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I. Introduction

I
ncreasing demand for travel causes problems in terms of 
traffic accidents, congestion, and greenhouse gas (GHG) 
emissions. For example, over 30,000 people perish in 
crashes on U.S. highways in 2016 [1]. Also, the global sta-

tus report on road safety 2015 indicates that worldwide the 
total number of road traffic deaths has plateaued at 1.25 
million per year [2]. Moreover, the ever-growing travel de-
mand contributes to significant congestion on both high-
ways and major urban corridors during peak hours [3]. The 
U.S. Federal Highway Administration’s Urban Congestion 
Report estimated that the average duration of daily con-
gestion in 2016 was more than 4 hours in more than 50 
American metropolitan areas and the hours of congestion 
keeps increasing [4]. In addition, according to the U.S. En-
vironmental Protection Agency (EPA)’s annual report [5], 
the transportation sector is one of the largest contributors 
to nationwide GHG emissions, which increased by 4.2% in 
2015, the third successive year of increases in transport 
emissions [6]. All of the aforementioned issues become 
more complex when considering the unpredictability of 
driver behaviors, such as frequent stop-and-go, overtak-
ing, and cut-in maneuvers.

Over the last decade, Connected Vehicle (CV) technol-
ogy has emerged, and many CV-based applications have 
been developed as promising solutions to these problems 
[7]–[9]. In general, CV applications can be divided into 
three major categories: safety-focused, mobility-focused, 
and environment-focused. As summarized in the Con-
nected Vehicle Reference Implementation Architecture 
(CVRIA) [10], a significant amount of safety-/mobility-/
environment-oriented CV applications have been devel-
oped. Some of them have already been implemented in re-
al-world situations, including Blind Spot Warning (BSW), 
Emergency Electronic Brake Light (EEBL), Speed Harmo-
nization, Smart Parking, and Connected Eco-driving. Some 

CV  applications consider road conditions as another influ-
ential factor to transportation performance [11]. Besides 
these fully-developed applications, many extended CV ap-
plications are still under development, such as Lane Speed 
Monitoring (LSM) [12], High Speed Differential Warning 
(HSDW) [13] and Eco-Speed Harmonization (ESH) [14]. 
In addition, there are numerous research activities all 
over the world studying vehicle-to-everything-based con-
nected and automated vehicles [15]. Examples include the 
safe- and eco-driving control for connected and automated 
vehicles [16], the collision-free departure optimization of 
automated vehicles in the highway environment [17], and 
the coordination of connected and automated vehicles at 
intersections and highway on-ramps [18].

To evaluate the performance of CV applications, a va-
riety of conventional Measures of Effectiveness (MOEs) 
have been proposed over the years, mainly covering safety, 
mobility, and environmental sustainability. For example, 
with regard to the safety MOE, Jiang et al. used time-to-
collision (TTC) as the surrogate measure of collision se-
verity to address vehicle-to-pedestrian (V2P) conflict, with 
the goal of providing databases for future CV development 
[19]. Fan et al. evaluated traffic conflicts using the Surro-
gate Safety Assessment Model (SSAM) [20]–[21], in which 
the TTC can be predicted according to relative speed and 
longitudinal offset between two adjacent vehicles. As for 
mobility MOEs, Ernst et al. proposed the estimated travel 
time distribution as a measure of effectiveness to conduct 
a comparative study on vehicle identification methods 
[22]. Also, the corridor efficiency, i.e., the ratio of vehicle 
miles traveled (VMT) to vehicle hours traveled (VHT), 
was used in traffic models to measure highway congestion 
[23]. In addition to average speed, many other parameters, 
such as Positive Kinetic Energy (PKE), Total Absolute 
second-by-second Difference (TAD) and Coefficient of 
Variation, were investigated to evaluate the variability in 
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SVE with other conventional MOEs on safety, mobility, and environmental sustainability. Four applications–High 
Speed Differential Warning (HSDW), Lane Speed Monitoring (LSM), Eco-Speed Harmonization (ESH), and Eco-
Approach and Departure (EAD), representing safety-, mobility- and environment-focused CV applications–were se-
lected for detailed evaluation. Results from the sensitivity analysis on technology penetration rate and congestion 
level reveal that: 1) SVE can accurately represent the speed variation of individual vehicles and the overall traffic; 
2) the proposed SVE distribution can be used as an MOE for CV applications in a more holistic way and at different 
scales; and 3) the overall SVE has a strong positive correlation with conventional MOEs (i.e., average conflict fre-
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velocity. These parameters can reflect, to some extent, the 
“stop-and-go” pattern in traffic, where acceleration and 
deceleration play an important role [24]. In terms of envi-
ronmental MOEs, Barth et al. used outputs from the Com-
prehensive Modal Emissions Model (CMEM) to compare 
the fuel consumption and CO2 emissions of eco-driving 
vehicles versus non-eco-driving vehicles under a variety 
of conditions [25].

However, few studies have focused on holistically eval-
uating CV applications in terms of safety, mobility, and 
environment [26]. Even fewer studies have attempted to 
examine the speed variation-based MOE and explore its 
connection with conventional MOEs. In this paper, Speed 
Variation-based Entropy (SVE) is recommended as a way 
to evaluate the effectiveness of different CV applications on 
application-equipped vehicles and unequipped vehicles in 
terms of the system’s degree of order. Four CV applications, 
i.e., HSDW, LSM, ESH, and EAD, were selected to represent 
three major categories: safety-, mobility-, and environ-
ment-focused, and evaluated in the framework of SVE.

The rest of this paper is organized as follows: Section II 
presents the research background of three conventional 
MOEs, modeling tools, and four selected CV applications, 
followed by the description of a proposed framework for 
SVE-based evaluation in Section III. Section IV briefly in-
troduces the simulation model and scenarios. In Section V, 
simulation studies are conducted to evaluate the effective-
ness of target applications from the perspective of SVE as 
well as safety, mobility, and environmental impacts. The 
last section concludes this paper with further discussion 
and future work.

II. Research Background

A. Conventional MOEs
Conventionally, three major types of MOEs are used to 
evaluate the performance of CV applications:

■■ Safety MOEs. Minimum time to collision (TTC) is re-
garded as a surrogate measure of the likelihood of a 
conflict occurring [27]. An occurrence when the mini-
mum TTC drops below a predefined threshold may be 
recognized as a potential conflict. In this study, safety 
performance is evaluated by the normalized conflict 
frequency defined below:
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where cni  is the number of conflicts caused by vehicle 
;i n  is the total number of vehicles. It is noted that in 

this study each conflict is only associated with the sec-
ond vehicle (i.e., the one occupying the conflict area at 
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where VMT ,i t  and V TH ,i t  represent vehicle miles trav-
eled and vehicle hours travelled, respectively, for ve-
hicle i  in time step ;t Nt  is the total vehicle number in 
a range of road network in time step t; T is the certain 
time duration of interest within the range of road net-
work.

■■ Environmental MOEs. In this study, the fuel consump-
tion of an individual vehicle or fleet is used to measure 
the environmental performance.

B. Modeling Tools
Three modeling tools are used in this study:

■■ PARAMICS. The PARAllel MICroscopic Simulator is a 
high-resolution traffic simulation tool capable of model-
ing large-scale roadway networks and the movement of 
each individual vehicle [28]. By taking advantage of Ap-
plication Programming Interfaces (APIs) (coded in C++ 
language), users can customize individual vehicle be-
havior, such as longitudinal speed, lane changing, and 
route choice, and access output data for performance 
evaluation, including 1) VMT and VHT; 2) vehicle tra-
jectory files; and 3) fuel consumption.

■■ SSAM. The Surrogate Safety Assessment Model (SSAM) 
is a post-processing model designed for the safety analy-
sis of traffic facilities, roadway designs, and operational 
strategies. It analyzes the vehicle trajectory data (.trj 
file) generated from a microscopic simulation model 
(Paramics in this study) [21], and outputs the number of 
potential conflicts as described in Section II.A.

■■ MOVES. The MOtor Vehicle Emission Simulator 
(MOVES) is a state-of-the-art modeling tool developed 
by the U.S. Environmental Protection Agency (USEPA) 
for estimating the energy consumption and emissions 
from mobile sources at different scales (from the mac-
roscopic to mesoscopic and microscopic levels) [29]. 
More specifically, the following four steps are conduct-
ed: 1) extracting second-by-second speed profiles for 
each individual vehicle; 2) calculating the associated 
vehicle specific power (VSP); 3) identifying the operat-
ing mode (OpMode) distribution based on speed, accel-
eration, and VSP; and 4) estimating the rates of energy 
consumption and emissions according to the look-up 
tables available in the MOVES database for the associ-
ated vehicle type.
The interaction among different modeling tools is illus-

trated in Figure 1.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 14,2020 at 22:16:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  5  •  MONTH 2019IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  4  •  MONTH 2019

C. Representative CV Applications
Four selected CV applications have been selected for anal-
ysis, representing safety-, mobility-, and environment-
focused applications, respectively. These applications 
include High Speed Differential (HSDW), Lane Speed 
Monitoring (LSM), Eco-Speed Harmonization (ESH), and 
Eco-Approach and Departure (EAD).

1) High Speed Differential Warning (HSDW) Application
A vehicle-to-vehicle (V2V) communication-based CV applica-
tion, named High Speed Differential Warning (HSDW), was 
recently developed [13]. Information (such as instantaneous 
speed and location) can be obtained via V2V communication 
in the form of Basic Safety Messages (BSM) [30]. By exchang-
ing such information within the communication range, this 
application can identify different scenarios (see Figure 2) 
where high-speed differentials exist between the host vehicle 
and remote vehicles on the current lane or adjacent lanes. 
Then the application will provide the driver with guidance on 

deceleration or lane-changing operation, aiming to reduce 
the risk of collision [13].

2) Lane Speed Monitoring (LSM) Application
The Lane Speed Monitoring (LSM) application, proposed 
by Tian et al. is aimed at providing the driver with down-
stream lane-level traffic conditions via connectivity and 
assistance in selecting the lane with the least travel time. 
The lane-change recommendations provided to the driver 
rely on the estimate of traffic states, which are the down-
stream lane-level average speeds calculated within a 
certain time duration based on the collection of dynamic 
vehicle information within the communication range [12].

3) Eco-Speed Harmonization (ESH) Application
In addition to HSDW and LSM, another CV application devel-
oped by Wu et al. is Eco-Speed Harmonization (ESH), which 
is able to advise the driver with the appropriate speed needed 
to reduce unnecessary stop-and-go maneuvers, and thus, 

Application Programming Interface

V2V Based ADAS Application

Vehicle Miles Travelled (VMT), 
Vehicle Hours Travelled (VHT),

Trip Travel Time, Average Speed, 
Lane Change Frequency

(Mobility)

Vehicle Position
Vehicle Speed

Vehicle Acceleration
PARAMICS

Recommended Speed 
Recommended Lane Range

Conflict Calculation
(SSAM)
(Safety)

Emission Model
(MOVES)

.trj Files
Aggregate Emissions 

from Simulation
(Environment)

FIG 1 Interaction among different modeling tools.

Traffic Direction Host (HSDW-Equipped) Vehicle Remote (DSRC-Equipped) Vehicle Classic Vehicle
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Slow!!!

Slow!!!
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FIG 2 Possible HSDW scenarios [13].
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regulate traffic flow based on downstream traffic conditions, 
especially when approaching bottleneck/congestion areas 
[10]. Connected vehicles and DSRC-equipped roadside equip-
ment exchange information with each other, and the average 
speed of road segments can be monitored and transmitted to 
the associated connected vehicles to encourage smooth driv-
ing at energy-efficient speeds for entire traffic flows [14].

4) Eco-Approach and Departure (EAD) Application
In addition to the three CV applications mentioned above, the 
Eco-Approach Departure (EAD) application [31] is designed 
to reduce energy consumption for the vehicle traveling along 
signalized corridors, by communicating with the signal phase 
and timing (SPaT) information of the upcoming traffic sig-
nals. More specifically, the application-equipped vehicle uses 
this traffic signal data, provides advisory speed profile to the 
driver and allows the driver to adapt the vehicle’s speed to 
pass the next traffic signal in the most eco-friendly manner.

III. Framework of Speed Variation-Based Entropy (SVE)

A. Entropy
Entropy has been widely used in many branches of sci-
ence, ranging from classical thermodynamics to statistical 
mechanics and information theory [32]–[35]. In thermo-
dynamics, entropy has been loosely associated with the 
amount of order or chaos. It can be understood as a mea-
surement of molecular disorder within a macroscopic 
system and the maximum entropy will be achieved as an 
isolated system spontaneously evolves toward thermo-
dynamic equilibrium. In his seminal paper, Shannon put 
forward the Shannon entropy and used it as a measure of 
the amount of information that is missing before recep-
tion [36]. More specifically, the Shannon entropy of a dis-
crete variable X with a probability mass function (PMF) 

{ }, ,Prp x X x x X!= =^ h  is defined as

	 ( ) ( )logH X p x p x
x

2=-^ h / � (3)

Further, Prigogine and Lewis et al. defined entropy as a 
measure of ignorance [37], regarding the gain in entropy as 
loss of information [38]. In transportation-related research, 
Baslamisli et al. proposed an approach to identify the sur-
face type of road by calculating the entropies of the sprung 
mass vertical acceleration of a vehicle running over roads 

with different qualities [39]. Tan et al. used the entropy 
of driver steering angle to measure discontinuity and to 
evaluate the effectiveness of drivers’ steering controls to 
distinguish driving skill levels [40]. In addition, Wang et 
al. proposed an approach for marking intersection areas 
by analyzing the entropy of vehicles’ moving direction [41].

B. Speed Variation-Based Entropy (SVE)
Fluctuations in vehicle speed have a significant impact 
on traffic operation. As mentioned previously, a variety of 
MOEs have been developed to address the variability in 
velocity. However, most of them rely on conventional sta-
tistics, such as mean and standard deviation, which may 
not be able to capture enough spectrum of the speed dis-
tribution. Inspired by the Shannon entropy (as described 
in Section III.A), the Speed Variation-based Entropy (SVE) 
is proposed in this study to evaluate the performance  
of CV applications in terms of smoother maneuvering of 
equipped vehicles and entire traffic when additional infor-
mation is introduced via connectivity. A three-step proce-
dure to calculate the SVE from each individual vehicle’s 
trajectory is show in Figure 3.

Based on second-by-second trajectory data, a histogram 
of the speed data classifies speed data into a certain number 
of bins, representing the distribution of sample frequency 
over the speed range. The probability value in each bin can 
be calculated by dividing the frequency per bin by the total 
size of the speed data. Equation (3) is applied to calculate 
the entropy of speed variations. The entropy in this study is 
in units of bits, since base-2 logarithms are used.

By calculating the SVE-based MOE on speed trajec-
tories, the speed variations information can be grouped 
from a trip-by-trip perspective. For an individual vehicle, 
the time-speed diagram is employed to describe its speed 
characteristics changing with time. The 2-D time-speed 
information could then be reduced into one single entropy 
value, which is the SVE defined above. Therefore, for each 
vehicle trip, there is an associated SVE value to represent 
speed variations during the whole trip. Then, the SVE dis-
tribution based on the SVE values of all trips can be ob-
tained. It is expected that the trip-based SVE distributions 
can well represent the effects of CV applications on traffic 
streams and the degree of traffic smoothness/chaos.

As one example, Figure 4 illustrates the speed distribu-
tion of two trips of an individual vehicle. The entropy of the 
high concentration distribution (red dash line) is smaller 
than that of the more spread-out distribution (black solid 
line). This result is consistent with the customized entropy 
“definition”: the less concentrated the speed value is, the 
larger customized entropy would be, leading to more uncer-
tainties for complete knowledge of the event or process, e.g., 
stop-and-go behaviors and relevant traffic condition. Based 
on the definition of entropy as aforementioned, the corre-
sponding trip-by-trip-based SVE values are calculated.

Histogram of
Speed Data

Probability
Calculation
in Each Bin

Speed Variations
Based Entropy

Calculation

Trajectory Data

FIG 3 Three-step procedure for SVE calculation.
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Moreover, based on the Fundamental Diagram (FD) [42] 
such as the Greenshield’s one, as the traffic becomes denser, 
cars driven under constant time headway have lower equi-
librium speed. In the meanwhile, the smallest speed varia-
tions and the stop-and-go behaviors can be amplified further 
by human drivers, causing traffic jam. It is expected that 
relevant performance (e.g., potential conflict risk, average 
speed and fuel consumption) in such traffic condition would 
deteriorate due to the increased stop-and-go behaviors. More 
insights relevant to the traffic jam propagation and the ef-
fects of driver behavior can be found in [43]. In addition, the 
Connected Cruise Control algorithms have been designed to 
control the longitudinal behavior of connected automated 
vehicles, in order to reduce speed variations, mitigate traf-
fic waves and improve energy efficiency, which has been 
verified in field experiments [44]. Driving behavior control 
features such as the Cooperative Adaptive Cruise Control 
(CACC) may regulate the traffic flows by implementing the 
platooning of autonomous vehicles [45] and taking into con-
sideration the stability of the vehicle string [46], to increase 
the road throughput. The CACC longitudinal control algo-
rithm is robust against speed variations, therefore, the aver-
age speed might not reduce as the SVE increases in this case. 
It is noted that the SVE measures speed variations but not 
the average speed (i.e., high average speed and low average 
velocity cases could have the same SVE value), which might 
lead to a complicated relationship between SVE and the mo-
bility performance (e.g., average speed).

C. Curve Fitting of Discrete SVE Distributions
When examining the empirical SVE distributions (i.e., us-
ing histograms), the Weibull distribution was selected in 
this study for histogram fitting to gain further insight. The 
Weibull distribution is widely used for weather forecasting 
[47], reliability engineering, and failure analysis of systems.

The probability density function (PDF) of a Weibull ran-
dom variable is:

	 ( ; , )f x A B A
B

A
x e x

x0

0

0<

( / )B x A1 B

$
=

- -` j) � (4)

where B 0>  is the shape parameter, and A 0>  is the scale 
parameter of the distribution.

In a Weibull distribution, B 1>  exists for an “aging” 
system, which by this hypothesis, means as time passes, 
the traffic system tends to be chaotic due to microscop-
ic (e.g., stop-and-go maneuvers and lane changes) and 
macroscopic (e.g., demand fluctuations, vehicle mix, and 
roadway geometry) disturbances. Moreover, the mode and 
inter-quartile range (IQR) of the fitted Weibull distribution 
can be regarded as potential surrogate measures that in-
dicate the traffic system degree of chaos. The smaller the 
mode of SVE distribution is, the smoother the traffic system 
is, since the majority of vehicles in roadway transportation 

have small speed variations. The larger the IQR of SVE dis-
tribution is, the more unpredictable and chaotic the traffic 
condition is, due to the larger diversity of SVE values.

For multi-modal distributions, the Weibull mixture [48] 
probability distribution function is used to better fit the 
discrete SVE distribution, which is defined as

	 ( )f x pf xi
i

=^ h / � (5)

where ( )f xi  is i-th component, which also follows a 
Weibull probability distribution; p is the mixture param-
eter or weight.

IV. Simulation Setup

A. Simulation Model
In this work, a segment of California SR-91E has been coded 
and used for a simulation study, which consists of a 15-mile 
corridor between the Orange County Line and Tyler Street 
in Riverside, California (see Figure 5). The number of lanes 
ranges from four to six, and there are nine pairs of on-/off-
ramps. The traffic conditions usually fall into levels of ser-
vice (LOS) C to E [49] during peak hours. Traffic demands, 
origin-destination (O-D) patterns, and driving behaviors 
have been calibrated to match that of a typical weekday 
morning in the summer [50]. The segment of California SR-
91E is used to test HSDW, LSM, and ESH. In addition, EAD 
is designed for vehicles when they pass through signalized 
intersections, therefore, the EAD application has been tested 
in a three-intersection signalized corridor in Palo Alto, CA, 
with three lanes in each direction, where the traffic patterns 
and signal control have been calibrated with field data.

B. Simulation Scenarios
To better understand the effectiveness of applications, 
comprehensive simulation tests have been conducted over 
the following system parameters:
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■■ Penetration rate of DSRC-equipped vehicles. In this 
study, a full range (8 total levels) of penetration rates 
are examined for conventional MOEs, including 0% 
(baseline), 10%, 20%, 30%, 40%, 50%, 80% and 100%, 
under the calibrated traffic demand pattern (LOS D). 
The application-equipped rate is set the same as the 
DSRC-equipped rate in this study.

■■ Congestion level. For the highway scenarios, during a 
three-hour simulation period, two levels of traffic vol-
ume are to be evaluated: 25,000 vehicles (calibrated), 
and 32,000 vehicles per simulation run. It is worth to 
note that the car following logic was carefully calibrat-
ed for the 25,000 veh/run case so that the SVE results 
are somewhat independent of the logic. Further analy-
sis on the average speed indicates that these two cases 
represent the traffic conditions of LOS D (transitional 

flows) and LOS E (unstable flows), respectively, accord-
ing to the Highway Capacity Manual (HCM) 2010 [49]. 
For the signalized intersection scenarios, there are two 
levels of traffic volume: 5000 vehicles/run (v/c = 0.38, 
referred to as moderate traffic), and 10000 vehicles/run 
(v/c = 0.76, referred to as relatively heavy traffic).

V. Simulation Results

A. SVE-Based MOE Evaluation for CV Applications

1) CV Applications’ Effects on Traffic
The SVE-based MOEs of four selected applications (HSDW, 
LSM, ESH, and EAD) are first analyzed. All the four appli-
cations were first tested under the 20% penetration rate for 
application-equipped vehicles. For the highway scenarios 

FIG 5 Road network of the California SR-91E in real-world and PARAMICS.
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and signalized intersections, total traffic volume levels are 
25,000 vehicles per run and 5000 vehicles per run, respec-
tively (both cases are moderate traffic condition).

Figure 6 shows the SVE distributions of application-
unequipped vehicles (before) and application-equipped 
vehicles (after) of corresponding applications, with the fol-
lowing key observations:
a)	 It can be observed that minor changes occurred in the 

SVE distributions between the HSDW-equipped and 

HSDW-unequipped vehicles, and they have very similar 
modes and IQRs. A potential explanation is that the HSDW ap-
plication is not triggered frequently enough in this moderate 
and relatively stable traffic condition (25,000 vehicles/run).

b)	 In the LSM application scenario, SVE distribution of LSM-
equipped vehicles shifts to the right, compared with that 
of LSM-unequipped vehicles. A hypothesis is that LSM-
equipped vehicles always switch to faster lanes, and those 
extra lateral disturbances cause higher velocity fluctuations.
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FIG 6 Time SVE distributions of four different CV applications (moderate traffic, 20% penetration rate). (a) HSDW application, (b) LSM application, 
(c) ESH application, and (d) EAD application. 

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on April 14,2020 at 22:16:22 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  11  •  MONTH 2019IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  10  •  MONTH 2019

c)	 In the ESH scenario, a significant left shift is observed 
in the SVE distribution of ESH-equipped vehicles com-
pared with that of the ESH-unequipped vehicles. The 
mode of ESH-equipped vehicles and ESH-unequipped 
vehicles are 4.4 bits and 4.9 bits, respectively. Smaller 
modes and IQRs of ESH-equipped vehicles means they 
do have smaller speed variations as well as travel in a 
more predictable way than ESH-unequipped vehicles. 
In this case, ESH-equipped vehicles obtain smoother 
velocity and then smaller SVE via additional informa-
tion brought by roadside infrastructure.

d)	 The SVE distributions in the EAD scenario are multi-
mode. The reason could be that there are interruptions 
from external factors (such as traffic signals). Note that 
these disturbances affect the speed variations rather 
than the SVE distribution’s performance. In fact, the 
multiple modes in the SVE distributions show that there 
exist disturbances in the speed variations (such as many 
stop-and-wait behaviors caused by signalized intersec-
tions and/or highly congested traffic conditions).

2) Sensitivity Analysis

Penetration Rate
The ESH and the EAD applications are taken as examples 
for penetration rate sensitivity analysis in moderate traffic 
(25,000 veh/run for ESH and 5000 veh/run for EAD), and 
three levels of penetration rate of application-equipped 
vehicles are selected: 10%, 50% and 80%. We can observe 
from Figure 7 that both the ESH and the EAD are robust to 
the variation of penetration rate compared to the other ap-
plications: the safety capability, mobility performance and 
fuel consumption have not changed much across different 
penetration rate levels (see Table I). Therefore we used 
these applications as examples to verify that the entropy-
based MOE (i.e., SVE) can be an indicator, showing how 
the other MOEs change (or even hardly change), in order 
to demonstrate the consistency in SVE with other MOEs. 
The cases showing how SVE varies with other MOEs as 
the number of application-equipped vehicles increases are 
presented in the following traffic volume sensitivity analy-
sis (i.e., for the LSM application and the EAD application).

Traffic Volume
First, Figure 8(a) presents a comparison between two base-
lines (where there is a 0% penetration rate of application-
equipped vehicles) of different congestion levels. It shows 
that a shift to the right of SVE distribution under the 32,000 
veh/run baseline case is observed with respect to that of 
the 25,000 veh/run baseline case, because higher traffic 
demand may cause higher speed fluctuations/chaos on the 
road (See Figure 8(a)).

Second, as for the congestion level sensitivity analysis, 
the penetration rate of application-equipped vehicles is 

fixed at 20%, and the LSM application and the EAD ap-
plication are selected as the sensitivity analysis scenarios. 
a) The LSM scenarios: In comparison of Figure 8(b) and 
Figure 8(c), significant changes in SVE distributions in the 
LSM scenario can be observed. The SVE distribution tends 
to be dual-modal, instead of unimodal, under heavier 
traffic conditions. Figure 8(c) shows that besides the ve-
hicles that are subject to higher speed variations (the high 
mode), a certain number of vehicles have smaller speed 
variations (the low mode). An explanation for the dual-
mode phenomena in Figure 8(c) is that the whole traffic 
flow slows down as vehicle numbers keep increasing on 
the network in such a congested traffic condition, and ad-
ditional lane change behaviors induced by the LSM appli-
cations as extra disturbances to the traffic lead to much 
slower speeds with smaller speed variations. b) The EAD 
scenarios: It can be observed that there already exist mul-
tiple modes in the baselines of the SVE distributions under 
the signalized intersections scenarios, since the traffic 
light signals cause many stop-and-wait behaviors, leading 
to the fluctuations in speed variations and the multi-mode 
SVE distributions (see Figure 8(d)). In addition, by com-
paring the baselines in Figure 8(d), it can be concluded 
that the more congested traffic condition causes the right-
shift of the SVE distribution’ mode. The SVE values of the 
majority of vehicles will become larger in the relatively 
heavy traffic condition.

B. Correlations Between SVE and Conventional MOEs

1) Baseline SVE Versus Conventional MOEs
Figure 9 shows the relationship between SVE and the other 
three conventional MOEs in the case of baseline settings 
(i.e., 0% application-equipped vehicles, and 25,000 veh/
run in the highway scenario):

■■ Safety. The number of conflicts is minor when SVE is 
small. When higher SVE is observed, vehicles are ex-
posed to a higher conflict number;

■■ Mobility. There is no strong correlation between SVE 
and the average speed. For example, overall traffic that 
moves slowly but smoothly may have similar SVE as 
fast, free-flow traffic;

■■ Environment. When SVE is higher, the fuel consump-
tion increases, floating within a certain bandwidth 
range, e.g., 300 KJ/mile (this testing scenario focuses 
on the region with dense data samples).

2) SVE Versus Conventional MOEs for Four  
Selected CV Applications
It can be expected that the conventional MOEs of differ-
ent CV applications can be roughly obtained through the 
corresponding SVE. Table I and Table II list the three 
conventional MOEs of sensitivity analysis cases in some 
CV application scenarios (corresponding to the SVE MOE 
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FIG 7 SVE distributions of different penetration rates (moderate traffic). (a) 10% ESH penetration rate, (b) 50% ESH penetration rate, (c) 80% ESH 
penetration rate, (d) 10% EAD penetration rate, (e) 50% EAD penetration rate, and (f) 80% EAD penetration rate.
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FIG 8 SVE distributions of different traffic volumes in LSM scenario and EAD scenario (Baseline cases and 20% penetration rate). (a) no LSM-equipped 
vehicles, (b) 25,000 veh/run for LSM, (c) 32,000 veh/run for LSM, (d) no EAD-equipped vehicles, (e) Moderate traffic for EAD, and (f) Heavy traffic for EAD.
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sensitivity analysis in Section V.A.2) to explore the correla-
tions between SVE and conventional MOEs.

a) Penetration rate
Based on the general correlations between SVE and con-
ventional MOEs in Figure 9, the corresponding estimated 

conflict frequencies of ESH-equipped and unequipped ve-
hicles are 0.1638 and 0.1925, with estimated fuel consump-
tion ranges from 4000-4,300 KJ/mile and 4,200-4,500 KJ/
mile, which are consistent with the numerical results in 
Table I. The conflict frequency difference between estima-
tion and actual results is less than 0.02.
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FIG 9 Baseline SVE correlations with three conventional MOEs (0% penetration rate, 25,000 veh/run). (a) Scatter plot and (b) post-processing data 
(averaging, fitting and density plot).
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Application HSDW LSM ESH EAD

MOE SVE vs Sa SVE vs Mb SVE vs Ec SVE vs S SVE vs M SVE vs E SVE vs S SVE vs M SVE vs E SVE vs S SVE vs M SVE vs E

Correlation 
coefficient

 0.9811  –0.8950  0.9490  0.7942  –0.7576  0.8717  0.3916  0.9681  0.9941 –0.9499 –0.6765 –0.9131

aSafety MOE: Conflict frequency.
bMobility MOE: Average speed (mph).
cEnvironmental impacts MOE: Fuel consumption (KJ/mi).

Table III. Correlation coefficients between SVE and conventional MOEs (moderate traffic, varied penetration rate).

Moreover, the correlation between SVE and aver-
age speed, fuel consumption, and conflict frequency are 
plotted and calculated, respectively (see Figure 10 and 
Table III). To be clear, in this case there are seven penetra-
tion rate levels for seven SVE samples, i.e., 10%, 20%, 30%, 
40%, 50%, 80%, and 100%. Every entropy value is available 
for each penetration rate level under the moderate traffic 
(25,000 vehicles/run for the highway scenario and 5000 
vehicles/run for the downtown scenario), where each en-
tropy value is calculated based on the overall vehicle speed 

data in the entire network during the full simulation time. 
The corresponding conventional MOEs are average values 
of overall vehicles under the same scenarios.

In Figure 10, it can be concluded that SVE has a strong 
negative correlation with average speed, and an obvious 
positive correlation with fuel consumption and conflict fre-
quency in the HSDW and LSM scenarios. This result meets 
the expectation that high entropy values reflect more cha-
otic traffic in terms of high conflict frequency, low aver-
age speed, and high fuel consumption. However, the ESH 
scenario is a special case where SVE versus safety and SVE 
versus mobility do not show such a trend in correlation co-
efficients. Several potential reasons are: a) for the safety 
aspect, since the traffic system is subject to less fluctuation 
across different penetration rates in the ESH scenario (as 
mentioned in penetration rate sensitivity analysis in terms 
of SVE MOE in Section V.A.2), the fluctuation in convention-
al MOEs (e.g., conflict frequency) is very small (note that 
to be observed distinctly, the y-axis limit for safety in the 
ESH scenario is relatively small in Figure 10) across differ-
ent penetration rates, which leads to the 0.3916 correlation 
coefficient (see Table III); and b) on the other hand, for the 
mobility aspect, it can be concluded that the ESH system 
sacrifices the mobility to some extent in order to smooth 
overall traffic flow and keep the speed within a certain 
range for energy saving, as the penetration rate increases. 
The EAD application is designed to smooth the longitudi-
nal trajectories of the application-equipped vehicles and 
reduce the fuel consumption. However, the impacts of such 
application on other unequipped vehicles/the overall traffic 
could be amplified due to the signalized intersections. In 
Figure 10, we observe that the overall SVE increases as the 
penetration rate of the EAD application increases, while the 
EAD is robust against the surrounding variations (the three 
MOEs in the EAD scenario are relatively stable). Please note 
that to be observed distinctly, the y-axis limits for the three 
MOEs in the EAD scenario are relatively small. In this case, 
SVE versus conflict risk/fuel consumption is not positively 
correlated any more (see Table III). By combining the con-
ventional MOEs and the SVEs, we can understand how the 
application affects the overall traffic (smoothing or causing 
chaos in speed variations) and whether the application is 
robust against surrounding variations.

Penetration Rate Sensitivity Analysis

ESH (25,000 veh/run) EAD (Moderate Traffic)

Penetration Rate Sa Mb Ec Sa Mb Ec

10% Equipped 0.1504 58.3 4158.9 0.0973 22.1 4043.3

Unequipped 0.1861 59.9 4295.3 0.0973 22.2 4332.5

50% Equipped 0.1646 58.6 4168.4 0.0767 21.7 4139.0

Unequipped 0.1812 59.3 4276.0 0.0801 22.3 4273.5

80% Equipped 0.1711 59.0 4195.2 0.0616 21.7 4178.0

Unequipped 0.2129 59.5 4291.5 0.1028 22.2 4317.4
aSafety MOE: Conflict frequency.
bMobility MOE: Average speed (mph).
cEnvironmental impacts MOE: Fuel consumption (KJ/mile).

Table I. Conventional MOEs of penetration rate sensitivity analysis.

Traffic Volume Sensitivity Analysis

LSM (20%  
Penetration Rate)

EAD (20%  
Penetration Rate)

Traffic Volume Sa Mb Ec Sa Mb Ec

Moderate 
traffic

Equipped 0.3922 65.5 4502.1 0.0497 21.6 4120.3

Unequipped 0.2189 61.1 4315.6 0.1006 22.3 4338.6

Heavy 
traffic

Equipped 2.1334 21.3 6005.0 0.1742 20.9 4203.9

Unequipped 1.4382 21.4 5733.0 0.2144 21.6 4305.3
aSafety MOE: Conflict frequency.
bMobility MOE: Average speed (mph).
cEnvironmental impacts MOE: Fuel consumption (KJ/mile).

Table II. Conventional MOEs of traffic volume sensitivity analysis.
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b) Traffic volume
Regarding the LSM, for the 25,000 veh/run case, the estimat-
ed average conflict frequency is 0.1983 based on the mode of 
LSM-equipped vehicles (i.e., 5 bits, see Figure 8(b)), and the 
estimated fuel consumption is 4,200-4,500 KJ/mile (both re-
sults are based on correlations in Figure 9). The actual con-
flict frequency is 0.3922 (see Table II) due to induced lane 
changes by LSM-equipped vehicles. In combination with 
Figure 8(c), it can be concluded that average traffic speeds 
drop dramatically from 47 mph (baseline) to 21 mph, and sig-
nificant increases of fuel consumption and conflict frequen-
cy are witnessed in the congested LSM scenario (see Table 
II). Regarding the EAD, the SVE value increases as the traffic 
volume increases, and the safety, mobility, and sustainabil-
ity impacts performance deteriorate due to the higher speed 
variations in the heavy traffic condition (see Table II).

Lastly, the correlation between SVE and the three con-
ventional MOEs of the four selected CV applications across 
two congestion levels is shown in Figure 11. Each entropy 
value is calculated based on the overall vehicle speed data 
on the entire network during the full simulation time. A 
20% penetration rate of application-equipped vehicles is 
fixed herein. The results show that higher SVE is associated 
with higher conflict frequency, lower average speed, and 
higher energy consumption for both HSDW and ESH. Again, 
as mentioned in Section III.B, as the traffic becomes denser, 
human drivers can amplify the smallest speed variations 
into a full-on stop-and-go jam. This could well explain the 
negative correlation results between the SVE and traffic 
mobility performance for HSDW, ESH, and EAD in Figure 
11. In addition, since the relation between the SVE and the 
average speed itself is relatively complicated (see analysis 
in Section III.B), the SVE is smaller in denser traffic and the 
SVE distributions are used at the same time to evaluate the 
LSM scenario. The SVE distributions of the LSM scenario 
are associated with a more unpredictable and chaotic traf-
fic condition (the chaos can be determined from the dual-
mode SVE distributions with large variance) (see Figure 
8(c)), indicating higher conflict risk, lower traffic speed, 
and high fuel consumption (see Figure 11).

3) Discussions
To draw a more general conclusion on the correlation be-
tween SVE and vehicle performance, the conflict frequency, 
average speed and fuel consumption have been estimated 
for each individual vehicle (application-equipped) during its 
whole trip. The correlation coefficients between SVE values 
of individual vehicles and their safety, mobility and environ-
mental sustainability performance measures for all the four 
CV applications are shown in Table IV. Comparing Table III 
with Table IV, the correlation coefficients between the SVE 
and the conflict frequency/fuel consumption are still posi-
tive. But the correlation of the SVE and the vehicle’s perfor-
mance measures from the individual vehicle perspective is 

not as strong as the correlation of the SVE distribution or 
the entropy of overall vehicles and the overall performance 
measures (e.g., average conflict number and average fuel 
consumption) (please also refer to Figure 9, as compared to 
all the individual samples, the SVE shows stronger positive 
correlation with the average conflict frequency).

VI. Discussion and Future Work
This paper proposed a Speed Variation-based Entropy 
(SVE) as a new Measure of Effectiveness (MOE) for CV 
applications, at both the individual vehicle and the traffic 
levels. The SVE distribution (based on each individual trip) 
can be used as an alternative MOE for traffic systems. Four 
representative applications were selected, and the SVE dis-
tributions were analyzed in comparison to MOEs related to 
safety, mobility, and environmental impacts.

The proposed SVE (and SVE distribution) method, as a 
pointer, is capable of providing the clue or verification for re-
searchers about the network-wide safety and environmental 
sustainability performance. The SVE has a strong correlation 
with conventional MOEs for CV applications especially un-
der freeway scenarios. For example, results from this study 
show that the average conflict frequency and the average fuel 
consumption have a strong positive correlation with the SVE 
distributions and overall SVEs. Modelers can calculate the 
SVE and then use the SVE to estimate the conventional MOEs 
under a variety of scenarios. However, the relation between 
the SVE and the average speed itself is relatively complicated 
(either positive or negative correlation), depending on the de-
sign of CV applications (as discussed in the last paragraph of 
Section III.B and the last paragraph of Section V.B.2). There-
fore the SVE might be not a proper indicator to evaluate the 
mobility performance (e.g., average speed) for the type of 
applications with string stability (e.g., cooperative adaptive 
cruise control). Please note that even the proposed SVE is 
not closely associated with the speed values, but the noise in 
speed measurement could still affect the performance of the 
proposed SVE measure since the inaccurate speed measure-
ment could cause errored calculation of speed variations.

The SVE and its distribution can be used as an alternative 
MOE for CV applications evaluation in a more holistic way 
from the perspective of the entire traffic system status ob-
servation, which otherwise needs to be jointly reflected and 
evaluated by several (usually more than one) conventional 
MOEs. We can observe the entire traffic status through the 
SVE distributions (mode and IQR): A system with a larger 
mode and a broader inter-quartile range (IQR) of the SVE 
distribution is more chaotic and less predictable (usually 
with deteriorated conventional MOEs simultaneously).

Furthermore, entropy calculation from different per-
spectives (e.g., space-based and time-based SVE calculation) 
and its relationship with other fundamental traffic system 
parameters (e.g., capacity, density, and flow) remain as fu-
ture work. In addition to the speed variation based entropy, 
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such an entropy-based framework (and relevant entropy 
distribution analysis) proposed in this paper can be used in 
other traffic evaluations as well, such as vehicles’ headway, 
travel time, and steering angel, in order to better understand 
traffic condition of interest. For example, entropy of vehicles’ 
moving direction can be analyzed to mark intersection ar-
eas. In addition, headway entropy or travel time entropy can 
be used to determine the degree of traffic chaos and traffic 
system reliability. Entropy based criteria enable the accurate 
identification of traffic conditions, and therefore would play 
an indispensable role in the development of CV applications.
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Correlation 
coefficient
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cEnvironmental impacts MOE: Fuel consumption (KJ/mi).

Table IV. Correlation coefficients between SVE and conventional MOEs (heavy traffic, 20% penetration rate).
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