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Abstract—Tabbycat is a video server prototype demonstrating 
the benefits of a proactive approach for distributing popular 
videos on demand to a large customer base.  Rather than reacting 
to individual customer requests, Tabbycat broadcasts the contents 
of the most popular videos according to a fixed schedule.  As a 
result, the number of customers watching a given video does not 
affect the cost of distributing it.  We found that one workstation 
with a single ATA disk drive and a Fast Ethernet interface could 
distribute three two-hour videos while achieving a maximum 
customer waiting time of less than four minutes.  12 

I. INTRODUCTION 
Current wisdom is that the size of a server distributing 

videos on demand is more or less proportional to the maximum 
number of concurrent users the server has to support.  Hence a 
metropolitan video-on-demand service capable of handling 
thousands of concurrent users is generally assumed to require a 
complex infrastructure, typically consisting of a large number 
of computing nodes and a sophisticated interconnection net-
work. The Tiger and the nCUBE video servers are good 
examples of this approach [1, 13]. 

We built the Tabbycat video server to demonstrate that a 
simpler, cheaper alternative is possible. Instead of assigning a 
separate data stream to each customer request, Tabbycat broad-
casts each video according to a deterministic schedule guaran-
teeing that customers will never have to wait more than a few 
minutes for the video of their choice.  Hence, it is the ideal 
solution for services offering ten to twenty “hot” videos to a 
large customer base.  All studies of video and movie popularity 
indicate that these top ten or twenty video would be the most 
profitable to distribute [5].  Even videocassette rental stores 
focus their efforts in having on hand enough videocassettes of 
the top videos of the day. 

To demonstrate the cost-effectiveness of the approach, we 
build our Tabbycat using off-the-shelf hardware and software.  
Our prototype runs on a PC running an unmodified version of 
Red Hat Linux and is connected to the network through a 
standard Fast Ethernet interface.  Despite these limitations, it 
can broadcast three two-hour videos and achieve a customer 
waiting time of less than four minutes.   

                                                           
1 Supported in part by the Texas Advanced Research Program under grant 
003652-0124-1999 and the National Science Foundation under grant CCR-
9988390. 
2 Supported in part by the National Science Foundation under grant CCR-
9988363. 

 

First Channel S1 S1 S1 S1 
Second Channel S2 S3 S2 S3 

Third Channel S4 S5 S6 S7 

Figure 1.  The first three channels for fast broadcasting (FB). 

The remainder of this paper is organized as follows.  Sec-
tion 2 reviews the relevant broadcasting protocols for video-
on-demand.  Section 3 presents our server architecture. Section 
4 discusses two possible extensions to the Tabbycat 
architecture while Section 5 reviews some relevant work.  
Finally, Section 6 contains our conclusions. 

II. BROADCASTING PROTOCOLS FOR VIDEO-ON-DEMAND 
All recent VOD broadcasting protocols derive in some way 

from Viswanathan and Imielinski’s pyramid broadcasting 
protocol [16]. Like it, they require special customer set-top 
boxes (STBs) (a) capable of receiving data at data rates 
exceeding the video consumption rate and (b) having enough 
buffer space to store up between, say, ten to sixty minutes of 
video data.  This allows the server to distribute the different 
segments of each popular video according to a deterministic 
schedule ensuring that no customer would have to wait more 
than a few minutes. 

The simplest broadcasting protocol is Juhn and Tseng's fast 
broadcasting (FB) protocol [11].  The FB protocol allocates to 
each video k data channels whose bandwidths are all equal to 
the video consumption rate b.  It then partitions each video into 
2k – 1 segments, S1 to S2

k
–1, of equal duration d.  As Figure 1 

indicates, the first channel continuously rebroadcasts segment 
S1, the second channel transmits segments S2 and S3, and the 
third channel transmits segments S4 to S7.  More generally, 
channel j with 1 ≤ j ≤ k transmits segments S2

j-1 to S2
j
–1.   

When customers want to watch a video, they wait until the 
beginning of the next transmission of segment S1.  They then 
start watching that segment while their STB starts receiving 
data from all other channels.  By the time the customer has 
finished watching segment S1, segment S2 will either have been 
already received or be ready to be received.  More generally, 
any given segment Si will either be already received or ready to 
be received by the time the customer has finished watching 
segment Si-1. 
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The newer fixed-delay pagoda broadcasting (FDPB) proto-
col [15] requires all users to wait for a fixed delay w before 
watching the video they have selected.  This waiting time is 
normally a multiple m of the segment duration d.  Hence the 
FDPB protocol can assume that all its clients will start 
downloading data from the moment they order the video rather 
than from the moment they start receiving the first segment.  
The FDPB protocol also uses more sophisticated segment-to-
channel mappings than the FB protocol: it uses time-division 
multiplexing to partition each of the k channels allocated to the 
video in a given number si of subchannels of equal bandwidth 
and allocates the n segments of the video to these subchannels 
in strict sequential order.  As a result, it can achieve smaller 
waiting times than protocols that do not impose a fixed delay 
on their customers. 
Figure 2 summarizes the segment-to-channel mappings of a 
FDPB protocol requiring customers to wait for exactly nine 
times the duration of a segment.  The first channel is parti-
tioned into three subchannels each having one third of the 
channel segment slots.  This allows the protocol to repeat 
segments S1 to S3 every 9 slots, segments S4 to S7 every 12 slots 
and segments S8 to S12 every 15 slots.  By repeating the same 
process over all successive channels, the FDPB protocol can 
map 308 segments into four channels and achieve a determi-
nistic waiting time of 9/308 of the duration of the video, that is, 
three and half minutes for a two-hour video.  Adding a fifth 
channel would allow the server to broadcast 814 segments and 
achieve a waiting time of 80 seconds for the same two-hour 
video. 

III. THE TABBYCAT PROTOTYPE 
Our goal in building the Tabbycat server was to develop a 

proof-of-concept prototype of a video server using a state-of-
the-art broadcasting protocol.  We picked the fixed-delay 
pagoda broadcasting protocol (FDPB) for several reasons.  
First, it requires less server bandwidth than most other proto-
cols to achieve the same customer waiting times.  Second, it 
uses fixed-size segments and fixed-bandwidth channels, 
making it easier to implement than protocols that use variable-
bandwidth channels [14] or variable-length segments [8].  
Finally, the protocol ensures that each and every segment can 
be completely received by the STB before the customers start 
to watch it.  As a result, it provides implicit forward buffering, 
which was expected to take care of most of the bandwidth 
fluctuations inherent to compressed video signal. 

A. The Tabbycat Server 
A Tabbycat server consists of one or more workstations 

each distributing a few of the most popular videos.  These 
workstations act autonomously under normal circumstances.  
Our prototype consisted of a single Pentium 4 system whose 
characteristics are summarized in Table 1. 

We first benchmarked the transfer rate of the ATA drive 
and found it was about 40 MB/s.  Having measured the 
instantaneous bandwidths of several MPEG-2 videos [12], we 
found that a typical MPEG-2 would require an average channel 
bandwidth of 750 kB/s with cartoons having a slightly higher 
bandwidth than other videos.  We also found that the  
 

Channel Number of 
Subchannels 

First 
Segment 

Last 
Segment 

C1 3 S1 S12 
C2 5 S13 S42 
C3 7 S43 S116 
C4 11 S117 S308 
C5 18 S309 S814 

Figure 2.  The first five channels for the FDPB protocol with m = 9. 

TABLE I.   OUR PROTOTYPE CONFIGURATION 

Server Intel Pentium 4  1.7 GHz 
512 MB Rambus RAM 
40 GB ATA-100 (7200 RPM) HDD 
100 Mb/s Ethernet Interface 
Linux Kernel 2.4.x with ext2fs 

Network Fast Ethernet 
Clients Intel Pentium III 600 MHz 

256 MB RAM 
10 GB ATA-66 HDD 
100 Mb/s Ethernet Interface 
Linux Kernel 2.4.x with ext2fs 

Videos Full-length videos in DVD format (MPEG-2) 

TABLE II.  TABLE 2.  SUMMARY OF RELEVANT BANDWIDTHS 

VOD Channel 750 kB/s 
ATA-100 Drive 50 channels (around 40 MB/s) 
Fast Ethernet 13 channels (around 10 MB/s) 
Gigabit Ethernet 100 channels (around 80 MB/s) 

 
occasional peaks in bandwidth would average out because of 
forward buffering of the FDPB.  Hence a Tabbycat with a 
single ATA drive should be able to broadcast 50 channels.  
With these 50 channels, we could broadcast 10 videos using 5 
channels per video.   

We decided to use UDP instead of TCP because of its low 
overhead.  Though UDP is an unreliable protocol, we found 
that in a LAN there was almost no packet loss as long as the 
client and the server were connected to the same Ethernet 
switch. Moreover, using FDPB in a cable TV environment 
would mean that the network would have majority of its traffic 
from the server and given the improvements in network reli-
ability, this seems to be a reasonable choice. 

We found that we could achieve speeds of about 10MB/s 
on a 100Mb/s Ethernet.  As a result, we could have about 13 
channels per server.   

B. The Clients 
As shown on Table 2, the clients were older workstations with 
600 MHz processors and 256 MB of memory.  They rely on 
the freely available xine video player for decoding and 
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Channel Number of 
Subchannels 

First 
Segment 

Last 
Segment 

C1 3 S1 S12 
C2 5 S13 S42 
C3 8 S43 S119 
C4 13 S120 S318 
C5 19 S319 S847 

Figure 3.   The first five channels for the modified version of 
the FDPB protocol with m = 9. 

playing videos. We increased their kernel network buffer sizes 
from 65kB to about 70MB to avoid packet losses due to 
congestion on the client kernel buffers. 

C. The Distribution Protocol 
Tabbycat uses a slightly modified version of the FDPB 

protocol.  First, Tabbycat clients keep in their buffer all the 
previously watched segments of each video until the end of 
that video.  As a result, Tabbycat customers are provided with 
equivalents of the VCR pause and rewind commands: they can 
either temporarily suspend the viewing process or return to any 
video scene they have already watched.  Since these two addi-
tional features are provided by the STB alone without any 
server intervention, their sole cost is a few extra gigabytes of 
additional temporary data on the STB hard drive. 

Second, Tabbycat uses a slightly different heuristic for 
partitioning each channel into subchannels. In the original 
FDPB protocol, channel Ci was partitioned into a number of 
subchannels equal to the square root of the period of lowest 
numbered segment broadcast by Ci.  Returning to Figure 2, we 
see that the lowest numbered segment broadcast by channel C1 
is segment S1.  Since customers have to wait for exactly nine 
times the duration of a segment, that segment has to be 
repeated once every 9 slots. Hence channel C1 is partitioned 
into 39 =  subchannels.   

We found that slightly more efficient segment-to-channel 
mappings could be achieved by increasing the number of 
subchannels by one or two in some channels.  As seen on 
Figure 3, this optimization allowed us to map 847 segments 
into 5 channels and achieve a waiting time of 77 seconds for a 
two-hour video. 

D. Experimental Results 
We measured the performance of our server when it was 

broadcasting three videos on twelve 720 kB/s channels.   
All three videos were broadcast using the modified version 

of the FDPB protocol with m = 9.  As shown on Figure 3, this 
allowed us to partition each video in exactly 318 segments, 
which should allow us to achieve a customer waiting time 
equal to 9/318 of the duration of each video. Note that this 
value assumes that the client can start downloading data from 
segments that have already started.  Since our clients could not 
do that, our customer waiting times will be closer to 10/318 of 
the video duration  

Our first video is a full-feature movie in MPEG-2 format 
lasting 140 minutes.  The observed customer waiting time on a 
client machine was 273 seconds, that is, 9 seconds more than 
expected.  Our second video is another full-feature movie last-
ing 130 minutes. Unlike the first video it was encoded at a 
lower bandwidth (slightly below than 360 kB/s).  As a result, 
our segment transmission time is roughly equal to half its 
viewing time.  This resulted in an observed customer waiting 
time of 156 seconds.  Our third video shows highlights of 
professional hockey games in MPEG-2 format.  The video lasts 
25 minutes and the observed customer waiting time is 52 
seconds, that is, 5 seconds more than expected. 

E. Attacking the Network Interface Bottleneck 
Using a 100Mb Ethernet causes the network bandwidth to 

be a bottleneck as we can only use 25 percent of the available 
disk bandwidth.  

A better solution would be to use a gigabit Ethernet inter-
face. This would allow transfer rates of about 80 MB/s.  
Unfortunately, the disk bandwidth limits us to 40 MB/s, that is, 
half of that bandwidth. 

F. Attacking the Disk Bottleneck 
There would be several ways to eliminate that disk bottle-

neck.  First we could attach to each workstation two SCSI disk 
drives and divide the disk workload among these two drives.  
The main disadvantage of this solution is the higher cost of 
SCSI drives. 

A second option would be to wait for newer and better 
ATA drives.  Disk densities have been doubling every year 
over the last few years and there is no reason to expect a 
sudden halt to this trend.  Even without an increase of disk 
rotational speeds, we can thus expect disk transfer rates to 
increase by a factor of 2  every year.  Within two years, we 
should be able broadcast 100 channels from a single disk drive.  
This will be enough to broadcast the 20 hottest videos using 5 
channels per video and achieve a waiting time of 81 seconds. 

A third option would be to store in the server’s main mem-
ory the most frequently transmitted segments of each video .  
Since we are using a deterministic broadcasting protocol, we 
can predict ahead of time the I/O bandwidth savings that could 
thus be achieved. 

Assume that our broadcasting protocol partitions each 
video to be broadcast into n fixed size segments of equal 
duration d = D/n where D is the duration of the video.  Assume 
also that the protocol repeats segment Si every z(i) slots.  For 
all protocols that impose a fixed delay, we would have z(i) > i. 
Then the total bandwidth required to broadcast the first k 
segments of the video is given by: 

∑ =

n

i iz
b

1 )(
 

where b is the video consumption rate. 
The fraction of the total bandwidth occupied by the first k 

segments is then given by: 
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Recall that the bandwidth of a single ATA drive allows us 
to broadcast up to 10 two-hour videos on 50 channels and 
achieve a waiting time of 81 seconds.  Assuming m = 9, the 
first channel allocated to each video would broadcast the first 
12 segments of the video, that is 12/847th of the total duration 
of the video.  Caching these 12 segments in main memory 
would require 12/847×7200×0.75 = 76.5 MB per video and 
reduce the disk bandwidth by one channel.  Caching the first 
12 segments of the 10 videos would reduce the disk bandwidth 
by the equivalent of ten channels.  This would allow us to 
broadcast 2 additional videos at the cost of 765 MB of 
additional main memory.  Note that the cost of caching the first 
few segments of a video is directly proportional to the duration 
of these segments and the duration of the video.  Hence, 
caching would work very well for a server distributing shorter 
video clips. 

G. Fault-Tolerance Issues 
 In the current state of the technology, a reasonably sized 
Tabbycat server would probably consist of 3 workstations 
connected to the net through Gigabit Ethernet interfaces that 
would allow it to broadcast the 18 most popular videos on a 
total of 90 channels, using slightly less than two-thirds of the 
available bandwidth. Each video would be replicated on two of 
the three workstations in such a way that each workstation will 
have backup copies of one half of the videos normally broad-
cast by the two other workstations.  Should one of the 
workstations fail, each of the two remaining workstations will 
add to its normal broadcast schedule one half of the videos that 
were broadcast by the machine that failed. 

IV. POSSIBLE EXTENSIONS 
Two possible extensions could greatly enhance the current 

implementation of our Tabbycat prototype. 

A. Implementing a Reliable Multicast Protocol 
Since our prototype relies on UDP for distributing the 

videos, its applicability is limited to either cable TV 
environments or well-controlled LANs, where packet losses 
are small enough to be tolerated by the video-encoding 
scheme.  Deploying Tabbycat over a shared WAN would 
require implementing a reliable multicast protocol.  We are 
currently investigating several possible solutions. 

B. Limiting the Client Bandwidth 
Tabbycat now requires each STB to receive at the same 

time data from all the k channels allocated to the video being 
currently watched.  This requirement complicates the design of 
the client and increases its cost [9, 6].  A better solution would 
be to use a FDPB protocol limiting the STB receiving band-
width to two channels. 

Channel Number of 
Subchannels 

First 
Segment 

Last 
Segment 

C1 3 S1 S12 
C2 5 S13 S42 
C3 6 S43 S95 
C4 8 S96 S193 
C5 11 S194 S369 

Figure 4.  The first five channels for a FDPB protocol with m = 9 restricting 
the client bandwidth to two channels and not allowing channel hopping. 

Channel Number of 
Subchannels 

First 
Segment 

Last 
Segment 

C1 3 S1 S12 
C2 5 S13 S42 
C3 6 S43 S100 
C4 10 S101 S220 
C5 14 S237 S474 

Figure 5.  The first five channels for a FDPB protocol with m = 9 restricting 
the client bandwidth to two channels and allowing channel hopping. 

One possible solutions to this problem is to design an 
FDPB protocol assuming that the client STB will not be able to 
receive data from channel Cl + 1 until it is done with all channels 
Ci with i < l [15].  The main advantage of this approach is that 
the STB will never have to hop back and forth between the 
channels.  Its major drawback is that we will not be able to 
map as many segments into the same number of channels.  
This will result into either an increase of the customer waiting 
time or an increase of the number of channels required to 
achieve the same waiting time. 

As shown in Figure 4, a FDPB protocol with m = 9 restrict-
ing the client bandwidth to two channels and not allowing 
channel hopping would only be able to map 193 segments into 
four channels.  Hence it would only achieve a waiting time 
equal to 9/193th of the video duration, that is, a little less than 6 
minutes for a two-hour video.  Adding a fifth channel would 
bring the waiting time below three minutes for the same two-
hour video. 

We present here a more efficient solution.  Rather than wait-
ing for the STB to be entirely done with channel Ci before 
starting to receive data from channel Ci+2, we will let the STB 
receive data from some of the subchannels of channel Ci+2 at 
the same rate it stops receiving data from some of the subchan-
nels of channel Ci.  This process will be conducted in such 
fashion that the customer STB will never have to receive data 
at the same time from channels Ci and Ci+2. 

As shown in Figure 5, a FDPB protocol with m = 9 restrict-
ing the client bandwidth to two channels while allowing 
channel hopping could map 220 segments into four channels.  
Hence it would achieve a waiting time equal to 9/220th of the 
video duration, that is, a little less than 5 minutes for a two-
hour video.  Adding a fifth channel would allow us to partition 
the video into 474 segments and achieve a waiting time of`137 
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seconds for the same two-hour video.  Hence allowing 
channel-hopping results in a 22 percent reduction of the 
customer waiting time. 

V. RELEVANT WORK 
The Berkeley Distributed Video-on-Demand System [3] 

allowed clients across the Internet to submit requests to view 
audio, video and graphical streams. Playback was accom-
plished by streaming data from a media file server through the 
network to the client's computer.  No effort was made to share 
data among overlapping requests.  

The Tiger system was a scalable, fault-tolerant multimedia 
file system using commodity hardware [1].  Unlike Tabbycat, 
it dedicated a separate data stream to each customer request 
and made no attempts to share data among overlapping 
requests.  Hot spots were avoided by striping all videos across 
all workstations and disks in a Tiger system.  Tiger prevented 
conflicts among requests by scheduling incoming requests in a 
way that ensures that two requests will never access the same 
resource at the same time.  This task was distributed among all 
of the workstations in the system, each of which having an 
incomplete view of the global schedule.  The main disadvan-
tage of the approach was its poor scalability: Tiger designers 
found that a system with ten workstations could only handle 
one hundred concurrent user requests.  

More recently, Bradshaw et al. have presented an Internet 
streaming video testbed [2] using both periodic broadcast and 
patching/stream tapping [4, 10].  This allowed the server to 
select the best distribution protocol for each video, namely, 
broadcasting videos in very high demand while distributing 
less popular videos through stream tapping/patching.  This 
feature resulted in a much more complex system than our 
Tabbycat server.  In addition, the greedy disk-conserving 
broadcasting protocol [7] used by their system is less band-
width-efficient than the optimized FDPB protocol used by 
Tabbycat.  While the optimized FDPB protocol only requires 
five channels to achieve a waiting time of 77 seconds for a 
two-hour video, the greedy disk-conserving broadcasting 
protocol requires 6 channels to achieve a waiting time of 114 
seconds for the same video. 

VI. CONCLUSION 
Current wisdom is that distributing video on demand to 

large audiences requires complex expensive farms of video 
servers.  We built the Tabbycat video server to show that a 
metropolitan video server distributing the top ten to twenty 
videos could consist of a few powerful workstations running 
unmodified versions of a standard operating system.  The 
secret of Tabbycat’s low cost is the broadcasting protocol it 
uses to distribute the videos.  We knew ahead of time that the 
FDPB protocol would provide smaller waiting times than any 
other protocol broadcasting fixed-size segments over channels 
of equal bandwidth [15].  We found it easy to implement and 
easy to tune thanks to its regularity.  In addition, we showed 
that a FDPB protocol restricting the client bandwidth to two 
channels could still achieve a waiting time of slightly less than 
126 seconds for a two-hour video broadcast over five channels. 

As it stands now, Tabbycat is a mere proof-of-concept 
prototype.  More work is still needed to allow its deployment 
in environments where packet losses are likely to happen. 
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