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Abstract

Background: This study reports the results of a set of discrimination experiments using 

simulated images that represent the appearance of subtle lesions in low-dose computed 

tomography (CT) of the lungs. Noise in these images has a characteristic ramp-spectrum before 

apodization by noise control filters. We consider three specific diagnostic features that determine 

whether a lesion is considered malignant or benign, two system-resolution levels, and four 

apodization levels for a total of 24 experimental conditions.

Purpose: The goal of the investigation is to better understand how well human observers 

perform subtle discrimination tasks like these, and the mechanisms of that performance. We use a 

forced-choice psychophysical paradigm to estimate observer efficiency and classification images. 

These measures quantify how effectively subjects can read the images, and how they use images to 

perform discrimination tasks across the different imaging conditions.

Materials and Methods: The simulated CT images used as stimuli in the psychophysical 

experiments are generated from high-resolution objects passed through a modulation transfer 

function (MTF) before down-sampling to the image-pixel grid. Acquisition noise is then added 

with a ramp noise-power spectrum (NPS), with subsequent smoothing through apodization filters. 

The features considered are lesion size, indistinct lesion boundary, and a nonuniform lesion 

interior. System resolution is implemented by an MTF with resolution (10% max.) of 0.47 or 

0.58 cyc/mm. Apodization is implemented by a Shepp-Logan filter (Sinc profile) with various 

cutoffs. Six medically naïve subjects participated in the psychophysical studies, entailing training 

and testing components for each condition. Training consisted of staircase procedures to find the 

80% correct threshold for each subject, and testing involved 2000 psychophysical trials at the 

threshold value for each subject. Human-observer performance is compared to the Ideal Observer 
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to generate estimates of task efficiency. The significance of imaging factors is assessed using 

ANOVA. Classification images are used to estimate the linear template weights used by subjects 

to perform these tasks. Classification-image spectra are used to analyze subject weights in the 

spatial-frequency domain.

Results: Overall, average observer efficiency is relatively low in these experiments (10%–40%) 

relative to detection and localization studies reported previously. We find significant effects 

for feature type and apodization level on observer efficiency. Somewhat surprisingly, system 

resolution is not a significant factor. Efficiency effects of the different features appear to be 

well explained by the profile of the linear templates in the classification images. Increasingly 

strong apodization is found to both increase the classification-image weights and to increase 

the mean-frequency of the classification-image spectra. A secondary analysis of “Unapodized” 

classification images shows that this is largely due to observers undoing (inverting) the effects of 

apodization filters.

Conclusions: These studies demonstrate that human observers can be relatively inefficient at 

feature-discrimination tasks in ramp-spectrum noise. Observers appear to be adapting to frequency 

suppression implemented in apodization filters, but there are residual effects that are not explained 

by spatial weighting patterns. The studies also suggest that the mechanisms for improving 

performance through the application of noise-control filters may require further investigation.

Keywords

discrimination tasks; observer performance; ramp-spectrum noise

1 | INTRODUCTION

An important set of tasks in medical imaging can be described as lesion-discrimination tasks 

in which fine features of a readily visible object are used for classification. Assessments of 

lung nodules in CT images, in which nodules are labeled as malignant or benign, generally 

fall into this category. While the lung nodules can be readily detected—even relatively 

low-contrast ground-glass opacities—it is often more difficult to determine their malignant 

potential on the basis of nodule features. This makes lesion-discrimination tasks challenging, 

and therefore potentially useful endpoints for evaluations of task-based image quality.1–5

In terms of the radiological search literature,6–12 lesion-discrimination tasks can impact 

the role of search in task performance relative to other common radiological tasks such 

as low-contrast detection. In principle, a clearly visible lesion profile should eliminate 

errors of search and recognition, defined respectively by a failure to fixate or a short dwell 

time in eye-tracking studies. This puts the focus on decision processes as the primary 

source of error (i.e., errors made after a longer dwell time). In practice, search remains 

an important component of real-world high-contrast tasks in medical imaging because of 

large 3D search regions with cluttered backgrounds. Nevertheless, eye-tracking studies have 

also established that decision errors remain a substantial source of error in lung-nodule 

assessments and other relevant clinical discrimination tasks.13–15 This motivates a better 

understanding of how human observers discriminate between readily visible objects with 
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subtle signs of abnormality, which could help optimize imaging systems, image processing, 

and the development of decision support for optimal imaging performance.

The approach taken here is based on previous studies that use Gaussian statistical processes 

to simulate images with specified resolution and noise properties.16–19 The simulation 

includes so-called ramp-spectrum noise found in tomographic imaging in which noise 

power increases proportionally with spatial frequency20–22 up to image apodization filters 

implemented for noise control. One advantage of the Gaussian-process approach for simple 

discrimination tasks is that an analytic expression for the likelihood ratio exists, facilitating 

an Ideal-Observer calculation23–25 and leading to an efficiency characterization of human-

observer performance. Efficiency analysis quantifies how effectively diagnostic information 

in images is being used by human observers to perform tasks. It can be factored into terms 

related to internal noise26 and sampling efficiency,27–29 a measure of perceptual tuning, 

which further characterize performance.

While efficiency analysis provides a quantitative measure of how much diagnostic 

information is being used by an observer, a different psychophysical technique, 

classification-image analysis, investigates how that information is being accessed.30 This 

approach uses noise-fields in combination with decisions to estimate the spatial weights used 

by an observer to perform a task. Thus, it gives a sense of how image pixels are converted 

into a decision about the object being imaged. Classification-image analysis (and reverse-

correlation methods more generally31) is based on an assumption of Gaussian distributed 

images.32–34 The combination of efficiency analysis and classification-image analysis allow 

for a more in-depth view of the transfer of information to observers in imaging tasks.

To better understand human-observer performance in this setting, we have evaluated a series 

of discrimination tasks using simulated images with features that are related to lung-cancer 

screening. The image stimuli are subject to resolution limitations and masking by ramp-

spectrum noise textures with properties that are qualitatively similar to nodules in low-dose 

CT images of lung parenchyma. We use this approach to evaluate 3 different discrimination 

tasks (size, edge sharpness, lesion uniformity), 2 imaging systems (low-resolution and 

high-resolution), and 4 levels of apodization (smoothing) for a total of 24 experimental 

conditions.

We use two relatively novel approaches to analyzing classification images in this work, in 

addition to a number of fairly established techniques. The use of “unapodized” classification 

images has been recently published.35 This technique allows us to make more direct 

comparisons of classification images across apodization conditions. We also introduce 

the concept of differential sampling efficiency, which allows us to evaluate how well a 

classification image is tuned for a particular task. Details of these two novel approaches are 

provided in Sections 2.5.4 and 2.5.2.

Abbey et al. Page 3

Med Phys. Author manuscript; available in PMC 2024 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2 | METHODS

2.1 | Discrimination tasks

This work considers discrimination tasks involving three features that are conceptually 

related to the detection of lung cancer with CT,36–38 shown in Table 1. We briefly describe 

the tasks here, with more formal mathematical descriptions below. The features in each 

task are taken from clinical features that are known to be relevant to the characterization 

of lung lesions in CT, but they are simplified and abstracted into mathematical forms that 

are amenable to experimentation in psychophysical studies. Task 1 is a size-discrimination 

task, in which a slightly larger lesion is discriminated from a smaller baseline lesion 

with a 3 mm diameter (FWHM). The task parameter is the difference in radius between 

the larger and smaller lesion. Task 2 can be described as discriminating edge sharpness 

between lesions, in which a 5 mm diameter lesion with a more slowly decaying edge 

(malignant) is discriminated from a similar size lesion with a more distinct edge (benign). 

In this case the task parameter controls the rate of decay at the edge of the lesion, which 

represents the profile of poorly circumscribed invasive lesions. Task 3 can be described as 

a lesion uniformity discrimination task, in which a 5 mm lesion with region of low interior 

attenuation (malignant) is discriminated from one with a uniform interior (benign). A subtle 

nonuniform lesion interior can be a sign of malignant processes such as necrosis or local 

edema.39

2.1.1 | Task profiles—Target (malignant) and alternative (benign) signal profiles for 

each task are plotted in the top row of Figure 1a–c. All lesions used as image stimuli are 

radially symmetric and therefore can be defined by radial plots. To make the stimuli, target 

and alternative “objects” based on these radial profiles are generated at high resolution, 

and then passed through a transfer function and down sampled. The result is embedded in 

a noise field to produce an image stimulus. The mean lesion intensity, L = 200 is defined 

in Hounsfield Units (HU), with a background intensity of B = − 1000HU, the intensity of 

air. This gives the lesions a nominal intensity of −800 HU, which is consistent with weak 

ground-glass lesions found clinically.40 Let r represent the distance of a point from the 

center of the image, r = (x2 + y2)1/2, then the radial profiles of the “benign” lesions are given 

by

s0 x, y = B + LΦ RL − r
σL

,

(1.1)

where Φ is the cumulative normal distribution function, RL is the radius of the lesion, 

and σL provides some intrinsic smoothness to the object profile. Task 1 considers size 

discrimination for small lesions or nodules with a diameter of 3 mm, and therefore 

RL = 1.5mm. For Tasks 2 and 3, a somewhat larger lesion witha5 mm diameter is used as the 

base, with RL = 2.5mm. The σL parameter is set to 0.25 mm for all conditions. In addition 

to implementing an intrinsic smoothness in the lesions, this parameter also helps to mitigate 

potential aliasing issues that might appear if a more abrupt Step function were used.
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For the size discrimination task, the parameter of interest is the additional size of the 

“malignant” lesion, ΔR, which leads to the Task-1 malignant signal profile

sT1 x, y; ΔR = B + LΦ RL + ΔR − r
σL

(1.2)

For the edge-sharpness task, the parameter of interest is the inflation of the intrinsic 

smoothness, Δσ, which results in the Task-2 malignant signal profile

sT2 x, y; Δσ = B + LΦ RL − r
σL + Δσ .

(1.3)

For the lesion-uniformity task, the parameter of interest is the perturbation of the lesion 

interior, ΔC, which results in the Task-3 malignant signal profile

sT3 x, y; ΔC = B + L Φ RL − r
σL

+ ΔC 1
2Φ RL − r

σL
− Φ RI − r

σL

(1.4)

Note that Rl is the radius of the lesion interior, Rl = 0.71RL, and the last term in the equation 

decreases the intensity of the inner portion of the lesion r < Rl  by LΔC/2, while it increases 

the outer portion of the lesion Rl < r < RL  by the same amount.

Equations (1.1) through (1.4) are used to create object profiles on a finely-sampled grid, 

as the first step in generating image stimuli. The square sub-region (W = H = 87.5mm on 

each side) is sampled with an isotropic pixel width of 0.076 mm, which represents 9 × 

oversampling of the final pixel size and an array size of N = M = 1152. The sampled x and y
are given by s n, m = s xn, ym; θ  with task parameter defined by the specific equation used to 

generate the array. All lesions are centered in the sampling grid.

2.1.2 | Object spectra—One notable property of these discrimination tasks is that they 

tend to emphasize higher spatial frequencies than traditional low-contrast detection tasks. 

The bottom row of Figure 1d–f shows plots of the Fourier Transform (FT) for the difference 

signal in each task (T = 1 − 3), ΔsT k, l = FT sT xn, ym; θ − s0 xn, ym , along with the frequency 

profile of the corresponding base lesion, the benign profile ΔsL k, l = FT s0 xn, ym − B . The 

caret ^  is used throughout this report to indicate an array that has been transformed to 

the Fourier domain. The index variables, k and l, represent the indices of the 2D FT. Since 

these signals are real-valued and rotationally symmetric, the imaginary component of the 

Fourier Transform is zero. The lesion plots are intended to represent the spectral signal one 

might use in a lesion-detection task, and the magnitude of L in Equation (1.1) has been 

scaled in these plots so that the lesion has the same spectral energy as the malignant-benign 

difference signal for these plots. The plots show that the task spectra fall off somewhat more 
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slowly than the lesion spectra do, which means that there is relatively more spectral energy 

at higher spatial frequencies for the lesion profile itself.

The decay of spectral energy can be quantified in terms of a “mean frequency” of each 

spectral profile, defined as

MFT = k = 0
N − 1

l = 0
N − 1 fk, l ΔsT k, l

k′ = 0
N − 1

l′ = 0
N − 1 ΔsT k′, l′

.

(1.5)

The mean frequency of the lesion spectrum is 0.40 cyc/mm for Task 1, and 0.37 for Tasks 

2 and 3 (recall that the lesion radius is 1.5 mm for Task 1, and 2.5 mm for Tasks 2 and 

3). By contrast, the mean frequency of the feature spectrum is 0.63, 0.55, and 0.50 cyc/mm 

for Tasks 1–3 respectively, representing a substantial increase (35%–58%) in high-frequency 

content. The frequency ranges of the task spectra in Figure 1d–f are also seen to extend well 

beyond the Nyquist frequency of the final image (i.e., before filtering by a system transfer 

function and down-sampling as seen below) indicating that these tasks are fundamentally 

limited by the resolution of the imaging systems.

It is also notable that Tasks 1 and 2 retain considerable signal at zero frequency (DC). This 

means that the integrated malignant lesion profile is larger than the integrated benign lesion 

profile. As a result, the features in these tasks contain spectral energy that spans the range of 

frequencies available in the images within the limits of the system MTFs.

2.2 | Simulated imaging systems

2.2.1 | System transfer properties—We simulate two imaging systems intended to 

reconstruct a 35 cm × 35 cm field of view (FOV) with a 512 × 512 array of pixel values 

(0.68 mm pixel size). The simulation focuses on a 128 × 128 subregion of the FOV. The 

two imaging systems, referred to as Systems 1 and 2, are defined by different spatial 

resolution properties. System 1 has a lower resolution than System 2, which is implemented 

by a system transfer function that falls off more quickly. The modulation transfer functions 

(MTFs) of both systems are defined by a cosine-rolloff in radial frequency,

M f =

1
2 + 1

2Cos πf
f0

iff ≤ f0

0 iff > f0

(1.6)

with System 1 rolling off to zero at f0 = 0.59cyc/mm, and System 2 rolling off at 

f0 = 0.73cyc/mm (which is also the Nyquist frequency for the final pixel size of 0.68 mm). 

This means that System 1 is somewhat oversampled, but this preserves the pixel size and 

scale of the images for the performance studies.
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In addition, both systems employ frequency apodization as a means to control noise. 

Apodization is implemented by various Sinc-weighted frequency rolloffs, often called a 

Shepp-Logan filter,41 which multiply the MTF according to

A f =
Sinc πf

fc
iff ≤ fc

0 iff > fc

,

(1.7)

where fc is the cutoff frequency of the apodization filter. The apodization conditions consist 

of no apodization (A1; fc = ∞), a cutoff frequency at 2 times the cutoff of the MTF (A2; 

fc = 2f0), a Sinc-rolloff with the first zero at the cutoff of the MTF (A3; fc = f0), and a 

Sinc-rolloff with the first zero at 0.8 times the cutoff of the MTF (A4; fc = 0.8f0). Figure 2(a 

and b) shows the resulting combined transfer function M f × A f  of the two systems at 

each apodization level.

A finely-sampled object profile, s n, m , converted into the noiseless mean image by a 

convolution operation in which the frequency content of the object, s k, l , is multiplied by 

a filter, ℎ k, l = A fk, l M fk, l , before applying an inverse FT. The resulting spatial profile is 

down-sampled by a factor of 9 in both directions to give the final mean image, μ n, m  with 

n, m = 0, …, 127, on a 0.68 mm pixel grid. The task and task-parameters are implicit in the 

definition of μ. Note that wrap-around effects from the use of finite FTs are expected to be 

minimal because the lesions are located in the center of the images.

2.2.2 | Noise properties—We simulate noise in the down-sampled images as a ramp-

spectrum Gaussian process out to the Nyquist frequency of the images (0.73 cyc/mm). For 

frequencies less than 5% of Nyquist (fL = 0.0.37cyc/mm) the spectrum levels according to a 

quadratic profile,

N f =

CN
2

f2
fL

+ fL iff ≤ fL

CNf iffL < f ≤ fNyq

,

(1.8)

where CN scales the power spectrum to achieve a given noise magnitude. The leveling of 

the ramp-spectrum at low frequencies is a known component of real systems,42 and it also 

avoids the unrealistic situation in which there are noiseless frequencies that contain signal 

(i.e., SNR = ∞).

The noise power spectrum is identical for both Systems 1 and 2. In the apodization 

conditions, noise is attenuated by the frequency rolloff of the various Sinc filters according 

to the product N f A f 2. Figure 2(c,d) shows the combined NPS (ramp and apodization) of 
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the systems in Hounsfield units (HU) times mm2. Figure 3 shows sample noise textures for 

each system and apodization level.

Noise samples are generated by filtering white noise. Let z k, l  represent a sample 

of standardized Gaussian white noise that has been transformed to the FT domain. 

The apodized ramp-spectrum noise sample is computed as the product of the white 

noise, the apodization spectrum, and the square root of the noise power spectrum, 

n k, l = z k, l N fk, l
1/2A fk, l , followed by an inverse FT.

The resulting noise field has a discrete power spectrum given by

∑ k, l = N uk, vl A uk, vl
2 .

(1.9)

The result is added to the down-sampled mean image to get a sample stimulus

g n, m = μ n, m + n n, m .

(1.10)

2.2.3 | Image display—Table 2 gives generic measures of resolution and noise for the 

two systems and the four apodization conditions. In terms of lung imaging, these values 

are roughly consistent with the measured values of Kim et al.43 for low dose scanning 

(CTDIV ol = 0 . 38mGy). Note that the more highly apodized conditions for System 2 overlap 

with the less apodized conditions of System 1. Image stimuli are scaled for display based 

on the assumed use of a lung window of 1500 HU and level of −650 HU. Values outside 

the window are truncated to the window boundaries. After scaling, the window is discretized 

to 8 bits for display. Figure 4 shows examples of the “signal” (malignant) and “alternative” 

(benign) profiles along with the difference signal between these two profiles, as well as 

examples of noisy images.

2.3 | Psychophysical procedure

The image simulation procedure is used to generate stimuli for two-alternative forced-choice 

experiments, where a stimulus from the malignant class and an independent stimulus from 

the benign class are displayed side-by-side on each trial. The position of the two images 

(right or left) is randomized on each trial, and the reader is asked to indicate the alternative 

corresponding to a malignant image using a mouse click. The monitor used for the studies 

(MD1119; Barco, GA) has a measured luminance range from 0.1 to 162.9 Cd/m2, and 

is calibrated to the DICOM standard. Displayed images have a length and width of 84.5 

mm on the display, which represents up-sampling the pixel array by a factor of 2. At a 

comfortable viewing distance of 75 cm, the Nyquist frequency of the images is 9.9 cycles 

per degree visual angle, which is well within the typical resolution of the human eye (∼60 

cycles/degree).
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All observer data was collected under an IRB-approved human-subjects protocol. Each of 

the 3 tasks had a total of 8 conditions (2 systems and 4 levels of apodization). Subjects 

completed all the conditions in Task 1, before moving on to Task 2 and then Task 3. Within 

each task, the 8 conditions were completed in a randomized order. For each subject, every 

experimental condition began with 6 runs through a staircase training procedure44 in which 

the task parameter is decreased by 15% whenever three correct answers were given in a row, 

or increased by 15% whenever an incorrect answer was given (a 3-down, 1-up staircase). 

These runs familiarized the readers with the task, and also allowed us to estimate the signal 

parameters needed to achieve approximately 80% correct responses for each reader (from 

the last 5 runs). Subsequently, 2000 trials (40 sessions of 50 trials) were run at the estimated 

contrast level to estimate the primary endpoints of the study.

Occasionally, a subject performs poorly in the staircase component of the procedure, 

resulting in a high threshold-contrast estimate that led to substantially higher performance 

in the classification-image trials. The estimation of classification images has been shown 

to be weaker as performance increases.33 To mitigate these high-performance effects, we 

repeated experimental conditions—both training and testing—for subjects that achieve more 

than 90% correct in the classification image trials.

2.4 | Task performance analysis

2.4.1 | Contrast energy—The proportion of correct responses (PC) is the natural 

measure of task performance for 2AFC experiments. However, in these experiments the task 

parameter has been adjusted, based on the training data, to achieve a PC of approximately 

80%, which means that better performance may be reflected in a smaller task parameter. 

As a result, we use contrast energy to characterize observer performance on each condition. 

For a given experimental condition, let μT[n, m] be the mean pixel-values for the target 

(malignant) images for a given condition, and let μA[n, m] be the column vector representing 

the alternative (benign) images. The μT image will be dependent on the parameter values 

determined by the staircase procedures for each subject. Contrast energy is defined as

Ec = APix
n = 0

127

m = 0

127
μT[n, m] − μA[n, m] 2,

(1.11)

where APix is the area of a pixel. Given that the mean images are specified in units of HU, the 

contrast energy is given in units of HU2mm2.

Since the proportion correct in our experiments may vary somewhat from the targeted level 

of 80% correct, we apply a correction to the energy threshold in Equation (1.11) based on 

the observed PC in the psychophysical experiments. We used the concept of detectability 

derived from PC,45 d = 2Φ−1 PC , with an adjustment based on the detectability of the 

target PC (d = 1.19 for PC = 80%) relative to the observed PC for that condition to obtain the 

corrected threshold energy,
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Ec
Corrected = dTarg

dA, c
Observed

2
Ec .

(1.12)

Note that if the observed PC is greater than the target PC, then the correction factor will 

adjust for this by reducing the threshold energy, and vice-versa.

2.4.2 | Performance of the ideal observer—The Ideal Observer (IO) is defined 

as the optimal classifier for a given task. In two-class discrimination tasks of the sort 

considered here, with Gaussian-distributed classes and a common noise power spectrum, the 

IO can be implemented as a weighted sum of pixel values,25

rIO =
n = 0

127

m = 0

127
wIO[n, m]g[n, m] .

(1.13)

The weights are defined in the Fourier domain by mean signal profiles and the noise power 

spectrum as

wIO[k, l] = μT[k, l] − μA[k, l]
∑ [k, l] + σQ

2
,

(1.14)

where the additional term in the denominator represents the additional variance of so-called 

“quantization” noise.46 This term is modeled as having a variance of ΔQ/12, where ΔQ
is the quantization step (1500/256 here), and it has the additional effect of stabilizing the 

computation of wIOin Equation (1.14) for frequencies where the noise power spectrum is zero 

from apodization.

The signal-to-noise ratio (SNR) of the ideal observer is defined as the difference in the 

mean response of the IO to target-present and target-absent images, divided by the response 

standard deviation. The difference in the mean responses is given by

ΔρIO =
n = 0

127

m = 0

127
wIO[n, m] μT[n, m] − μA[n, m] .

(1.15)

The standard deviation can be computed in various ways. Our approach is to first define 

an array, y[n, m], as the product of the noise covariance matrix and the IO template. In the 

Fourier domain this product is given by

y[k, l] = ∑n [k, l] + σQ
2 wIO[k, l] .
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(1.16)

The standard deviation of the ideal observer response is

σIO =
n = 0

127

m = 0

127
wIO[n, m]y[n, m]

1/2
,

(1.17)

and the SNR of the Ideal Observer is then given by

SNRIO = ΔρIO
σIO

.

(1.18)

Since the SNR is dependent on the mean images and the noise covariance, it is affected by 

the task, the system and the level of apodization that define each experimental condition. In 

addition, it will change depending on the setting of the task parameter within each condition. 

As a result, we will consider performance of the IO in relation to performance of each 

human observer separately.

2.4.3 | Observer efficiency—Task efficiency with respect to the Ideal Observer is 

considered a measure of the fraction of task-relevant information that is being accessed by 

an observer. It is defined as the squared ratio of the Human observer SNR relative to SNRIO, 

as defined above in Equation (1.18). Human observer SNR can be computed directly from 

proportion correct in 2AFC tasks, and is typically referred to as the detectability index,

dH = 2Φ−1 PCH .

(1.19)

Efficiency with respect to the IO is then given by

η = dH
SNRIO

2
.

(1.20)

Efficiency is computed for each subject in each experimental condition, and then averaged 

across subjects to get a final estimate of ensemble performance for the condition.

As we shall see in the results section, it is often the case that human-observer PC deviates 

somewhat from the targeted value of 80% correct determined from the staircase runs. 

However, the efficiency estimate in Equation (1.20) is valid even when PCH is different from 

the targeted value. A higher value of PCH results in a higher value of dH (and vice-versa), 

but since SNRIO is computed for the same task parameter, the resulting efficiency represents 

efficiency at a slightly higher performance threshold. We expect efficiency to be relatively 

Abbey et al. Page 11

Med Phys. Author manuscript; available in PMC 2024 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unchanging over small changes in threshold PC, so the observed efficiency values should be 

representative of efficiency at 80% correct.

2.4.4 | Inference on performance measures—For the purpose of evaluating the 

significance of the threshold energy and efficiency performance endpoints, we use 3-way 

ANOVA modeling of log-threshold energy and log-efficiency with Task, System, and 

Apodization Level as fixed effects that are the focus of the analysis. However the data 

is subject to variability from the limited set of subjects and cases used in the experiments. 

Subjects are modeled as a random effect, and cases are aggregated into sessions, which 

are modeled as a random effect. In the log-threshold energy data, the sessions are the five 

runs of the staircase procedure that are used to estimate the threshold. For the efficiency 

analysis, a session is defined as 200 consecutive trials, with a total of 10 sessions for each 

experimental condition. Models are fit to log-threshold energy and log-efficiency endpoints 

separately, with main effects, 2-way interactions, and 3-way interactions evaluated for the 

three fixed effects. The model includes main effects of subjects and sessions as well as 

all 2-way interactions of these random effects with the fixed effects and each other. The 

ANOVA uses a Satterthwaite approximation47 for degrees of freedom to account for the 

random effects in the model.

The endpoints of each model are evaluations of the significance of the fixed effect main 

effects, (3 comparisons), their 2-way interactions (3 comparisons) and 3-way interactions (1 

comparison). The two models produce a total of 14 comparisons, with multiple comparisons 

across both endpoints controlled using the false-discovery rate correction developed by 

Benjamini et al.48 We report false-discovery-rate corrected p-values.

2.5 | Classification-image analysis

The classification-image methodology is based on standard methodology for 2AFC 

studies,30,32,49 which uses weighted sums of noise fields that have been filtered by 

the inverse of the noise covariance matrix. Let nc, j
+ n, m  be the noise field for the target-

present stimulus in trial j (for j = 1, …, J with J = 2000) and experimental condition c (for 

c = 1, …, 24), and let nc, j
− n, m  be the target-absent noise field. Also let Oc, i, j be the trial 

outcome for a given reader (i = 1, …, I), defined as 0 or 1 depending on whether the reader 

responds incorrectly or correctly in the trial. The score-weighted filtered-noise field that 

serves as the basis for the classification image methodology in 2AFC experiments is defined 

in the frequency domain as

Δq c, i, j k, l = Oc, i, j − PCc, i
J

J − 1
nc, j

+ k, l − nc, j
− k, l

∑ c k, l + σQ
2

,

(1.21)

where PCc, i is the estimated proportion correct for reader i in condition c. The j/ j − 1
term reflects the use of a sample estimate of PC.33 While Equation (1.21) defines the 

score-weighted noise field in the frequency domain, this is typically transformed back to the 

spatial domain for display and other purposes. Under the assumption of a linear decision 

variable (i.e., a weighed sum of pixel values), the expectation of Δq is directly related to the 
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pixel weights used to perform the task.32,33 We estimate these weights for a given subject by 

averaging over the trials. We can then estimate the average weights across subjects to reduce 

the estimation error and evaluate spatial weighting at the group level,

wc[n, m] = 1
IJ i = 1

I

j = 1

J
Δqc, i, j[n, m] .

(1.22)

From this estimate (in units of HU−1), we can also obtain an estimate of frequency weights 

by taking the Fourier Transform of wc[n, m].

Despite averaging across 2000 trials and data from multiple observers, classification images 

are still subject to sampling error. This error can be large, particularly when there are small 

values in the dominator of Equation (1.21) due to apodization or simply from low noise 

levels. To mitigate this error, we apply various smoothing approaches including spatial 

windowing, frequency windowing, and radial smoothing. Spatial and frequency windowing 

are implemented using 4th-order Butterworth filters. The spatial window has a radius (half 

-max) of 7.5 mm, which extends considerably past the extent of the objects as shown in 

Figure 1. The frequency window has a radius of 0.4 cyc/mm, which makes it extend further 

into the frequency domain than the system-transfer functions in Figure 2. The frequency 

windowing procedure also zeros the imaginary component of the FT, thereby enforcing 

symmetry about the midpoint of the classification image. Radial smoothing consists of 

averaging the spatial classification image across radial bands in the spatial domain.

2.5.1 | Classification-image spectra and spectral features—Classification-image 

spectra are defined by the Fourier transform of wc (with spatial windowing and radial 

smoothing), after shifting so that the central pixel of the image is at the origin of the 

transform and multiplying by the pixel area (so that they have units of HU−1mm2). Since the 

classification images are approximately rotationally symmetric, we compute 1-dimensional 

spectral plots by averaging the frequency components in radial bins with a width of a 

frequency sample, ΔFreq = 1/NΔPix. Note that any imaginary part of the spectrum will average 

to zero over these symmetric regions.

We use features of the classification image spectrum to quantify the effects of different 

imaging conditions on the average classification weights. Let wc k, l  represent the FT of the 

classification image defined in Equation (1.22). We choose two such features that integrate 

spectral power over a limited frequency range. The first is the integrated power of the 

spectrum

IPc = ΔFreq
2

fk, l < 0.35
wc[k, l] 2,

(1.23)

where fk, l is the radial frequency associated with the [k, l] frequency indices (fk, l = uk
2 + vl

2) 

and the sum considers only indices for which fk, l ≤ 0.35. The restriction on the frequency 
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range is chosen because the high apodization conditions (levels 3 and 4) tend to get unstable 

above this frequency level. An increase in the spectral power across conditions occurs when 

the magnitude of weights increase within the frequency range of the feature. This can occur 

when internal noise is reduced, since internal noise serves to down-weight the classification 

image.32

The second feature is the mean frequency of the spectral power, defined as

MFc =
ΔFreq

2
fk, l < 0.35 fk, l wc[k, l] 2

IPc
,

(1.24)

which is effectively the balance point of the classification image radial power spectrum. This 

feature is given in frequency units (mm−1) and quantifies the distribution of spectral weights 

in terms of higher or lower frequencies.

Similar to Section 2.4.4, three-way ANOVA models are used to establish the significance 

of effects for these spectral features. Task, system resolution, and apodization level are the 

three fixed effects considered, and main effects and two-way interactions are evaluated. 

Subjects are considered a random effect, but session effects are not modeled since instability 

makes some classification images difficult to estimate within a session. Integrated power and 

mean frequency are modeled separately, with multiple comparisons for the two features (12 

total) controlled using a 5% false-discovery rate correction. We report corrected p-values.

2.5.2 | Sampling efficiency from classification images—An efficiency value, 

as defined in Equation (1.20), of less than 100% reflects suboptimal performance. This 

inefficiency may arise from multiple sources, including poor tuning of a discrimination 

filter and internal noise. The concept of Sampling Efficiency focuses on systematic effects 

that result from suboptimal tuning of the linear weights. Originally estimated from the 

slope of threshold energy plotted against noise spectral density,27,29,50–52 more recent 

approaches53,54 have used classification images as a way to estimate sampling efficiency.

For a linear discrimination template, w[n, m], the sampling efficiency is computed by first 

computing a template signal-to-noise ratio, SNRw that is identical to SNRIO in Equation 

(1.18), except that the estimated classification image, w[n, m], is used in place of wIO[n, m]. 
The sampling efficiency is then given by

ηw
Samp = SNRw

SNRIO

2
.

(1.25)

It is clear from the equation that ηw
Samp = 100%, if w[n, m] = wIO[n, m]. It is possible to achieve 

a sampling efficiency of 100% even if total efficiency, as defined in Equation (1.20), is 

considerably less than 100% because of internal noise. Thus, sampling efficiency can be 

thought of as a way to decompose efficiency into a filter tuning component and a residual 
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efficiency component representing effects of internal noise. However, estimation error in 

the classification image can have a substantial effect on SNRw, generally biasing it to be 

too low. As a result, relatively aggressive smoothing is used to control noise as described 

above (spatial and frequency windowing, and radial averaging) involving both the spatial 

and frequency windows described above.

2.5.3 | Differential sampling efficiency—Low sampling efficiency can be interpreted 

as evidence of poor tuning of subjects’ spatial weighting for a given task. This implies that 

some components of the weighing profile may be too large, and others too small, and it is 

of interest to identify these components. To do this, we introduce the concept of differential 

sampling efficiency, which consists of quantifying the effects of small perturbations of the 

classification image on sampling efficiency. We will focus on frequency perturbations here. 

Let wc be the classification image in the frequency domain, and we define the perturbed 

classification as wc + εδk, l, where δk, l is a Kronecker Delta (zero everywhere except at index 

k, l , where it is 1) and ε is a small positive constant with the units of w (HU−1mm2). The 

differential sampling efficiency at this frequency index is then given by

Δηw
Samp k, l = Lim

ε 0
ηw + εδk, l

Samp − ηw
Samp

ε

(1.26)

This is equivalent to taking the gradient of sampling efficiency with respect to each 

frequency in the classification image. Note that any imaginary components of the 

perturbation are zeroed in the spatial domain forcing the perturbation to be symmetric, 

and the spatial window is applied to the perturbation as well. In practice we choose a small 

value for ε by finding a value that has less than 1% effect on the standard deviation of the 

template.

When the differential sampling efficiency is positive, it means that the sampling efficiency of 

the weighting pattern is increased by increasing the k, l  component. When the component 

being evaluated has a positive value, this indicates that the component is underweighted. 

If the component being evaluated is negative, it indicates overweighting. Conversely, when 

differential sampling efficiency is negative, the sampling efficiency of the weighting pattern 

is decreased by increasing this component, indicating overweighting or underweighting 

depending on the sign of the component. The differential sampling efficiency gives us a 

way to assess the tuning of spatial weighting patterns on a frequency specific basis. We find 

it convenient to display these after radial averaging as is done for the classification image 

spectra.

2.5.4 | “Unapodized” classification images—One of the goals of this work 

is a better understanding of how apodization impacts performance in these sorts of 

discrimination tasks. However, classification images may be somewhat difficult to compare 

directly across apodization conditions because the signal and noise properties of the stimuli 

change in each condition. As a result, it is not clear whether the differences in classification 

images across apodization conditions represent an appropriate response to different image 
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statistics or some sort of perceptual difference. To put this a different way, an Ideal Observer 

would also change its spatial weighting across the different apodization conditions (because 

of the different signal and noise properties), so differences in the classification-image spectra 

may be ambiguous.

To resolve this ambiguity, we evaluate so-called “unapodized” classification images, 

described previously.35 To estimate these, we use Equation (1.21) with subject responses 

from the experiments with apodized images, but we generate the classification images (and 

their spatial frequency spectra) using the unapodized noise fields, defined as Apodization 

Level 1. The effect of this alteration of the standard classification-image procedure is 

to treat apodization as if it were part of the perceptual process of the observer rather 

than an image processing step. The unapodized classification images allow for a direct 

comparison of classification images across different apodization conditions (for a given 

task and imaging system), and they also allow for comparison with the ideal observer. 

Unapodized classification images for the Ideal Observer are invariant across apodization 

conditions, up to apodization filters that are not invertible. In this case, the IO classification 

images are invariant for frequencies not in the null-space of the apodization operator.

Once the unapodized classification images have been estimated, we can use the methods 

described above to display their radial spectra and make inferences on the feature values.

3 | RESULTS

A total of six subjects completed the experiments reported here (including 1 co-author of 

this work and 5 subjects naïve to the goals of the research). The primary findings of the 

study are described below, including the performance results, the classification images, and 

classification image spectra.

3.1 | Task performance

Three measures of task performance are plotted for each experimental condition in Figure 

5. The observed values of average proportion correct (Figure 5a) exhibit some relatively 

small deviations from the targeted value of 80%, with an apparent bias towards higher values 

across the conditions. This likely reflects some additional task-specific learning by readers 

over the course of the 2000 experimental trials that followed the initial threshold estimate. 

The values are all well within ±10% of the targeted level, although it should be noted that 

one subject repeated three conditions due to high performance (>90%, see Section 2.3). In 

all three cases, repeating the condition resulted in an acceptable observed PC.

The middle panel in Figure 5b shows the PC-corrected threshold contrast for each condition, 

corrected from the observed PC to 80% correct. The observed contrast energy values range 

over two orders of magnitude from 1.6 × 104 to more than 1.6 × 106. It is clear that Task 

3 has substantially higher threshold contrast energy than the other tasks. Within a given 

task and imaging system, there is evidence of a downward trend in SNR with increasing 

apodization level. The threshold contrast energy decreases by an average of 22% going 

from no apodization (A1) to the maximal apodization (A4). This indicates that performance 

within a task seems to be improving with more apodization.
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The bottom panel in Figure 5c shows reader efficiency in each condition. Average efficiency 

for each task is 25%, 14%, and 30% in Tasks 1–3, respectively. It is notable that Task 3 

results in the highest observed efficiency. This shows that the relatively high thresholds in 

Figure 5B represent the intrinsic difficulty of Task 3 relative to the other tasks, instead of 

some limitation in the subjects. The efficiency results also show an apparent increase in 

reader efficiency with increasing levels of apodization. On average, efficiency is 51% higher 

at full apodization (A4) relative to no apodization (A1). This indicates that the apodization-

related improvements seen in contrast energy thresholds represent more effective reading for 

higher levels of apodization.

As described in Section 2.4.4, mixed-effect linear statistical models and 3-way analysis of 

variance (ANOVA) are used to assess the significance of trends in log-contrast-threshold 

energy and log-efficiency plotted in Figure 5, with task, imaging system, and apodization 

as the fixed features of analysis. We find significant main effects for task and apodization 

for both endpoints (FDR-corrected p < 0.002 in all four cases). In the log-contrast-threshold 

energy data we find a significant 3-way interaction (FDR-corrected p < 0.007), suggesting 

that different tasks and systems may require different levels of optimization. In the log-

efficiency data we find significant interactions between task and apodization, task and 

imaging system, and a 3-way interaction between the factors (FDR-corrected p < 0.0001 in 

all three cases). These multiple interactions show that effective reading of images can be 

dependent on multiple factors.

3.2 | Classification images

Classification images, averaged across subjects according to Equation (1.22) for each 

task, are shown in Figure 6 after spatial windowing and smoothing with 4th-order 

Butterworth filters as described in Section 2.5. The classification images generally show 

clear regions of facilitation (positive weighting) and inhibition (negative weighting). The 

conditions with greater levels of apodization (bottom of Figure 6) appear to have more 

variability (estimation error) than the others. This is a consequence of instability due to the 

inverse covariance matrix applied in the classification estimation procedure. There are also 

substantial differences between the classification images for the different tasks. In Task 1, 

the classification images are generally facilitatory near the lesion boundary, with a mild 

inhibitory region outside of this area. The central region of the classification image appears 

to be suppressed at higher levels of apodization. In Task 2, there is a pronounced inhibitory 

central region with a facilitatory surround, and this pattern persists in Task 3.

3.3 | Classification image spectra

The radial-frequency plots in Figure 7 show the frequency spectra of the classification 

images as described in Section 2.5.1. Each graph in Figure 7 shows all four apodization 

levels, which allows comparison of how apodization impacts the way observers access 

information in these tasks. To a greater or lesser extent, all of these plots indicate that as 

the amount of apodization is increased, spatial-frequency weights increase at higher spatial 

frequencies (>0.1 cyc/mm).
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The classification-image features plotted in Figure 8 provide quantitative support to 

these observations. These plots show the classification-image integrated power and mean 

frequency of the average classification images. Both features rise with apodization level, 

with a somewhat greater rise apparent for higher apodization levels in System 1 (low 

resolution) compared to System 2 (high resolution).

These differences may simply reflect the implementation of apodization in these studies, 

which has a stronger modulation for System 1 than System 2 (see Figure 1). Three-way 

ANOVA models have been fit for the Integrated-Power and Mean-Frequency features 

separately, with Task, System, and Apodization-Level as fixed main effects and all 2-way 

interactions. Subjects are modeled as random effects along with their interactions with each 

of the main effects.

For the Integrated-power feature, significant effects are found for main effects of task (p 
< 0.0005), system (p < 0.02), and apodization (p < 0.0001). There is also a significant 

interaction between Apodization and the imaging system (p < 0.019). For the mean-

frequency feature, there are significant main effects of Task (p < 0.0001) and Apodization (p 
< 0.0003), and a significant interaction between System and Apodization (p < 0.002). These 

p-values are corrected for multiple comparisons using a 5% false discovery rate across both 

features.

3.4 | Sampling efficiency and differential sampling efficiency

Sampling efficiency of the classification images, described in Section 2.5.2, is compared to 

average subject efficiency through the scatterplot shown in Figure 9. Sampling efficiency is 

considerably higher than total efficiency, seen as a departure from the equivalence line in the 

plot. The best-fitting regression line has slope of 0.36, which indicates a substantial role for 

other sources of inefficiency, particularly internal noise. The association between efficiency 

and sampling efficiency is moderately high, with an R2 value of 67.6%. The points also 

appear to cluster for each task, indicating that sampling efficiency is explaining task effects 

reasonably well. The R2 value for average efficiency within each task is 93.7%. However, 

effects within a given task, such as apodization level, do not seem to be well explained by 

sampling efficiency.

Plots of the differential sampling efficiency are shown in Figure 10, with the same grouping 

of results as the classification image spectra in Figure 7, from which they are derived. 

Recall from Section 2.5.3 that differential sampling efficiency values quantify the degree 

to which classification-image spectral weights are over- or underweighted. The plots show 

that for Tasks 1 and 2, there is substantial underweighting at low spatial frequencies. 

Interestingly, the lowest spatial frequencies appear to be over-weighted in Task 3, which may 

reflect low levels of signal in these frequencies (see Figure 1d). In the mid-range spatial 

frequencies (0.1–0.3 cyc/mm), the differential sampling efficiency appears to oscillate from 

underweighted to over-weighted with decreasing magnitude before decaying further at 

higher frequencies. This pattern of mismatch is consistent with subjects using an undersized 

discrimination template in the spatial domain. A spatially undersized template would expand 

and down-weight the classification image spectrum, leading to under-weighting the lowest 

Abbey et al. Page 18

Med Phys. Author manuscript; available in PMC 2024 June 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spatial frequencies because of the down-weighting, and over-weighting higher frequencies 

as the frequency spectrum expands. Thus the differential sampling efficiency results may 

reflect some mismatch in the perceived size of the lesions.

3.5 | Unapodized classification images

Figure 11 shows the unapodized classification image spectra plotted with the spectra of 

the difference signal and the prewhitened matched filter (PWMF) for comparison. The 

PWMF plots show the relatively large weights applied to low spatial frequencies by the ideal 

observer in Task 1 and 2. The lack of these weights in the observer classification images is a 

source of lower sampling efficiency in these tasks. Generally, the unapodized classification-

image spectra in Figure 11 appear to be less variable than the standard classification-image 

spectra in Figure 7. This would suggest that observers are accounting for apodization to 

some extent as they perform the task under apodization conditions. These observations are 

assessed quantitatively using the classification-image features.

Integrated-power and mean-frequency features of the unapodized classification images are 

plotted in Figure 12. The feature values maintain the same relative ordering across task 

as was found in Figure 8, but there appears to be substantially less of an increase with 

apodization. In Figure 8, the integrated power is 257% higher in Apodization level 4 

relative to Apodization level 1 on average. In Figure 12, this ratio is only 43% higher 

on average. The mean frequency values are 81% higher on average in Figure 8, and only 

8% higher in Figure 12. While the trends in these spectral features are similar between 

apodized and unapodized classification images, the effect of apodization appears to have 

been substantially reduced. This means that the observers are adapting their discrimination 

procedure to a substantial degree in order to account for the apodization present in the 

images.

ANOVA modeling of the unapodized feature data find significant effects of both task 

and apodization for both integrated power (p < 0.0001 and p < 0.0009, respectively) and 

mean frequency features (p < 0.0001 and p < 0.0013, respectively) with false-discovery 

rate corrected p-values. However, while ANOVA effect sizes between the apodized 

and unapodized classification-image features are roughly constant for task effects, the 

apodization effect shrinks by a factor larger than 7. This provides additional evidence that 

apodization effects are reduced in the unapodized classification images, although they still 

appear to increase with apodization.

4 | DISCUSSION

The primary results described in Section 3 show that subjects exhibit performance effects 

across task and apodization level, with accompanying differences in the average subject 

classification images. Somewhat surprisingly, system resolution was not a significant factor 

in the efficiency and classification image results. This may be because the ramp-spectrum 

noise has increasingly high power at the higher spatial frequencies available in System 2, 

making the higher-resolution system (System 2) not particularly advantageous for these 

specific tasks. Further assessment will be needed to resolve this finding.
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Two known components of visual performance are worth considering as mechanisms for 

low overall efficiency in these 3 discrimination tasks. The first of these is the inherent 

“lesion”contrast of the task, often referred to as the pedestal contrast. The second is the 

correlation structure of the noise. These mechanisms are discussed below in Sections 4.1 

and 4.2. We are also interested in understanding the role of apodization in these tasks since 

apodization—or more generally image reconstruction—can be easily adjusted in practice 

to optimize task performance. Discussion of what the classification images reveal about 

apodization and subject performance is given in Section 4.3. And finally, some of the 

limitations of this study are given in Section 4.4.

4.1 | Contrast effects

The findings demonstrate that human observers are relatively inefficient in these featural 

discrimination tasks in ramp-spectrum noise. The low efficiency of human observers 

provides a rationale for using aids, such as digital calipers or radiomics algorithms to 

assist with the assessment of lesion features.55 In 1981, Burgess et al.27 established visual 

efficiency in noise at approximately 50%, with a range of 20%–70%. They used supra-

threshold contrast discrimination tasks of Gaussian, Gabor-function, and 2-period sinusoid 

signals embedded in white noise. The efficiency results reported here are at the low end of 

his range, with the Task 2 results uniformly below the 20% lower limit described by Burgess 

et al. However, some subsequent studies have found lower efficiency values, particularly as 

contrast of the non-target profile (the “pedestal”) increases. For example, Kersten et al.28 

looked at contrast discrimination tasks in noise for luminance disk profiles, with contrasts of 

the pedestals ranging from 5% to 43%. They found conditions with relatively low efficiency 

(∼10%), generally for the higher contrast pedestals.

Even though the tasks described here represent relatively low-contrast lesions by lung-

cancer screening standards (∼200HU), we would suggest that this is relatively high-contrast 

in comparison to many discrimination studies in the vision literature. Peak lesion contrast of 

the displayed images is approximately 50% after the window and level settings are applied. 

This is higher than the highest pedestal contrast level in the Kersten study referred to above. 

The Burgess study, also referred to above, quantified the contrast of a Gaussian target 

(equivalent of the “benign lesion” in this work) with signal-energy to noise-spectral-density 

ratio (ENR) of 5. The ENR in this study ranges from 11.5 to over 1000 in the various 

conditions.

Low efficiency in discrimination tasks with high-contrast lesions is also consistent with 

previous findings of Abbey et al.,49 who compared efficiency in detection, contrast-

discrimination, and identification tasks to show that human observers adapt their spatial 

weights to the pedestal of a task. The contrast-discrimination task in that work, which 

involved discriminating a contrast increment for a Difference-of -Gaussian (DOG) profile 

with a pedestal at 60% peak contrast, resulted in task efficiencies of 25% which are 

generally similar to the results found here. It is worth noting that the tasks used in this 

work are different than classical contrast-discrimination tasks in that the signal profile is 

not simply a scaled version of the pedestal profile. The tasks here evaluate fine features of 
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a lesion boundary or of the lesion interior. Nonetheless, the efficiency results indicate that 

these tasks appear to follow the same general trends as classic contrast-discrimination tasks.

4.2 | Ramp-spectrum effects

Ramp-spectrum noise is also associated with low human-observer efficiency. Image texture 

with power that increases as a function of spatial frequency is the opposite of so-called 

“natural scenes” where power falls off, typically with an inverse square law.56–59 This leads 

to the plausible explanation that the human visual system is simply not well-adapted to 

ramp-spectrum noise.

The “ramp-spectrum” component of the noise rises approximately linearly at low spatial 

frequencies, even with apodization (see Figure 2). This means that that the lowest 

frequencies have relatively little noise, making any signal in these frequencies particularly 

informative. As shown in Figure 1, Tasks 1 and 2 have relatively high signal values 

at low spatial frequencies, with relatively little low-frequency signal for Task 3. Thus, 

the ideal observer will give these frequencies a relatively high weight when forming a 

decision variable. This can also be seen in the prewhitened matched filter plots in Figure 

11, which heavily weight the lowest spatial frequencies for Tasks 1 and 2. The fact that 

human-observer efficiency is higher in Task 3, which has relatively little signal in the 

lowest frequencies, suggests that humans are not able to use these low spatial frequencies 

effectively.

This hypothesis is supported by the classification-image spectra in Figure 7, which do 

appear to have low frequency weights. However, the differential sampling efficiency plots in 

Figure 10 show that the low spatial frequencies are still relatively underweighted in Tasks 

1 and 2, and this limits observer efficiency. One possible mechanism for this limited ability 

to use low-frequency information may be internal noise that has spectral component that 

matches natural scenes with a inverse-square power law. This would mean that low spatial 

frequencies have much more internal noise, and lead an observer to shift weights away from 

them. But further experiments will be needed to verify if this is how humans are working.

4.3 | Effect of apodization

The three effects investigated in this study (task, system, apodization) are controlled very 

differently in practice. The task is intended to represent the presentation of disease, which 

is not under the control of a practitioner. The imaging system is under the control of 

practitioners to some degree, although typically changing an imaging system for a new 

and improved device represents a substantial undertaking, making this a difficult factor to 

change. However, apodization is implemented directly through image reconstruction or in 

post-processing algorithms, which makes it comparatively easy to change and optimize.

Figures 7–9 give some indications of how observers respond to different levels of 

apodization on average, and generally show that the spatial frequency profile of the 

classification images changes across apodization conditions. However, these classification-

image spectra are somewhat difficult to interpret because of changing signal and noise 

properties across apodization levels, and this motivates the analysis of unapodized 

classification images. The unapodized classification images show substantially less effect 
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of an apodization effect. This means that observer weights are changing to make responses 

more invariant to apodization. Observers are using their ability to adapt to account for the 

apodization present in the images to some degree.

Nevertheless, the unapodized classification images still show an apodization effect of 

increased integrated power and mean frequency, although these effects are considerably 

attenuated relative to the standard classification images. So the net effect of apodization 

is to increase the spatial weights used in these experiments, particularly at higher spatial 

frequencies. This is a surprising finding, since the ostensible purpose of apodization is to 

suppress these higher frequencies, presumably to induce the observer to place more weight 

on lower frequencies. We find that after suppression of these frequencies by apodization 

filters, the observers appear to be effectively giving them more weight rather than less. Thus, 

quantitative features of the classification-image spectra support the idea that the net effect 

of frequency suppression by these apodization filters is an upweighting of higher spatial 

frequencies. This result bears further investigation to see if it holds generally.

4.4 | Study limitations

It is important to remain aware that our performance results are based on simulations of 

the imaging process with stylized object profiles and forced-choice tasks that are conducted 

in a laboratory environment with trained, but medically naïve, subjects. This abstraction of 

the imaging and image reading processes is useful for identifying and characterizing the 

mechanisms that may be operating in clinical settings, but they should not be interpreted 

as representing clinical performance, and they did not involve a thoracic radiologist in their 

design.

These experiments also investigate the discrimination of selected isolated features of lesions, 

and other effects may be present when the discrimination task involves different features 

or combinations of features to assess malignancy status, as is the case with clinical lesions 

in the lung. It is quite possible that more realistic lesions would emphasize high spatial 

frequencies even more strongly, and this may explain the lack of a clear effect for a higher 

MTF system in this study. Additionally, there are other sources of variability in imaging 

that can affect clinical performance (patient motion, beam-hardening artifacts, etc.) that are 

outside the scope of this study, which is focused on the specific impact of noise and noise 

texture.

5 | CONCLUSION

The lesion-discrimination tasks used in this study are representative of malignant features of 

lung lesions, and we find that they emphasize higher spatial frequencies than detection of the 

lesions themselves. This makes them a potentially useful means for assessing image-quality 

over a larger range of the frequency domain. Additionally, while observer efficiency varies 

across the three features tested (10%–40%), the low overall efficiency of human observers 

suggests that there may be considerable room for optimizing imaging methodology. For 

example, in these experiments image smoothing through high-frequency apodization was 

found to have a significant effect on both task performance and reader efficiency.
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Classification-image analysis helps provide an explanation for the reader performance 

results, and points to the mechanisms underlying them. Estimates of sampling efficiency 

derived from the classification images explain the variability found across the three different 

tasks as variations in the tuning of the spatial templates used to perform them. The 

differential sampling efficiency, a concept introduced here, indicates that this is largely 

due to observers’ inability to adequately weight low spatial frequencies in ramp spectrum 

noise. Residual inefficiency is consistent with pedestal-masking effects that have been found 

widely in discrimination tasks.

However, improved performance and efficiency as a function of apodization are not 

explained by sampling efficiency in the way that effects of different discrimination features 

are. As the level of apodization increases, the classification images increase in terms 

of integrated power and mean frequency, indicating that observers are, to some extent, 

adapting to the level of apodization applied to the images. This explanation is supported 

by the unapodized classification images, which show markedly attenuated effects indicating 

that observer responses are relatively independent of apodization filtering. The effects of 

apodization in this analysis are consistent with a reduction of internal noise that increases 

the integrated power of a classification image.

Taken in whole, the results reported here provide additional evidence that human observers 

are able to partially adapt to different statistical properties in simple tasks. This information 

helps provide a better understanding of how human observers use the information in CT 

images, and should assist in the development of more accurate models of discrimination 

performance for the optimization of medical imaging systems.
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FIGURE 1. 
Task profiles. Radial plots of the “Malignant” and “Benign” profiles (a–c) are shown for 

each of the three tasks considered (T1–T3). In Task 1, the feature of interest is the lesion 

size. In Task 2, the feature of interest is an indistinct or unsharp boundary. In Task 3, the 

feature of interest is a nonuniform lesion interior. The spectral plots (real part of the Fourier 

Transform) for each task (d–f) show that the spectrum of the features falls off more slowly 

than that of the base lesion used for the task. Thus the feature discrimination tasks tend 

to place more weight on higher spatial frequencies. Note that the lesion profiles have been 

scaled to match the integrated spectral power of the features in each task. The legend on the 

left applies to each row of plots.
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FIGURE 2. 
System properties. The simulated modulation transfer functions (a and b) for the low-

resolution system (S1) and the high-resolution system (S2) are shown, along with plots of 

the noise-power spectra (c and d) at each of the 4 apodization levels (A1–A4). The legend on 

the left applies to all plots.
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FIGURE 3. 
Noise textures. The different levels of apodization lead to different noise amplitude and 

texture in the simulated imaging systems (S1: Low-Resolution System; S2: High-Resolution 

System). Higher levels of apodization result in smoother and less grainy texture.
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FIGURE 4. 
Stimulus profiles and images. The (noiseless) malignant and benign profiles for each of 

the three tasks are shown (Left side, rows 1–3), along with the difference signal and 

sample image patches from each class (target and alternative). All patches derived from the 

low-resolution system, at apodization-level 3. Task parameters have been exaggerated for the 

purpose of display in this figure. The image patches are cropped from a simulation ROI of 

87.5 mm in an assumed 350 mm field of view. All the images have a window of 1500 HU 

and level of −650 HU except for the difference images (central column) which are scaled to 

the maximum difference value.
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FIGURE 5. 
Characterization of performance. The plots show performance for the three tasks, both 

imaging systems (S1, S2), and the four levels of apodization (A1–A4). The PC plot (A) 

shows some deviation from the target PC of 80%. The corrected threshold energy (B) and 

efficiency (C) plots show variability between the tasks and evidence of better performance 

with increasing apodization (see text). Each estimate is the average performance across the 6 

subjects in the studies, with error bars representing ± 1.96 standard errors of the mean.
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FIGURE 6. 
Classification Images. The average classification image is shown for each task, system (S1: 

Low-Resolution, S2: High-Resolution), and apodization level (A1–A4). These patches are 

cropped for display purposes and have been spatially windowed to a radius of 7.5 mm 

(HWHM), and frequency windowed to 0.4cyc/mm. Within each Task (a–c), the display 

range is held fixed. At the higher levels of apodization, instability in the estimation process 

is evident.
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FIGURE 7. 
Classification image spectra. Average spatial-frequency weights of the classification images 

are plotted as a function of radial frequency (The legend in the upper left applies to all 

plots) for all apodization levels of each task and system resolution (S1: Low-resolution; S2: 

high-resolution). Each plot shows the radial average of the classification-image spectrum 

(averaged across subjects), which shows how subjects adapt to the different apodization 

conditions. In the highest levels of apodization (A3 and A4) the plots show some evidence 

instability at high frequencies (>0.35 cyc/mm) from inverting the noise covariance matrix.
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FIGURE 8. 
Classification-image feature values. The integrated power (a) and mean-frequency (b) 

features are plotted as a function of the apodization level (A1–A4) for each task (T1–T3) and 

imaging system (S1,S2). Each estimate is the average of the feature values, with error bars 

representing a 95% confidence interval on the mean across the six subjects in the studies. 

The legend applies to both plots.
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FIGURE 9. 
Sampling efficiency from classification images. Each symbol in the plot represents one 

of the 24 experimental conditions. The sampling efficiency of the classification images is 

associated with subject efficiency (R2 = 69.6%), and shows a clear distinction between the 

three different tasks (labels on plot).
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FIGURE 10. 
Differential-sampling-efficiency spectra. Radial averages of the differential sampling 

efficiency are plotted for the four apodization levels (Legend in upper left applies to all 

plots) within each task and system. The differential-sampling-efficiency spectra are derived 

from the classification-image spectra shown in Figure 7, and the show where the spectra are 

under-weighted (positive values) or over-weighted (negative values), as described in the text.
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FIGURE 11. 
Unapodized classification image spectra. Average spatial-frequency weights of the 

unapodized classification images are plotted as a function of radial frequency. Each plot 

shows the average radial frequency weights for the classification image (averaged across 

subjects) using responses from each of the four apodization conditions (A1–A4), but 

constructed from unapodized noise fields (Legend in upper left applies to all plots). These 

plots show the impact of apodization on the spectral weights used by human observers. For 

comparison, we also plot the profile of the signal spectrum and the pre-whitened matched 

filter (PWMF), which represents optimal spatial weighting.
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FIGURE 12. 
Unapodized classification image spectral features. The plots show the Integrated Power 

(a) and Mean Frequency (b) features plotted as a function of apodization level for 

the unapodized classification-image spectra. Plotted on the same scale as Figure 8 for 

comparison. While trends are similar to feature plots for the apodized classification images, 

the apodization effect is substantially reduced.
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TABLE 1

Task descriptions. The three tasks used in for this work are listed (with abbreviations) along with the base 

lesion diameter.

Label Feature description Base diameter

Task 1 (T1) Size discrimination 3 mm

Task 2 (T2) Edge sharpness 5 mm

Task 3 (T3) Nonuniform interior 5 mm
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TABLE 2

Resolution, and noise. The effect of apodization on resolution (MTF = 10% of max) and noise (pixel Std. 

Dev.).

Res. (Cyc/mm) Noise SD (HU)

Apod. S1 S2 S1 S2

A1 0.47 0.58 166.5 166.5

A2 0.45 0.56 112.9 129.9

A3 0.39 0.49 46.5 65.0

A4 0.34 0.43 30.2 42.2
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