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1 Introduction

Symmetries play a key role in our understanding of fundamental physics. While forces orig-

inate from continuous symmetries, discrete symmetries turn out to explain many important

properties of matter. The perhaps most fundamental examples are the reflection and con-

jugation symmetries P , T and C, yet there are other crucial ZN symmetries. Examples for

such symmetries include matter or R parity in the minimal supersymmetric extension of

the standard model (MSSM) [1]. Matter parity (or family reflection symmetry [2]) leads to

a suppression of the proton decay rate and explains the stability of the MSSM dark matter

candidate, the lightest supersymmetric particle (LSP). It can arise as a discrete Z2 sub-

group of a baryon-minus-lepton-number symmetry U(1)B−L. One can break U(1)B−L to

matter parity by giving vacuum expectation values (VEVs) to fields with B−L charge ±2.

In SO(10) grand unified theories (GUTs) one may switch on appropriate components of a

126-plet (see e.g. [3]); in string theory an analogous breaking pattern can be achieved [4].

Discrete symmetries might also be an important ingredient for solving the flavor puzzle.
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Obtaining discrete symmetries as remnants of gauge symmetries is, at a fundamental

level, motivated by anomaly considerations. While discrete symmetries often are imposed

ad hoc as global symmetries, it has been argued that global symmetries are violated by

quantum effects unless they originate from a gauge symmetry via spontaneous symmetry

breaking [5–7].

Here we focus on Abelian discrete symmetries i.e. ZN groups. (For a recent discussion

of how to obtain non-Abelian discrete symmetries by spontaneous breaking see [8].) It is

well known how to obtain a single ZN -symmetry from a U(1); this will be reviewed be-

low. On the other hand, the most promising candidate for a consistent theory of quantum

gravity, string theory, typically provides us with models which exhibit a large rank gauge

symmetry. This symmetry has to be (spontaneously) broken to the standard model in real-

istic vacua, which will generically lead to a non-trivial set of remnant discrete symmetries.

The purpose of this study is to work out how such symmetries can be identified and put

into a simple, i.e. canonical, form.

2 Multiple ZN symmetries from several U(1) factors

In this section we show how to determine the remnant symmetries if we break multiple

U(1) factors by a set of VEVs. Throughout this study we shall assume the U(1) charges

of all fields to be integers, which implicitly fixes our conventions for charge normalization.

We start with the easiest example of one U(1) and two fields.

2.1 Review: U(1) → Zq

Consider a theory with gauge group U(1) and two complex scalar fields φ and ψ (cf. [5]).

Under the U(1) the fields transform according to

φ → ei q α(x) φ , (2.1a)

ψ → e−iα(x) ψ (2.1b)

with q ∈ N, i.e. φ has charge q and ψ has charge −1. The terms

φ∗φ , ψ∗ψ , φ∗φψ∗ψ and φψq + h.c. (2.2)

and powers as well as products thereof are gauge invariant. Suppose now that φ acquires a

VEV. This leaves us with effective interaction terms of the form (ψq)n with n ∈ N, dictated

by the symmetry

ψ → e2πi ℓ/q ψ with ℓ = 0, 1, . . . q − 1 . (2.3)

An equivalent way to obtain this result is stating that the remaining symmetry is deter-

mined by the condition

ei q α(x) φ = φ ⇒ q α = 2π ℓ with ℓ ∈ Z . (2.4a)

Hence,
q α

2π
= 0 mod 1 , (2.4b)

– 2 –
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or, equivalently, α ∈ 2π
q Z. We have just rederived the well known result that, by giving

a VEV to a field with charge q, the U(1) gets broken to a Zq discrete subgroup. In what

follows we will generalize this to situations in which several U(1)s get broken to a number

of Zns.
2.2 The general case

Let us now consider the general case of a U(1)N gauge theory with M scalar fields φ(i)

(1 ≤ i ≤ M), which will acquire VEVs, and K other ‘matter’ fields ψ(j) (1 ≤ j ≤ K).

We will denote the charge of the fields w.r.t. the jth U(1) factor by qj(φ
(i)) and qj(ψ

(i))

respectively. Accordingly, the φ(i) fields transform as

φ(i) → exp



i
∑

j

qj(φ
(i))αj(x)



 φ(i) . (2.5)

q(φ(i)) can be thought of as an N -dimensional charge vector and Qij = qj(φ
(i)) as an

M × N charge matrix. Suppose now that N > rankQ. In this case, there are unbroken

U(1) factors. Then we can rotate the U(1) directions by an orthogonal transformation

such that all φ(i) will be uncharged under (N − rankQ) U(1) factors. These U(1) factors

will not be affected by the VEVs of the φ(i) fields and we do not have to consider them

any further. Therefore, without loss of generality, we will from now on consider the case

N ≤ rankQ. Notice also that in supersymmetric theories the rank of the charge matrix

cannot be maximal as D-flatness requires a non-trivial solution of
∑

i ni q(φ
(i)) = 0 with

ni ∈ N0.

To identify the remnant discrete symmetries after spontaneous symmetry breaking,

consider the generalization of equation (2.4) in our simple example,

exp



i
∑

j

qj(φ
(i))αj



 φ(i) !
= φ(i) . (2.6a)

This is equivalent to

∑

j

qj(φ
(i))αj

!
= 2π ℓi with ℓi ∈ Z . (2.6b)

As in (2.4b), the right-hand side represents the usual ‘mod conditions’ for discrete breaking.

Equation (2.6b) can be recast in matrix notation,

Qα
!
= 2π ℓ with ℓ ∈ ZM . (2.6c)

Recall that Q is an M × N matrix with elements in Z. Such a matrix can always be

brought into diagonal form by two unimodular transformations, i.e. invertible matrices

over Z. Concretely, there exist A ∈ GL(M,Z) and B ∈ GL(N,Z) such that

AQB = D = diag′(d1, . . . , dN ) and di divides di+1 . (2.7)

– 3 –
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Here diag′ means that D is an M ×N matrix whose only non-zero elements di are at the

ii positions. There are N non-zero diagonal entries due to rankQ ≥ N . D is called Smith

normal form (or just ‘normal form’ as in [9]) of Q. Note that unimodular matrices have

two important properties:

1. They have determinant ±1.1

2. The greatest common divisor of all matrix elements in a single row is 1 because

otherwise the determinant would not be ±1. The same applies to each column.

Transformation (2.7) allows us to rewrite (2.6c),

A−1DB−1 α = 2π ℓ . (2.8)

Now multiply this equation by A. Due to the second property of unimodular matrices, the

‘mod conditions’ in equation (2.6c) remain unchanged, since ℓ′ = Aℓ still takes all values

in ZM if ℓ does. Defining α′ = B−1 α we arrive at

α′
j = 2π

ℓ′j

dj
with 0 ≤ ℓ′j ≤ dj − 1 . (2.9)

Hence, we see that the remnant discrete symmetry is Zd1 × . . . × ZdN
. If there are some

di = 1, the corresponding factors are trivial and can be omitted. The fields ψ(j) then

transform according to

ψ(j) → exp



i
∑

k,ℓ

qk(ψ
(j))Bkℓ α

′
ℓ



ψ(j) = exp

(

2πi
∑

k

q′k(ψ
(j))

ℓ′k

dk

)

ψ(j) (2.10)

with new charges q′k(ψ
(j)) =

∑

i qi(ψ
(j))Bik, which are defined modulo dk. That is, we can

choose q′k(ψ
(j)) ∈ {0, . . . , dk − 1}.

2.3 An example with two U(1) factors

Let us illustrate the above procedure by an example. Consider a U(1)×U(1)′ theory with

three fields obtaining VEVs and two other fields. That is, we have N = 2, M = 3 and

K = 2. The charges are given in table 1. In this example, we only consider scalar fields,

such that we do not have to worry about anomalies. Later, in the applications in section 5

we will discuss supersymmetric, anomaly-free settings. The charge matrix is given by the

charges of the VEV fields (cf. table 1 (a)),

Q =







8 −2

4 2

2 4






. (2.11)

1If the determinant was zero, the matrices would not be invertible. If the absolute value of the determi-

nant was greater than 1, the inverse would not be an integer matrix, i.e. the matrix would not be invertible

over Z.
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(a) VEV fields.

U(1) U(1)′

φ(1) 8 -2

φ(2) 4 2

φ(3) 2 4

(b) Matter fields.

U(1) U(1)′

ψ(1) 1 3

ψ(2) 1 5

Table 1. Charges of the fields with respect to the two U(1) factors.

The diagonal matrix D and the transformation matrix B are

D =







2 0

0 6

0 0






and B =

(

1 −2

0 1

)

. (2.12)

Hence, we can read off that we are left with a Z2 × Z6 symmetry. The charges of the ψ(i)

fields can be determined by multiplying their charge matrix by B from the right,
(

1 3

1 5

) (

1 −2

0 1

)

=

(

1 1

1 3

)

. (2.13)

The new charges of the ψ(i) fields are given by the rows of this matrix. Altogether we find

that the setting discussed here leads to a Z2 ×Z6 symmetry, under which ψ(1) has charge

(1,1) and ψ(2) has charge (1,3).

2.4 Visualization

We will now provide a simple, geometrical way of envisaging the symmetry breaking pat-

terns. First, notice that a direct product of groups Zd1 × . . .×ZdN
can be represented by

an N -dimensional lattice. Each element of the group can be thought of as a point in the

fundamental region or unit cell of the lattice. The volume of the unit cell is the number of

elements and the order of the group.

Let us illustrate this by the above example. The VEV fields φ(i) with charges as listed

in table 1 (a) span the lattice. Since the first VEV field is an integer linear combination

of the latter two, φ(1) = 3φ(2) − 2φ(3), φ(2) and φ(3) span a basis of the charge lattice

as illustrated by the arrows in figure 1(a). The matter fields ψ(i) are represented by the

bullets. A coupling (ψ(1))n1 (ψ(2))n2 is allowed by the discrete symmetries if and only if

n1 q(ψ
(1))+n2 q(ψ

(2)) lies on a node in the charge lattice, which are represented by squares.

Our procedure described in section 2.3 amounts to finding an orthogonal basis for the

lattice which is given by the rows of the diagonal matrix D. The matrix A performs a

rotation of the φ(i) charges which eliminates linear dependencies, while B is the transfor-

mation between the bases. In the new basis, the lattice is orthogonal, and the ψ(i) charges

are given by the projections on the basis vectors. We see that there is a Z2 × Z6 discrete

symmetry where the Z2 corresponds to the horizontal and the Z6 to the vertical direction

in figure 1(b). The matter fields have charges (1, 1) and (1, 3), respectively, which are

of course nothing but the coordinates of the bullets in figure 1(b). Note, however, that

the true symmetry is smaller than that; we will describe in section 3 how to eliminate

potential redundancies.
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φ(2)

φ(3)

 !

ψ(1)

 !

ψ(2)

"#

"#

"#

"#

"#

"#

"# "#

"#

(a) Original lattice.

 !

ψ(1)

 !

ψ(2)

"#

"#

"#

"#

"#

"#

(b) Diagonalized lattice.

Figure 1. Illustration of discrete breaking.

2.5 Inverting the problem

Often one is interested in ‘inverting’ the above procedure. Instead of determining a discrete

symmetry that is left after certain fields attain VEVs, one would like to understand which

fields need to be switched on in order to obtain a desirable discrete symmetry. Examples for

such symmetries include matter parity and proton hexality [10]. We describe now a simple

algorithm for accomplishing this task. We focus on the case of a remnant Z2 symmetry;

the extension to the general case is straightforward.

➀ Start with a set ‘matter’ fields ψ(i) with charge vectors q(ψ(i)).

➁ The q(ψ(i)) span a lattice

Λ =

{

∑

α

nα λ
(α); nα ∈ Z} (2.14)

such that q(ψ(i)) ∈ Λ, i.e.

q(ψ(i)) =
∑

α

n(i)
α λ(α) with n(i)

α ∈ Z
and there is no coarser lattice with the same property.2

➂ Compute the dual lattice

Λ =







∑

β

nβ λ∗(β); n
β ∈ Z



(2.15)

with λ∗(β) · λ
(α) = δαβ . The basis vectors λ∗(β) have the obvious property that λ∗(β) ·

q(ψ(i)) = n
(i)
β ∈ Z.

2This lattice can, for instance, be obtained with the Mathematica command ‘LatticeReduce’.
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➃ Now try to build linear combinations

t∆ :=
∑

β

mβ λ∗(β)

such that

t∆ · q(ψ(i)) = 1 mod 2 . (2.16)

It is obvious that one just has to scan all possible combinations with mβ ∈ {0, 1}

since an even mβ will always lead to an even number on the right-hand side of (2.16).

t∆ is then unique up to U(1) generators under which all ψ(i) are neutral.

➄ Given a generator t∆, one has to check whether the model contains fields φ(i) with

charges of the type ‘even over odd’. If this is the case, switching on the φ(i) fields

yields configurations with a Z2 symmetry under which the ψ(i) fields are odd.

Only the last two steps have to be slightly modified in order to obtain an arbitrary ZN sym-

metry. In section 5.2 we will apply these methods in order to identify phenomenologically

attractive string vacua.

3 Simplifying multiple ZN symmetries

In this section we will consider a finite Abelian group G = Zd1 × . . . × ZdN
with K fields

ψ(i), i = 1, . . . ,K, transforming under G. This setup may or may not be a result of the

diagonalization procedure described in section 2.3 Our aim is to eliminate redundancies,

i.e. make the discrete symmetry ‘as simple as possible’.

First, consider a toy example which consists of a Z6-symmetry with one field ψ with

charge 4. This is equivalent to a Z3-symmetry where ψ has charge 2. In the case of one ZN -

symmetry with fields ψ(i) and charges q(ψ(i)), it is easy to see if there is some redundancy

in our description of the symmetry. If the greatest common divisor (GCD) of the q(ψ(i))

and N is greater than one, we can divide q(ψ(i)) and N by their GCD. That is precisely

what happened in our above toy example. This idea of reducing the group order carries

over to the general case. In addition, the method we are going to develop will bring G into

a canonical form. Every finite Abelian group can be written as a direct product of the form

Gcanonical = Zd1 × . . . × ZdN
, where di divides di+1 . (3.1)

The di are uniquely determined by the group and are called invariant factors. The diago-

nalization process described in section 2 always leads to this form (cf. equation (2.7)).

3.1 The general case

Let us look at the charge matrix (Qψ)ij = qj(ψ
(i)). This is a K × N matrix with integer

entries. Again, the idea is to calculate the Smith normal form of Qψ. However, to get a

meaningful result, we need to bring G into the form Zd × . . . × Zd where d is the least

3That is, we do not require di|di+1 here.

– 7 –
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common multiple (LCM) of the di. This is because a ZNd discrete symmetry allows us to

perform discrete rotations of the generators. Enlarging the symmetry implies a rescaling

of the charge matrix, (Q′
ψ)ij = d

dj
qj(ψ

(i)). The fields transform now according to

ψ(i) → exp



2πi
∑

j

(Q′
ψ)ij αj



 ψ(i) where αj =
ℓj
d

with 0 ≤ ℓj ≤ d−1 . (3.2)

(Q′
ψ) can be brought into Smith normal form S by unimodular transformations E ∈

GL(K,Z) and F ∈ GL(N,Z),

E Q′
ψ F = S = diag′(s1, . . . , sk) where k = min(K,N) . (3.3)

If rankQ′
ψ < k, some sj might vanish. The corresponding rows do not have to be considered

further. This yields the transformation behavior

ψ(i) → exp



2πi
∑

j,m,n

E−1
ij Sjm F

−1
mn αn



 ψ(i)

= exp



2πi
∑

j,n

E−1
ij sj F

−1
jn

ℓn
d



 ψ(i) . (3.4)

Just like in equation (2.9), we are allowed to define ℓ′j =
∑

n F
−1
jn ℓn. Hence, we get

ψ(i) → exp



2πi
∑

j

E−1
ij

ℓ′j
d/sj



 ψ(i) . (3.5)

This tells us that we have rewritten our symmetry group G as Zd′
1
× . . . × Zd′

k
where d′i

is the numerator of the (reduced) fraction d
si

and d′i+1 divides d′i. If a d′i is equal to one,

this factor can be omitted. The new charges of the fields, q′′(ψ(i)), are encoded in the

matrix E−1,

E−1 =







q′′(ψ(1))

q′′(ψ(2))
...






. (3.6)

These charges are equivalent to the the discrete charges s′i q
′(ψ(i)) (with s′i denoting the

denominator of the reduced fraction d/si), which one immediately reads off. An obvious

consequence of our discussion is that after simplification there are at most as many Zdi

factors as fields. Note that the volumes of the fundamental region of G’s lattice (VG =
∏N
i=1 di) and the lattice spanned by the ψ(i) charges (Vψ = detQψ) provide a necessary but

not sufficient criterion for redundancies: if both possess a GCD, the size of the symmetry

may be reduced by this GCD.

– 8 –
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3.2 An alternative derivation

Before discussing an example, let us present an alternative point of view. A coupling

(ψ(1))n1 · · · (ψ(K))nK is allowed by the discrete symmetry G = Zd1 × . . .×ZdN
only if there

is a vector n ∈ ZK such that

QTψ n = diag(d1, . . . , dN )m (3.7)

with some m ∈ ZN and QTψ =
(

q(ψ(1)), . . . , q(ψ(K))
)

. Equation (3.7) can be rewritten as

diag

(

d

d1
, . . . ,

d

dN

)

·QTψ n = dm , (3.8)

where d denotes the LCM of the di, as before. Now we diagonalize the matrix on the left

hand side of the equation,

diag

(

d

d1
, . . . ,

d

dN

)

·QTψ = (F−1)T · S · (E−1)T (3.9)

with the N × K matrix S = diag′(s1, . . . sk), the unimodular matrices E and F , and

k = min(K,N), as before. Let ν denote the rank of Qψ, i.e. S = diag′(s1, . . . sν , 0, . . . ).

Now (3.7) can be recast as

diag′
(

s′1
d′1
, . . . ,

s′ν
d′ν
, 0, . . .

)

(E−1)T n = m′ , (3.10)

where m′ = F T m, and again s′i and d′i denote the numerators and denominators of the

reduced fractions si/d, respectively. The rank of the matrix on the left-hand side of this

equation is ν. We can therefore truncate the equation,

diag

(

s′1
d′1
, . . . ,

s′ν
d′ν

)

(E−1
ν )T n = mν , (3.11)

where (E−1
ν ) denotes the left ν columns of E−1 (such that (E−1

ν )T is the upper ν×K part

of (E−1)T ), and mν ∈ Zν . This equation is equivalent to

(E−1
ν )T n = diag′

(

d′1
s′1
, . . . ,

d′ν
s′ν

)

mν , (3.12)

Comparing this equation with (3.7) reveals that the rows of E−1
ν contain the charges of the

ψ(i) and the d′i determine the canonical symmetry.

3.3 Example

Let us continue the example of section 2.3. After breaking both U(1)s we are left with aZ2 × Z6 and a charge assignment given in table 2. We have to extend our symmetry toZ6 × Z6. The charge matrix and the Smith normal form are

Q′
ψ =

(

3 1

3 3

)

=

(

1 0

3 −1

) (

1 0

0 6

) (

3 1

1 0

)

= E−1 S F−1 . (3.13)

– 9 –
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(a) Original charges.Z2 Z6

ψ(1) 1 1

ψ(2) 1 3

(b) ‘Blown up’ charges.Z6 Z6

ψ(1) 3 1

ψ(2) 3 3

(c) Minimal charges.Z6

ψ(1) 1

ψ(2) 3

Table 2. The example from section 2.3 continued. The original charges (a) are blown up to the

charges of an extended Z6 × Z6 symmetry, which can be reduced to a Z6 symmetry by discrete

rotations.

e1

e2

 !

ψ(1)

 !

ψ(2)

"# "#

"# "#

(a) Extended lattice.

 !

ψ(1)

 !

ψ(2)

"# "#

(b) Simplified lattice.

Figure 2. (a) Extended and (b) simplified charge lattices.

The d′i can be inferred from the diagonal matrix S: they are given by 6 times the inverses

of the diagonal entries, i.e. we have d′1 = 6 and d′2 = 1. The numerators are hence 6 and 1,

such that we are left with a Z6 ×Z1 = Z6 symmetry. The charges are given by the rows of

E−1 (modulo 6); since one factor is trivial we obtain that ψ(1) has charge 1 and ψ(2) has

charge 3.

3.4 Visualization

The visualization works as before. We extend the lattice to Z6×Z6 (figure 2 (a)). Our sim-

plification process amounts to identifying a direction on which both nodes lie (figure 2 (b)).

It is easy to see that ψ(1) sits at 1/6 of the length of the one-dimensional Z6 lattice, cor-

responding to Z6 charge 1, while ψ(2) sits at 1/2 = 3/6 of the length, which leads to Z6

charge 3.

4 Automatization

We provide a Mathematica package which automatically identifies the remnant symmetries,

as discussed in section 2, and brings them to the canonical form, as described in section 3,

on our web site [11]. This package has been used in our applications, which will be discussed

in what follows.
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ψm H H ′ ψH ψH A S

SO(10) 16 10 10 16 16 45 54Z6 1 -2 2 -2 2 0 0

Table 3. Field content of an SO(10) model.

Q Ū D̄ L Ē Hu HdZ30 3 3 11 11 3 24 16Z5×Z6 (1,1) (1,1) (2,5) (2,5) (1,1) (3,4) (2,0)

Table 4. The Z30 ≃ Z5 × Z6 charges of the MSSM field content.

5 Applications

5.1 GUT model building

Let us now apply the above methods to model building. We focus on a specific GUT model,

which has been discussed in [12]. There, an anomaly-free Z6 symmetry was found that may

allow us to suppress proton decay in SO(10) GUTs. The field content is given in table 3.

There are three generations ψm of standard model matter; H and H ′ contain the standard

model Higgses. The other fields are used to break SO(10) down to the standard model

gauge group GSM. Since SO(10) has rank 5 there is a U(1) factor, called U(1)χ, in addition

to the standard model gauge group. This U(1)χ gets broken by giving VEVs to the SM

singlet fields contained in ψH and ψH , which have U(1)χ charges ±5. Hence, we have a

situation where a U(1)χ × Z6 symmetry gets broken by a field with charges (±5,±2). We

can apply the routine described in section 2. This can be accomplished by extending theZ6 to a U(1), introducing a dummy field with charges (0,6) and assigning a VEV to this

field.

We find that the U(1)χ × Z6 gets broken to a Z30 with charges given in table 4. Let

us remark that the Z5 subgroup of this Z30 is redundant in the following sense: whenever

a coupling is gauge invariant under GSM, the coupling is also invariant under Z5. This

is because SU(5) has a non-trivial center Z5 (cf. the analogous discussion in [13]). Note

also that GSM invariance is the same as SU(5) invariance since the Cartan generators are

equivalent. Our results imply that, if we assume that all states except the ones listed in

table 4 attain masses, we are left with an anomalous field content. Specifically, the three

generations of SM matter are anomaly free, but the Z6 charges of the Higgs fields exhibit

an anomaly (for a discussion of discrete anomaly constraints see [14–16]). Using discrete

anomaly matching [13] we can hence infer that the above assumption is inconsistent: either

further light states have to be present, or the Z6 cannot be exact, i.e. we have to introduce

further fields that attain VEVs. Of course approximate symmetry might be sufficient for

suppressing the dangerous dimension five operators, and might well be correlated with

flavor hierarchies (cf. the discussion in [17]). On the other hand, our findings show that theZ6 symmetry introduced in the SO(10) GUT in [12] cannot give rise to proton hexality [10].
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5.2 String model building

As mentioned in the introduction, an exact matter parity can also be obtained in string

theory by breaking a U(1)B−L symmetry by two units [4, 18, 19]. This has led to a couple of

vacuum configurations with an exact matter parity. Yet it turns out that, with this strategy,

one is not always successful: within the so-called mini-landscape [18] of heterotic orbifolds

with exact MSSM spectra, vacuum configurations with an exact matter parity could only

be identified in a small fraction of the models; that is, an appropriate U(1)B−L symmetry

could only be identified in 15 out of 218 possible models. The obstacles encountered in this

U(1)B−L-based approach are perhaps best illustrated in a concrete example. The model

discussed in [20] (which later became absorbed in the mini-landscape) does have a U(1)B−L

symmetry [19, 21], yet in the 4D zero mode spectrum there is no field with an even B −L

charge (nor with a fractional charge of the type ‘even over odd’, which is also sufficient to

provide us with matter parity [4]).4

On the other hand, it is also clear that one does not really need a U(1)B−L symmetry

with the standard charges for the MSSM matter fields. Any U(1) symmetry under which

the matter states have odd charges, and for which there exist SM singlets with even charges,

could do the job. Using the methods discussed in section 2.5, we were able to identify a

collection of GSM invariant fields φ(i) that break the U(1) factors down to matter parity in

the model presented in [20, 21]. It is given by

{φ(i)} = {s1, s2, s3, s5, s7, s9, s12, s14, s16, s18, s19, s20, s22, s23, s24, s34, s39, s40,

s41, s48, s53, s54, s57, s58, s59, s60, s61, s62, s65, s66, f1−4, f̄1−4, h1−14} (5.1)

in the notation of [21]. Our algorithm gives us a Z10 symmetry, however, as discussed in

section 5.1, the Z5, which is just the non-trivial center of SU(5), is redundant. A quick

scan indicates that in many (if not in all) mini-landscape models vacua with matter parity

can be obtained. A detailed analysis of these issues and of the phenomenological properties

of such vacua will be carried out elsewhere.

6 Discussion

We have described a simple method to determine symmetry breaking patterns which arise

when U(1)N gauge theories get broken to discrete subgroups. This method has a very simple

geometrical interpretation: the fields acquiring VEVs define a charge lattice. Couplings

(ψ(1))n1 (ψ(2))n2 . . . are only allowed by the remnant discrete symmetries if the sum of the

charge vectors, n1q(ψ
(1)) + n2q(ψ

(2)) + . . . , lies on a node of the charge lattice.

Unimodular transformations allow us to identify the remnant discrete symmetries, and

to make them as simple as possible, i.e. to determine the true (or canonical) symmetries

in a unique way.

4In [19], therefore, an alternative has been discussed where the U(1)B−L gets broken by fields that do

not appear in the 4D zero-mode spectrum but by states that are massless in an intermediate 6D orbifold

GUT picture and get projected out by going to 4D. This requires a cancellation between a Kaluza-Klein

mass and some non-trivial vacuum expectation values of certain standard model singlets.
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We have applied our methods to model building. In the context of GUTs, we have

identified an obstacle to completely forbidding dimension five proton decay operators in

certain SO(10) GUTs. In string model building our methods allow us to identify novel

vacuum configurations with an exact R parity.
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