen-
dent motion. Then we discuss the importance of the FOE
and present the arguments for biological plausibility, along
with predictions that result from the model.

Locating the FOE and independent motion

In this section, we summarize work appearing in da Vitoria
Lobo & Tsotsos (1991).

Image velocity and scene parameters

When the relative motion between the viewer and a scene

point (at depth Z) is described by an instantaneous trans-

lation (U, V, W), and an instantaneous rotation (A, B, C),

the projected velocity in the image plane at position (z, y)

is (u, v), (Longuet-Higgins & Prazdny 1980), where
u = —“”—‘Uz”w — Azy+ B(z? +1) - Cy,

1
v = =W _ A2 4 1) 4 Bry + Cx. (1)

The Focus of Expansion

We define the Focus of Expansion (FOE) to be the position
of intersection of the imaging surface! and the direction of

"This surface could be planar, hemi-spherical, etc.
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Figure 1: The FOE: This figure shows flow fields generated when
observer a) only translates, b) only rotates, and c) moves with both
rotation and translation, the most typical situation. In the second
case there is no FOE because there is no observer translation, while
in the first and third cases the FOE is in the same position for both
cases, just above and to the right of the image center. That is, our
definition of FOE renders its position in the image completely in-
dependent of observer rotation.

instantaneous observer translation. This? defines the FOE to
be independent of the viewer s instantaneous rotation. Fig-
ure 1 illustrates how our definition of FOE makes its position
invariant to rotation.

Several authors have researched the computation of the
FOE either by restricting the allowable motion to translation
or by approximately cancelling rotation(Jain 1982, Reiger
& Lawton 1985). In work related to ours, Weinshall (1990)
finds the FOE but needs to find elliptical surface patches be-
forehand. The contribution of the work in da Viloria Lobo
& Tsotsos (1991) is that we find the FOE in an exact man-
ner, even when the motion includes general rotation, with no
restriction on surface shape.

FOE From Collinear Measurements

We refer to three image points as a triplet. The unit computa-
tion of our algorithm is a collinear triplet computation. The
computation is a generalization of an approximation to the
second derivative of the velocity component that is normal to
the line joining the three collinear image points, the ““deriva-
tive” being taken in the direction of the line. For points sub-
scripted by 1, (i = 1, 2, 3), let the image coordinates of the
points be (z;, ), their image velocities be (u;, v;), and the
depths to their counterparts in the scene be Z;.

2This definition differs from that of Regan & Beverley (1982)
and Cutting (1986) who define the FOE as the inlersection of the
image and the directon of motion, thus making it dependent on
rotation.
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Figure 2: The FOE Operator: This shows how an operator is
made up of intersecting lines of points in the image. On a regular
256x256 square oplic array, at a single point we can have about 60-
70 intersecting lines each of which passes through at least several
image points. Here, only 9 lines are shown. The image is a dense
grid of points, shown as hollow squares, each with a flow estimate
associated with it. Some of the points used by each line have been
blackened to identify them. Along each line a Line Sum is calcu-
lated (see Fig 3). The Line Sums are added to give the response of
the operator at position (x,y) which is where the lines intersect.

The computation is the weighted® sum?,
Sum = (=sin 0)(nuy — (m+ n)uz + mugz) + (2)
(cos 8)(nvy — (m + n)vy + mug)

where @ is the angle that the line through the three image
points makes with the image x-axis, going from the x-axis to
the line in a counterclockwise manner, and where m is the
distance between the first and second image points and n the
distance between the second and third. By substitution of
(u;, v;), this generalized Sum can be verified to be

_(Usinf —Vcos8 + n (n+m) m
Sum-—( Wygcosg—Wz;sinﬂ)(-Z_l_ Za +Z_

i.e., Sum = product of translation factor and depth factor.
Sum is zero either if the scene points are collinear, or the
translation factor is zero, or if the line passing through the
three image points also passes through the FOE. Thus, in
general, for a scene containing sufficient depth variation, if
we compute many such collinear triplet sums across the com-
plete image, the FOE will be in the position of intersection

¥ When the collinear points are equi-spaced, the weights are (1,—
2,1) which is an approximation to the second derivative (Rektorys
1969).

def

‘We use the symbol = 1o define a calculation; this is to distin-
guish it from an expression of equality.
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Figure 3: This shows how points on a line were processed. Flow
estimaltes at points are grouped into triplets and summed according
to the weighted sum of equation (2). Then the absolute values of
these weighted sums are summed to give the Line Sum for the line.

of many triplet lines for which, in each case, the triplet sum
is zero. Next, we describe an operator and an algorithm to
locate the FOE.

The FOE Operator

Consider an operator (called the FOE operator) with many
lines passing through its center (centered at some (x,y) po-
sition in the image) in many directions in the image (see
figure 2), such that each line passes through several image
points, Along the line, overlapping triplets of image veloc-
ity are used and summed (see figure 3).

The absolute values of all triplet sums (as defined by equa-
tion 2) along a line arec summed to give a LineSum, and then
the LineSums are summed to get a response at the center. For
arigid scene, there are three reasons why the response could
be zero. First, each of the triplets summed by this operator
could be a collinear triplet in the scene; however, since each
line contains overlapping triplets, for the zero response to
be caused by collinear scene points, the whole scene would
have to be a single plane, which is quite rare. Second, there
could be no translation. Third, the true FOE could be at the
position of the center of the operator. Fortunately, if either of
the first two cases were to hold, the operator would respond
with zero everywhere; whereas, in the third case, assuming
the first two do not hold, there will be a unique zero. So, the
first two cases can be detected easily and eliminated. Thus,
we can sweep this operator across the whole flow field to ob-
tain a response map, detecting where it gives a zero response
surrounded by sufficiently non-zero responses.

Testing the FOE computation

Here tests of the FOE algorithm are described. The range
image shown in Fig 4 was used to generate the synthetic op-
tic flow field shown in Fig 5. This flow was used as input
to our FOE algorithm. For the implementation of the FOE
algorithm, an FOE operator was centered at each element
in the optic array. Each FOE operator consisted of 24 lines
passing through it (see Fig 2). Along each line we centered
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Figure 4: Range data that was used to generate the synthelic
flow field used in these experiments. Observer moves with some
instantaneous 3-D rolaton and wranslation parameters with respect
1o these depth points and the flow equations are used 1o give an
image velocity vector at each grid point on the optic array.

a triplet at each point on that line. Within each triplet, the
intra-triplet spacing was such that three alternate points on
the line were used.

Fig 6 shows the response map for the operator as a func-
tionof (x.y). Here, response maps are shown with brightness
proportional to the Log (response). The darkest point, the
global minimum, corresponds to the computed FOE and it is
not surprising that it is exactly correct. Even with noise (as
high as 8% on average) in the flow, the FOE is found easily.
With noise, the pit of the minumum broadens out but is still
pronounced (somewhat like Fig 8.)

Functioning in a non-rigid scene

Objects in a moving observer’s view will often move inde-
pendently. Our computation remains competent in these sit-
vations. Fig 7 depicts the flow field generated by combin-
ing the original rigid flow field used in the previous section
with the flow for an independently moving rectangular patch
in the upper middle of the image. The frontoparallel patch
translates upward and to the right, with an image flow mag-
nitude comparable to those of the flower petals. The FOE
algorithm was tested on this combined flow field. The out-
put direction of translation is still correct (filter response map
in Fig 8.) Tests indicate that even with larger patches the
FOE computation is accurate, demonstrating robustness to
patches of non-rigidity in the scene.

Finding points that thwart rigidity
A biological agent needs the ability to detect parts of the
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Figure 5: Flow field generaka:/ sing some 3-D motion and range
data of Fig 4. Field shown sub-sampled.

Figure 6: Response map for noise-free flow. In these maps, we
show brightness proportional to Log(response). For this input, the
global minimum is exactly at the true FOE.

scene where the overall-rigidity assumption does not hold.
A point may be measured as moving differently from the rest
of the scene either because it may be a noisy measurement
— in which case any subsequent use of this erroncous flow
value such as in the shape reconstruction step, should be ap-
proached with caution — or because it could legitimately be-
long to an independently moving part of the scene. If this is
the case, this moving part will probably need additional at-
tention and possibly some special purpose processing, such
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Figure 7: Flow field combining the original rigid flow field and
an independently moving patch in upper right part of image. The
frontoparallel rectangular patch translates upward, to the right, with
an image flow magnitude that is comparable to those of the flower
petals.

as that which will segment it from its background.

QOur algorithm can easily signal that certain points are
moving inconsistently relative to the rest of the scene. We
achieve this by using the operator that gave the minimum re-
sponse indicating that the FOE is at its center. We traverse
each of its various lines searching for triplets that don't give
near-zero sums. Such triplets correspond to points such that
at least one of the three points moves inconsistently with the
rest of the scene®. Fig 9 shows the region around the patch
in the flow field of Fig 7 being marked by the program as
sets of inconsistent triplets. Note that because the patch it-
self is moving in a planar fashion, the triplet sum, when all
three points are inside the patch, is zero. So, at an indepen-
dently moving planar region, only the boundary areas of the
region will be detected (this depends on the intra-triplet spac-
ing used). For an independently moving non-planar region,
all the triplets, in any way overlapping the region’s points,
will be detected.

Importance of the FOE

As mentioned earlier, we have already shown in principle
that relative depth is a function of the direction of translation
and is independent of rotation. In other work, we are propos-
ing that for the noisy cases shape information be recovered in
stages, involving qualitative and quantitative recovery based
on knowledge of the FOE. The qualitative recovery work has
already appeared in Weinshall (1990), and in da Vitoria Lobo
& Tsotsos (1990).

*We have already stated earlier in this section that if such a
collinear triplet were moving with the same rigid parameters as the
scene, the triplet Sum must be zero,



Figure 8: Response map for the flow associated with the nonrigid
scene in which a patch moves independently. The global minimum
is in the same position, indicating that the FOE computation is ro-
bust o non-rigidity in the scene.

In addition to its use in computing shape, the FOE tells
where one is heading. This could be useful for navigation
tasks. Also, since our computation is a monocular one, a
binocular system could compute an FOE for each eye seper-
ately, and this could be used Lo obtain information about the
relative poses of the two eyes.

Relation to biological systems

We suggest that the FOE Algorithm summarized above is
biologically plausible because our simple calculations can
casily be implemented by the visual cortex. Consider Fig 10.
On the left we show one of the motion pathways from Maun-
scll & Newsome (1987). On the right we show the stages we
use to compute our FOE operator response map, suggest-
ing points in the cortical pathway at which our computations
could be implemented. Cells in area V1 could compute nor-
mal velocities for moving intensity structure, and then con-
nect to area MST either directly or via area MT. (Maunsell
& Van Essen 1983, Ungerleider & Desimone 1986).
Tanaka et al. (1989) have described cells in macaque dor-
sal MST that appear to be responsive to patterns composed
of points moving outwardly or inwardly along radial lines.
These cells have been termed ‘‘changing size’ or “‘expan-
sion/contraction” cells. A family of such cells, similar to
each other, could be computing in parallel an inverse of our
response map, with each cell responding strongly when the
FOE is at its center. That is, each cell would be encoding
a different direction of translation. If such a cell were com-
puting a sum of our LineSums, then a cell that responds to
a strictly expanding/contracting radial flow should continue
its response even when a rotational field of the kind shown
in Fig 1b is added to the expanding/contracting pattern. If
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Figure 9: An enlarged portion of the output from the program
that detects triplets containing inconsistently moving points, when
it was run on the flow of Fig 7. The detected points correspond to
areas around the independently moving patch. Because the patch
itself is moving in a planar fashion, the triplet sum, when all three
points are inside the paich, is zero. So, these internal points are not
marked.

this were to be found, this would be very strong evidence for
a computation similar to our algorithm.

To compute our FOE operator response at nearby posi-
tions, neighboring MST cells would receive input from over-
lapping triplet Sums. Hence it would be reasonable to expect
that these Sums are not being re-computed each time, but
rather that some intermediate cells compute something akin
to triplet Sums. There are cells in area MT that are known
to respond to patterns of activity in which the center differs
from its surround. This would be an appropriate substrate
in which our triplet Sums could be computed. These could
appear in the form of elongated cells computing an approxi-
mation to the second derivative of the normal velocities, the
derivative taken along the long axis. An analogue of such
receptive fields has been proposed by Dobbins et al. (1987)
for curvature detection. To reduce connectivity to the MST
cell computing the response for the map, the flow ficld may
be sampled quite sparsely, and we need to study the compu-
tational effects of such sparse sampling.

If the response map is being computed in parallel using
a family of MST cells, then some subsequent mechanism
would need to find the global minimum. This could pos-
sibly be accomplished using computations at multiple scales
across the map, so that a coarse sampling of the map would
indicate the ballpark of the minimum, while further finer
grain spatial sampling would give better resolution of the po-
sition of the FOE. A framework involvingattention would be
suitable for achieving this (Tsotsos 1990).

Detecting independently moving points requires top-
down activation of the particular MST cell positioned at the
FOE. We hypothesize that such feedback exists under atten-
tional control, but its exact nature would need to be discov-
ered.

Finally, there are connections from area MST to areas 7a
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Figure 10: Is the FOE algorithm biologically plausible? On
the left, an abstraction of one of the motion pathways described
in Maunsell & Newsome (1987). On the right, stages leading up to
the computation of our FOE operator response map.

and STP where wide field, ““opponent vector'” organizations
have been found. These cells respond to patterns of radial
flow to and from the fixation point (Maunsell & Van Essen
1987). We are studying the possible roles these would play
in our framework.

Conclusion

We have summarized a recent novel approach to comput-
ing the direction of the translation component of egomo-
tion, and detecting points not moving rigidly with the scene,
in the view of an observer moving with unrestricted mo-
tion. The detailed computational work appears elsewhere,
but here we argued that this approach is biologically plausi-
ble and sketched some of its consequences.
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