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Magnetization Reversal in Nucleation Controlled Magnets: 

Part I: Theory 

R. Ramesh and K. Srikrishna , Department of Materials Science and 

Mineral Engineering and Materials and Chemical Sciences Division, 

Lawrence Berkeley Laboratory, University of California, Berkeley, 

CA 94720. 

ABSTRACT : 

Brown (1962) 

A statistical model, based upon earlier models of 

and McIntyre (1970) has been developed to examine the 

magnetization reversal 

permanent magnets such 

of domain wall nucleation controlled 

as sintered Fe-Nd-B and SmCoS. Using a 

Poisson distribution of the defects on the surface of the grains, a 

"weakest link statistics" type model has been developed. The model 

has been used to calculate hysteresis loops for sintered Fe-Nd-B 

type polycrystalline magnets. It is shown that the intrinsic 

coercivity measured for a bulk magnet should vary inversely as the 

logarithm of the surface area of the grain. The effect of 

demagnetizing field has been incorporated by a mean field type 

approximation, to calculate the overall nucleation field from the 

intrinsic coercivity. The hysteresis loops theoretically 

calculated are in excellent agreement with the overall form of 

those experimentally determined for similar nucleation controlled 

magnets. ,The model also predicts that for an inhomogeneous grain 

size distribution, such as a bi-modal distribution, kinks will be 

observed in the second quadrant of the hysteresis loop. 
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I. IN'l'RODUCTION 

Magnetization reversal in permanent magnets occurs by the 

nucleation and movement of magnetic domain walls, under the 

influence of a reverse magnetic field. In such permanent magnets, 

the important magnetic property is the intrinsic coercivity, iHc, 

and is never equal to the theoretically predicted value of 

anisotropy field, HA = 2K1 /M s ' where K1 is the first order 

anisotropy constant and Ms is the saturation magnetization of the 

magnet (Livingston 1987). Magnetization reversal (or deviation 

from saturation) occurs at fields much lower than the above 

predicted value. One of the main concerns in the design of 

permanent magnets is the achievement of high iHc values. In the 

case of magnets that reverse their magnetization by domain wall 

processes, high iHc can be achieved in either of two ways (i) 

make the nucleation of a domain wall difficult ; (ii) make the 

movement of the wall through the grain difficult. These two 

methods lead naturally to two classes of technical permanent 

magnets (i) corresponds to a "nucleation controlled" magnet , 

while (ii) corresponds to a "pinning controlled" magnet (Livingston 

1987). In this paper the former aspect, i.e., the nucleation of 

domain walls in a "nucleation controlled" magnet will be addressed. 

It is thus implicitly assumed that once a domain wall is nucleated, 

magnetization reversal occurs almost instantaneously, i.e., there 

is no significant domain wall pinning in the volume of the magnet. 

Conventionally, high iHc in nucleation controlled magnets has 

been achieved by using fine particles (Luborsky 1961). Such 

observations are not confined to any specific class of permanent 

magnets, and considerable information about the effect of particle 

size on the intrinsic coercivity and nucleation field is available 

(see, for example, the review by Wohlfarth (1959» . Furthermore, 

the iHc can be enhanced to values close to the anisotropy field by 

using whiskers or particles of size smaller than the critical size 

for single domain formation (DeBlois and Bean 1959). However, in 

practical permanent magnets, such as sintered Sm-Co and Fe-Nd-B 

magnets, the particle sizes (or grain sizes) are generally much 

larger than the critical size for single domain formation. The 

• 
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tendency towards fine particles has been prompted by the inverse 

dependence of iHc on the particle (or grain) size. However, the 

exact nature of this inverse dependence has been an aspect of 

discussion. This will be one of the aspects that will be discussed 

in this paper. 

The first treatment of the intrinsic coercivity of 

multi-domain particles was by Kittel (1949) . He considered the 

balance between the wall formation energy, the energy of the wall 

in the external field and the self energy of the particle due to 

wall formation. The predictions of this model were 

agreement with the experimental data of Guillaud (1949). 

was one of the earliest researchers to determine 

in rough 

Guillaud 

the size 

dependence of the intrinsic coercivity, using Mn-Bi magnets. He 

observed an inverse dependence of the intrinsic coercivity on the 

particle size, although the relationship was not exactly 

hyperbolic. In contrast, Neel's model(Neel 1956), consisting of a 

cubic particle with internal and closure domain walls, predicted a 

d- 2/3 dependence of the intrinsic coercivity, where "d" is the 

particle size. However, quantitative agreement with experimental 

data was poor. Carey, Coleman and Viney (1972) have observed a 

"d- 1 " dependence, similar to that observed by Guillaud (1949). 

There is a large amount of experimental data, such as the 

determination of hysteresis loops of particles of different 

sizes (Shur, Deryagin, Sisolina and Kandaurova 1970), available on 

this subject, and they are reviewed by Wohlfarth(1959). In recent 

years, in the case of sintered SmCo5 magnets (which also behave 

predominantly as nucleation controlled magnets) McCurrie and 

Carswell(1971) and Becker(1968) have shown that the intrinsic 

coercivity decreases as the particle size increases. It was 

Brown (1962) who first suggested that the dependence of the 

intrinsic coercivity on the particle size could be related to the 

density of surface defects. Brown showed that if the number of 

defects in a surface area "S" is determined by a Poisson 

distribution, then the number of defects will decrease rapidly 

with grain size. Kandaurova, Deryagin and Lagutin (1975) have also 

suggested that the effect of particle size on the intrinsic 
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coercivity should be examined in terms of a statistical theory of 

wall nucleation. The model of Brown(1962) was further modified by 

McIntyre(1970) who obtained a relationship between the fraction of 

the magnet that had reversed its magnetization, under the applied 

reversing field, as a function of the grain size, and the reversing • 

field. An important aspect of this model was that it predicted a 

"sigmoidal" shape for the plot of fraction unreversed against the 

applied field. 

There is compelling evidence for the role of crystal defects 

in causing the nucleation of magnetization reversal(Aharoni 1962, 

Abraham and Aharoni 1960, Kronmuller and Hilzinger 1976, Kronmuller 

1978 and Becker 1973). Buschow, Naastepad and Westendorp(1969) and 

Becker(1970) have shown that the intrinsic coercivity of SmC05 

particles can be increased from 16. 5kOe to 25kOe by etching in 

citric acid for 2 minutes, thus suggesting that the degree of 

imperfection of the surface of the particle has a marked influence 

on the intrinsic coercivity. Buschow et. al(1969) have shown that 

large increases in the intrinsic coercivity can be obtained by 

electroless nickel plating of the SmC05 particles, again suggesting 

modification of the defect configuration on the surface of the 

particles. Such defects could be voids, vacancies,grain boundaries, 

interphase interfaces (both coherent and incoherent), dislocations, 

etc. (Livingston 1973,1986) and defects can be introduced through 

any of the processing steps, or can be an inherent part of the 

crystal. In the neighbourhood of such regions, the 

magnetocrystalline anisotropy can be considerably lower than that 

in the matrix. So also, the magnetization and magnetostricti ve 

properties of the crystal can be considerably modified. Such 

defects can be good sites for wall nucleation in high anisotropy 

permanent magnets. It is also clear that since a given particle can 

contain many defects, both in the volume and on the surface of the 

particle, the magnetic properties of the particle, specifically the 

nucleation field ( the overall field at which a domain wall will 

nucleate to cause magnetization reversal) and the hysteresis 

properties, will be, to a large extent, statistical in character. 

This stat ist ical nature is the focus of this paper. The 

• 
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statistical model of Brown(1962) , which was further improved upon 

by McIntyre (1970), will be used to explain the grain size 

dependence of the iHc of sintered Fe-Nd-B magnets. The model bears 

a strong similarity to the weakest link statistics used to 

interpret the fracture toughness of materials failing by cleavage 

fracture (Lin, Evans and Ritchie in press). 

Based on the model theoretical hysteresis loops have been 

generated. There have been other models that have predicted the 

hysteresis loops of hard magnets. Jiles and Atherton (1986) have 

developed a mathematical model for the hysteresis loop, based upon 

the pinning of domain walls on defect sites. Escobar, Valenzuela 

and Magana(1983) have proposed a model for the magnetization curve 

and the hysteresis loop based on an irreversible domain wall 

displacement model. Using this model, they have obtained 

hysteresis loops which bear the general qualitative characteristics 

of the experimental loops. However, the fit, in terms of the actual 

shape and details of the hysteresis loop is not very close. One 

aspect of difference between these models and that of Brown(1962) 

and McIntyre (1970) is that these models are for the case of an 

already existent domain wall, that has to be unpinned from its 

pinned sites. In the case of the models of Brown (1962) and 

McIntyre(1970) , however, the models predict magnetization reversal 

by wall nucleation. In their case, wall pinning in the volume of 

the magnet is not very important. This will be the approach in 

this paper. 

II. STATISTICAL MODEL OF MAGNETIZATION REVERSAL 

This model will consider the nucleation of reverse domains at 

defects in the material, specifically defects at the surface, grain 

boundaries and two phase interfaces. In the terminology of 

Brown(12), the 'extent', S will mean the surface area of the grain 

in question. Let a polyhedral grain, of size, 'g' (which is, for 

example, the edge length measured from an optical micrograph), 

contain 'n' defects on its surface. Each of these defects 

possesses varying potency in terms of their ability to nucleate a 

domain wall. The exact nature of the defects is not determined, 
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although, as mentioned earlier, these defects could be impurity 

atoms at the grain boundaries, vacancies, stacking faults, 

dislocations, etc. The nucleation field for the reversal of 

magnetization of a given grain will correspond to the potency of 

the worst defect on the grain, i.e., the particle will 'fail' when 

the nucleation field of the 'weakest link' is attained. However, 

the distribution of defects on the surface of the grain and the 

dependence of the number of defects tn' on the size of the grain is 

not transparent. Activation of anyone of the 'n' defects is 

necessary and sufficient to cause the reversal. Thus, following the 

model of Brown(1962) and McIntyre(1970), it is assumed that the 

defects exist independently of one another(and do not influence one 

another), leading to a Poisson distribution of the number of 

defects tnt. That is, the probability of finding "n" defects on a 

surface area "S" is given by : 

P(nIS) = exp(-A.S). (A.S)n/n! (1) 

where "An is a constant and is equal to the number of defects per 

unit area; S=the surface area of the grain under consideration. 

Also note that the average number of defects" n " is equal to A.S. 

Therefore, " n It, the average number of defects, is proportional to 

the surface area of the grain. 

The next step is to evaluate the distribution function of the 

nucleation fields for this grain. Let the nucleation field for any 

given flaw be "x", with a nucleation field distribution function, 

F(x). From the ideas of "weakest link statistics", i.e., the event 

"at least one nucleation field less than "x" " is exclusive to the 

event " all nucleation fields greater than "x"", 

that is 

P(xi < x) F(x) ; P(xi > x) = l-F(x). (2) 

Therefore, for "n" such sites, 

P(all xi > xln) = {l-F(x) In. (3) 

.. 
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and hence 

P(iHc < xln) = 1- {1-F(x)}n (4) 

where iHc is the intrinsic coercivity, i.e., the externally applied 

reverse field at which magnetization reversal occurs. 

When the events are mutually exclusive events, the probability 

of occurrence of event A is given by the product of the probability 

of occurrence of event B, and the conditional probability of the 

occurrence of event A, given the event B. That is, 

P( iHc < x) = In p(iHc xln). P(n) (5) 

This is the distribution function of the intrinsic coercivity, iHc 

and can be denoted by the function 

<ll(iHC) = Sn[ 1- {1-F(x) }n]. exp(-A.S). (A.S)n/n! (6) 

By expanding terms in equation (6) it can be shown 

<ll(iHC) = 1-exp{-1.S.F(x)} (7) 

This equation has the familiar form of a sigmoidal, which appears 

frequently in isothermal phase transformation kinetics(27). <ll(iHc) 

is the cumulative fraction of the grain that has reversed its 

magnetization for a given coercive field of iHc. This idea is more 

relevant in the case of a polycrystalline magnet. In the case of a 

polycrystalline magnet: 

<ll (iHc) = Y( grain size, iHc) (8) 

For a given coercive field, iHc, <ll (iHc) is only a function of the 

grain size, ie 

<ll(iHC) = Y( grain size) (9) 
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where Y defines the functional dependence. In the case where all 

the grains are of the same size, the magnet will behave similarly 

to a single particle. However, in the more realistic case of a 

polycrystalline magnet with a specific grain size distribution, 

e.g., normal or log-normal, the fraction reversed, ~(iHc) will be a 

function of the grain size distribution also. It must be pointed 

out that although the magnet comprises many grains, the nucleation 

of magnetization reversal in each grain will be governed by the 

defect configuration on its surface only. That is, each grain, 

although in contact with other grains around it, will reverse at a 

field characteristic of the defect distribution on its surface, 

thus behaving as an isolated grain (from the point of view of 

defect induced domain wall nucleation). However, as will be shown 

later, in a polycrystalline magnet, magnetostatic interactions 

among the grains do exist and will influence the field at which 

reversal will occur. This aspect is discussed later. 

In general, for powder metallurgy processed sintered 

magnets (Sagawa, Fujimura, Togawa, Yamamoto and Matsuura 1983), the 

grain size distribution is log-normal (Kolmogoroff 1941). This 

grain size distribution can be incorporated into (7) as follows 

the grain size distribution is defined completely by the mean 

value, ~, and the standard deviation, cr. The frequency of each 

grain size in this distribution, vi 0 < vi < 1) is determined by 

~ and cr. 

In the case of a grain size distribution, ~ (iHc) = 

~iVi.Y(gi)' where gi is a particular value of grain size. Thus, 

to evaluate ~(iHc) at each value of iHc, the ~(iHc) for each grain 

size in the distribution is first determined and then multiplied by 

the frequency of occurrence of that grain size, ni. 

That is, 

~ (grain size, iHc) = 1- exp{-A.S(~,cr). F(x)} (10) 

In this equation, the effect of a grain size distribution has been 

incorporated by replacing the surface area term, S, with a modified 

surface area term that depends upon the mean and standard deviation 

of the grain size distribution. 

.. 
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In the above equation the following terms have to be defined 

(a) the surface area, S(~,a) In the case of a spherical particle 

the surface area is given by S = 4.x.r2 , where r= the radius of the 

particle. However, in the case of real grains in a polycrystalline 

magnet, this approximation is not good enough. The shape of grains 

in a polycrystalline magnet can be approximated by that of a 

tetrakai- decahedron(German 1986). In that case, the surface area 

is given by: S = 26.78.g2 , where "g" is the edge length measured 

from an optical micrograph. Thus, the surface area is proportional 

to the square of the grain size measured off an optical micrograph. 

(b) ~(iHc), the cumulative distribution function of the intrinsic 

coercivity: As described earlier, this is the fraction of the 

grains that have already reversed their magnetization for a given 

coercive field, iHc. This can be determined experimentally from 

the hysteresis loop, using the method suggested by McCurrie(1970). 

A typical hysteresis loop for a material such as Fe-Nd-B is shown 

schematically in Fig.1. In this figure, the demagnetizing curve 

depicts the magnetization remaining, along the initially applied 

field direction, as a function of the externally applied reversing 

field. In the completely saturated condition, (point L) all the 

grains are magnetized in the direction of the applied field. Upon 

reversal of the field direction, the grains progressively reverse 

their magnetization direction. From this demagnetization curve, 

LP, the distribution of intrinsic coercivities can be determined by 

obtaining the slope of the curve at fixed intervals on the curve. 

This value of the slope is an indicator of the fraction of grains 

that reverse their magnetization when the field is changed from 

iHc to iHc + dH. Normalizing each value of the slope by the sum 

of all the slopes gives the fraction of grains that have reversed 

for that field interval, dH. ~i is then obtained as the cumulative 

sum of all the fractions. This is the cumulative fraction of 

grains that have reversed for a given reverse field iHc. This 

fraction can be alternatively determined as a ratio of the 

instantaneous value of remnant magnetization to that of the 

saturated condition, i. e., at point L in Fig .1. This is the 

general method of determining the fraction of reversed grains. 
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(c) In the right hand side of equation (10) two terms, i.e., "1" 
and F (x) remain undefined. In the absence of any analytical 

expressions to derive these two quantities, experimental results 

have to be resorted to. This is discussed in the next section. 

III. DETERMINATION OF "1" AND F(x) 

As was mentioned earlier, equation (9) has the form of a 

sigmoidal. It can be rewritten as follows: 

1- ~(grain size, iHc) = exp{-l.S(~,s) .F(x)} (11) 

i. e. , 

In {1-~} = -l.S(~,O') .F(x) (12) 

i. e. , 

In[-ln {1-~}] = In[l.S(~,O')] + In[F(x)] (13) 

Equation (13) suggests that a plot of the left hand side against 

In [F (x) ] must be a straight line with a slope that will be 

determined by the nature of the function F(x). It is also clear 

that the intercept of such a linear fit would give the value of 

"1", if the plot is for a sample of known grain size and hence 

known value of "S". With this as the basis, a typical sintered 

magnet with an average grain size (experimentally determined) of 

1 O~ was used to determine the hysteresis loop. The details of 

preparation of the magnets are given in the paper by Sagawa et ai. 

(1983) • 

Fig.2 shows the measured grain size distribution for a typical 

sintered Fe-Nd-B magnet with an average grain size of 10 microns. 

The log-normal grain size distribution, with a positive skew is 

clearly demonstrated here. Fig.3 shows the experimental hysteresis 

loop for this sample, obtained with a maximum applied field of 

25kOe. From this hysteresis loop, the intrinsic coercivity 

distribution, obtained using the method described in the previous 

paragraph, is shown in Fig.4, The plot of cumulative fraction of 

grains reversed against the applied reverse field is shown in 

Fig. 5 . Corresponding to this plot, Fig. 6 shows a fit of 

In[-ln{l-~} ] against intrinsic coercivity,iHc. Several functional 
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forms of iHc, such (iHc)2, (iHc)3, etc were tried out and the best 

fit was obtained when plotted linearly. From this result two 

aspects became apparent. The first is the nature of the function 

F(x). The nature of the fit in Fig.6 clearly shows that F(x) is of 

the form F (x) = exp (-k. iHc), where "k" is the constant of 

proportionality, that can be determined from the linear fit in 

Fig.6. The second point is that the intercept of this linear fit 

provides a value for In(A.S). With the assumption that the average 

grain size of 10~ is representative of the whole sample ( so that 

the grain size distribution can be replaced by a single average 

grain size), the value of "A." can be determined, since "S" is 

related to the grain size "g" through the equation: S = 26.78.g2 . 

It should be pointed out that this value of "A." is averaged over 

several grain sizes, represented by the average grain size. 

Effect of demagnetizing fie~ds 

In the case of dense, polycrystalline sintered magnets, the 

interaction of grains with one another is another important factor 

to be taken into account, when examining the magnetization reversal 

characteristics of the magnet as a whole. While the presence of 

impurities and non-magnetic phases at grain boundaries (Ramesh, Chen 

and Thomas 1987) (in the case of Fe-Nd-B magnets), may prevent 

significant exchange interaction across the grain boundaries, there 

is bound to be significant magnetostatic interaction between the 

grains. Thus, demagnetizing fields have to be included in the 

calculation of the nucleation field. In general, the nucleation 

field has two contributions (i) the external reversing field, 

which is the experimentally measured intrinsic coercivity, iHc ; 

(ii) the internal demagnetizing field. Thus, the nucleation field, 

i.e., the overall field under which the grain undergoes reveral of 

magnetization, can be written down as(Hirosawa, Tokuhara, Matsuura, 

Yamamoto, Fujimura and Sagawa 1986 and Herzer, Fernengel and Adler 

1986) : 

Hn = iHc + D.Ms (14) 

where 0 is the demagnetizing factor, which is geometry dependent, 

and Ms is the saturation magnetization. Thus, the grain undergoes 
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magnetization reversal when the overall field is equal to or 

greater than the nucleation field of the worst defect. In the case 

of a polycrystalline magnet undergoing reversal, however, the 

demagnetizing field, changes continuously as the whole magnet 

reverses its magnetization direction. This is schematically .. 

depicted in Figs.7(a-e). In Fig.7(a), the polycrystalline magnet 

is shown, magnetized in the direction of the initially applied 

field. The demagnetizing field in this case is equal to the O.Ms .. 

In (b), the state of the magnet at the remanence point (see Fig.1) 

is shown. In this case, a small fraction of the grains, 

(predominantly those at the surface of the sample) have reversed 

their magnetization. However, this changes the demagnetizing field 

that a grain that has still not reversed, experiences. The 

demagnetizing field on a grain that has not reversed its 

magnetization will now be the sum of the demagnetizing field due to 

its own magnetization and the effective field (in a mean field type 

of approximation) of all the grains around it that have either 

reversed or are still unreversed. This additional contribution 

will be proportional to the instantaneous value of magnetization of 

the magnet, since the instantaneous value of magnetization is a 

measure of the number of grains that have reversed. Thus, the 

effective demagnetizing field at any point on the hysteresis loop 

is equal to O. (Ms + [Ms-Minst.]), where Minst. is the instantaneous 

value of magnetization. The value of O.Ms will be assumed to be 

equal to I s =41t. Ms (which is generally about 12.5-13 kGauss for 

Fe-Nd-B magnets at room temperature), since the value of "0" could 

not be determined accurately. As the reversing field increases in 

magnitude, the effective demagnetizing field on a grain that has 

still not reversed, increases. For example, at the coercive point, 

Fig.7(c), i.e., at the point where the effective magnetization is 

zero, the effective demagnetizing field is equal to 2.I s . In the 

extreme case where all but one grain has reversed ( i.e., at very 

large negative fields),Fig.7(e), the effective demagnetizing field 

will be equal to Is + [Is -(-Is)]' i.e., 3.Is . Fig.6, showing the 

linear fit between In[-ln(l-<1»] and iHc, can also be plotted 

between In [-In (1-<1»] and Hn , the nucleation field, defined by 
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eqn.(14). This plot is shown in Fig.S, and again, a linear fit is 

obtained. Since the nucleation field is a more relevant parameter 

(wall nucleation occurs when HN is equal to the nucleation field of 

the worst defect), all the computations were carried out for the 

nucleation field. The values of "A" and "k" used were those 

determined from Fig.S. 

IV. ANALYTICAL RESULTS 

The theory outlined above was incorporated into a simple 

computer program and B - H loops were generated for various grain 

distributions. Primarily three kind of grain configurations were 

simulated: single size grains(i.e., 

delta function at the mean value), 

grain size distribution is a 

unimodal distribution and a 

bimodal distribution of grains. The unimodal and bimodal 

distributions were both log normal in nature as these are the most 

commonly observed distributions in powder metallurgy processed 

sintered magnets. In all the cases, the simulations were carried 

out for the nucleation field and hence the corresponding values of 

"A" and "k" (from Fig.S) were used in the calculations. The grain 

sizes were sampled from 0 to in (gmax) microns where gmax was such 

that the area under the grain size distribution curve included 99% 

of the grains. The value of "A" was assumed to be independent of 

the grain size. 

Figure 9 shows the calculated hysteresis loop for a single 

grain size (10 ~) polycrystalline magnet of Fe-Nd-B, and for a 

polycrystalline magnet with a grain size distribution as shown in 

Fig .10. The hysteresis loop for the magnet with a grain size 

distribution as in Fig.10 shows remarkable agreement with the 

general form of those experimentally determined. One feature of 

this plot to be noticed is the abrupt nature of the demagnetizing 

curve at the ends, in the case of the sample with only one grain 

size. It can also be seen that the slope of the demagnetizing curve 

in this case is different from that of the magnet with the grain 

size distribution shown in Fig.10. This difference can be directly 

attributed to the fact that in the case of the sample with the 
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grain size distribution as in Fig.10, grains larger and smaller 

than 10~ exist along with a lower fraction of grains of 10~ size. 

Because of this, the slope of the hysteresis loop in the initial 

stage as well as at the end, is different. So also, the nucleation 

field, HO.S' is also lower in the case of the sample with the grain 

size distribution, compared to the sample with only 10~ grains. 

Pni-modal grain size distributions: The simulated figures and 

the observed changes therein can be easily explained. The different 

stages in the demagnetization process of a polycrystalline magnet 

are shown in Fig.7(a-e). In (a) the magnet is completely saturated 

along the initially applied field direction and hence all the 

grains are magnetized in the same direction. As the positive field 

is decreased, nucleation of reverse domains occurs. This 

nucleation is primarily defect controlled and therefore the larger 

grains possesing greater surface area and hence a greater 

probability of finding a "bad" defect (i.e., one that can easily 

cause the nucleation of reverse domains) reverse first. Traversing 

the grain size distribution curve (such as in figure 10), with 

decreasing field, the reversal gradually increases till the average 

grain size is reached when the majority of the grains reverse. On 

further increase (i.e., increasing negative fields) of 

demagnetizing field the remaining grains smaller than the average 

grain size reverse. 

The predicted behaviour of the hysteresis loop on increasing 

the standard deviation for a given grain size can also be explained 

based on similar arguments. Figures 11 and 12 depict the 

calculated grain size distributions and the corresponding 

hysteresis loops for Fe-Nd-B magnets of a given average grain size 

with varying standard deviations. Such changes in the grain size 

distribution can be achieved by suitable modification of the 

processing parameters. With increasing standard deviation the peak 

height decreases and consequently the number of grains having grain 

sizes greater and smaller than the average increases. As can be 

seen this causes a change in slope of the B-H loop at both 

extremums, as an increased fraction of grains transform sooner (the 
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large grains) and an increased fraction transform later (small 

grains) . Since the fraction of grains with the average value 

decreases with increase in the standard deviation, the nucleation 

field, HO.S , also decreases. 

Of greater significance is the effect of average grain size,~, 

on the hysteresis loop, for a constant value of the standard 

deviation, o. This is shown in Figs.13 and 14. In Fig.13 the grain 

size distribution for three different average grain sizes, namely, 

10, 20 and 40 microns, are plotted, for a constant value of the 

standard deviation of 0.4. The corresponding hysteresis loops are 

depicted in Fig.14. The main effect of increasing the grain size 

is a reduction in the width of the hysteresis loops. Consequently, 

and as expected, the nucleation field, i.e., HO.S' also decreases 

with increase in grain size, an observation in consonance with 

experimental results. 

Bi-modal grain size distributions: Frequently, inhomogeneous 

grain size distributions can be obtained in sintered magnets, if 

the sintering conditions are not properly controlled. For example, 

if the sintering temperature is higher than that required, 

inhomogeneous grain growth can occur. Under such condit ions, 

grains whose sizes are an order or two larger than that of the rest 

of the magnet, can be observed. The presence of such an 

inhomogeneous grain size distribution can produce distinct effects 

upon the hysteresis loop. This inhomogeneous grain size 

distribution can be modeled by a bi-modal grain size distribution. 

Such a bi-modal distribution (on the log scale) would consist of a 

large fraction of the grains of small average size and a small 

fraction of grains of large size. Fig .15 is a hysteresis loop 

obtained for a uni-modal grain size distribution with an average 

size of 10 microns and a standard deviation of 0.2. Superimposed on 

this is the hysteresis loop for a bi-modal grain size distribution, 

consisting of 80% of 10 micron average grain size grains and 20% of 

100 micron average size grains. In the case of a bi-modal grain 

size distribution, a kink appears in the second quadrant of the 

hysteresis loop(and in the fourth quadrant). Upon closer 
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examination of the hysteresis loops in Fig.15 it is clear that the 

deviation from saturation occurs at positive field and continues 

until about 20% of the magnet has transformed, i.e., all the large 

grains have reversed. After this stage, the loop follows that of 

the 10 micron sample, indicating that all the grains in the 100 ,. 

micron fraction have already reversed their magnetization. This 

clearly shows that an inhomogeneous grain size distribution can 

lead to kinks in the hysteresis loop, with the location of the kink 

(or abrupt deviation from saturation) being dependent upon the size 

of the large grains. The magnitude of the kink, i.e., the drop in 

magnetization, is proportional to the fraction of large grains. 

This is illustrated by the plots in Figs.16 & 17. Fig.16 shows 

three typical examples of bi-modal grain size distributions. In 

this case, the two grain sizes chosen are 10 microns and 100 

microns, with a standard deviation of 0.2 for each. The figure 

shows three plots, for different fractions of the 100 microns 

average size grains, i.e., 10,20 and 30 vol.%. In reality, such 

large fractions of the large grains may not exist, but the examples 

chosen do clearly illustrate the point. The hysteresis loops 

corresponding to the three grain size distributions in Fig.16, are 

shown in Fig .17. All the hysteresis loops show deviation from 

saturation at the same value of the demagnetizing field, i. e., 

about +30kOe. However, the magnitude of the kink increases with 

increase in the fraction of the large grains. Experimental results 

confirming these theoretical inferences will be presented in the 

companion paper. 

V. DISCUSSION 

In this paper, a statistical model, based upon the earlier 

models of Brown (1962) and McIntyre (1970) has been developed to 

examine the magnetization reversal behaviour of domain wall 

nucleation controlled magnets, such as sintered Fe-Nd-B and SmCo5' 

One of the most important features of this model is that sigmoidal 

hysteresis loops are obtained through an analysis similar to that 

frequently encountered in solid state phase transformations 

(Christian 1975). Using experimentally measured hysteresis loops 
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for a sample of known grain size and grain size distribution, it 

has been possible to determine the nature of the function F(x), the 

nucleation field distribution function. Instead of a power law type 

dependence (as in soild state phase transformations), the form of 

this function has been determined to be an exponential. In 

addition, the model suggests a possible method of evaluating the 

effect of average grain size on the intrinsic coercivity measured 

experimentally. This can be achieved by examining equation (10) . 

The intrinsic coercivity of a polycrystalline sintered magnet, as 

measured, is the median value of the distribution of coercivities 

of the collection of particles in the magnet. This median value is 

the value of the reverse field which reduces the effective 

magnetization to zero ( i.e., the intercept on the negative x-axis 

of the second quadrant hysteresis loop). In this condition, 

exactly half of the grains in the magnet have reversed their 

magnetization, whence <1>= 0.5. Using this value of q, in eqn. (10) , 

we obtain : 

0.5 = l-exp{-A.5(~,G) .F(x)} (15) 

i.e. , 

o . 5 = e xp { - A . 5 (~, G) . F (x) (16) 

i . e . , 

F(iHc) = In(2)/(A.5) (17) 

Eqn. (17) can be used to establish the relationship between the 

macroscopic average grain size of the magnet. "5" is the surface 

area of the grains. For an average grain size of "g": 

5 = 26.78. g2 (18) 

Thus, 

F(iHc) = In(2)/(A. 26.78. g2) (19) 

5 ince F (iHc) has been determined to be of the form F (iHc) 

exp(k.iHc), the relationship between the macroscopically measured 

intrinsic coercivity, iHc, and the macroscopic average grain size, 

"g", can be established. 
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exp(k.iHc) = In(2)/(A. 26.78.g2 ) (20) 

Upon taking logarithms on both sides, one obtains 

k.iHc = In[ln(2)] - In[A. 26.78.g2 ] (21) 

Thus, the model predicts an inverse logarithmic relationship 

between the intrinsic coercivity and the average number of 

defects, (A.S), on the surface of the grains constituting the 

magnet. This dependence on the number of defects may be taken as an 

indication that as the number of defects increases, the probability 

of finding a "bad" defect with a very low nucleation field, 

increases. Since the average number of defects is related to the 

surface area,S, of the grain, the intrinsic coercivity is related 

to the surface area of the grain. This is turn means that the 

intrinsic coercivity is related to the average grain size of the 

magnet. The experimental verification of this model is presented 

in the companion paper. 

The theoretical hysteresis loops generated by the computer 

program bear close resemblance to experimentally determined 

hysteresis loops for sintered polycrystalline nucleation controlled 

magnets. The model also predicts that if the magnet consists of an 

inhomogeneous grain size distribution, such as a bi-modal 

distribution, then kinks would be observed in the second quadrant 

of the hysteresis loops. This suggests that, in addition to the 

effect of spin reorientation at low temperatures, and the effect of 

oxidation and the presence of a soft magnetic phase, an 

inhomogeneous grain size distribution can also produce kinks in the 

hysteresis loops. Experimental verification of this prediction is 

presented in the companion paper. 

VI. CONCLUSIONS 

A statistical model to explain magnetization reversal by domain 

wall nucleation at crystal defects has been developed, based upon 

earlier models of Brown and McIntyre. Using a Poisson distribution 
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of the defects on the surface (i.e., grain surface nucleation) a 

"weakest link statistics" type model has been developed. The model 

has been employed to calculate hysteresis loops for Fe-Nd-B type 

sintered polycrystalline nucleation controlled magnets. It is shown 

that the intrinsic coercivity measured for a bulk magnet should 

vary inversely as the logarithm of the surface area of the grain. 

A mean field type approximation has been used to incorporate the 

effect of demagnetizing field and to calculate the overall 

nucleation field from the intrinsic coercivity. The hysteresis 

loops theoretically calculated are in excellent agreement with the 

overall form of experimental hysteresis loops for similar 

nucleation controlled magnets. The model also predicts that for an 

inhomogeneous grain size distribution, such as a bi-modal grain 

size distribution, kinks will be observed in the second quadrant of 

the hysteresis loop. Detailed experimental verification of the 

predictions of the model follows in the companion paper. 
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FIGURE CAPTIONS 

Figure 1: Schematic representation of the typical virgin curve 

and hysteresis loop for an optimally treated sintered Fe-Nd-B 

magnet. 

Figure 2 Grain size distribution for a typical optimally 

treated, sintered Fe-Nd-B magnet, with an average grain size of 

about 10 microns. (Nominal composition of magnet: 

Fe-35wt.%Nd-1wt.%B) . 

Figure 3: Experimental virgin curve and hysteresis loop for the 

magnet with grain size distribution shown in Fig.2. (Maximum 

applied field = 25kOe) . 

Figure 4; Intrinsic coercivity distribution for the magnet with 

grain size distribution in Fig.2, obtained from the hysteresis loop 

in Fig.3. 

Figure 5: A plot of cumulative fraction of grains reversed 

against the applied reverse field, obtained from Fig.4. 

Figure 6 : A plot of In[-ln(fraction unreversed)] against 

intrinsic coercivity, iHc, showing a linear fit, with a regression 

coefficient of 0.99 

Figure 7: Schematic representation of the grains in the 

polycrystalline magnet, undergoing magnetization reversal, as a 

function of the applied reverse field. (a) magnet saturated in the 

direction of the applied field ; (b) state of the magnet at the 

remanence point, with the magnetization of a small fraction of the 

grains reversed ; (c) state of the magnet at the coercive point, 

i.e., the effective magnetization is zero; (d) state of the magnet 

with the magnetization of more than half of the grains reversed ; 

(e) state of the magnet in a very large reversing field, when the 

magnetization of all but a few of the grains has reversed. 
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Figure 8 : A plot of In[-ln(fraction unreversed)] against the 

nucleation field, HN. Note the linear fit with a regression 

coefficient of 1.0. 

Figure 9 : Calculated hysteresis loop for a magnet with a uniform 

grain size of 10 microns and a magnet with grain size distribution 

as shown in Fig.10. The constants "~" and "k" used were those 

obtained from Fig.8. 

Figure 10: Calculated grain size distribution for an average 

grain size of 10 microns and a standard deviation of 0.2, used to 

calculate the theoretical hysteresis loop in Figure 9. 

Figure 11: Theoretical grain size distributions for magnets with 

the same average grain size but with different standard deviations 

in the distribution. 

Figure 12: Theoretical hysteresis loops for the grain size 

distributions shown in Figure 11. 

Figure 13: Theoretical grain size distributions for magnets with 

different average grain sizes, but with the same standard deviation 

for the distribution. 

Figure 14: Calculated hysteresis loops for the magnets with 

different average grain sizes, illustrated in Figure 13. 

Figure 15: Calculated hysteresis loop for a magnet with average 

grain size of 10 microns and standard deviation of 0.2, with a 

uni-modal grain size distribution and for a magnet with a bi-modal 

grain size distribution. The magnet with a bi-modal distribution 

consists of 80% of grains with an average size 10 microns and 

standard deviation of 0.2, and 20% of grains with an average size 

of 100 microns and standard deviation of 0.2. 
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Figure 16: Bi-modal grain size distributions with average sizes 

of 10 microns and 100 microns for three values of the fraction of 

large grains, i.e., 10%, 20% and 30%. 

Figure 17: Calculated hysteresis loops for the three samples 

shown in Figure 16. 
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